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—— Abstract

Generalized inference systems have been recently introduced, and used, among other applications,
to define semantic judgments which uniformly model terminating computations and divergence.
We show that the approach can be successfully extended to more sophisticated notions of infinite
behaviour, that is, to express that a diverging computation produces some possibly infinite result.
This also provides a motivation to smoothly extend the theory of generalized inference systems
to include, besides coazioms, also corules, a more general notion for which significant examples
were missing until now. We first illustrate the approach on a A-calculus with output effects, for
which we also provide an alternative semantics based on standard notions, and a complete proof
of the equivalence of the two semantics. Then, we consider a more involved example, that is, an
imperative Java-like language with I/O primitives.
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1 Introduction

In semantic definitions of programming languages or systems, finite behaviour can be easily
modeled by inductive techniques. For instance, both in small-step and big-step operational
semantics, the fact that evaluation of an expression e terminates producing a final result
r can be formally expressed as a judgment e = r defined by an inference system?, so that
each valid judgment has a finite proof tree.

However, modeling infinite behaviour is not so easy. The simplest infinite behaviour we
may want to model is divergence in itself, that is, the fact that evaluation of e does not
terminate, as can be formally expressed by introducing a special result co. Traditionally, this
is modeled at the meta-level in small-step definitions: the inference system does not define
the judgment e = oo, but only single steps, and then we formalize divergence simply as “an

1 Member of GNCS (Gruppo Nazionale per il Calcolo Scientifico), INdAAM (Istituto Nazionale di Alta
Matematica "F. Severi")
2 In small-step style this judgment can be inductively defined on top of the one-step reduction relation.
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infinite sequence of steps”. In big-step semantics the situation is even worse: non terminating
and stuck computations are identified, since in both cases it is not possible to construct a
finite proof tree showing that the computation returns a result.

A simple solution, in both approaches, is to define e = oo by a separate inference system,
where inference rules are interpreted coinductively [8, 13]. However, in this way there are
two stratified systems with overlapping rules, and there is no unique formal definition of
the behaviour. The possibility of providing such unique definition has been investigated
in previous work [13, 3], by interpreting coinductively the standard rules for the big-step
operational semantics (coevaluation). Unfortunately, this approach is not satisfactory; for
instance, coevaluation is non-deterministic in some cases: for a diverging term such as
Q= (Az.z 2)(Az.z z), Q = r can be derived for any r, instead of the unique valid judgment
Q) = oo. Moreover, for some other diverging term, e.g., Q (0 0), no judgment can be derived,
since there is no valid judgment for the subterm 0 0. This happens because in an application
e1 eo, if we follow a left-to-right strategy, then divergence of e; should be propagated regardless
of ey, but this cannot be properly modeled due to the presence of spurious judgments Q = r.
In some recent work [6], it has been shown that both problems can be solved by defining
the judgment e = r by a generalized inference system [5]. This semantics can be seen as a
filtered coevaluation. Indeed, infinite proof trees are allowed, but appropriate coazxioms are
introduced to filter out spurious judgments 2 = r, so that, for all terms expected to diverge,
it is only possible to derive co as result. In this way, it is also possible to provide rules for
propagation of divergence, solving the second problem.

In the present paper, we face the problem of expressing more sophisticated notions of
infinite behaviour. That is, we want to model not only that evaluation of an expression e
could not terminate, but also that this diverging computation could produce some possibly
infinite result. For instance, if computations can have output effects because of expression
out e, then the result of a diverging computation could be a possibly infinite stream of output
values. More in general, the behaviour of a non terminating program is a possibly infinite
trace of observable events. As discussed above for pure divergence, this is modeled at the
meta-level in small-step definitions: the inference system does not define the judgment e = r
where r is an infinite result, but only single labelled steps, and then we define divergent
results as infinite sequences of labelled steps. On the other hand, again analogously to the
pure divergence case, big-step rules interpreted simply coinductively allow derivation of
spurious results. Hence, we investigate whether the approach of [6] could be effectively used
also in this more general case to filter out such judgments.

Our conclusion, illustrated in the body of the paper, is that the approach based on
filtered coevaluation works very well indeed for modeling trace semantics, or, more in general,
infinite behaviour of divergent programs. Moreover, an interesting result is that, to filter
out spurious judgments, we need to use not only coaxioms, but also corules. Corules were
not considered in the original definition of generalized inference systems [5], even though
formal definitions trivially extend to include them, simply for the lack of significant examples.
Modeling infinite behaviour offers exactly such a significant example: notably, corules are
needed to ensure that a diverging computation yields a possibly infinite result. For instance,
if expression out e is reached infinitely many times during the non terminating evaluation of
another expression, then the latter actually produces the effects of out e, providing that e
converges. Similar corules are needed for other constructs having other kinds of observable
behavior. Motivated by this important application, we present in this paper a slight variation
of generalized inference systems [5] which also includes corules; we will use “generalized
inference system” and “inference system with corules” as synonyms.
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Summarizing the above discussion, the novel contribution of this paper w.r.t. previous
work is not the general framework, which is the same of [5, 6] (except for the immediate
generalization from coaxioms to corules), including, e.g., the fixpoint theory, not reported
here. The novel, non trivial problem faced here is how to obtain, starting from an inductive
judgment defining the result of finite computations, an extended one defining the (possibly
infinite) result of infinite computations as well. We show that the problem can be solved by
adding suitable corules and considering the resulting generalized inference system. This has

been done in [6] only in the very special case where the only observable result is divergence.

The general case is more challenging and requires more complex corules.

The paper is structured as follows. Sect. 2 introduces inference systems with corules,
briefly recalling/extending the notions and results from [5]. In Sect. 3 we illustrate the
approach on a lambda calculus enriched with output effects. That is, we show that, by using
corules, we can directly define a unique judgment e = r where r is either a finite result (final

value and finite output stream) or an infinite result (co and possibly infinite output stream).

In Sect. 4 we show that, by only using standard techniques, namely, labeled transition
systems, coinduction, and observational equivalence, we can provide an alternative semantics
which, however, requires much more work. In Sect. 5 we formally prove the equivalence
of such two semantics. In Sect. 6 we consider a more involved example, that is, a simple
imperative Java-like language with I/O primitives. Finally, the most relevant related work is

surveyed in Sect. 7, and Sect. 8 concludes and outlines directions for further investigation.

The Appendix contains an algebraic presentation of the observational equivalence, some of
the proofs and additional examples.

2 Inference systems with corules

In this section, we provide a short introduction to inference systems with corules, needed to
make the paper self-contained. The material is largely taken from [5], apart that we consider,
besides coaxioms, corules with an analogous meaning. Here we focus on the proof-theoretic
view, which is essential for our aims.

First of all we recall standard notions about inference systems [1, 13]. Assume a set U
called the universe, whose elements are called judgments. An inference system T consists of

Pr
a set of (inference) rules, which are pairs —, with Pr C U the set of premises, ¢ € U the
c

consequence (a.k.a. conclusion). A rule with an empty set of premises is also called an aziom.

A proof tree is a tree whose nodes are (labeled with) judgments in U, and there is a node ¢

Pr
with set of children Pr only if there exists a rule —.
¢
The inductive interpretation of Z, denoted [Z]™™, is the set of judgments which are the
root of a finite? proof tree, whereas the coinductive interpretation of Z, denoted [Z]<", is
the set of judgments which are the root of an arbitrary (finite or infinite) proof tree.

Both interpretations can also be characterized set-theoretically as follows. We define the
P

(one step) inference operator Fz: p(U) — p(U) by Fr(S)={c| PrC S, e Z}. Aset Sis
c

closed if Fz(S) C S, and consistent if S C Fr(S). That is, no new judgments can be inferred

from a closed set, and all judgments in a consistent set can be inferred from the set itself.

Then, it can be proved that [Z]™™ is the smallest closed set, that is, the intersection of all

closed sets, and [Z coind j5 the largest consistent set, that is, the union of all consistent sets.

3 Under the common assumption that sets of premises are finite, otherwise we should say a well-founded
tree, that is, a tree with no infinite paths.

21:3
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We describe now the notion of inference system with corules.

» Definition 1 (Inference system with corules). An inference system with corules, or generalized
inference system, is a pair (Z,Z°°) where Z and Z are inference systems, whose elements
are called rules and corules, respectively.

Analogously to rules, the meaning of corules is to derive a consequence from the premises.
However, they can only be used in a special way, described in the following.

Given two inference systems Z and Z¢°, Z U Z is the (standard) inference system whose
rules are the union of those in Z and Z°. Moreover, given a subset S of the universe, 7,5
denotes the inference system obtained from Z by keeping only rules with consequence in S.
Then, the interpretation of an inference system with corules (Z,Z) is defined as follows.
1. First, we consider the inference system Z UZ° where corules can be used as rules as well,

and we take its inductive interpretation [Z U Z<]n.

2. Then, we take the coinductive interpretation of the inference system obtained from Z by
keeping only rules with consequence in [Z U Z<]ind.

Altogether, we get the following definition.

» Definition 2 (Interpretation of a generalized inference system). Let (Z,Z°) be a generalized
inference system. Then, its interpretation [Z,Z°] is defined by

[Z,Z%] = [Z)jzuzeopme] <™

In proof-theoretic terms, [Z,Z] is the set of judgments which have an arbitrary (finite
or infinite) proof tree in Z, whose nodes all have a finite proof tree in Z U Z¢. Note that
a finite proof tree in Z is a finite proof tree in Z U Z as well, hence the condition is only
significant for nodes which are roots of an infinite path in the proof tree.

We report now some examples from [5] which illustrate the expressive power of generalized
inference systems. Both examples only use corules with no premises (coazioms). Examples
which need corules with premises will be shown in the following section.

As usual, sets of rules can be expressed by a metarule with side conditions, and analogously

sets of corules can be expressed by a metacorule with side conditions. In the examples,
Pr

(meta)corules will be written ==, that is, with thicker lines, to be distinguished from
c

(meta)rules.

The first example computes the judgment n->A meaning that A is the set of nodes
reachable from a node n of a given graph. Let us represent a graph by its set of nodes V
and a function adj which returns all the adjacents of a node. The judgment is defined by
the generalized inference system (Z,Z°) where Z and Z are all the instances of (aps) and
(co-emprY) below, respectively.

SN . NG )
(ADJ) —5 adj(n) = {TL17 PN nk} (CO-EMPTY ) mmm—, |/
n=>{nfUNLU...UN; X
n—{

Consider, for instance, a graph with nodes a, b, ¢, with an arc from «a into b and conversely,
and c isolated. To show the aim of corules, let us first consider what happens if we only
consider metarule (apy), disregarding the corules. We have in this way a (standard) inference
system, which, as described above, can be interpreted either inductively or coinductively.
However, neither interpretation provides the desired meaning. Indeed, if we interpret (aps)
inductively, then we get only the judgment ci>{c}. On the other hand, if we interpret the

rules coinductively, then we get the correct judgments a=>{a,b} and b={a, b}, but we also
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get the wrong judgments a=>{a, b, ¢} and b=>{a, b, c}. For instance, the judgment a->{a, b, c}
has the infinite proof tree shown below.

(ADJ)%
a>{a,b,c}

bl>{a, b, c}
ai>{a, b, c}

(ADJ)

(ADJ)

If we take into account corules, instead, then the interpretation of the resulting generalized
inference system provides the desired meaning. For instance, in the example, the judgment

al>{a, b} has an infinite proof tree in Z where each node has a finite proof tree in ZUZ, as
shown below:

(ADJ)

(CO-EMPTY)

*% " (CO-EMPTY) "
a*){ch b} a—0 b—=0
(AD))———F————— (AD))————F——— (ADN)————F—
b—={a,b} b—={b} a—{a}
(ADJ) " (ADJ) m (ADJ) m
a—{a,b} a—{a,b} b—>{a,b}

whereas this is not the case for the judgment ai>{a, b, c}. In other words, corules filter out
undesired infinite proof trees.
Note that the inductive and coinductive interpretation of Z are special cases, notably:
the inductive interpretation of Z is the interpretation of (Z, ()

the coinductive interpretation of Z is the interpretation of (Z,{— | ¢ € U}).
c

In [5] it is shown that this corresponds to taking a fixed point of Fz which is, in general,
neither the least, nor the greatest.

We show now how the recursive definition of a function can be expressed as an inference
system with corules. Let Z denote the set of integers, L the set of (finite and infinite) lists of
integers, A the empty list and z:[ the list with head x and tail [.

The function which returns the greatest element contained in a (non empty) list is
expressed by judgments of shape maz(l,x), with € L and z € Z.

mas(l, )
maz(x:A,x)  mazx(z:l, 2)

z = max(x,y)
maz(x:l, x)

Without coaxioms the coinductive interpretation fails to be a function (for instance, for [
the infinite list of 1s, any judgment max(l, z) with z > 1 can be derived), and the coaxioms
“filter out” the wrong results. We refer to related work [5, 6] for other examples.

Several proof techniques have been proposed for generalized inference systems with
coaxioms [5]. For the aim of this paper, we only need the bounded coinduction principle
reported below, which is a generalization of the standard coinduction principle.

Let (Z,Z%) be a generalized inference system, and S (for “specification”) an intended set
of judgments, called valid in the following. Completeness, that is, the property that each
valid judgment can be derived (S C [Z,Z]), can be proved as follows:

» Theorem 3 (Bounded coinduction principle). If the following two conditions hold:
1. S C [TUZ]rd that is, each valid judgment has a finite proof tree in T U T;
2. § C F7(S), that is, each valid judgment is the consequence of an inference rule in T

where all premises are in S
then S C [Z,Z°].

21:5
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e v]xz|e ex|oute expression
von= 1| Azee value
L = w7 label
&l Ol&[] elv&[]|outé&]] evaluation context
et e
) ~ (ouT) ———— () ————— &[] # 0
(Az.e) v — e[z + ] out v — v Ele] = E[¢]

Figure 1 A-calculus with output effects: syntax and labeled transition system.

The standard coinduction principle can be obtained when 7« = {Q | ¢ € U}; for this
¢
particular case the first condition trivially holds.

3 Infinite behaviour by corules

As mentioned in the Introduction, in this paper we are interested in modeling infinite
behaviour. That is, in addition to explicitly model divergent computations, we would like
to also model their possibly infinite result. This infinite result can be thought of as what
an external observer can see during the infinite computation. In this section we show how
corules can be used to define such a semantics.

We illustrate the technique by an extension of the call-by-value lambda calculus with
output effects. The syntax is given in Fig. 1, together with a labeled transition system meant
to provide the reader with a simple formal account of the intended meaning.

We assume infinite sets of variables x and integer constants i. Values are defined in the
standard way, as either integer literals or lambda abstractions. Beyond standard constructs,
we added expressions of shape out e, which output the result of the evaluation of e.

As it is common practice, the reduction relation is decorated by a label £ representing
the observable effect of a single step. A label v represents an output effect, and can be
generated by rule (our), while a label T represents the absence of observable output and can
be generated by the S-rule. The rule (crx) is the usual contextual closure and defines the
standard (call-by-value and left-to-right) evaluation strategy.

As discussed in the Introduction, the labelled transition system in Fig. 1 models a single
evaluation step, and infinite behaviour is only obtained at the meta-level by considering
infinite sequences of labelled steps.

We show now a generalized inference system defining a judgment e = r which directly
models both finite and infinite behaviour of expressions.

The top section of Fig. 2 defines results r of (finite and infinite) computations. If the
evaluation of an expression terminates, then the result of the computation is of shape (v, 0)
where v is the final value, and o is the (necessarily finite) output stream produced during the
evaluation. If the evaluation of an expression diverges, hence there is no final value, then
the result is of shape (00, 0 ) Where 04 is the (possibly infinite) output stream produced
during the evaluation. Output streams are sequences of values delimited by square brackets
for readability. Streams grow left-to-right; hence, the rightmost element in a finite stream
corresponds to the most recent output value. Concatenation of two streams o - 0, is defined
in the usual way, under the assumption that the left-hand side operand must be finite.

The second section of Fig. 2 contains the generalized inference system defining the
judgment e = r, meaning that r is the (finite or infinite) result of the evaluation of e.
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(v,0) | (00, 000) result
= [vr...v] finite output
0 = O] [vl CUp finite/infinite output
D[] == Oe|O00O|outd (divergence) propagation context
e1 = (A\zr.e,01) e2 = (v,02) e[z v|=r
(VAL) —————— (APP)
v=(v[]) €1 €2 = 0102 T
e = (v,0) Vi=1l.n.¢ = (v,0;) e= (00,000)
(ouT) (p1v) —
oute = ( [v]) D[e", e] = (00,01 ...  0p * 0c0)
e = (v,0)
(CO-EMPTY) (co-ouT)
e = (00,[]) out e = (00,0 [V] - 0s0)

Figure 2 \-calculus with output effects: inference system with corules.

Propagation contexts can have one or two holes (all at fixed depth 1) and allow a more

concise treatment of divergence propagation with a single rule, see comments below for (pwv).

We recall that in rules thicker lines distinguish corules from rules.

Rule (vav) is straightforward: the evaluation of a value always converges to itself and
produces no output.

Rule (arr) is an extension of the usual big-step rule for application. First, the two
subexpressions are evaluated; if they both converge, then the body of the function is
evaluated after the formal parameter has been substituted with its argument. As usual,
e[z «+ v] denotes capture-avoiding substitution modulo a-renaming. The evaluation of the

body returns a general result, meaning that the evaluation may either converge or diverge.

The final result is obtained by suitably concatenating the output streams generated by the
evaluations of e; and ep with that generated by the evaluation of the body. If 7 = (vs, 00 ),
then o - 7 denotes (Vso, 0+ 000 ), Where vy, is either a value v or oo.

In rule (our), if the evaluation of e converges to a value v, then the whole expression
converges to the same value; moreover, the value v is added to the output stream o generated
by the evaluation of e.

The remaining rule (piv) deals with propagation of non termination and composition of the
corresponding output streams. Evaluation of the subexpressions in the holes of the context
proceeds from left to right and the subexpression corresponding to the rightmost hole is the
first one which diverges. In this simple language (divergence) propagation contexts have no
more than two holes, therefore the number n of subexpressions that converge can be either 0
or 1. More in detail, the context [J e corresponds to the case where application diverges
because the left-hand side expression does not terminate, whereas the context [J [ to the
case where the left-hand side expression terminates, whereas the right-hand side does not.
Finally, out [J propagates non termination of the unique subexpression of out e.

As explained in the previous section, corules are used to filter out spurious results of
divergent computations.

Corule (co-empry) deals with divergent computations which produce a finite output stream,
hence do not produce any output (we will also say that the infinite computation is “non-
productive”) from a certain point. In this case, as shown in the first two examples below,
(co-empry) prevents derivation of judgments with arbitrary output streams, similarly to the
examples shown in the previous section. In all such cases the only correct option is non-
termination with the empty output stream [ |.

21:7
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(VAL) (VAL)

(APP)

.z © = (Az.z z,[]) Az.z 2= (Az.z z,[]) Q= (z 2)[z < Az o] = 7
V1 = (arp)
Q=[] []r=r
Vl vl
Q= (v,0) Q1 = (00, 0c0)
(our) —————————— (by) ———
out 21 = (v, 0 [v]) out Q1 = (00, 000 )

Figure 3 Infinite proof trees for Example 1.

Corule (co-out) deals with non terminating terms which produce an infinite number of
values; this happens if expressions of shape out e are evaluated an infinite number of times.
The premise requires the subexpression e to converge to a value v, ensuring that the output
expression is actually evaluated, adding v to the output stream. In this way we guarantee
productivity, that may not hold if e diverges (see the difference between examples 2 and 3
below).

Example 1. As a first example, we consider the term out Qy, where Q; = (Az.z z) (\z.z );
the only derivable judgment is out 1 = (00, [ ]), corresponding to the expected semantics:
the evaluation of out €7 diverges and generates an empty output stream.

Indeed, a judgment out Q; = r is derivable if:

it has a possibly infinite proof tree with no corules

such proof tree is valid according to the corules, that is, each node has a finite proof tree

with corules.

The first condition is illustrated in Fig. 3. The top part of the figure shows the infinite proof
tree for the judgment Q1 = r, for all possible r, where the vertical dots indicate that the
proof continues with the same repeated pattern. Here and in the following examples, we add
to the proof tree some comments (with a grey background) showing an equivalent expression,
as a help for the reader. No other finite or infinite proof trees can be built for such judgment.
In such a simple case the proof tree is regular; however, there exist examples of divergent
computations with non regular proof trees.

For the evaluation of out €2; we can apply two different rules, depending on the shape of
r. If r is a converged result (v, 0), then the only applicable rule is (our), and we derive the
judgment out Q1 = (v,0- [v]); otherwise, r is a diverged result (00, 0+ ), and the judgment
out ) = (00, 0s) can be derived by rule (pwv).

Among all judgments derivable with an infinite tree built with only the rules as shown
above, the only one that is valid according to the corules is out 1 = (o0, [ ]); in this case it
suffices to exhibit a finite proof tree for ; = (00, [ ]) which can be built by applying also
the corules. Such a tree is trivial, thanks to coaxiom (co-empry):

(CO-EMPTY) m

By rule (ov), and from the trivial finite tree above, it is possible to derive a finite tree
also for the judgment out 2y = (o0, [ ]).

It is easy to see that instead, for r # (oo, [ ]), it is not possible to derive a finite tree,
built by also the corules, for the judgment 2y = r.
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(»\PP)%
Q2 = (00, 000)
(vAL)

(vAL) (D1v)

w2 = (w2, []) w2 = (w2, []) out Qs = (out (z z))[z + wa] = (00, 000)

Vo = (arp)
’ Q2 = [1-[]- (50 000)| = (001 020)

Figure 4 Infinite proof trees for Example 2.

M s = (s, )

out wz = (w:g, [Wa])

(VAL) (our)

(app)

ws = (w3, []) w3 (outwz) = (z (out z))[z < w3z] = (00, 00o)

Vs = (apP)

ws (outws) = (z (out z))[z ¢~ w3] =[] [ws] - (00, 0c0)

() w3z = (ws,[]) o ws = (ws, []) Vs

(APP)
Q3 =[] [](00,000) = (00,000)

Figure 5 Infinite proof tree for Example 3.

Example 2. As a second example, we consider the term Qo = wy we =(Az.out (z z))
(Az.out (z z)) and show that, as in the previous case, the only derivable judgment is
Q3 = (00,[]), as expected: the evaluation of Q3 does not terminate and does not output
any value.

By applying only the rules, the infinite proof tree shown in Fig. 4 can be built for the
judgment Qs = (00,04 ), for any possible 0. No judgments of shape Q5 = (v,0) can be
derived, because this could be achieved only with an infinite proof tree containing infinite
applications of rule (our) for the judgment out 3 = (v,0). This is not possible because
such a rule is applicable only for finite output streams, whereas the infinite applications
of (our) would force o to be infinite. Among all judgments derivable with an infinite tree
built with the rules as shown above, the only one that is valid according to the corules is
out 2 = (00, [ ]); in this case it is sufficient to exhibit a finite proof tree which uses also the
corules for the judgment out Q3 = (00,[]). Again, this can be simply obtained by corule

(CO-EMPTY):

(CO-EMPTY) out () — (007 [ ])
By rule (arp), and from the simple finite tree above, it is possible to derive a finite tree for
the judgment Qs = (00,[]) as well.

No finite proof tree can be derived for out Qs = (00, 0s) for any o, # [ ], because corule
(co-out) can be used only if Qs = (v,0) can be derived (by using also the corules) with a
finite tree, but this is not possible, because the only possible derivable trees are infinite, as
shown above.

Example 3. As a final example, we show that the only judgment derivable for Q3 = w3 w3 =
(Az.(z (outz))) (Az.(z (outz))) is Q3 = (00, [ws ... w3 ...]), corresponding to the expected
semantics: the evaluation of 23 diverges and generates the output stream consisting of
infinite occurrences of the value ws.

21:9
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In the system without corules it is possible to build only one proof tree, shown in Fig. 5,
which is infinite and forces the equation 0, = [ws3] * 00, Which admits a unique solution;
hence, the judgment Q3 = (00, 04 ) is derivable only for 05, = [w3 ... w3 ...]. Then, we have
to show that by considering also the corules we can derive finite proof trees for all judgments
involved in the proof tree for 23 = (00, 0 ); to this aim, it is sufficient to exhibit a finite
derivation just for the judgment (z (out z))[z < w3] = (00, 0s) at the root of proof tree V.

y———
(VAL) (co-ouT) ws = (w37 [ ])
wsz = (w3, []) out (w3) = (00, 0c0)

(p1v)

(z (out z))[z + w3] = [ ] (00, 000) = (00, 0cc)

By rule (arp) and from the finite tree above, it is possible to derive a finite tree as well for
Q3 = (00, 000)-

We conclude this section by proving a conservativity property [6] which we always
expect to hold for an operational semantics modeling also divergence, given through corules.
Namely, we require that the introduction of divergence does not affect standard convergent
computations, as formally stated in the following theorem. This property is important since
it implies that, for convergent judgments, we can reason by standard inductive techniques.

» Theorem 4 (Conservativity of e = r). If e = r holds, then r = (v,0) if and only if the
judgment has a finite proof tree.

Proof. Let us denote by (Z,Z°) the generalized inference system defining the judgment
e = r in Fig. 2, and by Z UZ the (standard) inference system that is the union of Z and
. If e = r is derivable in (Z,Z), then by definition all judgments in the proof tree have a
finite derivation in ZUZ, including the judgment itself. Noting that a rule’s conclusion is a
divergent judgment iff at least one of the premises is also divergent (see rules (oiv) and (arr)),
it can be shown by induction on the depth of the tree that r = (00,00, ) iff we use either
(co-emPTY) OF (co-out) in the tree. It follows that r = (v,0) iff we do not use (co-emery) and
(co-our) in the finite proof tree in Z U Z°, hence it is a finite proof tree in Z as needed. <«

4 Infinite behaviour by standard techniques

In this section we show that, by only using standard techniques, namely, labeled transition
systems (LTSs from now on), coinduction, and observational equivalence, we can provide an
alternative semantics for lambda calculus with output effects, which, however, is much more
involved than the direct definition provided in the previous section.

The starting point is the LTS introduced in Fig. 1. This (inductive) inference system
provides a very simple and intuitive model, which, however, is not abstract enough for
reasoning about the observable behaviour of programs. Namely, two expressions having
different sequences of labeled steps could be equivalent in terms of their observable behaviour.

To obtain, starting from the LTS, the same level of abstraction of the semantics defined
in the previous section, some additional work is needed.

First of all, as discussed in the Introduction, the overall result of a computation is only
modeled at the meta-level in the labeled transition system: that is, this inference system only
defines single steps, and then we say that there is “a possibly infinite sequence of labeled
steps”. To express this statement, instead, in a formal way, we can define, of top of the LTS,
another judgment e ~» 7 which associates with each expression e its result, consisting of
the final value, if any, or oo if diverging, and the possibly infinite stream of labels produced
during the computation. This judgment can be defined by standard coinduction, as detailed
below.
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7 u= (v,0)](00,0x) (rough) result
0,8 u= [l1...4y) finite stream
00 So0 o|[ly...4,...] finite/infinite stream
el e e
v (n[]) e [l-T s T

Figure 6 A-calculus with output effects: coinductive inference system.

However, not even this judgment is abstract enough, since, as mentioned above, different
sequences of labels could be equivalent in terms of observable behaviour, that is, roughly, 7
steps should be not relevant. In other words, results 7 obtained in this judgment need a further
abstraction step, consisting in the definition of an appropriate observational equivalence:
in the following, we will call them rough results, and we will call observable results those
obtained in the judgment defined in the previous section. We describe now in details the two
steps.

Computing rough results. The definition of the judgment e ~» 7 is given in Fig. 6.

The top section of the figure defines (rough) results 7 of (finite and infinite) computations.

The definition is analogous to that of (observable) results r in Fig. 2. However, here the
second component of a result is, rather than an output stream (a stream of values), a stream
of labels (called simply a stream from now on), corresponding to the fact that a computation
step can be silent (no output). Concatenation of two streams 0- 0 is also defined analogously
to that of output streams, hence requires that o is finite.

The second section of the figure contains the coinductive inference system defining the
judgment e ~» 7, meaning that 7 is the (rough) finite or infinite result of the evaluation of e.

Again analogously to output streams and (observable) results, we can extend concatenation
of streams to (rough) results by setting 0 - (vUso, 0oo) = (Uso, 0 - 00 ), Where vy, is either a
value v or oo.

A very important point to be noted and discussed is that the definition of the judgment
e ~ T is purely coinductive. Indeed, in Fig. 6, we used the notation of generalized inference
systems for uniformity, but, as mentioned on page 5, a generalized inference system with a
unique (meta)coaxiom where the consequence is any judgment exactly corresponds to the
inference system consisting of only the rules, interpreted coinductively.

In this case it is possible to give a purely coinductive definition, without incurring in
the problem of spurious judgment discussed in the Introduction for coevaluation, since the
definition is productive. That is, each time we apply the inference rule, we add a label ¢ to
the previously computed result, thus also infinite derivations admit a unique result. In order
to guarantee productivity, the presence of labels 7 is essential, even though they are not
interesting semantically, since they represent non-observable steps. This motivates the fact
that, as mentioned above, by using standard techniques we need two additional steps on top
of the labeled transition system: indeed, to be able to use pure coinduction we need rough
results, and then we need to identify rough results which are observationally equivalent. By
using corules, instead, as shown in the previous section, we are able to directly define the
(observable) behaviour by a unique judgment.

21:11

ECOOP 2018



21:12

Modeling Infinite Behaviour by Corules

0o R 0

= — n,méeN (CO) m—
mefo] O T [0] Ol B & Oy,

——— o, €NU
(TAU) —o o B « B {w} (VAL)T

Figure 7 Observational equivalence: coinductive inference system.

Also for the judgment e ~» T we can state a conservativity result analogous to Theorem 4,
implying that, for convergent judgments, we can reason by standard inductive techniques. In
this case, we have a one-to-one correspondence between finite proof trees and convergent
computations, and between infinite proof trees and divergent computations.

» Theorem 5 (Conservativity of e ~ 7). If e ~ T holds, then T = (v,0) if and only if the
judgment has a finite proof tree.

Proof. A finite proof tree for e ~» 7 needs to start from the axiom v ~ (v,[]), hence
7 = (v,0). On the other hand, an infinite proof tree for e ~> 7, since it adds a label to the
result at each level, requires the output stream in the result to be infinite, therefore, thanks
to the way we defined results, we get 7 = (00, 000 ). <

Observational equivalence. We discuss now how to define observational equivalence on
streams. Intuitively, since 7 labels represent non-observable actions, they should be ignored
when comparing two streams: for instance, streams [v; 7 v3] and [v; v2] should be equivalent.
Therefore we need to relax equality to another equivalence relation, denoted by =2, coinduct-
ively defined by the inference system shown in Fig. 7, where 7™ is the stream of length n
made of only 7s and 7% is the infinite stream of s.

The intuition behind this definition is that sequences of 7 of arbitrary length are equivalent
to [ ] (as stated in rule (rav)), hence they can be removed or added without changing the
observable view (non-7 elements) of the stream. Note that the two rules are disjoint, since
the consequence of the second rule requires an element of the stream to be different from
7 on both sides, hence it may not happen that a stream made of only 7s is equivalent to
a stream that contains non-7 elements. As in Fig. 6, the unique (meta)coaxiom where the
consequence is any judgment corresponds to take the coinductive interpretation of the two
rules.

This relation is indeed an equivalence, as formally stated below (the proof is in the
Appendix).

» Proposition 6. The relation =~ is an equivalence relation over (finite or infinite) streams.

A more abstract view of the relation = can be given in categorical terms, namely as
a bisimulation on a coalgebra structure carried by the set of streams. For the interested
reader, this alternative definition is reported, and shown to be equivalent to the previous
one, in the Appendix, Sect. A. To follow the next section, it is important to know that,
following this definition, two streams are identified if and only if they are mapped to the
same output stream by a function e, that removes 7s from a stream, which can be described
by the following equations:

{ er(7%) =[]

er(r-[o]-2) =[v]-er(2)

Function ¢, is employed in the next section to prove Theorem 7.
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Now we have to extend this relation to results. Intuitively, two results are equivalent if
they represent either both convergence with the same value, or both divergence, and the
observable output streams are equivalent. More formally, we set

(Usos Ooo) = (U, 0ng) <= Voo = V), and 0uo & Oy,

It is immediate to check that this relation is also an equivalence. Note also that this extension
can be defined by an inference system (interpreted coinductively) obtained from the definition
of ~ on streams, by decorating each stream with the same (extended) value v, hence to
prove T = 7/ we can reason by coinduction.

Having introduced all this machinery, we can define that two expressions e and ¢’ are
observationally equivalent if e ~ T implies € ~ 7/, for some 7 ~ T, and conversely.

Consider, for instance, the value id = Az.z and the expressions e; = out (id id) and
es = (out id) id. It is easy to see that the judgments e; ~ (id, [T id]) and ey ~~ (id, [id T])
hold, and [7 id] = [id 7], hence e; and ey are observationally equivalent.

Note that, considering the judgment e = r defined in the previous section by using
corules, the definition of observational equivalence reduces to semantic equivalence, that is,
expressions e and €’ are equivalent iff e = r implies ¢’ = r, and conversely. In other words,
the judgment e = r directly models the observable behaviour of programs. For instance,
again it is easy to see that e; = (id, [id]) and es = (id, [id]), hence e; and ep are equivalent
also with respect to this semantics. Actually, as we will see in the next section, the two
semantics can be shown to be equivalent.

5 Equivalence between the two semantics

In this section we will provide a complete* proof of the equivalence between the semantics

defined in Fig. 2 by using corules and that defined in Fig. 6 on top of the LTS in Fig. 1.

We will briefly call them semantics by corules and LTS semantics, respectively. The main
theorem is stated below.

» Theorem 7 (Equivalence).
1. If e = r, then there exists T such that e ~7T and r = T.
2. If e~ T, then there exists r such that e = r and 7 =~ r.

We will prove separately the two parts of the theorem. Before providing such proofs we
need to consider some properties relating the two semantics.

» Lemma 8 (Progress). If e = r and e is not a value, then there exists ¢’ and ¢ such that
e el
Proof. Straightforward induction on the definition of e. |

» Lemma 9 (Subject reduction). If e = r and e Ly ¢, then ¢ = 1’ and r ~ [ -r.

Proof. Straightforward induction on the rules defining e L. |

The following lemma states that, if an expression converges in the semantics by corules
and produces a (rough) result in the LTS semantics, then the LTS semantics converges as
well with the same value.

4 Proofs of some auxiliary results are in the Appendix.
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» Lemma 10. If e = (v,0) and e ~ 7, then 7 = (v,0).

Proof. Thanks to Theorem 4, we can reason by induction on the rules defining e = (v, 0),
hence the proof is routine. |

In the next theorem, starting from a judgment ey = ry in the semantics by corules, we
construct a sequence of reduction steps in the LTS, which can be either finite or infinite:

Zo él Zn—l _
e —>€ —> ... ——> e, =0
Lo £y L L1
€0 == €1 =5 L en = enpy —s L.

(for uniformity, a finite reduction sequence is represented by a reduction sequence until
e, = v and then an infinite sequence of v). For each n, we also construct a result r,, and a
rough result 7, such that e, = r,, e, ~ T, and the first component (value or divergence)
in r, and 7, is the same. Thus, in particular, there exists 7y so that ey ~ 7y and the first
component (value or divergence) in 1y and 7y is the same.

» Theorem 11. If ey = 1y, then there exist sequences (e,)nen of expressions, (Tn)nen of
results, and (T )nen of rough results, such that, for alln € N
1. e, = 1, and
if e, =, then enp1 = v and 1, = g1 = T = Tng1 = (v, 1),
otherwise e, — ent1 and , = 0] - rpp1 and T, = [€] - Tha
2. e, ~ Ty

3. if rn = (U0, 0), then T, = (Vso, 0%).

Note that, by combining point 1 and point 3, we get that all the results in both (7,,)nen
and (7, )nen have the same first component (final value or divergence), since they are related
by an equivalence that on the first component is the equality.

In order to state the next lemma, we introduce the auxiliary judgment e 2+, ¢/, stating
that e reduces to ¢’ in finitely many steps producing the (finite) stream 0. The judgment is
inductively defined as follows:

r © "
e —4 € Vi ’
— e — €
[] [€]-0

€E—x€ e——, ¢

It is easy to check that e ~» o - 7 holds if and only if e 25, ¢’ and ¢ ~» 7 for some €.

» Lemma 12. If e = [v] - r, then there is a finite stream & such that e 2+, E[out v].

Intuitively, the above lemma ensures that, if in the semantics by corules we produce an
output, then in the LTS semantics we will reduce in finitely many steps to (an expression
which contains) a corresponding output expression.

We are now ready to prove the first part of Theorem 7.

Proof. (Theorem 7 (1))

By Theorem 11 (points 1 and 2) we know that there are sequences (ep)nen, (Tn)nen
and (7, )nen such that ey = e, 1y = r and ey ~» 7). Therefore we have only to prove that
19 &~ T9. To this aim, we prove by coinduction that, for all n € N, r,, = 7,,. By Theorem 11
(point 3) we already know that on the first component 7,, and ,, are equal, hence we have
only to reason on the stream part. Again by Theorem 11 (point 1) we also know that for
all n € N, either r, = [¢,] - Tny1 and T, = [€n] - Ty, Or 7 =7 = (v, ] ]). So, considering
T = (Voo, 0%) and 7, = (Voo, 0% ), We have three cases.
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If 7, = (v,[]), then e, = v, hence 7, = r,, = (v,[]) by Theorem 11 (1), thus they are
equivalent by axiom (rav) in Fig. 7.

If 7, = (Voo, 7*) for o € NU {w} with a # 0, then for all n < k < n + « we have that
) exists (by Theorem 11 (1) we have e, LN ex+1) and ¢, = 7. We have to prove that
Tn = (Uso, [ ])- Let us assume that r, = [v] - 7/, hence, since by Theorem 11 (1) e, = 7,

holds, by Lemma 12 we get that there is a finite stream o such that e, —, £ [out v] and
by the determinism of — we get that there is m > n such that e,, = & [out v]. Therefore
we get that e, — emy1 = E[v] (rules (our) and (erx) in Fig. 1), hence £, = v # 7 that is
a contradiction; thus 7, = (Vso, [ ]). Therefore we get the thesis by the first axiom.

If 7, = 7% - [v] - Tuyns1, then £, = v and for all n < I < n + k we have ¢, = 7.
Therefore we get by Theorem 11 (1) that 7, ~ 7% - [v] - 7,1 p 41, hence 7, = [v] - Thipi1-
Finally by coinductive hypothesis we know that r,yx+1 = Thir+1 ad thus we get the
thesis by the following rule:

Trph+1 & Tntk+1

Tn = (V] Tagpgpr =78 (0] Trgpy1 = T

In order to prove the point 2 of Theorem 7 we treat separately the cases of convergence
and divergence. To prove the theorem we will show that if e ~» 7 holds, then e = .(7)
holds too, where &;(Voo, 0oo) = (Uso, €+ (0s0)). This immediately proves the theorem, since
e, (7) is the witness we need to prove the existential quantification, and by definition of ~
we have 7 ~ e, (7).

Denoting by (Z,Z) the generalized inference system defining the judgment e = r in
Fig. 2, in the following we will call “extended system” the inference system Z U Z, that is,
the (standard) inference system that is the union of rules and corules.

First of all, recall from the previous section conservativity for e ~ 7 (Theorem 5), that is,
if e ~ 7 holds, then 7 = (v,0) if and only if e ~» 7 has a finite proof tree. This result allows
us to reason by induction on rules defining convergence.

» Lemma 13 (Subject expansion). If e L ¢ and ¢ = 1 has a finite derivation in the

extended system, then e = r has a finite derivation in the extended system and r = [{] - /.

Proof. Straightforward induction on rules defining 5. |
» Theorem 14. If ¢ ~ (v,0), then e = (v,e,(0)).

Proof. By induction on the rules defining e ~» 7.
If v~ (v,[]), then the thesis follows from rule (vav).
Ife~[0]-T, e L ¢ and ¢ ~ 7, then by inductive hypothesis we get ¢’ = e,(7), hence
by Lemma 13 we get e = r with r ~ [¢]-,(7) and this implies, by definition of ~, that
r=c.([f]-7). <

Now let us consider the case of divergence.
» Lemma 15. Eoutv] = (00, [v] - 0) has a finite derivation in the extended system.

Proof. By induction on the definition of contexts.

] We get the thesis by rules (var) and (co-our).

out E[out v] We get the thesis by inductive hypothesis and rule (ow).

E[out v] e We get the thesis by inductive hypothesis and rule (o).

v’ E[out v] We get the thesis by rule (vav), inductive hypothesis and rule (o). <
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» Theorem 16. If ¢ ~» (00,0x), then e = (00,6,(000)) has a finite derivation in the
extended system.

Proof. We have two cases:
if 00 = 7 with a € NU {w}, then €,(0x) = [ ], hence the thesis follows from the rule
(CO-EMPTY);
otherwise, we have 0o, = 7" - [v] - 0, hence by definition of e ~~ 7, we get that
e T, Elout v] and Efout v] ~ (o0, [v] - 0., ); therefore, by Lemma 15 we get that
Elout v] = (00, [v] - £,(0)) is derivable by a finite proof tree in the extended system,
then by a transitive closure of Lemma 13 we get the thesis, since £, (000) = [v]-&,(d). <«

Proof. (Theorem 7 (2)) We show by bounded coinduction (Theorem 3) that if e ~» 7, then
e = ¢,(7). The boundedness condition immediately follows from Theorem 14, Theorem 4
and Theorem 16. Let us proceed with the coinductive step: if 7 = (v,0), then the thesis
follows from Theorem 14, hence we assume that 7 = (00, 0 ) and proceed by case analysis
on e.
v Empty case.
x Empty case.
out e Since out e ~ (00, 00) holds, we get that e ~» (00, 04) holds, hence by coinductive
hypothesis e = (00,&,(0x)) and by rule (oiv) we get the thesis.
e1 ez We have three cases:
If e; ~ (00,000), then by coinductive hypothesis we get e; = (00,¢,(0x)), hence we
get the thesis by rule (o).
If 1 ~ (v,0) and ey ~ (00,0, ), then 0, = 0- 0., by Theorem 14 and coinductive
hypothesis we get that e; = (v,,(0)) and ey = (00, e, (d))), hence we get the thesis
by rule (o) since £,(000) = £,(0) - £,(0)-

If e; ~ (Az.e,01) and ey ~» (v2,02), then we have that e; es Iy Ape eg 2,
Az.e vy — e[z < ] = ¢ with € ~ (00,0.), and 0 = 01 - 03 - 0. Therefore by
Theorem 14 and coinductive hypothesis we get e; = (Az.e,2,.(01)), ea = (v2,£,(02))
and e = (00,e,(0,,)), hence we get the thesis by rule (arr) since we have €, (0) =
e+(01) - €-(02) - £, (0.,). <

6 A simple imperative Java-like language

In this section we provide the semantics by corules of an imperative Java-like language with
in and out statements for reading and writing values, respectively. Our motivations for
studying this language are the following.
To check the approach on a (slightly) more realistic example than in Sect. 3. Notably, the
language considered in this section is imperative and allows update of both local variables
(in this simple calculus, just method parameters) and object fields, hence, stack frames
and the heap need to be modeled. Moreover, since object values are heap references, they
are read and written in a serialized format, and the serialization function needs to be
coinductively defined.
To investigate input as well. Managing both input and output requires deeper insights,
since several approaches are possible; the one we propose, where I/O operations are
treated as “events”, seems to be simpler and is easily extensible to other kinds of significant
interactions of the program with the outside, as acquisition and release of resources.
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p = cde
cd = class ¢ extends ¢y { fd md }
fd == f;
md = m(T) {e}
e == new c(e)|z|false|true|e.f|e.m(e)|z=e|er.f=e|in|oute

| if (e) €1 else eo

Figure 8 Java-like language: syntax.

v,u == false|true|: (internal) value
v u= false|true|obj(c,f — ") serialized value
e u= inv|outv event
0 == [er...ep]|[e1.-.en...] event trace
rou= (v,0);ILH | (c0,0) result
D[] == new c¢(d",%)|0.f| D.m(ﬁk,é) (n>0,k>0) propagation context

|z=0|0.f=¢|0.f=0]outd]|if (O) e; else e
Figure 9 Java-like language: values, results and propagation contexts.

The syntax of the language is defined in Fig. 8. We write ", or simply cd, for the
sequence cd; ... cd,, and analogously for other sequences. With abused notation fn — "
stands for fy — vy, ..., fn — v,. We assume sets of variables (parameters) z, including this,
class names c, including Object, field names f, and method names m.

The calculus is an imperative untyped Java-like language, where variables and fields can
be updated; since the work is focused on the dynamic semantics, we have simplified the
language by omitting type annotations.

For simplicity, statements are expressions with side effects; assignments to variables
and fields return the value of the right-hand side expression, the in statement returns the
deserialized value that has been acquired from the input, while the out e statement returns
the value obtained from the evaluation of e, which is also output.

We assume standard syntactic restrictions: inheritance is acyclic, names are distinct in
class, method, field, and parameter declarations, Object cannot be declared, class names
other than Object that are referred in expressions must be declared.

A program consists of a sequence of class declarations and a main expression; class
declarations contain field and method definitions, whereas a single constructor is implicitly
defined, with parameters corresponding to the inherited and defined fields, with precedence
to the inherited ones. In a method body the target object is accessed via the implicit

read-only parameter this, which is assumed to differ from all explicitly declared parameters.

Statement expressions include instance creation, variable, boolean literals, field selection,
method invocation, variable and field update, input/output operations, and conditional
expression.

We define now the semantics by corules of the language; as for the A-calculus in Sect. 3, we

provide a semantics with the fully deterministic left-to-right call-by-value evaluation strategy.

Internal and serialized values, events, event traces, results and (divergence) propagation
contexts are defined in Fig. 9. As for the A-calculus, propagation contexts can contain many
holes, all at fixed depth 1, and allow a more compact definition of propagation of diverging
results (see rule (orv) in Fig. 10). We assume an infinite set of object references v. Internal
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values are either boolean constants or object references; for boolean values the serialized
form is the same, whereas object references are serialized to values of shape obj(c,fn — V"),
with ¢ the class of the object, and fn its fields associated with their corresponding serialized
values v"; serialized objects are allowed to be regular terms, to allow serialization of cyclic
objects.

Events that are tracked by the semantics are input/output operations, hence, they have
shape inv (input of serialized value v) and out v (output of serialized value v). Traces are
finite or infinite sequences of tracked events.

Results of converging computations are triples (v, 0); II;H where the first component
is a pair (v, #) consisting of a returned value, and a produced finite event trace, while the
second and third ones are the stack frame II and the heap H yielded by the computation,
respectively. Results model also diverging computations with pairs of shape (oo, 6), where
the event trace 6 is allowed to be infinite; in case of diverging computations, neither returned
value is defined, nor stack frame and heap are yielded. The stack frame of the method under
execution is a finite partial map II from variables (this and the explicit parameters of the
method) to values. The heap # is a finite partial map from references to objects. Objects
are pairs 0bj(c, p), where c is the object’s class and p is a finite partial map from field names
to values. We use the usual set-theoretic representation for finite maps, in particular for
heaps H, maps p from fields to values, and maps from fields to serialized values in serialized
objects; the operator W denotes union of maps with disjoint domains. We assume that
heaps cannot contain dangling references: for all references ¢, if H(r) = 0bj(c, p), then for
all f € dom(p), p(f) € dom(H) W {false, true}; indeed, in the language object references
cannot be explicitly deallocated.

The semantics is formalized by the judgment IT; H; e = r, where r is either (v, 8); Il'; H'
or (00,6). In the former case, the judgment means that, in stack frame II and heap H,
expression e converges to value v, with finitely generated event trace #, and yielded stack
frame II' and heap H’; in the latter, expression e diverges with possibly infinite event trace 6.

The semantic rules are defined in Fig. 10; for brevity, we leave implicit the index of the
judgment that should consist of the class declarations contained in the program.

The definitions of all auxiliary functions used in the side conditions of the rules can be
found in the Appendix.

As in Fig. 2, rule (oiv) propagates diverging computations: if the evaluation of a subex-
pression diverges before all remaining subexpressions are evaluated, then the control flow of
the program has to be modified; this happens in all situations captured by the propagation
contexts defined in Fig. 9.

Rules (var) and (soor) are straightforward: the computation always converges and returns
an empty trace.

Rules (xew) and (rLp) are standard; in (xew) the generated trace is obtained by concatenating
in the same order the traces returned by the evaluation of the argument expressions; the
disjoint union W ensures that ¢ is a fresh reference in the current heap H,,, the side condition
requires that the arguments match all fields inherited and declared by class c¢. In (rLp)
the generated trace corresponds to that obtained from the evaluation of the subexpression
denoting the target object; the side condition ensures that such an evaluation returns an
object reference defined in the heap and containing the accessed field.

Similarly to rule (are) for function application in Fig. 2, rule (nv) deals with method
invocation when the evaluation of the target and all arguments converges; the auxiliary
function restore (see the comments to Fig. 12 in the Appendix) is used for restoring the
current stack frame II, 1 of the caller yielded after the evaluation of the target and the
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Vi=1.nILi—1;Hi—1; e = (v3,0:);1L;; Hi Iy His e = (00,0)
Io; Ho; D[e™, e] = (00,01 ... 0, -0)

(p1v)

e € {false, true}

(VAR =0 (BOOL

)H;H;wé(vv[]);ﬂ;“fﬂn(ﬁ) )H;”H;e:>(67[]);H;H

Vi= 1..n.Hi,1;Hi,1; e, = (’l}i,ai);ﬂi;Hi

n

(NEW) —n ﬁelds(c) = f

Io; Ho;new c(€”) = (4,01 ... - 0n); ;s Hy W {e — 0bj(c,f — 1™)}

Ho; Ho; e = (¢,0);111; Ha »

’ = ob W

g Hos ef = (0,0, T = odlep e el

Vi =0.nIL;Hi; e; = (vi,0:); Wigr; Higr .

{this — 1v,Z" = " }; Hnt1;6 = 1 Ha(w) = Obj(i’np)
() Mo Hor eom(e) = 17 meth(c,m) =7".¢e
0> 7205 €0- r" = restore(Il,41, (00 - ...  0pn) - T)

) Ilo; Hos; e = (v,0); 111 W{z — u}; Ha
VAS

Io; Hosz=€ = (v,0); 111 W {z — v}; Hs

Io; Hos e1 = (¢,01); 13 H, iy Has ez = (v,02); Mo HW {e — obj(c,pW {f — u})}
Io; Ho; er.f =e2 = (v,01 - 02); o HW {¢t — obj(c,p W {f — v})}

(FAS)

deser(Ho,v) = (H1, )

() IT; Ho; in = (v, [inv]); IT; Hq

Io; Ho; e = (v,0); 1115 Ha
)Ho;Ho;out e = (v,0 - [outv]);I1; Ha

(out 567‘(7‘[1, 1)) =V

Io; Hos e = (v,0); 13 H:y Iy Haje =

v=true ANt =1V v =—false A1 =2
To; Ho; if (€) e1 else e = 6 -1

(1r)

(co-EMPTY) (co-1N)

I, H; e = (o0, [ ]) IT; H; in = (oo, [inV] - 6)
I H; e = (v,0); T H

(co-ouT) v=ser(H’,v)
IT; H; out e = (00,6’ - [out v] - 0)

Figure 10 Java-like language: inference system with corules.

arguments of the method invocation. The body of the method is evaluated in the new
stack frame {this — 1y, Z" — 7"} defining this, and the formal parameters; its result can
correspond to either a converging or a diverging computation. In the latter case, r has
shape (00, ), with 6 possibly infinite, the stack frame is not restored, but divergence is
simply propagated to the conclusion of the rule, after concatenating to the left of 6, in the
same evaluation order, the finite traces obtained from the evaluation of the target and the
arguments; hence restore(Il, 11, (0 - ... 0,) - (00,0)) = (00,0 - ... 0, - 0). The other side
conditions are standard and ensure that the target of the invocation is an object whose class
has method m with n parameters.

ECOOP 2018



21:20

Modeling Infinite Behaviour by Corules

Rules (vas) and (ras) manage variable and field updates, respectively; the former changes®
the stack frame, the latter the heap. Rule (vas) is applicable only when the variable to update
is defined in the current stack frame; the trace generated from the assignment corresponds
to that obtained from the evaluation of the right-hand side subexpression. Rule (ras) is
applicable only when the target evaluates to a reference to an object containing the field to
be updated; the trace generated from the assignment corresponds to the concatenation, in
the same order, of the traces obtained from the evaluation of the target and right-hand side
subexpression.

In rule () a trace with the single event inv is generated, where v is allowed to be any
possible serialized value that can be obtained from the input. The corresponding returned
inner value v is the deserialization of v (see the comments to Fig. 12 in the Appendix); such
an operation can extend the heap if v corresponds to an object. In this case a new internal
object has to be allocated.

In rule (our) the trace is obtained by concatenating that returned by the evaluation of the
subexpression with the singleton trace containing the event out v, where v is the serialization
of the value v (see the comments to Fig. 12 in the Appendix) to be output.

Rule @) is standard; it is applicable only if the evaluation of the condition converges to
a boolean value. However, the overall result is allowed to diverge; this happens when the
evaluation of the selected branch does not terminate. In any case, the generated trace is
obtained by concatenating the traces, in the same evaluation order, yielded by the evaluation
of the condition and the selected branch.

As for the semantics of the A-calculus in Sect. 3, corules filter out undesired behavior
in case of non termination: results can only have shape (co,#), with 6 possibly infinite;
diverging computations which do not involve input/output operations give rise to proof trees
where the definition of the yielded trace is non productive, hence corule (co-empry) forces
the returned trace to be empty. The remaining corules (i) and (our) relax the constraint of
corule (co-empry) by allowing traces of arbitrary length (including infinity) when infinitely
many input or output operations are performed, respectively; indeed, in both corules no
constraint is imposed on the rest of the yielded trace, represented by the metavariable 6.
As in Fig. 2, the premise of corule (co-our) ensures that the evaluation of the subexpression
denoting the value to output converges, to ensure that the corresponding serialized value is
actually output.

We consider now an example program (other two examples are provided in the Appendix).

Example 1
Let us consider the program consisting of the following class declaration

class C extends Object{m(x){this.m(out in)}}

and the main expression e = new C().m(true); such a program diverges and produces an
infinite trace with alternating input and output events s.t. each event inv is immediately
followed by the event out v; this is formalized by the derivable judgment @;0; e = (o0, 6y),
where 6y = [invg out vp invy outvy...].

Fig. 11 shows how an infinite tree can be derived with the standard rules of Fig. 10; for
simplicity the figure considers only the cases where input values are just primitive boolean

5 Of course, stack frame and heap can also be indirectly changed by the evaluation of the subexpressions
of the statements.
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(IN)IL-;’H; in = (vq, [inve]); Il H

IL;; H; this = (¢, [ ]); L H IL;; H;out in = (vy, [inv, out vi]); I H Vi
IT;; H; this.m(out in) = (oo, [inv; out v;] - 6i41)

(VAR) (ourt)

V.= (1Nv)

(NEW (BOOL

>@;@;new cO = (4, []);0;H )@;H;trueé(true,[]);ﬂ;?{ Vo
0; 0;new C() .m(true) = (00, 0p)

(INV)

where Vi€ N.O; = [inv; out vi] - 011, H = {¢ — 0bj(C,0)}, Iy = {this — ¢, x > true},
II;y1 = {this > ¢,x > v;},v; € {false, true}

Figure 11 Infinite derivation for @;(;new C() .m(true) = (00, 6y) in Example 1.

values and, hence, no heap memory is allocated when deserialization occurs every time a new
value is read from the input through the in instruction. Hence, after the allocation triggered
by the execution of new C(), the heap H remains unchanged; in case infinite serialized objects
are read from the input, the heaps in the derived judgments of the proof tree grow indefinitely
with the depth of the tree.

Although in Fig. 11 only primitive input values are considered, in general the derived
infinite proof tree is not regular and consists of an infinite set of subtrees Vg, V1, ..., each one
depending from the particular input values vg, vy, ...; since at each call a value is input and
then output, the definition for the trace 8y in the finally derived judgment is fully productive
and no trace other than [invgout vy invy out vy ...] can be derived; since such a trace is
infinite, it is not possible to derive judgments of shape (); };new C() .n(true) = (v,6p);d; H'.

For each occurrence of rule (wv) in the infinite proof tree, only finite trees can be built
for the evaluation of the target and argument of the method invocation, therefore for the
corresponding premises only judgments for converging computations can be derived, and
rule (piv) cannot be applied in place of rule (inv).

Finally, to show that the proof tree in Fig. 11 is valid, we need to prove that by using also
the corules we can derive finite proof trees for all judgments of the proof. To this aim, we
can prove that for all judgments II;; H; this.m(out in) = (oo, [inv; outv;] - ;1) derived
with V,, it is possible to build the following finite tree:

(m) I;; H; in = (vy, [invy]); T H

II;; H; this = (¢, [ ]); L H I1;; H; out in = (o0, [inv; outv;] - 0;41)
I1;; H; this.m(out in) = (0o, [inv; out v;] - 0;11)

(VAR) (co-out)

(p1v)

Additional examples can be found in the Appendix.
We illustrate now by a simple example how to use the bounded coinduction technique
(Theorem 3) to reason about concrete programs. Consider the following Java-like program:

class T extends Object{hasNext (){truel}}
class F extends Object{hasNext (){falsel}}
class Main extends Object {
loop(){if (in.hasNext ()) this.loop() else false}
}

and abbreviate by F and T, respectively, the two input events in 0bj(F, ) and in obj(T, ).
Intuitively, there are two possible valid results of the program e =new Main() .loop().

If the input provides infinitely many T’s, e loops forever, producing the corresponding

infinite trace [T ...T ...], abbreviated T in the following. If, after n T’s, an F is eventually
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read, then the program terminates returning false, and producing a finite trace [T ...T F],
abbreviated T™ in the following. Note that, if any other kind of (serialized) value is read,
then the program execution is stuck, that is, there is no (either infinite or finite) result. In
our formalization, differently from what happens in standard big-step semantics, this case is
nicely distinguished from divergence, since in the former case there is no proof tree.

More precisely, valid judgments for e have one of the following shapes:

1. (a) 0;0; e = (00, T™)

(b) 0;0; e = (false, T"); 0; {¢ — obj(Main, D)} W H"
with H™ = {u; — 0bj(T,0) | i € 1.n} W {/ — 0bj(F,D)}.

In order to formally prove that such judgments are derivable, as it is customary in
(co)induction proofs, we have to extend the set of valid judgments, including all those which
are needed for the coinductive hypothesis:

2. 0;0;new Main() = (¢, [ ]); 0; {¢ — obj(Main, D)}
3. (a) II; H;if (in.hasNext ()) this.loop() else false = (oo, T*)
(b) II; H; if (in.hasNext ()) this.loop() else false = (false, T”) ILH W H
(a) II; H; in.hasNext () = (true, [T]); I[; H W {v — obj(T,0)}
(b) II; H; in.hasNext () = (false, [F]);ILH W {¢ — 0bj(F,0)}

. () TEH; in = (0, [T)); I H W {0 — obj(T,0)}
(b) II; H;in = (¢, [F]); I H W {v — obj(F,0)}
(a) II; H; true = (true,[]|);ILH (b) II; H; false = (false, [ ]);I; H
IT; H; this = ; II; H
. (a) II; H; this.loop() = (00, T*)

(b) II; H; this.loop() = (false, T");IL; H W H"
where IT = {this — ¢}, H(¢) = obj(Main, ().

Set S the set of judgments of shape 1-8, (Z,Z°) the generalized inference system defining
the judgment II; H; e = r in Fig. 10, and Z U Z the (standard) inference system that is the
union of Z and Z<. To prove by bounded coinduction (Theorem 3) that each judgment in S

© No

can be derived, we have to show:
Boundedness. Each judgment in S has a finite proof tree in Z U Z.
For convergent judgments (all cases except la, 3a, 8a) it is easy to show that they have a
finite proof tree in Z, hence in Z U Z as well. In particular, for cases 3b, 8b this finite
proof tree can be constructed by arithmetic induction on n.
For cases la, 3a, 8a it is enough to show that a finite proof tree for II; H; in = (00, T*°) in
Z UZ can be obtained by corule (co-iv), analogously to what we have shown for Example
3 in Sect. 3.
Coinductive step. Each judgment in S is the consequence of an inference rule in Z where
all premises are in S.
The proof can be done by cases. For instance, for case 3b, the judgment is the consequence
of rule (ir) with first premise of shape 4 and second premise of shape either 8b or 6b.
We conclude this section with a comment on the proof technique outlined above. Here we
have added in the set S of valid judgments exactly those strictly needed for the coinductive
hypothesis. This is a minimal choice. A different approach, which we used in [6] under the
name divergence consistency principle, is to add to S all the judgments which are derivable
in Z. With this approach, it is enough to prove conservativity (the analogous of Theorem 4),
and that each valid diverging judgment (cases la, 3a, 8a in our example) is the consequence
of a rule where all diverging premises are valid as well, and all converging premises are
derivable. This technique makes the proof schema simpler, but here we preferred the explicit
approach for illustrating better the specific example.
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7 Related work

One of the first approaches to model divergence with operational semantic rules was proposed
by Cousot and Cousot [8] for the call-by-value A-calculus by means of two different judgments
defined in a stratified way: the former with inductive rules to model termination, the latter
with coinductive rules and depending from the former, to capture divergence. In a followup
work [9] they proposed a more sophisticated framework based on bi-inductive definitions, an
order-theoretic approach to inductive definitions which allows the simultaneous definition
of finite and infinite behaviors in operational semantics; however, such a solution has been
adopted only for the standard call-by-value A-calculus, and no uses of it can be found in
literature for expressing the semantics of other languages.

Leroy and Grall [13] have investigated several operational semantics of the call-by-value
A-calculus for capturing divergence, their equivalence, and suitability to formally prove type
soundness and compiler correctness; they are all defined in terms of inductive and coinductive
judgments defined in a stratified way.

Coinductive big-step semantics has been proposed by Ancona to proof soundness for a
Java-like language [3].

An operational semantics modeling divergence with an ad hoc coinductive judgment has
been investigated also by Chargueraud with the notion [7] of pretty-big step semantics.

Flag-based big-step semantics [18] is a recent approach able to capture divergence by
interpreting the same semantic rules both inductively and coinductively; flags represent
termination or divergence and are part of the result of the computation. In case of non
termination, values (or other semantic details exclusively used for terminating computations)
are non deterministically returned.

We are planning to investigate the relationship between corules and conditional coinduction
[10] employed by Danielsson to combine induction and coinduction in definitions of total
parser combinators. Followup work [11], inspired by the paper of Leroy and Grall [13],
shows how the use the coinductive partiality monad allow the definition of big/small-step
semantics for lambda-calculi and virtual machines as total, computable functions able to
capture divergence.

Several approaches to divergence with operational semantics [17, 2, 4] have been inspired
by the notion of definitional interpreter [19]. All semantic definitions depend on a counter
which limits the number of steps a computation can take; if the value of the counter is not
sufficient to complete the computation, then a timeout is returned. In this way divergence
can be modeled by induction.

Owens et al. [17] investigate functional big-step semantics for proving by induction
compiler correction, including divergence preservation. Amin and Rompf [2] explore inductive
proof strategies for type soundness properties for the polymorphic type systems F.., and
equivalence with small-step semantics. Ancona [4] proposes an inductive proof of type
soundness for the big-step semantics of a Java-like language.

More recently, Ancona et al. [6] have shown that with coaxioms it is possible to mix
together induction and coinduction in a single inference system to define a big-step operational
semantics able to capture divergence with just one judgment. The call-by-value A-calculus is

considered, and a proof of equivalence with the standard small-step semantics is provided.

Then the semantics of an imperative Java-like language is defined, and a corresponding type
soundness result is proved.

All papers surveyed so far limit their investigation to semantics which capture divergence,
but, differently to the contribution of this paper, do not provide any support for reasoning

21:23

ECOOP 2018



21:24

Modeling Infinite Behaviour by Corules

on the behavior of non terminating programs, because in case of non termination the only
information that is conveyed is divergence.

Nakata and Uustalu [14, 15, 16] have investigated on coinductive trace semantics in
big-step style; they started with the semantics of an imperative While language with no I/O
[14] where traces are possibly infinite sequences of states; semantic rules are all coinductive
and define two mutually dependent judgments. Based on such a semantics, they define a
Hoare logic [15]; differently to our approach, weak trace equivalence is required for proving
that programs exhibit equivalent observable behaviors. A constructive theory and metatheory
and a Coq formalization are provided.

The semantics has been subsequently extended with interactive I/O [16], by exploiting
the notion of resumption: a tree representing possible runs of a program to model its non-
deterministic behavior due to input values. Also in this case a big-step trace semantics is
defined with two mutually recursive coinductive judgments, and weak bisimilarity is needed;
however, the definition of the observational equivalence is more involved, since it requires
nesting inductive definitions in coinductive ones.

In both papers [14, 15] equivalence of the big-step and small-step semantics is proved; also,
in the considered languages [14, 15] expressions and statements are distinct, and expressions
cannot diverge (divergence is not obtained through infinite recursion, but rather through
infinite while loops). This is a significant difference with the languages we have considered in
this paper; under the assumption that the evaluation of e cannot diverge, the semantics of
out e becomes simpler, indeed, the corresponding corule could be turned into a coaxiom.

8 Conclusion

We have shown how generalized inference systems can be employed for formalizing in a
convenient way non trivial operational semantics suitable for reasoning on the behavior of
possibly diverging programs.

The two examples of semantics we have provided suggest that by using corules with a
similar pattern, other notions of interesting infinite behaviour can be modeled to reason on
properties of diverging programs, to prove, for instance, that a server program uses a finite
amount of system resources, even when expected to never stop.

As a byproduct, we have extended the theory of generalized inference systems with the
more general notion of corule, for which significant examples were missing until now.

We briefly discuss now advantages, drawbacks, and limitations of the approach. While
we do not claim that our approach is easier than the standard formulation using labeled
small-step semantics, an important advantage is that the whole system is directly based on a
unique judgment, thus allowing more direct reasoning (proofs).

A difficulty in adopting the approach could be how to define the right corules, which
requires new expertise in comparison with the well established inductive reasoning (essentially
based on case analysis). For this reason, we are currently working on the definition of
“canonical” corule patterns. Notably, the two examples in this paper should become instances
of a general transformation from an inductive inference system modeling finite behaviour to
an inference system with corules modeling infinite behaviour as well.

Of course, inference systems with corules are not a silver bullet for expressing any kind
of recursive definition. The main limitation we have found until now is in modeling, roughly,
recursive functions where the result can be an infinite set. For instance, the inference system
with corules for the graph example at page 4 is not complete when the set of nodes is infinite.
A similar example (the infinite carrier of a list) is mentioned in [5]. We plan to investigate
and possibly address this limitation.
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For the first simpler example of semantics we have fully proved that our approach is

equivalent to a semantics based on the standard notion of LTS and observational equivalence;
we leave for future work a proof of equivalence for the imperative Java-like language. Although
in this case the technical details are more complex, we do not expect any surprise in the

proofs of equivalence.

Besides the already mentioned directions, it would be of great interest to try to test our

approach with the support of a proof assistant.
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A A coalgebraic view

We recall some basic notions about coalgebras, see for instance [12, 20]. Given a category
C and an endofunctor F: C — C, an F-coalgebra is a pair (C,~y) where C' is an object of C
and v: C' — FC is an arrow in C. An F-coalgebra homomorphism between two F-coalgebras
(C,v) and (C’,v’) is an arrow f: C'— C’ in C such that v' - f = Ff - 7, where - denotes the
arrow composition in C. It is easy to check that the composition of coalgebra homomorphisms
is again an homomorphism and that the identity arrow on the carrier of an F-coalgebra is an
homomorphism, hence F-coalgebras and homomorphisms form a category and the terminal
object in this category, if any, is named terminal F-coalgebra.

We now fix C = Set, that is, we work in the category of sets and functions. Given two
F-coalgebras (C,v) and (C’,v"), a bisimulation between them is a relation R C C x C’
that carries an F-coalgebra structure such that the canonical projections m;: R — C' and
my: R — C’ are F-coalgebra homomorphisms. In other words, a bisimulation is a relation
that agrees with the coalgebraic structure of its components.

Let us now introduce some notations. If A is a set, A> is the set of finite and infinite
streams over A. We denote by V the set of values, and by V, the set V + {7}, where +
denotes the coproduct in the category Set of sets and functions.

It is well-known that V*° is the carrier of the terminal coalgebra of F': Set — Set, the
functor defined by FX =1+ V x X, with the map (: V*° — FV* defined by

/

* otherwise (z =[])

C(a:):{ (v,2') ifa=1[0] 2

where x € 1 is the unique element of the terminal object 1 in Set, However, we can give an
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F-coalgebra structure also to V2°, considering the function v, : V2 — FV2° defined by

/

_f (v,2) ifx=7"-[v] 2
7r(@) = { * otherwise (z = 1)

Since (V°,() is terminal, there is a unique F-coalgebra homomorphism &,: V° — V*°, in
other words ¢, is the unique map making the following diagram commute:

VYo Ty P

bk

Fe,
Fy =1y Fpe

Intuitively, this diagram forces e, to satisfy the equations mentioned in the beginning, hence
to be the function that removes 7s from a stream.

In order to construct ~, we consider the set R~ defined as the pullback in Set of the pair
of functions (e, e, ), hence, since €, is an F-coalgebra homomorphism, we get the following
commutative diagram:

R —2— y>

B

VAN VA Fye

Fve Ly gy
More explicitly, Ry is the set {(z,y) € V° x V> | e,.(z) = e-(y)}, thus it is an equivalence
relation on V2°.
It is easy to check that F preserves pullbacks in Set, hence we get the following commutative
diagram:

YT

_I
Frq Fer

Fer
Fye 1y py®

Therefore (Rx,v~) is an F-coalgebra, 7m; and 7y are F-coalgebra homomorphisms and hence

R~ is a bisimulation equivalence on (V°, ;).

We now show that =~ and R~ are indeed the same relation.
» Proposition 17. 0., &~ o/ if and only if (0co,0,) € Ra.
B Proofs
Proof of Prop. 6 (= is an equivalence) We show that & is reflexive, symmetric and transitive.
Reflexivity We have to prove that, for each stream 0., 05 =~ 05 holds; we proceed by
coinduction. We distinguish two cases:

if 000 = 7% for some o € NU {w}, then the thesis follows by the first rule, taking g
equal to a;
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otherwise, there is a value v such that 6, = 7" [v]- 0, hence by coinductive hypothesis

we get 0 = 0., and the thesis follows from the second rule, taking m equal to n.
Symmetry Assume 0., = 0., we have to prove that 0/ = 0.; we proceed by coinduction.

We distinguish two cases:

if both 0 and ol are made of only 7s, then the thesis follows from the first rule (it

is enough to swap the two exponents);

otherwise, we have 0, = 7" - [v] - Soo and o, = 7™ - [v] - 5., with S & §_; hence by

coinductive hypothesis we get 5. ~ S, and the thesis follows by applying the rule

~ o~
Sho N S0

o, =1m-[v] -8 =T [V] - Soo = 0o

Transitivity Let us assume 0o, ~ 0.

oo
distinguish two cases:
if o/ = 7« for some a € NU {w}, then also 0, and 07, are made of only 7s, hence
the thesis follows from the first rule;
otherwise, we have 0o = 7P - [V] - 550, 0, = T+ [1] - 5T

and 0. =~ 07,. We proceed by coinduction. We

o/ T > :
and o7, = 7" - [v] - §., with
Seo & 5., and §._ & 5. Therefore by coinductive hypothesis we get s, &~ 37, and

the thesis follows by applying the rule

g el
Soo N S5

Oco = TP+ [V] - 500 = 77 - [v] - §1, = 0,
Proof of Prop. 17 (= and Rx coincide) For the implication < we proceed by coinduction,
considering two cases:
if £, (000) = &,(0),) = [ ], then 05 = 7 and &/, = 77, hence we get the thesis by the
first rule;
otherwise we have 0oo = 7" - [U] * Soo, Obe = 7™ - [V] - § and £,(50) = £,(5),). Hence by
coinductive hypothesis we get 5o, ~ 5. and then we get the thesis by the second rule.
To show the other implication, we have to prove that the set £ = {(£,(0c0),&+(05)) | 0co &
0.} is included in the diagonal relation on V*°. To this aim, thanks to the (coalgebraic)
coinduction principle, it is enough to show that E is a bisimulation, that is, that F is an
F-coalgebra. Consider the following function defined on E:

{ ve([]:[])

VE([v] - er(50), [0] - 67 (5)) = (v, (67 (800), 67 (5%)))

and note that by definition of ~ we have 5, &~ 5., hence (¢:(5x),e-(5..)) € F, and so
vE: E — FE is well-defined, and (E,vg) is an F-coalgebra, and this concludes the proof.
Proof of Lemma 12 We relax the hypothesis, only requiring that e = [v] - r is derivable by a
finite proof tree using also corules. Indeed, by definition, if e = [v] - r is derivable, then it
has a finite proof tree using also corules. We proceed by induction on the definition.
(co-empty) Empty case.

(co-out) We know that out e = [v] - 00 and e = (v',0). We have two cases:

if o = [v] - o, then, by inductive hypothesis, e %, E[out v], hence oute >,

out Efout vl;

if o =[], then v’ = v and by Lemma 10 we get that e ~ (v,0), hence e —+, v; hence
we get that out e 25, out v as needed.

(val) Empty case.

(out) Analogous to case (co-our).
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(app) We know that e; ex = [v] - 7, e1 = (Az.e,01), €2 = (v2,02) and e[z < w] = . We
distinguish three cases:

if 0, = [v] - 0}, then by inductive hypothesis we get that e; —», &£[out v], hence

e1 es —>, Elout v] ey as needed;

if o1 =[] and 02 = [v] - 0}, then by Lemma 10 ¢; ~> (Az.e, 01), hence e1 2L Az.e, and

by inductive hypothesis ey -+, £ [out v], therefore we get that e; eo 2 Aze eg 2,
Az.e Elout v] as needed;

if 01 = 09 = [ ], then v’ = [v] - , hence by Lemma 10 we get that e; ~» (Az.e,01)
and ey ~ (v, 02), hence e 2y Az.e and es 25, w9 , and by inductive hypothesis
e[z < ] 2, E[out v]; therefore we get that e; e; 2y o ATe eg 25, A\z.e vy —
e[z « ] i* E[out v] as needed.

(div) Analogous to case (app).

Proof of Theorem 11 We prove separately the three points.

1. We start by constructing inductively the sequences (e, )nen and (75, )nen. The case n =0
is given by the hypothesis. If we assume e, and 7, to satisfy e, = r,, then we have two
cases:

if e, = v, then we set e,11 = v and 1,41 = (v, [ ]);
otherwise, by Lemma 8 there are ¢ and £ such that e, N , and by Lemma 9 there
is ' such that ¢/ = ' and 7, & [{] - 1’; therefore we set e,11 = ¢ and 7,41 = 1’
In this way, by construction (e,)nen and (7, )nen satisfy the requirements.
In order to construct the sequence (7, )neny we need some more effort. First of all, we
have to find an infinite sequence of streams satisfying the requirements of point 1, that is,
a function s: N — V2° such that, for all n € N, if e, is a value, then s(n) =[], and if

en en+1, then s(n) =[] - s(n + 1). To do this, we give a coalgebra structure on N for
the functor FX =1+ V, x X, given by the map v: N — FN defined by

v(n)={* “

~

(Un+1) e, — ept1

Now, since V2° carries a terminal F-coalgebra, and requirements of point 1 impose that s
is a homomorphism, it is uniquely determined. Therefore we set 7, = (v, s(n)) if there is
k > n such that e, = v, otherwise 73, = (00, s(n)).
2. We proceed by coinduction, distinguishing two cases:
if e, is a value v, then, by point 1, 75, = (v, [ ]), hence e, ~» 75, holds by the first axiom;
otherwise, by point 1, e, 4 €nt1s €n+1 = Tny1 and 7, = [€] - 741, therefore by
coinductive hypothesis we get e,41 ~ T,4+1 and so by the second rule we get the thesis.
3. We distinguish two cases:
if voo = w, then, since for all n € N by points 1 and 2 we have e, = (v,0,) and
€n ~ Tpn, by Lemma 10 we get the thesis;

consider a result 7, in the sequence, and assume v, = 0o, then for all k¥ > n we have
er # v, since otherwise we would get v, = v, because 7, = 0 - 1, by point 1; therefore
by construction (point 1) we get 7, = (00, 07%).
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fields(c') = f
{

class c extends ¢ { g;md}
fng="0
fields(Object) =€ fields(c) = 1,7
meth(c',m) =Z.e
class c extends ¢’ { fd md}
class c extends ¢’ { fd md m(%) {e} md'} m not declared in md
meth(c,m) =T.e meth(c,m) =7Z.e
T if r = (00,0)

restore(1l, r) =

0-((v,0);ILH) = (v,0-0);1;H
(v,0);IGH  if r= (v,0);T1;H (0,0 )= )

0 - (00,80") = (c0,0-0")

Vi=1l.nser(H,v;)=v;

ser(H, 1) = obj(c,f — 77)

v € {false, true} H() = obj(c,fn —7")

ser(H,v) =wv

ser(H,v) =v

deser(M,v,0) = (H',v)
deser(H,v) = (H',v) deser(H,v, M) = (H,v)

v € {false, true}

deser(H,v, M W {v i }) = (H,¢)

v & dom(M)

v =obj(c,f — ")

v & dom(Ho) U img(M)

Vi=1.n.deser(Hi—1,vi, M U{v—1}) = (Hs, vi)
deser(Ho, v, M) = (Hn U {v — obj(c, [+ T"}),¢)

Figure 12 Definition of auxiliary functions and operators

C Auxiliary definitions and additional examples for the imperative
Java-like language

Auxiliary definitions. Fig. 12 shows the definition of all auxiliary functions and operators
used in the rules.

Functions fields and meth are standard. Function restore replaces the stack frame of the
callee with that of the caller after the computation returns from a method invocation (rule
(INV)).

The operation 6 - r updates the result r» by appending the finite trace 6 to the left of the
possibly infinite trace 6’ of r.

Function ser corresponds to built-in serialization of an internal value v into a corresponding
serialized value v; because object values are heap references, the function depends also on the
heap. Serialization of primitive values is trivial, and serialization of objects does not yield
a sequence (as happens in practice), but rather preserves the tree structure of the original
object, allowed to be infinite, but still regular because heaps have finite domains. For this
reason, we provide a standard coinductive definition of ser.

The inverse function deser depends on heaps as well, since deserialization of objects requires
object allocation; for the same reason, the function returns a pair consisting of a new heap
and a value. Deserialization of cyclic objects requires particular care, because one has to
avoid infinite unfolding which would lead to a heap with an infinite domain; our choice is to
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minimize unfolding, therefore recursive deserialization stops as soon as a loop is detected in
the structure of the serialized object, and no redundant cycles are introduced in the heap.
To this aim, the definition of deser is based on an overloaded function deser taking a third
argument M, which is a finite map from serialized objects to their associated reference, to
keep track of cycles. If a serialized object v is already in the domain of M, then a cycle
has been detected, and the associated reference in M and the unchanged heap are returned.
Otherwise, deserialization is propagated to the fields of v with an updated map M where a
fresh reference ¢ is associated with v. Finally, an updated heap and the new reference ¢ are
returned. Because of the use of the third argument M, the definition of deser(H,v, M) is
inductive.

Example 2. This example is a simple variation of Example 1, where method m does not
output the input value.

class C extends Object{m(x){this.m(in)}}

In this case the only derivable judgments have shape 0;0; e = (oo, fy), where the event trace
0o is defined by 6y = [invpinvy...]. The corresponding infinite proof is obtained from that
of Example 1 by slightly changing the trees V; (with the same simplifying assumption that
only primitive input values are considered); in this case we have

(VAR) (N

M Hithis = (o[ )il H VT Hodn = (vi, Gave)i I 2 Vi

Vi = (nw) IT;; H; this.m(in) = (o0, [inv;] - 6;41)

where for all ¢ € N, §; = [inv;]- 0,41, whereas H, and II; are defined as before. The following
finite trees built with corules show that the infinite trees V; are valid:

(VAR) (co-1N)

II;; H; this = (L, [ ]),HZ,H II;; H; in = (C)O7 [invi] '9i+1);Hi;fH

I1;; H; this.m(in) = (00, [inv;] - €;41)

(DIv)

Example 3. This example is a more elaborated variation of Example 1, where some com-
putation is performed on input values before they are output, and a simple cache object is
employed. To simplify the code we employ the primitive operator ==, together with integer
literals and addition.

class H extends Object{ // simple cache objects
// fields store the last 4nput and %its associated output
input; output;
get (i) {
if (i==this.input) this.output
else this.output=this.calc(this.input=i)
}
/* performs some computation on % and returns the result */
calc(i){ i+1 }
}
class C extends Object{cache; m(x){this.m(out cache.get(in))}}

If we consider the main expression e = new C(new H(0,0)).m(true), and restrict the ob-
servation to positive integers as input, then the only derivable judgments have shape
0;0;e = (00,0y), where g = [invy outvg+1 invy; outvy+1...], with v; a posit-
ive integer for all i € N.
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