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—— Abstract

We present an imperative object-oriented language featuring a dependent type system designed
to support class-based programming and inheritance. Programmers implement classes in the

usual imperative style, and may take advantage of a richer dependent type system to express
class invariants and restrictions on how objects are allowed to change and be used as arguments
to methods. By way of example, we implement insertion and deletion for binary search trees in
an imperative style, and come up with types that ensure the binary search tree invariant. This is
the first dependently-typed language with mutable objects that we know of to bring classes and
index refinements into play, enabling types (classes) to be refined by indices drawn from some
constraint domain. We give a declarative type system that supports objects whose types may
change, despite being sound. We also give an algorithmic type system that provides a precise
account of quantifier instantiation in a bidirectional style, and from which it is straightforward
to read off an implementation. Moreover, all the examples in the paper have been run, compiled
and executed in a fully functional prototype that includes a plugin for the Eclipse IDE.
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1 Introduction

Dependent types constrain types with values that specify intrinsic properties of programs.
These sorts of types can represent concisely a number of invariants and prevent some classes
of errors at compile time, rather than at runtime, which constitutes a step towards more
reliable software. A key reason why dependent types are interesting is that they are a smooth
extension of simple types. For example, using dependent types it becomes possible to express
the non-negative balance b of a bank account as simply Account(b), as well as ordered data
structures, such as a binary search tree BsT(1,u) whose elements can find a place within some
minimum (1) and maximum (u) keys.

Previous work has shown how far one can go with dependent types in the context of logic
and functional languages [2, 4, 18, 33, 53]. Agda [37], DML [51] and Idris [5] are noteworthy
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examples of functional languages that include advanced features and dependent types. Less
work has been done in an imperative setting [9, 48], and none (that we know of) in class-based
object-oriented programming with mutable objects.

While the benefits of a dependently-typed system in functional programming — increasing
expressiveness and safety — are exactly the same for object-oriented programming, how
to smoothly combine dependent types and mutable objects is still an open problem. For
example: What object invariants to enforce with dependent types, and when to enforce
them? How to track state in order to know which variables are modified and how? How to
achieve the “safe substitutability principle” [31] with dependent types? The extra complexity
that comes with developing the metatheory for a calculus that captures with dependent
types the essential (but non-trivial) features of object orientation, such as mutable state and
inheritance with subtyping, is challenging and requires a different approach.

In this paper, we formulate Dependent Object-oriented Language (DOL) as a smooth
extension of simply typed Java-like languages that addresses the challenges of combining
dependent types and object orientation. DOL offers a middle ground between traditional type
systems and verification techniques, along the lines suggested by Leino [30] when discussing
future challenges of the ESC static checker and the need to explore “more-than-types systems”
to enforce program invariants. As argued, static verification is a powerful approach, despite
being unsound, designed for “finding bugs in a program”, not for providing the guarantees
of a type system, yet significantly more expressive than types. As it so happens, formal
verification is not always suitable and is still too costly for mainstream adoption, often
requiring prior training in logic or theorem proving. Without giving up soundess or falling
back on dynamic checks, DOL is closer to existing programming methodologies, capturing
via types a subset of the ESC properties.

We present a solution that allows programmers to start with standard types, writing code
in an imperative style, and add more type information so as to gain additional guarantees.
From simply typed, the type systems of mainstream object-oriented languages have already
become more expressive and complex, namely when generics were introduced. DOL goes
a step further introducing a restricted form of dependent types to enable special terms,
called indices, to be parameters to classes and methods. By restricting the domain of the
constraint language to that of linear inequalities over the integers, along the lines of DML [53],
we render DOL’s type system decidable. The programmer simply needs to abstract the
class declaration on properties they want to capture. For example, a class Account may be
declared as follows: class Account(b:natural){ balance: Integer(b)... } where natural is a subset
type that abbreviates {x:integer | x>0}. The index variable b is used to sharpen the type of
fields and methods defined in Account, so that the typechecker can enforce through types a
behaviour that forbids overdrafts. We say that Account defines a family of classes representing
bank accounts whose instances can have many types, including the concrete type Account(100)
obtained by instantiating b with 1ee. Like generics, types in DOL support a variety of
arguments. The difference is that in DOL the arguments to types are index terms that satisfy
the specified constraints.

In certain states, some methods must not be available at the risk of violating object
invariants. DOL provides support for the specification of method availability through fine-
grained method signatures. For a withdraw method in the Account class, the signature should be
roughly “withdraw takes an Integer(m) where 6 <m<b on any Account(b) that becomes Account(b —
m)”. The typechecker statically tracks objects and any state change, guaranteeing that calling
withdraw with an invalid argument leads to a type error caught by the compiler. Moreover, to
enforce behavioural subtyping, a subclass may reuse Account by declaring extends Account(b)
which ensures that the invariant of the superclass is preserved in the subtype.
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Given that objects may be mutable, aliasing in a language that allows types to change
can result in a program “getting stuck”: if an Account object is aliased and its balance is
changed by foreign code, reading from the alias will produce an unexpected result. In DOL,
type varying objects are alias protected via a linear type discipline. A distinct category of
type invariant, shared objects is allowed to coexist, but cannot subvert the linear system.

As a specification of typechecking, we give a declarative type system which extends with
indices the Java notion of class types that take the form of C%. From the dependent type
theory, the system generalises simple function spaces to dependent function spaces Ila : I.T
where the result type T can depend on the value of the argument a, restricted to special
terms of index type I. Similarly, dependent sum types, written 3a : 1.7, generalise ordinary
product types restricted to some constraint domain. The language also includes union types
of the form T + U that eliminate the need of the unsafe null value. Moreover, the type
system is able to record changes to mutable state. The calculus is a significant contribution
of this paper, since it features the desirable property of type soundness, expressed via subject
reduction and progress.

Then, we give an algorithmic type system which modifies the rules that require guessing
quantifier instantiation [15, 16] and applies bidirectional typechecking [39] in order to
distinguish rules that synthesize types from those that check terms against types already
known. From this precise algorithm it is straightforward to read off an implementation.

We make the following contributions:

1. In contrast to other extensions to object-oriented programming, we define types that
capture both the immutable and mutable state of objects (cf. [38]). A combination of
index refinements and method signatures featuring input and output types enables a
smooth integration of dependent types and class-based mutable as well as immutable,
shared objects.

2. We let the type of an object change throughout the program based on a sound type

system whereby a linear type discipline enforces unique references to type varying objects.

3. We provide support for single class inheritance as long as the subtype satisfies the index
constraints defined by its supertype, and the inherited specifications remain meaningful
in the context of the subclass.

4. We give a precise algorithm that is both sound and complete. The algorithm has an
implementation in a prototype compiler for DOL that includes a plugin for the Eclipse
IDE, a development tool that is widely used in the context of object-oriented languages
but still new for dependently-typed languages.

2 DOL by Example

A class in DOL is declared just like any other class in a Java-like language, except that index
variables may be introduced in the header and be used within the class to constrain member
types. The class body contains fields and methods, including a constructor method named

init. Like Java, DOL supports single class inheritance using the optional extends declaration.

If omitted, the class is derived from the default superclass Top, a concrete class which has no
fields or methods, except for the constructor.

2.1 Bank Account

Figure 1 defines the indexed class Account and its subclass PlusAccount. Notice that if we omit
the extra type annotations in the example, we get plain Java-like code, with Account being
simply a class type. However, when indexed, the class name Account denotes a family of
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Dependent Types for Class-based Mutable Objects

class Account(b:natural) { o7

balance: Integer(b) 58 (m:natural)
. . _ 29 [PlusAccount(s,c,b) ~> (s+m,c,b+m)]
1n;;{;6C2c$?ugt(0> B 30 deposit(amount: Integer(m)) =
. 31 super.deposit(amount);
i 1= i t
(n:natural) g; savings savings + amoun
[Accognt(b)«» (b4m)] 34  (m:natural)
st (@) = (s ) s st
T 36  deposit2Checking(amount: Integer{m)) =
37 super.deposit(amount);
: < )
(m:natural{m<b}) 38 checking := checking + amount
[Account(b) ~» (b—m)] 39
withdraw(amount: Integer(m)) = 40 (m:natural{n<b A b=s-c})
balance := balance — amount 41 [PiusAccount(; C/b) ~
. _ 42 (max(s—m,0),min(c,c—m+s),b—m)]
gegsi;zzge()' Integer(b) = 43  withdraw(amount: Integer(m)) =
} 44 super.withdraw(amount);
. . < )
class PlusAccount(s,c,b:natural) i; 1fs:$2ﬁnz — ::Xi:gz {_ amount
extends Account(b) { 47 } else % ) g
sav1ngs: Integer(s) 48 checking := checking — amount + savings;
checking: Integer(c) 19 savings = 0
.. 50 }
init(): PlusAccount(0,0,0) = 513

balance, savings, checking := 0

Figure 1 The indexed class Account and its subclass PlusAccount.

classes. Instantiations, or concrete classes, represent bank accounts that cannot be overdrawn,
and may have many types, namely Account (), Account(1), ... where the occurrence of the
index variable introduced in the class header is replaced by the corresponding value (an index
term). State is somehow exposed in types through indices, but fields are always private to a
class, even if we do not use the corresponding keyword.

The special init method behaves as a typical constructor that initialises fields, creating a
fresh object assigned the proper (or concrete) type Account(e) (line 4). One consequence of
objects having different types is that the compiler must track state changes throughout the
program, namely when client code creates an account object and calls methods on it:

acc := new Account(); // acc: Account(0)
acc.deposit(100); // acc: Account(1600)
acc.withdraw(30) // acc: Account(70)

State Modifying Methods. We give indexed signatures to methods that are defined in
indexed classes. For example, the withdraw method (lines 12-15) must be invoked on a receiver
of type Account(b), accepts an amount of type Integer(m), modifies the type of the receiver
from the initial Account(b) to the final Account(b—m), and does so for any amount m that is a
natural number smaller or equal to the balance. In the formal language, the method type,
written IIm : {z: integer | 0 < x < b}.T', is a universal type that binds the index variable m
in a type T (where T represents the types of the implicit and explicit parameters and the
return type from the example), so that one can mention m in T. The scope of the index
variable m is therefore local; it may appear in the method signature, but not outside. The
type [Account(b)~ (b —m)], read “Account(b) becomes Account(b—m)” is an abbreviation for a
pair of types. The first type is seen as the input type of the (implicit) receiver and the second



J. Campos and V. T. Vasconcelos

one is viewed as its output type. Finally, when a method does not explicitly declare a return
type, the typechecker assumes the supertype Top.

To illustrate the precision of the types in DOL, here is a variant of the preceding example,
changed by adding a second call to method withdraw that violates the object invariant:

acc := new Account(); // acc: Account(0)
acc.deposit(100); // acc: Account(loo)
acc.withdraw(70); // acc: Account(30)
acc.withdraw(50) // Type error: 50>30

Both deposit and withdraw are examples of methods that change state, which we sometimes
call type varying methods, having to explicitly declare the input and output types of their
implicit receivers. On the contrary, in type invariant methods, that is, methods whose
input and output types coincide, receiver types may be omitted. The getBalance (lines 17-18)
method provides one such example.

Base Types and Literals. Constants and operators are used in the programmer’s language
only to make arithmetic and logic operations look more familiar, since they are not part of
DOL’s core language. In fact, constants and operators are desugared into object references

and method calls. Formally, integer and Boolean, implemented natively, are families of classes.

For example, the Integer “interface” includes the following types:

class Integer(i:integer) {
init(): Integer(@)
(j:integer) + (value: Integer(j)): Integer{i+j)
(j:integer) <(value: Integer(j)): Boolean(i<j)

}

Each desugared object of a primitive class is assigned a singleton type, with the constants
used in the examples representing the values on which the types depend. Technically, the
argument 100 from an earlier example is an object reference of type Integer(100), obtained
by creating a new location, and subtraction is translated into the call balance.minus (amount)
before typecheking.

Controlled Aliasing. Aliasing is part of what makes mutable objects useful in programming.

However, shared state can be tricky to handle in a type system such as that of DOL, where the
type of a variable may no longer be a fixed class type; instead, it may be a (dependent) type
that changes throughout the program. In DOL, the potential sources of aliasing problems
are assignment and parameter passing. We adopt a solution that uses linear control of those
objects defined by type varying classes. We say that a class is type varying when at least one
of its methods is type varying, giving different input and output types to its receiver. Because
the Account class is type varying as per methods deposit and withdraw, the type system forbids
creating aliases of instances of Account. Here is how DOL’s typechecker handles aliasing:
alias := acc; // alias: Account(30)

acc.withdraw(20); // Type error: acc has been consumed!
alias.withdraw(10) // alias: Account(20)

Instead of creating an alias, the assignment “consumes” variable acc, removing it from the
typing context; hence, the call to withdraw in the second line is forbidden, with atias being
the only variable available in the typing context.

Similarly, our type system ensures that parameters are used correctly by treating these
references linearly when needed. To show that our language can be flexible, despite the linear
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restriction, we could add a transferTo method to debit some amount from the current account
and credit into another account given as parameter, using the following implementation:
(a:natural,m:natural{m<b})
[Account(b) ~» (b—m)]
transferTo(other: Account(a), amount: Integer(m)): Account(a+m) =
var local := other; // other has been consumed!
withdraw(amount);

local.deposit(amount);
local

On the other hand, we say that a class is type invariant when its methods are type
invariant, i.e. when the input and output types coincide (or are omitted) in all methods. The
native Integer and Boolean provide two examples of such classes whose objects can be freely
shared. Since each new assignment creates a new location, instances of these classes carry
their types unchanged irrespective of being accessed or aliased.

Inheritance and Subtyping. Adapted from JML [13, 29], the PlusAccount class illustrates
how DOL can achieve the “safe substitutability principle” [31] via indexed types. By declaring
extends Account(b), we make the subtype inherit the Account’s only field, as well as all of its
methods (except the constructor). In PlusAccount, we declare two extra index variables, s and c,
and use them to constrain fields savings and checking that hold two portions of the balance.

We can think of PlusAccount as extending the behaviour of Account by providing additional
fields and methods. So, the deposit method directly inherited (if not overridden) from Account
will be given the following type:

(m:natural)

[PlusAccount(s,c,b) ~» (s,c,b+m)]
deposit(amount: Integer(m)) = ...

However, we want relate the two new fields in the subclass with the superclass’s field by
enforcing that b=s +c via method signatures. We override the deposit method (lines 28-32)
that adds the amount both to the account’s balance, by calling the superclass method, and
the savings field. A new method deposit2Checking (lines 34-38) also adds the given amount to
the checking field. The withdraw method (lines 40-50) must be redefined in order to take out
the amount from each balance portion. DOL’s typechecker gives the index equations issued
by types to an external constraint solver, and asks if they hold.

Common mistakes that violate the (inherited) invariant are readily detected. For example,

(m:natural{m<s})

[PlusAccount(s,c,b) ~ (max(s—m,0),min(c,c—m+s),b—m)]
withdraw(amount: Integer(m)) = ...

yields a type error, since a subtype cannot accept a stronger requirement, that is, it cannot

accept less arguments as valid [31] (it should be clear that the constraint m<s does not imply

m<b under the assumption that b=s +c). A subtler type error is found in the following variant:
(m:natural{m<b})

[PlusAccount(s,c,b) ~ (max(s—m,0),min(c,c—m+s),b—m)]
withdraw(amount: Integer(m)) = ...

The problem here is that the constraint m<b does not relate the value of amount with the
two portions of the balance, unlike the indices in the output type. Specifically, the index
refinement does not provide enough evidence that allows the typechecker to conclude, after
interaction with the solver, that the index term min(c,c —m+s) is a natural number that can
safely replace the index variable ¢ introduced in the class header.
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20 class Node(l,k,u:integer{l<k<u}) {

1 class BST(1l,u:integer) { 21  key: Integer(k) // fields

2 root: Nil + Node(1l,k,u) 22 left: Nil + Node(l,kl,ul)

3 where k:integer{l<k<u} 23 where kl1,ul:integer{l1<kl<ul<k}
4 24  right: Nil + Node(1l1,k1,u)

5 init(): BST(2,1) = 25 where 11,k1:integer{k<11<k1<u}
6 root := new Nil() 26

7 27 (v:integer)

8  (v:integer) 28  init(value: Integer(v)): Node(v,v,v) =
9  [BST(l,u) ~ (min(1l,v),max(u,v))] 29 key := value;

10 insert(value: Integer(v)) = 30 left, right := new Nil(), new Nil()

11 31

12 (v:integer) 32 (v:integer)

13 remove(value: Integer(v)) = ... 33  [Node(l,k,u) ~» (min(1l,v),k,max(u,v))]

14 } 34 add(value: Integer(v)) = ...

15 35

16 class Nil { 36  (v:integer)

17 init(): Nil = skip 37  [Node(l,k,u) ~ (1,k1,u)

18 } 38 where kl:integer{1<kl<u}]

39  deleteChild(value: Integer(v)) = ...
40 }

Figure 2 Classes that implement a dependently-typed binary search tree.
2(5 8

VANV

Figure 3 The diagrammatic representation of an object of type Node(2,5,8) where labels at each
tree node denote the smallest and greatest keys appearing in the tree.

2.2 Binary Search Tree

Binary search trees can naturally be described by the discipline of dependent types [14, 28,
34, 47): a binary search tree is either empty or nonempty in which case it has two subtrees
that are binary search trees, and the key in the root node of the binary search tree is greater
than all the keys appearing in its left subtree and smaller than all the keys appearing in its
right subtree. This example shows that our type system can be precise and expressive while
implementations remain as usual. The effort of programming in DOL is essentially to come
up with the right type.

We implement the binary search tree in an imperative style, allowing subtrees to be
modified in place. In Figure 2, we show the types, defining BST as the “public” family of classes
that creates and manages both empty and nonempty trees using Nil (a proper class) and Node
(a family of classes). Our binary search tree contains integer numbers included in the loose

pair of bounds (1,u:integer) in the header of BsT that can be used to define an interval [1,u].

Any element in a tree will find a place within the minimum (1) and maximum (u) keys.

While many approaches have been proposed [6, 8, 17] to handle Hoare’s billion dollar
mistake [23], DOL provides an elegant solution using union types (cf. [24]) that enable
programmers to build imperative linked data structures in a null-free style — object references
are, after all, the only values in DOL. Union types (denoted by T +U) represent objects that
can be of any of the specified types. Note that the lack of null in DOL means that every
variable must be initialised, and that every variable of a union type must be analysed by
way of a case construct before being used.

ECOOP 2018
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So, class BsT has a single field root that is either Nil or Node. A dependent existential quan-
tified constructor (denoted by where ...) is used to keep track of the key, hidden in the field’s
type, so that the binary search tree invariant can be maintained. We write it as a dependent
sum type in the formal language of the form Xk : {z: integer | | < 2 < u}.Node I k u. Notice
that this type conforms to the constraint (1<k<u) issued by the signature of class Node that
ensures the binary search order invariant.

The special init method (lines 5-6) creates an empty binary search tree to which we give
the type BsT(2,1), making root an instance of Nil. When inserting a value in an empty tree,
we replace an instance of Nil with an instance of Node with no children (a leaf). Then, when
inserting in a nonempty tree, we recursively push the requirements of data inward, requiring
that the value at each node falls within the interval [1,u]. For example, a type BST(2,8) may
represent the binary search tree whose root of type Node(2,5,8) (depicted in Figure 3) issues
the minimum and maximum keys outward. The value 5 stored in the root is not exposed,
but is internally constrained by the tree bounds.

The Node class defines a field key, which holds the node value, and fields 1eft and right
that may represent the two subtrees. We use union and existential types, again pushing
the data requirements inward to the types of the left and right fields. For example, the
type of the teft field (lines 22-23) enforces the fact that all the values appearing in the left
subtree must be in the interval defined by [1,k], so that the binary search tree invariant
can be maintained. Similarly, the type of the right field enforces the fact that all the values
appearing in this subtree must be included in [k,u]. The init method (lines 27-30) creates a
leaf by accepting an integer value to be stored in the key field, making both teft and right
instances of Nil. By definition, leaf nodes are such that 1=k=u. So, for example, Node(2,2,2)
may be the type of the left subtree (a leaf) in Figure 3.

BST Insertion. We now define the insert method in the BsT class, which takes as argument
an integer value and provides a useful demonstration of a case discrimination construct:

(v:integer)
[BST(L,u) ~» (min(1,v),max(u,v))]
insert(value: Integer(v)) =
case root {
Nil = root := new Node(value)
Node = root.add(value)
}

The Node class implements the main insertion algorithm. Its method add takes an argument
similar to the one above, and also uses a case discrimination construct:

(v:integer)
[Node(1l,k,u) ~> (min(1,v),k,max(u,v))]
add(value: Integer(v))
if value < key {
case left {
Nil = left := new Node(value)
Node = left.add(value)
}
} else if value > key {
case right {
Nil = right := new Node(value)
Node = right.add(value)
}
}

We add an element to the tree by comparing the value to the key stored at each node and
recursively descending into the appropriate subtree until a leaf is reached that allows adding
the new node.
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The precise types given to the BST and Node classes allow the typechecker to detect a
number of common programming errors. For example, the compiler will report a type error
if we try to call the add method as follows:

(v:integer)

[BST(L,u) ~» (min(1l,v),max(u,v))]

insert(value: Integer(v)) =
root.add(value)

Because the root field declares a union type, we cannot call a method directly on it; first, we
must use a case construct to analyse its type and discover whether the object is an instance
of Nil or Node, noting that, at each branch, the typechecker requires that root be bound to
only one of the types which are subtypes of the union of types. This guarantees that either
branch is taken and its execution succeeds.
Similarly, the compiler will object to the wrong conditional test below:
(v:integer)
[Node(1,k,u) ~ (min(l,v),k,max(u,v))]
add(value: Integer(v))

if value > key {
case left {
Nil = left := new Node(value)

Here, the compiler will report inconsistent constraints. The case construct is correctly used
to find out that left is a Nil. Then, the assignment changes the type of the left field to
Node(v,v,v) (which is the type given to it by init). However, the compiler assumes v >k from
the conditional test, after which will not be able to assert v<k issued from the new type
of the 1eft field. Recall the constraints on the declared type of left, requiring its value be
left-bounded by the minimum key 1 (which has become v) and right-bounded by value k
(known to be also v) such that 1<k. Again, DOL relies on the external constraint solver to
statically verify that the specified constraints hold.

BST Deletion. Deletion from the binary search tree may involve removing a key not
only from the tree’s leaf nodes but also from an interior node, which requires some sort of
rearrangement of the tree structure. Moreover, unlike insertion, in which min and max could be
used to issue the new value’s standing vis-a-vis the minimum and maximum keys existing in
the tree, deletion delivers the same binary search tree where the new minimum or maximum
may be hidden in the subtrees.

However, we can still ensure via types that the tree after deletion is within the bounds,
no matter where the key removal occurs (from a fringe or the middle of the tree). The remove
method is implemented as usual:

(v:integer)

remove(value: Integer(v)) =
case root {
Nil = skip
Node =
if root.islLeaf(value) {
root := new Nil()
} else {

root.deleteChild(value)
}

13:9
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P =1 (programs)
L = class C: A extends T{l: T}is {M} (classes)
M = m(x)=t (methods)
T :=Ci|Ua:1T | Ya:1.T | T+T (types)
| TXT | T~T | T—T
to=x | flnewC() | f=t] &t ] m) (terms)
| fom(t) | case fof (Ck = ti)re12
| if t then t else ¢t | while t dot
A= ¢| Aa:l (index contexts)
I ::= integer | boolean | {a: I |p} (index types)
it=a|n|i®i]|p (index terms)
p == false | true | -p | i©i | pOp (propositions)
® = + | — (arithmetic operators)
@ =< | < | =] >1|> (relational operators)
O = A |V (logical operators)

Figure 4 Top-level syntax.

3 The DOL Language

The core language is a desugared version comprising all the properties informally described
in the examples. It builds on the core sequential language of Gay et al. [21], which allows us
to simplify proofs while keeping them manageable. We adapt and extend that language in
three ways. (1) We replace session types with dependent types and study the consequences of
this idea. (2) We incorporate inheritance and nominal subtyping, a feature absent from the
base language. (3) We combine linear and unrestricted objects in the formalisation, building
a less restrictive type system than the original one.

3.1 Syntax

Following standard practice [21], the formal language omits some features of the practical
syntax used in the examples, so as to simplify the proofs, even though our prototype includes
them. Below, we summarize the main differences.
Primitive values as used in the examples are translated into object references, which are
the only values in our language, and all computations are performed by calling methods.
This lightens the type system without affecting expressivity.
All methods have exactly one parameter. A method written m() = t abbreviates
m(top) = t where top of type Top is used as a dummy parameter. Defining methods that
take an arbitrary number of parameters does not introduce any major technical challenge.
Local variables are omitted, since they can be simulated by a parameter or extra fields.

We define the top-level syntax in Figure 4. Identifiers are drawn from the following
disjoint countable sets: that of class names (denoted by B, C, D), that of fields (denoted
by f,g), that of methods (denoted by m), that of object variables (denoted by z,y,0), and
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that of index variables (denoted by a,b). Labels [ identify class members, that can either
be fields or methods. The metavariables T, U, V, W range over object types; I, J range over
index types; and ¢, j range over index terms.

Programs P consist of collections of class declarations L. A class family, written class C' :
A extends T{l : T}is { M}, associates a class named C' to an index context A, a supertype T,
a sequence of member declarations [ : T (field and method signatures), and a sequence of
method implementations M. An index context maps index variables to index types, fixing
the class family arity, with each entry having the form a : I. A concrete or proper type,

written C1, is obtained by instantiating a class family with indices in application position.

Index variables in A can be used to constrain types inside the class, including that of the
explicit superclass T, where T is of the form Di. (As we will see later, this restriction is
enforced by the typing rules.) Finally, a method is implemented separately from its signature
as m(x) = t, where t is the method body and, for simplicity, = its single parameter.

Types. Types T either classify objects or build method signatures. They can be of the
following seven forms:
A type O extends with indices the Java notion of class types.
A universal dependent type constructor, written Ila : 1.7, where a may occur free in T,
is a type that maps elements of the index type I to elements in the type T. It is used to
build method signatures.
An existential type constructor, written Xa : I.T, where a may occur free in T, also
maps elements of the index type I to elements in the type T', with the index variable a
representing some unknown value in 7T'. It is used to represent undetermined properties
of a concrete object type.
A union type T + T classifies the set of objects belonging either to the left or the right
type. It is used to define a supertype grouping independently developed classes.
A product type, written T x T, is used in method signatures, with the first type classifying
the current object this, implicitly passed to the method, and the second one classifying
the only explicit parameter.
A parameter type of the form T ~~ T relates the two components that classify the current
object this, the input type and a possibly different output type.
A method type, written T"— T, maps the type of the parameters to a return type.

Terms. Terms t are fairly standard, except for some restricted forms that allow the type
system to record more precisely how the types of objects vary. The variable x denotes a
parameter. There is no qualified z.f. Instead, field access, written f, is only defined for a
shared field (a restriction enforced by the typing rules), or in combination with assignment,
method calls and case constructs. This is part of the linear control of objects. All fields

are private in the sense that every f always refers to a field of the current object (cf. [21]).

Object creation (new C()) does not take any parameters. Assignment (f :=t) is defined in
terms of a non-standard swap operation in the style of [21]. The operation assigns the value
of t to the field f and returns the old value of f as its result.This prevents aliasing linear

fields in terms such as fa := (f1 :=t). The sequential term composition (¢;t) is standard.

Method call is available both on the current object itself (a self call), written m(t), and on a
field of the current object this, written f.m(t), but not on a parameter or an arbitrary term
for that matter. This is because calling a method may change the type of the object on
which the method is called. Note that the type system only records changes on the type of
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T == ... | C[F] (types)

F = {f:T} (field types)
ro=o | nrf (paths)

t u= ... | returnt (terms)

0 = ¢l 0 i/a (index substitutions)
A= .| Ap (index contexts)

' i=¢€¢| Ta:T (object contexts)

K = x | la: I.K (kinds)

h == ¢€| hjo=R (heaps)

R == C{f =0} (object records)

S = (hxrt) (states)
Ex=[]]f=E]| &t ]| m&) | fm() (evaluation contexts)

| return £ | if £ then t else t | while £ dot

Figure 5 Extended syntax, used only in the type system and operational semantics.

the current object this, the only one that can access its fields. To simplify, the case construct
may only depend on a field, taking the form of case f of (Cyx = tx)ke1,2 where f plays the
role of the binding occurrence in the branches. Conditionals and while loops are standard.

Index Refinements. Index types I comprise the integer and boolean types, as well as the
subset type of the form {a: I | p}. Index terms 4 include some of the possible index constructs,
namely variables, integer literals, arithmetic operations, and also propositions, which take
the form of the truth values, the negation and linear inequalities. We omit functions max
and min from the examples as they do not introduce any additional technical challenge.

3.2 Additional Syntax Not Available to Programmers

Figure 5 defines syntactic extensions required for the formal system only. The internal type
C[F] (cf. [21]) is an alternative form of an object type that contains the class name C' and
a record field typing F' that provides types for all the fields of C, including the inherited
ones. For example, C[{f1: T1, fo : To}] is the internal type of an object of C' having two
fields of types T7 and T5, which may be defined either in C' or in any of its superclasses. The
internal type, used to classify the current object (this) in the context, cannot be the type of
an arbitrary term, which never evaluates to this (as enforced by the typing rules). Instead,
the purpose of the internal type is to allow the current object (this) to access its own fields,
for typechecking assignment, method calls and case constructs, operations that may change
its type through the field typing.

Terms evaluate to object references o, the only values in our language. To simplify, we do
not define a separate syntactic category for object references. Instead, object references o
are a subset of the variable names. Paths r in the style of [21] represent locations in the
heap, formed by the top-level object followed by a sequence of an arbitrary number of fields.
For example, if r indicates the path of the currently active object, when a method call on a
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field f relative to r is entered, r.f becomes the path that indicates the new current object
that becomes active. The return term represents an ongoing method call during which the
path changes as described above. Paths and the return term are constructs belonging to the
operational semantics.

Substitutions § map index variables to index terms. Index contexts A are extended to
accept propositions p. Object contexts I' map object variables to types.

Types are classified into kinds K, much the same way as terms are classified into types.
Kind  characterizes proper types, while kind Ila : I.K classifies families of classes, i.e. types
that have to be applied to index terms to form proper types. We only ever need to check for
proper types (with kind *). In fact, the only way to construct a type of a kind other than x
is by declaring an indexed class. So, in the bank account example, the class family Account
has kind IIb : natural.x, and an instantiation, say Account 0, of kind x, denotes the proper
type of an object reference.

A heap h is a mapping from object references o to object records R. We assume three
special objects (top : Top,false : Boolean false, true : Boolean true) that are initially placed
in the heap. The heap produced by the operation h, (0 = R) contains a new mapping from
object reference o to record R. The operation of adding this binding to the heap h is only
defined if o € dom(h). Note that the order in h is irrelevant. Records R are instances of
classes, represented by C{ f= 0}, comprising the class of the object followed by a mutable
record mapping field names to object references.

The operational semantics is defined as a reduction relation on states S of the form
(h*r,t), consisting of a heap h, a path r that represents the current object, and a term t.
Evaluation contexts &£ are defined in the style of [46]. Intuitively, an evaluation context is
a term with a hole [_] at the point where the next reduction step must take place in a
call-by-value evaluation order; £[t] is the term obtained by replacing the hole in £ by term ¢.

3.3 Static Semantics

We typecheck our language with respect to one index context A, and one object context I'. The
ordering is important in the index context, because of (index) variable-to-type dependencies,
and irrelevant in the object context. For example, an index context (Ay,a : I, Ay) is said
to be well-formed if a ¢ dom(A;) Udom(As) and a € FV(A;); an index context such as
(c: {b:integer | b>a},a: I) is ill-formed. We give the subtyping and typing rules for top-
level terms in the sections that follow; we omit rules for the index language, kinding, context
formation and typing. First, we give an overview of index refinements and substitution.

Index Refinements and Substitution. Our formulation of index refinements requires a
way to somehow decide the semantically defined relation A |= p in the style of Xi and
Pfenning [47, 52, 53]. The binding occurrences of index variables appear in subset types,
and also in types and kinds in the object language. We say that a occurs bound in p within
{a: I'|p}, in T within IIa : I.T and ¥a : I.T, and in K within Ila : [.K.

To simplify the proofs, and to avoid having to rename bound variables in substitution, we
follow Barendregt’s variable convention [3] whereby the names of bound variables must all
be distinct from each other and from any other variables occurring free in terms and types.

We denote by i1[i2/a] the capture-avoiding substitution of i5 for the free occurrences
of a in ;. Index substitutions are defined inductively on the structure of index terms.
For example, (i1 + i2)[is/a] is defined as i;[iz/a] + i2[iz/a]. A single index substitution is
extended pointwise to multiple index substitution 6, which maps index variables to index
terms, by defining ie £ i and iy ([iz/a],0) £ (i1[i2/a])[6].
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A F T <: U | Under context A, type T is a subtype of U

class C': (a: 1) extends T{ }is{ } AFri:I AFT[i/a]:*

— — (S-SUPER)
AFCi<:Tli/a]
AEi=j AFCj:x AFT[i/a] <:U AlFi:l
— — S-A -1IL
AF Ci<:Cj (S-Arr) AFTla: 1T <-U (S-TIL)
Aa:ITHFT<:U Aa:IT+FT<:U
AFT <la:Lu O1R) ArSa: Il <0 O°H
AFT <:Uli/a) Ari:I ATy < U AFT, < U
- S-+L
AFT < Sa: 1.0 (S-ER) AF (T +To) < U (S-+L)
AFT < U AFTy < U AFTy, <:Us
S-+R S-
A}—T<:(U1+U2) ( + k) A}—(Tl XTQ)<:(U1XU2) ( X)
AT < U (S—RECORD) AFTl <: Ty AFTQ <:1T3 (S—TRANS)

AFCH{f:TY <:Cf:U} AFTy <: T

Figure 6 Subtyping rules.

The judgement for deriving 6 is of the form A F 6 : Ay where, under the assumptions in
context A1, we think of Ay as the input and 6 as the output. The rules require that Ay and 6
have the same arity and that each substituent is well-formed in the context. Specifically,
for each substitution i/a, there is an entry a : I such that Ay F4: I. As for index terms,
application of a substitution @ to a type T, denoted by T[], is standard, defined inductively
on the structure of T'.

3.3.1 Subtyping

Term typing and method overriding rely on the subtyping relation defined as the reflexive and
transitive closure of the inheritance relation as in Java, guided by the “safe substitutability
principle” [31]. The judgement A - T <: U asserts that T is a subtype of U under the
assumptions in context A. We give the rules for subtyping in Figure 6.

All types in the top-level language are subject to subtyping, except for ~» and —
since these types cannot arise from terms, and are not used to check method overriding
(cf. Figures 9 and 10). The internal field typing is also subject to subtyping in order to check
compatibility between fields of the same class. This relation is always derived with respect to
the internal type of the current object (this), the only one that has access to its own fields.

S-SUPER is completely standard for object-oriented languages, adjusted to dependent
types. Because class Top does not declare a supertype, it follows that Top is a supertype of
every other type. By S-APP, subtyping is reflexive on class types, extended pointwise to
all possible applications of the class type that satisfy the = relation, and by rule S-TRANS,
subtyping is transitive.

Regarding S-IIL and S-IIR, the left rule instantiates the index variable a to i in the
subtype, while the right rule relates two types T and U provided the variable a does not
appear free in T. The reasoning for S-3XL and S-XR is similar, yet inverted. Following
Barendregt’s variable convention [3], we implicitly assume that the variable a in the extended
context of both S-IIR and S-XL is distinct from all the variables already in A.
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classof (T') = C classof (C) = C' classof (Xa : I.T') = classof (T')
fields(T) = U fields(Top) = Top[{}] fields(Xa : I.T) = 3a : I fields(T)

class C': (a:I) extends Dj{f :U,m:_}is{ } fields(Dj[i/a]) = D[{g : V'}]
fields(Ci) = C[{g : V} U {f : Uli/a]}]

‘ mtype(m, Ci) = T‘

classC:(a:_)extends {...,m:U,...}is{ }
mtype(m, Ci) = Uli/a]

(MT-CrLASS)

class C': (a: ) extends Dj{l: }Yis{ } m¢gl
mtype(m, Cii') = mtype(m, Dj[ii’ /a])[C'i/ D]

(MT-SUPER)

| mbody(m, C) = Azt |

class C':  extends { }is{...,init() = f :=new C(),...}

mbody(init, C) = f := new C() (MB-INiT)
class C': _ extends m{bo(}j;s(iLC,)m:(x)\)x:t t,...} m # init (MB-CLass)
class C': __extends Dj{ }is{M} m¢g M (MB-SUPER)
mbody(m, C') = mbody(m, D)
‘q(T) where q ::= un | Iin‘ un(Top) rwltmlzgf)ﬂ

classof (T) = C class C': _extends {f: ,m:T_.(T~Tx__— )}is{ }
un(T)

Figure 7 Auxiliary functions and predicates.

The two rules S-+L and S-+Ry, together imply that a type T' 4 U is a least upper bound
of T'and U. S-x expresses that the subtyping relation is a congruence. S-RECORD checks
compatibility between field typings of the same class C.

3.3.2 Typing

Auxiliary Functions and Predicates. As in Featherweight Java (FJ) [25], our typing rules
rely on a few auxiliary functions and predicates. These are given in Figure 7 and described
below. We denote by U the disjoint union of field types, i.e. the operation of F; Ul F5 is
defined by merging F; and Fj if their domains are disjoint, being undefined otherwise. We
write m ¢ [ and m ¢ M to indicate that the method name m is not included, respectively,
in the sequence of member names [ and method definitions M. We denote by T[Ci/D] the
substitution of C7 for the free occurrences of D bound to a type ~ in 7.

The partial function classof (T") looks up the class of a type T of the form Ci and Ya : I.U,
being undefined for other forms. Both fields(T") and mtype(m,T'), also partial functions, look
up member types. Notice that a subclass may extend an instantiated superclass, which
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Ay;TFr: T - Ag | Under initial contexts Aq1; T, path r has type T', with final context A

AFT A;THr:CIFIHA

T- -
A;F,TZT}—T:T—|A ( REF) A;F"T.f:F(f)—(A (T FIELD)
AuTTEr:Ya: I.T 4 Ay
AT T 1By a1 (LTUNPACK)
A:TFr:C[FIH4A A F C[F)] <: fields(Ci
DE Ol (F] < feds(C) (o0

ATHr:CiHA

Figure 8 Typing rules for paths.

means that, because of substitutions, the types of fields and methods in the subclass may
not be identical to those in the superclass. On the other hand, mbody(m, C) is used only in
the operational semantics. The predicate q(T") assigns a qualifier q to a type T a type is
said to be unrestricted (un) if denotes an instance of a type invariant class, that is, a class
whose methods do not change the state of the current object (the input and output types
are the same); it is linear (lin) if its class defines at least one type varying method, which
indicates that the state of the current object is modified.

Term Typing. For typing terms, we use a judgement of the form Ay;Ty xry F ¢ : T 4
Ag;T'o # ro meaning that the evaluation of term ¢ may both extend the context A; (for
example, with existential variables that arise from the types of fields, or with propositions)
and change the types contained in I'; (for example, by assigning values to objects, or by
calling methods on them), giving rise to the final contexts Ag;I's. Linearity is yet another
reason for a different final object context: if x is linear and is used in ¢, then x is consumed
and does not appear in I';. The judgement includes r; and 75 in the style of Gay et al. [21],
which are paths needed for typing runtime terms and tracing objects in the heap. When
typechecking a program, both r; and ro are always this, and are used exclusively to access
the fields of the current class. Hence, the judgement for typing top-level terms will always
have the form Aqp;Tq,this: C[Fy] # this -t : T - Ag; T's, this : C[F3] * this, where T'; and T's
differ only in the method parameter x. If I'y is z : U and U is linear, then I'y must be €
since z has been consumed by t.

The typing rules for the top-level terms (Figure 4) are given in Figure 9. They use
a judgement Ay;I' F r: T + Ay for typing paths (Figure 8), and a definition C.[;, which
means Ty for class C' : A extends T{ly : T}, ..., 1, : T, }is {M} with 1 < k < n.

» Definition 1 (Operations on Field Types and Object Contexts).
IfF={fi:Ti,...,fn:Tn}, then F(fy) £ Ty, and F{f; < U} 2 {fi:T},..., fn:T.}
where T} = Ty, andTJf:Ufork#jandnzlandlgkgnandlgjgn.

T,z : Tz« U}=T,2:U.
D{r.f <« T} ET{r <+ C[F{f <+ T}]} if A;T Fr:C[F] A for some A.

We now comment on these rules: T-UNVAR and T-LINVAR are used to access a parameter.
The former is the standard rule for reading a variable, while the latter implements destructive
reads. T-UNFIELD is used for field access, being defined for unrestricted types only (since the
effect of reading f linear would remove it from the current object type). T-NEW is the rule
for object creation, giving the new object the type from the init method signature. T-ASSIGN
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Under initial contexts A1; T’y with path rq,

Aplyxr Pt T H ATy xr term ¢ has type T', with final contexts As;T'2 and path ro

AFT un(T)
AT :Txrba:TAAN T, x:Txr
AFT lin(T)
AT Txrbx:TAATx7
AsTErf:THA un(T)
A;TxrbE foTAHA T xr
AFT
A;TxrFnew C() : Clinit 4 A; T s r
Al;Fl*rl}—t:T—(Ag;Fg*rg
AQ;FQFTQSC[F]4A2 AQ;FQ{TQ.fHT}FTz:C%#AQ
Al;rl*Tl"fZ:tIF(f)_|A2;F2{T'2.f<—|T}*T2
Al;rl*’l"lktllU#Ag;Fg*Tg A2;F2*T2Ft2:T%A3;F3*T’2 un(U)
A1;F1 * 71 |—t1;t2:T—|A3;F3*’F2

(T-UNVAR)

(T-LINVAR)

(T-UNFIELD)

(T-NEW)

(T-ASSIGN)

(T-SEQ)

ApTyxry Ft:UR) 4 Ay Toxry AgTobry: Ci— Ay
mtype(m, Ci) = MA.(Ci~ T x U = W) Ay A:0
Ag;To{ry <+ TA]} 1o : Cj 4 Az
Ay Tysr Em(t) : WO H Ag; Ta{ry < fields(Cj)} 7o
Ay Ty,r i ClF s bt U0 Ay To kg Ag;Tobro.f : Ty 4 Ag
mtype(m,T1) =TA(Ty ~To xU - W) AzFA:0
Ag;To{ra.f 4 To[0]} Fro: Ci 4 Ag

(T-SELFCALL)

T-Ca
AuTrr ClF) v F fon(t) - WO Ao Ta(ra f i Tolf]} s Ot
ATy bErf (U +Uy) 4 Ay classof (Ug) = Cy
Ag;Ti{rf < U Fty: T A AgT C, #C
o Ti{rf < U} *rty silaxr Ci7 G (T-CASE)

Al;Fl * 7 - case f of (Ok = tk)keLQ T H Ag;rg x T

Aq;Tyxri Et:Boolean p 4 Ag; Ty %19
Ag,p;FQ*Tg Ftl ZT%Ag;Fg*TQ AQ,_\p;FQ*Tg FtQ:T%Ag;FB*TQ
Al;Fl*T‘l Fif t then tl else tg:T#Ag;Fg*’l"g
A1;Ty xry Ft1 : Boolean p 4 Ag; Ty 1o
Ag,p;Fg*T’g"tQ5TOp‘|Ag;Fg*’/‘2
Al;Fl * 71 F while tl do tQ:Top_{AQ,_‘p;FQ*TQ
Al;rl*’f’l}_tZU_{Ag;Fg*Tg A FU<:T
Al;I‘l *Tl'_t:TAAQ;FQ*TQ

(T-Ir)

(T-WHILE)

(T-SuB)

Figure 9 Typing rules for terms in the top-level language.
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modifies a field of the current object, acting on its type C[F]. Unlike the rule for assignment
in Java, when a field is changed, we need to check all the other fields in F' to ensure that
any dependencies are satisfied. We do this with judgement Ag; To{ra.f <= T} 17y : Ci + Ay
derived by rule T-HIDE that recovers a top-level type Ci using with the updated context as
its initial context. Again, unlike the standard rule for assignment, our rule returns as its
result the type of the old object contained in the field as part of the linear control of objects.
T-SEQ is the standard rule for the sequence operation, except that it checks the first subterm
and considers its possible effects in the typing context that checks the second one.

The two rules for calling methods are rather elaborate. T-SELFCALL checks the type of the
parameter as usual, but uses rule T-HIDE to obtain a top-level type for the current object r of
the form C7 that allows method m to be called (its signature yielding a substitution @ applied
to the parameter and output types). The final object context is updated in the conclusion
with a type obtained by fields(Cy) for 7, where Cj is derived by possibly unpacking the
receiver output type 7'[0] in the premise Ag; T'o{ry <= T[0]} F ro : Cj 4 As. T-CALL checks
a method call on a field, combining the strategies used in T-ASsSIGN and T-SELFCALL.

T-CASE makes the case distinction on a field f with a union type. Each branch is then
typed with an initial context where f is bound to either the left or the right type. Two
branches must have the same type and final contexts, because f can only be bound to one
type. T-IF expects t in the condition to be of type Boolean p. Each branch is then typed
with initial contexts asserting or negating the proposition p. T-WHILE is analogous to T-IF,
yet simpler. T-SUB is the usual subsumption rule, adapted to our requirements.

Program Typing. A well-formed program relies on well-typed fields, methods and classes,
which we formally define in Figure 10. The judgement k¢ M states that a method M
in a class C is well-typed. T-METHOD constructs the judgement for checking the body of
a regular method, whereas T-INIT initialises all fields, including the inherited ones. The
judgement A Fr [: T checks that a member type is well-formed. T-FTYPE states that
a field must be “typed” by kind x of proper types. When checking method signatures,
one of the following must hold: the method is altogether new (T-MTYPE), or a correct
override of a superclass method (T-OVERRIDE). These judgements are used by T-CLASS.
By T-PROGRAM a program is well-formed if each class defined in it is well-typed.

3.4 Operational Semantics

Figure 11 defines an operational semantics on states S the form (h * r,t) where the object
path r is used to resolve field references appearing in the term ¢. As usual, we denote
by t[o/x] the substitution of o for the free occurrences of x in ¢ defined in the standard way.

» Definition 2 (Operations on Heaps). Let h be the heap of the form h = (hg,0 = R) where
R is the object record C{f; = o1,..., fn = 0o }. Then, h(0) £ R and h(o).class = C and for
all k such that 1 <k < n,

R.fk & Ok -

R{f; ++ 0} 2 C{f = 0'} where 0} = oy, and o = o for k # jand 1 < j <n.

h{o.fx <4 0'} = (hg,0 = R{fx ++10'}).

h(r) £ oy, if r = 0.fx, and h{r.f <+ 0’} = h{op.f <1 0'}.

R-NEW creates a fresh object and adds it to the heap, after having initialised all fields.
For this, it relies on the reduction of states for sequenced object creation. R-ASSIGN replaces
the value of a field f of the current object located at r with a new reference, and returns
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Method M is well-formed in class C
class C: Ay extends _{...,m :HA3.(Th ~To x U = W),...}is{_}

Ay, Ag;x: U, this : fields(Ty) = this = ¢ : W - Ag; T, this : C[F] * this

z:U el =un(U) Az = C[F] <: fields(T5) m # init

T-METHOD
Fem(z) =t ( BTHOD)
fields(C.init) = C[F] €ex*rF new ?’() : F(f)_—| e;exr 1o cycles in C (T-IniT)
Fe init() = f := new C()
A g l:U| Member [ has type U with supertype T'
mtype(m,T') undefined
M (T'FTYPE) Al F HAQ(CE x U x W) Lk Al,AQ = C; < T2
Abp f:U (T-MTYPE)

AL Frm: HAQ(C;W Tox U — W)
mtype(m, T) = TIAL.(T] ~ T} x U’ — W'
AN E = HAQ(T]_ x Ty X U’ x W) < HA/Q(T{ X TQ/ x U x W/)
Al I—Tm:HAg.(Tl s Ty x U — W)

Class declaration L is well-formed
AFT:% AFrl:T Fo M
- class C': A extends T{l: T}is {M}

Program P is well-formed

FL, ... FL,
FLi...Ly

(T-OVERRIDE)

(T-Crass)

(T-PROGRAM)

Figure 10 Typing rules for program formation.

the former object pointed by f. R-SEQ reduces to the second part of the sequence of terms,
discarding the first part only after it has become an object.

R-SELFCALL is relative to a method call on the current object at . The rule prepares
the method body t with a substitution (the actual parameter for the formal one) before
evaluating the term. R-CALL is the rule for a call on the object at f (relative to the current
object at 1), being defined in a slightly different way. The rule makes r.f become the current
object and wraps the method body ¢, prepared with the parameter substitution, in a return
term that replaces the method call. Then, the body is reduced to an object in rule R-RETURN
which also recovers the previous current object at r.

R-CASEj, means that either branch is taken, with the first having precedence over the
second, i.e. the second branch is only tried if the condition (h(r.f).class = C4) fails. The
two rules R-IFTRUE and R-IFFALSE use the special true and false objects for the references
that control the condition. In rule R-WHILE, the term is rewritten to a nested conditional,
using top for the body of the else branch. R-CONTEXT is standard for reduction in contexts,
defining which term should be evaluated next.
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S1 — So | State S1 reduces to Sy

mbody(init, ) = f := new C()

(hy *7,new C()) — (ha *7,0) o & dom(hy)
(hy *7,new C()) — ((ha,0=C{f =0} x7),0)

h(r).f =01
(hxr, f=09) — (h{r.f <102} x7,01)
h(r).class=C  mbody(m,C) = Azx.t
(h*r,m(0)) — (h*r,tlo/z])

h(r.f).class=C  mbody(m,C) = Ax.t
(hxr, f.m(0)) — (h*r.f,return t[o/z])

(R-NEW)

(R-ASSIGN)

(hxr,0;t) — (h*r,t) (R-SEQ) (R-SELFCALL)

(R-CALL)

(h*r.f,return o) — (h*7,0) (R-RETURN)

h(r.f).class = Cj,
(hxr,case f of (Cy = ty)ker,2) — (hxr, ty)

(R-CASEy)
(h 7, if true then t; else to) — (h*xr,¢1) (R-IFTRUE)

(h x r,if false then t; else to) — (h *7,t2) (R-IFFALSE)

to = if t then (¢1;while t do ¢1) else top
(h*r,while t do t;) — (h 71, t2)

(R-WHILE)

(hl *Tl,tl) — (hg *Tg,tg)
(hy x 11, E[t1]) — (ha x 19, E[t2])

(R-CONTEXT)

Figure 11 Reduction rules for states.

4 Type Soundness

In order to establish type soundness, we need an additional set of relations that describe
heaps and runtime states. This is given in Figure 12. For typing the heap, we use a judgement
of the form A;T'F h that states that under contexts A;I" the heap h is well-formed. By rule
T-EMPTYHEAP, a heap is constructed from typing contexts containing assumptions and
types for all the objects relative to locations added to the heap by rule T-HEAP. The latter
ensures that each heap entry has the prescribed field typing. The most important feature
of this rule is that all aliases of linear references are explicitly forbidden by the rightmost
premise. For typing sequenced objects 0 as part of a runtime state, the judgement relies
on T-UNVAR and T-LINVAR as appropriate to type each object. In particular, for each
linear o in o1, ...,0,, with 1 < k < n, the initial typing context contains o, and the final
one of the extended heap does not, meaning that a heap that contains multiple references to
the same linear object is not typable. The similar inverse argument justifies the existence of
cyclic structures in the heap. Rule T-HEAPHIDE is used as needed in order to replace an
internal object type by an equivalent top-level one (cf. [21]).

Finally, we use a judgement Ay;T'y F S : T - Ag;T's % r to type states and formalize the
main invariant of subject reduction. By T-STATE, given a state S of the form (h *rq,t), the
heap h must be compatible with a context I'; under the assumptions in Ay, which are the
initial contexts that type the runtime term ¢, knowing from the leftmost premises that h is
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A;T'F h| Under contexts A; T, heap h is well-formed

AFT

ATFe (T-EMPTYHEAP)

AT R A;Tyxobo0: F(f)4A;Ty,0: C[F]*o0
A;Ty,0: C[F|F h, (o= C{f =0})
AT 0: C[F) - h A;T,0:C[F]Fo:CiHA
AT,0:Cikh

(T-HEAP)

(T-HEAPHIDE)

Under initial contexts A1;T'1, state S has type T,

‘ Al F ST AAy T *r ‘ with final contexts Ag; "2 and path r

h complete
dom(Fl)gdom(h) Al,Fl}_h Al;Fl *7“1"1}1T‘|A2;F2*7“2
Al;Fl " (h*’/’ht) . T" AQ;FQ * T

(T-STATE)

Figure 12 Typing rules for heaps and states.

complete, i.e. for any o € dom(h) we have children, (o) C dom(h), and that dom(T";) C dom(h),
i.e. every object that has a type in I'; appears in i along with all of its children.

» Definition 3 (Initial Heap and Object Context). In any well-formed program ( + P), hg
and 'y represent the initial heap and object context such that hg = (top = Top{}, false =
Boolean{}, true = Boolean{}) and T'y = (top : Top, false : Boolean false, true : Boolean true).

Main Results. By standard techniques [46], we now prove the expected results.

» Theorem 4 (Subject Reduction). Suppose that P is a well-formed program (+ P). In this
context, let g C Ty and hg C hy, and S1 = (hy xr1,t). If Ay;T1 F ST 4 Ag; T x1e and
S1 — S, then AT F Sy i T 4 Ag; TS * 7o for some A}, T and T, such that Ay C A
and Ty C T%.

Proof sketch. In order to build this result, we need to prove a number of basic lemmas,
namely inversion of the term typing relation, exchange for object contexts, weakening for
index contexts, substitution for objects in term typing, substitution for indices, substitution
for class types, and agreement of judgements. We also prove soundness and instantiation
of function mtype as well as two lemmas (opening and closing) for the replacement of an
internal object type by an equivalent top-level one when typing the heap. We then show that
in well-formed DOL programs the types of objects describe their runtime values, that there
never exists more than one reference to a linear object, and that all aliasing never produce a
value of unexpected type. |

» Theorem 5 (Progress). Suppose that P is a well-formed program (v P). In this context,

let FO Q Fl and ho Q hl.

1. If ATy B (R sy, ty) : T A Ag;Tax g, then ty is an object reference or (hy % 1r1,t1) —
(ha *7g,t2). )

2. If A;;Ty B (hy sy t) : T A Ag; Ty k1, then (hy x7,t) — (ho *7,t).

Proof sketch. By mutual induction on the structure of ¢ and the length of ¢. |
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AT < UAA, ‘ Under initial context Ay, type T is a subtype of U, with final context As

class C': (a: 1) extends T{ }is{ } A;FT[i/a]<:Dj4Ay C#D
Al FC;<D§4A2

(AS-SUPER)

Ap>Te: % A Fi=j A,
= (AS-Top) _ _
AFTC <:TopdA Ay Ci<:CjH A,
Al,&:II—U[&/a]<:T°—|A2 A17GZI}_T<ZU_|A2
Ay FTla: I.U <:T° 4 Ay AT < Ta: I.U A,
Ava:ITFT <:UAHA, Aya: T <:Ula/a] 4 Ag
Al EYa:I.T <:U A Ay A FETP <:X¥a:1.U A Ay

(AS-App)

(AS-TIL) (AS-TIR)

(AS-TL) (AS-TR)

Under initial contexts Aq;T'1,

’ Auly Pt T A AT ‘ term t synthesizes type T, with final contexts Ag; T2

Under initial contexts Aq;T'q,

’ AuTyi Pt T A ATy ‘ term ¢ checks against input type T, with final contexts Ag; T2

Al;Fl H thiS.f T T, 4 Ag mtype(m,Tl) = H(Zl : j)(Tl ~ Ty x U — W)
Ao,a: ;T Ft [ Ulaja) 4 As;Ty  a fresh
Asz;Tofthis.f <= Tala/a]} F this 1, Ci Ay

— — (AT-CALL)
Aqy;Ty Fthis.f (U + Uz) 4 Ay classof (Uy) = Cy
Ag;Tifthis.f <2 Up} Ftp T Th 4 Apyo;Thye C1 # Co (AT-Cask)

Al;Fl F case f of (Ck = tk)kel,2 T (Tl + TQ) - (Ag;rg . A4;1—‘4)

Figure 13 Selected algorithmic rules. In the subtyping rules, T° means that T is not a type II, X,
or +. In rules AS-TIL and AS-XR, index variable a is fresh.

5 Algorithmic Typechecking

We develop an algorithmic system in two steps. The first step is to introduce an existential
index variable (written @ with the hat in the style of Dunfield and Krishnaswami [14, 15, 16])
into the initial index context whenever there is a need to make a guess at the appropriate
index term i. The oracular rules in the declarative system are S-IIL and S-XR, T-HIDE,
T-SELFCALL, T-CALL and T-MTYPE. In the algorithmic type system, each declarative
judgement has a corresponding algorithmic judgement that takes an initial index context
and yields a final index context, possibly augmented with knowledge about what index terms
have to be. Instead of guessing, the algorithmic system adds judgements to instantiate
existential index variables of the form A; F @ := ¢ -4 As, and to equate index terms, namely
Ay Fi=j - Ag. The second step is to apply bidirectional typechecking [39] in order to
distinguish rules that synthesize types from those that check terms against types already
known, a technique that easily supports subtyping and index refinements. In the process, we
also eliminate the nondeterminism associated with the subtyping and typing rules for paths.

The system uses the syntax and meta-variables of the declarative system (Figures 4
and 5). In addition to solved existential index variable declarations « : I, index contexts in
the algorithmic system may also contain unsolved existential index variable declarations a : I.
Similarly to index contexts in the declarative system, index contexts in the algorithmic
system are ordered sequences.
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We give some of the algorithmic rules in Figure 13. The algorithmic subtyping rules
use judgements of the form A; F T <: U 4 Ay where the final index context Ay may
carry information about solved existential index variables. In the bidirectional typechecking
algorithm [39], we alternate between synthesizing types and checking terms against types
already known. Bidirectional typechecking in DOL is formalised by replacing the typing
judgement of the form Aq;T'y xry Bt : T - Ag; g x ro with the following two judgements:
A1;T1 Ft 1T A Ag; Ty for synthesizing and Aq; T H¢ | T -4 Ag; 'y for checking.

» Definition 6 (Complete Index Contexts). A complete index context, denoted by ¢, is
an algorithmic index context such that for every existential index variable @ in dom(¢),
pla) £ a: I =i

Soundness. To show that the algorithmic system is sound with respect to the original
system, we are given an algorithmic judgement, with an initial index context A; and a final
index context As, and ¢ as a solved extension of context Ag, and hence dom(A;) C dom(¢)
(by transitivity). Applying ¢ as a substitution to the given algorithmic judgement produces
a declarative judgement, which is the result we want to obtain.

» Theorem 7 (Soundness of Algorithmic Subtyping). If Ay > T :% and Ay > U : % and
TA] =T and U[A] =U and A1 F T <:U 4 Ag and ¢ extends Ay, then Aq[¢p] - T¢] <:
Ulg].

» Theorem 8 (Soundness of Algorithmic Typing). Let ¢ be a complete index context that

extends No.

1. If A; T Er 1T A Ag, then Aq[@]; T[d] Fr: T[¢] 4 As[d].

2. If A;Ty EEe 1 T H Ag; Ty, then Aq[9]; T1[¢] * this b ¢ : T[¢] 4 Ag[@]; T'2[@)] * this.

3. IfA;;Ty Ht ) T+ Ag;To and Ay > T ¢ %, then Aq[@]; Ty [@]*this ¢ : T[¢] 4 Ag[@]; T'a[d]*
this.

Completeness. To prove completeness of the algorithmic system, we somehow do the reverse
of soundness: from a declarative derivation, which has no existential index variables, we obtain
a complete index context along an algorithmic derivation. In completeness of algorithmic
subtyping, we are given an initial index context A; and a complete index context ¢; that
extends it. In completeness of algorithmic typing, in addition we are given a final context A
that may extend A (with the result of unpacking or with propositions, for example) such that
dom(A;) C dom(A}) and dom(A]) = dom(¢;), and hence dom(A;) C dom(¢;). We show
that we can build an algorithmic derivation with a final context As. However, the algorithmic
rules generate fresh index variables that may not be in A, A} or ¢1. So, completeness
will also produce a complete index context ¢, that extends both As and ¢; such that
dom(Az) = dom(¢a).

» Theorem 9 (Completeness of Algorithmic Subtyping). Let ¢1 be a complete index context
that extends Ay such that dom(Ay) = dom(¢1). If Ay[p1] F T[o1] : x and Ar[p1] F Uler] = +
and A1[p1] F Tlp1] <: Ulga], then Ay F T[A1] <: U[Aq] 4 Ay and there exists ¢ that
extends both Ay and ¢1 such that dom(Az) = dom(¢s).

» Theorem 10 (Completeness of Algorithmic Typing). Let ¢1 and A} be index contexts that

extend Ay such that dom(A1) C dom(Af) and dom(A}) = dom(¢y).

1. IfAl[qZSl] [ T[qbl] Lok, Al[d)l], F[d)ﬂ For: T[(Z)l] = All [¢1]; then Al,F[Al] For: T[Al] = AQ
and there exists ¢o that extends both Ay and ¢y such that dom(Az) = dom(¢s).
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2. IfAy[p1] F To1] : * and Aq[¢1]; T [@1]#r1 ¢ T[p1] 4 Al [p1]; Ta[d1]*72, then depending
ont either Al; Fl[Aﬂ = t T T[Aﬂ — AQ; FQ[Al] or Al; Fl[Al] [ t J/ T[Al] - Ag; Fg[Aﬂ
and there exists ¢o that extends both Ao and ¢1 such that dom(Ag) = dom(¢s).

Implementation. Our prototype ships with an IDE developed as an Eclipse plugin based on
the Xtext framework, where the examples can bes typechecked, compiled and run. The IDE
support includes: a code editor assistant for DOL programs, on-the-fly error checking, and
target code generation in the form of Java classes. Our typechecker is a direct implementation
of the algorithmic type system, extended with integer and boolean literals, local variables
and all the syntactic sugar from the examples. Constraint checking is performed as part of
typechecking via a direct interface to the Z3 constraint solver [12].

6 Related Work and Discussion

At the basis of index refinements lies the notion of dependent type developed by Martin-
Lof [32], and first applied to proof assistants (logical frameworks) such as AUTOMATH [44],
the Calculus of Constructions [11], NuPRL [10], Lego [54] and the Edinburgh Logical Frame-
work [22]. While full dependent types are an appealing feature to integrate in programming
languages, the price is increased complexity of typechecking. Unlike index refinements, full
dependent types do not restrict the domain of variables appearing in types. When added to
(possibly nonterminating) programming languages, the task of determining type equivalence
becomes as difficult as determining term equivalence (which is undecidable in general).

Some programming languages offer different strategies to handle nonterminating programs.
Cayenne [2] is a functional programming language in the style of Haskell with an undecidable
dependent type system. A semi-decidable approach forces the typechecker to terminate within
a number of prescribed steps, eventually providing the user with an answer. Epigram [33]
builds on a tactic-driven proof engine, similar to that of the Coq proof assistant, requiring
correctness proofs to be specified. Unlike Cayenne, Epigram rules out general recursive
programs, avoiding nontermination and any form of effects, thus making typechecking
decidable. Recursion is supported by the structure of dependent types which are inductive
families with inductive indices.

The Ynot tool is an extension of the functional dependently-typed language included in
Coq with support for side-effects via Hoare Type Theory (HTT) and Separation Logic [35, 36].
HTT introduces an indexed monadic type in the style of a Hoare triple to reason about
mutation. While DOL’s varying types may have similarities with the Hoare type, our
approach does not involve the complexity of higher-order abstraction. As HTT, the F*
language [43], designed for program verification, employs the monad technique generalising it
to multiple monads. This ML-style functional language uses dependent and refinement types
to specify effectful programs, and supports automated and interactive proofs. A related
approach is provided by RSP1 [45] that allows programming with proofs in an imperative
setting. The language offers decidable typechecking by banning impure operations from
types with the purpose of letting the user prove arbitrary properties of programs. All these
languages provide SMT-based automation and handle effectful programming. In that regard,
they are close to DOL, yet they differ substantially in their aim to combine programming
and theorem proving, which our language does not support. Targeting the C programming
language, Deputy [9] also handles mutation using a Hoare-inspired typing rule ensuring that
assignment results in a well-typed state. For decidability, Deputy combines compile time and
runtime checking, as opposed to our approach in which typechecking is performed statically.
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Index refinements as formulated by Xi and Pfenning [53] reduce typechecking to a
constraint satisfaction problem on terms belonging to index sorts. Their approach (which
we adopt) offers the additional advantage of relative simplicity of the type system, as well
as requiring fewer annotations, when compared to full dependent type systems. Xi later
formulated Xanadu [48], a language with a C-like syntax combining imperative programming
with index refinements, and ATS [50] which also supports DML-style dependent types and
linear types (named viewpoints). While closely related, DOL extends the ideas of Xanadu
to class-based objects that exhibit state and behaviour. Our language also handles object-
oriented programming features such as modular development, inheritance with subtyping,
which Xanadu does not deal with. A proposal for building an object-oriented system on top
of DML was formulated by Xi [49]. The language includes inheritance without subtyping,
simulated via existentially quantified dependent types. Xi’s object model is simpler than ours,
since objects are not regarded as records of fields (they merely respond to messages), and the
language does not include imperative features. Qmega [41] and Liquid Types [40] offer two
more examples of functional languages with a strict phase separation; the latter is implemented
in DSolve, a tool that automatically infers dependent types from an OCaml program and a
set of logical qualifiers. Cyclone [26] is a type-safe extension of the C programming language,
combining static analysis and runtime checks. It offers domain-specific indexed types for the
purpose of safe multi-threading and memory management.

Another reference is Dependent JavaScript (DJS) [7], which introduces refinement types
with predicates from an SMT-decidable logic in a dynamic real-world language. In DJS,
imperative updates involve the presence of mutation: the types of variables are changed by
assignment, for instance. The challenge is handled using flow-sensitive heap types, which
allow tracking variable types, in combination with refinement types. The result is an increase
in the language expressiveness by using type annotations inside JavaScript comments that
account for side-effects. DJS employs the alias types approach [42] for strong updates in
combination with thawing/freezing locations, an alternative to DOL’s linear approach.

Other forms of dependent types include X10’s constrained types [38], designed around the
notion of constraints on the immutable state of objects. The core language proposed extends
the purely functional FJ [25]. While appealing, constrained types currently cannot enforce
invariants on the mutable state of objects. Dependent classes [20] provide another approach
in the object-oriented setting. A class can be seen as forming a family of collaborating objects,
much like a type family in traditional dependent type theory. The model is complex, since it
also involves inheritance, and type soundness is hard to prove. Like DOL, full dependent
classes and its lightweight version [27] support class-based programming and inheritance.
A similar model is provided by Scala’s path-dependent types [1] that unify nominal and
structural type systems by allowing objects to contain type members. Dependent types in
this model are expressed not in type signatures but in type placements. An abstract type
refers to a type that must be defined by subclasses, becoming dependent on the instance it
refers to. None of these languages supports an imperative style of programming, whereas
DOL is designed to handle both mutable and immutable objects.

A kind of typestate seems to arise from having state exposed in (method) types and
relying on input and output types that define pre- and post-conditions. In this sense, DOL
relates to recent work on a typestate-oriented programming language [19] by Garcia et al.
As DOL, Featherweight Typestate (FT) is a nominal object-oriented language with mutable
state but whose types are enriched with state permissions. However, there are important
technical differences between FT and DOL. The former is based on transitions that specify
sequences of method calls explicitly, whereas DOL’s method availability is less explicit. FT
also allows flexible aliasing control by way of access permissions specified in types, whereas
DOL uses only linear objects (adding a better alias control is seen as an orthogonal issue).
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Extensions. We have left out of DOL’s formalisation some features that are desirable in
practice. In particular, we need (1) richer index languages in domains of interest, possibly at
the cost of decidable typechecking, and (2) alternatives to the current strategy for handling
aliases. To relax the notion of uniqueness, we could, for instance, introduce an indirection

from the main type context to a compile-time heap of objects in the style of alias types [42].
The possibility of aliasing indexed types would require a pointer to the object, allowed to be
freely duplicated, while the type describing the object state must remain linear. However, to

record type indirections, this approach would require additional type annotations.
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