
Accelerating Dynamically-Typed Languages on
Heterogeneous Platforms Using Guards
Optimization
Mohaned Qunaibit
University of California, Irvine
m.qunaibit@uci.edu

https://orcid.org/0000-0001-6759-7890

Stefan Brunthaler
National Cyber Defense Research Institute CODE, Munich, and SBA Research
brunthaler@unibw.de

Yeoul Na
University of California, Irvine
yeouln@uci.edu

Stijn Volckaert
University of California, Irvine
stijnv@uci.edu

Michael Franz
University of California, Irvine
franz@uci.edu

Abstract
Scientific applications are ideal candidates for the “heterogeneous computing” paradigm, in which
parts of a computation are “offloaded” to available accelerator hardware such as GPUs. However,
when such applications are written in dynamic languages such as Python or R, as they increas-
ingly are, things become less straightforward. The same flexibility that makes these languages so
appealing to programmers also significantly complicates the problem of automatically and trans-
parently partitioning a program’s execution between a CPU and available accelerator hardware
without having to rely on programmer annotations.

A common way of handling the features of dynamic languages is by introducing speculation
in conjunction with guards to ascertain the validity of assumptions made in the speculative com-
putation. Unfortunately, a single guard violation during the execution of “offloaded” code may
result in a huge performance penalty and necessitate the complete re-execution of the offloaded
computation. In the case of dynamic languages, this problem is compounded by the fact that a
full compiler analysis is not always possible ahead of time.

This paper presents MegaGuards, a new approach for speculatively executing dynamic
languages on heterogeneous platforms in a fully automatic and transparent manner. Our method
translates each target loop into a single static region devoid of any dynamic type features. The
dynamic parts are instead handled by a construct that we call a mega guard which checks all
the speculative assumptions ahead of its corresponding static region. Notably, the advantage
of MegaGuards is not limited to heterogeneous computing; because it removes guards from
compute-intensive loops, the approach also improves sequential performance.

We have implemented MegaGuards along with an automatic loop parallelization backend
in ZipPy, a Python Virtual Machine. The results of a careful and detailed evaluation reveal very
significant speedups of an order of magnitude on average with a maximum speedup of up to two
orders of magnitudes when compared to the original ZipPy performance as a baseline. These
results demonstrate the potential for applying heterogeneous computing to dynamic languages.

© Mohaned Qunaibit, Stefan Brunthaler, Yeoul Na, Stijn Volckaert, and Michael Franz;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 16; pp. 16:1–16:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.qunaibit@uci.edu
https://orcid.org/0000-0001-6759-7890
mailto:brunthaler@unibw.de
mailto:yeouln@uci.edu
mailto:stijnv@uci.edu
mailto:franz@uci.edu
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


16:2 MegaGuards

2012 ACM Subject Classification Software and its engineering→ Interpreters, Software and its
engineering → Just-in-time compilers, Software and its engineering → Dynamic compilers

Keywords and phrases Type Specialization, Guards Optimization, Automatic Heterogeneous
Computing, Automatic Parallelism

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.16

Funding This material is based upon work partially supported by the Defense Advanced Research
Projects Agency (DARPA) under contracts FA8750-15-C-0124 and FA8750-15-C-0085, by the
National Science Foundation under awards CNS-1513837 and CNS-1619211, and by the Office of
Naval Research under award N00014-17-1-2782. The competence center SBA Research (SBA-K1)
is funded within the framework of COMET – Competence Centers for Excellent Technologies by
BMVIT, BMDW, and the federal state of Vienna, managed by the FFG. We also gratefully
acknowledge a gift from Oracle Corporation. Mohaned Qunaibit was supported by MOHE’s
Graduate Studies Scholarship. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of the
Defense Advanced Research Projects Agency (DARPA), its Contracting Agents, the National
Science Foundation, the Office for Naval Research, or any other agency of the U.S. Government.

1 Motivation

Heterogeneous computing, in which the execution of a program is shared between a CPU
and other hardware such as a GPU or dedicated accelerator chips, is gaining in importance.
By judiciously “offloading” some of the computations to available acceleration hardware,
performance can in many cases be raised far beyond single threaded CPU capabilities.

Unfortunately, writing programs for heterogeneous computing is difficult. Some researchers
are focusing on “transparent” approaches, in which computations are distributed to hardware
accelerators fully automatically, while others are concentrating on a more manual approach
in which programmers guide this process explicitly through specific programming language
constructs or compiler-directed annotations. As Hager et al. noted in 2015 [26], for the long
term it is still an open question

[...] whether accelerators will be automatically invoked by compilers and runtime
systems, [...] or be explicitly managed by application programmers.

Looking back on decades of successful research on automated compiler optimizations, we
can state that “transparent” approaches that perform optimizations without programmer
intervention and that can automatically adapt to changes in available accelerator hardware
are clearly preferable to manual approaches that might require program re-writing each time
that the hardware is changed. Accordingly, much of the overall research on heterogeneous
computing has focused on this automation aspect. A closer look at this prior work, however,
reveals that most research on automating heterogeneous computing has centered on statically-
typed programming languages.

When looking at existing research on heterogeneous computing for dynamic programming
languages such as Python, we find that the emphases are reversed: most of the work in the
dynamic languages domain focuses on explicit manual management of accelerators through
programmer-directed addition of source code annotations and/or the use of idiosyncratic
libraries. Getting to know these annotations and libraries is a time-consuming obstacle
that may prevent programmers from re-writing their code to benefit from heterogeneous

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.16


M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:3

programming. In addition, customizing code to adhere to one specific library vs another
naturally inhibits a program’s portability. Moreover, these libraries and annotations often
force programmers to abandon the flexibility afforded by dynamic typing.

Automating heterogeneous computing is challenging for dynamic languages because the
dynamic types of objects may change at any time during program execution. Consider, for
example, an operation that changes from an integer addition to a string concatenation as a
result of a type change in an underlying operand. In a dynamic compilation environment,
such code will probably first be optimized to an integer addition. When then the type
change is captured by a runtime type check, i.e., via a guard, the existing optimization is
invalidated and the execution falls back to the interpreter or a less optimized version of the
code. Eventually, it may then be optimized again for the new type.

Now consider what happens when such mis-speculation happens during the execution
of a piece of code that has been offloaded to a hardware acceleration device; we will call
such pieces of code “kernels” in the remainder of this paper. In case of a mis-speculation,
the existing kernel may become invalid. But because the kernel was executing on a device
external to the CPU, the performance penalties may be much higher than merely dropping
back into an interpreter or a lower level of optimization. In the worst case, it may not even
be possible to salvage the results computed so far, so that re-execution of the whole kernel
will be required.

In general, transparent offloading may require complex static analyses such as points-to
analysis to check dependencies across loop iterations. The additional code required to handle
mis-speculations complicates the program to analyze further, making adoption of such static
analysis techniques to dynamic compilation very difficult.

To overcome these challenges, we propose MegaGuards 1, which removes the obstacles
in dynamic languages that prevent compute-intensive loops to be transparently offloaded to
GPUs or other acceleration devices. MegaGuards translates a loop as a static region in
which type changes or type mis-speculations do not exist. The key insight and novelty of
MegaGuards is how it guarantees that the offloaded code does not encounter type changes
or type mis-speculations. To this end, MegaGuards conducts a type stability analysis for
loops to see if all the guards can be safely moved outside of the loops. If so, MegaGuards
removes all the guards from the loop and constructs a single guard, i.e., a “mega guard,”
which checks all the speculative assumptions ahead of the loop. This way the loop itself can
be seen as the static region. MegaGuards then offloads among the stabilized loops if it
can prove that the loop does not have any cross-iterational dependencies. The advantage of
MegaGuards, however, is not limited to enabling offloading. Since it removes guards from
the loop, MegaGuards also improves performance on a single threaded CPU.

We implemented MegaGuards in ZipPy [61], a modern Python 3 implementation
targeting the Java Virtual Machine (JVM). ZipPy relies on the Truffle framework to optimize
interpreted programs on the CPU [58]. To determine parallelizable loops, we perform a
bounds check optimization and conduct dependence analysis by leveraging the polyhedral
model [25]. MegaGuards dynamically translates parallel loops into OpenCL code, which it
then executes on the fastest acceleration device available on the target system. MegaGuards
significantly improves the performance of data-parallel applications over sequential execution
of Python. Even if we cannot parallelize a loop, we still translate it to a guard-less AST,
which also improves the sequential performance.

1 Our software will be publicly available at https://github.com/securesystemslab/zippy-megaguards

ECOOP 2018



16:4 MegaGuards

In summary, the contribution of this paper are as follows:
We introduce a novel technique, MegaGuards, that eliminates type speculation inside
of loops to efficiently offload speculative code to kernels (Section 3.3.1). Eliminating
speculation inside of loops also improves sequential performance (Section 3.5).
We describe the design and implementation of MegaGuards, a Python-based system
that transparently offloads data-parallel loops to an acceleration device, such as a GPU,
without requiring code rewriting or annotations from the programmer (Section 3).
We report results of a careful and detailed evaluation (Section 4). Specifically, our
experiments indicate that MegaGuards offers:

Performance: Our measurements show that MegaGuards (i) performs within 2.82×
of the average performance of handwritten, native OpenCL C/C++ implementations
on the GPU, and (ii) yields substantial speedups when compared with existing Python
implementations (with average speedups exceeding 84×).
Implementation Efficiency: By way of optimizing pure Python code in an automatic
and transparent manner, MegaGuards removes the necessity for the labor-intensive
task of manually rewriting code. To quantify these gains in implementation efficiency,
we measured reductions in (i) lines of code, and (ii) McCabe’s cyclomatic complexity.
Our results indicate average reductions by about three quarters in both dimensions.

2 Background

2.1 Heterogeneous Programming Frameworks
Programming in a heterogeneous computing environment is highly challenging because
heterogeneous programming frameworks (e.g., CUDA [42] and OpenCL [48]) have steep
learning curves and requiring knowledge of the inner workings of the GPU.

To alleviate this problem for statically-typed languages, researchers have proposed
transformations that map existing parallel paradigms for the CPU to run on the GPU [44, 24,
56]. Others proposed libraries and lambda expressions [22, 28, 46, 47, 36, 7] to automatically
generate GPU code. Some techniques automatically parallelize sequential loops and run them
on GPUs [35, 3]. New languages such as Lime [18, 2] implicitly perform parallel computations
on GPUs.

Dynamically-typed languages have fewer options to simplify GPU programming and
must typically resort to external APIs for generating OpenCL or CUDA code. Python
programmers, for example, can use libraries such as Numba to design kernel code targeting
CUDA. In-depth knowledge of the GPU’s architecture and manual data management remains
necessary to use these libraries.

2.2 Interpreters and Virtual Machines
The fact that variable types can change at any moment in dynamically-typed languages
hinders ahead-of-time optimization. The rate at which variable types change in practice
is, however, usually minimal [16, 57]. This observation has inspired various specialization
approaches that minimize the interpreter’s type-checking overhead [9, 8, 59, 55, 1, 63]. In our
work, we leverage specialized types to eliminate all type-checking in the generated OpenCL
code.

Truffle [58], the self-optimizing runtime system we use in MegaGuards, performs
specialization via automatic node rewriting on an abstract syntax tree (AST). Truffle
speculatively replaces generic AST nodes, which are capable of operating on variables of any



M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:5

# Python 3
N = 1000
M = 500
a = [[ j*2. for j in range(M)] for i in range(N)]
b = [[ 0. for j in range(M)] for i in range(N)]
def foo(a, b, alpha, n, m):

for i in range(n):
for j in range(m):

b[i][j] += a[i][j] * alpha

for i in range(10):
foo(a, b, .2, N, M)

parse

execute

Generic  
Truffle AST=

+
*

alphaa
i j

b
i j

b
i j

GenericAdd

Generic Node Specialized Node

Specialized  
Truffle AST=

+

*

alpha

b

i j
b

i j

b

i j

Guard (Int)

Guard (double, double) doubleAdd

doubleMul

Guard (double, double)

doubleAssign

Figure 1 Node specialization in Truffle.

*

alphab

i j

boolean guard(Object left, Object right) {
if (!(left instanceof Double))

return false;
if (!(right instanceof Double))

return false;
return true;
}

double doubleMul(VirtualFrame frame) {
Object left = leftNode.execute(frame)
Object right = rightNode.execute(frame)
if (guard(left, right))

return (double) left * (double) right;
else {
transferToInterpreterAndInvalidate();
return this.replace(GenericMulNode()).execute(left, right);

}

Figure 2 Handling mis-speculation using type guards.

data type, with nodes that are specialized for a specific data type (Figure 1). This speculation
approach facilitates just-in-time compilation of Truffle’s hosted languages, which include
ZipPy, FastR, and TruffleRuby. When a Truffle AST reaches a stable state, the Truffle
framework invokes the Graal just-in-time compiler [19, 60] to further optimize the Truffle
AST through partial evaluation and to compile the AST into highly optimized machine code.

To preserve the correctness of the program execution, Truffle must be able to handle
mis-speculation. Figure 2 shows how Truffle embeds type guards into the specialized AST.
Guards verify that the specialized input types for a node match the expected types, and
trigger deoptimization if they detect a mismatch. When a node’s return type mismatches
the specialized data type, an exception is thrown and Truffle also proceeds to deoptimize
the node. During deoptimization, Truffle discards the specialized node and replaces it by a
generic node.

ZipPy, the Python 3 VM we use in MegaGuards, is built on top of Truffle. ZipPy’s
type system specializes objects based on their content. In Figure 3, we see several examples
of type specialization in ZipPy. At 1 , the program creates a list a containing items of the
same type. ZipPy internally specializes this list to be of type DoubleList. At 2 , one of
the list items is replaced by a value of a different type. Here, ZipPy generalizes the list to
be of type ObjectList. At 3 , the program creates a multi-dimensional list b. In this case,
ZipPy specializes the nested lists to be of type DoubleList. ZipPy stores variables values
in a virtual frame corresponding to the context that variables have been created in. This
virtual frame is usually referred to as the context frame. Each variable in the context frame
maintains its specialized type. This object layout design assists Truffle specialization process
and minimizes node type generalization (i.e., deoptimization).

3 The MegaGuards System

3.1 Overview
Figure 4 shows how MegaGuards fits into the ZipPy ecosystem. Conceptually, Mega-
Guards works as follows. First, whenever the interpreter executes a loop with an identifiable
index expression, such as the for i in range(n) statement in Figure 1, MegaGuards

ECOOP 2018



16:6 MegaGuards

# Python 3
a = [ i*2. for i in range(10)]
...
a[1] = ’text’
...
b = [[ 0. for j in range(10)] for i in range(20)]

1

2

3

1

0.0 2.0 4.0 ... 0.0 “text” 4.0 ... ...

0.0 0.0 0.0 ...

0.0 0.0 0.0 ...

0.0 0.0 0.0 ...

double[] Object[]

double[]

List[]

a = DoubleList 2 3 b = ListLista = ObjectList

Figure 3 ZipPy type specialization.

Python
program

Truffle

Graal

ZipPy

MegaGuards

GPUCPU

parse

Loops

Rest	  of	  the	  code

GPU

CPU

OpenCL

Graal

Partial	  
Evaluation

ZipPy AST

Specialized	  Truffle	  (Guarded)	  AST

Generic	  Node

Specialized	  Node

Generic	  Truffle	  AST

JVM

MegaGuards

When	  unstable
types	  detected

Pre-‐
assessment

Speculation	  
Elimination

Kernel	  Code	  
Generation	  and	  

Execution

Parallel	  Loop	  Analysis

Kernel	  Data	  
Management

OpenCL

Generate	  Guard-‐Optimized	   Truffle	  AST

Guard-‐Optimized	  Truffle	  AST

Specialized	  
MegaGuards AST

MegaGuards Backends

Bounds	  Check

Figure 4 ZipPy+MegaGuards System Overview.

determines if the loop is a potential candidate for offloading to an accelerator device (Sec-
tion 3.2). If the loop is a suitable candidate, MegaGuards analyzes if the loop can be
stabilized using our type stability analysis. If so, MegaGuards eliminates all type checks
from the loop and creates a mega guard which checks all the speculative assumptions outside
the loop (Section 3.3). MegaGuards then performs a bounds check optimization analysis
and marks operations that require run-time checks (Section 3.3.3). After that, MegaGuards
performs a dependence analysis to see if the loop iterations are independent of each other
and thus can be safely offloaded (Section 3.4.1). MegaGuards then optimizes the AST of
the parallelizable loop and translates it into OpenCL kernel code (Section 3.4.2). Finally,
MegaGuards compiles the OpenCL kernel and adaptively selects the best acceleration
device to offload (Section 3.4.5). If MegaGuards finds that a loop is not a candidate for
offloading, MegaGuards will force ZipPy to execute that loop on top of Graal, a dynamic
compiler. If the loop is proven to be type stable, however, MegaGuards will still perform
the mega guard optimization.



M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:7

...

...

a = ListList

frame

b = ListList
alpha = Double
n = Integer
m = Integer

Unbox

b = double[][]

.

.

.

do
ub
le
[]
[] b_size_1 = n

b_size_2 = m...

0.0 0.0 0.0 ...

0.0 0.0 0.0 ...

0.0 0.0 0.0 ...

double[]

List[]

b = ListList

Local Array info

...

0.0 0.0 0.0 ...

0.0 0.0 0.0 ...

0.0 0.0 0.0 ...

double[]

List[]

Figure 5 MegaGuards unboxing process.

# Python 3
a = [ i    for i in range(5)]
b = [ i*1. for i in range(5)]

def qux(x):
return x*2

def baz(a, b, n):
for i in range(n):

b[i] = qux(b[i]) * qux(a[i])

baz(a, b, 5)

Specialized
MegaGuards AST

=
*

a
i

b

i

For

i

Loop
Info

= 0, > n, += 1

𝑓"
qux

b
i

𝑓&
qux

𝑓&
qux

*

x 2

𝑓"
qux

*

x 2

Figure 6 MegaGuards specialized AST with inter-procedural invocations.

3.2 Lightweight Pre-assessment
MegaGuards begins its analysis when the interpreter reaches a loop with an identifiable
index expression that has an explicit number of iterations. MegaGuards considers the loop
a suitable candidate for offloading if its step sizes are constant.

For suitable candidate loops, MegaGuards traverses the AST sub-tree constituting the
loop to ensure that all the instructions in the loop are supported by the OpenCL framework.

3.3 Guards Optimization
Truffle uses type guards and exceptions to handle mis-speculations, as shown in Section 2.2.
MegaGuards hoists type, bounds, and overflow checks out of a loop to translate the loop
into a static region. This way these checks are performed before that loop is executed. To
this end, MegaGuards performs type stability analysis for each AST node, identifies all the
input data to be type-guarded, and generates specialized, strongly-typed ASTs. Moreover,
MegaGuards analyzes array subscripts and arithmetic operations in affine expressions to
optimize bounds and overflow checks. The nodes in a specialized AST do not contain type
checks but may contain bounds and arithmetic overflow checks that MegaGuards is unable
to optimize (see Section 3.3.3).

3.3.1 Type Stability Analysis
MegaGuards now assesses the type stability of the loop. We say a loop is type-stable if we
can deduce a single data type for each node and can guarantee all potential type changes
can only result from outside the loop, not from the inside. MegaGuards performs this
type stability analysis before executing or profiling the loop but it leverages type feedback
information of live-in variables available in the context frame maintained by ZipPy (see

ECOOP 2018



16:8 MegaGuards

ALGORITHM 1: Type Stability Analysis Algorithm.
Function DominantType(left, right)

Result: Return the strongest data type (e.g., (double, long) → double)
if left == None then return right;
else if right == None then return left;
else if left > right then return left;
else return right;

end
Function NodeVisitor(node) /* Depth-First tree traversal */

Result: Return data type of the tree
op← node.getOp()
if op == AssigmentNode then

leftDataType← NodeVisitor(node.getLeftChild())
rightDataType← NodeVisitor(node.getRightChild())
if leftDataType == rightDataType then

return leftDataType
else /* Possible data type change */

Exit MegaGuards and transfer to interpreter
end

else if op == IfElseAssignmentNode then
/* e.g α = (1 if β > 0 else 2) */
leftDataType← NodeVisitor(node.getLeftChild())
thenDataType← NodeVisitor(node.getThenChild())
elseDataType← NodeVisitor(node.getElseChild())
if thenDataType == elseDataType and leftDataType == thenDataType then

return leftDataType
else /* Possible data type change */

Exit MegaGuards and transfer to interpreter
end

else
if node is User-Defined Function Call then

returnDataType← None
Enter new Scope
foreach argument in node.getArguments() do

/* assign argument data types to the function parameter */
parameter ← NodeVisitor(argument)

end
returnDataType← NodeVisitor(node.getFunctionRoot())
/* assert all return sites have the same data type */
Exit Scope
return returnDataType

else /* Other nodes, e.g., binary arithmetic, return, etc. */
currentDataType← None
foreach child in node.getChildren() do

childDataType← NodeVisitor(child)
currentDataType← DominantType(childDataType, currentDataType)

end
return currentDataType

end
end

end



M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:9

Generic 
Truffle AST

=

+

*

alphaa
i j

b
i j

b
i j

GenericAdd

For

j

Iter

For

i

Iter

0 ... m

0 ... n
Type Stability Algorithm

Build Specialized AST

Guards Optimization:

Generate 
mega guard

Generate 
specialized AST

...

...

a = ListList

frame

b = ListList
alpha = Double
n = Integer
m = Integer

Generic	  Node

Specialized	  Node

Specialized
MegaGuards AST

=

+

*

alphaa
i j

b
i j

b
i j

doubleAdd

For

j

Loop
Info

For

i

Loop
Info

= 0, > m, += 1

= 0, > n, += 1

doubleAssign

boolean megaguard(Object n, Object m, Object alpha, Object a, Object b) {
if (!(n instanceof Integer) && !(m instanceof Integer) && !(alpha instanceof Double))

return false;
if (!(Unbox(a) instanceof Double[][]) && !(Unbox(b) instanceof Double[][]))

return false;
if (!(this.validateBoundsAndOverflowAssumptions()))

return false;
return true;

}

Bounds Check Optimization

Figure 7 MegaGuards specialized AST build process.

Section 2.2). In figure 5, MegaGuards runs an unboxing pass on variables of generic boxed
types (e.g., object lists) to augment the context frame with more precise information. If
MegaGuards finds multiple types within in the same boxed data structure (e.g., a list that
stores both strings and integers), it will mark that structure as type-unstable in the context
frame.

After unboxing, MegaGuards runs Algorithm 1 on each AST node in a loop body
to infer the type of each node, and to verify the type stability of each statement. The
main method in the algorithm, NodeVisitor, traverses the loop’s AST statements in depth-
first order, propagating the data types from the augmented context frame through each
operation. For assignment operations, represented by AssignmentNode nodes in the AST,
our algorithm consults the context frame to check if the source (rightDataType) and target
(leftDataType) data types are the same. If so, the assignment operation itself is given that
data type. If not, the assignment node is considered type-unstable, and MegaGuards
will force the entire loop to be executed by the interpreter. Similarly, MegaGuards tags
IfElseAssignmentNode nodes with the data type of its child nodes unless any of its child
nodes have different data types, or if any child node is marked as type-unstable. In both of
these cases, MegaGuards forces the interpreter to execute the loop instead. MegaGuards
does, however, re-evaluate loops it fails to offload should they ever be executed again. For
operations such as binary arithmetic operations and function calls, the algorithm tags the
operation with the dominant type of the operation’s child nodes using the DominantType
method. If our algorithm determines that all operations in the AST are type-stable, it will
return the inferred data types for each node.

Interprocedural Analysis Support

To support interprocedural type stability analysis, MegaGuards does function cloning:
it creates new variants of functions called within loops and specializes each variant based
on its argument types. Figure 6 shows an example of a loop with two function calls.

ECOOP 2018



16:10 MegaGuards

MegaGuards runs Algorithm 1 on the loop in function baz. While traversing the loop’s
AST, MegaGuards identifies a user-defined function call to qux with one argument, b[i].
MegaGuards creates a specialized version of this function using Algorithm 1. Since b[i]
is of type double, the algorithm can determine that this specialized version of function qux
returns a value of type double. MegaGuards reports this return type back to the call
site in the loop and continues the loop traversal. MegaGuards then identifies another call
to function qux with argument a[i] of type int. Since MegaGuards has only created
a variant of qux specialized for arguments of type double, MegaGuards creates another
variant here specialized for argument type int.

3.3.2 MegaGuards-Specialized AST
MegaGuards translates the original ASTs for type-stable loops into specialized, strongly-
typed ASTs based on the type information inferred during our type stability analysis.
Figure 7 shows an example of such a translation. The figure shows how MegaGuards
converts the generic For node in the ZipPy AST into a specialized For node, which has
a LoopInfo child node. The LoopInfo node stores the loop expression, loop bounds, and step
size. The information in the LoopInfo node is later used for the bounds check optimization
(Section 3.3.3), dependence analysis (Section 3.4.1) and kernel code generation (Section 3.4.2).

Each node in an MegaGuards-specialized AST operates on a specific data type.
doubleAssign, for example, can only assign a double floating-point value to a variable.
The nodes in the ZipPy AST, on the other hand, are generic and can handle any data type.
These ZipPy AST nodes contain type checks and conditional branches. The MegaGuards-
specialized nodes do not.

MegaGuards supports translation of AST operations that operate on generic boxed data
types. The assign operation in the ZipPy AST, for example, writes to b[i][j]. Variable b
is of generic type ListList according to the original context frame generated by ZipPy, but
during type stability analysis, MegaGuards augments the context frame with more precise
type information by unboxing b into a primitive data structure of type double[][]. Based
on feedback from this unboxing pass, MegaGuards establishes that the = operation in
question must be translated into a write operation of type double (i.e., a doubleAssign
node).

The GenericAdd operation has two input types, representing the left and right sides of
the add operation. Our type stability analysis recursively finds the dominant type for this
operation. Since both sides are of type double, MegaGuards can translate this node into
a doubleAdd.

The MegaGuards-specialized AST is considered to be type-stable and, thus, does not
contain any traditional type guards. Once it is translated to OpenCL code or a guard-less
specialized Truffle AST, the loop will only need to handle bounds checks and arithmetic
overflows, resulting in code with significantly fewer conditional branches.

3.3.3 Bounds Check Optimization
Dynamically-typed languages must perform a bounds check for every array access. Mega-
Guards optimizes this bounds check for arrays whose subscripts are affine expressions. The
form of an affine expression is αx + β where x is a loop induction variable, and α and β
are loop-invariant values. Array subscripts in this form allow us to safely determine the
upper and lower bounds for all array accesses before executing the loop. As with guards,
MegaGuards removes bounds checks from the loop body and inserts only checks for the
upper and lower bounds ahead of the loop.



M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:11

# Python 3
a = [ i*2. for i in range(5)]
b = [ 0. for i in range(5)]
c = [ 2, 1, 4, 0, 3 ]

def bar(a, b, alpha, n):
for i in range(n):

b[i] *= a[ c[i] ] * alpha

bar(a, b, .5, 5)

Specialized
MegaGuards AST

=

*

*

alphaa

i

b
i

b

i

For

i

Loop
Info

= 0, > n, += 1

c

Bounds
Check

Safe Unsafe
(0,4)

Specialized
MegaGuards AST

=

*

*

alphaa

i

b
i

b

i

For

i

Loop
Info

= 0, > 5, += 1

c

(0,4)

(0,4)

(-∞,∞)
(-∞,∞)

(-∞,∞)

(-∞,∞)

✓

✓

✓

✘

(.5,.5)

Figure 8 MegaGuards bounds check optimization process.

For array subscripts that are non-affine expressions, MegaGuards cannot validate the
bounds ahead of time. Instead, we convert the existing run-time bounds check into a simple
check that sets a flag whenever an out-of-bounds violation occurs.

Figure 8 shows a program containing both kinds of arrays. The array subscripts for lists
b and c are affine expressions, so MegaGuards hoists the bounds checks out of the loop.
The array subscript for list a, however, is a non-affine expression, so MegaGuards still
requires a run-time bounds check inside the loop. The run-time bounds check compares
the value of the evaluated non-affine expression with the size of the data structure that
we collected in the unboxing pass (Section 3.3). The check sets a boundsViolated flag if
it detects a violation. MegaGuards reads the value of this when the execution of the
offloaded loop finishes. Access to the boundsViolated flag does not have to be thread-safe,
as threads will only write to the flag if they detect a violation, and any thread that detects a
violation will write the same value. If the flag has been set when the loop execution finishes,
MegaGuards discards the results of the loop execution and re-executes the loop in the
interpreter instead. If the flag has not been set, MegaGuards transfers the results of the
loop execution to the host memory.

The size information we generate during the unboxing pass (see Section 3.3.1) also allows
us to optimize and perform the bounds checks for multi-dimensional arrays. MegaGuards
uses this size information to ensure that all dimensions in a multi-dimensional structure
contain the same number of elements. If we detect a multi-dimensional array with different-
sized dimensions (e.g., if the first inner list of a two-dimensional array contains 5 elements
and the second inner list contains 6 elements), our bounds check pass will not be able to
guarantee the safety of all array accesses and it will not optimize the loop.

Similarly, MegaGuards optimizes overflow checks for arithmetic operations. Based on
the data collected during the unboxing pass, MegaGuards can determine the upper and
lower bounds of the arithmetic operations in the loop if the operations are in the form of
affine expressions. If that is the case, MegaGuards hoists overflow checks out of the loop.
If MegaGuards cannot verify the safety of the operations before executing the loop, it
performs run-time overflow checks that set an overflowOccurred flag if an overflow occurs.

3.3.4 Mega Guards Insertion
Finally, MegaGuards creates a mega guard for the MegaGuards-specialized AST.
megaguard() in Figure 7 shows an example mega guard inserted above the specialized
loop. This guard verifies that the effective run-time type of each variable matches the types

ECOOP 2018



16:12 MegaGuards

Python
program

ZipPy

parse
MegaGuards

Pre-‐assessment

Guards	  
Optimization	  

GPU

CPU

Kernel	  Execution

Parallel	  Loop	  
Analysis

Loops

Graal
Rest	  of	  the	  code

Copy	  Data	  to	  Device

Device	  Selection

Compilation

OpenCL	  Code	  
Generation

Truffle	  (Guarded)

Parallel	  Loop	  Execution	  (OpenCL)

Guard-‐Optimized	  Sequential	  Execution
Generate	  Guard-‐Optimized
Specialized	  Truffle	  AST

when	  
incompatible

Generic	  Truffle	  AST

Figure 9 MegaGuards detailed internal analysis and offloading.

in the MegaGuards-specialized AST. If MegaGuards detects a mismatch, it invalidates
the specialized AST and rebuilds it based on the effective types. The mega guard also
performs bounds and overflow checks hoisted out of the loop.

3.4 Parallel Analysis and Execution
After creating a specialized AST, MegaGuards tests if the loop is eligible to be a OpenCL
kernel as shown in Figure 9. To guarantee the independence of loop iterations, MegaGuards
performs cross-iteration dependence analysis by leveraging a polyhedral model (Section 3.4.1).

3.4.1 Dependence Analysis
MegaGuards runs a dependence analysis to verify that no flow (i.e., read after write),
anti (i.e., write after read), or output (i.e., write after write) dependencies exist between
the different iterations of the loop. MegaGuards does not offload any loops having such
cross-iteration dependencies. MegaGuards performs polyhedral dependence analysis using
the Integer Set Library (ISL) and the Polyhedral Extraction Tool (PET) [53, 52], which
provides a polyhedral compilation API.

On top of the dependence analysis, we also perform alias analysis to ensure that references
between different data structures are completely separate. This alias analysis pass is necessary
since the polyhedral analysis incorrectly treats aliases as references to separate memory
locations, and might, consequently, fail to identify certain loop dependencies. Our alias
analysis scans through data structure references to verify that each data structure does
indeed point to a separate memory location. If we do detect aliases within the same loop,
then we refrain from offloading that loop.

Figure 10 shows how we feed the MegaGuards-specialized AST, generated from the
code in Figure 1, to the polyhedral dependence analysis. MegaGuards is able to verify that
no cross-iteration dependencies exist in either of the loops and can therefore safely optimize
both loops.

MegaGuards supports scalar privatization for temporary scalar variables that are not
referenced outside the loop [10]. This eliminates loop-carried output dependencies resulting
from the temporary scalar variables and, as a result, increases the number of offloading
candidates.

3.4.2 Kernel Code Generation
Once it has fully analyzed a loop, MegaGuards adds the necessary run-time bounds
checks to the loop’s AST (see Section 3.3.3) and then translates the AST into OpenCL code.
MegaGuards then compiles the code into a binary kernel and stores this kernel in a cache.
Keeping this cache allows us to skip analysis and code generation and compilation.



M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:13

Polyhedral 
Dependence 
Analysis

Specialized
MegaGuards AST

=

+

*

alphaa
i j

b
i j

b
i j

For

j

Loop
Info

For

i

Loop
Info

= 0, > m, += 1

= 0, > n, += 1

Specialized
MegaGuards AST

=

+

*

alphaa
i j

b
i j

b
i j

For

j

Loop
Info

For

i

Loop
Info

= 0, > m, += 1

= 0, > n, += 1

Independent	  Loop

Figure 10 MegaGuards polyhedral dependence analysis of a MegaGuards-specialized AST.

Thread Mapping

// OpenCL C

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

__kernel void foo(
int start_i, int step_i, 
int start_j, int step_j,
__global double *b,
int b_size_1, int b_size_2,
__global double *a,
int a_size_1, int a_size_2,
double alpha

){
int i = (get_global_id(0) + start_i) * step_i;
int j = (get_global_id(1) + start_j) * step_j;
b[i * b_size_1 +j] += a[i * a_size_1 +j] * alpha;

}

Specialized
MegaGuards AST

=

+

*

alphaa
i j

b
i j

b
i j

For

j

Loop
Info

For

i

Loop
Info

= 0, > m, += 1

= 0, > n, += 1

Specialized
MegaGuards AST

=

+

*

alphaa
i j

b
i j

b
i j

j

i
𝑓 kernel

=

=

Gid(0)

Gid(1)

Args

int[] globalWorkSize = new int[2];
globalWorkSize[0] = n;
globalWorkSize[1] = m;

Figure 11 MegaGuards thread mapping and code generation.

3.4.3 Thread Mapping
MegaGuards leverages OpenCL’s multi-dimensional thread range capability, called
NDRange, to maximize the thread-level parallelism (TLP) for kernels with nested loops.
Where possible, MegaGuards attempts to parallelize entire nested loops. Our thread
mapping scheme is compatible with existing concurrency schemes [30, 31].

MegaGuards’s thread mapping follows an outer-loop-first policy to maximize the
parallelized region and, at the same time, minimize the number of kernel invocations.
MegaGuards currently only supports thread mapping of perfectly nested loops. We leave
support for imperfectly nested loops as future work.

NDRange allows us to specify the number of threads we want to create on each computing
device. We map each thread to an N-dimensional index space. As the latest version of
OpenCL supports up to three dimensions, MegaGuards can map nested loops with up to
three nesting levels to SIMT threads.

Figure 11 illustrates MegaGuards’s thread mapping pass. MegaGuards takes the
list of independent loops produced by our dependence analysis as input (see Section 3.4.1),
and searches for a perfectly nested form of loops starting from the outer-most independent
loop. We repeat this process until we get a maximum of 3-D ranges. MegaGuards’s thread
mapping follows the outer-loop-first policy in order to maximize the parallelized region and,
at the same time, minimize the number of kernel invocations.

ECOOP 2018



16:14 MegaGuards

MegaGuards converts for loops into an OpenCL kernel based on the SIMT programming
model by rewriting the specialized AST into a kernel AST, as shown in Figure 11. In this
step, an iteration vector of nested for loops is mapped to a unique thread ID given to
each SIMT thread. For example, an iteration vector of a 2-level nested loop, (i, j), is
mapped to a unique thread ID represented as a 2-D array value which can be accessed by
the getGlobalId(dim) node. Then, the AST of a loop body is mapped to a kernel body
and the For nodes are removed. In this example, n × m threads are created according to
the iteration space range of the nested for loops, (n, m). Instead of iterating loops with
induction variables, the kernel body will be concurrently executed by the SIMT threads with
their unique IDs.

3.4.4 Kernel Data Management

Before the execution of an offloaded loop can start, we need to make sure that all the data
the loop accesses is present on the OpenCL device. This means that MegaGuards might
have to copy data structures from the main memory to the OpenCL device.

To avoid redundant copy operations, MegaGuards manages a cache of data that is
present on each OpenCL device. MegaGuards does not copy any data that is already
present on the device, unless the data is marked as invalid in the cache. This kernel data
management (KDM) optimization allows kernels to share common data. MegaGuards
automatically inserts the code that marks cache entries as invalid during the unboxing pass,
when the associated data is modified.

MegaGuards also optimizes map operations that write their results to a list they never
read from. Instead of copying an empty result list before we offload a map operation, Mega-
Guards simply allocates that list on the device but does not initialize it. MegaGuards
only copies the list from the OpenCL device to the main memory when the offloaded kernel
finishes its execution.

3.4.5 Kernel Execution and Device Selection

MegaGuards proceeds to the kernel execution stage as soon as the interpreter reports the
loop offset. For non-zero loop offsets, we only offload the remaining iterations of the loop.

MegaGuards can execute kernels on a specific acceleration device or select the best
device for each kernel adaptively. With adaptive device selection enabled, we compile kernels
for each available acceleration device and cache the compiled kernels, one for each device.
Then, we pick an accelerator to execute the kernel on and we store the total run-time of the
loop. We configured MegaGuards to always try a CPU device when a loop executes for
the first time. After multiple kernel invocations, sufficient performance data will be available
to select the fastest device for that kernel. A device is selected if it is faster than the others,
and if the kernel has executed at least once on every accelerator. This strategy can cause the
program to miss out on performance benefits for a few runs, but it quickly pays off when the
selection converges. In case of a tie, MegaGuards selects the GPU as the best execution
device.

3.4.6 Execution of A Cached Kernel

Future executions of a kernel can use the cached kernel code if the following conditions are
met:



M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:15

the mega guard check passes: The mega guard check reads the loop’s context frame,
unboxes all variables in the frame, and compares their types with the cached copy of the
kernel’s augmented context frame (see Section 3.3).
the loop body does not contain aliases: We conservatively perform alias analysis to make
sure that the program has not introduced new aliases since we performed the original
translation of the loop.
the hoisted bounds and overflow checks are still valid: We re-run part of the bounds and
integer overflow check optimization pass to ensure that no new bounds checks or overflow
checks are required.

If all three conditions hold, we offload the cached copy of the kernel code to the acceleration
device. If not, we re-run the complete analysis and generate a new, specialized kernel.

3.5 Guards-optimized Sequential Execution
MegaGuards translates the MegaGuards-specialized AST to a guards-optimized Truffle
AST if any of the parallel loop analysis fails (see Section 3.4). The resulting Truffle
AST will not have any type checks but may still have bounds and overflow checks that
MegaGuards is unable to optimize (see Section 3.3.3). In order to preserve the integrity of
data, MegaGuards backs up the modifiable data structures and restores them if a bounds
violation or an overflow occurs. MegaGuards then executes this guards-optimized Truffle
AST directly on top of the Truffle/Graal stack.

If the sequential Truffle AST contains any nested loop that can be parallelized, Mega-
Guards offloads the nested loop(s) and optimizes the data transfers within the sequential
execution scope.

3.6 Implementation Capabilities and Limitations
Recursion
MegaGuards constructs a call graph of function calls in the loops to verify that no recursion
exists in any of the loops that can potentially be offloaded. If MegaGuards does detect
recursion in an offloading candidate, then it will execute the loop using the guards-optimized
sequential execution instead.

Built-in Functions
MegaGuards supports reduction throughout Python’s built-in reduce function and the
embarrassingly parallel map operator. MegaGuards specializes map’s and reduce’s apply
functions based on the lists that are passed iteratively to the function.

MegaGuards also supports many of Python’s built-in math functions (e.g., max, sqrt,
cos, ...). MegaGuards translates calls to such functions into calls to their respective
counterparts in the OpenCL framework, and then specializes the translated calls based on
the call arguments.

Non-local Control Constructs
Currently, MegaGuards does not support language features that cause a non-local control
flow, such as exceptions and generator expressions, i.e., suspend/resume. Our lightweight
pre-assessment (see Section 3.2) checks if such a non-local control construct exists in the
loop and if so, it falls back before proceeding to optimize guards.

ECOOP 2018



16:16 MegaGuards

Loop Transformations

MegaGuards supports scalar variable loop privatization to increase the number of paralleliz-
able loops. Other loop transformation techniques such as array variable loop privatization [51],
loop splitting and loop peeling [20] could further enhance the parallelism if applied to Mega-
Guards. Loop peeling, for example, splits any first or last few problematic iterations from
the loop such that the remaining iterations are no longer dependent on each other. As a
future work, MegaGuards can incorporate such loop transformations and parallelize the
transformed loops that become free of a loop-carried dependence.

4 Evaluation

4.1 Experimental Setup

We ran our benchmarks on the following system:
CPU: Intel Core i7-6700K @ 4 GHz Quad-Core CPU with Hyper-Threading representing 8
compute units (CU). 64GB of RAM. Turbo Boost disabled.
GPU: NVIDIA GeForce GTX 1080 Ti with 11GB of RAM and 3584 Stream Processors.
OS: Ubuntu x86_64 16.04.2 LTS using Linux kernel 4.4.0-122. GNU GCC 5.5.0, Oracle
labsjdk1.8.0_151-jvmci-0.39, GraalVM v0.30 and AMD APP SDK v3.0.136.

We compared the performance of MegaGuards with:
Python Systems:

CPython version 3.5.2: The standard Python 3 interpreter.
PyPy 3 version 5.10.0 [6]: Python 3 implementation, uses a meta-tracing JIT compiler
to compile Python code into machine code for CPU.
ZipPy (github revision ff6d067) [49]: Python 3 implementation targeting Graal, uses
the Truffle framework to JIT-compile specialized AST nodes into x86 machine code.

Heterogeneous Computing Frameworks:
OpenCL C/C++ (CPU) Intel driver ver. 1.2.0.25
OpenCL C/C++ (GPU) NVIDIA driver ver. 390.59

We ran each benchmark three times on each system and calculated the geometric mean
of the execution times. We measured the execution times including data transfers from the
CPU memory to the accelerator device memory and vise versa.

We ran the pure Python implementations of each benchmark to measure the Mega-
Guards, ZipPy, PyPy and CPython performance. To properly measure peak performance,
we warmed up the benchmarks to allow ZipPy and PyPy to just-in-time compile the Python
code.

We compared four different backend/device selection configurations for MegaGuards:
MegaGuards-Truffle: running ZipPy sequentially on the CPU with our guards opti-
mization enabled.
MegaGuards-CPU: offloading to CPU OpenCL devices only.
MegaGuards-GPU: offloading to GPU OpenCL devices only.
MegaGuards-Adaptive: using our adaptive device selection we discussed in Sec-
tion 3.4.5.

We carefully chose program inputs that are representative of large, real-world data sets
and simulations.



M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:17

bfs blackscholes euler3d hotspot lavaMD lud mandelbrot mm nbody nn particlefilter pathfinder srad GeoMean
0

1

2

4

8

16

S
p
e
e
d
u
p
 o

v
e
r 

Z
ip

P
y

0
.0

6

0
.1

0

0
.1

9

0
.0

2

0
.0

9

0
.0

2 0
.5

3

0
.1

8

0
.1

9

0
.1

2

1
.0

5

0
.1

6

0
.0

2

0
.1

1

1
.1

2

1
.2

9

1
.9

9

0
.5

8

0
.8

5

0
.8

0

0
.8

6

0
.3

0

0
.3

3

4
.6

2

3
.6

8

0
.8

8

0
.1

9

0
.9

11
.3

3

3
.6

4

1
.6

4

1
.7

1

2
.0

1

1
.0

9

2
.1

6

3
.8

2

1
.0

2

4
.7

4

1
4

.1
7

9
.9

7

0
.9

1

2
.5

0

CPython3 PyPy3 MegaGuards-Truffle

Figure 12 Sequential execution speedup of MegaGuards-Truffle compared to CPython, PyPy,
ZipPy normalized to ZipPy on a log2 scale.

Table 1 Sequential execution time (in seconds) for MegaGuards-Truffle, CPython, PyPy and
ZipPy.

bfs blackscholes euler3d hotspot lavaMD lud mandelbrot mm nbody nn particlefilter pathfinder srad

ZipPy 16.913 139.482 40.366 7.205 50.329 148.981 98.069 1018.838 498.037 16.914 61.751 4.78 4.668

MG-‐Truffle 12.759 38.326 24.617 4.219 25.037 136.91 45.418 266.377 487.023 3.567 4.359 0.48 5.135

PyPy3 15.154 108.412 20.236 12.389 59.004 186.196 113.609 3452.785 1489.154 3.662 16.769 5.454 24.412

CPython 264.321 1462.925 212.529 418.922 546.66 9616.348 185.193 5734.737 2688.715 144.596 58.968 29.221 244.785

Benchmark Selection
We ported a set of benchmarks from the Rodinia benchmark suite [13, 14] to pure Python,
using only Python built-in data types 2. We complemented this extensive set of benchmarks
with the ones from the Numba Benchmark Suite [15] and the NVIDIA OpenCL SDK [43].

The selected benchmark programs (listed in Table 4) have two implementations: (i)
pure Python, and (ii) a native hand-optimized version for OpenCL C/C++. We excluded
bfs, euler3d and lavaMD benchmarks from the table as the existing polyhedral analysis
could not disprove dependence (see Section 3.4.1) and thus the benchmarks only ran using
MegaGuards-Truffle backend.

4.2 Effect of Guards Optimization
In Figure 12, we show the performance impact of our guards optimization by measuring
the sequential performance of ZipPy with the guards optimization enabled (MegaGuards-
Truffle). The performance is normalized to the baseline ZipPy on a logarithmic scale. The
last set of bars represents the geometric mean performance of each system. Standard errors
are also marked in the figure. Table 1 shows the execution time for each benchmark (in
seconds). We measured the performance with the largest data sizes the Rodinia benchmark
suite provides.

Our guards optimization improves the sequential Python performance by up to 62.3×,
12.7×, and 14.1× compared to CPython, PyPy and ZipPy. On average, we achieve a
performance improvement of 22.72×, 2.74× and 2.50× over CPython, PyPy and ZipPy.
particlefilter shows the most substantial performance improvement (14.17× over ZipPy)
because our guards optimization removes most of its overflow checks (see Section 3.3.3).

2 Will be publicly available at https://github.com/securesystemslab/megaguards-benchmarks

ECOOP 2018



16:18 MegaGuards

blackscholes hotspot lud mandelbrot mm nbody nn particlefilter pathfinder srad GeoMean
0

1

10

100

1000

10000

S
p
e
e
d
u
p
 o

v
e
r 

Z
ip

P
y

7
6

.0
7

4
.4

9

1
4

.4
0

1
6

6
.6

9

3
9

.7
6 1

2
9

.5
8

2
5

.2
7

1
3

6
.4

4

2
0

.3
4

3
.9

5

3
2

.1
2

2
1

7
.0

4

2
0

.2
0

3
9

.6
5

4
8

7
.1

0

8
0

2
.6

6

1
5

4
.7

2

2
5

.8
5

4
4

5
.8

0

3
6

.5
0

3
.9

4

8
3

.9
72
1

6
.7

0

2
0

.2
0

3
9

.5
7

4
8

7
.1

0

8
0

1
.8

1

1
5

4
.7

3

2
5

.8
5

5
0

0
.3

9

3
4

.6
6

3
.9

4

8
4

.4
62
3

7
.2

8

4
0

.3
5

6
0

4
.3

9

8
1

4
.7

5

1
1

3
9

6
.4

3

1
6

9
.7

2

6
4

.0
8

8
2

0
.0

7

9
2

.3
4

1
3

.6
8

2
3

8
.9

0

7
7

.5
4

5
.4

2

5
1

.4
4

3
3

1
.3

9 1
3

4
1

.5
5

1
2

9
.2

8

3
7

.7
3

1
9

5
.8

6

4
3

.6
2

5
.6

4

6
8

.4
5

MegaGuards-CPU MegaGuards-GPU MegaGuards-Adaptive OpenCL-GPU C/C++ OpenCL-CPU C/C++

Figure 13 Parallel execution speedup of MegaGuards compared to OpenCL C/C++ (CPU
and GPU) normalized to ZipPy on a log10 scale.

Table 2 Parallel execution time (in seconds) for MegaGuards, OpenCL C/C++ (CPU and
GPU), and sequential ZipPy.

blackscholes hotspot lud mandelbrot mm nbody nn particlefilter pathfinder srad
ZipPy 139.482 7.205 148.981 98.069 1018.838 498.037 16.914 61.751 4.78 4.668
MG 0.644 0.357 3.765 0.201 1.271 3.219 0.654 0.123 0.138 1.186

MG-‐GPU 0.643 0.357 3.757 0.201 1.269 3.219 0.654 0.139 0.131 1.185
MG-‐CPU 1.834 1.606 10.346 0.588 25.626 3.843 0.669 0.453 0.235 1.181

OpenCL-‐GPU 0.588 0.179 0.246 0.12 0.089 2.934 0.264 0.075 0.052 0.341
OpenCL-‐CPU 1.799 1.329 2.896 0.296 0.759 3.852 0.448 0.315 0.11 0.828

4.3 Parallel Execution Performance and Complexity Analysis
4.3.1 Characteristics of Kernels
Table 4 shows the following characteristics for each benchmark:

Loops: the number of executed and the number of offloaded loops. Nested loops are
counted separately.
Kernels: the number of generated kernels and the number of kernel invocations for a
single run.
Thread Count: the total number of parallel executions of the kernel(s) body for a single
run.
MegaGuards-Adaptive: the final acceleration device selection on the generated kernels
using our adaptive selection technique (see Section 3.4.5).
LOC: the lines-of-code counts for the Python and OpenCL C/C++ implementations of
the benchmark’s source code.
McCabe Cyclomatic Complexity: the Cyclomatic Complexity [38] of the Python
and OpenCL C/C++ implementations of the benchmark’s source code.

Our analyses of the benchmarks’ source code, i.e., LOC and McCabe Cyclomatic Com-
plexity, show that the plain Python implementations of the benchmarks are significantly less
complex than the OpenCL implementations.

4.3.2 Parallel Execution Performance
Figure 13 shows MegaGuards’s speedups normalized to ZipPy on a logarithmic scale. The
last set of bars represents the geometric mean performance of each system. We measured
the performance with the largest data sizes the Rodinia benchmark suite provides. We



M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:19

bl
ac

ks
ch

ol
es

ho
ts

po
t

lu
d

m
an

de
lb

ro
t

m
m

nb
od

y nn

pa
rti

cl
ef

ilt
er

pa
th

fin
de

r
sr

ad

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e

C C C C C C C C C CP P P P P P P P P P

Guards Optimization

Unboxing

Dependence Analysis

Bounds Check Optimization

Compilation

Data Transfer

Kernel Execution

C: Cold Run

P: Peak

Figure 14 Breakdown of MegaGuards passes for parallel execution.

Table 3 Time (in milliseconds) for each pass of the parallel execution.

blackscholes hotspot lud mandelbrot mm nbody nn particlefilter pathfinder srad

Cold Peak Cold Peak Cold Peak Cold Peak Cold Peak Cold Peak Cold Peak Cold Peak Cold Peak Cold Peak

Guards	  
Optimization 4 0 4 0 2 0 3 0 2 0 4 0 2 0 9 0 3 0 5 0

Unboxing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Dependence	  
Analysis 0 0 873 0 21 0 266 0 89 0 125 0 14 0 174 0 21 0 0 0

Bounds	  Check	  
Optimization 1 0 2 2 2 1 2 1 2 0 2 2 2 1 3 4 3 2 1 1

Compilation 2 0 2 0 2 0 2 0 3 0 2 0 2 0 4 0 1 0 1 0

Data	  Transfer 95 38 573 305 80 31 58 34 36 23 2 1 204 122 10 1 141 108 591 362

Kernel	  
Execution 592 563 95 101 2422 2353 187 342 1321 1221 3238 3247 4 3 89 68 9 11 803 808

also marked standard errors in the graph but the errors are too small to be seen except
in the MegaGuards-CPU run of particlefilter. Table 2 shows the execution time for each
benchmark complemented with the sequential execution time of ZipPy.

MegaGuards shows substantial speedups compared to other systems using pure Python
benchmarks. For this set of benchmarks, our system performed up to 802× faster than
ZipPy and 84× on average. MegaGuards approaches the performance of native hand-
optimized OpenCL C/C++ code (CPU and GPU), being only 2.82× slower on average,
without requiring extensive knowledge on heterogeneous computing frameworks. Note that
dynamic languages are typically one or two orders of magnitudes slower than C/C++.

Figure 14 shows the cost of each analysis pass in MegaGuards during a cold run (Cold
Run), and when utilizing pre-evaluated (i.e., cached) kernels (Peak). Table 3 shows the
execution time of each analysis pass for each benchmark (in milliseconds). Noticeably in
Figure 14, our guards optimization and bounds checking stages account for limited overhead
due to their inexpensive computations.

In the black-scholes and nbody benchmarks, MegaGuards approaches the performance

ECOOP 2018



16:20 MegaGuards

Table 4 Benchmark characteristics for parallel execution.

benchmark
Loops Kernels

Thread Count
MegaGuards-Adaptive LOC McCabe Cyclomatic

Complexity

Total Offloaded Gen. Exec. CPU GPU Python OpenCL Python OpenCL

blackscholes 2 1 1 100 8.4 x 108 0 1 51 203 13 41

hotspot 12 2 1 10 1.0 x 109 0 1 146 288 32 99

lud 3 2 2 1024 1.0 x 107 0 2 55 391 44 104

mandelbrot 3 3 1 1 6.7 x 107 0 1 42 183 16 51

mm 3 3 2 2 8.4 x 106 0 2 29 230 15 49

nbody 2 2 1 1 6.6 x 104 0 1 34 192 10 44

nn 3 1 1 1 1.6 x 107 0 1 82 456 24 67

pathfinder 2 1 1 101 3.0 x 107 0 1 63 258 22 92

particlefilter 36 16 10 94 1.2 x 106 0 10 255 719 101 205

srad 9 4 2 4 2.1 x 108 0 2 89 477 27 136

Median 3 2 1 7 3.0 x 107 0 1 59 273 23 79.5

Offloaded: Number of offloaded loops. Gen.: Number of generated kernels. Exec.: Number of kernels’ executions.

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

0

1

2

4

8

16

32

64

128

256
blackscholes

20
48

40
96

61
44

81
92

10
24

0
0
1
2
4
6
8

12
16
20
24
28
32

hotspot

51
2

10
24

15
36

20
48

30
72

0
1
2
4
8

12
16
20
24
28
32
36
40
44

lud

64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0
1
2
4
8

16
32
64

128
256
512

mandelbrot

51
2

10
24

15
36

20
48

0
1
2
4
8

16
32
64

128
256
512

1024
mm

40
96

81
92

16
38

4

32
76

8

65
53

6
0

1

2

4

8

16

32

64

128

160
nbody

2M 4M 8M 16
M

32
M

0
1
2
4
6
8

12
16
20
24
28
32

nn

10
24

20
48

40
96

61
44

81
92

10
24

0
0
1
2
4
8

16
32
64

128
256
512

particlefilter

10
0K

20
0K

30
0K

40
0K

50
0K

0
1
2
4
8

12
16
20
24
28
32
36
40
44

pathfinder

20
48

30
72

40
96

61
44

71
68

0
1
2
3
4
5
6
7
8
9

10
srad

Benchmarks input sizes

S
p
e
e
d
u
p
 o

v
e
r 

Z
ip

P
y

MegaGuards-CPU MegaGuards-GPU MegaGuards-Adaptive

Figure 15 Peak performance of MegaGuards with different data sizes for parallel execution.

of the OpenCL C/C++ implementations and is able reduce the number of bounds and
overflow checks significantly (see Section 3.3.3). MegaGuards outperformed ZipPy by 217×
and 154×.

The mm and mandelbrot benchmarks had minimal data transfer rates, and have 2-level
nested loops that MegaGuards assigned to a 2-dimensional thread range (see Section 3.4.3).
This resulted in large speedups, especially when executing on GPU acceleration devices. In
the mm benchmark, MegaGuards created two specialized kernels for the same loop, one
for double floating point-typed variables and one for long integer-typed variables. NVIDIA’s
optimized OpenCL implementation of mm outperformed MegaGuards by 14.2×. The
reason is that this hand-optimized OpenCL implementation aggressively exploits data locality
between local threads. Plus, unlike Python, the OpenCL code does not include safety checks
for detecting out-of-bounds array accesses and arithmetic overflows because in a static
language like OpenCL writing a safe code is user’s responsibility. MegaGuards bounds and
overflow checks enforcement value the safety of the kernel operations and guarantees integrity
of the result. Nevertheless, the high performance of the mm benchmark on MegaGuards
demonstrates the flexibility of our system to adapt to type changes at run time without
degrading performance.



M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:21

1 2 3 4 5 6 7 8
0

1

2

4

8

16

32

64

128

256

512

1024

2048
GeoMean

Running steps

S
p
e
e
d
u
p
 o

v
e
r 

Z
ip

P
y

MegaGuards-CPU

MegaGuards-GPU

MegaGuards-Adaptive

OpenCL-GPU C/C++

OpenCL-CPU C/C++

Figure 16 Mean speedup of warming up steps of MegaGuards normalized runs for ZipPy.

The situation in particlefilter, srad, hotspot and lud is similar. MegaGuards generated
ten, two, one and two specialized kernels for these benchmarks respectively. Most kernels were
assigned to a 1-dimensional thread range in particlefilter and lud, and to 2-dimensional thread
ranges in srad and hotspot. In the OpenCL-GPU implementation, the core computation of
particlefilter, srad, hotspot and lud features cooperative local threads that share data through
a local cache. As a result, OpenCL-GPU outperformed MegaGuards using a GPU by 1.6×,
3.4×, 2× and 15.2×, respectively.

Overall, we observed that acceleration-compatible loops experienced speedups by up to
an order of magnitude under MegaGuards.

4.3.3 Peak Performance with Various Input Sizes
To show the scalability of MegaGuards, we measured the peak performance with different
data sizes. The results are normalized to the sequential ZipPy implementation. As shown
in Figure 15, MegaGuards yields performance gains relative to the size of the inputs.
MegaGuards-Adaptive follows the best device performance curves with the varying input
sizes and relieves the user from manually setting a specific accelerator device.

4.3.4 Performance of MegaGuards on Each Run Step
So far, we only measured the peak performance of ZipPy. We gave ZipPy’s underlying
Truffle/Graal stack and PyPy a couple of warm up runs to specialize, optimize and compile
every hot path in ZipPy’s AST into x86 machine code. MegaGuards, by contrast, specializes,
optimizes and compiles the program’s hottest paths (i.e., loops) immediately. MegaGuards
therefore brings even greater performance benefits to end users who do not warm up the
program interpreter.

These performance benefits are illustrated in Figure 16. In this figure, we see the
mean performance of each run of our benchmarks. In the first run, ZipPy is executing the
benchmarks in the interpreter. Through the second to the sixth runs, the JIT compiler

ECOOP 2018



16:22 MegaGuards

1 2 3 4 5 6 7 8
0

1

2

4

8

16

32

64

128

160
GeoMean

Running steps

S
p
e
e
d
u
p
 o

v
e
r 

Z
ip

P
y

MegaGuards-CPU (1 CU)

MegaGuards-CPU (2 CUs)

MegaGuards-CPU (4 CUs)

MegaGuards-CPU (6 CUs)

MegaGuards-CPU (8 CUs)

Figure 17 Mean speedup of warming up steps of MegaGuards-CPU with various CU counts
normalized runs for ZipPy.

blackscholes hotspot lud mandelbrot mm nbody nn particlefilter pathfinder srad GeoMean
0

1

2

4

8

16

32

S
p
e
e
d
u
p
 o

v
e
r 

M
e
g
a
G

u
a
rd

s-
G

P
U

w
it

h
o
u
t 

K
D

M 6.54
8.17

13.55

1.14 1.01 1.00 1.01
1.22

17.16

1.82

2.82

Figure 18 Effect of KDM optimization on MegaGuards.

specializes and optimizes the code. After that, ZipPy reaches a steady state. By contrast,
MegaGuards specializes the loop from the first run, thanks to our type stability analysis
before executing a loop. This leads to large performance benefits instantly. During the
run steps, our MegaGuards-Adaptive execution mode explores acceleration devices and
benchmarks their performance at run time until it settles on the best device.

4.3.5 Scalability

Figure 17 shows how MegaGuards scales with the number of CUs. We scaled the number
of available CUs for the CPU OpenCL device and measured the mean performance of each
run of our benchmarks. MegaGuards shows performance gains as we increase the number
of CUs.

We see the down curve in the middle of the performance graph. This is because the CPU
is shared among other processes such as the Graal compiler’s background analysis. This
also explains MegaGuards-CPU underperforms compared to OpenCL-CPU C/C++ in
Figure 13.



M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:23

4.3.6 Effect of Kernel Data Management

In Figure 18, we show the effect of our kernel data management optimization on peak
performance. This optimization yields an average performance gain of 2.82×. The KDM
optimization provides the larger performance gains for the benchmarks with the higher data
transfer rates.

5 Related Work

5.1 Type Inference and Guards Optimization

Several guards optimizations [4, 32, 17] have been proposed to reduce the number of type
checks during executions of a dynamically-typed languages. Bebenita et al. proposed a
profile-based guards optimization that significantly reduces the number of type checks on hot
execution paths [4]. Dot et al. proposed a HW/SW-based profiling mechanism to reduce the
number of guards [17]. The disadvantage of this approach is that the profiling itself incurs
some overhead, and that guards optimization only applies to code paths that execute during
profiling. MegaGuards, by contrast, would also optimize those code paths. Kedlaya et al.
proposed to optimize guards using type inference and type feedback [32]. The type inference
phase has similarities to our approach, but does enforce guards around global variables and
function calls. MegaGuards, on the other hand, propagates global variable types to the
generated mega guard and creates internal specialized variants of functions based on their
argument types. Thus, the MegaGuards-specialized AST contains guards-less regions with
static typing properties and optimized bounds and overflow checks.

5.2 Heterogeneous Programming in Dynamic Languages

Although their popularity resulted from ease of use and high productivity, dynamically-typed
languages are less attractive in terms of performance given their traditional lack of support
for parallelism. PyCUDA and PyOpenCL facilitate native GPU programming in Python to
enable accelerations on parallel hardware for dynamically-typed languages [33]. Harnessing
the full potential of GPU with these platforms, however, requires low-level understanding of
heterogeneous programming models and faces a steep learning curve.

Several programming models have been proposed to ease the exploitation of parallel
hardware for dynamically-typed languages. Numba [34] and unPython [23] proposed an
annotation-based solution to perform vectorized operations on both CPU and GPU. Theano
provides a set of pre-compiled vector operations for GPUs [5]. Copperhead is a Python
programming model that performs GPU parallelization using aggregate operations, called
skeletons, such as map and reduce, that are implicitly parallel [11]. Chakravarty et al. also
proposed a similar skeleton-based aggregate operations to dynamically generate GPU code
for Haskell programs [12]. Jibaja et al. proposed a language extension for JavaScript to
support SIMD vector instructions [29]. This requires users to explicitly specify data types of
program operations. River Trail [27] proposed a programming model for the implicitly parallel
operations targeting OpenCL acceleration devices. To get the full performance benefits,
however, these approaches require code annotations and the use of parallel libraries and
special type definitions such as parallel arrays and NumPy’s type system. The overarching
goal of this paper is, however, to automatically and transparently exploit heterogeneous
parallel hardware without code rewriting and knowledge of underlying system architecture.

ECOOP 2018



16:24 MegaGuards

5.3 Auto-Parallelization for Dynamic Languages
There are previous approaches to automatically vectorize or parallelize vector computations in
dynamically-typed languages [50, 41, 54, 45]. Plangger and Krall introduced a vectorization
technique that uses SIMD vector instructions on the CPU [45]. The technique is employed in
PyPy. Plangger and Krall also applied loop unrolling and array bounds check optimizations
to enhance the vectorization. This solution relies on NumPy’s type system, however, and
only works for loops whose structure matches one of the patterns supported by the tool.
Similarly, Riposte [50] and pqR [41] exploit parallelism on the CPU vector operations for the
R language. Wang et al. vectorize the Apply class of operations targeting multi-core CPUs
and GPUs [54].

Fumero et al. offload the Apply to GPU using the collected type information profile on
Graal’s partial evaluation [21]. Their approach bears some similarities with ours in how they
check input data types before offloading and how they handle mis-speculations occurred while
executing kernels. However, Fumero et al. rely on a language’s parallel semantic, i.e., Apply
and still requires that developers deal with the effects of arithmetic overflows themselves. On
the other hand, MegaGuards is not confined to certain types of operations, such as vector
computations, or specific forms of operations, such as operations in the Apply class, which
is what prior work does. Moreover, MegaGuards ensures the integrity of the computed
results with its in place bounds and overflow checks.

Ma et al. proposed pR that automatically parallelizes loops and independent tasks from
unmodified R code [37]. pR identifies all parallelizable elements including loop iterations and
methods and dispatches them to multiple CPU cores. pR does not incorporate a JIT compiler
but it conducts dependence analysis and parallelization at the interpretation level. With this
feature, pR does not require complicated pointer and type analysis for parallelization because
the language itself does not have pointers and types. However, this approach hardly benefits
from SIMD exection on the GPU because the interpreter has complex control flows and
frequently accesses shared VM state, which must generally be avoided during GPU execution.
MegaGuards’s parallelization is part of the JIT compilation process, and the generated
code does not contain complex control flow instructions or accesses to shared VM state.

Thread-level speculation (TLS) based approaches facilitate automatic parallelization for
dynamically-typed languages at the JIT compilation level [39, 40]. Mehrara et al. proposes
a system that dynamically parallelizes data-parallel loops in JavaScript by handling runtime
type changes based on TLS [39]. In this mechanism, all live-in data is saved before speculative
execution and when there is a speculation failure (e.g., a type change), the program restarts
from the checkpoint with the saved data. Na et al. leverages the property of idempotence
to recompute the mis-speculated loops without side effect [40], instead of checkpoint-and-
recovery which may require handling of large amount of data. However, both of these
TLS-based approaches do not remove speculations in multi-threaded execution. This makes
it hard to move to GPUs because the mis-speculation penalty of the kernel execution is
significant either with checkpointing or recomputing, due to the excessive data transfer and
kernel invocation overhead. Furthermore, the mis-speculation handling code may result in
complex control-flows, which should be avoided in the kernel execution. In this paper, we
separate speculations from the offloaded kernel code based on our type feedback and analysis.
This feature makes MegaGuards effectively accelerate dynamically-typed languages on
GPUs.

Generally, none of these techniques apply to multiple languages since the previous
approaches are either based on single language platforms [37, 39] or rely on language-specific
primitives [54, 21]. MegaGuards, by contrast, parallelizes for loops, which are a near-



M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:25

universal language construct, and preserves portability of the programs. Since MegaGuards
is based on Truffle, a multi-language platform, our approach therefore generalizes to other
Truffle languages, such as R, JavaScript, and Ruby.

6 Conclusions

We have presented the design and implementation of MegaGuards, a new system that
automatically and transparently optimizes Python programs by offloading compute-intensive
kernels to accelerator devices. The key component in our system is an a priori type stability
analysis step that overcomes the speculative limitations of type feedback by analyzing
potential, future type changes. Only after this analysis ensures that no unexpected type
changes can occur, we continue to optimize the code for execution on acceleration devices; if
a dependence is detected, we mark the code for sequential execution.

Because our system is built on top of the ZipPy Python 3 virtual machine, which itself
builds on the Truffle framework, MegaGuards generalizes to all other Truffle languages,
such as TruffleRuby and FastR. All the major Truffle languages—JavaScript, R, and Ruby—
can, therefore, directly benefit from the presented techniques and their implementations and
enjoy “free” and significant speedups.

Although MegaGuards is just a first step, our results indicate that this research direction
holds tremendous potential for further investigation. Presently, we are interested in extending
MegaGuards in multiple ways. First, we plan on improving the adaptive device selection
to be able to select the best device for generated kernels ahead-of-time. Second, we plan to
apply our a priori type stability analysis on a complete program to produce a precompiled
and optimized executable form. Moreover, our plan is to add support for heterogeneous
computing to generators [62]. Finally, support for collaborative CPU and GPU parallelism is
also an interesting research direction.

References
1 Keith Adams, Jason Evans, Bertrand Maher, Guilherme Ottoni, Andrew Paroski, Brett

Simmers, Edwin Smith, and Owen Yamauchi. The hiphop virtual machine. In Proceed-
ings of the 2014 ACM International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA ’14, pages 777–790, New York, NY, USA, 2014. ACM.

2 Joshua Auerbach, David F. Bacon, Ioana Burcea, Perry Cheng, Stephen J. Fink, Rodric
Rabbah, and Sunil Shukla. A compiler and runtime for heterogeneous computing. In
Proceedings of the 49th Annual Design Automation Conference, DAC ’12, pages 271–276.
ACM, 2012.

3 Muthu Manikandan Baskaran, J. Ramanujam, and P. Sadayappan. Automatic c-to-cuda
code generation for affine programs. In Proceedings of the International Conference on
Compiler Construction, CC’10, pages 244–263. Springer-Verlag, 2010.

4 Michael Bebenita, Florian Brandner, Manuel Fahndrich, Francesco Logozzo, Wolfram
Schulte, Nikolai Tillmann, and Herman Venter. Spur: A trace-based jit compiler for cil.
In Proceedings of the ACM International Conference on Object Oriented Programming Sys-
tems Languages and Applications, OOPSLA ’10, pages 708–725, New York, NY, USA, 2010.
ACM.

5 James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guil-
laume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano: a CPU
and GPU math expression compiler. In Proceedings of the Python for Scientific Computing
Conference (SciPy), 2010.

ECOOP 2018



16:26 MegaGuards

6 Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. Pypy, 2017. URL:
http://pypy.org/.

7 Kevin J. Brown, HyoukJoong Lee, Tiark Rompf, Arvind K. Sujeeth, Christopher De Sa,
Christopher Aberger, and Kunle Olukotun. Have abstraction and eat performance, too:
Optimized heterogeneous computing with parallel patterns. In Proceedings of the 2016
International Symposium on Code Generation and Optimization, CGO 2016, pages 194–
205. ACM, 2016.

8 Stefan Brunthaler. Efficient interpretation using quickening. In Proceedings of the 6th
Symposium on Dynamic Languages, DLS ’10, pages 1–14. ACM, 2010.

9 Stefan Brunthaler. Inline caching meets quickening. In Proceedings of the 24th European
Conference on Object-oriented Programming, ECOOP’10, pages 429–451. Springer-Verlag,
2010.

10 Michael Burke, Ron Cytron, Jeanne Ferrante, and Wilson Hsieh. Automatic generation of
nested, fork-join parallelism. The Journal of Supercomputing, 3(2):71–88, 1989.

11 Bryan Catanzaro, Michael Garland, and Kurt Keutzer. Copperhead: Compiling an embed-
ded data parallel language. In Proceedings of the 16th ACM Symposium on Principles and
Practice of Parallel Programming, PPoPP ’11, pages 47–56. ACM, 2011.

12 Manuel M.T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod
Grover. Accelerating haskell array codes with multicore gpus. In Proceedings of the Sixth
Workshop on Declarative Aspects of Multicore Programming, DAMP ’11, pages 3–14. ACM,
2011.

13 Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha Lee,
and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous computing. In Pro-
ceedings of the 2009 IEEE International Symposium on Workload Characterization, IISWC
’09, pages 44–54. IEEE Computer Society, 2009.

14 Shuai Che, Jeremy W. Sheaffer, Michael Boyer, Lukasz G. Szafaryn, Liang Wang, and
Kevin Skadron. A characterization of the rodinia benchmark suite with comparison to
contemporary cmp workloads. In Proceedings of the IEEE International Symposium on
Workload Characterization, IISWC ’10, pages 1–11. IEEE Computer Society, 2010.

15 Continuum Analytics. Numba benchmark suite, 2017. URL: https://github.com/numba/
numba-benchmark.

16 L Peter Deutsch and Allan M Schiffman. Efficient implementation of the smalltalk-80
system. In Proceedings of the 11th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 297–302. ACM, 1984.

17 G. Dot, A. Martinez, and A. Gonzalez. Removing checks in dynamically typed languages
through efficient profiling. In 2017 IEEE/ACM International Symposium on Code Gener-
ation and Optimization (CGO), pages 257–268, Feb 2017.

18 Christophe Dubach, Perry Cheng, Rodric Rabbah, David F. Bacon, and Stephen J. Fink.
Compiling a high-level language for gpus: (via language support for architectures and com-
pilers). In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’12, pages 1–12. ACM, 2012.

19 Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug Simon, and
Hanspeter Mössenböck. An intermediate representation for speculative optimizations in
a dynamic compiler. In Proceedings of the 7th ACM Workshop on Virtual Machines and
Intermediate Languages, VMIL ’13, pages 1–10, New York, NY, USA, 2013. ACM. doi:
10.1145/2542142.2542143.

20 Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The program dependence graph
and its use in optimization. ACM Transactions on Programming Languages and Systems
(TOPLAS), 9(3):319–349, 1987.

http://pypy.org/
https://github.com/numba/numba-benchmark
https://github.com/numba/numba-benchmark
http://dx.doi.org/10.1145/2542142.2542143
http://dx.doi.org/10.1145/2542142.2542143


M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:27

21 Juan Fumero, Michel Steuwer, Lukas Stadler, and Christophe Dubach. Just-in-time gpu
compilation for interpreted languages with partial evaluation. In Proceedings of the 13th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments,
VEE ’17, pages 60–73, New York, NY, USA, 2017. ACM.

22 Juan José Fumero, Toomas Remmelg, Michel Steuwer, and Christophe Dubach. Runtime
code generation and data management for heterogeneous computing in java. In Proceedings
of the Principles and Practices of Programming on The Java Platform, PPPJ ’15, pages
16–26. ACM, 2015.

23 Rahul Garg and José Nelson Amaral. Compiling python to a hybrid execution environ-
ment. In Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics
Processing Units, GPGPU-3, pages 19–30. ACM, 2010.

24 Tobias Grosser, Albert Cohen, Justin Holewinski, P. Sadayappan, and Sven Verdoolaege.
Hybrid hexagonal/classical tiling for gpus. In Proceedings of Annual IEEE/ACM Inter-
national Symposium on Code Generation and Optimization, CGO ’14, pages 66:66–66:75.
ACM, 2014.

25 Tobias Grosser, Armin Groesslinger, and Christian Lengauer. Polly—performing polyhe-
dral optimizations on a low-level intermediate representation. Parallel Processing Letters,
22(04):1250010, 2012.

26 Gregory D. Hager, Mark D. Hill, and Katherine Yelick. Opportunities and challenges for
next generation computing, 2015.

27 Stephan Herhut, Richard L. Hudson, Tatiana Shpeisman, and Jaswanth Sreeram. River
trail: A path to parallelism in javascript. In Proceedings of the 2013 ACM SIGPLAN Inter-
national Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’13, pages 729–744, New York, NY, USA, 2013. ACM.

28 Kazuaki Ishizaki, Akihiro Hayashi, Gita Koblents, and Vivek Sarkar. Compiling and opti-
mizing java 8 programs for gpu execution. In Proceedings of the 2015 International Confer-
ence on Parallel Architecture and Compilation, PACT ’15, pages 419–431. IEEE Computer
Society, 2015.

29 Ivan Jibaja, Peter Jensen, Ningxin Hu, Mohammad R. Haghighat, John McCutchan, Dan
Gohman, Stephen M. Blackburn, and Kathryn S. McKinley. Vector parallelism in javascript:
Language and compiler support for simd. In Proceedings of the 2015 International Con-
ference on Parallel Architecture and Compilation, PACT ’15, pages 407–418, Washington,
DC, USA, 2015. IEEE Computer Society.

30 Onur Kayıran, Adwait Jog, Mahmut Taylan Kandemir, and Chita Ranjan Das. Neither
more nor less: optimizing thread-level parallelism for gpgpus. In Proceedings of the 22nd
international conference on Parallel architectures and compilation techniques, pages 157–
166. IEEE Press, 2013.

31 Onur Kayiran, Nachiappan Chidambaram Nachiappan, Adwait Jog, Rachata Ausavarung-
nirun, Mahmut T Kandemir, Gabriel H Loh, Onur Mutlu, and Chita R Das. Managing
gpu concurrency in heterogeneous architectures. In Microarchitecture (MICRO), 2014 47th
Annual IEEE/ACM International Symposium on, pages 114–126. IEEE, 2014.

32 Madhukar N. Kedlaya, Jared Roesch, Behnam Robatmili, Mehrdad Reshadi, and Ben
Hardekopf. Improved type specialization for dynamic scripting languages. In Proceedings
of the 9th Symposium on Dynamic Languages, DLS ’13, pages 37–48, New York, NY, USA,
2013. ACM.

33 Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan Catanzaro, Paul Ivanov, and Ahmed
Fasih. Pycuda and pyopencl: A scripting-based approach to gpu run-time code generation.
Parallel Computing, 38(3):157–174, 2012.

ECOOP 2018



16:28 MegaGuards

34 Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based python jit
compiler. In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in
HPC, LLVM ’15, pages 7:1–7:6, New York, NY, USA, 2015. ACM.

35 Alan Leung, Ondřej Lhoták, and Ghulam Lashari. Automatic parallelization for graphics
processing units. In Proceedings of the 7th International Conference on Principles and
Practice of Programming in Java, PPPJ ’09, pages 91–100. ACM, 2009.

36 Thibaut Lutz and Vinod Grover. Lambdajit: A dynamic compiler for heterogeneous op-
timizations of stl algorithms. In Proceedings of the 3rd ACM SIGPLAN Workshop on
Functional High-performance Computing, FHPC ’14, pages 99–108. ACM, 2014.

37 X. Ma, J. Li, and N. F. Samatova. Automatic parallelization of scripting languages: Toward
transparent desktop parallel computing. In 21th International Parallel and Distributed Pro-
cessing Symposium (IPDPS 2007), Proceedings, 26-30 March 2007, Long Beach, California,
USA, pages 1–6. IEEE, March 2007. doi:10.1109/IPDPS.2007.370488.

38 T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineering, SE-
2(4):308–320, Dec 1976.

39 Mojtaba Mehrara, Po-Chun Hsu, Mehrzad Samadi, and Scott Mahlke. Dynamic paral-
lelization of javascript applications using an ultra-lightweight speculation mechanism. In
Proceedings of the 2011 IEEE 17th International Symposium on High Performance Com-
puter Architecture, HPCA ’11, pages 87–98. IEEE Computer Society, 2011.

40 Yeoul Na, Seon Wook Kim, and Youngsun Han. Javascript parallelizing compiler for exploit-
ing parallelism from data-parallel html5 applications. ACM Trans. Archit. Code Optim.,
12(4):64:1–64:25, 2016.

41 Radford M. Neal. pqr, 2016. URL: http://www.pqr-project.org/.
42 NVIDIA Corporation. Cuda, 2017. URL: https://developer.nvidia.com/cuda-zone.
43 NVIDIA Corporation. Nvidia opencl sdk code samples, 2017. URL: https://developer.

nvidia.com/opencl.
44 Michael F. P. O’Boyle, Zheng Wang, and Dominik Grewe. Portable mapping of data parallel

programs to opencl for heterogeneous systems. In Proceedings of the 2013 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), CGO ’13, pages
1–10. IEEE Computer Society, 2013.

45 Richard Plangger and Andreas Krall. Vectorization in pypy’s tracing just-in-time compiler.
In Proceedings of the 19th International Workshop on Software and Compilers for Embedded
Systems, SCOPES ’16, pages 67–76, New York, NY, USA, 2016. ACM. doi:10.1145/
2906363.2906384.

46 Philip C. Pratt-Szeliga, James W. Fawcett, and Roy D. Welch. Rootbeer: Seamlessly using
gpus from java. In Proceedings of the 2012 IEEE 14th International Conference on High
Performance Computing and Communication & 2012 IEEE 9th International Conference
on Embedded Software and Systems, HPCC ’12, pages 375–380. IEEE Computer Society,
2012.

47 Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach. Generating per-
formance portable code using rewrite rules: From high-level functional expressions to high-
performance opencl code. In Proceedings of the 20th ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2015, pages 205–217. ACM, 2015.

48 John E. Stone, David Gohara, and Guochun Shi. Opencl: A parallel programming standard
for heterogeneous computing systems. IEEE Des. Test, 12(3):66–73, 2010.

49 Secure Systems and Software Laboratory. Zippy, 2015. URL: https://github.com/
securesystemslab/zippy.

50 Justin Talbot, Zachary DeVito, and Pat Hanrahan. Riposte: A trace-driven compiler and
parallel vm for vector code in r. In Proceedings of the 21st International Conference on
Parallel Architectures and Compilation Techniques, PACT ’12, pages 43–52. ACM, 2012.

http://dx.doi.org/10.1109/IPDPS.2007.370488
http://www.pqr-project.org/
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/opencl
https://developer.nvidia.com/opencl
http://dx.doi.org/10.1145/2906363.2906384
http://dx.doi.org/10.1145/2906363.2906384
https://github.com/securesystemslab/zippy
https://github.com/securesystemslab/zippy


M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz 16:29

51 Peng Tu and David Padua. Automatic array privatization. In Compiler optimizations for
scalable parallel systems, pages 247–281. Springer, 2001.

52 Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Christian Ten-
llado, and Francky Catthoor. Polyhedral parallel code generation for cuda. ACM Trans.
Archit. Code Optim., pages 54:1–54:23, 2013.

53 Sven Verdoolaege and Tobias Grosser. Polyhedral extraction tool. In In Second Interna-
tional Workshop on Polyhedral Compilation Techniques (IMPACT ’12), 2012.

54 Haichuan Wang, David Padua, and Peng Wu. Vectorization of apply to reduce interpreta-
tion overhead of r. In Proceedings of the 2015 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015,
pages 400–415. ACM, 2015.

55 Haichuan Wang, Peng Wu, and David Padua. Optimizing r vm: Allocation removal
and path length reduction via interpreter-level specialization. In Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Optimization, CGO ’14,
pages 295:295–295:305. ACM, 2014.

56 Zheng Wang, Daniel Powell, Björn Franke, and Michael O’Boyle. Exploitation of GPUs
for the Parallelisation of Probably Parallel Legacy Code, pages 154–173. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2014.

57 Thomas Wurthinger, Christian Wimmer, Christian Humer, Andreas Woss, Lukas Stadler,
Chris Seaton, Gilles Duboscq, Doug Simon, and Matthias Grimmer. Practical partial
evaluation for high-performance dynamic language runtimes. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2017, pages 662–676. ACM, 2017.

58 Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Duboscq,
Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. One vm to rule
them all. In Proceedings of the 2013 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software, Onward! 2013, pages 187–204.
ACM, 2013.

59 Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug Simon, and
Christian Wimmer. Self-optimizing AST interpreters. In Proceedings of the 8th symposium
on Dynamic languages - DLS ’12, page 73. ACM Press, 2012.

60 Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug Simon, and
Christian Wimmer. Self-optimizing ast interpreters. In Proceedings of the 8th Sympo-
sium on Dynamic Languages, DLS ’12, pages 73–82, New York, NY, USA, 2012. ACM.
doi:10.1145/2384577.2384587.

61 Wei Zhang. Efficient Hosted Interpreter for Dynamic Languages. PhD thesis, University
of California Irvine, 2015.

62 Wei Zhang, Per Larsen, Stefan Brunthaler, and Michael Franz. Accelerating iterators in
optimizing ast interpreters. In Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages & Applications, OOPSLA ’14, pages
727–743. ACM, 2014.

63 Haiping Zhao, Iain Proctor, Minghui Yang, Xin Qi, Mark Williams, Qi Gao, Guilherme
Ottoni, Andrew Paroski, Scott MacVicar, Jason Evans, and Stephen Tu. The hiphop
compiler for php. SIGPLAN Not., pages 575–586, 2012.

ECOOP 2018

http://dx.doi.org/10.1145/2384577.2384587

	Motivation
	Background
	Heterogeneous Programming Frameworks
	Interpreters and Virtual Machines

	The MegaGuards System
	Overview
	Lightweight Pre-assessment
	Guards Optimization
	Type Stability Analysis
	MegaGuards-Specialized AST
	Bounds Check Optimization
	Mega Guards Insertion

	Parallel Analysis and Execution
	Dependence Analysis
	Kernel Code Generation
	Thread Mapping
	Kernel Data Management
	Kernel Execution and Device Selection
	Execution of A Cached Kernel

	Guards-optimized Sequential Execution
	Implementation Capabilities and Limitations

	Evaluation
	Experimental Setup
	Effect of Guards Optimization
	Parallel Execution Performance and Complexity Analysis
	Characteristics of Kernels
	Parallel Execution Performance
	Peak Performance with Various Input Sizes
	Performance of MegaGuards on Each Run Step
	Scalability
	Effect of Kernel Data Management


	Related Work
	Type Inference and Guards Optimization
	Heterogeneous Programming in Dynamic Languages
	Auto-Parallelization for Dynamic Languages

	Conclusions

