
Defensive Points-To Analysis: Effective Soundness
via Laziness
Yannis Smaragdakis
Dept. of Informatics and Telecommunications, University of Athens, Greece
yannis@smaragd.org

George Kastrinis
Dept. of Informatics and Telecommunications, University of Athens, Greece
gkastrinis@di.uoa.gr

Abstract
We present a defensive may-point-to analysis approach, which offers soundness even in the pres-
ence of arbitrary opaque code: all non-empty points-to sets computed are guaranteed to be
over-approximations of the sets of values arising at run time. A key design tenet of the analysis
is laziness: the analysis computes points-to relationships only for variables or objects that are
guaranteed to never escape into opaque code. This means that the analysis misses some valid
inferences, yet it also never wastes work to compute sets of values that are not “complete”, i.e.,
that may be missing elements due to opaque code. Laziness enables great efficiency, allowing a
highly precise points-to analysis (such as a 5-call-site-sensitive, flow-sensitive analysis).

Despite its conservative nature, our analysis yields sound, actionable results for a large subset
of the program code, achieving (under worst-case assumptions) 34-74% of the program coverage
of an unsound state-of-the-art analysis for real-world programs.

2012 ACM Subject Classification Software and its engineering→ Compilers, Theory of compu-
tation → Program analysis, Software and its engineering → General programming languages

Keywords and phrases static analysis, soundness, defensive analysis

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.23

Acknowledgements We gratefully acknowledge funding by the European Research Council,
grant 307334 (SPADE), a Facebook Research and Academic Relations award, and an Oracle
Labs collaborative research grant. We thank Anders Møller for helpful presentation suggestions.

1 Introduction

Soundness is a coveted property of static analyses, to the extent that the term is often
colloquially used as a synonym for “correctness”. For a may-analysis, soundness means that
the analysis abstraction overapproximates all concrete executions. A sound value-flow or
points-to analysis is one that computes, per program point or per variable, value sets that
represent (at least) all values that could possibly arise at the respective point during any
possible execution.

Full soundness is hard to achieve in practice due to code that cannot be analyzed (e.g.,
dynamically generated/loaded code, binary/native code) or dynamic language features (e.g.,
reflection, eval, invokedynamic). We collectively refer to such features as opaque code. For
instance, the Java code below invokes an unknown method, identified by string methodName,
over an object, obj.

Method m = obj.getClass ().getMethod(methodName);
m.invoke(obj);

© Yannis Smaragdakis and George Kastrinis;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 23; pp. 23:1–23:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yannis@smaragd.org
mailto:gkastrinis@di.uoa.gr
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


23:2 Defensive Points-To Analysis: Effective Soundness via Laziness

String methodName could be a true run-time value – e.g., read from a file or external resource.
Object obj could itself be of a type not available during analysis – e.g., obj could be obtained
through the network and statically typed using a vague interface or root-of-hierarchy type.

Faced with such complications, all past analyses that claim soundness have done so under
a priori qualifications. Prominently, abstract-interpretation-based [8] approaches, such as
Astrée [10], have long emphasized soundness. The conceptual form of such a soundness result
is as follows:1

An Analysis of programs in language Lang is sound relative to language subset Lang′

and executions set Exec′ iff:
∀ program P ∈ Lang: P ∈ Lang′ ∧ e ∈ Exec′ =⇒ e ∈ γ(Analysis(P ))

(where γ is the concretization function that maps abstractions in the output domain
of Analysis to concrete executions in a universe Exec, superset of Exec′).

The problem with this formulation of soundness is that, although it yields provable
theorems, the a priori qualification excludes virtually all realistic programs. The Lang′ or
Exec′ of published proofs disqualify the vast majority of modern programs “in the wild”.
Language subset Lang′ will typically exclude all dynamic features (e.g., reflection) and/or
executions subset Exec′ will disqualify all behaviors that are deemed too-dynamic (e.g.,
invoking dynamically-loaded code). Reflection alone disqualifies ∼80% of Java programs in
the 461-program corpus of the recent Landman et al. study [16].

The above issues have led several members of the static analysis community to proclaim
that “all published whole-program analyses are unsound” [21], i.e., their soundness guarantee
does not apply to realistic programs, and similarly that “[there is not] a single realistic
whole-program analysis tool [...] that does not purposely make unsound choices”. The problem
is, therefore, both theoretical and practical. Soundness theorems do not give guarantees
for realistic programs. Implementations of analyses in tools happily perpetuate the illusion:
they handle soundly the language features one can prove theorems about, while cutting
corners in the sound handling of all other features, in order to demonstrate greater scalability
or precision. For instance, in our earlier Java code fragment, even if the type of obj is
known, many implemented static analyses will not consider all its methods (which now form
a small finite set) as possible values of m, but will instead ignore the code altogether. This
phenomenon has led to the introduction of the term soundy [21] to characterize such analyses.
Despite the derogatory tone, “soundy” analyses are the current good case of static analyses!
They are realistic analyses that handle all “normal” language features soundly.

In this work, we propose defensive analysis: a static analysis architecture that addresses
the above soundness shortcomings. The basis of defensive analysis can be seen as a different
conceptual formulation of soundness.

An Analysis of program P in language Lang computes results, Analysis(P ), together
with soundness marker sets, Claim(P ). The Analysis is sound iff:
∀ program P ∈ Lang, execution e: e[Claim(P )] ∈ γ(Analysis(P ))[Claim(P )]

(where γ is as before, and e[Claim(p)] is the restriction of an execution e to program
points with soundness claims, and the definition is similarly lifted to sets of executions).

In other words, the analysis imposes no (or very liberal) a priori restrictions to its soundness
claims, but instead computes the claimed domain of its soundness: the program parts for
which the analysis result is sound. The soundness theorem applies to all (or most) programs,

1 This formulation is due to Xavier Rival of the Astrée project (e.g., [25]).



Y. Smaragdakis and G. Kastrinis 23:3

under all execution conditions – instead of eagerly disqualifying the vast majority of real-world
programs. The extent of soundness is now defined over program points and becomes an
experimentally measurable quantity: the size of Claim(P ) (which we term the coverage of
the analysis) can be measured to quantify for which percentage of a program’s points the
analysis is guaranteed to produce sound results.

The challenge of defensive analysis is, thus, to distinguish parts of the program that
are certain to not be affected by opaque code. Delineating “safe” from “unsafe” parts of
the program is an ambitious goal, since opaque code can do virtually anything: it can add
dynamically-generated subclasses with never-seen methods that get called (via dynamic
dispatch or first-class functions) at unsuspecting program points; it can call any existing
method or alter any field via reflection; it can interpose its own implementations at every
place where the program uses a reflective lookup; worst of all, it can wreak havoc on all parts
of the heap reachable from any reference that escapes into opaque code.

We designed and implemented a defensive may-point-to (henceforth just “points-to”)
analysis for Java. The analysis follows the above form, explicitly designating points-to
sets that are sound, i.e., that contain at least all the values that may ever arise in actual
executions. Soundness guarantees carry over to the implementation: the soundness proof
explicitly models all other language features as <unknown> instructions and makes only weak,
semantically-justified assumptions (e.g., a type-safe heap) about them. Soundness reasoning
is defensive in that it establishes when the analysis can be certain to know the full contents
of a points-to set, no matter what opaque code can do (within the stated weak assumptions).

In our effort to implement defensive analysis in a realistic package, we found laziness
to be an essential feature – the analysis cannot scale without it for real-world programs.
Laziness means that the analysis does not compute points-to sets unless it can also claim
their soundness. That is, program points outside of the Claim(P ) set do not get populated
at any point – they remain empty throughout the analysis. Consequently, all points-to sets
with a potentially unbounded number of objects (e.g., sets that depend on reflection or
dynamic loading) are represented as the empty set: the analysis never computes any contents
for them. An empty analysis result merely means “I don’t know”, which could signify that
the points-to set is affected by opaque code, or simply that the analysis cannot establish that
it is not affected by opaque code. Laziness yields high efficiency: the analysis can fall-back to
an empty set (i.e., implicitly unbounded) without performing any computation or occupying
space.

The defensive nature of the analysis combined with laziness result in a very simple
specification. The analysis does not need to integrate complex escape or alias reasoning (i.e.,
“can this object ever escape into opaque code?”), but only best-effort logic (i.e., “here are
simple, safe cases, when the object cannot possibly be affected by opaque code”). Failure
to establish non-escaping merely means that the points-to set remains empty, to denote “I
don’t know” or “potentially unbounded”.
Concretely, the work makes the following contributions:

We offer a general static may-point-to analysis that yields sound results for realistic
programs in the presence of opaque code.

The analysis is efficient, leveraging its lazy representation of points-to sets. As a result, it
can be made precise, beyond the limits of standard whole-program points-to analyses –
e.g., for a 5-call-site-sensitive and flow-sensitive analysis. The analysis is also modular: it
can be applied to any subset of the program, and will merely leave more points-to sets
empty if other parts are unknown.

We show that the analysis, though quite defensive, yields useful coverage. In measurements
over large Java benchmarks, our analysis computes guaranteed over-approximate points-to

ECOOP 2018



23:4 Defensive Points-To Analysis: Effective Soundness via Laziness

sets (Claim(P )) for 34-74% of the local variables of a conventional unsound analysis. (This
number is much higher than that of a conventional sound but intra-procedural analysis.)
Similar effectiveness is achieved for other metrics (e.g., number of calls de-virtualized),
again with actionable, guaranteed-sound outcomes.

2 Analysis Illustration

We next describe the setting of defensive analysis and illustrate its principles and behavior.

2.1 Soundness and Design Decisions Overview

Defensive analysis is a may-point-to analysis based on access paths, i.e., expressions of the
form “var(.fld)*”. That is, the analysis computes the abstract objects (i.e., allocation sites in
the program text) that an access path may point to. The analysis is flow-sensitive, hence we
will be computing separate points-to information per program point. Both of these design
decisions are integral elements of the analysis, as we will justify in Section 2.2.

Soundness in this setting means that the analysis computes an over-approximation of
any points-to set – i.e., the analysis computes (abstractions of) all objects that may occur
in an actual execution. However, since not all allocation sites are statically known (due to
dynamically loaded code), such an over-approximation cannot be explicit: not all possible
values in a points-to set can be listed. Thus, there needs to be a special value, >, to denote
“unknown”, i.e., that the analysis cannot bound the contents of a points-to set.

Defensive analysis takes the above observation one step further, by employing a lazy
approach: it never populates a points-to set if it cannot guarantee that it is bounded. Thus,
an empty points-to set for an access path signifies that (as far as the analysis knows) the
access path can point to anything.2

In other words, an empty set can be thought to represent a bottom (⊥) value during
the analysis computation: it just marks a set as having no known values (yet). A set stops
being empty only when all the possible ways (in known or unknown code) to contribute
values to it have been examined and are found to have bounded contents. At the end of the
analysis, all sets that have remained empty signify that the analysis could not bound their
contents, i.e., they do not belong in the set Claim(P ) of program points with soundness
claims. Therefore an empty set after termination of the analysis is conceptually equivalent to
a top (>) value: the set could contain anything. This is consistent with the defensive nature
of the analysis: not knowing all the values of a set is considered just as bad as knowing it
can point to anything.

With this representation choice, the analysis does not need to expend effort in order to
be sound. All points-to sets (for any valid access path, of any length) start off empty, i.e., if
the analysis were to stop at that point it would report them as having > values, meaning
“the set can contain anything”. This is a sound answer, and is only subsequently refined.

This lazy evaluation means that defensive analysis does not need to employ sophisticated
mechanisms to simply be sound. For instance, instead of a precise over-approximate escape
analysis, defensive analysis can use a simple analysis (including none at all) to compute
straightforward cases when an object is guaranteed to never escape into opaque code.

2 We use an explicit abstract value for null, therefore a points-to set that only contains null is not empty.
This is standard in flow-sensitive analyses, anyway. (In flow-insensitive analyses, null is typically a
member of every points-to set, so it is profitable to not represent it, and hence have an empty set mean
a null-only reference. No such benefit would arise in our flow-sensitive setting.)



Y. Smaragdakis and G. Kastrinis 23:5

2.2 Background and Illustrating Design Decisions
We can see the rationale behind our design decisions through simple examples.

Baseline intra-procedural resoning. It is easy for an analysis to be sound locally, in an
intra-procedural setting. For instance, when a variable is freshly assigned with a newly
allocated object, we are guaranteed to soundly know its points-to set:

x = new A(); // abstract object a1, x points -to set is {a1}

We can also propagate such information transitively through local assignments (a.k.a.
“move” instructions), as long as no opaque code can interfere. In the case of local variables,
standard concurrency models (for Java, C++, etc.) do not allow interference from other
threads, hence points-to sets remain sound, as long as the code itself does not call out to
opaque code:

x = new A(); // abstract object a1, x points -to set is {a1}
y = x; // y points -to set is {a1}
z = y; // z points -to set is {a1}

This approach is one often taken by traditional compilers (ahead-of-time or just-in-time
alike) in order to perform intra-procedural optimizations, such as those based on traditional
data-flow analysis. (Later, in our experimental evaluation, we compare against such a baseline
“intra-procedural sound” analysis.)

However, the challenge is to also reason soundly about inter-procedural behavior. This
includes reasoning about the heap (i.e., reading fields of objects) and about method calls and
returns, whose resolution may be dynamic. This will be the focus of the defensive analysis
specification.

Inter-procedural elements. The large potential for opaque code to affect inter-procedural
analysis results has prevented past analyses from being sound. For instance, consider a
simple heap load instruction:

x = y.fld;

Imagine that the analysis has (somehow) soundly computed all the objects that y may point
to. It may also know all the places in the code where field fld is assigned and what is assigned
to it. However, the analysis still cannot compute soundly the points-to set of x unless it
also knows that all objects referenced by y can never escape to opaque code. This is hard to
establish: not only do all sites of opaque code (reflection, unknown instructions, potential
dynamic code generation sites, and more) need to be marked, but the analysis needs to
know an over-approximation of which objects these sites can reach. This requires to have
pre-computed an over-approximate (i.e., sound) points-to analysis, which is the problem we
are trying to solve in the first place. Past work has dealt with this problem with unrealistic
assumptions. For instance, Sreedhar et al. [33] present a call-specialization analysis that can
handle dynamic class loading, but only if given the results of a sound may-point-to analysis
as input.

Instead, defensive analysis pessimistically computes that a points-to set is > (i.e., can
contain anything) unless it is certain that its contents are bounded. When can the analysis
know this, however? Such a guarantee of bounded contents typically comes from having
precisely tracked the contents of a variable or field all the way from its last assignment, and
having established that no other code could have interfered. For instance, let us expand our
earlier example:

ECOOP 2018



23:6 Defensive Points-To Analysis: Effective Soundness via Laziness

1 y.fld = new A(); // abstract object a1, y.fld points -to set is {a1}
2 ... // analyzable , non -interfering code
3 x = y.fld;

The analysis can now know that the points-to set of x is {a1}, i.e., the singleton containing
the allocation site for A objects on line 1. For this to be true, the analysis has to establish that
all code between the store instruction to y.fld and the subsequent load does not interfere
with the value of y.fld. For example, we can be certain of such non-interference if the code
does not contain a store to field fld of any object, does not call any methods, and no other
thread can change the heap at that segment of the program.These are simple, local conditions
that the analysis may well be able to establish.

In practice, our defensive analysis will do a lot more: it will track method calls, up to a
maximum context depth, to ascertain when they can interfere with points-to sets. (If any
interference is detected, the points-to set propagated forward is empty.) For instance, in the
example code below, the analysis can know with certainty the points-to set of x on line 6,
whenever method foo is called from line 3 of the program fragment.

1 y.fld = new A(); // abstract object a1, y.fld points -to set is {a1}
2 z.otherFld = new B();
3 foo(y);
4

5 void foo(W w) {
6 x = w.fld; // x-for -call -site -3 points -to set is {a1}
7 }

Note the elements that contribute to such reasoning: The result holds soundly only when
foo is called from the specific call site. This result is established only by tracking the value of
y.fld (renamed to w.fld inside method foo) instruction-by-instruction all the way to line 6.
The heap store instruction on line 2 is guaranteed to not affect y.fld (regardless of whether
z and y alias or not), since Java guarantees object isolation and the reference is to a different
field. (More on language model assumptions in Section 2.3.)

The above example helps illustrate the design choices of defensive analysis: it is a flow-
sensitive, context-sensitive analysis because it needs to track all points-to information that is
guaranteed to hold, per-instruction, following closely all possible control-flow of the program,
even across calls. It is also an analysis computing points-to information on access paths
because this gives significantly more ability to reason about the heap locally. For instance,
in the above program fragment, we may not know which objects y may point to.3 However,
we do know that y.fld certainly points to abstract object a1 after line 1!

Laziness. Finally, consider the design choice of representing unbounded points-to sets as
empty, i.e., to lazily compute the contents of points-to sets only if they can be proven to be
finite. Defensive analysis requires laziness for scalability. (Experimentally, a non-lazy analysis
does not scale for any non-zero context depth, i.e., cannot be effective inter-procedurally.)

Laziness means skipping an explicit representation of >, in favor of keeping points-to sets
empy (⊥ in the usual lattice of sets) as long as possible. (As mentioned earlier, at the end
of the analysis, all sets that stayed ⊥ become implicitly >.) This has the minor benefit of
avoiding storage of > values, since empty sets are represented without consuming memory.
More majorly, however, it enables the analysis to give a convenient meaning to any finite

3 In fact, even if we did know, these would be abstract objects. Static analysis would almost never be
able to establish soundly what their fld field points to, because this information needs to capture the
fld values of all concrete objects (not just the latest one) represented by the same abstract object.



Y. Smaragdakis and G. Kastrinis 23:7

points-to sets that arise. Instead of “this set currently has bounded contents, but may become
> during the course of the analysis”, a non-empty set of values implies “this set has bounded
contents and is guaranteed to always have bounded contents”. By making this distinction, the
analysis never wastes effort computing points-to sets with explicit (non->) contents only to
later discover that the points-to set is >. For an example of how much wasted effort can be
saved by being lazy, consider an example program involving a heap load and a virtual call:

1 y.fld = new A(); // abstract object a1
2 while (...) {
3 x = y.fld;
4 x.foo(y);
5 }

An analysis may have computed all the abstract objects that y.fld may point to at line 3.
One of these computed objects may induce a different resolution of the call instruction (line
4), which can suddenly lead to the discovery that a y.fld-aliased object can enter opaque
code (while this was not true based on what the analysis had computed earlier). Since the
object referenced by y.fld can change in code that is not analyzed, the points-to set of
x at the load instruction will need to be augmented with the implicit over-approximation
special value, >. This means that all previously computed values for the points-to sets of x
and y.fld are subsumed by the single > value. Computing these values and all others that
depend on them constitutes wasted effort. To make matters worse, this is more likely to
happen for large points-to sets, i.e., the more work the analysis has performed on computing
an explicit points-to set, the larger (and less precise) the set will be, and the more likely it is
that the work will be wasted because the set will revert to >.

The design principle of “laziness in order to avoid wasted effort” is responsible for the
scalability of defensive analysis. As we show in our experiments, defensive analysis scales to be
flow-sensitive, 5-call-site sensitive over large Java benchmarks and the full JDK. (In standard
past literature for all-program-points analyses, even a flow-insensitive, 2-call-site-sensitive
analysis has been infeasible over these benchmarks [31].4)

2.3 Soundness Assumptions
The soundness claims of defensive analysis are predicated on assumptions about the environ-
ment. These assumptions reflect well the setting of safe languages, such as Java:

Object isolation. Objects can only be accessed via high-level references. This means
that objects and fields are isolated: an object can be referenced outside the dynamic
scope of a method or by a different thread only if a reference to the object has escaped the
method or current thread. (This restriction also implies that objects are not contained
in one another, though they can contain references to each other.) A field can only be
accessed via a base object pointer and a unique field signature.
Stack frame isolation. Local variables are isolated from each other, thread-private and
private to their allocating method. No external code can access the local variables of a
method, even if the code is executed (i.e., is a callee) under the dynamic scope of the
method.

4 It is worth emphasizing that, although defensive analysis is lazy, this is a very different form of laziness
than that of on-demand points-to analysis (e.g., [32, 2]). An on-demand analysis only computes points-to
information for program points that may affect a particular site of interest, instead of the entire program.
The defensive analysis we describe is an all-program-points analysis: it computes points-to information
for the entire program, i.e., for all possible points-to queries, including ones potentially devised in the
future. Yet the analysis is lazy in that it only computes values for points-to sets that it can prove to
have bounded contents.

ECOOP 2018



23:8 Defensive Points-To Analysis: Effective Soundness via Laziness

Concurrency model. In the simplified model of the paper, soundness is predicated on
the assumption that standard mutexes (or operations on volatile variables) are used to
protect all shared memory data. We later discuss how our implementation removes this
assumption.5

Thus, our setting is clearly that of a safe language with near-unlimited potential for
dynamic behavior. Notably, we can have unknown instructions; calls to native code with
arbitrary behavior (over a well-typed, isolated heap); generation and loading of unknown code
(which may also be called, via dynamic dispatch, by unsuspecting known code); arbitrary
access to existing or unknown objects (both field read/writes and method calls) via reflection,
i.e., without such access being identifiable in the program text; and more.

3 Defensive Analysis, Informally

The discussion of analysis principles in the previous sections gives the main tenets of defensive
analysis. However, these need to be concretely applied over all complex language features
affecting points-to information: control-flow merging, heap manipulation, and method calls.
We give informal examples next. Following these examples should significantly facilitate
understanding the formal specification of the analysis, in later sections.

Control-flow merging. Consider a branching example:
1 if (complexCondition ()) {
2 x = new A(); // abstract object a1
3 // x points -to set is {a1}
4 } else {
5 x = notFullyAnalyzed ();
6 // x points -to set is {}
7 } // x points -to set is {}

The first branch of the above if expression establishes that the points-to set of variable x
is {a1}. For a conventional analysis, this would result in adding a1 to the points-to set of x
at the merge point (after line 7). The defensive analysis, however, has to be conservative and
not compute values that may later become >. Therefore, it will add a1 to the final points-to
set of x only if it can also prove that the points-to set of x in the second branch is bounded,
i.e., non-empty. If the analysis is not certain of this, the points-to sets of x, both in the
second branch and at the merge point, stay empty. Inability to bound the points to set of x
in the second branch can be due a variety of reasons: e.g., there can be opaque code inside
notFullyAnalyzed, or the analysis may reach its maximum context depth, so that the return
value of the method is not tracked precisely.

Heap manipulation. Similar treatment applies to all cases of points-to sets (e.g., for complex
access paths) when information is merged: the analysis yields a non-empty result only if it is
certain that the result could not have been invalidated by any other code, available or not.
For instance, consider the following example of heap store instructions:

5 The reason for the simplified concurrency model in the paper is that it allows presenting the analysis in its
purest form, dealing with core language features such as heap loads/stores and calls, but unencumbered
by auxiliary considerations (e.g., computing objects that do not escape into other threads).



Y. Smaragdakis and G. Kastrinis 23:9

1 x.fld = new A(); // abstract object a1
2 // x.fld points -to set is {a1}
3 y.fld = notFullyAnalyzed ();
4 // x.fld points -to set is {}

After the first instruction, the points-to set of access path x.fld is computed to be {a1}.
However, in most cases, the analysis will not be able to ascertain that x and y are not aliased.
Therefore, after the second instruction, the points-to set of x.fld will be empty, i.e., unknown.
This reflects well the defensive nature of the analysis: whenever uncertain, points-to sets will
default to empty, i.e., undetermined.

Generally, since the analysis is flow-sensitive and access-path based, store instructions
certain to operate on the same object perform strong updates, while store instructions that
possibly operate on the same object perform weak updates:

1 x.fld = new A(); // abstract object a1
2 // x.fld points -to set is {a1}
3 x.fld = new B(); // abstract object b1
4 // x.fld points -to set is {b1}
5 y.fld = new B(); // abstract object b2
6 // x.fld points -to set is {b1 ,b2}

In this case, the points-to information of access path x.fld is set to {b1} after the second
store instruction, ignoring the previous contents. (The example assumes that types A and B
are both compatible with the static type of x.fld.) After the third store instruction, however,
a new element is added to the points-to set – again, under the assumption that the analysis
cannot determine whether x and y are aliased.

The different element in defensive analysis is that if any of the involved points-to sets is
empty, both strong and weak updates yield an empty points-to set. For instance, replacing
either of the last two allocations (new B()) above with a call to opaque (or not fully analyzed)
code would make all subsequent points-to sets of x.fld be empty.

Method calls. Defensive analysis computes sound may-point-to information simultaneously
with sound call-graph information. The analysis employs the same principles for the call-
graph representation as for points-to: a finite set of method call targets means that the set
is guaranteed bounded, while an empty set of method call targets means that the analysis
cannot (yet) establish that all target methods are known.

To compute a sound over-approximation of method call targets, one needs a bounded
may-point-to set for the receiver. Otherwise, the receiver object could be unknown – e.g., an
instance of a dynamically loaded class – resulting in an unsound call-graph.

When the set of method call targets is not bounded, dynamic calls cannot be resolved
and the analysis has to be conservative. For instance, in the example below, a conventional
unsound analysis would resolve the virtual call x.foo() to, at least, the method A::foo, i.e.,
foo in class A.

1 if (complexCondition ()) {
2 x = new A(); // abstract object a1
3 } else {
4 x = notFullyAnalyzed ();
5 }
6 x.foo();

In contrast, recall that for a defensive analysis the points-to set of x at the point of the
call to foo is empty. Accordingly, the defensive analysis does not resolve the virtual call
at all: per the lazy evaluation principle, there is no point of computing what one target
of the call will do, when other targets are unknown and full soundness (i.e., guaranteed

ECOOP 2018



23:10 Defensive Points-To Analysis: Effective Soundness via Laziness

over-approximation) is required. This means that all heap information (i.e., all access-path
points-to information, except for trivial access paths consisting of a single local variable
and no fields) that held before the method call ceases to hold after it! (There are notable
exceptions – e.g., for access paths with final fields, or for cases when an escape analysis
can establish that some part of the heap does not escape into the called method. Section 5
discusses such intricacies.)

When method calls can be resolved, the target methods have to be analyzed under a
context uniquely identifying the callee. A defensive analysis may know all methods that
can get called at a certain point, but it cannot know all callers of a method. Consider the
following example:

1 void caller () {
2 A x = new A(); // abstract object a1
3 callee(x); // call to callee
4 }
5

6 void callee(A y) {
7 ...
8 }

Assume that there is no other discernible call to callee anywhere in the program. An
unsound analysis would establish that variable y in callee (i.e., immediately after line 6) points
to abstract object a1. A defensive analysis, however, cannot do the same unconditionally.
The points-to set of y without context information has to be the empty set! The reason is
that there may be completely unknown callers of callee – e.g., in existing code, via reflection,
or in dynamically loaded code. Such callers could pass different objects as arguments to
callee and the analysis cannot upper-bound the set of such arguments. Thus, the only safe
answer for a defensive analysis is “undetermined” – i.e., an empty set.

Thus, in order to propagate analysis results inter-procedurally, a defensive analysis has
to leverage context information. In the above example, what the analysis will establish is
that y points to a1 conditionally, under context 3, signifying the call-site instruction (line 3
in our listing).

The above implies that the use of context in a defensive analysis is rather different than
in a traditional unsound points-to analysis. Contexts in standard points-to analysis can be
summarizing: a single context can merge arbitrary concrete (dynamic) executions, as long as
any single concrete execution maps uniquely to a context. For instance, a 1-object-sensitive
analysis [23] merges all calls to a method as long as they have the same abstract receiver
object, independently of call sites.

Context in a conventional analysis only adds precision, relative to a context-insensitive
analysis. In contrast, context in a defensive analysis is necessary for correctness: since
information is collected per-program-point, propagating points-to sets from a call site to a
callee can only be done under a context that identifies the call-site program point. Contexts
cannot freely summarize multiple invocation instructions, because there may be others, yet
unknown, invocations that would result in the same context.

Therefore, a context-sensitive defensive analysis has to be, at a minimum, call-site
sensitive [27, 28]: the call site of an analyzed method has to be part of the context (as will,
for deeper context, the call site of the caller, the call site of the caller’s caller, etc.). Other
kinds of context (e.g., object-sensitive context [23, 30]) can be added for extra precision.



Y. Smaragdakis and G. Kastrinis 23:11

Instruction Operand Types Description

i : v = new T () I×V ×T Heap Allocations
i : v = u I×V ×V Assignments
i : v = u . f I×V ×V ×F Field Loads
i : v . f = u I×V ×F ×V Field Stores
i : v . meth(∗) I×V ×M ×V n Virtual Calls
i : return I Method Returns
i : <unknown> I Unknown instruction (i.e., any other)

Figure 1 Intermediate Representation instruction Set.

4 A Model of Defensive Analysis

We next present a rigorous model of our defensive analysis. The model uses a minimal
intermediate language that captures the essence of the approach. The language can be
straightforwardly enhanced with features such as arrays, static members and calls, exceptions,
etc.

4.1 Preliminaries
Figure 1 shows the form of the input language. The domains of the analysis (and meta-
variables used subsequently, plain or primed) comprise:

v, u ∈ V , a set of variables,
T, S ∈ T , a set of types,
f, g ∈ F , a set of fields,
meth ∈M , a set of methods,
i, j ∈ I, a set of instruction labels,
c, d ∈ C, a set of contexts,
ô, ôi ∈ O, a set of abstract objects, potentially identifying their allocation instruction,
p ∈ P , a set of access paths (i.e., the set V (.F )∗),
n ∈ N, the set of natural numbers.

The analysis input consists of a set of instructions, linked into a control-flow graph,
via relation i next−−−→ j (over I×I). The input program is assumed to be in a single-return-
per-method form. We employ type information as well as other symbol table information,
accessed through some auxiliary functions and predicates:

methT is the result of looking up method signature meth in type T.
meth(n) is the n-th instruction of method meth.
We overload the ∈ operator to more than set membership, in unambiguous contexts,
namely: i ∈ meth (instruction is in method), f ∈ p (field is in access path), ô ∈ T (abstract
object is of type), v ∈ T (variable is of type).
argmeth

n and argi
n denote the n-th formal or actual arg of a method and invocation

instruction, respectively. (By convention, the this/base variable of a method invocation
is assumed to be the 0-th argument.)
p[v/u] is the access path resulting from changing the base of access path p from v to u (if
applicable).

ECOOP 2018



23:12 Defensive Points-To Analysis: Effective Soundness via Laziness

4.2 Analysis Structure
Figure 2 shows the analysis specification, in terms of constraints. Any solution satisfying
these constraints has the desired soundness property and in Section 4.3 we discuss extra
considerations so that the constraints can also be used to compute a solution. We recommend
following the figure together with our text explaining the rules: although the rules are
precise (transcribed from a mechanized logical specification) some are hard to follow without
explanation of their intent beforehand.
The analysis constraints define the following relations:

The “access path points-to” relation, in two varieties, before and after an instruction:
i : p IN−→c ô and i : p OUT−−−→c ô (p may point to ô before/after instruction i executed under
context c). This is our sound may-point-to relation: if, at the end of the analysis, the set
of ôs for given i, p, c is not empty, it will be a superset of the abstract objects ô pointed
by p at the given program point and context during any dynamic execution.6

The “may-call” relation, i.e., our sound call-graph representation: i calls−−−→
c

c′ meth (instruc-
tion i executed under context c may call method meth and the resulting context will be
c′).
The “reachable” relation, methc, denoting that method meth is reachable under context
c, and should, thus, be analyzed. This relation is partially populated when the analysis
starts: it holds an initial set of methods, under the empty context Init, that should be
analyzed.

Alloc, Move, Load, Store-1. The first four rules of the analysis are rather straightforward.
The Alloc rule is the only one with some minimal subtlety: if an object is freshly allocated,
we know that the variable it is directly assigned to points to it. This inference is valid in
any reachable context, even the initial, making-no-assumptions, Init context. Therefore this
rule is responsible for kickstarting the analysis, producing the first points-to inferences (valid
locally) that will then propagate.

Store-2. The Store-2 rule is the first one exhibiting the defensive and lazy features of the
analysis. The rule performs a “weak update” on points-to sets of possibly affected access
paths, as long as they are guaranteed to be bounded, i.e., they are non-empty. At a store
instruction, u . f = v , if an access path w.f has a base explicitly different from u (with f being
the same), then its points-to set is augmented with any element (ô) of the points-to set of v,
while maintaining its original elements (ô′). This rule defensively adds more information to
guarantee an over-approximation in the case of access paths that may be aliases for the same
object. The subtlety of the rule lies in its handling of empty points-to sets. If either of the
points-to sets (of v or of w.f) is empty before the instruction, the rule does not match, hence
the points-to set of w.f after the instruction does not acquire any contents. This is consistent
with our sound handling: if the earlier contents or the update cannot be upper-bounded,
then the resulting points-to set cannot be, either.

Note the contrast between rules Store-1 and Store-2. We do not need to determine
precisely the aliasing relationship between base variables u and w. If there is a chance that the
variables are aliased, it is safe to conservatively add more possible values to the points-to set
of w.f. In the case of Store-1, however, we could do better than the conservative treatment
and perform a strong update.

6 To be precise, concrete objects arise during execution but we are considering their standard mapping to
abstract objects, per allocation site.



Y. Smaragdakis and G. Kastrinis 23:13

(Alloc)
i : v = new T () i ∈ meth methc

i : v OUT−−−→c ôi

(Move)
i : v = u i : p IN−→c ô

i : p[u/v] OUT−−−→c ô

(Load)
i : u = v . f i : v.f IN−→c ô

i : u OUT−−−→c ô
(Store-1)

i : u . f = v i : v IN−→c ô

i : u.f OUT−−−→c ô

(Store-2)
i : u . f = v i : v IN−→c ô i : w.f IN−→c ô′ w 6= u

i : w.f OUT−−−→c ô i : w.f OUT−−−→c ô′

(CFG-join)
j

next−−−→ i j : p OUT−−−→c ô ∀k : (k next−−−→ i) =⇒ (k : p OUT−−−→c ∗)

i : p IN−→c ô

(Frame-1)
i : v IN−→c ô ¬(i : v = ∗) ¬(i : <unknown>)

i : v OUT−−−→c ô

(Frame-2)

i : p IN−→c ô p = v.∗
¬(i : * . meth(∗)) ¬(i : * . g = *) ¬(i : v = ∗) ¬(i : <unknown>)

i : p OUT−−−→c ô

(Frame-3)
i : * . f = * i : p IN−→c ô f /∈ p

i : p OUT−−−→c ô

(Call)
i : v . meth(∗) i : v IN−→c ô ô ∈ T c′ = NC(i, c, ô)

methT
c′

i
calls−−−→

c

c′ methT

(Args)
i

calls−−−→
c

c′ meth i : p IN−→c ô j = meth(0)

j : p[argi
n/argmeth

n ] IN−→c′ ô

(Ret)

j : return j ∈ meth i
calls−−−→

c

d meth j : p IN−→d ô p = v.∗{
∀meth’, c′ : (i calls−−−→

c

c′ meth’) =⇒

(∃j′, q’ : (j′ : return ) ∧ (j′ ∈ meth’) ∧ (p = q’[argmeth’
n /argi

n]) ∧ (j′ : q’ IN−→c′ ∗))
}

i : p[argmeth
n /argi

n] OUT−−−→c ô

Figure 2 Inference Rules for Defensive Points-to Analysis.

CFG-Join. The next rule deals with merging information from an instruction’s predecessors
(or merely propagating it, in the case of a single predecessor).

Informally, the rule states that if some predecessor instruction, j, has established that
p can point to ô, and if all other predecessors, k, establish that p points to something (so
that its points-to set is non-empty, i.e., bounded) then the information is propagated to the
points-to relation of the successor instruction. (We use * to mean “any value”, throughout

ECOOP 2018



23:14 Defensive Points-To Analysis: Effective Soundness via Laziness

the rules.) Note the defensive handling: if even a single predecessor has an unbounded (i.e.,
empty) points-to set for p, then the rule is not triggered and the resulting points-to set
remains empty.

Frame-1, Frame-2, Frame-3. The next three rules are frame rules, responsible for the
propagation of unchanged information.

Informally, the first rule merely says that points-to information for local variables (i.e.,
an access path consisting of just “v”) is maintained after an instruction, if it existed before it,
as long as the instruction does not directly assign the local variable (as is the case for a load,
move, or allocation directly into this local variable). The soundness of this rule is predicated
on our earlier assumption of stack frame isolation: local variables are isolated from each
other, thread-private, and private to their allocating method. Therefore their points-to set
cannot change, except with instruction such as the above.

This is the first time we see a treatment of <unknown> instructions, which can encode
any richer instruction set than our basic intermediate language. The analysis conservatively
avoids propagating any points-to information over an unknown instruction. This is also
used to handle concurrency, under our simplified model: both monitorenter/monitorexit
instructions and all accesses to volatile variables in the input program are represented
simply as <unknown> instructions in our intermediate language. (The treatment of <unknown>
collectively by the analysis rules ensures that all heap information is dropped at that program
point, i.e., points-to sets are empty after the instruction.)

The next two rules apply in the case of complex access paths, i.e., of length 2 or more.
(Actually rule Frame-3 also applies to variable-only access paths, but not meaningfully:
that case is subsumed by Frame-1.) First, similarly to the earlier rule, points-to information
for the access path is maintained after an instruction (assuming it held before it) unless the
instruction assigns the same base variable (again via a load, move, or allocation), or is a call,
store, or unknown. Second, points-to information for complex access paths is propagated
over all store instructions that affect fields not participating in the access path.

The soundness of these rules is predicated on the object isolation and concurrency model
assumptions of Section 2.3. Under these assumptions, the only way to change the points-to
set of an access path is via store instructions (on the same field), changing the base of the
access path, invoking (potentially opaque) methods, and executing unknown instructions
(including monitorenter/monitorexit). The rules have strong preconditions to preclude these
cases. At the level of the model, we only care about soundness under the given assumptions,
no matter how strict. In Section 5 we will discuss practical enhancements – e.g., when
method calls are fine because the analysis has computed the full potential of their effects on
the heap.

Call. The next rule uses points-to information to establish a sound call-graph. The i calls−−−→
c

c′

meth relation over-approximates information using the same approach as points-to sets:
for a given invocation site, i, and context, c, the relation holds either an empty set (i.e.,
no matching values exist for (i, ctx) – denoting an unbounded set of destinations – or an
over-approximation (i.e., a superset) of all possible targets of the invocation at i under c.

The rule is mostly a straightforward lookup of the target method, based on the receiver
object’s type. There are a couple of subtleties, however. The receiver object needs to have an
upper-bounded (i.e., non-empty) points-to set, a new context is constructed using function
NC, and the target method is considered reachable under the new context. The exact
definition of NC will determine the context-sensitivity of the analysis. (We will return to
this point promptly.)



Y. Smaragdakis and G. Kastrinis 23:15

Args. The Args rule handles points-to information propagation over calls, from caller to
callee. Points-to information for rebased access paths is established for the first instruction
(j = meth(0)) of a called method, under the callee’s established context. The rule examines
all access paths whose base variable is an actual argument of the call, as long as they have
some points-to information (before the invocation).

Recall our discussion of Section 3 regarding method calls and the use of context. The
points-to information established at a callee cannot be conflating different callers – there
may be unknown callers for the same method, either in existing code (e.g., via reflection)
or in dynamically loaded code. Therefore, if we might mix callers, the only sound inference
for local points-to sets is >: we cannot bound the values that all callers may pass. Instead,
we need to have contexts that uniquely identify the caller, so that we can safely propagate
bounded points-to sets.

A straightforward way to ensure that the pair (meth, c′) uniquely identifies invocation
instruction i and context c is to use call-site sensitivity [27, 28]: c′ is formed by combining
i and c – that is, NC(i, c, ô) = cons(i, c). (Contexts can typically grow only up to a pre-
determined depth, at which point the NC function will not return anything, the Call rule
will fail to make a calls−−−→ inference, hence the current rule will not fire, leaving points-to
sets at the callee empty, i.e., undetermined.)

Ret. The final rule perform a similar propagation of values, this time from callee to caller.
The rule is significantly complicated by its last condition (the forall-exists implication), which
is key for soundness. The rule states that if some callee has points-to information for complex
access path p at a return point, then this information is propagated to the caller, provided
that all other callees for the same instruction, i, and caller context, c, also have some (i.e.,
non-empty) points-to information for the same access path p at their return point. A further
complication is that access path p will appear rebased differently for each one of the callees –
e.g., access path actual.field may appear as formalA.field and formalB.field in two callees
A and B. The rule has to also account for such rebasing.

Note also the earlier condition that access path p be complex, i.e., to have length greater
than 1. This reflects call-by-value semantics for references: for a call foo(actual) to a method
with signature foo(F formal), the points-to information of access path formal is not reflected
back to the caller, yet the points-to information of longer access paths, e.g., formal.fld, is.

The handling of a method return is the only point where a context can become stronger.
Facts that were inferred to hold under the more specific context, c′, are now established,
modulo rebasing, under c. Since c′ has to uniquely identify c, typically c will be shorter by
one context element.

4.3 Reasoning
We prove the soundness of the analysis under an informal language model. We do not
attempt to formalize the full effects of opaque code (e.g., what reflection or native code can
or cannot do). Such a formalization would be tedious and partial, as new capabilities are
added to reflection or dynamic loading APIs with every JDK version. Instead, we establish
that the analysis rules always compute over-approximate finite points-to sets (or empty
sets), and that this property cannot be affected by opaque code under the common informal
understanding of the assumptions of Section 2.3. For instance, it is clear from the “stack
frame isolation” assumption that local variables cannot change values except by action of
the current instruction, i.e., that rule Frame-1 is alone responsible for soundly transfering
such points-to information from the program point before an instruction to after.

ECOOP 2018



23:16 Defensive Points-To Analysis: Effective Soundness via Laziness

There are two main properties of the defensive analysis:
Soundness: the analysis computes an over-approximation of points-to sets that may arise
during any program execution. Any non-empty set contains a superset of its dynamic
contents under any possible execution. Any empty set is considered trivially “over-
approximate”, to avoid special-casing all our statements. In effect, the analysis produces
a set of soundness markers, Claim(P ), which coincide with the non-empty points-to sets.
No claims are made about empty points-to sets.
Laziness: the analysis does not waste work; elements that enter a points-to set are never
removed.

I Theorem 1. There exists an evaluation order of the rules, such that the defensive analysis
model is sound: all points-to sets computed are over-approximate, i.e., are either empty
or contain all possible values arising during program execution, under the assumptions of
Section 2.3.

Proof. The proof is inductive. Initially, all points-to/call-target sets encoded in relations
i : p IN−→c, i : p OUT−−−→c, i

calls−−−→
c

c′ are empty. (We treat relation i : p IN−→c ô as encoding a set
of ôs for given i, p, c; relation i calls−−−→

c

c′ meth as encoding a set of meths for given i, c, c′, etc.)
Therefore, we start from a trivially over-approximate state.
Importantly, the inductive step does not hold for a single application of a rule. Intermediate

states of evaluation may not be over-approximate: an element may enter a set before the
rest of its contents. (For instance, consider a statement v = u and prior points-to set {ô1, ô2}
for u. A single application of the Move rule for ô1 will leave the points-to set of v in a
non-over-approximate state: the set will be missing the ô2 value.)

Thus, the inductive step applies to states after past rules have been evaluated fully.
Consider a rule R as a monotonic update to a set of values d. That is, R(d) ⊇ d. A rule has
been fully evaluated at fixpoint, i.e., when R(d) = d. The next inductive step considers the
state after a full evaluation of any rule.

The inductive step of the proof is captured in a lemma:

I Lemma 2. The analysis rules preserve soundness under full single-rule evaluation. That
is, if relations i : p

IN−−→c, i : p
OUT−−−→c, and i

calls−−−→
c

c′ encode over-approximate points-to/call-
target sets before a full evaluation of a rule, they will encode over-approximate sets after a
full evaluation.

Proof sketch of lemma 2. The lemma is established by exhaustive examination of the rules.
We mentioned key parts of the reasoning in our earlier presentation of the rules. All rules over
complex access paths (i.e., of length ≥ 2) affect the heap and require the “concurrency model”
and “object isolation” assumptions of Section 2.3. Rules on plain-variable access paths use
the “stack-frame isolation” assumption. Every rule is careful to produce values for points-
to/call-target sets only if all input sets are non-empty (i.e., guaranteed over-approximate
and bounded), and to consider all possible such values. For rules Call, Args, and Ret
the lemma holds only under the previously-stated assumption on the NC constructor: the
pair (meth, c′) needs to uniquely identify invocation instruction i and context c. Consider,
for example, rule Args. We need to establish that the points-to set j : p[argi

n/argmeth
n ] IN−→c′

is over-approximate given that i : p IN−→c is. (The rule form makes the former be a superset
of the latter, we need to reason that they are actually the same set.) Instruction j uniquely
identifies method meth and actual-to-formal access-path rebasing can never merge access
paths (since different formal variables cannot have the same names). If c′ and meth arise for
only a single call-site and caller-context pair, (i, c), then the property holds. J



Y. Smaragdakis and G. Kastrinis 23:17

The lemma establishes the inductive step of our proof. The sets computed by the analysis
are initially over-approximate and remain over-approximate after every full evaluation of a
single rule. At fixpoint, when full evaluation of any rule no longer changes the output sets,
the property holds, concluding the theorem’s proof. J

An interesting question is whether any evaluation order of the rules is guaranteed to yield
sound points-to sets at fixpoint. The answer is “almost yes”. All but one of the analysis
rules are monotonic (in the usual domain of sets, i.e., with the empty set at the bottom),
therefore yield a confluent evaluation: any order will yield the same result at fixpoint. (We
have a machine-checked proof of the latter property, by encoding the rules in the Datalog
language, which allows only recursion through monotonic inferences.) The single exception
is the Ret rule. There is hidden non-monotonicity in the ∀ iteration over call-graph edges,
which contains an implication. If the Call rule is not fully evaluated when the Ret rule
applies, it is possible to produce points-to sets that will later be invalidated, because more
callees will be discovered (for whom the points-to relationship does not hold for the given
access path). Therefore, for soundness to hold, the analysis rules have to always apply in
such a fashion that the Call rule is fully evaluated (not globally but on its own, per the
earlier definition) before the Ret rule is considered. This evaluation order should be enforced
by any sound implementation of the rules of Figure 2.

Based on the above observation on the rules’ monotonicity, we also establish our laziness
result.

I Theorem 3. A points-to set encoded in our analysis relations grows monotonically, as
long as the Ret rule is applied only during local fixpoints (i.e., after full evaluation) of the
Call rule.

5 Implementation and Discussion

We have implemented defensive analysis in the Datalog language and integrated it with
the Doop Datalog framework for may-point-to analysis of Java bytecode [5]. The full
implementation consists of over 400 logical rules, yet the minimal model of Section 4 captures
well its essential features. We also completed a second, largely equivalent, implementation
on the Soufflé Datalog engine [26]. Both implementations are publicly available at https:
//bitbucket.org/yanniss/doop.

The defensive analysis model admits several enhancements and refinements, as well as
gives rise to observations. We discuss such topics next, especially noting those that pertain
to our full-fledged implementation of the analysis.

Observations. A defensive analysis is naturally modular, yet the question is whether it
can produce useful results. The analysis can be applied to any subset of the code of an
application or library and it will produce sound inferences. Omitting code merely means
that more points-to sets will end up being empty: the analysis only infers points-to sets
when an upper-bound of their contents is known based on the current code under analysis.
This defensive approach, however, may end up computing too many empty points-to sets.
Therefore, the key quality metric is that of the analysis’s coverage: for how many program
elements (e.g., local variables) can the analysis produce non-empty points-to information?
Coverage has similarly been used as a key metric in other work that infers specifications
modularly [6].

Additionally, a defensive analysis is not in competition with a conventional, unsound
analysis, but instead complements it. The defensive analysis computes which of the points-to

ECOOP 2018

https://bitbucket.org/yanniss/doop
https://bitbucket.org/yanniss/doop


23:18 Defensive Points-To Analysis: Effective Soundness via Laziness

sets have known upper bounds and which are potentially undetermined. If, instead of
an empty set, a client desires to receive the (incomplete) subset of known contents for
non-bounded points-to sets, the results of the two analyses can be trivially combined.

Pragmatics. With minor adaptation, the analysis logic can work on static single assignment
(SSA) input. Our implementation is indeed based on an SSA intermediate language. The
benefit is that for trivial access paths (just a single variable) points-to information does not
need to be kept per-instruction: the points-to set remains unchanged, since the variable is
not re-assigned.

A full-fledged analysis should cover more language features than the model of Section 4.
Our implementation handles, in a manner similar to the earlier rules, features such as
static and special method invocations, static fields, final fields, constructors (also implicitly
initializing fields to null), and more.

Expanding the Analysis Reach. Defensive analysis is naturally pessimistic. Its key feature
is that it will populate points-to sets only when it can establish that they are bounded.
However, the analysis uses simplistic techniques to establish such boundedness, i.e., it
recognizes guaranteed-safe cases.

There are several sound inferences that the analysis could make but the model of Section 4
does not. Although defensive analysis will never reach the inferences of an unsound analysis
(even without any opaque code), it can be enhanced to approach it. Arbitrarily complex
mechanisms can be added to increase the coverage of the analysis (i.e., the true properties it
can infer precisely):

The rule shown earlier for control-flow merge points is conservative. Information propa-
gates at control-flow merge points if all of the predecessors have some points-to information
for the access path in question. This condition is too strict: several predecessors will not
have points-to information for an access path simply because the access path is not even
assigned in the predecessor branch (e.g., it is based on a local variable that is set on a
different branch only). Consider a program fragment:

1 x.f = new A();
2 while (...) {
3 y = x.f;
4 }

The head of the loop has two control-flow predecessors: one due to linear control flow
and one due to the loop back-edge. However, the loop itself does not change the points-to
set of x.f. It is too conservative to demand that the back-edge also have a bounded
points-to set for x.f before considering the linear control-flow edge.
In our implementation we have special support for detecting that a program path does
not affect an access path. We use this to limit the ∀ quantification of the rule to range
over “relevant” predecessors. We note that this scenario only applies to complex access
paths in practice, due to the SSA form of our input.
When an unknown method call is encountered, the analysis assumes worst-case behavior
with respect to its heap information. This can be relaxed arbitrarily by modeling
system methods and annotating them appropriately. Possible information about calls
includes “this library call does not affect user-level objects”, “this method only affects
its arguments”, “this method does not affect static variables”, etc. Additional manual
modeling includes library collections (including arrays) which can be represented as
abstract objects.



Y. Smaragdakis and G. Kastrinis 23:19

Our current implementation does some minimal modeling of library collections and anno-
tates only a handful of methods, as a proof-of-concept. A representative example is that of
method Float.floatToRawIntBits. This native method is called by the implementation of
the put operation in Java HashMaps and, since it is opaque, would prevent all propagation
of points-to information beyond a put call.
The analysis coverage can be expanded by employing it jointly with a must-alias anal-
ysis [15, 7, 35], an escape analysis [4, 11], and a thread-escape analysis. A must-alias
analysis will increase the applicability of the rule for heap loads, and can be combined
with the rule for heap stores to enable more strong updates. An escape analysis will
result in less conservativeness in the propagation of information to further instructions
(i.e., in frame rules). A thread-escape analysis can help relax our concurrency model. We
currently support simple, conservative versions of all three analyses in our implementation,
but do not enable them by default.

Context depth. As seen earlier, a defensive analysis may compute empty (undetermined)
points-to sets because it has reached its maximum context depth. It is worth pointing out,
however, that method calls further away than the maximum context depth can influence the
points-to inferences of a method. For an easy example, consider the case of a large number,
N , of methods that form a call chain and unconditionally return to their callers what their
callee returns to them. If the final (N -th) method returns a new object, then that object will
propagate all the way back to the first method of the call chain, regardless of the maximum
context depth, D. The limitation of context depth only concerns properties that depend on
conditions established more than D calls back in the call-stack.

6 Evaluation

There are five research questions that our evaluation seeks to answer:
RQ1: Does defensive analysis produce coverage for large parts of realistic programs? Or
do points-to sets overwhelmingly stay empty?
RQ2: Does the coverage of defensive analysis benefit from its advanced features (i.e.,
inter-procedural handling, as well as handling of control-flow merging)?
RQ3: Does defensive analysis have an acceptable running time, given that it is flow-
sensitive and context-sensitive?
RQ4: Does defensive analysis yield results that can benefit a client that requires soundness,
such as an optimization?
RQ5: Can benefits be obtained for a fully relaxed concurrency model, as opposed to the
model of Section 2.3?

Setup. Since defensive analysis is a unique beast, it is indeed an interesting question to
ask what it can be compared against. As closest comparable (though still a very dissimilar
analysis) we chose to compare to a highly-precise conventional analysis with state-of-the-art
best-effort soundness: a 2-object-sensitive/heap-sensitive analysis (2objH ) with reflection
support. This is the most precise analysis in the Doop framework that still manages to scale
to the majority of the DaCapo benchmarks. We use static best-effort reflection handling
(–enable-reflection-classic flag), i.e., the analysis tries to statically resolve all reflection
calls based on string matching.

We analyze, under JDK 1.7.0_75, the DaCapo benchmark programs [3] v.2006-10-MR2
as well as v.9.12-Bach. The 9.12-Bach version contains several different programs, as well
as more recent versions of some of the same programs. (We show results for all of the

ECOOP 2018



23:20 Defensive Points-To Analysis: Effective Soundness via Laziness

v.2006-10-MR2 benchmarks and for those of the v.9.12-Bach benchmarks that could be
analyzed by the Doop framework in under 3 hours.) We also use the two non-Android
benchmarks (NTI, jFlex) from the Julia set by Nikolić and Spoto [24].

We use the LogicBlox Datalog engine, v.3.10.14, on a Xeon E5-2667 v.2 3.3GHz machine
with only one thread running at a time and 256GB of RAM.

Defensive analysis is run with a 5-call-site-sensitive context (5def for short). 3 instances
(of 44 total) did not finish with the default precision in 3hrs: the 2objH baseline did not
finish for jython and h2; xalan did not finish for the 5def analysis. In these cases we used
lower precision: context-insensitive for the unsound analysis and 4-call-site-sensitive (4def )
for defensive. We use diacritical marks (* and ˆ) in the figures to remind the reader of the
different analysis setting for these benchmarks.

Coverage. Figure 3 shows the coverage of defensive analysis, i.e., the number of non-empty
points-to sets (for local variables) computed for all benchmarks. The input program is
in SSA form, therefore the points-to sets for variables are a normalized representation of
all points-to information in the program: they reflect the analysis-computed values for all
program expressions, separately for each control-flow point.

The analysis yields non-empty points-to sets for a significant portion of each program –
the median benchmark has 45.6% of variables with points-to information for some context,
while 35.5% have points-to information for a context Init (i.e., unconditionally).7 It is
worth emphasizing that conditional points-to guarantees (under some context) are valuable
in a defensive analysis: they are often the best any analysis can ever do! Recall our earlier
discussion of Section 3: many of the useful inferences of a defensive analysis will be under
some context even when the inference holds under all known contexts in existing code. No
analysis can preclude the existence of other callers in opaque, and possibly not yet existing,
code. Such callers can arise in dynamically generated code and can invoke existing methods,
e.g., using reflection.

Thus, the defensive analysis achieves a large proportion of the benefits of an unsound
analysis, while guaranteeing these results against uses of opaque code. We can answer RQ1
affirmatively: defensive analysis covers a large part of realistic programs (over one-third
unconditionally; close to one half under specific calling conditions), despite its conservative
nature.

Comparison with intra-procedural. We have earlier referred to the “easy”, intra-procedural
parts of the analysis reasoning: what a compiler or VM would likely do to perform sound
local data-flow analysis. This is the subject of RQ2, also answered by Figure 3. The figure
includes results for an intra-procedural baseline analysis that captures the low-hanging fruit
of sound reasoning: local variables that directly or transitively (via “move” instructions) get
assigned an allocated object. That is, the “Intra-proc Sound” analysis is otherwise the same
as the full “defensive” logic, with the exception of the new “interesting” cases (control-flow
merging, heap manipulation, and inter-procedural propagation).

The result answers RQ2 affirmatively: defensive analysis has significantly higher coverage
than the baseline intra-procedural analysis. (And the difference only grows when considering
an actual client, in later experiments.) Although the benefit is not broken down further in the

7 If a variable has a points-to value for context Init, then it also has that value under every specific
context that arises for the variable. Therefore, points-to sizes for Init are always lower than conditional,
context-specific sizes.



Y. Smaragdakis and G. Kastrinis 23:21

Figure 3 Percentage of application variables (deemed reachable by baseline 2objH analysis)
that have non-empty points-to sets for defensive analysis under some context and Init context (no
assumptions). Intra-procedural sound points-to analysis (defensive minus the complex cases) shown
as baseline. Arithmetic means are plotted as lines.

figure, the handling of method calls alone (i.e., rules Call, Args and Ret) is responsible for
the lion’s share of the difference between the full defensive analysis and the intra-procedural
sound analysis.

Running time. Figure 4 shows the running times of the analysis, plotted next to that of
2objH, for reference. Although the two analyses are dissimilar, 2objH is qualitatively the
closest one can get to defensive analysis with the current state of the art: it is an analysis
with high precision, run with best-effort soundness support. Therefore, 2objH can serve as
a realistic point of reference. As can be seen, the running times of defensive analysis are
realistically low, although its flow-sensitive and 5-call-site-sensitive nature suggests it would
be a prohibitively heavy analysis. This answers RQ3 and confirms the benefits of laziness:
a defensive analysis that only populates points-to sets once they are definitely bounded,
achieves scalability for deep context.

Client analysis: devirtualization. Our baseline analysis, 2objH, is highly precise and ef-
fective in challenges such as devirtualizing calls (resolving virtual calls to a single target
method). On average, it can devirtualize 89.3% of the calls in the benchmarks studied (min:
78.5%, max: 95.2%). However, these results are unsound and a compiler cannot act upon
them. For optimization clients, such as devirtualization, soundness is essential. Using sound
results, a JIT compiler can skip dynamic tests (of the inline caching optimization) for all
calls that the analysis soundly covers.

Figure 5 shows the virtual calls that defensive analysis devirtualizes, as a percentage of
those devirtualized by the unsound analysis.

As can be seen, defensive analysis manages to recover a large part of the benefit of
an unsound analysis (median 44.8% for optimization under a context guard, 38.7% for
unconditional, Init context, optimization), performing much better than the baseline intra-
procedural must-analysis (at 14.6%). This answers RQ4 affirmatively: the coverage of
defensive analysis translates into real benefit for realistic clients.

ECOOP 2018



23:22 Defensive Points-To Analysis: Effective Soundness via Laziness

Figure 4 Running time (sec) of defensive analysis, with running time of 2objH (with unsound
reflection handling) shown as a baseline. Labels are shown for defensive analysis only to avoid
crowding the plot.

Concurrency model. A compiler (JIT or AOT) author may (rightly) remark that the
concurrency model of Section 2.3 is not appropriate for automatic optimizations. The Java
concurrency model permits a lot more relaxed behaviors, so the analysis is not sound for full
Java as stated. However, the benefit of defensive analysis is that it starts from a sound basis
and can add to it conservatively, only when it is certain that soundness cannot possibly be
violated. Accordingly, we can remove the assumption that all shared data are accessed while
holding mutexes, by applying the load/store rules only when objects trivially do not escape
their allocating thread. We show the updated numbers for the devirtualization client (now
fully sound for Java!) in Figure 6. The difference in impact is minimal: 43% of virtual call
sites can be devirtualized conditionally, under some context, while 36% can be devirtualized
unconditionally. This helps answer RQ5: defensive analysis can yield actionable results for
a well-known optimization, under the Java memory model, for a large portion of realistic
programs.

Points-to set sizes. Finally, it is interesting to quantify the precision of the defensive
analysis, for the points-to sets it covers. This precision is expected to be high, since defensive
analysis is flow- and context-sensitive, but exact figures help put it in perspective.

Figure 7 shows average points-to set sizes for the defensive analysis vs. the 2objH
analysis. The sets (excluding null values) are computed over variables covered by both
analyses, for non-empty defensive analysis sets and under context Init of the defensive
analysis, i.e., unconditionally. (The numbers are for the simplistic concurrency model, but
remain unchanged to two significant digits for the relaxed concurrency model.)

As can be seen, the defensive analysis is highly precise when it produces non-empty
points-to sets, typically yielding points-to set sizes very close to 1. 2objH is also a very
precise analysis (for variables with bounded points-to sets), so it remains competitive, yet
clearly less precise. Notably, points-to set sizes close to 1 are the Holy Grail of points-to
analysis: such precision is actionable for nearly all conceivable clients of a points-to analysis.



Y. Smaragdakis and G. Kastrinis 23:23

Figure 5 Virtual call sites that are found to have receiver objects of a single type. These call
sites can be soundly devirtualized. Numbers are shown as percentages of devirtualization achieved
by unsound 2objH analysis.

7 Related Work

There is certainly past work that attempt to ensure a sound whole-program analysis, but none
matches the generality and applicability of our approach. We selectively discuss representative
approaches.

The standard past approach to soundness for a careful static analysis has been to “bail
out”: the analysis detects whether there are program features that it does not handle
soundly, and issues warnings, or refuses to produce answers. This is a common pattern in
abstract-interpretation [8] analyses, such as Astrée [10], which have traditionally emphasized
sound handling of conventional language features. However, this is far from a solution to the
problem of being sound for opaque code: refusing to handle the vast majority of realistic
programs can be argued to be sound, but is not usefully so. In contrast, our work handles all
realistic programs, but returns partial (but sound) results, i.e., produces non-empty points-to
sets for a subset of the variables. It is an experimental question to determine whether this
subset is usefully large, as we do in our evaluation.

Hirzel et al. [13, 14] use an online pointer analysis to deal with reflection and dynamic
loading by monitoring their run-time occurrence, recording their results, and running the
analysis again, incrementally. However, this is hardly a static analysis and its cost is
prohibitive for precise (context-sensitive) analyses, if applied to all reflection actions.

Lattner et al. [17] offer an algorithm that can apply to incomplete programs, but it
assumes that the linker can know all callers (i.e., there is no reflection – the analysis is for
C/C++) and the approach is closely tied to a specific flow-insensitive, unification-based
analysis logic [34], necessary for simultaneously computing inter-related points-to, may-alias,
and may-escape information.

Sreedhar et al. [33] present the only past approach to explicitly target dynamic class
loading, although only for a specific client analysis (call specialization). Still, that work ends
up making many statically unsound assumptions (requiring, at the very least, programmer
intervention), illustrating well the difficulty of the problem, if not addressed defensively. The
approach assumes that only the public API of a “closed world” is callable, thus ignoring

ECOOP 2018



23:24 Defensive Points-To Analysis: Effective Soundness via Laziness

Figure 6 Virtual call sites (percentage of 2objH) that are found to have receiver objects of a
single type. Updates Figure 5, this time with soundness under a relaxed memory model.

many uses of reflection. (With reflection, any method is callable from unknown code, and
any field is accessible.) It “[does] not address the Java features of reloading and the Java
Native Interface”. It “optimistically assumes” that “[the extant state of statically known
objects] remains unchanged when they become reachable from static reference variables”.
It is not clear whether the technique is conservative relative to adversarial native code (in
system libraries, since the JNI is ignored). Finally, the approach assumes the existence of a
sound may-point-to analysis, even though none exists in practice!

Traditional conservative call-graph construction (Class Hierarchy Analysis (CHA) [9]
or Rapid Type Analysis (RTA) [1]) is unsound. Such algorithms explore the entire class
hierarchy for matching (overriding) methods and consider all of them to be potential virtual
call targets. However, even this is not sufficient for a sound static analysis of opaque code:
classes can be generated and loaded dynamically during program execution. CHA cannot
find target methods that do not even exist statically, yet modeling them is precisely what is
needed for soundness in real-world conditions. For instance, Java applications, especially
in the enterprise (server-side) space, employ dynamic loading heavily, and patterns such as
dynamic proxies have been standardized and used widely since the early Java days.

Furthermore, such heuristic “best-effort” over-approximation is detrimental to analysis
precision and performance. CHA is an example of a loose over-approximation in an effort to
capture most dynamic behaviors. Loose over-approximations compute many more possible
targets than those that realistically arise. This yields vast points-to sets that render the
analysis heavyweight and useless due to imprecision. (Avoiding such costs is exactly why past
analyses have often opted for glaringly unsound handling of opaque code features.) Our lazy
representation of “don’t know”/”cannot bound” values as empty sets addresses the problem,
by keeping all points-to sets compact.

The conventional handling of reflection in may-point-to analysis algorithms for Java [12,
18, 22, 20, 29, 19] is unsound, instead relying on a “best-effort” approach. Such past analyses
attempt to statically model the result of reflection operations, e.g., by computing a superset
of the strings that can be used as arguments to a Class.forName operation (which accepts
a name string and returns a reflection object representing the class with that name). The
analyses are unsound when faced with a completely unknown string: instead of assuming



Y. Smaragdakis and G. Kastrinis 23:25

Benchmark Average points-to over same vars
defensive 2objH

D
aC

ap
o
20

06
-1
0-
M
R
2

antlr 1.01 1.10
bloat 1.02 2.12
chart 1.09 1.09
eclipse 1.06 1.31
fop 1.00 1.03
hsqldb 1.01 1.04
jython* 1.01 6.05
luindex 1.02 1.02
lusearch 1.04 1.06
pmd 1.01 1.05
xalan 1.05 1.12

jFlex 1.01 1.02
NTI 1.03 1.03

D
aC

ap
o
9.
12

-B
ac
h

avrora 1.05 3.04
batik 1.04 1.05
eclipse 1.07 1.53
h2* 1.04 2.07
luindex 1.01 1.04
lusearch 1.03 1.08
pmd 1.01 1.04
sunflow 1.05 1.08
xalanˆ 1.04 1.19

mean 1.03 1.51

Figure 7 Average number of abstract objects per variable, for variables for which both analyses
compute results.

that any class object can be returned, the analysis assumes that none can. The reason is that
over-approximation (assuming any object is returned) would be detrimental to the analysis
performance and precision. Even with an unsound approach, current algorithms are heavily
burdened by the use of reflection analysis. For instance, the documentation of the Wala
library directly blames reflection analysis for scalability shortcomings [12],8 and enabling
reflection on the Doop framework slows it down by an order of magnitude on standard
benchmarks [29]. Furthermore, none of these approaches attempt to model dynamic loading
– a ubiquitous feature in Java enterprise applications.

8 Conclusions

Static analysis has long suffered from unsoundness for perfectly realistic language features,
such as reflection, native code, or dynamic loading. We presented a new analysis architecture
that achieves soundness by being defensive. Despite its conservative nature, the analysis

8 The Wala documentation is explicit: “Reflection usage and the size of modern libraries/frameworks
make it very difficult to scale flow-insensitive points-to analysis to modern Java programs. For example,
with default settings, WALA’s pointer analyses cannot handle any program linked against the Java 6
standard libraries, due to extensive reflection in the libraries.” [12]

ECOOP 2018



23:26 Defensive Points-To Analysis: Effective Soundness via Laziness

manages to yield useful results for a large subset of the code in realistic Java programs, while
being efficient and scalable. Additionally, the analysis is modular, as it can be applied to any
subset of a program and will yield sound results.

We expect this approach to open significant avenues for further work. The analysis
architecture can serve as the basis of other sound analysis designs. The defensive analysis
itself can be combined with several other analyses (may-escape, must-alias) that have so far
been hindered by the lack of a sound substrate.

References
1 David F. Bacon and Peter F. Sweeney. Fast static analysis of C++ virtual function calls. In

Proc. of the 11th Annual ACM SIGPLAN Conf. on Object Oriented Programming, Systems,
Languages, and Applications, OOPSLA ’96, pages 324–341, New York, NY, USA, 1996.
ACM.

2 Sandip K. Biswas. A demand-driven set-based analysis. In POPL ’97: Proceedings of the
24th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
372–385, 1997.

3 Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khan, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z.
Guyer, Martin Hirzel, Antony L. Hosking, Maria Jump, Han Bok Lee, J. Eliot B. Moss,
Aashish Phansalkar, Darko Stefanovic, Thomas VanDrunen, Daniel von Dincklage, and
Ben Wiedermann. The DaCapo benchmarks: Java benchmarking development and anal-
ysis. In Proceedings of the 21th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2006, October 22-26, 2006,
Portland, Oregon, USA, OOPSLA ’06, pages 169–190, New York, NY, USA, 2006. ACM.
doi:10.1145/1167473.1167488.

4 Bruno Blanchet. Escape analysis: Correctness proof, implementation and experimental
results. In POPL ’98: Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 25–37, 1998.

5 Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of sophis-
ticated points-to analyses. In Proc. of the 24th Annual ACM SIGPLAN Conf. on Object
Oriented Programming, Systems, Languages, and Applications, OOPSLA ’09, New York,
NY, USA, 2009. ACM.

6 Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang. Composi-
tional shape analysis by means of bi-abduction. In Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’09, pages
289–300, New York, NY, USA, 2009. ACM. doi:10.1145/1480881.1480917.

7 Jong D. Choi, Michael Burke, and Paul Carini. Efficient flow-sensitive interprocedural
computation of pointer-induced aliases and side effects. In POPL ’93: Proceedings of the
20th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
232–245, 1993.

8 Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proceed-
ings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming lan-
guages, POPL ’77, pages 238–252, New York, NY, USA, 1977. ACM. doi:10.1145/512950.
512973.

9 Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented programs
using static class hierarchy analysis. In ECOOP’95 - Object-Oriented Programming, 9th
European Conference, Århus, Denmark, August 7-11, 1995, Proceedings, ECOOP ’95, pages
77–101. Springer, 1995. doi:10.1007/3-540-49538-X_5.

http://dx.doi.org/10.1145/1167473.1167488
http://dx.doi.org/10.1145/1480881.1480917
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1007/3-540-49538-X_5


Y. Smaragdakis and G. Kastrinis 23:27

10 David Delmas and Jean Souyris. Astrée: From Research to Industry, pages 437–451.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. doi:10.1007/978-3-540-74061-2_
27.

11 Alain Deutsch. On the complexity of escape analysis. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’97, pages
358–371, New York, NY, USA, 1997. ACM. doi:10.1145/263699.263750.

12 Stephen J. Fink et al. WALA UserGuide: PointerAnalysis. http://wala.sourceforge.
net/wiki/index.php/UserGuide:PointerAnalysis, 2013.

13 Martin Hirzel, Amer Diwan, and Michael Hind. Pointer analysis in the presence of dynamic
class loading. In ECOOP 2004 - Object-Oriented Programming, 18th European Conference,
Oslo, Norway, June 14-18, 2004, Proceedings, ECOOP ’04, pages 96–122. Springer, 2004.
doi:10.1007/978-3-540-24851-4_5.

14 Martin Hirzel, Daniel von Dincklage, Amer Diwan, and Michael Hind. Fast online pointer
analysis. ACM Trans. Program. Lang. Syst., 29(2), 2007. doi:10.1145/1216374.1216379.

15 Suresh Jagannathan, Peter Thiemann, Stephen Weeks, and Andrew Wright. Single and
loving it: must-alias analysis for higher-order languages. In POPL ’98: Proceedings of
the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 329–341, 1998.

16 Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. Challenges for static analysis
of Java reflection – literature review and empirical study. In Proceedings of the 39th Inter-
national Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May
20-28, 2017, 2017.

17 Chris Lattner, Andrew Lenharth, and Vikram Adve. Making Context-Sensitive Points-to
Analysis with Heap Cloning Practical For The Real World. In Proc. of the 2007 ACM
SIGPLAN Conf. on Programming Language Design and Implementation, PLDI ’07, New
York, NY, USA, 2007. ACM.

18 Yue Li, Tian Tan, Yulei Sui, and Jingling Xue. Self-inferencing reflection resolution for
Java. In Proc. of the 28th European Conf. on Object-Oriented Programming, ECOOP ’14,
pages 27–53. Springer, 2014. doi:10.1007/978-3-662-44202-9.

19 Yue Li, Tian Tan, and Jingling Xue. Effective soundness-guided reflection analysis. In
Sandrine Blazy and Thomas Jensen, editors, Static Analysis - 22nd International Sympo-
sium, SAS 2015, Saint-Malo, France, September 9-11, 2015, Proceedings, volume 9291
of Lecture Notes in Computer Science, pages 162–180. Springer, 2015. doi:10.1007/
978-3-662-48288-9_10.

20 Benjamin Livshits. Improving Software Security with Precise Static and Runtime Analysis.
PhD thesis, Stanford University, December 2006.

21 Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J. Nelson Ama-
ral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders Møller, and Dim-
itrios Vardoulakis. In defense of soundiness: A manifesto. Commun. ACM, 58(2):44–46,
2015. doi:10.1145/2644805.

22 Benjamin Livshits, John Whaley, and Monica S. Lam. Reflection analysis for Java. In Proc.
of the 3rd Asian Symp. on Programming Languages and Systems, pages 139–160. Springer,
2005. doi:10.1007/11575467_11.

23 Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object sensitivity
for points-to analysis for Java. ACM Trans. Softw. Eng. Methodol., 14(1):1–41, 2005. doi:
10.1145/1044834.1044835.

24 Durica Nikolić and Fausto Spoto. Definite expression aliasing analysis for Java bytecode.
In Theoretical Aspects of Computing - ICTAC 2012 - 9th International Colloquium, Banga-
lore, India, September 24-27, 2012. Proceedings, volume 7521 of ICTAC ’12, pages 74–89.
Springer, 2012. doi:10.1007/978-3-642-32943-2_6.

ECOOP 2018

http://dx.doi.org/10.1007/978-3-540-74061-2_27
http://dx.doi.org/10.1007/978-3-540-74061-2_27
http://dx.doi.org/10.1145/263699.263750
http://wala.sourceforge.net/wiki/index.php/UserGuide:PointerAnalysis
http://wala.sourceforge.net/wiki/index.php/UserGuide:PointerAnalysis
http://dx.doi.org/10.1007/978-3-540-24851-4_5
http://dx.doi.org/10.1145/1216374.1216379
http://dx.doi.org/10.1007/978-3-662-44202-9
http://dx.doi.org/10.1007/978-3-662-48288-9_10
http://dx.doi.org/10.1007/978-3-662-48288-9_10
http://dx.doi.org/10.1145/2644805
http://dx.doi.org/10.1007/11575467_11
http://dx.doi.org/10.1145/1044834.1044835
http://dx.doi.org/10.1145/1044834.1044835
http://dx.doi.org/10.1007/978-3-642-32943-2_6


23:28 Defensive Points-To Analysis: Effective Soundness via Laziness

25 Xavier Rival. Comment on “what is soundness in static analysis post”,
in the PL Enthusiast blog. http://www.pl-enthusiast.net/2017/10/23/
what-is-soundness-in-static-analysis/#comment-1265, 2017.

26 Bernhard Scholz, Herbert Jordan, Pavle Subotic, and Till Westmann. On fast large-scale
program analysis in datalog. In Proceedings of the 25th International Conference on Com-
piler Construction, CC 2016, Barcelona, Spain, March 12-18, 2016, pages 196–206, 2016.
doi:10.1145/2892208.2892226.

27 Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow analysis.
In Steven S. Muchnick and Neil D. Jones, editors, Program flow analysis: theory and
applications, chapter 7, pages 189–233. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1981.

28 Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, Carnegie
Mellon University, may 1991.

29 Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin Bravenboer. More
sound static handling of Java reflection. In Proc. of the Asian Symp. on Programming
Languages and Systems, APLAS ’15. Springer, 2015.

30 Yannis Smaragdakis, Martin Bravenboer, and Ondřej Lhoták. Pick your contexts well:
Understanding object-sensitivity. In Proc. of the 38th ACM SIGPLAN-SIGACT Symp. on
Principles of Programming Languages, POPL ’11, pages 17–30, New York, NY, USA, 2011.
ACM.

31 Yannis Smaragdakis, George Kastrinis, and George Balatsouras. Introspective analysis:
Context-sensitivity, across the board. In Proc. of the 2014 ACM SIGPLAN Conf. on
Programming Language Design and Implementation, PLDI ’14, pages 485–495, New York,
NY, USA, 2014. ACM. doi:10.1145/2594291.2594320.

32 Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. Boomerang:
Demand-driven flow- and context-sensitive pointer analysis for java. In Shriram Krish-
namurthi and Benjamin S. Lerner, editors, 30th European Conference on Object-Oriented
Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy, volume 56 of LIPIcs, pages
22:1–22:26. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. URL: http://www.
dagstuhl.de/dagpub/978-3-95977-014-9, doi:10.4230/LIPIcs.ECOOP.2016.22.

33 Vugranam C. Sreedhar, Michael Burke, and Jong-Deok Choi. A framework for interpro-
cedural optimization in the presence of dynamic class loading. In Proc. of the 2000 ACM
SIGPLAN Conf. on Programming Language Design and Implementation, PLDI ’00, pages
196–207, New York, NY, USA, 2000. ACM.

34 Bjarne Steensgaard. Points-to analysis in almost linear time. In POPL ’96: Proceedings of
the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 32–41, 1996.

35 Xin Zheng and Radu Rugina. Demand-driven alias analysis for C. In Proceedings of
the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2008, San Francisco, California, USA, January 7-12, 2008, POPL ’08, pages 197–
208, New York, NY, USA, 2008. ACM. doi:10.1145/1328438.1328464.

http://www.pl-enthusiast.net/2017/10/23/what-is-soundness-in-static-analysis/#comment-1265
http://www.pl-enthusiast.net/2017/10/23/what-is-soundness-in-static-analysis/#comment-1265
http://dx.doi.org/10.1145/2892208.2892226
http://dx.doi.org/10.1145/2594291.2594320
http://www.dagstuhl.de/dagpub/978-3-95977-014-9
http://www.dagstuhl.de/dagpub/978-3-95977-014-9
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.22
http://dx.doi.org/10.1145/1328438.1328464

	Introduction
	Analysis Illustration
	Soundness and Design Decisions Overview
	Background and Illustrating Design Decisions
	Soundness Assumptions

	Defensive Analysis, Informally
	A Model of Defensive Analysis
	Preliminaries
	Analysis Structure
	Reasoning

	Implementation and Discussion
	Evaluation
	Related Work
	Conclusions

