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—— Abstract

While event-driven programming is a widespread model for asynchronous computing, its inherent
control flow fragmentation makes event-driven programs notoriously difficult to understand and
maintain. Coroutines are a general control flow construct that can eliminate control flow frag-
mentation. However, coroutines are still missing in many popular languages. This gap is partly
caused by the difficulties of supporting suspendable computations in the language runtime.

We introduce first-class, type-safe, stackful coroutines with snapshots, which unify many vari-
ants of suspendable computing. Our design relies solely on the static metaprogramming support
of the host language, without modifying the language implementation or the runtime. We also
develop a formal model for type-safe, stackful and delimited coroutines, and we prove the respect-
ive safety properties. We show that the model is sufficiently general to express iterators, single-
assignment variables, async-await, actors, event streams, backtracking, symmetric coroutines
and continuations. Performance evaluations reveal that the proposed metaprogramming-based
approach has a decent performance, with workload-dependent overheads of 1.03 — 2.11x com-
pared to equivalent manually written code, and improvements of up to 6x compared to other
approaches.
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1 Introduction

Asynchronous programming is becoming increasingly important, with applications ranging
from actor systems [1, 21}, futures and network programming [10, 22], user interfaces [30], to
functional stream processing [32]. Traditionally, these programming models were realized
either by blocking execution threads (which can be detrimental to performance [4]), or
callback-style APIs [10, 22, 26|, or with monads [67]. However, these approaches often feel
unnatural, and the resulting programs can be hard to understand and maintain. Coroutines
[11] overcome the need for blocking threads, callbacks and monads by allowing parts of the
execution to pause at arbitrary points, and resuming that execution later.

There are generally two approaches to implement control flow constructs like coroutines:
call stack manipulation and program transformation. In the first approach, the runtime is
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augmented with call stack introspection or the ability to swap call stacks during the execution
of the program. We are aware of several such attempts in the context of the JVM runtime
[14, 62], which did not become official due to the considerable changes required by the
language runtime. In the second approach, the compiler transforms the program that uses
coroutines into an equivalent program without coroutines. In Scheme, a similar control flow
construct call/cc was supported by transforming the program into the continuation-passing
style (CPS) [64]. The CPS transform can also be selectively applied to delimited parts of the
program [3, 16, 17, 35, 56]. Mainstream languages like Python, C#, JavaScript, Dart and
Scala offer suspension primitives such as generators, enumerators and async-await, which
often target specific domains.

Coroutines based on metaprogramming. We explore a new transformation approach for

coroutines that relies on the static metaprogramming support of the host language (in our

case Scala), and assumes no call stack introspection or call stack manipulation support in

the runtime (in our case JVM). The metaprogramming-based solution has several benefits:

(1) The language runtime and the compiler do not need to be modified. This puts less
pressure on the language and the runtime maintainers.

(2) Since the metaprogramming API is typically standardized, the coroutine implementation
is unaffected by the changes in the runtime or in the compiler.

(3) The implementation does not need to be replicated for each supported backend. Our own
implementation works with both the JVM runtime, and the Scala.JS browser backend.

(4) Coroutines can be encapsulated as a standalone library. Our implementation in Scala is
distributed independently from the standard Scala distribution.

We note that our approach is not strictly limited to metaprogramming — it can also be
implemented inside the compiler. However, to the best of our knowledge, we are the first
ones to implement and evaluate coroutines using a metaprogramming API.

Summary. Our coroutine model is statically typed, stackful, and delimited. Static typing
improves program safety, stackfulness allows better composition, and delimitedness allows
applying coroutines to selected parts of the program (this is explained further in Section
2). Regions of the program can be selectively marked as suspendable, without modifying
or recompiling existing libraries. These regions represent first-class coroutines that behave
similar to first-class function values. We show that the model generalizes many existing
suspendable and asynchronous programming models. We extend this model with snapshots,
and show that the extension allows expressing backtracking and continuations. Finally,
we show that the metaprogramming approach has a reasonable performance (at most
2.11x overheads compared to equivalent manually optimized code) by comparing it against
alternative frameworks. We also formalize coroutines with snapshots and prove standard
safety properties.

Contributions. The main novelties in this work are as follows:
We show that AST-level static metaprogramming support of the host language is sufficient
to implement first-class, typed, stackful, delimited coroutines that are reasonably efficient.
We propose a new form of coroutines, namely coroutine with snapshots, which increases
the power of coroutines. For example, it allows emulating backtracking and continuations.
We formalize stackful coroutines with snapshots in A.. by extending the simply typed
lambda calculus, and we prove soundness of the calculus.
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Some of the features of the proposed model, such as the typed coroutines and first-class
composability, have been explored before in various forms [57, 34, 17, 16]. We build on earlier
work, and we do not claim novelty for those features. However, to the best of our knowledge,
the precise model that we describe is new, as we argue in Section 7 on related work.

Structure and organization. This paper is organized as follows:
Section 2 describes the core primitives of the proposed programming model — coroutine
definitions, coroutine instances, yielding, resuming, coroutine calls, and snapshots.
Section 3 presents use-cases such as Erlang-style actors [66], async-await [23], Oz-style

variables [65], event streams [20, 32], backtracking [36], and delimited continuations [56].

In Section 4, we formalize coroutines with snapshots in A., and prove its soundness.

In Section 5, we describe the AST-level coroutine transformation implemented in Scala.
In Section 6, we experimentally compare the performance of our implementation against
Scala Delimited Continuations, Scala Async, iterators, and lazy streams.

Syntax. Our examples throughout this paper are in the Scala programming language [37].

We took care to make the paper accessible to a wide audience by using a minimal set of
Scala features. The def keyword declares a method, while var and val declare mutable and
final variables, respectively. Lambdas are declared with the right-arrow symbol =>. Type
annotations go after the variable name, colon-delimited (:). Type parameters are put into
square brackets []. Parenthesis can be omitted from nullary and unary method calls.

2 Programming Model

In this section, we describe the proposed programming model through a series of examples.

Coroutine definitions. A subroutine is a sequence of statements that carry out a task.

The same subroutine may execute many times during execution. When a program calls a
subroutine, execution suspends at that callsite and continues in the subroutine. Execution
at the callsite resumes only after the subroutine completes. For example, the program in

Listing 1 declares a subroutine that doubles an integer, and then calls it with the argument 7.

Listing 1 Subroutine example. Listing 2 Coroutine example.
1 val dup = (x:Int) => { x + x } 1 val dup =
2 dup (7) 2 coroutine { (x:Int) => x + x }

Upon calling dup, the subroutine does an addition, returns the result and terminates.

When the execution resumes from the callsite, the subroutine invocation no longer exists.

Coroutines generalize subroutines by being able to suspend during their execution, so
that their execution can be resumed later. In our implementation, a coroutine is defined
inside the coroutine block. We show the coroutine equivalent of dup in Listing 2.

Yielding and resuming. Once started, the dup coroutine from Listing 2 runs to completion
without suspending. However, a typical coroutine will suspend at least once. When it does,
it is useful that it yields a value to the caller, explaining why it is suspended.

Consider the coroutine rep in Listing 3, which takes one argument x. The rep coroutine
invokes the yieldval primitive to yield the argument x back to its caller, twice in a row.

3:3
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Listing 3 Yielding example. Listing 4 Execution states.
1 val rep = coroutine { (x:Int) => 1 { tyieldval(7); yieldval(7) } =
2 yieldval (x) 2 { yieldval(7); syieldval(7) } =
3 yieldval (x) 3 { yieldval(7); yieldval(7){ } =
4} 4 { yieldval(7); yieldval(7) }

Listing 4 show the states that the coroutine undergoes during its execution for x=7. The
upward arrow (1) denotes the program counter. After getting invoked, the coroutine is
paused in line 1 before the first yieldval. The caller resumes the coroutine (resuming is
explained shortly), which then executes the next yieldval and yields the value 7 in line 2.
The caller resumes the coroutine again, and the coroutine executes the last yieldval in
line 3. The caller then resumes the coroutine the last time, and the coroutine terminates in
line 4. The termination of a coroutine is similar to a termination of a subroutine — once the
control flow reaches the end, the invocation of the corresponding coroutine no longer exists.

Delimited coroutines. As stated in the introduction, the proposed coroutine model is
delimited. This means that the yieldval keyword can only occur inside a scope that is
lexically enclosed with the coroutine keyword — a free yieldval results in a compiler error.

By itself, this restriction could hinder composability. Consider a hash table with closed
addressing, which consists of an array whose entries are lists of elements (buckets). We
would like a coroutine that traverses the elements of the hash table. Given a separately
implemented bucket coroutine from Listing 5 that yields from a list, it is handy if a hash
table coroutine can reuse this existing functionality by passing buckets from which to yield.

Listing 5 List coroutine. Listing 6 Hash table coroutine.
1 val bucket = coroutine { 1 val hashtable = coroutine {
2 (b: List[Int]) => 2 (t: Array[List[Int]]) =>
3 while (b !'= Nil) { 3 var i = 0
4 yieldval (b.head) 4 while (i < t.length) {
5 b = b.tail 5 bucket (t(i)); i += 1
6 } 6 1}
7} 7}

Stackful coroutines. To allow composing separately written coroutines, it must be possible
for one coroutine to call into another coroutine, but retain the same yielding context. The
hashtable coroutine in Listing 6 traverses the array entries, and calls bucket for each entry.
The two coroutines yield values together, as if they were a single coroutine.

caller ) coroutine
— ieldval - R
! @y 1 _'(Ddirect

H Dcall

Similar to ordinary subroutine calls, when the hashtable coroutine calls bucket, it must
store its local variables and state. One way to achieve this is to use a call stack. When the
program resumes the hashtable coroutine, it switches from the normal program call stack
to a separate call stack that belongs to the resumed coroutine instance. The hashtable
coroutine then pushes its state to the stack, and passes the control flow to the bucket
coroutine ((1) in the figure below). The bucket coroutine stores its state to the stack and
yields to the same caller that originally resumed the hashtable coroutine ((2) ).
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By saying that our coroutine model is stackful, we mean that coroutines are able to
call each other, and yield back to the same resume-site [34]. In our implementation, this is
enabled with an artifical call stack, as explained in Section 5.

Importantly, a coroutine call can only occur in a scope that is lexically enclosed with the
coroutine keyword (akin to yieldval). Only a coroutine body can call another coroutine
— a free call is a compiler error. A natural questions follows: how does a normal program
create a new coroutine instance?

Coroutine instances. Similar to how invoking a subroutine creates a running instance
of that subroutine, starting a coroutine creates a new coroutine instance. A subroutine’s
execution is not a program value — it cannot be observed or controlled. However, after
creating a coroutine instance, the caller must interact with it by reading the yielded values

and resuming. Therefore, it is necessary to treat the coroutine instance as a program value.

To distinguish between normal coroutine calls and creating a coroutine instance, we
introduce a separate start keyword, as a design choice. The instance encapsulates a new
call stack. After start returns a new coroutine instance, the caller can invoke resume and
value on the instance. By returning true, the resume indicates that the instance yielded,
and did not yet terminate. In this case, invoking value returns the last yielded value.

Listing 7 Starting and resuming. caller (5 resume instance

val i = hashtable.start (array) ! @direct

|'/—\
. _ @yieldval
* - \—/
et o) A B

3 while (i.resume) sum += i.value
@start @resume

Listing 7 shows how to use the hash table coroutine to compute the sum of the hash table

[N

values. A new coroutine instance is started in line 1 using the hashtable coroutine. In the
while loop in line 3, the values are extracted from the instance until resume returns false
(subsequent calls to resume result in a runtime error in our implementation). The figure on
the right shows the creation of the instance, followed by two resume calls.

Typed coroutines. In the example in Listing 7, the sum variable in line 2 is integer-typed.

Therefore, the right hand of the assignment in line 3 must also have the integer type. This
illustrates that it is useful to reason about the type of the yielded values.

A coroutine type encodes the types P; of its parameters, the return type R, and the
yield type Y of the yielded values, also called the output type [57]. Its general form is
(P1,...,Py)~>(Y,R) 1. In the following, we annotate the dup coroutine from Listing 2:

val dup: Int~>(Nothing,Int) = coroutine { (x:Int) => x + x }

Since this coroutine does not yield any values, its yield type is Nothing, the bottom type
in Scala. A coroutine once, which yields its argument once, has the yield type Int:

val once: Int~>(Int,Unit) = coroutine { (x:Int) => yieldval(x) }

The bucket and hashtable coroutines from Listings 5 and 6 have the following types:

val bucket: List[Int]~>(Int,Unit) = ...
val hashtable: Array[List[Int]]~>(Int,Unit) =

Coroutine instances have a separate type Y<~>R, where Y is the yield type, and R is the
return type. For example, starting once produces an instance with the type Int<~>Unit:
val i: Int<~>Unit = once.start (7)

Instances of the bucket and hashtable coroutines also have the type Int<~>Unit.

1 We note that Scala allows operator syntax, such as ~>, when declaring custom data types.
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Snapshots. We extend standard coroutines with the snapshot operation, which takes a
coroutine instance and returns a duplicated instance with exactly the same execution state.

val il: Int<~>Unit = once.start(7)
val i2: Int<~>Unit = il.snapshot

In the previous example, the coroutine instance il is duplicated to i2. Subsequent
coroutine operations can be called independently on the two coroutine instances.

3 Use Cases

Having explained what type-safe, delimited and stackful means, we motivate our design
choices with observations and concrete examples. The goal of this section is to show how
specific primitives help express other kinds of suspendable computations.

» Observation 1. Stackful coroutines allow composing suspendable software modules.

The hash table example from Listings 5 and 6 demonstrated why composing different
modules is useful, and the remaining examples in this section reinforce this.

» Observation 2. Stackful coroutines simplify the interaction with recursive data types.

Iterators. Data structure iterators are one of the earliest applications of coroutines [29].
We can implement an iterator coroutine it for binary trees as shown in Listing 8:

Listing 8 Tree iterator implementation. Listing 9 Symmetric coroutine.
1 val it = coroutine { (t:Tree) => 1 type Sym[R] = Sym[R] <~> R
2 if (t.fst != null) it(t.fst) 2 def run(i: Sym[R]): R =
3 yieldval (t.element) 3 if (i.resume) run(i.value)
4 if (t.snd !'= null) it(t.snd) 4 else i.result

» Observation 3. Asymmetric coroutines can be used to express symmetric coroutines.

Symmetric coroutines. In a programming model with symmetric coroutines, there is no
resume primitive. Instead, a symmetric coroutine always yields the next coroutine instance
from which to continue. As shown in Listing 9, a symmetric coroutine instance can be
expressed with the recursive type Sym[R]. This was observed before [34].

» Observation 4. Coroutine calls and coroutine return values, together with the yieldval
primitive, allow encoding alternative forms of suspension primitives.

The core idea is to express a suspension primitive as a special coroutine. This coroutine
yields a value that allows the resume-site to communicate back. Once resumed, the coroutine
returns another value to its caller coroutine. We show several examples of this pattern.

Async-await. A future is an entity that initially does not hold a value, but may asyn-
chronously attain it at a later point. Future APIs are usually callback-based — the code
that handles the future value is provided as a function. In Scala, type Future exposes the
onSuccess method, which takes a callback and calls it once the value is available, and value,
which can be used to access the future value if available. Promise is the future’s writing end,
and it exposes success, which sets the value of the corresponding future at most once [22].



A. Prokopec and F. Liu

Listing 10 Callback-style API. Listing 11 Async-await-style API.
1 val token: Future[Token] = 1 async {
2 authenticate () 2 val token: Token =
3 token.onSuccess { t => 3 await { authenticate() 1}
4 val session: Future[Session] = 4 val session: Session =
5 sessionFor (t) 5 await { sessionFor (token) }
6 session.onSuccess (useSession) 6 useSession(session)
7} 7}

In Listing 10, the authenticate method returns a future with a Token value. Once the
token arrives, the callback function (passed to the onSuccess method) calls sessionFor to
obtain a session future. The program continues in the useSession callback. The direct-
style async-await version, shown in Listing 11, relies on the async statement, which starts
asynchronous computations, and the await, which suspends until a value is available.

We use coroutines to replicate Scala’s Async framework [23]. The await method emulates
the suspension primitive — it creates a coroutine that yields a future and returns its value. It
assumes that the resume-site invokes resume only after the future is completed.

Listing 12 The await primitive.

1 def await[T]: Futurel[T] ~> (Futurel[T], T) =
2 coroutine { (f: Futurel[T]) => yieldval(f); f.value 1}

The async method interacts with await from the resume-site. For a given computation b,
it starts an instance, and executes it asynchronously in a Future. Whenever the computation
b yields a future, a callback is recursively installed. If resume returns false, the resulting
future is completed with the evaluation result of b (async itself must return a future).

Listing 13 The async primitive.

def async[R](b: () ~> (Future[Any], R)): Future[R] = {
val i = b.start()
val p = new Promise[R]
@tailrec def loop(): Unit =
if (i.resume) i.value.onSuccess(loop) else p.success(i.result)
Future { loop() 1}
p.future

00 ~NOo O wWwN -

(-

Erlang-style actors. Actor frameworks for the JVM are unable to implement exact Erlang-
style semantics, in which the receive statement can be called anywhere in the actor [21].
For example, Akka exposes a top-level receive method [1], which returns a partial function
used to handle messages. This function can be swapped with the become statement.
Listing 14 shows a minimal Akka actor example that implements a server. The server
starts its execution in the receive method, which awaits a password from the user. If the
password is correct, the top-level event-handling loop becomes the loggedIn method, which
accepts GET requests. When the Logout message arrives, the actor stops. Listing 15 shows
an equivalent Erlang-style actor, in which the control flow is more apparent. The receive
method has the role of a suspension primitive — it pauses the actor until a message arrives.

become (loggedIn) }
def loggedIn = {

Listing 14 Akka-style actor.

0 ~N O O,

1 cl S tends Act

c-ass server ef andls hewes | case Get(url) => serve(url)
2 def receive = { L O => O 3 3
3 case Login(pass) => case Logout => stop
4 assert (isCorrect (pass))
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Listing 15 Erlang-style actor. 5 case Get(url) => serve(url)
1 def server() = { 3 } case Logout () => stop()
2 val Login(pass) = receive () 8}
3 assert (isCorrect (pass))
4 while (true) receive() match {

As shown in the appendix, the receive coroutine follows a similar pattern as async-await
— receive yields an object into which the top-level loop can insert the message.

Event streams. First-class Rx-style event streams [32] expose a set of declarative trans-
formation combinators. As an example, consider how to collect a sequence of points when
dragging the mouse. The mouse events are represented as an event stream value. Dragging
starts when the mouse is pressed down, and ends when released. In Listing 16, the after
combinator removes a prefix of events, and until removes a suffix. The first drag event’s
onEvent callback creates a Curve object, and the last event saves the curve.

Listing 16 Rx-style streams. Listing 17 Direct-style streams.
1 val drag = mouse.after (_.isDown) 1 var e = mouse.get
2 .until (_.isUp) 2 while (!e.isDown) e = mouse.get
3 drag.first.onEvent { e => 3 val ¢ = new Curve(e.x, e.y)
4 val ¢ = new Curve(e.x, e.y) 4 while (e.isDown) {
5 drag.onEvent ( 5 e = mouse.get
6 e => c.add(e.x, e.y)) 6 c.add(e.x, e.y)
7 drag.last.onEvent ( 7}
8 e => saveCurve(c)) } 8 saveCurve (c)

The equivalent direct-style program in Listing 17 uses the get coroutine to suspend the
program until an event arrives. We show the implementation of get in the appendix.

Oz-style single-assignment variables. A variable in the Oz language [65] can be assigned
only once. Reading a single-assignment variable suspends execution until some other thread
assigns a value. Assigning a value to the variable more than once is an error.

Listing 18 Oz-style variable read. Listing 19 Oz-style variable write.

@volatile var state: AnyRef =
List.empty ()

Qtailrec def set(y: ElemType) {
val x = READ(state)
if (x.is[List]l) {
if (CAS(state, x, y))
for (i <- x.as[List])
schedule (i)
else set(y)
} else throw Reassigned }

1
2
3
4 val get = coroutine { () =>
5 if (READ(state).is[List])
6 yieldval (this)

7 READ (state) .as [ElemTypel
8

0 ~NO O WN -

}

Internally, a single-assignment variable has some state, which is either the list of
suspended threads or a value. When get from the Listing 18 is called, state is atomically
read in line 6. If the state is a list, coroutine is yielded to the scheduler, which atomically
adds the new suspended thread to the list (not shown). The coroutine is resumed when the
value becomes available — method set in Listing 19 tries to atomically replace the list with
the value of type ElemType. If successful, it schedules the suspended threads for execution.

» Observation 5. Snapshots enable backtracking and allow emulating full continuations.
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Backtracking. Testing frameworks such as ScalaCheck [36] rely on backtracking to system-
atically explore the test parameter space. ScalaCheck uses a monadic-style API to compose
the parameter generators. Listing 20 shows a ScalaCheck-style test that first creates a
generator for number pairs in a Scala for-comprehension, and then uses the generator in a
commutativity test. The pairs generator is created from the intrinsic ints generator.

In the direct-style variant in Listing 21, the ints generator is a coroutine that yields and
captures the execution snapshot. Therefore, it can be called from anywhere inside the test.

Listing 20 Monadic ScalaCheck test. Listing 21 Direct-style ScalaCheck test.
1 val pairs = 1 test {
2 for { 2 val a = ints (0 until MAX_INT)
3 x <- ints (0 until MAX_INT) 3 val b = ints (0 until MAX_INT)
4 y <- ints (0 until MAX_INT) 4 assert(a * b == b * a)
5 } yield (x, y) 5}
s forAll(pairs) { pair => Listing 22 Positive-definite matrix test.
8 wval (a, b) = pair 1 val pd = coroutine { (m:Mat) =>
9 assert(a * b == b * a) 2 val x = nonZeroVector(m.size)
10 } 3 assert(x.t * m * x > 0)
11 4 }

Moreover, generator late-binding allows modularizing the properties. Listing 22 shows a
modular positive-definite matrix property pd: given a matrix M, value 27 Mz is positive for
any non-zero vector x. The pd coroutine can be called from within other tests. Importantly,
note that the vector x is generated from within the test. This is hard to achieve in the

standard ScalaCheck tests, since their generators require prior knowledge about the vector x.

Consider implementing the test and the ints primitives from Listing 21. The key idea
is as follows: each time a test calls a generator, it suspends and yields a list of environment
setters. Each environment setter is a function that prepares a value to return from the

generator. The resume-site runs each environment setter, creates a snapshot and resumes it.

Listing 23 Direct-style ScalaCheck. Listing 24 Direct-style ScalaCheck, cont.
1 type Test = 1 val ints = coroutine {
2 () ~> (List[() => Unit], Unit) 2 (xs: List[Int]) =>
3 3 var env: Int = _
4 type Instance = 4 val setEnvs =
5 List[() => Unit] <~> Unit 5 xs.map(x => () => env = x)
6 6 yieldval (setEnvs)
7 def backtrack(i: Instance) = { 7 env
8 if (i.resume) 8 }
9 for (setEnv <- i.value) { 9
10 setEnv () 10 def test(t: Test) = {
11 backtrack (i.snapshot) 11 val instance = t.start()
12 } 12 backtrack (instance)
13 } 13 }

In Listing 23, we first declare two type aliases Test and Instance, which represent a
test coroutine and a running test instance. Their yield type is a list of environment setters
List[() => Unit]. The backtrack subroutine takes a running test instance, and resumes
it. If the instance yields, then the test must have called a generator, so backtrack traverses
the environment setters and recursively resumes a snapshot for each of them. Thus, each
recursive call to backtrack represents a node in the respective backtracking tree.

The ints generator in Listing 24 is a coroutine that takes a list of integers xs to choose
from. It starts by creating a local variable env, and a list of functions that set env (one for
each integer in xs). The generator then yields this list. Each time ints gets resumed, the
env variable is set to a proper value, so it is returned to the test that called it.

3:9
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t terms: Tu= types:
(x:T) => ¢t abstraction T=>T function type
t(t) application T~ T coroutine type
X variable T s T instance type
O unit value Unit unit type
(x:T) > t coroutine 1 bottom type
yield(t) yleld%ng roo= runtime terms:
start(t, t) starting . .

) 7 instance
resume(t, t, t, t) resuming &, v, v, v resumption
snapshot (t) snapshot [ .

) t]y suspension
fix(t) recursion
) ) 6] empty term
7 instance
(t, v, v, V); resumption Vi= values:
[t]o suspension (x:T) => t abstraction
%) empty term @) . unit value

(x:T) ~ t coroutine
1 instance
6] empty term

Figure 1 Syntax and types of the A., calculus.

Continuations. Shift-reset-style delimited continuations use the reset operator to delimit
program regions for the CPS-transform [12]. The shift operator, which takes a func-
tion whose input is the continuation, can be used inside these regions. We sketch the
implementation of shift and reset similar to those in Scala delimited continuations [56].

1 type Shift = (() => Unit) => Unit

2 def reset(b: () ~> (Shift, Unit)): Unit = {

3 def continue(i: Shift <~> Unit) =

4 if (i.resume) i.value(() => continue (i.snapshot))
5 continue (b.start ())

6

7 def shift: Shift ~> (Shift, Unit) =

8 coroutine { (b: Shift) => yieldval(b) }

The type alias Shift represents continuation handlers — functions that take continuations
of the current program. The reset operator takes a coroutine that can yield a Shift
value. It starts a new coroutine instance and resumes it. If this instance calls shift with
a continuation handler, the handler is yielded back to reset, which creates an instance
snapshot and uses it to create a continuation. The continuation is passed to the continuation
handler. The use of snapshot is required, as the continuation can be invoked multiple times.

4 Formal Semantics

This section presents the A., (pron. lambda-squiggly) calculus that captures the core of
the programming model from Section 2. This calculus is an extension of the simply-typed
lambda-calculus. The complete formalization, along with the proofs of the progress and
preservation theorems, is given in the corresponding tech report [51].

Syntax. Figure 1 shows the syntax. The abstraction, application and variable terms are
standard. The coroutine term represents coroutine declarations. The yield term corresponds
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(T-ABs) (T-App) (T-VAR) (T-Crx)
ST F 1:T1 % To|To
E|F,X:T1 |_t22T2|Ty E|F|‘t2:T1|Tw
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(T-COROUTINE) (T-StaRT)
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(T-YIELD) (T-SNAPSHOT) (T-F1x)
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ST F t3:T, % Tr|Tw ST F ta:Unit ~% Tg|Ty SIDF t1:To 4 T[T, ST F ta:Ta|T,
|7 F resume (t1,t5,t3,t4) :TR|Tw ST F 1 (t2) :T1|Ty
(T-RESUME) (T-ApPCOR)
ST F:T|T, S0 Fv:T,|L RO =Ty e To
E|1—\|_ [[tﬂv:T‘Ty Z‘FFtlng‘Ty ZlFFV22T2 NgTR|L
(T-SUSPENSION) S0k vs:Ty S TrlL STk va:Unit ~% Tg|L
E() =Ty e T2 S0 F (t1,v9,v3,V4)i: TR|Tw
S0 Ed:Ty e To| L (T-RESUMPTION)
(T-INSTANCE) = 2:T| L (T-EMPTY)

Figure 2 Typing rules for the A., calculus.

to the yieldval statement shown earlier. The start term is as before, but uses prefix syntax.
The resume term encodes both the resume and the value from Section 2. This is because
resuming an instance can complete that instance (in our implementation, resume returns
false), it can result in a yield (previously, true), or fail because an instance had already
completed earlier (in our implementation, an exception is thrown). In A.,, the resume term
therefore accepts four arguments: the coroutine instance, the result handler, the yield handler,
and the handler for the already-completed case. The fix term supports recursion [39].
The calculus differentiates between user terms, which appear in user programs, and
runtime terms, which only appear during the program evaluation. A label i is used to
represent a coroutine instance. FEach coroutine instance has an evaluation state, which
changes over the lifetime of the instance. A resumed instance i is represented by the
resumption term (t,v,v,v);. A term that yielded a value v, and is about to be suspended,
is represented by the suspension term [t],. Finally, the empty term @ is used in the store p
(shown shortly) when encoding terminated coroutines. The abstraction term (x:T)=>t, the

T
unit term (), the coroutine definition (x:T) ~% t, the instance label i and the empty term @&
are considered values.

Note that the calculus distinguishes between standard function types T1=>T5 and coroutine

T
types of the form Ty ~% To, where T, is the type of values that the coroutine may yield.
Coroutine instances have the T, «~ Ty type, and a unit value has the type Unit. The bottom
type L is used to represent the fact that a term does not yield.

Example. Recall the rep coroutine from Listing 3. We can encode it in A, as follows:

(x:Int) 25 ((u:Unit) & yield(x)) (yield(x))

ECOOP 2018
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The encoding uses a standard trick to sequence two statements [39], but instead of a
regular lambda, relies on a coroutine to ignore the result of the first statement. Starting this
coroutine creates a instance i, whose current term is saved in the store:

start ((x:Int) 25 ((u:Unit) =5 yield(x)) (yield(x)), 7) — i

Assume that we now resume this instance once. We provide three handlers to resume.
We show the complete yield handler (here, identity), and name the other two co and c4:

. 1
resume (i, c2, (x:Int) ~x, c4) —

(((u:Unit) % yield(7)) (yield(7)), ¢z, (x:Int) < x, cs) —

[

((Qu:Unit) ¥ yield(7) ([O]), ¢z, (x:Int) < x, ci) —

[

([((u:Unit) I«51:>Cyie1d(7))(())]]7, c2, (x:Int) <> x, ca) — ((x:Int) & X)) =7

Typing. Before showing the typing rules, we introduce the instance typing 3, which tracks
coroutine instance types, and is used alongside the standard typing context I'.

» Definition 6 (Instance typing). The instance typing 3 is a sequence of coroutine instance
labels and their types i:T, where comma (,) extends a typing with a new binding.

» Definition 7 (Typing relation). The typing relation X|T" - t:T|T, in Fig. 2 is a relation
between the instance typing 3, the typing context I', the term t, its type T, and the yield
type Ty, where T, is the type of values that may be yielded when evaluating t.

We inspect the most important rules here, and refer the reader to the tech report [51] for
a complete discussion. The T-ABs rule is the modification of the standard abstraction typing
rule. Note that the yield type of the function body must be L. This is because A., models
delimited coroutines — if a yield expression occurs, it must instead be lexically enclosed
within a coroutine term (which corresponds to the coroutine statement). We emphasize
that A., nevertheless models stackfulness — a yield can still cross coroutine boundaries at
runtime if a coroutine calls another coroutine, as illustrated in Section 3, and explained
shortly.

Note further, that the T-APP rule permits a non-L type on the subterms, since the
reduction of the function and its arguments is itself allowed to yield. A non-yielding term
can be assumed to yield any type by the T-CTX rule. Given a term whose type is T and yield
type is also T, the T-YIELD rule types a yield expression as Unit with the yield type T.

The T-COROUTINE rule allows the body to yield a value of the type T,, which must
correspond to the yield type of the coroutine. The coroutine itself gets a L yield type (the
coroutine definition effectively swallows the yield type). Consider now the T-APPCOR rule,
which is similar to the standard T-APP rule for functions. To directly call another coroutine
t1, its yield type T, must correspond to the yield type at the callsite.

Last, we examine the runtime term typing rules. The T-SUSPENSION rule requires that
the yielded value v has the type T,, and that the suspension has the same type and yield
type as the underlying suspended term t. The T-INSTANCE rule requires that the instance
typing X contains a corresponding type for ¢. Finally, the T-RESUMPTION term has the
type Tgr that corresponds to the return types of the handler coroutines to, t3 and t4. The
corresponding yield type is T, which is generally different from the yield type T, that the
coroutine instance evaluation t; can yield. The empty term can be assigned any type.

» Definition 8 (Well-typed program). A term t is well-typed if and only if 3T, T,, ¥ such that
Y|@ F t:T|T,. A term t is a well-typed user program if t is well-typed and T, = L.
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1 & dom(p) io & dom(p) i1 # iz
start ((x:Ty) 5 £,v) | = il i > [x — V]t snapshot (41) |p, 41 >t — d2|p, 41 > t,i2 >t
(E-START) (E-SNAPSHOT)
yield(W)|p — [O]|p ([eallvsva,vs,va)ilp, i> [to]or = va (W [p, it
(E-YIELD) (E-CAPTURE)
t # [to]o

(E-RESUMEL)

resume (i,Vy,Vs, V) |, i >t = (t,vy,Vs,Vy)i|p, > [t]o
resume (¢,Vq,v3,v4) |, 0> [to]o — va(O)|p,i> [to]e (E-RESUME2)
(v, Vo, V3, va)ilp, 3> o] — v2 (W) |, i> [v]e (E-TERMINATE)

Figure 3 A subset of evaluation rules in the A.. calculus.

Semantics. Before showing the operational semantics, we introduce the concept of a
coroutine store p, which is used to track the evaluation state of the coroutine instances.

» Definition 9 (Coroutine store). A coroutine store p is a sequence of coroutine instance
labels 7 and their respective evaluation terms t, where the comma operator (,) extends the
coroutine store with a new binding i > t.

We only show a subset with the most important evaluation rules in Fig. 3, and present
the complete set of rules in the tech report [51]. The E-START rule takes a coroutine value
and an argument, and uses them to create a new coroutine instance i, where i is a fresh
label. The coroutine store p is modified to include a binding from i to the coroutine body
t after substitution. Such a coroutine instance ¢ can then be resumed by the E-RESUMEL
rule, which reduces a resume expression into an resumption term (t,vy,vs,vy);. Note the
convention that an executing or a terminated coroutine has a suspension term [to] in the
coroutine store u. The E-RESUMEL rule applies if and only if t # [tg]z. If the instance
is terminated, the E-RESUMEZ2 rule applies instead, which just invokes the ‘callback’ v4 to
handle that case.

Consider now what happens when a resumption term yields. By E-YIELD, the expression
yield(v) reduces to a suspended unit value that is yielding the value v. A suspension term
then spreads across the surrounding terms. The following two example reductions spread the
suspension across an application. There is one such rule for each non-value syntax form.

[t1]v () [ — [t1 () vl

Vi ([[t2ﬂv) |,u — [[Vl (t2)]]V|/~‘

Once the suspension reaches the coroutine resumption term, the E-CAPTURE reduces it
to a call to the yield handler vs, and puts the term in the suspension into the store p.

Safety. We now state the safety properties of A..,. Complete proofs are given in the
corresponding tech report article [51].

» Definition 10 (Well-typed coroutine store). A coroutine store u is well-typed with respect
to the instance typing X, denoted ¥ + pu, if and only if it is true that Vi € dom(u),
X(i) =Ty e To & X|D F p(i) : T2|Ty, and dom(X) = dom(pu).

3:13
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» Theorem 11 (Progress). Suppose that t is a closed, well-typed term for some T and X.
Then, either t is a value, or t is a suspension term [t],, or, for any store u such that ¥+ pu,
there is some term t' and store ' such that t|lp — /|y’

» Theorem 12 (Preservation). If a term and the coroutine store are well-typed, that is,
LT F t:0T,, and X|T &+ p, and if tjp — t'|i, then there exists ¥ O ¥ such that
YIEt:0OT, and X'|TF 4.

» Corollary 1 (Yield safety). If a user program t, is well-typed, then it does not evaluate to a
suspension term of the form [t]s.

5 Implementation

This section describes our metaprogramming-based coroutine implementation in Scala, which
consists of a runtime library and an AST-level transformation.

5.1 Preliminaries

Our implementation relies on Scala Macros [9], the metaprogramming APT in Scala?. The
following are the key metaprogramming features of Scala Macros that our transformation
scheme relies on. First, it must be possible to declare macro definitions that take ASTs as
input arguments and return transformed ASTs. Second, it must be possible to invoke such
macro definitions from user programs, which makes the compiler execute the macro with its
argument expressions and replace the macro invocation with the resulting ASTs. Third, it
must be possible to decompose and compose ASTs inside the macro definition. Finally, it
must be possible to inspect the types of the expressions passed to the macro, and reason
about symbol identity. The following is an example of a macro definition:

1 def log(msg: String): Unit = macro log_impl
2 def log_impl(c: Context) (msg: c.Tree): c.Tree =
3 q"""if (loggingEnabled) info(currentTime() + ": " + $msg)"""

In the above, we declared a log macro with the macro implementation log_impl, which
takes the corresponding Tree of msg as argument. The log_impl method uses the quasiquote
notation g"" to build an AST [61], which in turn checks if logging is enabled before con-
structing the command line output from the msg string. Values are interpolated into the
AST using the $ notation, as is the case with the expression $msg above.

Scala macro definitions can be packaged into libraries. Our coroutine implementation
is therefore a macro library, which the user program can depend on. User coroutines
implemented with our coroutine library can be similarly packaged into third party libraries.

5.2 Runtime Model

When yielding, the coroutine instance must store the state of the local variables. When
resuming, that state must be retrieved into the local variables. Since coroutines are stackful,
i.e. they support nested coroutine calls, it is necessary to store the entire coroutine call stack.

2 We have an ongoing second implementation that relies on a newer Scala Macros API, but we are using
the original Scala Macros for the evaluation purposes in this paper.
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Call stacks. Our implementation uses arrays to represent coroutine call stacks. A call stack

is divided into a sequence of coroutine frames, which are similar to method invocation frames.

Each frame stores the following:
(1) pointer to the coroutine object (i.e. coroutine block),
(2) the position in the coroutine where the last yield occurred,
(3) the local variables and the return values.
A coroutine call stack can be implemented as a single contiguous memory area. Scala
is constrained by the JVM platform, on which arrays contain either object references or
primitive values, but not both. Hence, our implementation separates coroutine descriptors,
program counters and local variables into reference and value stacks.

It would be costly to create a large call stack whenever a coroutine instance starts. Many

coroutines only need a single or several frames, so we set the initial stack size to 4 entries.

When pushing, a stack overflow check potentially reallocates the stack, doubling its size. In
the worst case, the reallocation overhead is 2x compared to an optimally sized stack.

Coroutine instance class. A coroutine instance is represented by the Instance class shown
in Listing 25. A new instance is created by the start method. In addition to the call stack,
a coroutine instance tracks if the instance is live (i.e. non-terminated), if a nested call is in
progress, what the last yield value was, the result value (if the instance terminated), and
the exception that was thrown (if any). The coroutine instance exposes the value, result
and exception user-facing methods, which either return the value of the respective field, or
throw an error if the field is not set. The instance also exposes the resume method, which is
described shortly.

Listing 25 Coroutine instance class.

1 class InstancelY, R] {

2 var _live = true

3 var _call = false

4 var _value: Y = null

5 var _result: R = null

6 var _exception:

7 Exception = null

8 /* Call stack arrays */
9 }

Coroutine class. For each coroutine declaration in the program, the transformation macro
generates a new anonymous subclass of the Coroutine class shown in Listing 26. Each
concrete Coroutine subclass defines several entry point methods, and implements the _enter
method of the Coroutine base class. An entry point method is a replica of the coroutine
block such that it starts from either:

(1) the beginning of the method, or

(2) a yieldval statement, or

(3) a call to another coroutine.

The _enter method is called when a coroutine instance resumes. It reads the current position
from the coroutine instance, and dispatches to the proper entry point method with a switch
statement. A goto primitive is unavailable in Scala, so the _enter method emulates the
goto semantics.

Listing 26 Coroutine definition base classes.

R] {

InstancelY,

1 class CoroutinelY,

2 def _enter(i: R]): Unit
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}
class Coroutinel [TO, Y, R]
extends Coroutinel[Y, R] {
def _call(
i: Instancel[Y, R], aO: TO): Unit
}

/* One class for each arity */

©o0W0~NO O W

Listing 26 also shows the abstract Coroutinel subclass. The Coroutinel subclass
declares the _call method which stores the resume-site or callsite arguments into the proper
locations in the call stack. This method is invoked by start and by coroutine calls. Neither
JVM nor Scala support variadic templates, so we include 4 different arity classes (the same
approach is used for Function classes in Scala, and functional interface classes in Java).

Trampolining. An entry point method ends at a position at which the original coroutine
block has a yieldval, a coroutine call, or a return. Therefore, each entry point method in
the Coroutine class is tail-recursive. Consequently, nested coroutine calls can be invoked
from a trampoline-style loop.

The resume method in Listing 27 implements a trampoline in lines 8-10. After resetting
the yield-related fields, resume repetitively reads the topmost coroutine from the coroutine
stack _cstack, and invokes _enter. If an entry point calls another coroutine, or returns
from a coroutine call, the _call field is set to true. Otherwise, if the instance yields or
terminates, the _call field is set to false, and the loop ends.

Listing 27 The resume trampoline.

1 def resumel[Y, R]

2 (i: Instancel[Y, R]) = {
3 if ('i._live)

4 throw sys.error ()
5 i._hasValue = false
6 i._value = null

7 do {

8 i._cstack(i._ctop)
9 ._enter (i)

10 } while (i._call)

11 i._live }

5.3 Transformation

The transformation is performed by the following coroutine macro, which takes a Scala
AST, typed c.Tree. The coroutine macro checks that the AST is statically a function type,
and reports a compiler error otherwise. The macro returns an AST that holds a definition of
an anonymous CoroutineN subclass (for a specific arity N), and a new instance of that class.

1 def coroutine[T, R](f: Any): Any = macro coroutine_impl [T, R]
2 def coroutine_impl[T, R](c: Context)(f: c.Tree): c.Tree =

The transformation consists of four compilation phases. First, the input AST is converted
into a normal form. Second, the normalized AST is converted into a control flow graph.
Third, the control flow graph is cut into segments at the points where the coroutine yields
or calls other coroutines. Finally, control flow graph segments are converted back to ASTs,
which represent the coroutine’s entry points and are used to generate the anonymous class.
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AST normalization. This phase converts the input AST with arbitrary phrases into a

normalized AST. The phrases in the normalized AST are restricted to:

(1) single operator expressions on constants and identifiers,

(2) assignments and declarations whose right-hand side is a constant or an identifier?,

(3) method calls on constants and identifiers,

(4) if-statements and while-loops whose condition is a constant or an identifier and whose
body is normalized,

(5) basic blocks whose statements are normalized.

The benefit of normalization is that the subsequent phases have fewer cases to consider.
Listing 28 Canonicalized list coroutine.

1 val bucket = coroutine {
2 (b: List[Int]) =>

3 var x_0 = b != Nil

4 var x_1 = x_0

5 while (x_1) {

6 var x_2 = b.head

7 var x_3 = yieldval(x_2)
8 var x_4 = b.tail

9 b = x_4

10 var x_0 = b != Nil
11 x_1 =x_0 %}

12 O 2

Example. Recall the bucket coroutine from Listing 5, which yields the elements of a list.
After normalization, this coroutine is transformed into the coroutine in Listing 28.

ol e
var x=t — head O last
var x=t

Control flow graph conversion. A normalized AST is converted to a control flow graph.
The transformation is implemented as a set of mappings between the input AST and the
output CFG nodes. An example rule for a variable declaration is informally shown above,
where a declaration is replaced by a single node that records the AST.

The rule for while-loops, informally shown on the right, relies on the recursive transform-
ation of the body t; of the loop. Given that t; transforms to a CFG that starts with a node
1 and ends with a node 2, a while-loop transforms to a pair of Ws and We nodes, which are
connected with successor links (solid lines) as shown in the figure.

t =while (t.) t, t» *@::@

t — head’ ®®® " last
te %)

Example. Recall once more the bucket coroutine from Listing 5. The resulting control flow
graph is shown below. Nodes that do not represent structured control flow or yielding are
annotated with the line number from Listing 28, and the Y node represents the yield-site.

3 We sometimes slightly deviate from this in the examples, for better readability.
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entry AD=>(O->E (OO~~~ Q=F~>12> return

Control flow graph splitting Resuming a coroutine effectively jumps to the middle of its
body. Such a jump is not possible if the target language that supports only structured
programming constructs. As explained in Section 5.2, the transformation outputs multiple
entry point subroutines, each containing only structured control flow. Therefore, the CFG
from the previous phase is split into multiple segments, each corresponding to an entry point.

The splitting starts at the node that corresponds to the coroutine method entry, and
traverses the nodes of the graph until reaching a previously unseen yield-site or coroutine
call. The search is repeated from each split, taking care not to repeat the search twice. If
the graph traversal encounters a control flow node (such as We) whose corresponding Ws
node was not seen as part of the same segment (which can happen if there is a yield inside a
while-loop), such a node is converted into a Be (block exit) node, followed by a loop again.

entry »@@ @ return
catry >@ OO QDG FAD D) 1@ return

Example. The control flow graph of the bucket coroutine from Listing 5, produced in the
previous phase, is split into the following pair of segments. Note that the second segment
starts from the yield-site inside the loop, and that one loop iteration is effectively unrolled.

Listing 29 Entry points of bucket. Listing 30 Entry points of bucket, cont.
1 def _enter( 1 def _epl(
2 i: Instance[Int, Unit] 2 i: Instance[Int, Unit]
3 ): Unit = 3 ): Unit = {
4 i._pstack(i._ptop) match { 4 var b = i._rstack(i._rtop + 0)
5 case 0 => _ep0(i) 5 var x_1 = false
6 case 1 => _epl (i) 6 {
7 i 7 var x_3 = ()
8 8 var x_4 = b.tail
9 def _epO( 9 b = x_4
10 i: Instance[Int, Unit] 10 var x_0 = b != Nil
11 ): Unit = { 11 x 1 =x_0
12 var b = i._rstack(i._rtop + 0) 12 }
13 var x_0 = b != Nil 13
14 var x_1 = x_0 14 while (x_1) {
15 while (x_1) { 15 var x_2 = b.head
16 var x_2 = b.head 16 i.value = x_2
17 i.value = x_2 17 i._rstack(i._rtop + 0) = b
18 i._pstack(i._ptop + 0) = 1 18 i._pstack(i._ptop + 0) = 1
19 return 19 return
20 % 20  }
21 i._result = () 21 i._result = ()
22 i._cstack(i._ctop) = null 22 i._cstack(i._ctop) = null
23 i._ctop -=1 23 i._ctop -= 1
24 i._ptop -= 1 } 24 i._ptop -= 1 }

AST generation. This phase transforms the CFG segments back into the ASTs for the
entry point methods. Each entry point starts by restoring the local variables from the call
stack. At each yield-site and each coroutine call (commonly, the exit), the entry point method
stores the local variables back to the stack. It then either stores the yield value into the
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coroutine, or stores the result value. The entry point methods are placed into a Coroutine
subclass, and the _enter method dispatches to the proper entry points.

Example. Listings 29 and 30 show the implementation of the entry points of the bucket
coroutine. Note that each method starts by restoring the local variable b from the reference
stack of the coroutine instance i. Each entry point ends by either storing the yield value
into the value field of the coroutine instance, or the result value into the result field. Local
variables are then stored onto the stack (there are two stacks — _vstack for primitive values
and _rstack for references), and the program counter is stored to the _pstack.

Listing 31 Error-handling coroutines. Listing 32 Normalized main coroutine.

1 val fail = 1 /* main */

2 coroutine { (e: Error) => 2 var x_0: Exception = null
3 throw e 3 try forward()

4 ¥ 4 catch {

5 val forward = 5 case e => x_0 = e

6 coroutine { () => 6 }

7 fail (new Error) 7 var x_1 = x_0 !'= null

8 8 if (x_1) {

9 val main = 9 var x_2 =

10 coroutine { () => 10 x_0.isInstanceOf [Error]
11 try forward() 11 if (x_2) {

12 catch { 12 println("Failed.")

13 case e: Error => 13 } else {

14 println("Failed.") 14 throw x_0

15 } 15 }

16} 16

5.4 Exception handling

Code inside the coroutine block can throw an exception. In this case, standard exception
handling semantics apply — the control flow must continue from the nearest dynamically
enclosing catch block that handles the respective exception type.
transformation does three things:

(1) it normalizes the try-catch and throw ASTs,

(2) it treats each throw statement as a suspension point that writes to the instance’s

To ensure this, the

_exception field,
(3) it places an exception handler at the beginning of each entry point.

To explain these steps, we use the example in Listing 31. The fail coroutine takes an
Error argument and throws it. The forward coroutine creates an Error object, and calls
the fail coroutine without handling its exceptions. The main coroutine calls the forward
coroutine inside a try block, and catches the subset of exceptions with the Error type.

Normalization. The normalized coroutine main is shown in Listing 32. The catch handler
is transformed so that, once caught, the exception is immediately stored into x_0. The
variable x_0 is matched against the Error type in the subsequent if-statements.

Exception throws. The transformation of the throw statement from the fail coroutine is
in Listing 33. The parameter is loaded into the variable e, and immediately stored into the

exception field. The coroutine stack _cstack is then popped, and the coroutine returns.
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Listing 33 1st entry point of fail. Listing 35 Entry points of forward.
1 /* fail, _ep0 */ 1 /* forward, _ep0 */
2 var e = i._rstack(i._rtop) 2 var x_0 = new Error
3 i._exception = e 3 fail._call(i, x_0)
4 i._rstack(i._rtop) = null 4 i._ctop += 1
5 i._rtop -= 1 5 i._cstack(i._ctop) = null
6 return 6 i._ptop += 1

7 i._pstack(i._ptop) = 0

Listi 34 2nd . £ X 8 i._call = true

isting nd entry point of main. 9 return
1 /* main, _epl */ 10
2 try { 11 /* forward, _epl */
3 try { 12 try {
4 var x_0 = i._exception 13 var x_0 = i._exception
5 if (x_0 !'= null) throw x_0O 14 if (x_0 != null) throw x_O
6 } catch { case e => x_0 = e } 15 i._cstack(i._ctop) = null
7 var x_1 = x_0 != null 16 i._ctop -=1
8 if (x_1) { 17 i._ptop -= 1
9 var x_2 = 18 return
10 x_0.isInstanceOf [Error] 19 } catch { case x_1 =>
11 if (x_2) println("Failed.") 20 i._exception = x_1
12 else throw x_0 21 i._cstack(i._ctop) = null
13 } 22 i._ctop -= 1
14 /% Normal ezxzit */ 23 i._ptop -= 1
15 } catch { case x_1 => 24 return
16 /* Ezceptional exzit */ 25 }
17 ¥ 26

Stack unwinding. The final rule is to wrap every entry point that starts at a return from a
coroutine call into an unwinding exception handler. In addition, if the previous entry point
ended inside a user exception handler, then a replica of that handler is added.

The forward coroutine does not have an exception handler, so its second entry point
_epl contains only the unwinding handler, as shown in Listing 35. On the other hand, main’s
first entry point _epO ends with a coroutine call. Listing 34 shows that the second entry point
_epl therefore has both the unwinding handler and the user handler. If the user handler
cannot handle the exception, then the exception is rethrown.

5.5 Optimizations

An entry point method does not need to load all the local variables at the beginning, nor
store all of them to the stack. For example, the entry points of the bucket coroutine in
Listings 29 and 30 only store a subset of all the variables in the scope. In particular, _ep0
does not store the variables b, x_0, x_1 and x_2, while _ep1 only stores b. In this section,
we explain the optimization rules used to avoid the unnecessary loads and stores.

Scope rule. A variable does not need to be loaded or stored if it is not in scope after the
exit point. This rule applies to, for example, the variables x_3 and x_4 from Listing 30.

» Definition 13. A control flow graph node d dominates a node n if every control flow path
from the begin node to n must go through d.

Must-load rule. A local variable v must be loaded from the stack if the respective entry
point contains at least one read of v that is not dominated by a write of v.
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Example. Consider the variable b of the entry point  cpiry »

_epl of the bucket coroutine in Listing 30. In the cor-

responding control flow graph, the read in the node 8 precedes the write in the node 9.
Consequently, there exists a read that is not dominated by any write, and b must be loaded.

» Definition 14. A control flow path is a connected sequence of CFG nodes. A control flow
path is w-live if the variable v is in scope in all the nodes of that control flow path.

Was-changed rule. A local variable v must not be stored to the stack if there is no v-live
control flow path that starts with a write to v and ends at the respective exit node.

.. Example. Consider the variable b of the entry point
entry >(3)—>(1)>Wg—>(6)—>(Y) _ep0 of the bucket coroutine in Listing 29. In the
™ corresponding CFG, the variable b is read in nodes 3

and 6. However, there is no write to v that connects to the exit node Y. Therefore, at Y, b
did not change its value since the begin node, so it does not have to be stored.

» Definition 15. We say that an exit node x resumes at an entry point e, if the exit node
corresponds to the begin node of e in the original control flow graph.

» Definition 16. Relation needed(x,v,e) between an exit node z, the variable v and an

entry point method e holds if and only if either:

(1) z resumes at e, and the must-load rule applies to v and e, or

(2) « resumes at ¢/, and there is a v-live control flow path between the begin node of ¢’ and
some exit node 2’ of €/, such that needed(z’, v, e).

Is-needed rule. A local variable v must not be stored to the stack at an exit node x if there
is no entry point method e such that needed(zx, v, e).

Example. Intuitively, this rule applies when it becomes impossible to reach (without v
going out of scope) an entry point that would need to load v. This rule applies to the variable
x_2 in the entry point _ep1 in Listing 30. Variable x_2 is in scope at the exit point, however,
it does not need to be loaded when _ep1 is reentered, and it goes out of scope before it is
needed again.

6 Performance Evaluation

The goal of the evaluation is to assess coroutine performance on a range of different use cases,
most notably those from Section 3. The source code of the benchmarks is available online
[44]. Evaluation was done in accordance with established JVM benchmarking methodologies
[19]. We used the ScalaMeter framework [42] to repeat each benchmark 30 times, across 6
different JVM process instances, and we report the average values. We used a quad-core 2.8
GHz Intel i7-4900MQ processor with 32 GB of RAM, and results are shown in Figure 4.

Iterators. We test tree iterators from Listing 8 against a manually implemented tree iterator.

The first benchmark, TreeFindMax, traverses a single tree and finds the largest integer, while
TreeToArray copies the integers to an array. TreeSameFringe compares the corresponding
integers in two trees with a different layout [18]. These benchmarks heavily modify the stack,
so a coroutine is 1.9 — 2.1x slower than an iterator. A CPS-based iterator, built using Scala
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Figure 4 Performance of coroutines and alternative frameworks (lower is better).

delimited continuations [56], is 2.4 — 2.9x slower. For comparison, a lazy functional stream
is 12 — 17x slower.

The HashLongest benchmark traverses a hash table to find the longest string (strings
contain size information, so checks are cheap). Since most of the time is spent in the
loop and not in coroutine calls, performance overhead compared to iterators is only 26%.
This benchmark reveals a downside of CPS-based continuations*. The relative overhead of
allocating continuation closures is considerable for hash table iterators, so a continuation-
based iterator is 6.22x slower. HashZip simultaneously traverses two hash tables, picks
an element from each pair, and inserts it into a third hash table, effectively implementing
a zip operation on the hash tables. Since zipping does additional work of implementing
the resulting hash table, coroutines have only a 5% overhead compared to a manually
implemented iterator, while continuations are 2.1x slower.

DFS and BFS benchmarks traverse a sparse graph (degree 3) in depth-first and breadth-
first order. Coroutines have an overhead of 34% and 17% compared to manually implemented
iterators, and continuations 90% and 28%, respectively. Making the graphs denser (degree 16)
amortizes the overhead of suspensions, resulting in overheads of 9% and 3% for coroutines.

Lazy streams. Functional lazy streams, or lazy lists, are a neat abstraction for recursively
defining number series. Coroutines are also a good fit for this use-case, but are considerably
faster, since a stream needs to create a node object for each number in the series.

The Fibonacci benchmarks generates Fibonacci numbers, and uses big integer arithmetic
to do so. The overhead of a lazy-stream-based solution compared to a coroutine-based one is
only 15%. The Taylor benchmark generates a Taylor series, using floating-point arithmetic.
The work involved in a floating-point computation is much lower compared to big-integer
arithmetic. Since the relative overhead of lazy streams is much more pronounced in this case,
the stream-based solution is 8.4x slower.

4 In some cases, the Scala compiler can eliminate tail-calls, but typically not when invoking lambda
objects that encode the continuations produced by Scala’s delimited continutations plugin.
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Figure 5 Impact of optimizations on performance (lower is better).

ScalaCheck. The TestList and TestFract benchmarks compare regular ScalaCheck generator-
based testing [36] with backtracking from Section 3. The TestList benchmark checks properties
of list objects, and is computation-heavy — relative backtracking overhead due to creating
snapshots is only 7%. The TestFract benchmark checks properties of fractions and does only
simple arithmetic — in this case, backtracking overhead is 41%.

Async-Await. Here, network communication is the primary use-case. FastReq creates an
immediately completed request, and awaits it. In this case, coroutine-based implementation
from Section 3 has a 17% overhead. Just for comparison, starting a new thread for each
request is 245x slower. In practice, the network introduces a delay between requests and
responses. NetReq uses a 1 ms delay, in which case coroutines have no observable overhead.

Single-assignment variables. In this benchmark, Oz-style single-assignment variables from
Listing 18 are used to implement dataflow streams — a variant of cons-lists with single-
assignment tails. This allows a straightforward encoding of the producer-consumer pattern
[65]. The PC benchmark compares dataflow streams based on Scala Futures [22] with
coroutine-based streams. The direct-style coroutine API has an interesting performance
impact. Futures are 52% slower because every tail-read must allocate a closure and install a
callback even if the value is already present, whereas a coroutine can be directly resumed
when a value is available. The LinkedTransferQueue from the JDK blocks the thread when
waiting for a value, and is 35% slower. Bounded PC adds an additional backpressure dataflow
stream between the producer and the consumer, and has similar performance ratios.

Actors and event streams. We compare callback-style and direct-style Akka actors [1] and
reactors [54, 47, 43, 45] on two benchmarks from the Savina actor benchmark suite [24].
Direct-style programs are encoded by hot-swapping the event loop, as explained in Section 3.
The callback allocation in receive and get calls causes a 3% slowdown for reactors and 2.8%
for actors in PingPong. In ThreadRing, slowdown is 12% for reactors and 6% for actors.

Optimization Breakdown. We show a breakdown of different optimizations from Section 5.5.
We pick eight benchmarks from Figure 4 and run them after disabling different optimization
combinations. We observe the highest impact on TreeSameFringe, HashLongest, DFS and
PC. In Figure 5, all-opts shows performance with all optimizations enabled, no-is-needed
disables the is-needed rule, no-must-load-no-is-needed additionally disables the must-load
rule, and no-opts disables all optimizations. Results show that optimizations have the highest
impact on TreeSameFringe, where disabling them causes a total slowdown of almost 2x.
Here, 50% of the performance comes from the is-needed rule. In other benchmarks shown in
Figure 5, total improvement from optimizations ranges from 5% to 50%.
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Table 1 Comparison of Suspension Primitives in Different Languages.

Name Type-safe First-class Stackful Allocation-free Scope Snapshots
Enumerators (C#) v X X & delimited X
Generators (Python) X 4 4 X delimited X
Async (Scala, C#) v v v X delimited X
Spawn-sync (Cilk) v X v v whole program X
Boost (C++) v v v v delimited X
CO2 (C++) v v X 1) delimited X
Coroutines (Lua) X 4 4 4 just-in-time X
Coroutines (Kotlin) v v v X delimited X
Coroutines (Scala) v v v 4 delimited 4

7 Related Work

We organize the related work on coroutines into several categories. We start with the origins
and previous formalization approaches, we then contrast coroutines to similar domain-specific
primitives, and conclude with the related work on continuations. Where appropriate, we
contrast our model with alternatives. As stated in the introduction, many features of our
model have been studied already. However, our main novelty is that our delimited coroutines
rely only on metaprogramming, as well as augmenting coroutines with snapshots.

Coroutine in programming languages. Table 1 is a brief comparative summary of suspen-
sion primitives in different languages. We compare type-safety, whether suspendable code
blocks are first-class objects, whether coroutines are stackful, and if suspendable blocks can
call each other without dynamic allocation. The scope column denotes the scope in which
the primitive can be used.

The Kotlin language exposes coroutines with its suspend and yield keywords [7]. Kotlin’s
implementation is delimited and CPS-based, and it translates every call to a coroutine ¢ to
an allocation of a coroutine class specific to c. This coroutine-specific class holds the state of
the local variables. Instances of this class are chained and form linked-list-based callstack.
Our translation approach is different in that a coroutine call modifies an array-based call
stack, and does not require an object allocation. Currently, Kotlin coroutines do not allow
snapshots, which makes them equivalent to one-shot continuations [34].

In the C+4 community, there are two popular coroutine libraries: Boost coroutines [27]
and CO2 [25]. Boost coroutines are stackful, and they expose two separate asymmetric
coroutine types: push-based coroutines, where resuming takes an input value, and pull-based
coroutines, where resuming returns an output value. They do not support snapshots due to
problems with memory safety in copying the stack. CO2 aims to implement fast coroutines,
and reports better performance than Boost, but it supports only stackless coroutines.

Origins and formalizations. The idea of coroutines dates back to Erdwinn and Conway’s
work on a tape-based Cobol compiler and its separability into modules [11]. Although the
original use-case is no longer relevant, other use-cases emerged. Coroutines were investigated
on numerous occasions, and initially appeared in languages such as Modula-2 [68], Simula [6],
and BCPL [33]. A detailed classification of coroutines is given by Moura and Ierusalimschy
[34], along with a formalization of asymmetric coroutines through an operational semantics.
Moura and Ierusalimschy observed that asymmetric first-class stackful coroutines have an
equal expressive power as one-shot continuations, but did not investigate snapshots, which
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make coroutines equivalent to full continuations. Anton and Thiemann showed that it is
possible to automatically derive type systems for symmetric and asymmetric coroutines
by converting their reduction semantics into equivalent functional implementations, and
then applying existing type systems for programs with continuations [2]. James and Sabry
identified the input and output types of coroutines [57], where the output type corresponds
to the yield type described in this paper. The input type ascribes the value passed to the
coroutine when it is resumed. As a design tradeoff, we chose not to have explicit input values
in our model. First, the input type increases the verbosity of the coroutine type, which may
have practical consequences. Second, as shown in examples from Section 3, the input type
can be simulated with the return type of another coroutine, which yields a writable location,
and returns its value when resumed (e.g. the await coroutine from Section 3). Fischer et al.
proposed a coroutine-based programming model for the Java programming language, along
with the respective formal extension of Featherweight Java [17].

Domain-specific approaches. The need for simpler control flow prompted the introduction
of coroutine-inspired primitives that target specific domains. One of the early applications
was data structure traversal. Push-style traversal with foreach is easy, but the caller must
relinquish control, and many applications cannot do this (e.g. the same-fringe benchmark
from Section 6). Java-style iterators with next and hasNext are harder to implement than a
foreach method, and coroutines bridge this gap.

Tterators in CLU [29] are essentially coroutines — program sections with yield statements
that are converted into traversal objects. C# inherited this approach — its iterator type
IEnumerator exposes Current and MoveNext methods. Since enumerator methods are not
first class entities, it is somewhat harder to abstract suspendable code, as in the backtracking
example from Section 3. C# enumerators are not stackful, so the closed addressing hash
table example from the Listing 6 must be implemented inside a single method. Enumerators
can be used for asynchronous programming, but they require exposing yield in user code.
Therefore, separately from enumerators, C# exposes async-await primitives. Some newer
languages such as Dart similarly expose an async-await pair of primitives.

Async-Await in Scala [23] is implemented using Scala’s metaprogramming facilities. Async-
await programs can compose by expressing asynchronous components as first-class Future
objects. The Async-Await model does not need to be stackful, since separate modules can
be expressed as separate futures. However, reliance on futures and concurrency makes it
hard to use Async-Await generically. For example, iterators implemented using futures have
considerable performance overheads due to synchronization involved in creating future values.

There exist other domain-specific suspension models. For example, Erlang’s receive
statement effectively captures the program continuation when awaiting for the inbound
message [66]. A model similar to Scala Async was devised to generate Rx’s Observable
values [20, 32], and the event stream composition in the reactor model [46, 49], as well
as callbacks usages in asynchronous programming models based on futures and flow-pools
[22, 53, 52, 41, 59] can be similarly simplified. Cilk’s spawn-sync model [28] is similar to
async-await, and it is implemented as a full program transformation. The Esterel language
defines a pause statement that pauses the execution, and continues it in the next event
propagation cycle [5]. Behaviour trees [31] are AT algorithms used to simulate agents — they
essentially behave as AST interpreters with yield statements.

Generators. Dynamic languages often support generators, which are essentially untyped
asymmetric coroutines. A Python generator instance [58] exposes only the next method (an
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equivalent of resume), which throws a StopIteration error when it completes. In practice,
Python generators are mostly used for list comprehensions, as programmers find it verbose
to handle StopIteration errors. Newer Python versions allow stackful generators [15] with
the yield from statement, which is implemented as syntactic sugar around basic generators
that chains the resume points instead of using call stacks. ECMAScript 6 generators are
similar to Python’s generators. Lua coroutines bear the most similarity with the coroutine
formulation in this paper [13], with several differences. First, Lua coroutines are not statically
typed. While this is less safe, it has the advantage of reduced syntactic burden. Second, Lua
coroutines are created from function values dynamically. This is convenient, but requires
additional JIT optimizations to be efficient.

Transformation-based continuations. Continuations are closely related to coroutines, and
with the addition of snapshot the two can express the same programs. Scheme supports
programming with continuations via the call/cc operator, which has a similar role as shift
in shift-reset delimited continuations [12, 3]. In several different contexts, it was shown that
continuations subsume other control constructs such as exception handling, backtracking,
and coroutines. Nonetheless, most programming languages do not support continuations
today. It is somewhat difficult to provide an efficient implementation of continuations, since
the captured continuations must be callable more than once. One approach to continuations
is to transform the program to continuation-passing style [64]. Scala’s continuations [56]
implement delimited shift-reset continuations with a CPS transform. One downside of the
continuation-passing style transformation is the risk of stack overflows when the tail-call
optimization is absent from the runtime, as is the case of JVM.

Optimizing compilers tend to be tailored to the workloads that appear in practice. For
example, it was shown that optimizations such as inlining, escape analysis, loop unrolling
and devirtualization make most collection programs run nearly optimally [50, 40, 55, 63, 48].
However, abstraction overheads associated with coroutines are somewhat new, and are not
addressed by most compilers. For this reason, compile-time transformations of coroutine-heavy
workloads typically produce slower programs compared to their runtime-based counterparts.
We postulate that targeted high-level JIT optimizations could significantly narrow this gap.

Runtime-based continuations. There were several attempts to provide runtime continu-
ation support for the JVM, ranging from Ovm implementations [14] based on call/cc, to
JVM extensions [62], based on the capture and resume primitives. While runtime continu-
ations are not delimited and can be made very efficient, maintenance pressure and portability
requirements prevented these implementations from becoming a part of official JVM releases.
An alternative, less demanding approach relies only on stack introspection facilities of the
host runtime [38]. There exists a program transformation that relies on exception-handling
to capture the stack [60]. Here, before calling the continuation, the saved state is used in
method calls to rebuild the stack. This works well for continuations, where the stack must be
copied anyway, but may be too costly for coroutine resume. Bruggeman et al. observed that
many use cases call the continuation only once and can avoid the copying overhead, which
lead to one-shot continuations [8]. One-shot continuations are akin to coroutines without
snapshots.

Other related constructs. Coroutines are sometimes confused with goroutines, which are
lightweight threads in the Go language. While coroutines can be used to encode goroutines,
the converse encoding is not as efficient, as goroutines involve message passing.
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8 Conclusion

We described a programming model for first-class typed stackful coroutines with snapshots,
along with a formalization. Our implementation relies on metaprogramming facilities of
the host language. We identified the critical optimizations that need to accompany the
implementation, and showed their performance impact. We identified a range of use cases
such as iterators, Async-Await, Oz-style dataflow variables, Erlang-style actors, backtracking,
and direct-style event streams, and we showed that they can be expressed in our model.
Experimental evaluation shows that our coroutine implementation is almost as efficient as
these other primitives, and in some cases has an even better performance.

Our implementation is available online [44], as an independent module that relies on
metaprogramming capabilities in Scala, and works with the official language releases. This
work may indicate a wider need for metaprogramming support in general purpose languages,
which may be easier to provide than continuation support in the runtime. Moreover, runtime
support and JIT optimizations [50] could improve the performance of our implementation
even further, and we plan to investigate this in the future.
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A Additional coroutine-based implementations

In Section 3, we showed how coroutines simplify actors and Rx streams. In this section, we
show the coroutine-based implementations for these use-cases.

Actors. Since JVM does not have continuations, actor frameworks are unable to implement
exact Erlang-style semantics, in which the receive statement can be called anywhere in the
actor. Instead, frameworks like Akka expose a top-level receive method [1], which returns
a partial function used to handle messages. This function can be swapped during the actor
lifetime with the become statement. In the example from Listing 15, we used a receive
statement that suspends in the middle of the actor and awaits a message. We now show its
implementation using coroutines.

The core idea is to implement a recv coroutine (we call it recv to disambiguate from
Akka’s receive function), which yields a partial function that represents the continuation
of the actor. The resume-site can then call become to hot-swap Akka’s top-level receive
handler with the yielded partial function.

In Listing 36, we first define an auxiliary type Rec, which describes a partial function
that can take Any message objects. The method act declares an Erlang-style actor — it
takes a coroutine that may yield partial functions of the Rec type, which describe how to
process the next message. The act method starts an instance of the input coroutine, and
resumes it inside a recursive loop function. The instance potentially calls the recv method,
which yields. When this happens, act extends the yielded partial function with the andThen
combinator which recursively resumes the coroutine instance. This chained partial function
is passed to become, which tells Akka to run the chained function when a message arrives.

The recv is a coroutine that yields the Rec function and returns a message of type Any
— the actor definition must then match this value. The implementation of recv declares a

local variable res in which the incoming message is stored by the yielded partial function.

After recv gets resumed, act will have already called the yielded function, which will have
written the message to res, so that it can be returned to the actor that invoked recv.

Listing 36 Erlang-style actor implementation.

1 type Rec = PartialFunction[Any, Unit]

2 def act(c: () ~> (Rec, Unit)) = Actor { self =>
3 val i = c.start()

4 def loop() =

5 if (i.resume) self.become(i.value.andThen(loop))
6 else self.stop()

7 loop ()

8 }

9 val recv: () ~> (Rec, Any) = coroutine { () =>
10 var res: Any = _

11 yieldval ({ case x => res = x })

12 res

13 }
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Event streams. Event streams expose the onEvent method, similar to onSuccess on futures.
The onEvent method takes a callback that is invoked when the next event arrives. As shown
in Listing 17, it is much more convenient to extract an event in the direct-style by invoking
a get statement, instead of installing a callback.

In Listing 37, we implement the method get on the event stream of type Events[T]. We
declare a type alias Install that represents a function that installs a callback to the event
stream. When an Install function is invoked with a function f, the function f is passed as
a callback to some event stream.

The react method is similar to the act method for actors — it delimits the suspendable
part of the event-driven program. The react method starts and resumes the coroutine.
When the coroutine yields an Install function, the react method uses the Install function
to install a callback that recursively resumes the coroutine.

The get method is called by the users to extract the next event out of a reactor’s event
stream. Its implementation yields an Install function that installs the callback on the event
stream by calling onEvent. The event stream callback sets the result variable and invokes
the continuation function f£. This technique is similar to the actor use-case, but the difference
is that it abstracts over what become is.

Listing 37 Direct-style event streams.

1 type Imstall = (() => Unit) => Unit
2 def react(c: () ~> (Imstall, Unit)) = {
3 val i = c.start ()

4 def loop(): Unit = if (i.resume) i.value(loop)

5 loop ()

6

7 def get[T](e: Events[T]): () ~> (Install, T) = coroutine { () =>
8 var res: T = _

9 val install = (f: () => Unit) => e.onEvent(x => {
10 res = X

11 £0

12 B

13 yieldval (install)

14 res

16 }

We note that, in this example, it might have been more natural to yield an event stream
directly, instead of yielding Install functions. However, the event stream is parametric in
the type of events, and the coroutine would always have to yield event streams of the same
event type. The Install function hides the event type inside the get function, and allows a
more flexible event stream API.
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