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Abstract
Higher inductive-inductive types (HIITs) generalise inductive types of dependent type theories
in two directions. On the one hand they allow the simultaneous definition of multiple sorts that
can be indexed over each other. On the other hand they support equality constructors, thus
generalising higher inductive types of homotopy type theory. Examples that make use of both
features are the Cauchy reals and the well-typed syntax of type theory where conversion rules
are given as equality constructors. In this paper we propose a general definition of HIITs using
a domain-specific type theory. A context in this small type theory encodes a HIIT by listing the
type formation rules and constructors. The type of the elimination principle and its β-rules are
computed from the context using a variant of the syntactic logical relation translation. We show
that for indexed W-types and various examples of HIITs the computed elimination principles
are the expected ones. Showing that the thus specified HIITs exist is left as future work. The
type theory specifying HIITs was formalised in Agda together with the syntactic translations. A
Haskell implementation converts the types of sorts and constructors into valid Agda code which
postulates the elimination principles and computation rules.
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1 Introduction

Many dependent type theories support some form of inductive types. An inductive type
is given by its constructors, along with an elimination principle which expresses that all
inhabitants are constructed using finitely many applications of the constructors.
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20:2 A Syntax for Higher Inductive-Inductive Types

For example, the inductive type of natural numbers Nat is given by the constructors
zero : Nat and suc : Nat → Nat. The eliminator corresponds to the usual notion of
mathematical induction:

ElimNat : (P : Nat→ Type)(pz : P zero)
(
ps : (n : Nat)→ P n→ P (sucn)

)
(n : Nat)→ P n

P is a family of types over natural numbers, which is called the motive of the eliminator.
It can be viewed as a proof-relevant predicate on Nat. The arguments pz and ps are called
the methods of the eliminator. The target of the eliminator is n and given methods for
each constructor, the eliminator provides a witness of P n. Thus, if P holds for zero and
suc preserves P , then P holds for all natural numbers. The behaviour of the eliminator is
described by a computation-rule (β-rule) for each constructor:

ElimNatP pz ps zero ≡ pz
ElimNatP pz ps (sucn) ≡ ps n (ElimNatP pz ps n)

These express that the eliminator applied to a constructor expression reduces to an application
of the corresponding induction method. From an operational point of view, ElimNat replaces
all the zero and suc constructors with the given induction methods.

Dependent families of types can be defined in a similar way, for example vectors of
A-elements VecA : Nat → Type which are indexed by their length. Another generalisation
of inductive types are mutual inductive types. However, these can be reduced to indexed
families where indices classify constructors for each mutual type. Inductive-inductive types
[23] are mutual definitions where this reduction does not work: here a type is defined together
with a family indexed over it. An example is the following fragment of the well-typed syntax
of type theory where the second sort Ty is indexed over the first sort Con, but constructors
of Con also refer to Ty:

Con : Type sort of contexts
Ty : Con→ Type sort of types given a context
• : Con constructor for the empty context
– B – : (Γ : Con)→ Ty Γ→ Con constructor for context extension
U : (Γ : Con)→ Ty Γ constructor for a base type
Π : (Γ : Con)(A : Ty Γ)→ Ty (ΓBA)→ Ty Γ constructor for dependent functions

There are two eliminators for this type: one for Con and one for Ty. Both take the same
arguments: two motives (P : Con → Type and Q : (Γ : Con) → P Γ → Ty Γ → Type) and
four methods (one for each constructor, we don’t list these).

ElimCon : (P : . . . )(Q : . . . )→ . . .→ (Γ : Con) → P Γ
ElimTy : (P : . . . )(Q : . . . )→ . . .→ (A : Ty Γ)→ QΓ (ElimCon Γ)A

Note that the type of ElimTy refers to ElimCon, which is why this elimination principle is
called recursive-recursive (analogously to the phrase “inductive-inductive”).

Higher inductive types (HITs, [25, Chapter 6]) generalise inductive types in a different
way: they allow constructors expressing equalities of elements of the type being defined. This
enables, among others, the definition of types quotiented by a relation. For example, the
type of integers Int can be given by a constructor pair : Nat → Nat → Int and an equality
constructor eq : (a b c d : Nat) → a + d =Nat b + c → pair a b =Int pair c d targetting an
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equality of Int. The eliminator for Int expects a motive P : Int→ Type, a method for the pair
constructor p : (a b : Nat)→ P (pair a b) and a method for the equality constructor path. This
method is a proof that given e : a+ d =Nat b+ c, p a b is equal to p c d (the types of which are
equal by e). Thus the method for the equality constructor ensures that all functions defined
from the quotiented type respect the relation. Since the integers are supposed to be a set
(which means that any two equalities between the same two integers are equal), we would need
an additional higher equality constructor trunc : (x y : Int)→ (p q : x =Int y)→ p =x=Inty q.
HITs allow equality constructors at any level. With the view of types as spaces in mind, point
constructors add points to the space, equality constructors add paths and higher constructors
add homotopies between paths.

Not all constructor expressions make sense. For example [25, Example 6.13.1], given an
f : (X : Type) → X → X, suppose that an inductive type Ival is generated by the point
constructors a : Ival, b : Ival and a path constructor σ : f Ival a =Ival f Ival b. The eliminator
for this type should take a motive P : Ival→ Type, two methods pa : P a and pb : P b, and a
path connecting elements of P (f Ival a) and P (f Ival b). However it is not clear what these
elements should be: we only have elements pa : P a and pb : P b, and there is no way in
general to transform these to have types P (f Ival a) and P (f Ival b).

Another invalid example is an inductive type Neg with a constructor con : (Neg→ ⊥)→
Neg where ⊥ is the empty type. An eliminator for this type should (at least) yield a projection
function proj : Neg→ (Neg→ ⊥). Given this, we can define u :≡ con (λx.projxx) : Neg and
then derive ⊥ by projuu. The existence of Neg would make the type theory inconsistent.
A common restriction to avoid such situations is strict positivity. It means that the type
being defined cannot occur on the left hand side of a function arrow in a parameter of a
constructor. This excludes the above constructor con.

In this paper we propose a general syntax for higher inductive-inductive types (HIITs)
which includes the above positive examples and excludes the negative ones. Our syntax for
HIITs allows any number of inductive-inductive sorts, possibly infinitary higher constructors
of any dimension and restricts constructors to strictly positive ones. It also allows free usage
of J and refl in HIIT specifications. We also show how to derive the types of the eliminators
and computation rules from the type formation rules and constructors.

The core idea is to represent HIIT specifications as contexts in a domain-specific type
theory which we call the theory of codes. A context in this theory can be seen as a code for
a HIIT, similarly to how a container [1] can be seen as a code for a simple inductive type.
Type formers in the theory of codes are restricted in order to enforce strict positivity. For
example, natural numbers are defined as the three-element context

Nat : U, zero : Nat, suc : Nat→ Nat

where Nat, zero and suc are simply variable names, and underlining denotes El (decoding)
for the Tarski-style universe U.

We use a variant of Bernardy et al.’s logical predicate translation [8] to derive the types of
motives and methods, and a logical relation translation to derive the types of the eliminators
and computation rules. The target of these translations is a type theory with a predicative
hierarchy of Russell-style universes closed under Π, Σ, the equality (identity) type – = –
and the unit type >. The source type theory is the target type theory extended with rules
for the theory of codes.

To our knowledge, this is the first proposal for a definition of HIITs. Proving the existence
of the HIITs thus specified is left as future work.
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20:4 A Syntax for Higher Inductive-Inductive Types

1.1 Overview of the paper
We start by describing the target type theory in Section 2. In Section 3, we define the source
type theory. The source type theory is the target theory extended with the theory of codes, i.e.
the rules to describe HIITs. We also provide several examples of HIIT definitions. In Section
4 we define three syntactic translations from the source to the target theory, each depending
on the previous one: first, we compute the types of type formation rules and constructors
(Section 4.1); then, assuming the constructors exist, we compute the types of motives and
methods (Section 4.2); finally we compute the types of the eliminators together with their
computation rules (Section 4.3). To illustrate these operations, we show how they compute on
a few example codes: natural numbers, the circle, indexed W-types and the two-dimensional
sphere (Appendix A). In Section 5 we add the pieces together by specifying what it means
for the target type theory to support HIITs. Section 6 describes the formalisation and a
Haskell implementation. We conclude in Section 7.

1.2 Related work
Inductive types can be specified using external syntactic schemes or internal codes. In the
former case the type theory is extended with derivation rules specifying inductive types.
In the latter case there is an internal type of codes such that each code represents a valid
inductive type, and actual types are produced from codes by decoding functions. Our
development uses the former approach.

External schemes for inductive families are given in [13, 24], for inductive-recursive types
in [14]. A symmetric scheme for both inductive and coinductive types is given in [5]. Basold et
al. [6] define an external syntactic scheme for higher inductive types with only 0-constructors
and compute the types of elimination principles. In [27] a semantics is given for the same
class of HITs but with no recursive equality constructors. Dybjer and Moeneclaey define a
syntactic scheme for finitary HITs and show their existence in a groupoid model [15].

Internal codes for simple inductive types such as natural numbers, lists or binary trees
can be given by containers which are decoded to W-types [1]. Morris and Altenkirch [22]
extend the notion of container to that of indexed container which specifies indexed inductive
types. Codes for inductive-recursive types are given in [16]. Inductive-inductive types were
introduced by Forsberg together with an internal coding scheme [23]. Sojakova [26] defines a
subset of HITs called W-suspensions by an internal coding scheme similar to W-types. She
proves that the induction principle is equivalent to homotopy initiality.

Quotient types [17] are precursors of higher inductive types (HITs). The notion of HIT
first appeared in [25], however only through examples and without a general definition.
Lumsdaine and Shulman give a general specification of models of type theory supporting
higher inductive types [21]. They introduce the notion of cell monad with parameters and
characterise the class of models which have intial algebras for a cell monad with parameters.
Kraus [19] and Van Doorn [12] construct propositional truncation as a sequential colimit.
The schemes mentioned so far do not support higher inductive-inductive types.

The closest to our work is the article of Altenkirch et al. [2] which gives a categorical
specification of quotient inductive-inductive types (QIITs), i.e. set-truncated higher inductive-
inductive types. Sorts are specified as a list of functors into Set where the domain of
the functor is a category constructed from results of the previous functors, thus encoding
dependencies of later sorts on previous ones. The constructors are specified mutually with
their category of algebras and underlying carrier functor. The specification supports set-level
equality constructors. From a specification of a QIIT they derive the type of the eliminator
and show that this corresponds to initiality.
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The logical predicate syntactic translation was introduced by Bernardy et al. [8]. The
idea that a context can be seen as a definition of an inductive type and the logical predicate
translation can be used to derive the types of motives and methods was described in [3,
Section 5.3]. Logical relations are used to derive the computation rules in [18, Section
4.3], however only for closed QIITs. Syntactic translations in the context of the calculus of
inductive constructions are discussed in [10]. Logical relations and parametricity can also
be used to justify the existence of inductive types in a type theory with an impredicative
universe [4]. In contrast, we only use logical relations to describe HIITs.

2 Target type theory

In this section we describe the target type theory. It is the target of our translations, and
it also serves as a source of constants which are external to the HIIT being defined. It has
Russell-style universes, Π, Σ, equality (identity) and unit type. Our notation is close to
Agda’s: we use named variables, terms are identified up to α-conversion, substitution and
weakening are implicit. To distinguish notation from the theory of codes described in the
next section, we write term formers and metavariables in brick red colour. We have the
following judgement kinds.

` Γ Γ is a valid target context
Γ ` t :A the target term t has target type A in target context Γ

We only describe the target type theory in informal English instead of writing down all the
rules, since they are standard. See [25, Appendix A.2] for a formal treatment.

Context extension is written Γ, x :A. We have a cumulative hierarchy of universes Typei.
Dependent function space is denoted (x :A)→B. We write A→B if B does not depend

on x, and → associates to the right, (x : A)(y : B)→ C abbreviates (x : A)→ (y : B)→ C

and (x y :A)→B abbreviates (x :A)(y :A)→B. We write λx.t for abstraction and t u for
left-associative application.

(x :A)×B stands for Σ types, A×B for the non-dependent version and × associates to
the left. The constructor for Σ types is denoted (t, u) with eliminators proj1 and proj2. Both
Π and Σ have definitional β and η rules.

The equality (identity) type for a type A and elements t :A, u :A is denoted t=A u and
comes with the constructor reflt and eliminator J with definitional β-rule. The notation is
JA tP pr u eq for t :A, P : (x :A)→ t=A x→Typei, pr :P t refl and eq : t=A u. Sometimes we
omit parameters in subscripts.

We will use the following functions defined using J in the standard way. We write
trP e t : P v for transport of t : P u along e : u= v. We write ap f e : f u= f v for f : A→B

and e : u= v, apd f e : trP e (f u) = f v for f : (x :A)→B and e : u= v.
The unit type is denoted > with constructor tt.

3 Source type theory

The source type theory is the target type theory extended with the following judgement
kinds.

Γ ` ∆ ∆ is a context in the target context Γ
Γ; ∆ ` A A is a type in context ∆ and target context Γ
Γ; ∆ ` t : A t is a term of type A in context ∆ and target context Γ

FSCD 2018



20:6 A Syntax for Higher Inductive-Inductive Types

(1) Contexts and variables

`Γ
Γ ` ·

Γ; ∆ ` A
Γ ` ∆, x : A

Γ; ∆ ` A
Γ; ∆, x : A ` x : A

Γ; ∆ ` x : A Γ; ∆ ` B
Γ; ∆, y : B ` x : A

(2) Universe

Γ; ` ∆
Γ; ∆ ` U

Γ; ∆ ` a : U
Γ; ∆ ` a

(3) Inductive parameters

Γ; ∆ ` a : U Γ; ∆, x : a ` B
Γ; ∆ ` (x : a)→ B

Γ; ∆ ` t : (x : a)→ B Γ; ∆ ` u : a
Γ; ∆ ` t u : B[x 7→ u]

(4) Equality

Γ; ∆ ` a : U Γ; ∆ ` t : a Γ; ∆ ` u : a
Γ; ∆ ` t =a u : U

Γ; ∆ ` t : a
Γ; ∆ ` refl : t =a t

Γ; ∆ ` t : a
Γ; ∆, x : a, z : t =a x ` p : U
Γ; ∆ ` pr : p[x 7→ t, z 7→ refl]
Γ; ∆ ` u : a
Γ; ∆ ` eq : t =a u

Γ; ∆ ` Ja t (x.z.p) pr u eq : p[x 7→ u, z 7→ eq]

Γ; ∆ ` t : a Γ; ∆, x : a, z : t =a x ` p : U Γ; ∆ ` pr : p[x 7→ t, z 7→ refl]
Γ; ∆ ` Jβa t (x.z.p) pr : (Ja t (x.z.p) pr t refl) =p[x 7→t,z 7→refl] pr

(5) Non-inductive parameters

Γ `A : Type0 Γ; ` ∆ (Γ, x :A); ∆ ` B
Γ; ∆ ` (x :A)→ B

Γ; ∆ ` t : (x :A)→ B Γ ` u :A
Γ; ∆ ` t u : B[x 7→ u]

(6) Infinitary parameters

Γ `A : Type0 Γ; ` ∆ (Γ, x :A); ∆ ` b : U
Γ; ∆ ` (x :A)→ b : U

Γ; ∆ ` t : (x :A)→ b Γ ` u :A
Γ; ∆ ` t u : b[x 7→ u]

Figure 1 The theory of HIIT codes (part of the source type theory). Substitution and weakening
are implicit, we assume fresh names everywhere and consider α-convertible terms equal. The Γ;
assumptions are not used or changed in parts (1)–(4).
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We name the subset of rules of the source theory which derives these judgements the theory
of codes. The derivation rules are listed in figure 1. A context ∆ for which Γ ` ∆ can be
derived represents a specification of a HIIT.

Although every judgement is valid up to a context in the target type theory, note that
none of the rules in (1)–(4) depend on or change these assumptions, so they can be safely
ignored until part (5). We explain the rules in order.

(1) The rules for context formation and variables are standard. We assume fresh names
everywhere to avoid name capture. Note that weakening is implicit.

(2) There is a universe U, with decoding written as an underline (usually El in the
literature). Type formation rules will target U. With this part of the syntax we can already
define contexts specifying the empty type, unit type and booleans:

·, Empty : U ·, Unit : U, tt : Unit ·, Bool : U, true : Bool, false : Bool

(3) We have a function space with small domain and large codomain. This can be used to
add inductive arguments to type formation rules and constructors. As U is not closed under
this function space, these function types cannot (recursively) appear in inductive arguments,
which ensures strict positivity. When the codomain does not depend on the domain, a→ B

can be written instead of (x : a)→ B.
Now we can specify the natural numbers as a context:

·, Nat : U, zero : Nat, suc : Nat→ Nat

We can also encode inductive-inductive definitions such as the fragment of the well-typed
syntax of a type theory mentioned in the introduction:

·, Con : U, Ty : Con→ U, • : Con, – B – : (∆ : Con)→ Ty∆→ Con,

U : (∆ : Con)→ Ty ∆, Π : (∆ : Con)(A : Ty∆)(B : Ty (∆BA))→ Ty∆

(4) U is closed under the equality type, with eliminator J and a weak (non-definitional)
β-rule. Weakness is required because the syntactic translation –E defined in Section 4.3
does not preserve this β-rule strictly. Adding equality to the theory of codes allows higher
constructors and inductive equality parameters as well. We can now define the circle HIT as
the following context:

·, S1 : U, base : S1, loop : base =S1 base

The J rule allows constructors to mention operations on paths as well. For instance, the
definition of the torus depends on path composition, which can be defined using J: given
p : t =a u and q : u =a v, p � q abbreviates Ja u x.z.(t=x) p v q : t =a v. The torus is given as
follows.

·, T 2 : U, b : T 2, p : b =T 2 b, q : b =T 2 b, t : p � q =(b=T 2b) q � p

With the equality type at hand, we can define a full well-typed syntax of type theory as given
e.g. in [3] as an inductive type (see the examples in the formalisation described in Section 6).

So far we were only able to define closed HIITs, which excludes lists of a given type or the
integers as given in the introduction. This is where we need the target theory to be included
in the source theory. A context ∆ for which Γ ` ∆ holds can be seen as a specification of an
inductive type which depends on Γ. In the case of lists, Γ will be A : Type0. In the case of
integers, we need Nat : Type0 and –+– : Nat→Nat→Nat from Γ.

FSCD 2018



20:8 A Syntax for Higher Inductive-Inductive Types

(5) We have a function space where the domain is a type in the target theory. We
distinguish it from (3) by using red brick : instead of : in the domain specification. We
specify lists and the integers as follows.

A : Type0 ` ·, List : U, nil : List, cons : (x :A)→ List→ List

Γ ` ·, Int : U, pair : (x y :Nat)→ Int,

eq : (a b c d :Nat)(p : a+d=Nat b+c)→ pair a b =Int pair c d,
trunc : (xy : Int)(p q : a =Int b)→ p =x=Inty q

In the case of integers, Γ is Nat : Type0, –+– :Nat→Nat→Nat, or alternatively, we could
require natural numbers in the target theory. As another example, propositional truncation
for a type A is specified as follows.

A : Type0 ` ·, tr : U, emb : (x :A)→ tr, eq : (x y : tr)→ x =tr y

The smallness of A is required in (5). It is possible to generalize the syntax of HIITs to
arbitrary universe levels, but it is not essential to the current development. Note that the
(5) function space preserves strict positivity, since in the target theory there is no way to
recursively refer to the inductive type being defined. The situation is analogous to the case
of W -types [1], where shapes and positions can contain arbitrary types but they cannot
recursively refer to the W -type being defined.

(6) U is also closed under a function space where the domain is a target theory type
and the codomain is a small source theory type. We overload the application notation for
non-inductive parameters, as it is usually clear from context which application is meant. The
rules allow types with infinitary constructors, for example trees containing A-elements at the
leaves and branching by B (which could be an infinite type):

A : Type0, B : Type0 ` ·, T : U, leaf : (x :A)→ T , node : ((x :B)→ T )→ T

Here, leaf has a function type (5) and node has a function type (3) with a function type
(6) in the domain. More generally, we can define W -types [1] as follows. S describes the
“shapes” of the constructors and P the “positions” where recursive arguments can appear.

S : Type0, P : S→ Type0 ` ·, W : U, sup : (s : S)→ ((p : P s)→W )→W

For a more complex infinitary example, see the definition of Cauchy reals in [25, Definition
11.3.2]. It can be also found as an example file in our Haskell implementation.

The invalid examples Ival and Neg cannot be encoded by the theory of codes. For Ival,
we can go as far as

·, Ival : U, a : Ival, b : Ival, σ : ? =Ival?.

The first argument of the function f : (X : Type)→X →X is a target theory type, but we
only have Ival : U in the theory of codes. Neg cannot be typed because the first parameter
of the constructor con is a function from a small type to a target theory type, and no such
functions can be formed.

4 A syntactic translation from the source to the target theory

An inductive type is specified by a context in the theory of codes defined in the previous
section. In this section we define the –C, –M and –E operations, which work as follows on
the code for natural numbers.
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(·, Nat : U, zero : Nat, suc : Nat→ Nat)C

≡ >× (n : Type0)× (z : n)× (n→ n)
(·, Nat : U, zero : Nat, suc : Nat→ Nat)M (tt, n, z, s)

≡ >× (nM : n→ Typei)× (zM : nM z)×
(
(x : n)→ nM x→ nM (s x)

)
(·, Nat : U, zero : Nat, suc : Nat→ Nat)E (tt, n, z, s) (tt, nM , zM , sM )

≡ >×
(
nE : (x : n)→ nM x

)
× (zE : nE z = zM )×

(
(x : n)→ nE (s x) = nM x (nE x)

)
The brick red coloured result of –C gives the types of the type formation rule and constructors
as an iterated Σ-type. Assuming the existence of constructors, –M returns the types of
motives and methods. Assuming the existence of constructors and the corresponding motives
and methods, –E returns the types of the eliminator and computation rules as target theory
equalities =. The notation above denotes left-nested iterated Σ-types. A more precise
presentation would replace each variable with a projection from the preceding Σ-type. We
use this notation in order to reduce visual clutter.

Each context entry in the theory of codes specifies a type formation rule or a constructor.
In general, the last component of a type in a context entry is of three possible forms: it is
either U, a for some neutral a, or t =a u. The following table summarizes the results of the
various translations in the mentioned three cases:

return type –C –M –E

U type formation rule motive eliminator
a point constructor method computation rule
t =a u path constructor method expressing higher computation rule

preservation of equality

Note that there is no syntactic distinction between the three kinds of constructors above.
Any number of them can be introduced in any order, and each constructor can refer to any
previous one. A distinguishing feature of our approach is the utilisation of universes instead
of structural rules to introduce new sorts and to ensure strict positivity.

The –C, –M and –E operations are defined by induction on the derivations of the source
syntax. The operations are identity on derivations of target contexts and target terms (of
the forms `Γ and Γ ` t :A) and derive target terms from theory of codes contexts, types and
terms (of the forms Γ ` ∆, Γ; ∆ ` A and Γ; ∆ ` t : A, respectively). We only present the
non-identity parts with pattern matching notation, describing how a context, type or a term
in the theory of codes is converted to a term in the target theory.

All three operations respect definitional equality. This amounts to preserving equalities
of the substitution calculus, as there are no β-rules introduced in the theory of codes.

4.1 Type formation rules and constructors
Given a context in the theory of codes, –C returns the types of type formation rules and
constructors as an iterated Σ-type in the target theory. It is specified as follows.

Γ ` ∆
Γ `∆C : Type1

Γ; ∆ ` A
Γ `AC : ∆C→ Type1

Γ; ∆ ` t : A
Γ ` tC : (γ : ∆C)→AC γ

Given a context depending on the target context Γ, –C returns a type in Γ. Given a type in
context ∆ it returns a family over ∆C. A term is interpreted by a dependent function in the
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target theory. The implementation of –C is essentially the standard model, where everything
is interpreted by its brick red counterpart, except for contexts which are interpreted as
iterated Σ-types.

·C :≡ >
(∆, x : A)C :≡ (γ : ∆C)×AC γ

xC γ :≡ xth component in γ
UC γ :≡ Type0

(a)C γ :≡ aC γ

((x : a)→ B)C γ :≡ (x : aC γ)→BC (γ, x)
(t u)C γ :≡ (tC γ) (uC γ)
((x :A)→ B)C γ :≡ (x :A)→BC γ

(t u)C γ :≡ (tC γ)u
(t =a u)C γ :≡ tC γ = uC γ

reflC γ :≡ refl
(Ja t (x.z.p) pr u eq)C γ :≡ J(aC γ) (tC γ) (λx z.pC (γ, x, z)) (prC γ) (uC γ) (eqC γ)
(Jβa t (x.z.p) pr)C γ :≡ refl
((x :A)→ b)C γ :≡ (x :A)→ bC γ

(t u)C γ :≡ (tC γ)u

For example, –C acts as follows on the topological circle:

(·, S1 : U, b : S1, loop : b = b)C ≡ >× (S1 : Type0)× (b : S1)× (loop : b = b)

The resulting left-nested Σ type could be written explicitly as below. We shall keep to the
more readable notation from now on.(

x′′ :
(
x′ : (x :>)× Type0

)
× proj2 x′

)
× (proj2 x′′ = proj2 x′′)

4.2 Motives and methods
Given a code for an inductive type and the constructors specified by the code, the operation
–M returns the induction motives and methods.

–M is a variant of the unary logical predicate translation of Bernardy et al. [9]. We fix a
level i for the universe we would like to eliminate into. For each context ∆, ∆M is a predicate
over the standard interpretation ∆C. For a type ∆ ` A, AM is a predicate over AC, which
also depends on γ : ∆C and a witness of ∆M γ. All of these may refer to a target theory
context Γ.

Γ ` ∆
Γ `∆M : ∆C→ Typei+1

Γ; ∆ ` A
Γ `AM : (γ : ∆C)→∆M γ→AC γ→ Typei+1

For a term t, tM witnesses that the predicate corresponding to its type holds for tC. This is
often called a fundamental theorem in the literature on logical predicates.

Γ; ∆ ` t : A
Γ ` tM : (γ : ∆C)(γM : ∆M γ)→AM γ γM (tC γ)
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We introduce the following shorthand: t γ γM is abbreviated as t γ2 for some t expression.
The implementation of –M is given below.

·M γ :≡ >
(∆, x : A)M (γ, t) :≡ (γM : ∆M γ)×AM γ2 t

xM γ2 :≡ xth component in γM

UM γ2A :≡ A→ Typei
(a)M γ2 t :≡ aM γ2 t

((x : a)→ B)M γ2 f :≡ (x : aC γ)(xM : aM γ2 x)→BM (γ, x) (γM , xM ) (f x)
(t u)M γ2 :≡ (tM γ2) (uC γ) (uM γ2)
((x :A)→ B)M γ2 f :≡ (x :A)→BM γ2 (f x)
(t u)M γ2 :≡ tM γ2 u

(t =a u)M γ2 e :≡ tr(aM γ2) e (tM γ2) = uMγ2

(reflt)M γ2 :≡ refl(tM γ2)

(Ja t (x.z.p) pr u eq)M γ2 :≡ J
(
J (prM γ2) (eqC γ)

)
(eqM γ2)

(Jβa t (x.z.p) pr)M γ2 :≡ refl
((x :A)→ b)M γ2 f :≡ (x :A)→ bM γ2 (f x)
(t u)M γ2 :≡ tM γ2 u

The predicate for a context is given by iterating –M for its constituent types. For a variable,
the corresponding witness is looked up from γM .

The predicate for the universe, given an element of A : UC γ (with UC γ ≡ Type0) returns
the predicate space over A. The predicate for a type a is given by the predicate for a.

The predicate for a function type with small domain expresses preservation of predicates
(at the domain and codomain types). Witnesses of application are given by recursive
application of –M. The definitions for the other (non-inductive) function spaces are similar,
except there is no predicate for the domain types, and thus no witnesses are required.

The predicate for the equality type t =a u, for each e : (t =a u)C γ, i.e. e : tC γ = uC γ,
says that tM and uM are equal. As these have different types, we have to transport over the
original equality e. The witness for refl is reflexivity in the target theory. The interpretation
of J is given by a double J application, which definition is sourced from [20]. Here, we use a
shortened J notation; we refer to the formalisation (Section 6) for the details.

Again, let us consider the circle example:

(·, S1 : U, b : S1, loop : b = b)M (tt, S1, b, loop)
≡ >× (S1M : S1→ Typei)× (bM : S1M b)× (loopM : tr S1M loop bM = bM )

The inputs of –M here are the code for the circle (the context in black) and a tuple of the
type formation rule S1, the constructor b and the equality constructor loop. It returns a
family over the type S1, an element of this family bM at index b, and and an equality between
bM and bM which lies over loop.

4.3 Eliminators and computation rules
The operation –E yields eliminators and computation rules. It is a generalised binary logical
relation translation where the type of the second parameter of the relation may depend on
the first parameter.
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Contexts are interpreted as dependent binary relations between constructors and methods.
The universe level i was previously chosen for the –M operation.

Γ ` ∆
Γ; ∆E : (γ : ∆C)→∆M γ→ Typei

Types are interpreted as dependent binary relations which additionally depend on (γ, γM , γE)
interpretations of the context.

Γ; ∆ ` A
Γ `AE : (γ : ∆C)(γM : ∆M γ)(γE : ∆E γ γM )(x :AC γ)→AM γ γM x→ Typei

For a term t, tE witnesses that the relation corresponding to its type holds for tC and tM.

Γ; ∆ ` t : A
Γ ` tE : (γ : ∆C)(γM : ∆M γ)(γE : ∆E γ γM )→AE γ γM γE (tC γ) (tM γ γM )

In addition to γ2, we use t γ3 to abbreviate t γ γM γE . The implementation is the following.

·E γ γM :≡ >
(∆, x : A)E (γ, t) (γM , tM ) :≡ (γE : ∆Eγ2)×AE γ3 t tM

xE γ3 :≡ xth component in γE

UE γ3AAM :≡ (x :A)→AM x

(a)E γ3 t tM :≡ aE γ3 t= tM

((x : a)→ B)E γ3 f fM :≡ (x : aC γ)→BE (γ, x) (γM , aE γ3 x) (γE , refl)
(f x)

(
fM x (aE γ3 x)

)
(t u)E γ3 :≡ J (tE γ3 (uC γ)) (uE γ3)
((x :A)→ B)E γ3 f fM :≡ (x :A)→BE γ3 (f x) (fM x)
(t u)E γ3 :≡ tE γ3 u

(t =a u)E γ3 e :≡ tr (tE γ3)
(
tr (uE γ3) (apd (aE γ3) e)

)
(reflt)E γ3 :≡ J refl (tE γ3)
(Ja t (x.z.p) pr u eq)E γ3 :≡

J
(

J
(

J
(
J (λ pM pE prM prE .prE) (tE γ3)

(uncurry pM γ2) (uncurry pE γ3) (prM γ2) (prE γ3)
)
eqC γ

)
uE γ3

)
(eqE γ3)

(Jβa t (x.z.p) pr)E γ3 :≡
J

(
J (λ pM pE . refl) (tE γ3) (uncurry pM γ2) (uncurry pE γ3)

)
(prE γ3)

((x :A)→ b)E γ3 f t :≡ bE γ3 (f t)
(t u)E γ3 :≡ ap (λf.f u) (tE γ3)

The UE and (a)E definitions are the key points of the –E operation. The definitions for
the other –E cases are largely determined by these.

The UE rule yields the type of the eliminator for a type formation rule. In the natural
numbers example above, the non-indexed Nat : U sort is interpreted as nE :(x:n)→nM x. For
indexed sorts, the indices are first processed by the –E cases for inductive and non-inductive
parameters, until the ultimate U return type is reached. Hence, the eliminator for a sort is
always a function.
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Analogously, the –E result type for a point or path constructor is always a β-rule, i.e. a
function type ending in an equality. To see why, consider the (a)E definition. It expresses
that applications of aE eliminators must be equal to the corresponding tM induction methods.
Hence, for path and point constructor types, –E works by first processing all inductive and
non-inductive indices, then finally returning an equality type.

Let us also consider the ((x : a) → B)E case for inductive parameters. Here, we make
crucial use of the fact that the domain type a is small. This provides us aE γ3 x, which
we use to witness the aM γ2 x hypothesis for BE. Without the size restriction on inductive
parameters (which enforces strict positivity), the –E operation would not be possible at all,
because aE for a large a type would be merely an opaque relation instead of an eliminator
function.

Here, we only provide abbreviated definitions for the t u, t =a u, refl, J and Jβ cases. In the
J case, we write uncurry pM for λ γ γM xxM z zM . pM (γ, x, z) (γM , xM , zM ) and analogously
elsewhere. The full definitions can be found in the Agda formalisation. The definitions are
highly constrained by the required types, and not particularly difficult to implement with
the help of a proof assistant; they all involve doing successive path induction on all equalities
available from induction hypotheses, with appropriately generalized induction motives.

The full (Ja t (x.z.p) pr u eq)E definition is quite large, and, for instance, yields a very large
β-rule for the higher inductive torus definition (the reader can confirm this using the Haskell
implementation). Nevertheless, an implementation focused on practicality may provide
smaller specialized –E definitions for commonly used equality operations such as composition
or inverses.

The circle example is a bit more interesting here:

(·, S1 : U, b : S1, loop : b = b)E (tt, S1, b, loop) (tt, S1M , bM , loopM )
≡ >× (S1E : (x : S1)→S1M x)× (bE : S1E b = bM )

× (loopE : tr (λx.tr S1M loop x= bM ) b
E (tr (λx.tr S1M loop (S1E b) = x) b

E (apdS1E loop))

= loopM )

In homotopy type theory, the β-rule for loop is usually just apdS1E loop = loopM , but
here all β-rules are propositional, so we need to transport with bE to make the equation
well-typed. When computing the type of loopE , we start with (b = b)E γ3 loop loopM . Next,
this evaluates to (b = b)E γ3 loop= loopM , and then we unfold the left hand side to get the
doubly-transported expression in the result.

In Appendix A, we show how the elimination principle is computed for the two-dimensional
sphere.

For another example for the translations, we consider indexed W-types which can describe
a large class of inductive definitions [22]. Suppose we are in the target context I : Type0, S :
Type0, P : S→Type0, out : S→ I, in : (s : S)→P s→ I. Then, the code for the corresponding
indexed W-type is the following:

W :≡ (·, w : (i : I)→ U, sup : (s : S)→ ((p : P s)→ w (in s p))→ w (out s))

We pick a universe level j for elimination. The interpretations of W are the following,
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omitting leading > components:

WC ≡ (w : I → Type0)× ((s : S)→ ((p : P s)→ w (in s p))→ w (out s))
WM (w, sup) ≡ (wM : (i : I)→ w i→ Typej)

×
(
(s : S)(f : (p : P s)→ w (in s p))
→ ((p : P s)→ wM (in s p) (f p))→ wM (out s) (sup s f)

)
W E (w, sup) (wM , supM ) ≡

(wE : (i : I)(x : w i)→ wM i x)
×

(
(s : S)(f : (p : P s)→ w (in s p))
→ wE (out s) (sup s f) = supM s f (λp.wE (in s p) (f p))

)
5 Existence of HIITs

The target type theory supports HIITs if whenever we can derive Γ ` ∆ in the source theory,
the following rules are admissible.

Γ ` con∆ : ∆C
Γ `m : ∆M con∆

Γ ` elim∆m : ∆E con∆m

We can add HIITs to the target theory by extending it with the theory of codes (making
the target and the source theory the same) and adding the above rules with the additional
assumption of Γ ` ∆. However, this only adds HIITs with weak computation rules. To make
the computation rules definitional, we would probably need a two-level target type theory
with an equality having an equality reflection rule as in Voevodsky’s homotopy type system
[28] or Andromeda [7].

6 Formalisation and implementation

There are three additional development artifacts to the current work: a Haskell implementa-
tion, a shallow Agda formalisation and a deep Agda formalisation. All three are available
from the homepage of the first author.

The Haskell implementation takes as input a file which contains a representation of a
Γ ` ∆ specification of a HIIT. Then, it checks the input with respect to the rules in figure
1, and outputs an Agda-checkable file which contains the results of the –C, –M and –E

translations. It comes with examples, including the ones in this paper, indexed W-types
[22], the dense completion [23, Appendix A.1.3] and several HITs from [25] including the
definition of Cauchy reals. It can be checked that our implementation computes the expected
elimination principles in these cases.

The shallow Agda formalisation embeds both the source and target theories shallowly
into Agda: it represents types as Agda types, functions as Agda functions, and so on. We
also leave the –C operation implicit. We state each case of the –M and –E translations as
Agda functions from all induction hypotheses to the result type of the translation, which lets
us “typecheck” the translation. We have found that this style of formalisation is conveniently
light, but remains detailed enough to be useful. We also generated some of the code of the
Haskell implementation from this formalisation.

The deep Agda formalisation still uses a shallow embedding of the target type theory,
but it uses a deep embedding of the source theory, in the style of [3]. In the formalisation
we merge the three translations into a single model construction. This allows us to prove
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strict preservation of definitional equalities in the substitution calculus of the source theory,
in contrast to the shallow formalisation, where we cannot reason about definitional equalities
of Agda terms. Due to technical challenges, this formalisation uses transport instead of J in
the source theory, but this still covers a rather large class of HIIT definitions.

7 Conclusions and further work

Higher inductive-inductive types are useful in defining the well-typed syntax of type theory
in an abstract way [3]. From a universal algebra point of view, they provide initial algebras
for multi-sorted algebraic theories where the sorts can depend on each other. From the
perspective of homotopy type theory, they provide synthetic versions of homotopy-theoretic
constructions such as higher dimensional spheres or cell complexes. So far, no general scheme
of HIITs have been proposed. To quote Lumsdaine and Shulman [21]:

“The constructors of an ordinary inductive type are unrelated to each other. But
in a higher inductive type each constructor must be able to refer to the previous ones;
specifically, the source and target of a path-constructor generally involve the previous
point-constructors. No syntactic scheme has yet been proposed for this that covers all
cases of interest while remaining meaningful and consistent.”

In this paper we proposed such a syntactic scheme which also includes inductive-inductive
types. We tackled the problem of complex dependencies on previous type formation rules
and constructors by a well-known method of describing intricate dependencies: the syntax of
type theory itself. We had to limit the type formers to only allow strictly positive definitions,
but these restrictions are the only things that a type theorist has to learn to understand our
codes. Our encoding is also direct in the sense that the types of constructors and eliminators
are exactly as required and not merely up to isomorphisms.

In this paper we only specified HIITs and characterised their induction principles. Proving
their existence is left as further work. This would likely involve reducing HIITs to basic
building blocks such as W-types and quotient types.

The theory of codes was defined as part of the syntax of another type theory, the target
theory. An alternative way would be to define the theory of codes internally to a type
theoretic metatheory in the style of [3]. However, as described in [3, Section 6], there would
be a coherence problem: for the internal syntax to be useful, we need to truncate it to be
a set (as the trunc constructor did for Int in the introduction). As the eliminator needs to
respect the equality given by trunc, we would only be able to eliminate from the internal
type theory into a set. This would preclude the definition of even the –C operation, which
corresponds to the standard model. A possible solution to this problem would be to add
all the higher coherence laws to the syntax (e.g. the pentagon law for the composition of
substitutions) and then prove that the syntax is a set. For this however, we would probably
need a two-level metatheory as in [11].

When working in a metatheory with uniqueness of identity proofs (which implies that
all HIITs are in essence QIITs), the theory of codes admits a category model where the
interpretation of a context is the category of algebras corresponding to the context. In the
future, we would like to prove that these categories have initial algebras given by terms in
the theory of codes.
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A Elimination principle computed for the two-dimensional sphere

The two-dimensional sphere is given by the following context in the theory of codes.

Γ :≡
(
·, S2 : U, b : S2, surf : reflb =(b=S2b) reflb

)
The sphere-algebras are computed as follows.

ΓC ≡ >× (S2 : Type0)× (b : S2)× (surf : reflb =(b=S2b) reflb)
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Given a sphere-algebra and fixing a universe level i, the motives and methods are computed
as follows.

ΓM (tt, S2, b, surf)
≡ >× (S2M : S2→ Typei)

× (bM : S2M b)
× (surfM : tr(trS2M – bM =bM ) surf reflbM = reflbM )

Given a sphere-algebra and the motives and methods for this algebra, the types of the
elimination principles are computed as follows.

ΓE (tt, S2, b, surf) (tt, S2M , bM , surfM )
≡ >× (S2E : (x : S2)→S2M x)

× (bE : S2E b = bM )

×
(
surfE : tr

(
J refl bE

) (
tr

(
J refl bE

) (
apd (λx.tr bE (tr bE (apdS2E x))) surf

))
= surfM

)
Note that if bE is a definitional equality (that is, we have S2E b ≡ bM ), the occurrences of
bE in the type of surfE can be replaced by refl. In this case the type of surfE becomes the
expected apd (apdS2E) surf = surfM .
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