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Abstract
In this paper, we study quantum query complexity of the following rather natural tripartite
generalisations (in the spirit of the 3-sum problem) of the hidden shift and the set equality
problems, which we call the 3-shift-sum and the 3-matching-sum problems.

The 3-shift-sum problem is as follows: given a table of 3×n elements, is it possible to circularly
shift its rows so that the sum of the elements in each column becomes zero? It is promised that,
if this is not the case, then no 3 elements in the table sum up to zero. The 3-matching-sum
problem is defined similarly, but it is allowed to arbitrarily permute elements within each row.
For these problems, we prove lower bounds of Ω(n1/3) and Ω(

√
n), respectively. The second lower

bound is tight.
The lower bounds are proven by a novel application of the dual learning graph framework

and by using representation-theoretic tools from [7].
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1 Introduction

One of the starting points of this paper was the following problem, posed by Aaronson and
Ambainis [1]: construct a partial Boolean function with polylogarithmic quantum query
complexity but whose randomised query complexity is ω(

√
n), where n is the number of

input variables. There are relatively many functions known with the required quantum
query complexity and randomised query complexity Θ(

√
n). For instance, one can take the

forrelation problem of [1] with quantum query complexity 1, or the better-known hidden
subgroup problem [13]. However, no function with polylogarithmic quantum query complexity
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3:2 Quantum Lower Bound for Tripartite Hidden Shift

and randomised query complexity ω(
√
n) is known. As shown in [10, 2], such a function

would also yield a larger than 5/2-power separation between quantum and randomised query
complexities for total Boolean functions.

Aaronson and Ambainis proposed a candidate function, which they call the k-fold
forrelation. It has a very simple quantum O(1)-query algorithm, but it seems hard to lower
bound its randomised query complexity. However, it is also possible to go in the opposite
direction: find a function whose randomised query complexity is ω(

√
n), and construct an

efficient quantum algorithm computing this function. A potential candidate might be a
modification of a function already known to be easy quantumly, preserving the hope the
modification is still easy.

One particularly neat starting function, in our opinion, is the following hidden shift
problem. Given two strings x, y ∈ [q]n, the task is to distinguish two cases: in the positive
case, x is a circular shift of y; in the negative case, all the input variables in x and y

are distinct. This problem is equivalent to the hidden subgroup problem in the dihedral
group [17], and its quantum query complexity is logarithmic.3 It is also easy to see that its
randomised query complexity is Θ(

√
n).

In this paper we consider the following modification, which we call the 3-shift-sum problem.
We are given an input string x ∈ [q]3n, which we treat as a 3× n table. In the positive case,
it is possible to circularly shifts the rows of the table so that the sum of the elements in each
column becomes divisible by q. In the negative case, no matter how we shift the rows, there
is no column with the sum of its elements divisible by q. (In other words, there is no three
elements, one from each row, whose sum is divisible by q.) This is a natural amalgamation
of the hidden shift and the 3-sum problem, both studied quantumly.

It is easy to see that the randomised query complexity of this problem is Θ(n2/3). This
raises the question of what its quantum query complexity is. Our first result is a simple
proof that, unlike the hidden shift problem, the quantum query complexity of the 3-shift-sum
problem is polynomial: Ω(n1/3). Thus, the 3-shift-sum problem fails to provide the desired
separation.

Similarly as the 3-shift-sum problem is a tripartite version of the hidden shift problem, the
3-matching-sum problem is a tripartite version of the set equality problem. In the set equality
problem, the negative inputs are as in the hidden shift problem, but in a positive input, y is
an arbitrary permutation of x, not necessary a circular shift. Unlike the hidden shift problem,
the set equality problem has polynomial quantum query complexity: Θ(n1/3) [23, 25, 7]. In
our tripartite version of it, the negative inputs are the same as in the 3-shift-sum problem,
but for a positive input, there exists an arbitrary permutation of the elements within each
row such that the sum of each column becomes divisible by q. Our second result is a complete
characterisation of the quantum query complexity of this problem: it is Θ(

√
n).

1.1 Techniques

Our main tool is the framework of dual learning graphs, which is “compiled” to the adversary
lower bound.

3 The canonical version of the Dihedral HSP also assumes that all the symbols in x are pairwise distinct
and all the symbols in y are pairwise distinct. However, this condition is not relevant for the query
complexity being logarithmic as easily follows from [14, Theorem 2]. Since it is not immediately obvious
how to generalise this condition for the tripartite version, we omitted it from our definition of the hidden
shift problem. Also note that this is the decision version of the problem, where it is not required to find
the shift. The latter may be difficult if x contains repeated symbols.
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The first version of the adversary method was developed by Ambainis [3]. This version,
later known as the positive-weighted adversary, is easy to use, and it has found many
applications, but it is also subject to some limitations: the certificate complexity [24, 26]
and the property testing [15] barriers. The property testing barrier, which is relevant to
our problems, states that, if any positive input differs from any negative input on at least ε
fraction of the input variables, the positive-weighted adversary fails to prove a lower bound
better than Ω(1/ε). In most cases ε = Ω(1), thus this only gives a trivial lower bound.

The next version of the bound, the negative-weighted adversary [15], is known to be
tight [20], but it is also harder to apply. An application of the bound to the k-sum problem
was obtained in [9]. This result was later stated in the framework of dual learning graphs [6],
which we are about to describe.

Learning graphs is a model of computation introduced in [4, 5]. They are most naturally
stated in terms of certificate structures, which describe where 1-certificates can be located in
a positive input. Learning graphs capture quantum query complexity of certificate structures
in the following sense. Let L be the learning graph complexity of a certificate structure
C. First, for any function with certificate structure C, there exists a quantum algorithm
solving it in O(L) queries. Second, there exists some function with certificate structure C
and quantum query complexity Ω(L). In general these functions are rather contrived, yet
one example of them being natural are the following sum problems. A sum problem is a
total function parametrised by a family S of O(1)-sized subsets of [n]. The task, given an
input string x ∈ [q]n, is to detect whether there exists S ∈ S such that

∑
i∈S xi is divisible

by q. Note that our problems do not fall into this category, because every positive input is
promised to have many such subsets.

While dual learning graphs give tight lower bounds for all of the above sum problems, in
general, of course, they do not give lower bounds for all problems with a given certificate
structure. For example, the learning graph complexity of the certificate structure corres-
ponding to the hidden shift problem is Θ(n1/3), whereas its quantum query complexity is
logarithmic. What about the 3-shift-sum problem? It turns out that dual learning graphs
are still of help here, but in a slightly different way. The learning graph complexity of the
corresponding certificate structure is Θ(

√
n), yet we do not know whether it can be converted

into a quantum query lower bound. However, a dual learning graph for a different certificate
structure can be converted into, albeit not tight, but still a polynomial lower bound. This
shows that dual learning graphs are more versatile than we thought.

Another interesting feature of our result is that it might be the simplest constructed
example of the adversary bound surpassing the property testing barrier. Examples of the
negative-weighted adversary breaking the certificate complexity and the property testing
barriers were already obtained in [15]. But [15] did not cover the most interesting regime
ε = Ω(1) of the property testing barrier. The sum problems of [6] are relatively simple
examples of overcoming the certificate complexity barrier. An example for the ε = Ω(1)
regime of the property testing barrier was constructed in [7], but the construction is quite
technical. Our result gives a similar example by much simple means, comparable to that
of [6].

Concerning the 3-matching-sum problem, our lower bound is an application of the
technique developed for the set equality problem [7]. It is based on the representation theory
of the symmetric group. Surprisingly, the technique can be used for the 3-matching-sum
problem with essentially no modifications: our proof uses representation theory to a minimal
extent, and mostly follows from combinatorial estimates involving the dual learning graph.
This indicates that our technique has a potential to be used in proving lower bounds for
other symmetric problems.

TQC 2018
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1.2 Results in property testing

In the property testing model, one is given some property (a set of positive inputs), and the
task is to distinguish whether the input possesses the property, or is ε-far, in the relative
Hamming distance, from any input that has the property.

Overcoming the property testing barrier automatically gives a lower bound for a property
testing problem—that of testing whether the input is positive. But it is not always the most
natural way to state the problem. We give an example of a lower bound for a problem that
is most naturally stated in the setting of property testing.

The 3-shift-sum problem, as formulated above, must have relatively large q for the problem
to be interesting. For instance, it is easy to see that for q = 2 there are almost no negative
inputs. In our lower bound, we require that q = Ω(n3). But it is possible to formulate a
version of the problem that is interesting even when the input alphabet is Boolean. Define
the set of positive inputs as before, and define the set of negative inputs as being at relative
Hamming distance at least, say, 1/7 to it. We prove a lower bound of Ω(n1/3) also for this
version of the problem.

Although there is quite a number of quantum algorithms for property testing problems,
there are not so many quantum lower bounds known. (An interested reader might consult a
recent survey [19] for more information on the topic.) One of the main reasons, of course, is
the property testing barrier for the positive-weighted adversary. Up to our knowledge, our
result is the first property testing lower bound proven using the adversary method, which
answers the problem mentioned in [19]. This shows yet another area of applications of dual
learning graphs.

2 Preliminaries

For positive integers m and ` ≥ m, let [m] denote the set {1, 2, ...,m} and [m..`] denote the
set {m,m+ 1, . . . , `}. For P a predicate, we use 1P to denote the variable that is 1 if P is
true, and 0 otherwise.

For an I × J -matrix A, i ∈ I, and j ∈ J , we denote by A[[i, j]] its (i, j)-th entry. For
I ′ ⊆ I and J ′ ⊆ J , A[[I ′,J ′]] denotes the corresponding submatrix. We use similar notation
also for vectors. Next, ‖·‖ denotes the spectral norm (the largest singular value), and ◦
denotes the Hadamard (i.e., entry-wise) product of matrices. We often identify projectors
with the spaces they project onto.

2.1 Adversary Bound

For background on quantum query complexity the reader may refer to [11]. In the paper, we
only require the knowledge of the (negative-weighted) adversary bound for decision problems,
which we are about to define.

Let f : D → {0, 1} with D ⊆ [q]n. An adversary matrix for f is a non-zero f−1(1)×f−1(0)-
matrix Γ. For any j ∈ [n], the f−1(1)× f−1(0)-matrix ∆j is defined by

∆j [[x, y]] =
{

0, if xj = yj ;
1, if xj 6= yj .

(1)
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I Theorem 1 (Adversary bound, [15, 18, 9]). In the above notation, the quantum query
complexity of the function f is Θ

(
ADV±(f)

)
, where ADV±(f) is the optimal value of the

semi-definite program

maximise ‖Γ‖ (2a)
subject to ‖∆j ◦ Γ‖ ≤ 1 for all j ∈ [m], (2b)

where the maximisation is over all adversary matrices Γ for f .

We can choose any adversary matrix Γ and scale it so that the condition ‖∆j ◦ Γ‖ ≤ 1 holds.
Thus, we often use the condition ‖∆j ◦ Γ‖ = O(1) instead of ‖∆j ◦ Γ‖ ≤ 1.

Working with the matrix ∆j ◦ Γ might be cumbersome, so we do the following transform-
ation instead. We write Γ ∆j7−→ Γ′ if Γ ◦∆j = Γ′ ◦∆j . In other words, we modify the entries
of Γ with xj = yj . Now, from the fact [18] that γ2(∆j) = maxB

{
‖∆j ◦B‖ : ‖B‖ ≤ 1

}
≤ 2,

we conclude that ‖∆j ◦ Γ‖ ≤ 2‖Γj‖, hence we can replace ∆j ◦ Γ with Γ′ in (2b).
It is sometimes convenient [9] to allow several rows or columns corresponding to the same

input x. We add labels to distinguish different rows corresponding to the same input.

2.2 Certificate Structures and Dual Learning Graphs
Let f : D → {0, 1} be a function with domain D ⊆ [q]n. For x ∈ f−1(1), a certificate for x is
a subset S ⊆ [n] such that f(z) = 1 for all z ∈ D satisfying xi = yi for all i ∈ S. A certificate
structure C is a collection of non-empty subsets of 2[n]. We say that f has certificate structure
C if, for every x ∈ f−1(1), there existsM∈ C such that every S ∈M is a certificate for x.
It is natural to assume that allM∈ C are upward closed.

There are two formulations of the learning graph complexity: primal and dual. For
the purposes of this paper, it is enough to state the dual one. A dual learning graph for a
certificate structure C is a feasible solution to the following optimisation problem:

maximise
√∑

M∈C
α(M, ∅)2 (3a)

subject to
∑
M∈C

(
α(M, S)− α(M, S ∪ {j})

)2 ≤ 1 ∀S ⊆ [n], ∀j ∈ [n] \ S; (3b)

α(M, S) = 0 ∀S ∈M; (3c)
α(M, S) ∈ R ∀M ∈ C, ∀S ⊆ [n]. (3d)

The optimal value of this optimisation problem is called the learning graph complexity of C.
We call a solution to the dual learning graph for C any mapping α(M, S) satisfying (3d),

where we implicitly assume (3c). A solution is feasible if it satisfies (3b). It is easy to see
that any optimal solution α(M, S) to (3) is entry-wise non-negative and non-increasing in S.
We will implicitly assume that any feasible solution satisfies these requirements.

Inspired by this optimisation problem, we define the norm of a solution α as ‖α‖ =
maxS⊆[n]

√∑
M∈C α(M, S)2. It satisfies the usual axioms of a norm, although we will not

use this fact. For j ∈ [n], we define an operation ∂j given by

∂jα(M, S) =
{
α(M, S)− α(M, S ∪ {j}), if j /∈ S;
0, if j ∈ S.

If α is a solution to the dual learning graph, so is ∂jα. Condition (3b) can be restated as
‖∂jα‖ ≤ 1 for all j ∈ [n]. If α(M, S) is non-increasing in S, the objective value (3a) is given
by ‖α‖.

TQC 2018



3:6 Quantum Lower Bound for Tripartite Hidden Shift

Dual learning graphs have close connection to adversary matrices, which we discuss in
Section 4.

2.3 Representation Theory
In this section, we introduce basic notions from the representation theory of finite groups
with special emphasis on the symmetric group. For more background, the reader may refer
to [12, 22] for general theory, and to [16, 21] for the special case of the symmetric group.

Assume G is a finite group. The group algebra CG is the complex vector space with the
elements of G forming an orthonormal basis, where the multiplication law of G is extended
to CG by linearity. A (left) G-module, also called a representation of G, is a complex vector
space V with the left multiplication operation by the elements of CG satisfying the usual
associativity and distributivity conditions. We can treat elements of CG as linear operators
acting on V .

A G-morphism (or just morphism, if G is clear from the context) between two G-modules
V and W is a linear operator θ : V →W that commutes with all α ∈ CG: θα = αθ, where
the first α acts on V and the second one on W .

A G-module is called irreducible (or just irrep for irreducible representation) if it does
not contain a non-trivial G-submodule. For any G-module V , one can define its canonical
decomposition into the direct sum of isotypic subspaces, each spanned by all copies of a fixed
irrep in V . Different isotypic subspaces in this decomposition are orthogonal. If an isotypic
subspace contains at least one copy of the irrep, we say that V uses this irrep.

If G and H are finite groups, then the irreducible G × H-modules are of the form
V ⊗W where V is an irreducible G-module and W is an irreducible H-module. And the
corresponding group action is given by (g, h)(v ⊗ w) = gv ⊗ hw, with g ∈ G, h ∈ H, v ∈ V ,
and w ∈W , which is extended by linearity.

We use the following results:

I Lemma 2 (Schur’s Lemma). Assume θ : V → W is a morphism between two irreducible
G-modules V and W . Then, θ = 0 if V and W are non-isomorphic; otherwise, θ is uniquely
determined up to a scalar multiplier.

I Lemma 3 ([7]). Let θ : V →W be a morphism between two G-modules V and W . Then,
there exists an irrep in V all consisting of right-singular vectors of θ of singular value ‖θ‖.
(We call such right-singular vectors principal.)

Let SL denote the symmetric group on a finite set L, that is, the group with the
permutations of L as elements, and composition as the group operation. If m is a positive
integer, Sm denotes the isomorphism class of the symmetric groups SL with |L| = m.
Representation theory of Sm is closely related to Young diagrams, defined as follows.

A partition λ of an integer m is a non-increasing sequence (λ1, . . . , λt) of positive integers
satisfying λ1 + · · ·+ λt = m. A partition λ = (λ1, . . . , λt) is often represented in the form of
a Young diagram that consists, from top to bottom, of rows of λ1, λ2, . . . , λt boxes aligned by
the left side. We say that a partition has k boxes below the first row if λ1 = m− k. For each
partition λ of m, there exists an irreducible Sm-module Sλ, called the Specht module. All
these modules are pairwise non-isomorphic, and give a complete list of all the irreps of Sm.

3 Formulation of the Problems and Easy Observations

In this section, we formulate the 3-shift-sum problem and define the closely related 3-
matching-sum problem. We also sketch proofs of few simple observations about these
problems.
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Both the 3-shift-sum and the 3-matching-sum are partial Boolean functions defined on
[q]3n, with q and n positive integers. The 3n input variables are divided into three groups
A = [1..n], B = [n+ 1..2n], and C = [2n+ 1..3n]. A 3-dimensional matching is a partition µ
of the set [3n] into n triples, µ = {T1, . . . , Tn}, such that |Ti ∩A| = |Ti ∩B| = |Ti ∩ C| = 1
for all i. This is a natural generalisation of the usual (2-dimensional) matching between sets
A and B. We denote the set of 3-dimensional matchings by Mm (we omit n, assuming its
value is clear from the context). We consider a special type of 3-dimensional matchings, we
call 3-shifts. A 3-shift is a matching µ = {T1, . . . , Tn} such that there exist two numbers
b, c ∈ [n] such that Ti =

{
i, n + 1 + (i + b mod n), 2n + 1 + (i + c mod n)

}
for all i. We

denote the set of 3-shifts by Ms.
We define the 3-shift-sum and the 3-matching-sum problems as follows. Let Mq stand

for Ms in 3-shift-sum and for Mm in 3-matching-sum. In a positive input x ∈ [q]3n, there
exists µ ∈Mq such that xa + xb + xc is divisible by q for every triple {a, b, c} ∈ µ. We say
that x is of the form µ in this case. In a negative input y ∈ [q]3n, we have ya + yb + yc 6≡ 0
(mod q) for any choice of a ∈ A, b ∈ B, and c ∈ C. The task is to determine whether the
input is positive or negative, provided that one of the two options holds. Since 3-shift-sum is
a special case of 3-matching-sum, the latter is a harder problem.

3.1 Randomised and Quantum Complexity
Let us describe what we can immediately say about quantum and randomised query com-
plexities of these problems. Neither result will be relevant later in the paper.

I Proposition 4. The quantum query complexity of the 3-shift-sum and the 3-matching-sum
problems is O(

√
n).

Proof sketch. Consider a positive input x, and let µ ∈Mq be its form. Take random subsets
A′ ⊆ A and B′ ⊆ B of size approximately

√
n, and query all the variables in A′ ∪B′. With

high probability, there exists T ∈ µ that intersects both A′ and B′. Now use Grover’s search
to find an element c ∈ C satisfying xa+xb+xc ≡ 0 (mod q) for some a ∈ A′ and b ∈ B′. J

I Proposition 5. The randomised query complexity of the 3-shift-sum and the 3-matching-
sum problems is Θ(n2/3).

The proof is totally standard, and it can be found in the full version of the paper [8].

3.2 Certificate Structures
It is easy to describe the certificate structures Cs and Cm of the 3-shift-sum and the 3-
matching-sum problems. For each µ ∈Mq, there is a correspondingMµ ∈ Cq obtained as
follows: a subset S ⊆ [n] is inMµ if and only if there exists a triple T ∈ µ satisfying T ⊆ S.

The lower bound from the following proposition will be our main source of inspiration
when constructing adversary bounds later in the paper.

I Proposition 6. The learning graph complexity of the certificate structures Cs and Cm is
Θ(
√
n).

Proof. The upper bound is similar to Proposition 4, and we omit the proof. The upper
bound is stated here for completeness, and we do not use it further in the paper.

Let us prove the lower bound. For that we have to construct a feasible solution to the
dual learning graph. ForM∈ Cq, define

α(M, S) = 1√
|Mq|

max
{√

n− |S|, 0
}

if S /∈M, (4)

TQC 2018



3:8 Quantum Lower Bound for Tripartite Hidden Shift

and as 0 otherwise. It is easy to see that the objective value (3a) is
√
n, and that (3c) holds.

It remains to check (3b). Fix S and j. If |S| ≥
√
n, then the left-hand side of (3b) is zero,

so assume |S| ≤
√
n. We have the following contributions to the left-hand side of (3b):

If S ∪ {j} /∈M, then the value of α(M, S) changes by 1√
|Mq|

as |S| increases by 1.

If µ ∈Mq is taken uniformly at random, the probability is O
(
(|S|/n)2) = O(1/n) that

S /∈Mµ but S ∪ {j} ∈ Mµ. In this case, α(Mµ, S) changes by at most
√

n
|Mq| .

Altogether we have:∑
M∈C

(
α(M, S)− α(M, S ∪ {j})

)2 ≤ |Mq| ·
1
|Mq|

+O

(
|Mq|
n

)
· n

|Mq|
= O(1).

Scaling down α by a constant factor, we get a feasible solution with objective value Ω(
√
n). J

4 Basic Definitions

In this section we introduce our basic notation, and describe a procedure of converting a
solution to the dual learning graph into an adversary matrix. This is a general procedure
from [6] tailored for the special case of the 3-shift-sum and the 3-matching-sum problems.
This procedure does not immediately result in good adversary matrices for these problems,
but we are able modify it in Sections 5 and 6 so that it works. Let again Mq stand for either
Ms or Mm.

4.1 Fourier Basis
Let H = CZq and e0, . . . , eq−1 be the Fourier basis of H. Recall that it is an orthonormal
basis given by ei[[j]] = 1√

qω
ij , where ω = e2πi/q. For m a positive integer, the Fourier basis of

H⊗m is given by tensor products ea1 ⊗ · · · ⊗ eam . A component eai in this tensor product is
called non-zero if ai 6= 0. The weight of the Fourier basis element is the number of non-zero
components.

We define two projectors in H: Π0 = e0e
∗
0 and Π1 = I − Π0 =

∑q−1
i=1 eie

∗
i . All the entries

of Π0 are equal to 1/q. Important relations are Π0
∆7−→ Π0 and Π1

∆7−→ −Π0, where ∆ is as
in (1) and acts on the sole variable. For two sets R ⊆ T , we define a projector ΠT

R in the
space HT by ΠT

R =
⊗

j∈T Π1j∈R . As R ranges over all subsets of T , this gives an orthogonal
decomposition of HT . By the above relations:

ΠT
R

∆j7−→ ΠT
R if j /∈ R and ΠT

R

∆j7−→ −ΠT
R\{j} if j ∈ R. (5)

If A is a collection of subsets of T , we can define projector ΠT
A =

∑
R∈AΠT

R. We clearly
have ΠAΠB = ΠA∩B. We will use this construction only for some special cases, in particular,
for a positive integer k, we define ΠT

k =
∑
R⊆T,|R|=k ΠT

R.

4.2 Basic Operators
Let µ = {T1, . . . , Tn} be a 3-dimensional matching. Let Pµ denote the set of positive inputs
of form µ. We use P for the set of pairs (µ, x) with µ ∈Mq and x ∈ Pµ. Think of P as the
set of positive inputs with additional labels so that some inputs x can appear multiple times.
We use N for the set of negative inputs, and U = [q]3n for the set of all strings. Similarly to
the proof of Proposition 5, U will be close to N , and we use the former as a proxy for the
latter.
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Now assume T is a triple of elements. Think of it as an element of a 3-dimensional
matching µ. Denote

PT =
{

(a, b, c) ∈ [q]T | a+ b+ c ≡ 0 (mod q)
}
. (6)

Thus, Pµ is the Cartesian product
∏
T∈µ P

T . For R ⊆ T , define ΨT
R = √q ΠT

R [[PT , [q]T ]],
where the factor √q is introduced to account for the reduced number of rows. For S ⊆ [3n],
let

Ψµ
S =

⊗
T∈µ

ΨT
S∩T = qn/2 Π[3n]

S [[Pµ,U ]].

As for ΠT
A, we will use Ψµ

A =
∑
S∈AΨµ

S for a family A of subsets of [3n]. Again, Ψµ
AΠ[3n]
B =

Ψµ
A∩B. Using (5), we have

Ψµ
S

∆j7−→ Ψµ
S if j /∈ S and Ψµ

S

∆j7−→ −Ψµ
S\{j} if j ∈ S. (7)

4.3 From Dual Learning Graphs to Adversary Matrices

Now we explain how to convert a solution α to the dual learning graph (3) into a P×U -matrix
G(α). In [6], the adversary matrix Γ was obtained by restricting Γ = G(α)[[P,N ]]. It is
convenient to allow all the columns corresponding to U , and restrict them to N only at the
very end.

If µ ∈Mq, let us for brevity write α(µ, S) for α(Mµ, S). The matrix G(α) is defined block-
wise by G(α)[[Pµ,U ]] = Gµ(α) =

∑
S⊆[n] α(µ, S)Ψµ

S . Eq. (7) gives the following important
relation:

G(α) ∆j7−→ G(∂jα). (8)

4.4 Extended Matrices

Eq. (8) gives one connection between G(α) and the optimisation problem in (3). Here we
give another one. For that, we define an extended version G̃(α) of G(α).

Let Ũ = Mq × U . We use Ũµ to denote {µ} ⊗ U . The Ũ × U-matrix G̃(α) is defined
block-wise: G̃(α)[[Uµ,U ]] = G̃µ(α) =

∑
S⊆[n] α(µ, S)Π[3n]

S . Clearly, G(α) = qn/2G̃(α)[[P,U ]].
Using that

{
Π[3n]
S

}
is a decomposition of H3n into orthogonal subspaces, we get

G̃(α)∗G̃(α) =
∑
µ∈Mq

(
G̃µ(α)

)∗
G̃µ(α) =

∑
S⊆[3n]

[ ∑
µ∈Mq

α(µ, S)2
]
Π[3n]
S .

As ‖A‖ =
√
‖A∗A‖ for any matrix A, we obtain another important relation:

‖G̃(α)‖ = ‖α‖. (9)

Of course it also holds for ∂jα. If ‖G̃(α)‖ and ‖G(α)‖ were close, then any feasible solution
α would give an adversary matrix Γ = G(α)[[P,N ]] with value ‖α‖. It is easy to lower bound
‖Γ‖ in terms of ‖α‖, see Lemma 8 below, but, in general, ‖G(∂jα)‖ will be much larger than
‖G̃(∂jα)‖. In particular, this is the case when α is the solution from Proposition 6. Our
main challenge in the coming sections will be to find ways to reduce ‖G(∂jα)‖.
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4.5 Reducing Extended Matrices
Here we will give a finer relation between G(α) and G̃(α) than the trivial relation G(α) =
qn/2G̃(α)[[P,U ]]. ForMµ ∈ Cq, we define

Πµ =
∑

S⊆[3n],S /∈Mµ

Π[3n]
S and Ψµ =

∑
S⊆[3n],S /∈Mµ

Ψµ
S . (10)

By condition (3c), we have G̃µ(α) = ΠµG̃µ(α), and, thus, Gµ(α) = ΨµG̃µ(α). If we define a
linear operator Ψq : HŨ → HP by Ψq =

⊕
µ∈Mq

Ψµ, we get

G(α) = ΨqG̃(α). (11)

In the light of discussion after (9), it would help if we could upper bound the norm of
Ψq. Unfortunately, its norm is exponential. Indeed, we can write Ψµ =

⊗
T∈µ ΨT

≤2,where
ΨT
≤2 =

∑
R⊂T,R 6=T ΨT

R. We prove its basic properties in the next claim, where we also study
the operator ΨT

≤1 =
∑
R⊂T,|R|≤1 ΨT

R.

I Claim 7. We have the following estimates
(a)

∥∥ΨT
≤2
∥∥ =
√

3,
(b)

∥∥ΨT
≤2(Π0 ⊗ IH ⊗ IH)

∥∥ =
∥∥ΨT
≤2(IH ⊗Π0 ⊗ IH)

∥∥ =
∥∥ΨT
≤2(IH ⊗ IH ⊗Π0)

∥∥ = 1,
(c)

∥∥ΨT
≤1
∥∥ = 1,

(d) (ΨT
∅ )∗ΨT

≤2 = ΠT
∅ , and ‖ΨT

∅ ‖ = 1.

The proof of the claim can be found in the full version of the paper. In the next sections,
we will use points (b) and (c) of this claim to upper bound the norm of G(∂jα) using (11).

4.6 Restricting from U to N
Finally, we give a general way of bounding the norm of Γ = G(α)[[P,N ]] in terms of α. For
our upcoming application in Section 6, we prove a slightly more general result. Note that
the bound is related to the objective value (3a) of α.

I Lemma 8. Let α be a solution to the dual learning graph of Cq, and V is an arbitrary linear
operator in CU satisfying Π[3n]

∅ V = Π[3n]
∅ . Then,

∥∥∥(G(α)V )[[P,N ]]
∥∥∥ ≥√ |N ||U| ∑µ∈Mq

α(µ, ∅)2.

An easy proof of this lemma can be found in the full version of the paper.

5 Lower Bound for the 3-Shift-Sum Problem

The goal is to prove a quantum query lower bound for the 3-shift-sum problem.

I Theorem 9. Assume q ≥ 2n3. Then the quantum query complexity of the 3-shift-sum
problem is Ω(n1/3).

The main idea behind the lower bound is to use Claim 7(c). In order to do that, we
perform a transition to a different certificate structure C′s. For each µ ∈ Ms, there is a
correspondingM′µ ∈ C′s obtained as follows: a subset S ⊆ [3n] is inM′µ if and only if there
exists a triple T ∈ µ satisfying |T ∩ S| ≥ 2. Note that this is not the certificate structure
for the 3-shift-sum problem. Rather it is the certificate structure of a problem one might
call the 3-shift-equal problem. The input is a 3× n-matrix. In the positive case, there exist
circular shifts of rows such that the elements in each column become equal. In the negative
case, any two elements from two different rows are different.
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I Proposition 10. The learning graph complexity of the certificate structure C′s is Ω(n1/3).

Proof. The proof is similar to that of Proposition 12 from [6] for the hidden shift problem.
We have |C′s| = n2. Define

α(M, S) = 1
n

max
{
n1/3 − |S|, 0

}
if S /∈M, (12)

and as 0 otherwise. It is easy to see that the objective value (3a) is n1/3, and that (3c) holds.
Fix S and j, and let us check (3b). If |S| ≥ n1/3, then the left-hand side of (3b) is zero,

so assume |S| ≤ n1/3. There are n2 choices ofM ∈ C′s. If S ∪ {j} /∈ M, then the value of
α(M, S) changes by 1/n as the size of S increases by 1. Also, there are at most |S|n ≤ n4/3

choices ofM such that S /∈ M but S ∪ {j} ∈ M. For each of them, the value of α(M, S)
changes by at most n−2/3. Thus,∑
M∈C

(
α(M, S)− α(M, S ∪ {j})

)2 ≤ n2 · 1
n2 + n4/3 · n−4/3 = O(1). J

5.1 Regular Version
In this section we prove Theorem 9. Let α′s be the feasible solution (12) for the C′s certificate
structure. It is also a feasible solution for the Cs certificate structure. As in Section 4, we
define the adversary matrix by Γ = G(α′s)[[P,N ]]. By Lemma 8, we get ‖Γ‖ = Ω(n1/3) if we
prove that |N | = Ω(|U|). But that is easy: for a uniformly random triple (a, b, c) ∈ [q]3, the
probability that a+ b+ c is divisible by q is 1/q. There are n3 possible triples having one
element in each of A, B, and C. Hence, by the union bound, a uniformly random input in
[q]3n is negative with probability at least 1− n3/q ≥ 1/2. That is, |N | ≥ q3n/2.

Now let us prove that ‖Γ ◦∆j‖ = O(1). By (8) and using that Γ is a submatrix of G(α′s),
it suffices to prove that ‖G(∂jα′s)‖ = O(1).

Following (10), let us define an analogue of Ψs for our new certificate structure C′s by Ψ′µ =∑
S⊆[3n],S /∈M′µ

Ψµ
S and Ψ′s =

⊕
µ∈Ms

Ψ′µ. Similarly to (11), we get G(∂jα′s) = Ψ′sG̃(∂jα′s).
We have ‖G̃(∂jα′s)‖ = O(1) by (9) and Proposition 10. It suffices to prove that ‖Ψ′s‖ = O(1).
But it is easy to see that Ψ′µ =

⊗
T∈µ ΨT

≤1, and, by Claim 7, ‖Ψ′µ‖ = 1, hence, ‖Ψ′s‖ = 1.

5.2 Property Testing Version
In this section, we prove a quantum lower bound for the property testing version of the
3-shift-sum problem. Unlike the original version of the 3-shift-sum problem, this problem
makes sense even for q = 2, so, for concreteness, we will define it for Boolean alphabet,
however, similar results also hold for larger alphabet sizes.

An input is a string in {0, 1}3n. For a positive input x, there exists µ ∈ Ms such that
xa ⊕ xb ⊕ xc = 0 for every triple {a, b, c} ∈ µ. Here ⊕ stands for xor. The negative inputs
are defined as being at relative Hamming distance at least ε to the set of positive inputs.

I Theorem 11. For ε ≤ 1
7 , the property testing version of the 3-shift-sum problem requires

Ω(n1/3) quantum queries to solve.

The construction is identical to that in Section 5.1. The proof of ‖Γ ◦∆j‖ = O(1) is
identical. In this part of the proof only P and U are used, which are the same in the regular
and the property testing versions of the problem, and the size of the alphabet is never used.

The only place where the size of the alphabet is used is in lower bounding ‖Γ‖, where it
is proven that |N | = Ω(|U|). If we prove this for this version of the problem, we will be done.
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Recall that we treat x as an 3× n-matrix. Fix the last two rows. The input x is negative
if its first row is at relative Hamming distance at least 3

7 from the xor of any of n2 circular
shifts of the last two rows. A simple application of the Chernoff and the union bounds shows
that this is the case with probability 1− o(1).

6 Lower Bound for the 3-Matching-Sum Problem

The goal of this section is to prove the following theorem:

I Theorem 12. Assume q ≥ 2n3. Then the quantum query complexity of the 3-matching-sum
problem is Ω(

√
n).

Let αm be the feasible solution (4) to the dual learning graph of Cm from Proposition 6.
We will obtain an adversary matrix to the 3-matching-sum problem multiplying G(αm) by a
suitably chosen projector V . We define it using symmetries of the problem.

The group Sn acts on the set [q]n in the natural way: π ∈ Sn maps x = (x1, . . . , xn) to
πx = (xπ−1(1), . . . , xπ−1(n)), and by linearity we extend this action to Hn, the latter thus
becoming an Sn-module.

Similarly, the group G = SA × SB × SC acts on U : a group element (πA, πB , πC) ∈
G acts on x = (xA, xB , xC) ∈ U by mapping it to (πAxA, πBxB , πCxC). This action
renders CU a G-module. Let G act on µ ∈ Mm by mapping each triple (a1, a2, a3) ∈ µ to
(πA(a1), πB(a2), πC(a3)). Together with the action on inputs of length 3n, this gives us an
action of G on P, hence, CP is also a G-module.

The 3-matching-sum problem is invariant under this action of G: positive inputs are
mapped to positive inputs, and negative inputs are mapped to negative inputs. This means
that CN is a G-submodule of CU . It is easy to see that αm is symmetric with respect to G,
hence, G(αm) is symmetric with respect to G. In other words, it commutes with any element
of G, or, different still, it is a G-morphism.

Let T be a finite set. It is easy to see that ΠT
k is a ST -submodule of ΠT . From [7], the

module ΠT
k only contains irreps with at most k boxes below the first row. Denote by Π̄T

k the
projector onto the span of all irreps with exactly k boxes below the first row. In particular,
Π̄T

0 = ΠT
0 .

In order to simplify statements of some results, in particular Lemma 15, let us assume
there is a cutting point K such that

α(µ, S) = 0 whenever |S| > K. (13)

For αm, we take K = b
√
nc. Define the projectors V T =

∑K
k=0 Π̄T

k and V = V A ⊗ V B ⊗ V C .
Note that (ΠkA ⊗ΠkB ⊗ΠkC )V = (Π̄kA ⊗ Π̄kB ⊗ Π̄kC ) for all kA, kB , kC between 0 and K.

The adversary matrix Γ is obtained as Γ =
(
G(αm)V

)
[[P,N ]].

We know from Section 5.1 that |N | = Ω(|U|). Also Π[3n]
∅ V = Π̄[3n]

∅ = Π[3n]
∅ . Hence, by

Lemma 8 and Proposition 6, we have ‖Γ‖ = Ω(
√
n).

It remains to prove that ‖∆j ◦ Γ‖ = O(1) for any j, which we do in the remaining part of
this section. Due to symmetry, ‖∆j ◦ Γ‖ is the same for all j, so it suffices to consider j = 1.
Note that ∆1 ◦ Γ is a G′-morphism, where G′ = S[2..n] ⊗SB ⊗SC .

We have to understand how ∆1 acts on V , or, in particular, how it acts on Π̄[n]
k . For the

usual projector, Π[n]
k , we have the identity Π[n]

k = Π0⊗Π[2..n]
k + Π1⊗Π[2..n]

k−1 . Ref. [7] gives the
following analogue of this identity for Π̄[n]

k , where one should think of Φ[n]
k as an error term.

I Lemma 13. Let Φ[n]
k = Π̄[n]

k −Π0⊗Π̄[2..n]
k −Π1⊗Π̄[2..n]

k−1 . If k < n/3, then
∥∥Φ[n]

k

∥∥ = O(1/
√
n).
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Define ΦA =
∑K
k=1 ΦAk . It is easy to see that ΠA

k ΦAk ΠA
k = ΦAk , hence, ‖ΦAk ‖ = O(1/

√
n).

Let Φ = ΦA ⊗ V B ⊗ V C and V ′ = Π0 ⊗ V [2..n] ⊗ V B ⊗ V C .
From Lemma 13, we get the following variant of relation (8), whose proof is relatively

straightforward and can be found in the full version of the paper.

I Lemma 14. Let α be a solution to Cm satisfying (13). Then, G(α)V ∆17−→ G(∂1α)V ′+G(α)Φ.

Applying Lemma 14 to G(αm), we obtain G(αm)V ∆17−→ G(∂1αm)V ′ + G(αm)Φ. Denote
W = IA ⊗ V B ⊗ V C , where IA is the identity operator on HA. Note that V ′ = WV ′ and
Φ = WΦ. Also, ‖V ′‖ = 1 and ‖Φ‖ = O(1/

√
n). Thus, since Γ is a submatrix of G(αm)V , it

suffices to prove that∥∥G(∂1αm)W
∥∥ = O(1) and

∥∥G(αm)W
∥∥ = O(

√
n), (14)

which is reasonable since ‖∂1αm‖ = O(1) and ‖αm‖ = O(
√
n). We prove this using the

following somewhat technical estimate on the norm of G(α)W , whose proof can be found in
the full version of the paper.

I Lemma 15. Let α be a solution to the dual learning graph of Cm satisfying (13) and
symmetric with respect to SB ×SC . Then ‖G(α)W‖ ≤ maxkB ,kC∈[0..K] ΛkB ,kC (α), where
ΛkB ,kC (α) is defined in the following way. Let RB = [n+ 1..n+ 2kB ] and RC = [2n+ 1..2n+
2kC ]. Let L(µ,RB , RC) be the number of triples in the matching µ that intersect both RB
and RC . Then

ΛkB ,kC (α) =
√ ∑
µ∈Mm

3L(µ,RB ,RC) max
S⊆A∪RB∪RC

α(µ, S)2. (15)

Now we show how to use Lemma 15 to prove the estimates in (14). The exponential term
in (15) might be somewhat of a concern, but we prove that the fraction of matchings with
large L(µ,RB , RC) decreases even faster.

I Lemma 16. Assume |RB |, |RC | ≤ 2
√
n. Then, Prµ

[
L(µ,RB , RC) = `

]
≤ 8`/`!, where the

probability is over uniformly random µ ∈Mm.

Proof. Fix ` elements in each RB and RC . The probability that these elements are mutually
matched by a random µ is

(
n
`

)−1. Hence, by the union bound, the probability that for a
randomly chosen µ there are ` (or more) elements in RB matched to elements in RC is at

most
(|RB |

`

)(|RC |
`

)/(
n
`

)
≤ (2

√
n)2`

`!(n/2)` ≤
8`
`! , where we have assumed that n is large enough so

that ` ≤ 2
√
n < n/2. J

I Claim 17. We have
∥∥G(αm)W

∥∥ = O(
√
n).

Proof. We apply Lemma 15. By (4), we have αm(µ, S)2 ≤ n/|Mm| for all µ and S. Hence,
ΛkB ,kC (αm) ≤

√
n
√
Eµ∈Mm

[
3L(µ,RB ,RC)

]
. And, using Lemma 16:

Eµ∈Mm

[
3L(µ,RB ,RC)] ≤ ∞∑

`=0
3` · 8`

`! = e24 = O(1), (16)

which gives the required bound. J

I Claim 18. We have
∥∥G(∂1αm)W

∥∥ = O(1).
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Proof. We apply Lemma 15. By the analysis in Proposition 6, we see that

max
S⊆A∪RB∪RC

∂1αm(µ, S)2 ≤ 1
|Mm|

{
n, if 1 is matched by µ to elements in both RB and RC ;
1, otherwise.

Let us call the event in the first case above Z(µ). Then,

ΛkA,kB (∂1αm)2 ≤ Eµ∈Mm

[
3L(µ,RB ,RC)

]
+ Prµ[Z(µ)] · 3nEµ∈Mm

[
3L(µ,RB ,RC)−1

∣∣∣ Z(µ)
]
.

The first term is O(1) by (16). For the second term, it is easy to see that Prµ[Z(µ)] =
|RB ||RC |/n2 = O(1/n), and the conditioned expectation the same as in (16), because we
can remove the triple containing 1 from consideration thus reducing to the same problem
with n, |RB |, and |RC | smaller by 1. This gives the required bound of O(1). J

7 Open Problems

The obvious open problem is to resolve the quantum query complexity of the 3-shift-sum
problem. So far we only have an Ω(n1/3) lower bound and an O(n1/2) upper bound, however,
it is not clear how to improve on either of them.

For the 3-matching-sum problem, we have proven matching upper and lower bounds
of Θ(

√
n). An interesting problem is to generalise this to the k-matching-sum problem for

arbitrary k. The main limitation seems to be the norm of the error term in Lemma 13.
Some other open problems can be formulated. What functions with randomised query

complexity ω(
√
n) could potentially have poly-logarithmic quantum query complexity? Or,

can a relatively general result be proven that excludes some of such functions? For what
other problems can the dual learning graph framework be useful?
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