KafKa: Gradual Typing for Objects (Artifact)

Benjamin Chung
Northeastern University, Boston, MA, USA

Paley Li

Czech Technical University, Prague, Czech Republic

Francesco Zappa Nardelli
INRIA, Paris, France

Jan Vitek
Northeastern University, Boston, MA, USA

— Abstract

A wide range of gradual type systems have been pro-
posed, providing many languages with the ability
to mix typed and untyped code. However, hiding
under language details, these gradual type systems
have fundamentally different ideas of what it means
to be typed. In this paper, we show that four of
the most common gradual type systems provide dis-
tinct guarantees, and we give a formal framework for

languages. First, we show that the different gradual
type systems are practically distinguishable via a
three-part litmus test. Then, we present a formal
framework for defining and comparing gradual type
systems. Within this framework, different gradual
type systems become translations between a com-
mon source and target language, allowing for direct
comparison of semantics and guarantees.

comparing gradual type systems for object-oriented

2012 ACM Subject Classification Software and its engineering — Semantics

Keywords and phrases Gradual typing, object-orientation, language design, type systems

Digital Object Identifier 10.4230/DARTS.4.3.10

Related Article Benjamin Chung, Paley Li, Francesco Zappa Nardelli, and Jan Vitek, “KafKa: Gradual
Typing for Objects”, in Proceedings of the 32nd European Conference on Object-Oriented Programming
(ECOOP 2018), LIPIcs, Vol. 109, pp. 12:1-12:25, 2018.
https://dx.doi.org/10.4230/LIPIcs.ECO0P.2018.12

Related Conference 32nd European Conference on Object-Oriented Programming (ECOOP 2018), July
19-21, 2018, Amsterdam, Netherlands

1 Scope

The scope of the artifact includes a complete implementation of the Kafka VM, the translation
from native code, and a complete Coq proof of Kafka.

Our Kafka and native translation implementations are written in F#. The folder kafkaimpl
contains the translation from the surface source language to kafka, the translation from kafka
to CIL, and the type checker for Kafka. The folder kafkatests contains unit tests for the kafka
implementation. The implementation of Kafka follows the same syntax and semantics as those
presented in figure 3 and 4 of the paper. The implementation of our translation from the source
language to Kafka follows the rules presented in section 5 of the paper. The result of each litmus
test under each gradual semantics reflects the behavior expressed in section 3 of our paper.

The mechanized proof of type soundness for Kafka in Coq is found in the proof directory.

There are three holes in the proof, in kafka.v:

Transitivity of structural recursive subtyping (line number: 342)

Soundness of subtyping (line number: 350)

That subtyping still holds when the class table is expanded (line number: 642)

? Benjamin Chung, Paley Li, Francesco. ZaPpa Nardelli, and Jan Vitek;
oY icensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)
Dagstuhl Artifacts Series, Vol. 4, Issue 3, Artifact No. 10, pp. 10:1-10:3

\\v DAGSTUHL Dagstuhl Artifacts Series
ARTIFACTS SERIES Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/DARTS.4.3.10
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.12
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/darts
http://www.dagstuhl.de

10:2

KafKa: Gradual Typing for Objects (Artifact)

The first two components are well-known prior work (e.g. [1]). The third property simply
requires that pre-existing subtyping judgments still hold when the class table is expanded.

2 Content

The artifact package includes:
Kafka’s .Net implementation (netimpl directory)
Kafka’s Coq proof (proof directory)
Litmus tests in each of the four native languages and our source language (examples directory)

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition to DROPS, the artifact is
also available at: https://github.com/BenChung/GradualComparisonArtifact.

4 Tested platforms

The Coq component of the artifact has no platform dependencies beyond requiring Coq 8.6. The
.Net implementation is easiest to build on Windows (see instructions), and has been reported to
be build on Linux under Mono.

4.1 Building the KafKa Implementation

To build the artifact under Windows with Visual Studio, open the kafkaimpl.sln file inside of
the netImpl/kafkaimpl subdirectory in Visual Studio 2017 or later with F# installed. Restore
the NuGet packages (right click on references under kafkaimpl in the solution explorer, click on
“manage NuGet packages”, then click “restore” on the bar at the top), and then build the solution.

Installation on Linux and related platforms is untested, though has been reported to work.
Install mono-complete, nuget, and fsharp, then run “nuget restore” in the kafkaimpl subdirectory,
followed by “msbuild”.

4.2 Using the Kafka Implementation

The KafKa implementation takes two command line arguments: the semantics to use and the file
to execute. The following table shows the arguments to use for each semantics:
Optional opt
Transient tra
Behavioral beh
Concrete con
The second argument is the path to the file to execute. Source language versions of the litmus
tests are found in the examples/source subdirectory, and exhibit the same behavior as described
in the paper when ran using our implementation.

4.3 Native Litmus Test Implementations

In this section, we discuss how to install each of the native languages that are required to run the
native litmus tests.


https://github.com/BenChung/GradualComparisonArtifact

B. Chung, P. Li, F. Z. Nardelli, and J. Vitek

4.3.1 TypeScript

For TypeScript, all the information regarding the language and the process of installment can be
found at https://www.typescriptlang.org/.

4.3.2 Thorn

Unfortunately, there does not exist a public implementation of Thorn that is readily available.
The Thorn skeleton, which we obtained through private means, was heavily savaged from bit rot
and decay, and was not easily installable nor it contain all the necessary components, such as the
thorn type checker.

4.3.3 Typed Racket

For Typed Racket, first you would need to install the Racket IDE called DrRacket, which can
be found at https://docs.racket-lang.org/getting-started /index.html. In order to write a Typed
Racket module within DrRacket you would be required to follow the three steps outlined at:
https://docs.racket-lang.org/ts-guide/quick.html.

4.3.4 Reticulated Python

The information regarding the installment and running of Reticulated Python can be found at:
https://github.com/mvitousek/reticulated. It requires Python version 3.5 or older.

5 License

The artifact is available under the Apache license.

6 MD5 sum of the artifact

5186a2242726e810f5acac714a827abc¢

7 Size of the artifact

0.230 GiB

Acknowledgments. I want to thank Aviral Goal for helping to test this artifact.

— References

1 Timothy Jones and David J. Pearce. A mech- FT{JP’16, pages 1:1-1:6, New York, NY, USA,
anical soundness proof for subtyping over recurs- 2016. ACM. URL: http://doi.acm.org/10.1145/
ive types. In Proceedings of the 18th Work- 2955811.2955812, doi:10.1145/29556811.2955812.

shop on Formal Techniques for Java-like Programs,

10:3

DARTS


https://www.typescriptlang.org/
https://docs.racket-lang.org/ts-guide/quick.html
https://github.com/mvitousek/reticulated
http://doi.acm.org/10.1145/2955811.2955812
http://doi.acm.org/10.1145/2955811.2955812
http://dx.doi.org/10.1145/2955811.2955812

	Scope
	Content
	Getting the artifact
	Tested platforms
	Building the KafKa Implementation
	Using the Kafka Implementation
	Native Litmus Test Implementations
	TypeScript
	Thorn
	Typed Racket
	Reticulated Python


	License
	MD5 sum of the artifact
	Size of the artifact

