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—— Abstract

We propose a type system for reasoning on protocol conformance and deadlock freedom in net-
works of processes that communicate through unordered mailboxes. We model these networks in
the mailbox calculus, a mild extension of the asynchronous m-calculus with first-class mailboxes
and selective input. The calculus subsumes the actor model and allows us to analyze networks
with dynamic topologies and varying number of processes possibly mixing different concurrency
abstractions. Well-typed processes are deadlock free and never fail because of unexpected mes-
sages. For a non-trivial class of them, junk freedom is also guaranteed. We illustrate the expres-
siveness of the calculus and of the type system by encoding instances of non-uniform, concurrent
objects, binary sessions extended with joins and forks, and some known actor benchmarks.
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1 Introduction

Message passing is a key mechanism used to coordinate concurrent processes. The order
in which a process consumes messages may coincide with the order in which they arrive at
destination (ordered processing) or may depend on some intrinsic property of the messages
themselves, such as their priority, their tag, or the shape of their content (out-of-order
or selective processing). Ordered message processing is common in networks of processes
connected by point-to-point channels. Out-of-order message processing is common in networks
of processes using mailbozes, into which processes concurrently store messages and from
which one process selectively receives messages. This communication model is typically
found in the various implementations of actors [26, 1] such as Erlang [3], Scala and Akka
actors [24], CAF [8] and Kilim [52]. Non-uniform, concurrent objects [50, 48, 15] are also
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Mailbox Types for Unordered Interactions

class Account (var balance: Double) extends ScalaActor [AnyRef] {
private val self = this
override def process(msg: AnyRef) {
msg match {
case dm: DebitMessage =>
balance += dm.amount
val sender = dm.sender.asInstanceOf [Account]
sender .send (ReplyMessage .ONLY)
case cm: CreditMessage =>

balance -= cm.amount
val sender = cm.sender.asInstance0f [ScalaActor [AnyRef]]
val recipient = cm.recipient.asInstanceOf [Account]

recipient.send(new DebitMessage(self, cm.amount))
receive {
case rm: ReplyMessage =>
sender .send (ReplyMessage .ONLY)
3
case _: StopMessage => exit ()
case message =>
val ex = new IllegalArgumentException("Unsupported, message")
ex.printStackTrace (System.err)

}

Listing 1 An example of Scala actor taken from the Savina benchmark suite [32].

examples of out-of-order message processors. For example, a busy lock postpones the
processing of any acquire message until it is released by its current owner. Out-of-order
message processing adds further complexity to the challenging task of concurrent and parallel
application development: storing a message into the wrong mailbox or at the wrong time,
forgetting a message in a mailbox, or relying on the presence of a particular message that is
not guaranteed to be found in a mailbox are programming mistakes that are easy to do and
hard to detect without adequate support from the language and its development tools.
The Scala actor in Listing 1, taken from the Savina benchmark suite [32], allows us to
illustrate some of the subtle pitfalls that programmers must carefully avoid when dealing
with out-of-order message processing. The process method matches messages found in the
actor’s mailbox according to their type. If a message of type DebitMessage is found, then
balance is incremented by the deposited amount and the actor requesting the operation
is notified with a ReplyMessage (lines 5-8). If a message of type CreditMessage is found,
balance is decremented by the amount that is transferred to recipient (lines 9-13). Since
the operation is meant to be atomic, the actor temporarily changes its behavior and waits
for a ReplyMessage from recipient signalling that the transfer is complete, before notifying
sender in turn (lines 14-17). A message of type StopMessage terminates the actor (line 18).
Note how the correct execution of this code depends on some key assumptions:

ReplyMessage should be stored in the actor’s mailbox only when the actor is involved
in a transaction, or else the message would trigger the “catch all” clause that throws a
“unsupported message” exception (lines 19-21).

No debit or credit message should be in the actor’s mailbox by the time it receives
StopMessage, or else some critical operations affecting the balance would not be performed.
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Two distinct accounts should not try to simultaneously initiate a transaction with each
other. If this were allowed, each account could consume the credit message found in its
own mailbox and then deadlock waiting for a reply from the other account (lines 14-17).

Static analysis techniques that certify the validity of assumptions like these can be valuable
for developers. For example, session types [29] have proved to be an effective formalism for the
enforcement of communication protocols and have been applied to a variety of programming
paradigms and languages [2], including those based on mailbox communications [41, 7, 19, 43].
However, session types are specifically designed to address point-to-point, ordered interactions
over channels [27]. Retrofitting them to a substantially different communication model calls
for some inevitable compromises on the network topologies that can be addressed and forces
programmers to give up some of the flexibility offered by unordered message processing.

Another aspect that complicates the analysis of actor systems is that the pure actor model
as it has been originally conceived [26, 1] does not accurately reflect the actual practice of
actor programming. In the pure actor model, each actor owns a single mailbox and the only
synchronization mechanism is message reception from such mailbox. However, it is a known
fact that the implementation of complex coordination protocols in the pure actor model is
challenging [54, 53, 33, 9]. These difficulties have led programmers to mix the actor model
with different concurrency abstractions [31, 53], to extend actors with controlled forms of
synchronization [54] and to consider actors with multiple/first-class mailboxes [23, 33, 9]. In
fact, popular implementations of the actor model feature disguised instances of multiple/first-
class mailbox usage, even if they are not explicitly presented as such: in Akka, the messages
that an actor is unable to process immediately can be temporarily stashed into a different
mailbox [23]; in Erlang, hot code swapping implies transferring at runtime the input capability
on a mailbox from a piece of code to a different one [3].

In summary, there is still a considerable gap between the scope of available approaches
used to analyze mailbox-based communicating systems and the array of features used in
programming these systems. To help narrowing this gap, we make the following contributions:

We introduce mailbox types, a new kind of behavioral types with a simple and intuitive
semantics embodying the unordered nature of mailboxes. Mailbox types allow us to de-
scribe mailboxes subject to selective message processing as well as mailboxes concurrently
accessed by several processes. Incidentally, mailbox types also provide precise information
on the size of mailboxes that may lead to valuable code optimizations.

We develop a mailbox type system for the mailbox calculus, a mild extension of the
asynchronous m-calculus [51] featuring tagged messages, selective inputs and first-class
mailboxes. The mailbox calculus allows us to address a broad range of systems with
dynamic topology and varying number of processes possibly using a mixture of concurrency
models (including multi-mailbox actors) and abstractions (such as locks and futures).

We prove three main properties of well-typed processes: the absence of failures due
to unexpected messages (mailbox conformance); the absence of pending activities and
messages in irreducible processes (deadlock freedom); for a non-trivial class of processes,
the guarantee that every message can be eventually consumed (junk freedom).

We illustrate the expressiveness of mailbox types by presenting well-typed encodings of
known concurrent objects (locks and futures) and actor benchmarks (atomic transactions
and master-workers parallelism) and of binary sessions extended with forks and joins. In
discussing these examples, we emphasize the impact of out-of-order message processing
and of first-class mailboxes.
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Structure of the paper. We start from the definition of the mailbox calculus and of the
properties we expect from well-typed processes (Section 2). We introduce mailbox types
(Section 3.1) and dependency graphs (Section 3.2) for tracking mailbox dependencies in
processes that use more than one. Then, we present the typing rules (Section 3.3) and the
soundness results of the type system (Section 3.4). In the latter part of the paper, we discuss
a few more complex examples (Section 4), related work (Section 5) and ideas for further
developments (Section 6).

2 The Mailbox Calculus

We assume given an infinite set of variables z, y, an infinite set of mailbox names a, b, a set
of tags m and a finite set of process variables X. We let u, v range over variables and mailbox
names without distinction. Throughout the paper we write € for possibly empty sequences
e1,...,e, of various entities. For example, u stands for a sequence uq,...,u, of names and
{m} for the corresponding set.

The syntax of the mailbox calculus is shown below:

Process P,Q done | u'm[g] | G | P1Q | (va)P | X[u]
Guard G,H := failu | freeu.P | u™m(Z).P | G+ H

The term done represents the terminated process that performs no action. The term
u!'m[v] represents a message stored in mailbox u. The message has tag m and arguments 7. A
guarded process G is a composition of actions offered on a mailbox. Actions will be described
in a moment. We assume that all actions in the same guard refer to the same mailbox u. The
term P | ) represents the parallel composition of P and @ and (va)P represents a restricted
mailbox a with scope P. The term X[u] represents the invocation of the process named X
with parameters u. For each process variable X we assume that there is a corresponding
global process definition of the form X(Z) £ P. The action fail u represents the process that
fails with an error for having received an unexpected message from mailbox u. The action
free u. P represents the process that deletes the mailbox u if w is empty and then continues
as P. The action u?m(T). P represents the process that receives an m-tagged message from
mailbox u and then continues as P with T replaced by the message’s arguments. A compound
guard G + H offers all the actions offered by G and H. The notions of free and bound names
of a process P are standard and respectively denoted by fn(P) and bn(P).

The operational semantics of the mailbox calculus is mostly conventional. We use the
structural congruence relation = defined below to rearrange equivalent processes:

faila+G =G G+H=H+G G+(H+H')=(G+H)+H
done | P=P PlQ=QIP PIQIR=(PIQ)IR
(va)(vb)P = (vb)(va)P (va)P 1 Q= (va)(P 1 Q) ifadgfn(Q)
Structural congruence captures the usual commutativity and associativity laws of guard
and process composition, with fail and done acting as the respective units. Additionally,
the order of mailbox restrictions is irrelevant and the scope of a mailbox may shrink or
extend dynamically. The reduction relation — is inductively defined by the rules

[R-READ] a!m[E] | a?m(f) P+G — P{@/E}
[R-FREE] (ua)(free a.P+G)—P

[R-DEF] X[e] — P{c/z} if X(Z) £p
[R-PAR] PIR—-QIR iftP—Q
[R-NEW] (Va)P — (VG)Q if P— Q

[R-STRUCT] P—Q iftP=P Q' =Q
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where P{¢/T} denotes the usual capture-avoiding replacement of the variables T with the
mailbox names ¢. Rule [r-rean] models the selective reception of an m-tagged message from
mailbox a, which erases all the other actions of the guard. Rule [r-rrer] is triggered when the
process is ready to delete the empty mailbox a and no more messages can be stored in a
because there are no other processes in the scope of a. Rule [r-per] models a process invocation
by replacing the process variable X with the corresponding definition. Finally, rules [r-rar],
[r-vew] and [r-struct] close reductions under parallel compositions, name restrictions and
structural congruence. We write —* for the reflexive and transitive closure of —, we write
P —»*Qifnot P =" Q@ and P - if P » @ for all Q.

Hereafter, we will occasionally use numbers and conditionals in processes. These and
other features can be either encoded or added to the calculus without difficulties.

» Example 1 (lock). In this example we model a lock as a process that waits for messages
from a self mailbox in which acquisition and release requests are stored. The lock is either
free or busy. When in state free, the lock nondeterministically consumes an acquire message
from self. This message indicates the willingness to acquire the lock by another process and
carries a reference to a mailbox into which the lock stores a reply notification. When in
state busy, the lock waits for a release message indicating that it is being released:

FreeLock(self) = free self .done

+ self?acquire(owner).BusyLock[self, owner]
+ self?release.fail self
A

BusylLock(self, owner) = owner!reply[self] | self 7release.FreeLock[self]

Note the presence of the free self guard in the definition of FreeLock and the lack thereof
in BusylLock. In the former case, the lock manifests the possibility that no process is willing
to acquire the lock, in which case it deletes the mailbox and terminates. In the latter case,
the lock manifests its expectation to be eventually released. Also note that FreelLock fails if
it receives a release message. In this way, the lock manifests the fact that it can be released
only if it is currently owned by a process. A system where two users alice and carol compete
for acquiring lock can be modeled as the process

(viock)(valice)(vcarol)(FreeLock[lock] | User[alice, lock] | User[carol, lock]) (1)
where
User(self, lock) £ lock'acquire[self] | self7reply(l).(I'release | free self.done)

Note that User uses the reference [ — as opposed to lock — to release the acquired lock.
As we will see in Section 3.3, this is due to the fact that it is this particular reference to the
lock’s mailbox — and not lock itself — that carries the capability to release the lock.

» Example 2 (future variable). A future variable is a one-place buffer that stores the result
of an asynchronous computation. The content of the future variable is resolved once and for
all by the producer once the computation completes. After that, its content can be retrieved
any number of times by the consumers. If a consumer attempts to retrieve the content of
the future variable beforehand, the consumer suspends until the variable is resolved. We can
model a future variable thus:

Future(self) £ self7put(z).Present[self, z]
Present(self,z) = free self.done
+ self7get(sender).(sender!'reply|z] | Present[self, x])
+ self?put.fail self

lI> 11
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The process Future represents an unresolved future variable, which waits for a put message
from the producer. Once the variable has been resolved, it behaves as specified by Present,
namely it satisfies an arbitrary number of get messages from consumers but it no longer
accepts put messages.

» Example 3 (bank account). Below we see the process definition corresponding to the actor
shown in Listing 1. The structure of the term follows closely that of the Scala code:

Account(self, balance) £  self?debit(amount, sender).
(sender'reply | Account[self, balance + amount])
+ selfrcredit(amount, recipient, sender) .
(recipient!debit[amount, self] |
selfrreply.(sender!reply | Account[self, balance + amount]))
+ self?stop.free self.done
+  self?reply.fail self

The last term of the guarded process, which results in a failure, corresponds to the
catch-all clause in Listing 1 and models the fact that a reply message is not expected to be
found in the account’s mailbox unless the account is involved in a transaction. The reply
message is received and handled appropriately in the credit-guarded term.

We can model a deadlock in the case two distinct bank accounts attempt to initiate a
transaction with one another. Indeed, we have

Account[alice, 8] | alice! credit[2, carol, bank] |, carol!debit[2, alice] | alice?reply... |
Account|[carol, 9] | carol!credit[5, alice, bank] alice!debit[5, carol] | carol?reply...

where both alice and carol ignore the incoming debit messages, whence the deadlock.

We now provide operational characterizations of the properties enforced by our typing
discipline. We begin with mailbox conformance, namely the property that a process never
fails because of unexpected messages. To this aim, we define a process context € as a process
in which there is a single occurrence of an unguarded hole [ |:

¢ =[] | €I1P | PIC | (wa)¥

The hole is “unguarded” in the sense that it does not occur prefixed by an action. As
usual, we write ¢’[P] for the process obtained by replacing the hole in € with P. Names
may be captured by this replacement. A mailbox conformant process never reduces to a
state in which the only action of a guard is fail:

» Definition 4. We say that P is mailboz conformant if P -»* ¢'[fail a] for all € and a.

Looking at the placement of the fail u actions in earlier examples we can give the
following interpretations of mailbox conformance: a lock is never released unless it has been
acquired beforehand (Example 1); a future variable is never resolved twice (Example 2); an
account will not be notified of a completed transaction (with a reply message) unless it is
involved in an ongoing transaction (Example 3).

We express deadlock freedom as the property that all irreducible residuals of a process
are (structurally equivalent to) the terminated process:

» Definition 5. We say that P is deadlock free if P —* (Q - implies () = done.

According to Definition 5, if a deadlock-free process halts we have that: (1) there is no
sub-process waiting for a message that is never produced; (2) every mailbox is empty. Clearly,
this is not the case for the transaction between alice and carol in Example 3.
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» Example 6 (deadlock). Below is another example of deadlocking process using Future from
Example 2, obtained by resolving a future variable with the value it does not contain yet:

(vf)(ve)(Future[f] | ftget[c] | c?reply(x).free c.f!put|z]) (2)

Notice that attempting to retrieve the content of a future variable not knowing whether
it has been resolved is legal. Indeed, Future does not fail if a get message is present in the
future variable’s mailbox before it is resolved. Thus, the deadlocked process above is mailbox
conformant but also an instance of undesirable process that will be ruled out by our static
analysis technique (c¢f. Example 21). We will need dependency graphs in addition to types
to flag this process as ill typed.

A property stronger than deadlock freedom is fair termination. A fairly terminating
process is a process whose residuals always have the possibility to terminate. Formally:

» Definition 7. We say that P is fairly terminating if P —* @ implies ) —* done.

An interesting consequence of fair termination is that it implies junk freedom (also known

as lock freedom [34, 44]) namely the property that every message can be eventually consumed.

Our type system does not guarantee fair termination nor junk freedom in general, but it
does so for a non-trivial sub-class of well-typed processes that we characterize later on.

3 A Mailbox Type System

In this section we detail the type system for the mailbox calculus. We start from the
syntax and semantics of mailbox types (Section 3.1) and of dependency graphs (Section 3.2),
the mechanism we use to track mailbox dependencies. Then we present the typing rules
(Section 3.3) and the properties of well-typed processes (Section 3.4).

3.1 Mailbox Types

The syntax of mailbox types and patterns is shown below:

Mailbox Type 7,0 == ?7FE | 'E (3)
Pattern E,F == 0| 1 | nff] | E4F | E-F | E*

Patterns are commutative regular expressions [11] describing the configurations of messages
stored in a mailbox. An atom m[7] describes a mailbox containing a single message with
tag m and arguments of type 7. We let M range over atoms and abbreviate m[7] with m
when 7 is the empty sequence. Compound patterns are built using sum (F + F'), product
(E - F) and exponential (E*). The constants 1 and O respectively describe the empty and the
unreliable mailbox. There is no configuration of messages stored in an unreliable mailbox,
not even the empty one. We will use the O pattern for describing mailboxes from which an
unexpected message has been received. Let us look at a few simple examples. The pattern
A + B describes a mailbox that contains either an A message or a B message, but not both,
whereas the pattern A 4+ 1 describes a mailbox that either contains a A message or is empty.
The pattern A - B describes a mailbox that contains both an A message and also a B message.
Note that A and B may be equal, in which case the mailbox contains two A messages. Finally,
the pattern A* describes a mailbox that contains an arbitrary number (possibly zero) of A
messages. We adopt the usual conventions on the priority of connectives, whereby * binds
stronger than - which, in turn, binds stronger than +.

15:7
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A mailboz type consists of a capability (either ? or !) paired with a pattern. The capability
specifies whether the pattern describes messages to be received from (?) or stored in (!) the
mailbox. Here are some examples: A process using a mailbox of type 'A must store an A
message into the mailbox, whereas a process using a mailbox of type 7A expects to receive
an A message from the mailbox. A process using a mailbox of type !(A+ 1) may store an A
message into the mailbox, but is not obliged to do so. A process using a mailbox of type
!'(A + B) decides whether to store an A message or a B message in the mailbox, whereas a
process using a mailbox of type ?(A + B) must be ready to receive both kinds of messages.
A process using a mailbox of type ?(A - B) expects to receive both an A message and a B
message and may decide in which order to do so. A process using a mailbox of type !(A - B)
must store both A and B into the mailbox. A process using a mailbox of type !'A* decides
how many A messages to store in the mailbox, whereas a process using a mailbox of type 7A*
must be prepared to receive an arbitrary number of A messages.

To cope with possibly infinite types we interpret the productions in (3) coinductively and
consider as types the regular trees [13] built using those productions. We require every infinite
branch of a type tree to go through infinitely many atoms. This strengthened contractiveness
condition allows us to define functions inductively on the structure of patterns, provided that
these functions do not recur into argument types (c¢f. Definitions 8 and 14).

The semantics of a pattern is a set of multisets of atoms. Because patterns include types,
the given semantics is parametric in the subtyping relation, which will be defined next:

» Definition 8 (subpattern). The configurations of E are inductively defined by the following

equations, where A and B range over multisets (M) of atoms and W denotes multiset union:

O1%0  [F+F] % [E]U[F] [M] £ ()}
{0y [E-F]1E{AwB|Ac[ELBe[F]} [E]%[MJU[EIV[E-EJU- -

Given a preorder relation #Z on types, we write E Cg F if (m;[Ti])icr € [F] implies
(m;[0:])icr € [F] and T; Z 7; for every i € I. We write ~g for Cgp N Jdg.

For example, [A + B] = {(A), (B)} and [A-B] = {(A,B)}. It is easy to see that Cg is a
pre-congruence with respect to all the connectives and that ~4 includes all the known laws
of commutative Kleene algebra [11]: both + and - are commutative and associative, + is
idempotent and has unit O, - distributes over +, it has unit 1 and is absorbed by 0. Also
observe that Cg is related covariantly to %, that is 7 % & implies n[7] Cg n[o].

We now define subtyping. As types may be infinite, we resort to coinduction:

» Definition 9 (subtyping). We say that % is a subtyping relation if T Z o implies either
1. 7=?Fando=7?Fand EC4 F, or

2. 7T='Fando="'Fand FCg4 E.

We write < for the largest subtyping relation and say that 7 is a subtype of ¢ (and o a
supertype of T) if 7 < 0. We write < for <N >, C for C¢ and =~ for ~.

Items 1 and 2 respectively correspond to the usual covariant and contravariant rules for
channel types with input and output capabilities [47]. For example, ! (A + B) < !'A because a
mailbox of type ! (A +B) is more permissive than a mailbox of type 'A. Dually, ?A < 7(A+B)
because a mailbox of type ?7A provides stronger guarantees than a mailbox of type ?(A + B).
Note that !'(A-B) < !(B-A) and ?(A-B) < ?(B-A), to witness the fact that the order in which
messages are stored in a mailbox is irrelevant.

Mailbox types whose patterns are in particular relations with the constants O and 1 will
play special roles, so we introduce some corresponding terminology.
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» Definition 10 (type and name classification). We say that (a name whose type is) 7 is:
relevant if 7 £ '1 and irrelevant otherwise;
reliable if 7 £ 70 and unreliable otherwise;
usable if 10 £ 7 and unusable otherwise.

A relevant name must be used, whereas an irrelevant name may be discarded because not
storing any message in the mailbox it refers to is allowed by its type. All mailbox types with
input capability are relevant. A reliable mailbox is one from which no unexpected message
has been received. All names with output capability are reliable. A usable name can be
used, in the sense that there exists a construct of the mailbox calculus that expects a name

with that type. All mailbox types with input capability are usable, but ?(A - 0) is unreliable.

Both 'A and !'(1 + A) are usable. The former type is also relevant because a process using
a mailbox with this type must (eventually) store an A message in it. On the contrary, the
latter type is irrelevant, since not using the mailbox is a legal way of using it.

Henceforth we assume that all types are usable and that all argument types are also
reliable. That is, we ban all types like 10 or !(0-m) and all types like ?m[?0] or !m[?0].

» Example 11 (lock type). The mailbox used by the lock (Example 1) will have several
different types, depending on the viewpoint we take (either the lock itself or one of its users)
and on the state of the lock (whether it is free or busy). As we can see from the definition of
FreeLock, a free lock waits for an acquire message which is supposed to carry a reference
to another mailbox into which the capability to release the lock is stored. Since the lock is
meant to have several concurrent users, it is not possible in general to predict the number of
acquire messages in its mailbox. Therefore, the mailbox of a free lock has type

7acquire[!reply|!release]]”

from the viewpoint of the lock itself. When the lock is busy, it expects to find one release
message in its mailbox, but in general the mailbox will also contain acquire messages
corresponding to pending acquisition requests. So, the mailbox of a busy lock has type

?(release - acquire[!reply|!release]|”)

indicating that the mailbox contains (or will eventually contain) a single release message
along with arbitrarily many acquire messages.

Prospective owners of the lock may have references to the lock’s mailbox with type
lacquire[!reply[!release]] or 'acquire[!reply['release]]” depending on whether they
acquire the lock exactly once (just like alice and carol in Example 1) or several times. Other
intermediate types are possible in the case of users that acquire the lock a bounded number
of times. The current owner of the lock will have a reference to the lock’s mailbox of type
Irelease. This type is relevant, implying that the owner must eventually release the lock.

3.2 Dependency Graphs

We use dependency graphs for tracking dependencies between mailboxes. Intuitively, there is
a dependency between u and v if either v is the argument of a message in mailbox u or v
occurs in the continuation of a process waiting for a message from u. Dependency graphs
have names as vertices and undirected edges. However, the usual representation of graphs
does not account for the fact that mailbox names may be restricted and that the multiplicity
of dependencies matters. Therefore, we define dependency graphs using the syntax below:

Dependency Graph o, = 0 | {u,v} | Uy | (va)p

15:9
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e ") SN (p’ 0 SCICN 1//
{u,v} — (O [c-axioM] P— [G-LEFT] prp ; [G-RIGHT]
Uy —= ¢ Uy pUh —= ol

p "9 aFuw p— Y Py
p— [G-NEW] [G-TRANS]
(va)p — (va)y p—¢

Figure 1 Labelled transitions of dependency graphs.

The term () represents the empty graph which has no vertices and no edges. The unordered
pair {u,v} represents the graph made of a single edge connecting the vertices v and v. The
term ¢ LI ¢ represents the union of ¢ and ¢ whereas (va)y represents the same graph as ¢
except that the vertex a is restricted. The usual notions of free and bound names apply to
dependency graphs. We write fn(p) for the free names of (.

To define the semantics of a dependency graph we use the labelled transition system of
Table 1. A label u — v represents a path connecting u with v. So, a relation ¢ — ¢’
means that u and v are connected in ¢ and ¢’ describes the residual edges of ¢ that have
not been used for building the path between u and v. The paths of ¢ are built from the
edges of ¢ (c¢f. [a-axiom]) connected by shared vertices (c¢f. [a-trans]). Restricted names cannot
be observed in labels, but they may contribute in building paths in the graph (c¢f. [c-xew]).

» Definition 12 (graph acyclicity and entailment). Let dep(¢) = {(u,v) | I¢' : p —2 &'}
be the dependency relation generated by ¢. We say that ¢ is acyclic if dep(y) is irreflexive.
We say that ¢ entails 1, written ¢ = 1, if dep(¢)) C dep(yp).

Note that LI is commutative, associative and has () as unit with respect to dep(-). These
properties of dependency graphs are key to prove that typing is preserved by structural
congruence on processes. Note also that U is not idempotent. Indeed, {u,v} U {u,v} is cyclic
whereas {u,v} is not. The following example motivates the reason why the multiplicity of
dependencies is important.

» Example 13 (multiplicity of dependencies). Even though we have not presented the typing
rules yet, we can use the above intuition on how dependencies are established to argue that
the process below yields a cyclic dependency graph:

P = (va)(vb)(a'Alb] | a'B[b] | a?A(z).a?B(y).free a.z'm[y]) —* (vb)b!m[b] -

Observe that P stores two messages in the mailbox a, each containing a reference to the
mailbox b. Thus, the same dependency {a,b} arises twice, resulting in a cyclic dependency
involving a and b. By reducing the process, we note that the two variables z and y, which
were syntactically different in P, are unified into b in the reduct, which is deadlocked.

3.3 Typing Rules

We use type environments for tracking the type of free names occurring in processes. A type
environment is a partial function from names to types written as @ : 7 or uy : T, ..., Uy : Tn-
We let T and A range over type environments, we write dom(I") for the domain of I" and
I', A for the union of I" and A when dom(T") Ndom(A) = (). We say that I is reliable if so
are all the types in its range.
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Typing rules for processes

X (T :T;9) Ia:?1F Py
———— [T-DONE] [T-DEF] [T-NEW]
() - done :: 0 7+ X[@] :: o{u/z} Tk (va)P :: (va)p
u:?7ETFG FE
[T-M86G] [T-GUARD]
w: 'm[7],7: T Fulm[@] :: {u,{v}} uw:?E,IT'F G :: {u,dom(T")}
ik P 512 AFP:yp T<A  o=7
[T-PAR] [T-suB]
T ||ITe b Pl Pyior Upo PPy
Typing rules for guards '@
'=P:op
[T-FAIL] [T-FREE]

u: 70, '+ fail u u:?1, '+ free u.P

u : 7E“F }_ G7 (i:1’2)
u ?(E1+E2)7F|—G1+G2

uw:TE DT THP
w: ?@[7] - E),l'Fumm(z).P

[T-1N] [T-BRANCH]

Figure 2 Typing rules.

Judgments for processes have the form I' - P :: ¢, meaning that P is well typed in I" and
yields the dependency graph ¢. Judgments for guards have the form I' F G, meaning that
G is well typed in I'. We say that a judgment T' + P :: ¢ is well formed if fn(¢) C dom(T")
and ¢ is acyclic. Each process typing rule has an implicit side condition requiring that its
conclusion be well formed. For each global process definition X(Z) = P we assume that
there is a corresponding global process declaration of the form X : (% : 7;p). We say that
the definition is consistent with the corresponding declaration if T : 7+ P :: ¢, where we

require the dependency graph yielded by P to be the same ¢ associated with the definition.

Hereafter, all process definitions are assumed to be consistent. We now discuss the typing
rules in detail, introducing auxiliary notions and notation as we go along.

Terminated process. According to the rule [r-pong], the terminated process done is well
typed in the empty type environment and yields no dependencies. This is motivated by the
fact that done does not use any mailbox. Later on we will introduce a subsumption rule
[r-sus] that allows us to type done in any type environment with irrelevant names.

Message. Rule [r-msc] establishes that a message u!m[v] is well typed provided that the
mailbox u allows the storing of an m-tagged message with arguments of type 7 and the
types of U are indeed 7. The subsumption rule [r-sus] will make it possible to use arguments
whose type is a subtype of the expected ones. A message u!m[0] establishes dependencies
between the target mailbox w and all of the arguments 7. We write {u, {vy,...,v,}} for the
dependency graph {u,v1} U--- U {u,v,} and use () for the empty graph union.

Names with output capability are introduced by the || operator that combines type
environments and that will be defined later on, when discussing rule [r-rar].
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Process invocation. The typing rule for a process invocation X[u] checks that there exists
a global definition for X which expects exactly the given number and type of parameters.
Again, rule [r-sus] will make it possible to use parameters whose types are subtypes of the
expected ones. A process invocation yields the same dependencies as the corresponding
process definition, with the appropriate substitutions applied.

Guards. Guards are used to match the content of a mailbox and retrieve messages from it.
According to rule [r-ran], the action fail w matches a mailbox u with type 70, indicating that
an unexpected message has been found in the mailbox. The type environment may contain
arbitrary associations, since the fail u action causes a runtime error. Rule [r-rrer] states
that the action free u.P matches a mailbox u with type 71, indicating that the mailbox is
empty. The continuation is well typed in the residual type environment I'. An input action
u?m(Z) . P matches a mailbox u with type ?(m[7] - E) that guarantees the presence of an
m-tagged message possibly along with other messages as specified by E. The continuation
P must be well typed in an environment where the mailbox has type ?E, which describes
the content of the mailbox after the m-tagged message has been removed. Associations
for the received arguments T are also added to the type environment. A compound guard
G1 + G- offers the actions offered by G; and G5 and therefore matches a mailbox u with
type ?(F1 + Es), where E; is the pattern that describes the mailbox matched by G;. Note
that the residual type environment I' is the same in both branches, indicating that the type
of other mailboxes used by the guard cannot depend on that of u.

The judgments for guards do not yield any dependency graph. This is compensated by
the rule [r-cuarp], which we describe next.

Guarded processes. Rule [r-cuarp] is used to type a guarded process GG, which matches
some mailbox u of type ?E and possibly retrieves messages from it. As we have seen while
discussing guards, E is supposed to be a pattern of the form Fy + --- + E,, where each F;
is either O, 1 or of the form M - F. However, only the patterns E that are in normal form
(defined below) are suitable to be used in this typing rule and the side condition F E checks
that this is indeed the case. Before defining the notion of pattern normal form we motivate
its need by means of a simple example.

Suppose that our aim is to type a process u?A.P + u?B.() that consumes either an
A message or a B message from u, whichever of these two messages is matched first in u,
and then continues as P or ) correspondingly. Suppose also that the type of u is 7E with
E < A-C+B- A, which allows the rules for guards to successfully type check the process. As
we have seen while discussing rule [r-iv], P and @ must be typed in an environment where the
type of u has been updated so as to reflect the fact that the consumed message is no longer
in the mailbox. In this particular case, we might be tempted to infer that the type of u in
P is 7C and that the type of v in @ is ?A. Unfortunately, the type 7C does not accurately
describe the content of the mailbox after A has been consumed because, according to F,
the A message may be accompanied by either a B message or by a C message, whereas 7C
only accounts for the second possibility. Thus, the appropriate pattern to be used for typing
this process is A - (B+ C) + B - A, where the fact that B may be found after consuming A is
made explicit. This pattern and E are equivalent as they generate exactly the same set of
valid configurations. Yet, A - (B + C) + B - A is in normal form whereas E is not. In general
the normal form is not unique. For example, also the patterns B- A+ C- A and A - (B+ C)
are in normal form and equivalent to E and can be used for typing processes that consume
messages from u in different orders or with different priorities.
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The first ingredient for defining the notion of pattern normal form is that of pattern
residual E/M, which describes the content of a mailbox that initially contains a configuration
of messages described by E and from which we remove a single message with type M:

» Definition 14 (pattern residual). The residual of a pattern E with respect to an atom M,
written E/M, is inductively defined by the following equations:

def def def

0/M=1/M=0 n[7]/mg] =1 if7<e (E+F)/M=E/M+F/M
(E*)/M < E/M -E* n[f]/n'[o] =0 ifn#n (E-F)/M < E/M-F+FE-F/M

If we take the pattern E discussed earlier we have E/A=1-C+A-0+0-14B-1~B+C.

The pattern residual operator is closely related to Brzozowski’s derivative in a commutative
Kleene algebra [4, 28]. Unlike Brzozowski’s derivative, the pattern residual is a partial
operator: E/m[g] is defined provided that the & are supertypes of all types 7 found in
m-tagged atoms within E. This condition has a natural justification: when choosing the
message to remove from a mailbox containing a configuration of messages described by F,
only the tag m of the message — and not the type of its arguments — matters. Thus, &
faithfully describe the received arguments provided that they are supertypes of all argument
types of all m-tagged message types in E. For example, assuming nat < int, we have that
(m[int] 4 m[nat])/m[int] is defined whereas (m[int] + m[nat])/m[nat] is not.
We use the notion of pattern residual to define pattern normal forms:

» Definition 15 (pattern normal form). We say that a pattern E is in normal form, written
E E, if EF F is derivable by the following axioms and rules:

F~E/M EF Fy FE Fy

EEM-F EEF +F,

EEO EE1

Essentially, the judgment F E verifies that F is expressed as a sum of 0, 1 and M - F
terms where F' is (equivalent to) the residual of E with respect to M.

A guarded process yields all the dependencies between the mailbox u being used and the
names occurring free in the continuations, because the process will not be able to exercise
the capabilities on these names until the message from u has been received.

Parallel composition. Rule [r-rar] deals with parallel compositions of the form P; | P,. This
rule accounts for the fact that the same mailbox v may be used in both P, and P, according
to different types. For example, P; might store an A message into v and P, might store
a B message into u. In the type environment for the parallel composition as a whole we
must be able to express with a single type the combined usages of w in P; and P». This is
accomplished by introducing an operator that combines types:

» Definition 16 (type combination). We write 7 || o for the combination of 7 and o, where ||
is the partial symmetric operator defined as follows:

IE|['\F<(E-F) \E||?2(E-F)<?F ?(E-F)|['\E<?F

Continuing the previous example, we have !A|| !B = !(A-B) because storing one A message
and one B message in © means storing an overall configuration of messages described by the
pattern A -B. When u is used for both input and output operations, the combined type of u
describes the overall balance of the mailbox. For example, we have 'A|| ?(A-B) = ?B: if we
combine a process that stores an A message into u with another process that consumes both
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an A message and a B message from the same mailbox in some unspecified order, then we
end up with a process that consumes a B message from u.

Notice that || is a partial operator in that not all type combinations are defined. It might
be tempting to relax || in such a way that !(A-B) || 7A = !B, so as to represent the fact that
the combination of two processes results in an excess of messages that must be consumed
by some other process. However, this would mean allowing different processes to consume
messages from the same mailbox, which is not safe in general (see Example 17). For the same
reason, the combination of 7F and ?7F is always undefined regardless of F and F'. Operators
akin to || for the combination of channel types are commonly found in substructural type
systems for the (linear) m-calculus [51, 44]. Unlike these systems, in our case the combination
concerns also the content of a mailbox in addition to the capabilities for accessing it.

» Example 17. Suppose that we extend the type combination operator so that ?(F - F) =
?E || ?F. To see why this extension would be dangerous, consider the process

(u'A[True] | u?A(z). (system!print_bool[z] | free u.done)) |
(u'A[2] | u?A(y).(system!print_int[y] | free u.done))

Overall, this process stores into u a combination of messages that matches the pattern
Albool]-Alint] and retrieves from u the same combination of messages. Apparently, u is used
in a balanced way. However, there is no guarantee that the u!A[True| message is received by
the process at the top and that the u!A[2] message is received by the process at the bottom.
In fact, the converse may happen because only the tag of a message — not the type or value
of its arguments — is used for matching messages in the mailbox calculus.

We now extend type combination to type environments in the expected way:

» Definition 18 (type environment combination). We write I" || A for the combination of T
and A, where || is the partial operator inductively defined by the equations:

T|A=T,A ifdom(T)Ndom(A) =0 (uw:7,D) || (w:0,A) = u:7| o, (T]A)
With this machinery in place, rule [r-rar] is straightforward to understand and the
dependency graph of P; | P, is simply the union of the dependency graphs of P; and Ps.

Mailbox restriction. Rule [r-xew] establishes that the process creating a new mailbox a with
scope P is well typed provided that the type of a is ?1. This means that every message
stored in the mailbox a by (a sub-process of) P is also consumed by (a sub-process of) P.
The dependency graph of the process is the same as that of P, except that a is restricted.

Subsumption. As we have anticipated earlier in a few occasions, the subsumption rule [r-sus]
allows us to rewrite types in the type environment and to introduce associations for irrelevant
names. The rule makes use of the following notion of subtyping for type environments:

» Definition 19 (subtyping for type environments). We say that T" is a subtype environment
of Aif I' < A, where < is the least preorder on type environments such that:

TL O
u: 11, ' u:T,I'<u:oT

Intuitively, I' < A means that T' provides more capabilities than A. For example,
w:!'(A+B),v: 1 < wu: 'Asince a process that is well typed in the environment w : !'A stores
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an A message into u, which is also a valid behavior in the environment « : '(A+B),v: !1
where u has more capabilities (it is also possible to store a B message into u) and there is an
irrelevant name v not used by the process.

Rule [r-sus] also allows us to replace the dependency graph yielded by P with another one
that generates a superset of dependencies. In general, the dependency graph should be kept

as small as possible to minimize the possibility of yielding mutual dependencies (see [r-par]).

The replacement allowed by [r-sus] is handy for technical reasons, but not necessary. The
point is that the residual of a process typically yields fewer dependencies than the process
itself, so we use [r-sus] to enforce the invariance of dependency graphs across reductions.

» Example 20. We show the full typing derivation for FreeLock and BusylLock defined in
Example 1. Our objective is to show the consistency of the global process declarations

FreeLock : (self : 7;0) BusyLock : (self : 7, owner : p; {self, owner})

where 7 = ?acquire[p]” and p = Ireply[!release]. In the derivation trees below we

rename self as x and owner and y to resonably fit the derivations within the page limits.

We start from the body of BusylLock, which is simpler, and obtain

[T-DEF]

z: 7 F FreeLock[z] :: 0

[T-1N]

z: o z?7release.Freelock[z]
[T-MSG] [T-GUARD]
z: 'release,y: pk y'replylz] :: {y,z} z: 0 b z?7release.FreeLock|z] :: )

[T-PAR]

z:7,y:pk y'reply[z] | x7release.Llock[z] :: {y,z} LU}

where o = ?(release - acquire[p]").

Concerning FreelLock, the key step is rewriting the pattern of 7 in a normal form that
matches the branching structure of the process. To this aim, we use the property E* ~
1+ E - E* and the fact that O is absorbing for the product connective:

————— [1-FAIL]
z:70F fail 2
[T-GUARD]
z:70F failz 2 ()
[T-1N]
z: ?(release-0) - z7release.fail z
" [T-BRANCH]
z:?(1+ acquire[p] - acquire[p]” + release-0) F .-+ z?release.fail z
[T-GUARD]
7:?7(1+ acquire[p] - acquire[p]” + release-0) I --- + z7release.fail z ::
[T-suB]

z:T7F free z.done + - + z?release.fail z ::

The elided sub-derivation concerns the first two branches of FreeLock and is as follows:

[T-DONE] T-DEF]

—_— [
0 - done :: 0 xz:7,y: pt BusylLock[z, y] :: {z, y}

[T-FREE] "
z:?71F free z.done x : Pacquire[p] - acquire[p]” F z?acquire(y).BusylLock[z, y]

z: ?(1+ acquire[p] - acquire[p]”) I free z.done + z?7acquire(y).BusylLock|z, y]

The process (1), combining an instance of the lock and the users alice and carol, is also
well typed. As we will see at the end of Section 3.4, this implies that both alice and carol
are able to acquire the lock, albeit in some unspecified order.
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» Example 21. In this example we show that the process (2) of Example 6 is ill typed. In
order to do so, we assume the global process declaration

Future : (self : ?(put[int] - get['reply[int]]"); D)

which can be shown to be consistent with the given definition for Future. In the derivation

def

below we use the pattern F < put[int] - get[p]” and the types 7 = lput[int], 0 =
?(replylint] - 1) and p < !reply[int]:

f:7,x:int - flput(z] :: 0

fi7,c:?1l,x: int F free c.f!put[z]

fi7yc: 7?1,z int - free c. f!putfz] :: {c, f}

fi:1,c:0F c?reply(z).free c. f!putz]
fitgetipl,c:pt flgetc] :: {f,c¢} f:7,c:0F c?reply(z).free c.f!putfz] :: {c, [}
f: Y(getlp] - put[int]),c: ?1F flget[c] | c?reply(z).free c.f!putfz] :: —
fiVF,c:?1F figet[c] | c?reply(z).free c.f!putfz] :: —
f:'FF (ve)(flget|c] | c?reply(z).free c.f!put|z]) :: —

In attempting this derivation we have implicitly extended the typing rules so that names
with type int do not contribute in generating any significant dependency. The critical point
of the derivation is the application of [r-rar], where we are composing two parallel processes
that yield a circular dependency between ¢ and f. In the process on the left hand side,
the dependency {f,c} arises because c is sent as a reference in a message targeted to f. In

the process on the right hand side, the dependency {¢, f} arises because there are guards
concerning the mailbox ¢ that block an output operation on the mailbox f.

[T-suB]

» Example 22 (non-deterministic choice). The same input action can occur multiple times in
the same guarded process. This feature can be used to encode in the mailbox calculus the
non-deterministic choice between P; and P, as the process

(va)(free a.P; + free a. Ps) (4)
provided that I' = P; :: ; for ¢ = 1,2. That is, P; and P>, must be well typed in the same
type environment. Below is the typing derivation for (4)

F|_P1:Z<p1 F|_P2::(P2

[T-FREE] [T-FREE]

I'a:71F free a. Py Ia:?71F free a.P»

[T-BRANCH]

Iia:?(14+ 1)+ free a.P, + free a. P

[T-GUARD]

I'a:?7(1+1)F freea.P, + freea. Py ::

[T-suB|

INa:?71F freea.P, +freea. Py i p

[T-NEW]

L't (va)(free a. Py + free a.P) :: (va)y
where ¢ = {a,dom(T')}. The key step is the application of [r-sus], which exploits the
idempotency of + (in patterns) to rewrite 1 as the equivalent pattern 1 + 1.
3.4 Properties of well-typed processes

In this section we state the main properties enjoyed by well-typed processes. As usual,
subject reduction is instrumental for all of the results that follow as it guarantees that typing
is preserved by reductions:
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» Theorem 23. IfT is reliable and T P :: p and P — @, then T+ Q :: .

Interestingly, Theorem 23 seems to imply that the types of the mailboxes used by a process
do not change. In sharp contrast, other popular behavioral typing disciplines (session types
in particular), are characterized by a subject reduction result in which types reduce along
with processes. Theorem 23 also seems to contradict the observations made earlier concerning
the fact that the mailboxes used by a process may have different types (Example 11). The
type preservation guarantee assured by Theorem 23 can be explained by recalling that
the type environment I' in a judgment I' - P :: ¢ already takes into account the overall
balance between the messages stored into and consumed from the mailbox used by P (see
Definition 18). In light of this observation, Theorem 23 simply asserts that well-typed
processes are steady state: they never produce more messages than those that are consumed,
nor do they ever try to consume more messages than those that are produced.

A practically relevant consequence of Theorem 23 is that, by looking at the type 7FE of
the mailbox a used by a guarded process P (rule [r-cuarp]), it is possible to determine bounds
to the number of messages that can be found in the mailbox as P waits for a message to
receive. In particular, if every configuration of E contains at most k m-tagged atoms, then
at runtime a contains at most m-tagged messages. As a special case, a mailbox of type 71
is guaranteed to be empty and can be statically deallocated. Note that the bounds may
change after P receives a message. For example, a free lock is guaranteed to have no release
messages in its mailbox, and will have at most one when it is busy (see Example 20).

The main result concerns the soundness of the type system, guaranteeing that well-typed
(closed) processes are both mailbox conformant and deadlock free (Definitions 4 and 5):

» Theorem 24. If )+ P :: ¢, then P is mailbox conformant and deadlock free.

Fair termination and junk freedom are not enforced by our typing discipline in general.

The usual counterexamples include processes that postpone indefinitely the use of a mailbox
with a relevant type. For instance, the m message in the well-typed process (va)(a'm | X[a])

A . . . .
where X(z) = Xlz] is never consumed because a is never used for an input operation.

Nevertheless, fair termination is guaranteed for the class of finitely unfolding processes:

» Theorem 25. We say that P is finitely unfolding if all maximal reductions of P use [r-prr]
finitely many times. If 0= P :: ¢ and P is finitely unfolding, then P is fairly terminating.

The class of finitely unfolding processes obviously includes all finite processes (those not
using process invocations) but also many recursive processes. For example, every process of
the form (va)(a'm | --- | a'm | X[a]) where X(z) £ 27m.X[z] + free z.done is closed, well
typed and finitely unfolding regardless of the number of m messages stored in a, hence is
fairly terminating and junk free by Theorem 25.

4 Examples

In this section we discuss a few more examples that illustrate the expressiveness of the
mailbox calculus and of its type system. We consider a variant of the bank account shown in
Listing 1 (Section 4.1), the case of master-workers parallelism (Section 4.2) and the encoding
of binary sessions extended with forks and joins (Sections 4.3 and 4.4).

4.1 Actors using futures

Many Scala programs combine actors with futures [53]. As an example, Listing 2 shows
an alternative version of the Account actor in Akka that differes from Listing 1 in the
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1 class Account(var balance: Double) extends AkkaActor [AnyRef] {

2 override def process(msg: AnyRef) {

3 msg match {

4 case dm: DebitMessage =>

5 balance += dm.amount

6 sender () ! ReplyMessage.ONLY

7 case cm: CreditMessage =>

8 balance -= cm.amount

9 val recipient = cm.recipient.asInstanceOf [ActorRef]

10 val future = ask(recipient, new DebitMessage(self,cm.amount))
1 Await.result (future, Duration.Inf)

12 sender () ! ReplyMessage.ONLY

13 case _: StopMessage => exit ()

14 case message =>

15 val ex = new IllegalArgumentException("Unsupported message")
16 ex.printStackTrace (System.err)

17 }

18}

19 }

Listing 2 An Akka actor using futures from the Savina benchmark suite [32].

handling of CreditMessages (lines 10-11). The future variable created here is initialized
asynchronously with the result of the debit operation invoked on recipient. To make sure
that each transaction is atomic, the actor waits for the variable to be resolved (line 11) before
notifying sender that the operation has been completed.

This version of Account is arguably simpler than the one in Listing 1, if only because the
actor has a unique top-level behavior. One way of modeling this implementation of Account
in the mailbox calculus is to use Future, discussed in Example 2. A simpler modeling stems
from the observation that future in Listing 2 is used for a one-shot synchronization. A future
variable with this property is akin to a mailbox from which the value of the resolved variable
is retrieved exactly once. Following this approach we obtain the process below:

Account(self, balance) £  self?debit(amount, sender).
sender!reply | Account[self, balance + amount)
+ self7credit(amount, recipient, sender) .
recipient!debit[amount, future] |
(vfuture) | future?reply.free future.
(sender!reply | Account[self, balance — amount])
+ self7stop.free self.done
+  self?reply.fail self

Compared to the process in Example 3, here the notification from the recipient account is
received from the mailbox future, which is created locally during the handling of the credit
message. The rest of the process is the same as before. This definition of Account and the
one in Example 3 can both be shown to be consistent with the declaration

Account : (self : 7(debit[int, p|” - credit[int, !debit[int, p], p|* + stop), balance : int; )

where p £ Ireply. In particular, the dependencies between self and future that originate in
this version of Account are not observable from outside Account itself.
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The use of multiple mailboxes and the interleaving of blocking operations on them may
increase the likelyhood of programming mistakes causing mismatched communications and/or
deadlocks. However, these errors can be detected by a suitable typing discipline such the one
proposed in this paper. Types can also be used to mitigate the runtime overhead resulting
from the use of multiple mailboxes. Here, for example, the typing of future guarantees
that this mailbox is used for receiving a single message and that future is empty by the
time free future is performed. A clever compiler can take advantage of this information to
statically optimize both the allocation and the deallocation of this mailbox.

4.2 Master-workers parallelism

In this example we model a master process that receives tasks to perform from a client. For
each task, the master creates a pool of workers and assigns each worker a share of work. The
master waits for all partial results from the workers before sending the final result back to
the client and making itself available again. The number of workers may depend on some
quantity possibly related to the task to be performed and that is known at runtime only.

Below we define three processes corresponding to the three states in which the master
process can be, and we leave Worker unspecified:

Available(self) = self7task(client). (vpool)CreatePool[self, pool, client]
free self .done

>+

if more workers needed then
(vworker)(worker 'work[pool] | Worker[worker]) |
CreatePool[self, pool, client]
else
CollectResults[self, pool, client]
CollectResults(self, pool, client) £ pool?result. CollectResults[self, pool, client]
+ free pool.(client!result | Available[self])

CreatePool(self, pool, client)

The “if condition then P else Q” form used here can be encoded in the mailbox calculus
and is typed similarly to the non-deterministic choice of Example 22. These definitions can
be shown to be consistent with the following declarations:

Available : (self : 7task[!result]"; ()
CreatePool, CollectResults : (self : ?task[!'result]”, pool : 7result®, client : 'result;
{pool, self } U {pool, client})

The usual implementation of this coordination pattern requires the programmer to keep
track of the number of active workers using a counter that is decremented each time a partial
result is collected [32]. When the counter reaches zero, the master knows that all the workers
have finished their job and notifies the client. In the mailbox calculus, we can model the
counter using a dedicated mailbox pool from which the partial results are collected: when
pool becomes disposable, it means that no more active workers remain.

4.3 Encoding of binary sessions

Session types [27, 29] have become a popular formalism for the specification and enforcement
of structured protocols through static analysis. A session is a private communication channel
shared by processes that interact through one of its endpoints. Each endpoint is associated
with a session type that specifies the type, direction and order of messages that are supposed
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to be exchanged through that endpoint. A typical syntax for session types in the case of
binary sessions (those connecting exactly two peer processes) is shown below:

7,8 == end | 27T | '[7]T | T&S | T&S

A session type ?[7].T describes an endpoint used for receiving a message of type 7 and
then according to T'. Dually, a session type ![7].T describes an endpoint used for sending a
message of type 7 and then according to T. An external choice T & S describes an endpoint
used for receiving a selection (either left or right) and then according to the corresponding
continuation (either T or §). Dually, an internal choice T @® S describes an endpoint used for
making a selection and then according to the corresponding continuation. Communication
safety and progress of a binary session are guaranteed by the fact that its two endpoints are
linear resources typed by dual session types, where the dual of T is obtained by swapping
inputs with outputs and internal with external choices.

In this example we encode sessions and session types using mailboxes and mailbox types.
We encode a session as a non-uniform, concurrent object. The object is “concurrent” because
it is accessed concurrently by the two peers of the session. It is “non-uniform” because its
interface changes over time, as the session progresses. The object uses a mailbox self and its
behavior is defined by the equations for Sessiony(self) shown below, where T is the session
type according to which it must be used by one of the peers:

free self.done

self?send(x, s). self 7receive(r).

(s'reply[self] | r'reply[z, self] | Sessionr|[self])
Session; (.7 [self]
selfrleft(s).selfrreceive(r).

(s'reply[self] | r'left[self] | Sessionr[self])
selfrright(s). self7receive(r).

(s'replylself] | r'right[self] | Sessiong[self])
Sessionrgs(self) £ Sessionrg s|self]

Sessiongnq(self)
Session; (.7 (self)

> 1>

Session, ;].7(self)
Sessionyg s (self)

(1> [l

_|_

To grasp the intuition behind the definition of Sessionp(self), it helps to recall that each
stage of a session corresponds to an interaction between the two peers, where one process
plays the role of “sender” and its peer that of “receiver”. Both peers manifest their willingness
to interact by storing a message into the session’s mailbox. The receiver always stores a
receive message, while the sender stores either send, left or right according to 7. All
messages contain a reference to the mailbox owned by sender and receiver (respectively s
and r) where they will be notified once the interaction is completed. A send message also
carries actual payload z being exchanged. The role of Sessionr(self) is simply to forward
each message from the sender to the receiver. The notifications stored in s and r contain
a reference to the session’s mailbox so that its type reflects the session’s updated interface
corresponding to the rest of the conversation.

Interestingly, the encoding of a session with type T is undistinguishable from that of
a session with the dual type T. This is natural by recalling that each stage of a session
corresponds to a single interaction between the two peers: the order in which they store the
respective messages in the session’s mailbox is in general unpredictable but also unimportant,
for both messages are necessary to complete each interaction.

As an example, suppose we want to model a system where Alice asks Carol to compute
the sum of two numbers exchanged through a session s. Alice and Carol use the session ac-

cording to the session types T = ! [int].![int].?[int].end and T £ ?[int].?[int].![int].end,
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respectively. The system is modeled as the process
(valice)(vcarol)(vs)(Alice[alice, s] | Carol[carol, s] | Sessiony[s]) (5)

where Alice and Carol are defined as follows:

Alice(self,s) = s!send[4, self] | self ?reply(s).
(s!send[2, self] | self?reply(s).
(s'receive[self] | selfrreply(z,s).
(system!print_int[z] | free self .done)))
Carol(self,s) 2 s!receive[self] | self7reply(z,s).
(s'receive[self] | self?reply(y,s).
(s!'send[z + y, self] | self?reply(s).free self.done))

The process (5) and the definitions of Alice and Carol are well typed. In general, Sessiony
is consistent with the declaration Sessiont : (self : ?2(&(T) - £(T));0) where &(T) is the
pattern defined by the following equations:

&(end) = 1
E(?[r).T) = receive[lreply[r, 1&(T)]]
E([1].T) = send[r, 'reply[1&(T)]]
E(T & S) = receive[! (1eft[!1&(T)] + right[! £(S9)])]
E(T @ S) = left|lreply[! &(T)]] + right[!reply[! &(S)]

By interpreting both the syntax of 7" and the definition of Sessiony coinductively, it is
easy to see that this encoding of binary sessions extends to internal and external choices with
arbitrary labels and also to recursive session types. The usual regularity condition ensures
that Sessionr is finitely representable. Finally, note that the notion of subtyping for encoded
session types induced by Definition 9 coincides with the conventional one [21]. Thus, the
mailbox type system subsumes a rich session type system where Theorem 24 corresponds to
the well-known communication safety and progress properties of sessions.

4.4 Encoding of sessions with forks and joins

We have seen that it is possible to share the output capability on a mailbox among several

processes. We can take advantage of this feature to extend session types with forks and joins:

7,8 == end | ?[7].T | '[7]T | T&S | T®S | Biem[n;T | Qierm|r]; T

The idea is that the session type ®i<;<nm;[7;];T describes an endpoint that can be
used for sending all of the m; messages, and then according to T'. The difference between
®1<i<ni[7]; T and a session type of the form ![r]... ![r,].T is that the m; messages can be
sent by independent processes (for example, by parallel workers) in whatever order instead
of by a single sender. Dually, the session type %1<;<,m;[7;]; T describes an endpoint that
can be used for collecting all of the m; messages, and then according to T'. Forks and joins
are dual to each other, just like simple outputs are dual to simple inputs. The tags m; need
not be distinct, but equal tags must correspond to equal argument types.

The extension of Sessionr to forks and joins is shown below:

Sessiong, _m, [,);7 (s€lf) £ self7send(s). self?receive(r). Joing,  m () [s€lf, s, 7]
Sessionzy, _m,[r:);(S€lf) £ Sessiong, _ . [r:);r [ s€lf]
» ) s'reply[self] | r'reply[self] | Sessiony[self] if I=0

Joing,. w1, (s€lf,8,7) =
©scrmi [l (s€lf, 5,7) selftm; (2;) . (rimi[z;] | Joing, . (ymifrpi[self,s,7]) ifi €]
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As in the case of simple interactions, sender and receiver manifest their willingness to
interact by storing send and receive messages into the session’s mailbox self. At that point,
Joinr[self, s, r] forwards all the m; messages coming from the sender side to the receiver side,
in some arbitrary order (case i € I). When there are no more messages to forward (case
I = () both sender and receiver are notified with a reply message that carries a reference to
the session’s endpoint, with its type updated according to the rest of the continuation.

The encoding of session types extended to forks and joins follows easily:

& (®iemi[r]; T) = send|treply[!&(T)]] - [1;e; mil7i]
E(®Biem;[1:); T) E receive[! ([[,c; mi[7:]) - reply[!&(T)]]

An alternative definition of Joiny that fowards messages as soon as they become available
can be obtained by providing suitable input actions for each i € I instead of picking an
arbitrary ¢ € I.

5 Related Work

Concurrent Objects. There are analogies between actors and concurrent objects. Both
entities are equipped with a unique identifier through which they receive messages, they
may interact with several concurrent clients and their behavior may vary over time, as
the entity interacts with its clients. Therefore, static analysis techniques developed for
concurrent objects may be applicable to actors (and vice versa). Relevant works exploring
behavioral type systems for concurrent objects include those of Najim et al. [42], Ravara and
Vasconcelos [50], and Puntigam et al. [48, 49]. As in the pure actor model, each object has a
unique mailbox and the input capability on that mailbox cannot be transferred. The mailbox
calculus does not have these restrictions. A notable variation is the model studied by Ravara
and Vasconcelos [50], which accounts for distributed objects: there can be several copies of an
object that react to messages targeted to the same mailbox. Another common trait of these
works is that the type discipline focuses on sequences of method invocations and types contain
(abstract) information on the internal state of objects and on state transitions. Indeed, types
are either finite-state automata [42], or terms of a process algebra [50] or tokens annotated
with state transitions [49]. In contrast, mailbox types focus on the content of a mailbox
and sequencing is expressed in the type of explicit continuations. The properties enforced
by the type systems in these works differ significantly. Some do not consider deadlock
freedom [50, 48], others do not account for out-of-order message processing [48]. Details on
the enforced properties also vary. For example, the notion of protocol conformance used by
Ravara and Vasconcelos [50] allows sending to an object any message that can be handled by
some future state of the object. In our setting, this would mean allowing to send a release
message to a free lock if the lock is acquired later on, or allowing to send a reply message
to an account if the account will later be involved in a transaction.

The most closely related work among those addressing concurrent objects is the one by
Crafa and Padovani [15], who propose the use of the Objective Join Calculus as a model for
non-uniform, concurrent objects and develop a type discipline that can be used for enforcing
concurrent object protocols. While mailbox types have been directly inspired by their types
of concurrent objects, there are two major differences with our work. First, in the Objective
Join Calculus every object is associated with a single mailbox, just like in the pure actor
model [26, 1], meaning that mailboxes are not first class. As a consequence, the types
considered by Crafa and Padovani [15] all have an (implicit) output capability. Second, in
the Objective Join Calculus input operations are defined atomically on molecules of messages,
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whereas in the mailbox calculus messages are received one at a time. As a consequence, the
type of a mailbox in the work of Crafa and Padovani [15] is invariant, whereas the same
mailbox may have different types at different times in the mailbox calculus (Example 11).

Static analysis of actors. Srinivasan and Mycroft [52] define a type discipline for controlling
the ownership of messages and ensuring actor isolation, but consider only uniformly typed
mailboxes and do not address mailbox conformance or deadlock freedom.

Christakis and Sagonas [10] describe a static analysis technique whose aim is to ensure
matching between send and receive operations in actors. The technique, which is described
only informally and does not account for deadlocks, has been implemented in a tool called
dialyzer and used for the analysis of Erlang programs.

Crafa [14] defines a behavioural type system for actors aimed at ensuring that the order
of messages produced and consumed by an actor follows a prescribed protocol. Protocols
are expressed as types and describe the behavior of actors rather than the content of the
mailboxes they use. Deadlock freedom is not addressed.

Charousset et al. [8] describe the design and implementation of CAF, the C++ Actor
Framework. Among the features of CAF is the use of type-safe message passing interfaces
that makes it possible to statically detect a number of protocol violations by piggybacking on
the C++ type system. There are close analogies between CAF’s message passing interfaces
and mailbox types with output capability: both are equipped with a subset semantics and
report only those messages that can be stored into the mailbox through a mailbox reference
with that type. Charousset et al. [8] point out that this feature fosters the decoupling of
actors and enables incremental program recompilation.

Giachino et al. [22, 40] define a type system for the deadlock analysis of actors making
use of implicit futures. Mailbox conformance and deadlocks due to communications are not
taken into account.

He et al. [25] discuss a typed extension of Akka [24] ensuring that, in well-typed programs,
messages sent to an actor are understood by the actor. The type system is not behavioral
though, meaning that it is not possible to reason on which configurations of messages are
legal. In particular, behavior upgrades are monotonic and actors can only increase the type
of messages they understand. This is in sharp contrast with our typing disipline, which
allows behavior upgrades with possibly unrelated mailbox types (Examples 1 and 2).

Fowler et al. [20] formalize channel-based and mailbox-based communicating systems,
highlighting the differences between the two models and studying type-preserving encodings
between them. Mailboxes in their work are uniformly typed, but the availability of union
types make it possible to host heterogeneous values within the same mailbox. This however
may lead to a loss of precision in typing. This phenomenon, called type pollution by He et
al. [25] and Fowler et al. [20], is observable to some extent also in our typing discipline and
can be mitigated by the use of multiple mailboxes (¢f. Section 4.2). Finally, Fowler et al. [20]
leave the extension of their investigation to behaviorally-typed language of actors as future
work. Our typing discipline is a potential candidate for this investigation and addresses a
more general setting thanks to the support for first-class mailboxes.

Sessions and actors. The encoding of binary sessions into actors discussed in Section 4.3 is
new and has been inspired by the encoding of binary sessions into the linear m-calculus [35, 16],
whereby each message is paired with a continuation. In our case, the continuation, instead of
being a fresh (linear) channel, is either the mailbox of the peer or that of the session. This
style of communication with explicit continuation passing is idiomatic in the actor model,
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which is based on asynchronous communications. The encoding discussed in Section 4.3
can be generalized to multiparty sessions by defining Sessiony as a medium process through
which messages are exchanged between the parties of the session. This idea has been put
forward by Caires and Pérez [5] to encode multiparty sessions using binary sessions.

Mostrous and Vasconcelos [41] study a session type system for enforcing ordered dyadic
interactions in core Erlang. They use references for distinguishing messages pertaining to
different sessions, making use of the advanced pattern matching capabilities of Erlang. Their
type system guarantees a weaker form of mailbox conformance, whereby junk messages
may be present at the end of a computation, and does not consider deadlock freedom.
Compared to our encoding of binary sessions, their approach does not require a medium
process representing the session itself.

Neykova and Yoshida [43] propose a framework based on multiparty session types for the
specification and implementation of actor systems with guarantees on the order of interactions.
This approach is applicable when designing an entire system and both the network topology
and the communication protocol can be established in advance. Fowler [19] builds upon the
work of Neykova and Yoshida to obtain a runtime protocol monitoring mechanism for Erlang.
Charalambides et al. [7] extend the multiparty session approach with a protocol specification
language that is parametric in the number of actors participating in the system. In contrast
to these approaches based on multiparty/global session types, our approach ensures mailbox
conformance and deadlock freedom of a system compositionally, as the system is assembled
out of smaller components, and permits the modeling of systems with a dynamic network
topology or with a varying number of interacting processes.

Linear logic. Shortly after its introduction, linear logic has been proposed as a specification
language suitable for concurrency. Following this idea, Kobayashi and Yonezawa [37, 3§]
have studied formal models of concurrent objects and actors based on linear logic. More
recently, a direct correspondence between propositions of linear logic and session types has
been discovered [6, 55, 39]. There are several analogies between the mailbox type system and
the proof system of linear logic. Mailbox types with output capability are akin to positive
propositions, with '0 and !1 respectively playing the roles of 0 and 1 in linear logic and
'(E+ F) and !(FE - F) corresponding to & and ®. Mailbox types with input capability are
akin to negative propositions, with 70 and ?1 corresponding to T and L and ?(E + F') and
?(E - F) corresponding to & and %. Rules [r-ran], [t-rrer] and [r-srancn] have been directly
inspired from the rules for T, L and & in the classical sequent calculus for linear logic.
Subtyping corresponds to inverse linear implication and its properties are consistent with
those of the logic connectives according to the above interpretation.

Deadlock freedom. There is a vast literature on type systems ensuring deadlock freedom
(or stronger properties) of communicating processes and/or concurrent objects. These are
based on various mechanisms, including dependency relations between channels, sessions
or objects [12, 36, 45], process types [30] and behavioral types [42, 34, 44]. Hiittel et
al. [29] survey most of these techniques. Our approach is based on the idea of enforcing an
acyclic network topology and has been inspired by the session type systems based on linear
logic [6, 55, 39]. Interestingly, these works do not require any additional mechanism to ensure
deadlock freedom. There are two reasons that call for dependency graphs in our setting.
First, the rule [r-rar] is akin to a symmetric cut rule. Dependency graphs are necessary
to detect mutual dependencies that may consequently arise (Example 21). Second, unlike
session endpoints, mailbox references can be used non-linearly. Thus, the multiplicity of
dependencies, and not just the presence or lack thereof, is relevant (Example 13).
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Igarashi and Kobayashi [30] study a generic type system for the w-calculus that allows
the enforcement of various safety properties, among which deadlock freedom. Unlike our

approach, which is based on typing mailboxes, their approach associates types with processes.

Process types collect information about both the messages exchanged over channels as well as
the dependencies between them, potentially achieving better precision in the analysis. This
also means, however, that the properties of a system are established by a global check on
the type of the system as a whole, which may hinder compositional reasoning. Determining
whether their type system subsumes our own is non-trivial and left for future work.

As a final consideration, it is easy to see from the typing rules and the structure of
judgments that dependency graphs are completely orthogonal to the other components of
the type system. This makes it possible to remove or replace them with more fine-grained
mechanisms if desired/appropriate. For example, some of the aforementioned works [36, 45]
are able to establish deadlock freedom of some cyclic network topologies. It might be
interesting to see whether and how these may be applied in our setting.

6 Concluding Remarks

We have presented a mailbox type system for reasoning about processes that communicate
through first-class, unordered mailboxes. The type system enforces mailbox conformance,
deadlock freedom and, for a significant class of processes, junk freedom as well. In sharp
contrast with session types, mailbox types embody the unordered nature of mailboxes and
enable the description of mailboxes concurrently accessed by several processes, abstracting
away from the state and behavior of the processes using these mailboxes. The fact that a
mailbox may have different types during its lifetime is entirely encapsulated by the typing
rules and not apparent from mailbox types themselves. The mailbox calculus subsumes
the actor model and allows us to analyze systems with a dynamic network topology and a
varying number of processes mixing different concurrency abstractions.

In the associated technical report [17] we informally discuss how to relax the syntax of
guarded processes to accommodate actions referring to different mailboxes as well as actions
representing timeouts. This extension makes the typing rules for guards more complex to
formulate but enhances expressiveness and precision of typing. As a further extension, it is
also possible to allow multiple processes to receive messages from the same mailbox.

Concerning further developments, the intriguing analogies between the mailbox type

system and linear logic pointed out in Section 5 surely deserve a more thorough investigation.

On the practical side, a primary goal is the application of the proposed typing discipline to
real-world programs based on the actor model and extensions thereof. In this respect, one
promising approach is the development of a tool for the analysis of Java bytecode along the
lines of what has already been done for Kilim [52]. Meanwhile, we have derived an algorithmic
version of the typing rules (Table 2) and developed a proof-of-concept tool that applies the
proposed typing discipline to the mailbox calculus [46]. The fact that each occurrence of

a name might be typed differently calls for a non-trivial amount of type inference as well.

To this aim, we make use of pattern variables to denote unknown patterns, we generate
constraints involving these variables from the structure of the process being analyzed, and
finally we look for a solution of the obtained constraints. This latter phase requires solving
systems of inequations in a commutative Kleene algebra, for which we appeal to a particular
instance of Newtonian program analysis [18] first introduced by Hopkins and Kozen [28].
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