
The Quantum Complexity of Computing Schatten
p-norms
Chris Cade
School of Mathematics, University of Bristol, UK
chris.cade@bristol.ac.uk

Ashley Montanaro
School of Mathematics, University of Bristol, UK
ashley.montanaro@bristol.ac.uk

Abstract
We consider the quantum complexity of computing Schatten p-norms and related quantities, and
find that the problem of estimating these quantities is closely related to the one clean qubit
model of computation. We show that the problem of approximating Tr(|A|p) for a log-local n-
qubit Hamiltonian A and p = poly(n), up to a suitable level of accuracy, is contained in DQC1;
and that approximating this quantity up to a somewhat higher level of accuracy is DQC1-hard.
In some cases the level of accuracy achieved by the quantum algorithm is substantially better
than a natural classical algorithm for the problem. The same problem can be solved for arbitrary
sparse matrices in BQP. One application of the algorithm is the approximate computation of the
energy of a graph.

2012 ACM Subject Classification Theory of computation → Quantum complexity theory, The-
ory of computation → Complexity classes

Keywords and phrases Schatten p-norm, quantum complexity theory, complexity theory, one
clean qubit model

Digital Object Identifier 10.4230/LIPIcs.TQC.2018.4

Related Version A full version of the paper is available at https://arxiv.org/abs/1706.
09279.

Funding CC was supported by the EPSRC. AM was supported by an EPSRC Early Career
Fellowship (EP/L021005/1). No new data were created during this study.

1 Introduction

It is widely believed that quantum computers will be capable of solving certain computational
problems more efficiently than any classical computer. However, the exact characterisation of
the class of problems that allow for a quantum speedup is the subject of ongoing research. In
complexity theory, this class is known as BQP [27] – the set of languages efficiently decidable
by a uniform family of polynomial-size quantum circuits with bounded error. A useful way
to understand and identify the types of problems that are efficiently solvable by a quantum
computer, but unlikely to be efficiently solvable by a classical computer, is to find problems
that are complete1 for BQP; that is, problems that can be solved by a polynomial-time

1 We note that what we are really referring to here are PromiseBQP-complete problems, since there are
in fact no known BQP-complete problems. For a detailed discussion on this point see [14, 9].

© Chris Cade and Ashley Montanaro;
licensed under Creative Commons License CC-BY

13th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2018).
Editor: Stacey Jeffery; Article No. 4; pp. 4:1–4:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chris.cade@bristol.ac.uk
mailto:ashley.montanaro@bristol.ac.uk
http://dx.doi.org/10.4230/LIPIcs.TQC.2018.4
https://arxiv.org/abs/1706.09279
https://arxiv.org/abs/1706.09279
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 The Quantum Complexity of Computing Schatten p-norms

quantum computer, and that any other problem in BQP can be reduced to. Intuitively, these
are the very hardest problems in BQP.

Several BQP-complete problems are known, including approximating the Jones polynomial
[1], estimating quadratically signed weight enumerators (QSWEs)[18], and estimating diagonal
entries of powers of sparse matrices [14]. The latter problem is particularly interesting, since
it is a relatively natural problem that is not obviously ‘quantum’ in nature.

Knill and Laflamme [18] showed that a more constrained version of the QSWE problem is
efficiently solvable in the one clean qubit model of computation – an apparently non-universal
model of quantum computation that is weaker than full quantum computation, but that can
seemingly solve some problems more efficiently than a classical computer [25]. Understanding
the power of such intermediate classes of computation could shed light on the types of
problems that are efficiently solvable by a fully universal quantum computer.

We consider the computational complexity of estimating Schatten p-norms of matrices.
We find that for certain values of p and certain families of matrices, this problem is closely
related to the one clean qubit model of computation: depending on the accuracy of the
estimation, the problem can be efficiently solved in the one clean qubit model, or is hard
for this model of computation. We also consider similar quantities related to the spectra of
matrices, such as the so-called “energy” of graphs [19, 10], and provide quantum algorithms
for estimating them that are more efficient than any known classical algorithms.

1.1 The One Clean Qubit Model of Computation
The one clean qubit model of quantum computation initially arose as an idealised model for
computation on highly mixed initial states, such as those that appear in NMR implementations
[17]. In this model, we are given a quantum state consisting of a single ‘clean’ qubit in the
pure state |0〉, and n qubits in the maximally mixed state. This can be represented by the
density matrix

ρ = |0〉〈0| ⊗ I2n

2n .

We then apply an arbitrary polynomial-sized quantum circuit to ρ, and measure the first
qubit in the computational basis. Following [17], we will refer to the class of problems that
can be solved in polynomial time using this model of computation as DQC1 – deterministic
quantum computation with a single clean qubit.

The canonical problem that can be solved in this model is that of estimating the normalised
trace of a 2n × 2n unitary matrix U corresponding to a polynomial-size quantum circuit.
This is achieved by applying a controlled version of U to ρ, where the clean qubit is used
as the control qubit and is put into the state (|0〉+ |1〉)/

√
2 using a Hadamard gate. More

precisely, we apply the controlled-U operator to the state

ρ′ = 1
2(|0〉+ |1〉)(〈0|+ 〈1|)⊗ I2n

2n

and then apply a Hadamard gate to the first qubit, before measuring it. The probability of
measuring zero is 1

2 + 1
2

Re(Tr(U))
2n , which can be estimated up to accuracy ε by repeating the

procedure O(1/ε2) times. The imaginary part of the trace of U can be estimated similarly
by starting with the first qubit in the state 1√

2 (|0〉 − i |1〉). This problem has been shown to
be complete for the class DQC1 [26].

More generally, we might consider the DQCk model of computation. That is, deterministic
quantum computation with k pure qubits. If k = O(log(n)), then the DQCk model is

C. Cade and A. Montanaro 4:3

equivalent to DQC1 [26]. This result is important for us since the quantum circuit that we
apply to the initial state may require a number of ancilla qubits initialised to |0〉 in order to
correctly perform its computation. For example, if the quantum circuit implementing the
unitary U performs the phase estimation routine, then it will usually require an additional
O(logn) clean qubits. In the context of estimating the trace of a unitary matrix, this result
tells us that it is possible in DQC1 to compute the trace of a sub-matrix whose size is an
inverse-polynomially large fraction of the size of the input matrix.

1.1.1 DQC1-complete Problems
Knill and Laflamme [17] showed that the problem of estimating a coefficient in the Pauli
decomposition of a quantum circuit, up to polynomial accuracy, is complete for the class
DQC1. In fact, the aforementioned problem of estimating the normalised trace of a quantum
circuit is a special case of this problem [26]. Shor and Jordan [26] added to the relatively
short list of DQC1-complete problems by showing that the problem of estimating the ‘trace
closure’ of Jones polynomials is also complete for the class DQC1. Finally, Brandão [6]
showed that two problems related to Hamiltonians were DQC1-complete: computing the
partition function of a class of (quantum) Hamiltonians, and computing the sum of all
eigenvalues of a Hamiltonian that fall between two given energy levels.

These quantities appear to be hard to compute classically, and therefore the one clean
qubit model of computation seems to be more powerful than classical computation. However,
it is unlikely that DQC1 contains all of BQP [25], and thus this model of computation
appears to have a computational power that is somewhere in between BPP and BQP. Some
evidence in this direction was recently provided by Morimae [21], who built on earlier work
([22]) to show that the output distribution of the one clean qubit model is difficult to sample
from classically up to constant total variation distance error, provided that some complexity
theoretic conjectures hold.

Here we show that the problem of computing Schatten p-norms of matrices is also closely
related to the class DQC1.

1.2 Schatten p-norms and Graph Energy
Schatten p-norms are ubiquitous in Quantum Information theory (see for example [24, 3, 12]).
This family of matrix norms includes the three most commonly used norms in quantum
information theory: the Schatten 1-norm is more commonly called the trace norm, the
Schatten 2-norm is also known as the Frobenius norm, and the Schatten∞-norm is called the
operator norm or spectral norm. Here we consider the normalised Schatten p-norm, defined
as

‖A‖p :=
(∑

j |λj |p

2n

)1/p

for a 2n × 2n Hermitian matrix A, where the sum ranges over the eigenvalues of A.
For instance, the Schatten 1-norm is the average of the absolute values of the eigenvalues

of A,

‖A‖1 = Tr(|A|)
2n =

∑
j |λj |
2n .

If we consider the matrix A to be the adjacency matrix of a graph, this quantity is known as
the ‘Graph Energy’, and has applications in chemistry, where it is related to the total electron

TQC 2018

4:4 The Quantum Complexity of Computing Schatten p-norms

energy of a class of organic molecules [19, 10]. More generally, quantities relating to the
spectra of adjacency matrices are used throughout Graph Theory to reveal information about
the graphs that they represent. In the present work, we consider some ‘global’ properties of
the spectra of matrices and graphs – i.e. those of the form Tr(f(A))/2n, for some suitably
chosen function f . The Schatten p-norms are examples of such quantities.

1.3 Our results
We study the complexity of approximately computing Schatten p-norms of sparse matrices
and relate this to quantum computation. We consider Hermitian matrices of size 2n × 2n,
where at most d = poly(n) entries in each row are non-zero, and call such matrices d-sparse.
One fairly natural class of sparse matrices that can be expressed concretely is the class
of ‘log-local’ Hamiltonians. That is, k-local n-qubit Hamiltonians, with k = O(logn) - i.e.
Hermitian matrices that can be written as a sum A =

∑m
j=1 Aj , for some m, where each Aj

is a Hermitian matrix that acts non-trivially on at most k = O(logn) qubits. We assume
that we are given the individual matrices Aj directly, that ‖Aj‖ = O(poly(n)) for all j, and
that m = poly(n). Throughout this work, we use ‖A‖ to denote the operator norm of A.

I Theorem 1. Let A be a sparse Hermitian matrix on n qubits, and let p, 1/ε = O(poly(n)).
Then the problem of estimating Tr(|A|p)

2n up to additive accuracy ε‖A‖p is contained in BQP.
If the matrix A is log-local, then this problem is also contained in DQC1.

I Theorem 2. Let A be a log-local Hermitian matrix on n qubits. Then the problem of
estimating Tr(|A|p)

2n up to additive accuracy ε
(
‖A‖

2

)p
for arbitrary p, 1/ε = O(poly(n)) is hard

for the class DQC1.

The BQP case of Theorem 1 follows from the result of Janzing and Wocjan [13], who
gave a BQP algorithm for estimating diagonal entries of f(A), for a sparse matrix A and an
appropriate function f which can be taken to be f(x) = |x|p.

We therefore see that the problem of computing Schatten p-norms for p = O(poly(n))
is closely related to the one clean qubit model of computation. By contrast, for different
values of p the problem is related to other classes of computation. For instance, ‖A‖∞ is the
operator norm of A, and the problem of computing it approximately is QMA-complete2, even
for 2-local Hamiltonians. To see this, suppose we have some upper bound ∆ = O(poly(n)) on
the largest eigenvalue of a 2-local n-qubit Hamiltonian A. Define the matrix B := ∆I2n −A.
Then the largest eigenvalue of B (in absolute value) corresponds to the smallest eigenvalue
of A. Hence, if we can compute the smallest eigenvalue of A, then we can compute ‖B‖, and
vice versa. Since the problem of estimating the smallest eigenvalue of a k-local Hamiltonian
is QMA-complete for k ≥ 2 [15], this implies QMA-completeness of the problem of estimating
the operator norm of a 2-local Hamiltonian.

Note that the required accuracies of the estimates in Theorems 1 and 2 differ by a factor
of 1/2p. Unfortunately, we were unable to reconcile this difference, and therefore we did not
find a variant of the problem that is complete for DQC1.

Theorem 1 gives us the following corollary:

I Corollary 3. Let A be a log-local matrix corresponding to the adjacency matrix of a 2n-
vertex graph G, and let p, 1/ε = O(poly(n)). The normalised Graph Energy of G, Tr(|A|)/2n,
can be estimated up to additive accuracy ε‖A‖ in DQC1.

2 For a definition of the class QMA, see [27].

C. Cade and A. Montanaro 4:5

In proving Theorem 1, we also show that there exists a polynomial-time quantum algorithm
(in DQC1) for estimating Tr(Ap)/2n up to error ε‖A‖p for 1/ε, p ∈ O(poly(n)). This is useful
in the context of graph theory because it allows for an estimation of the expected number of
closed walks that start from each vertex in a 2n-vertex graph. To obtain these algorithms,
we prove a more general result:

I Lemma 4. For a log-local Hamiltonian A, and any log-space polynomial-time computable
function f : I → [−1, 1] (where I contains the spectrum of A) that is Lipschitz continuous
with constant K (i.e. |f(x)−f(y)| ≤ K|x−y| for all x, y ∈ I), there exists a DQC1 algorithm
to estimate Tr(f(A))/2n =

∑
j f(λj)/2n up to additive accuracy ε(K + 1), where λj denote

the eigenvalues of A, and ε = Ω(1/ poly(n)).

Often, one is interested in calculating the properties of general sparse matrices. We note that
it is easy to give a quantum algorithm for estimating the above quantities for sparse matrices
by making use of a result of Janzing and Wocjan [14, 13], who give a BQP algorithm for
estimating the diagonal entries of f(A), for some function f that satisfies certain continuity
constraints, but this comes at the expense of moving to the class BQP.

It is interesting to note that the results from [6] also make use of log-local Hamiltonians.
In both these and our results, it is not clear how to drop the restriction of log-locality without
losing the fact that the various problems are contained in DQC1.

1.3.1 Estimating ‖A‖p

Given a log-local n-qubit Hamiltonian A, the algorithm of section 3 outputs

Tr(|A|p)/2n ± ε‖A‖p.

By taking the pth root, we obtain an estimate of ‖A‖p of the form(
Tr(|A|p)

2n ± ε‖A‖p
)1/p

= ‖A‖p
(

1 + 2nε‖A‖p

Tr(|A|p)

)1/p
.

The error will be small when Tr(|A|p) takes a value close to its maximum of 2n‖A‖p. In the
best case, the relative error is close to (1 + ε)1/p. This suggests that in these ‘good’ cases,
our algorithm can estimate ‖A‖p up to a reasonable additive error in polynomial time. On
the other hand, we can always bound

2n‖A‖p

Tr(|A|p) ≤
2n‖A‖p

2n|λmin|p
= κ(A)p,

where λmin is the minimal eigenvalue of A in absolute value, and κ(A) = ‖A‖‖A−1‖ is the
condition number of A. In this case the relative error is at most (1 + εκ(A)p)1/p.

Since we consider p = poly(n), the algorithm allows us to achieve relative error close to
κ(A) by taking ε = 1− 1/κ(A)p ≈ 1. Alternatively, we could achieve relative error (1 + δ)
for some δ = O(1/ poly(n)) by setting ε = ((1 + δ)p − 1)/κ(A)p. In this case, we sacrifice the
run-time of the algorithm in order to improve the accuracy.

1.4 Relation to Previous Work
Our techniques are similar to those used in [14] and [11]. In particular, we use the same
combination of Hamiltonian simulation and phase estimation for estimating and manipulating

TQC 2018

4:6 The Quantum Complexity of Computing Schatten p-norms

the eigenvalues of a Hermitian matrix. To show DQC1-hardness, we use techniques from the
Hamiltonian complexity literature, and in particular ideas due to Kitaev et al. [16, 15].

By using a previous result of Janzing and Wocjan [14], we can obtain a BQP algorithm for
estimating Tr(Ap)/2n for general sparse matrices; however, it is not clear how to implement
this algorithm in DQC1, since it uses O(n) ancilla qubits for the Hamiltonian simulation
step. In [14], the authors describe a polynomial-time quantum algorithm for estimating the
diagonal entries of the matrix Ap up to error ε‖A‖p, for ε = O(1/ poly(n)), and show that
this problem is in fact BQP-complete for sparse symmetric matrices. The problem remains
BQP-complete even for matrices with only 0,±1 entries.

1.5 Comparison with Classical Algorithms
We were not able to find any previous results in the literature regarding the complexity
of estimating the above quantities for sparse matrices. In Appendix B, we give a classical
algorithm for estimating the normalised trace of a sparse matrix raised to some power, and
prove some bounds on the accuracy that this algorithm can achieve.

We find that for some types of matrix, the value Tr(Ap)/2n can be estimated efficiently
classically, and for others, a quantum algorithm appears to have some advantage over a
classical one. In Appendix B, we prove the following:

I Theorem 5. Given a 2n × 2n, d-sparse matrix A, there exists a classical algorithm to
estimate Tr(Ap)/2n up to accuracy εdp‖A‖pmax in time that is polynomial in n, p and 1/ε,
where ε = O(1/ poly(n)) and ‖A‖max is used to denote the maximum absolute size of an
entry in A.

Therefore, in the cases where ‖A‖ � d‖A‖max, we can get an advantage by making use of
the algorithm of Theorem 1. We find that for certain classes of random graph (namely power-
law graphs), the BQP algorithm for computing Tr(Ap)/2n obtains a quadratic improvement
in accuracy over the corresponding classical algorithm.

For log-local Hamiltonians and constant p, there exists an efficient exact classical algorithm
for computing Tr(Ap). By using conventional matrix multiplication, it is possible to calculate
the value of Ap by multiplying the individual matrices Aj . This can be seen from the
expression for Tr(Ap):

Tr(Ap) =
∑

j1,j2,...,jp

Tr(Hj1Hj2 · · ·Hjp),

where each index ji ranges from 1 to m. Every Hji is k-local, and the complexity of
multiplying a k-local matrix by an l-local matrix is O(23(k+l)) (using a naive algorithm), and
results in a (k + l)-local matrix. If we perform the matrix multiplications from left to right,
then, for each term in the sum, the first multiplication will take time O(23(2k)), the second
O(23(3k)), and so on, until the final multiplication takes time O(23(pk)). There will be p− 1
of these multiplications performed in total, with each taking at most O(23·pk) time, and
hence the trace of Aj1Aj2 · · ·Ajp can be calculated in O(23·pk) steps. There are mp terms in
the sum, and therefore the complexity of the entire computation is O(mp23·pk).

If we take k = O(logn) (i.e. take A to be a log-local Hamiltonian), the time complexity is
mpnO(p). For p = O(1), this time complexity is polynomial and the output of this algorithm
is better than the corresponding quantum algorithm, as it computes the desired value exactly.

Note that the problem of computing Tr(|A|p) appears to be substantially harder classically
for odd p, since it cannot be found by simply computing powers of a matrix, and instead
requires more knowledge about the eigenvalues of A.

C. Cade and A. Montanaro 4:7

1.6 Organisation
We begin by providing a proof of Theorem 2 in Section 2. Section 3 describes a proof of
Theorem 1, via an algorithm in the one clean qubit model that can estimate Tr(f(A))/2n
for a 2n × 2n log-local matrix A and an appropriately continuous function f . Following
this, in Section 4, we compare the performance of the quantum algorithm with its classical
counterpart, which is described in Appendix B. Finally, appendix A contains a detailed
analysis of the quantum algorithm used in Section 3.

2 Estimating Tr(|A|p)/2n is DQC1-hard

In this section, we show that the problem of estimating Tr(|A|p)/2n for a 2n × 2n log-local
Hamiltonian A up to a given accuracy is hard for the class DQC1. More precisely, we assume
that we have access to an algorithm that can estimate Tr(|A|p)/2n up to accuracy ε

(
‖A‖

2

)p
,

for ε = O(1/ poly(n)) and p = poly(n), and show that this implies that we can solve any
problem contained in DQC1.

To do this we show that, given as input a real unitary U (implemented by some polynomial-
sized quantum circuit acting on n qubits), it is possible to construct a log-local Hamiltonian
A such that Tr(|A|p)/2n = Tr(U)/2n, for some p = poly(n). Furthermore, we show that
an estimation accuracy of ε

(
‖A‖

2

)p
is sufficient to provide an estimate of Tr(U)/2n up to

accuracy 1/ poly(n). This problem is complete for the class DQC1 [26], which implies that
the problem of estimating Tr(|A|p)/2n up to the stated accuracy is DQC1-hard.

The construction is based on ideas from Hamiltonian complexity, and in particular Kitaev’s
clock construction for the local Hamiltonian problem [2]. We assume that we have a decom-
position U = UM−1...U1U0 of the circuit into M elementary gates. Since U is described by a
polynomial-sized circuit, we have M = poly(n). We add dlogMe additional qubits to act as
a ‘clock’ register, which is used to control the application of the individual unitaries, and
define a unitary operator

W :=
M−1∑
l=0
|l + 1〉〈l| ⊗ Ul,

where addition is taken to be modulo M . It is straightforward to check that

WM =
M−1∑
l=0
|l〉〈l| ⊗ Ul+M ...Ul+2Ul+1.

Then we have

Tr(WM) =
M−1∑
l=0

Tr(|l〉〈l|) · Tr(Ul+M ...Ul+2Ul+1) =
M−1∑
l=0

Tr(UM ...U2U1) = M Tr(U),

where the second step follows from invariance of the trace under cyclic permutations.
W is log-local with m = poly(n) terms, since each clock operator |l + 1〉 〈l| acts on

dlogMe qubits, and each of the unitaries Ul act on at most O(1) qubits each. Define the
Hermitian matrix

A := 1
2(W +W †).

TQC 2018

4:8 The Quantum Complexity of Computing Schatten p-norms

Then the trace of AM gives the real part of the trace of 2WM

2M , since AM equals 1/2M (WM +
W †

M) plus some other powers of W and W † that are traceless (since the clock unitaries can
only have a trace if they return the clock state back to its initial state, which takes at least
M applications of W), and therefore do not contribute to the trace of AM .

W is a 2n+dlogMe × 2n+dlogMe unitary matrix, and so we have ‖A‖ ≤ 1. Thus, given the
ability to estimate the normalised trace of Ap up to accuracy

(
‖A‖

2

)p
ε, we can estimate the

value of Re[Tr(U)]/2n up to accuracy 1/ poly(n), which is the level of accuracy required for
the class DQC1. To see this, we observe that, taking p = M and assuming (without loss of
generality) that M is a power of 2 (which also means that |A|M = AM),

Tr(AM)
2n+logM ±

ε

2M = 2 Re(Tr(WM))
2M2n+logM ± ε

2M = 2M Re(Tr(U))
M2M2n ± ε

2M .

Multiplying by 2M , we obtain Re(Tr(U))
2n ±ε, which is precisely the quantity that is DQC1-hard

to compute. This is sufficient to show that the problem of estimating Tr(Ap)/2n up to
accuracy

(
‖A‖

2

)p
ε for a log-local n-qubit Hamiltonian is hard for the class DQC1.

Note that we were not able to use standard techniques from the Hamiltonian complexity
literature to make this construction work for k-local Hamiltonians with constant k [15, 16].
These techniques involve the introduction of a larger clock space that is then acted upon by
k-local Hamiltonians. A term is then added to the Hamiltonian to ‘penalise’ invalid clock
states and prevent them from contributing to the ground state energy. In our case, we care
about the entire space on which the Hamiltonian acts and not just the subspace containing
the valid clock states, and therefore the invalid clock states contribute to the trace of AM in
a non-trivial way.

3 Estimating Tr(|A|p)/2n is in DQC1

Here we show that the problem of estimating Tr(|A|p)/2n for a log-local Hamiltonian A, up
to reasonable error, is in DQC1. In precise terms, we are given a k-local n-qubit Hamiltonian
A, with k = O(logn); then the problem is to estimate Tr(|A|p)/2n up to error ε‖A‖p, for
some integer p = O(poly(n)) and accuracy ε = Ω(1/ poly(n)). Our approach is to construct
a unitary U such that the normalised trace of U approximates the normalised trace of |A|p.
We show that this construction can be performed in polynomial time (that is, the unitary U
takes poly(n, p, 1/ε) time to implement). Using this approach, we can use the DQC1 model
to compute the normalised trace of the matrix |A|p, hence showing that this problem is
contained in DQC1. We will use the following corollary of Lemma 4:

I Corollary 6. For a log-local Hamiltonian A, and any log-space polynomial-time computable
function f : I → R (where I contains the spectrum of A) that is Lipschitz continuous with
constant K ′ (i.e. |f(x)−f(y)| ≤ K ′|x−y| for all x, y ∈ I), there exists a DQC1 algorithm to
estimate Tr(f(A))/2n =

∑
j f(λj)/2n up to additive accuracy ε(K ′ + fmax), where λj denote

the eigenvalues of A, ε = Ω(1/ poly(n)), and fmax is the supremum of |f | on the interval I.

The proof of Lemma 4 (and hence the above corollary) is split into roughly three parts.
The first part, in Section 3.1, describes how the algorithm works, via a description of the
unitary that is constructed from the input matrix. Following this, Section 3.2 discusses
the accuracy and failure probability of the algorithm, and finally, Section 3.3 shows that
the number of ancilla qubits required (and therefore the number of pure qubits needed) to
implement the algorithm is at most O(logn).

C. Cade and A. Montanaro 4:9

3.1 Constructing the Unitary
We are given a log-local Hamiltonian A with eigenvectors |ψj〉 and corresponding eigenvalues
λj . The basic idea is to construct a unitary U whose eigenvalues correspond to the eigenvalues
of A in a useful way. In particular, we construct a polynomial-sized circuit whose associated
unitary has eigenvalues λ′j such that λ′j = f ′(λj), for some function f ′ that depends on f .

The first step is to use Hamiltonian simulation to implement the unitary eiA, which has
eigenvalues eiλj for each eigenvector |ψj〉 of A. Section 3.4 discusses the time complexity
of this part of the circuit. Then the circuit performs the following sequence of operations,
which we will describe in terms of their effects on an eigenvector |ψj〉 of A and an arbitrary
single qubit state of the form α |0〉 + β |1〉. We use |0 . . . 0〉 to denote an arbitrarily large
ancilla register (with each qubit initialised to 0), and assume that both the phase estimation
and Hamiltonian simulation parts of the circuit work perfectly.
1. Apply phase estimation on eiA with the input |ψj〉, to obtain an estimate of the eigen-

value λj :

|ψj〉 (α |0〉+ β |1〉) |0 . . . 0〉 7→ |ψj〉 (α |0〉+ β |1〉) |λj〉

2. Perform controlled phase rotations, where the phase depends on a function f of λj
contained in the 3rd register (for example, f(x) = xp):

|ψj〉 (α |0〉+ β |1〉) |λj〉 7→ |ψj〉 (αei arccos(f(λj)) |0〉+ βe−i arccos(f(λj)) |1〉) |λj〉

3. Undo the phase estimation to uncompute the value in the 3rd register:

7→ |ψj〉 (αei arccos(f(λj)) |0〉+ βe−i arccos(f(λj)) |1〉) |0 . . . 0〉

This gives us a unitary U that performs the mapping

|ψj〉 (α |0〉+ β |1〉) |0 . . . 0〉 7→ (αe+i arccos(f(λj)) |ψj〉 |0〉+ βe−i arccos(f(λj)) |ψj〉 |1〉) |0 . . . 0〉

for each eigenvector |ψj〉 of A. Therefore, for each eigenvalue λj of A, U has two corresponding
eigenvalues e±i arccos(f(λj)).

By using the results described in Section 1.1, we can compute the trace of a sub-matrix of
U in the one clean qubit model, provided that the number of ancilla qubits used is O(logn)
(we check that this is indeed the case at the end of this section). In particular, we compute
the trace of U ′, the sub-matrix of U obtained by fixing the ancilla qubits (except the one
explicitly mentioned above) to |0〉. Then the trace of U ′ is

Tr(U ′) =
∑
j

e±i arccos(f(λj)) =
∑
j

cos(± arccos(f(λj))) + i sin(± arccos(f(λj)))

=
∑
j

2 cos(arccos(f(λj))) + i sin(arccos(f(λj)))− i sin(arccos(f(λj)))

=
∑
j

2f(λj).

3.2 Error Analysis
Errors can arise in three places. Firstly, we will have some error in the Hamiltonian simulation
part of the circuit. Secondly, there will be errors in estimating eigenvalues by using the
phase estimation routine. And finally, there will be some error in the estimation of the
normalised trace of U from using the one clean qubit model. In Appendix A, we consider the

TQC 2018

4:10 The Quantum Complexity of Computing Schatten p-norms

effect of all three sources of error, and show that we can estimate 1
2n
∑
j f(λj) with additive

error at most ε(K + 1), for any ε = Ω(1/ poly(n)), where K is the Lipschitz constant of f .
The analysis in this section is analogous to that of [14], since we use the same method for
estimating an eigenvalue of A via simulation of eiA, but uses different methods to bound the
errors introduced by phase estimation and Hamiltonian simulation.

3.3 How many clean qubits are needed?
Here we consider how many clean qubits are required to implement the circuit described in
Section 3.1 up to the desired accuracy. Any time the circuit uses ancilla qubits, these qubits
will generally need to be initialised in the all-zeros state – that is, they must be under our
control, and be ‘clean’. As discussed in Section 1.1, we can use O(logn) clean qubits without
changing the model of computation. In this section we argue that the implementation of the
circuit described above requires no more than O(logn) ancilla qubits.

The two main parts of the circuit are the phase estimation routine, and Hamiltonian
simulation. The rest of the circuit consists of more basic operations that require only a
constant number of ancilla qubits (provided that the function f we choose is sufficiently easy
to compute).

To achieve the accuracy stated in the previous section, we show in Appendix A that
the phase estimation part of the circuit must be able to achieve an additive accuracy of
1
2ε(K + 1), for which it only requires O(logn) ancilla qubits. Hence, the number of clean
qubits required to implement the phase estimation part of the circuit is O(logn).

In order to implement the simulation of the Hamiltonian A, we can use techniques based
on the Lie-Trotter product formula [20]. This requires no more than a constant number of
ancilla qubits, and, since we assume that we are given the Hamiltonian directly as a set
of m individual Hamiltonians that each act on O(logn) qubits, there are no ancilla qubits
required to ‘load’ the input into the system, which would be the case if we considered the
case where the input Hamiltonian is specified by an oracle (it is precisely for this reason that
we define the problem in terms of a log-local Hamiltonian rather than a sparse Hamiltonian).
In our case, we can run a polynomial-time classical algorithm to compute the quantum circuit
required to implement the unitary eiA, given such a description of A. This is discussed more
fully in the following section.

3.4 Simulating log-local Hamiltonians
We are required to implement the unitary eiA for some log-local Hamiltonian A. We
are limited to using at most O(logn) ancilla qubits, which rules out the more advanced
Hamiltonian simulation techniques that are based on quantum walks (e.g. [5]). Instead, we
use the ‘vanilla’ version of Hamiltonian simulation, which is based on the Lie-Trotter product
formula [20].

We are given a log-local n-qubit Hamiltonian A, and wish to implement a unitary operator
that approximates eiAt for some value of t, up to a specified accuracy δ (in the operator
norm). That is, we want to construct, in classical polynomial time, a quantum circuit that
implements a unitary operator V such that

‖V − eiAt‖ ≤ δ.

It is straightforward to check that the standard techniques, which are usually presented for
O(1)-local Hamiltonians, indeed work for log-local Hamiltonians, and allow us to simulate
eiAt up to accuracy δ in time

O(poly(m,n, τ, 1/δ)),

C. Cade and A. Montanaro 4:11

where τ = t‖A‖, using a circuit that can be computed by a polynomial-time classical
algorithm3. The time complexity could be improved by the use of more complicated
simulation techniques [4], but we do not consider this here.

In the circuit described in Section 3.1, we set t = 1, and require that δ = O(1/ poly(n)).
Thus, the time taken to implement the Hamiltonian simulation part of the circuit will be
O(poly(n)).

3.5 Proof that computing Tr(|A|p)/2n is in DQC1
The proof of Theorem 1, which states that the problem of estimating Tr(|A|p)/2n up to error
ε‖A‖p is in DQC1 for p, 1/ε = poly(n), follows almost immediately from Lemma 4. The
same proof also applies to the problem of estimating Tr(Ap)/2n. It is straightforward to
check that, on the interval [−b, b], both f(x) = xp and f(x) = |x|p are Lipschitz continuous
with Lipschitz constant K = pbp−1. Furthermore, fmax = bp for both functions. In our case
we can take b = ‖A‖, since f is a function of the eigenvalues of A. Putting these values into
Corollary 6, and replacing ε with ε

p/‖A‖+1 , we obtain an estimate of Tr(|A|p)
2n up to accuracy

ε‖A‖p. Furthermore, this estimate can be obtained in DQC1 in time that is polynomial in n
and inverse polynomial in ε.

4 Quantum vs. Classical

Here we compare the complexities of the (BQP) quantum and classical algorithms for
computing Tr(Ap), for random N ×N matrices. Recall that the quantum algorithm has an
accuracy of ε‖A‖p, and that the classical algorithm has an accuracy of εdp‖A‖pmax, where
p = polylog(N).

In the event that ‖A‖ � d, the quantum algorithm achieves an improvement in accuracy
over the classical algorithm. However, since the quantum algorithm requires the matrix A to
be sparse, we must restrict our attention to only sparse matrices that have this property.
Towards this end, we will begin by considering a general model for random graphs, and
introduce some results that relate the degrees of the vertices of the graph to the eigenvalues
of the adjacency matrix. Following this, we will consider how these results apply to sparse
graphs.

4.1 Random Graphs
We consider a general model for unweighted random graphs (see e.g. [7]), in which each
vertex v is associated with a weight wv. Then a random graph G is constructed by assigning
an edge independently to each pair of vertices (i, j) with probability wiwj∑

i
wi
, such that the

expected degree of vertex v is given by wv. Denote by d the maximum expected degree, and
by d̃ the value

d̃ :=
∑N
i=1 w

2
i∑N

i=1 wi
.

Then we have the following results from [7]:

3 The details of this simulation can be found in the full version of this paper.

TQC 2018

4:12 The Quantum Complexity of Computing Schatten p-norms

I Theorem 7. If d̃ >
√
d lnN , then as N → ∞ the largest eigenvalue of a random graph

G(w) is almost surely (1 + o(1))d̃.

I Theorem 8. If
√
d > d̃ ln2 N , then as N →∞ the largest eigenvalue of a random graph

G(w) is almost surely (1 + o(1))
√
d

Intuitively, ‖A‖ is (asymptotically) the maximum of
√
d and d̃ if the two values

√
d and d̃

are far apart (i.e. by a power of logN).

4.2 Restriction to Sparse Graphs
We are interested in sparse graphs – i.e. those in which the degree of every vertex is
O(polylog(N)). If we use the random graph model above, and set d = Θ(log2 N), then if we
allow all vertices to have an expected degree similar to d, then by Theorem 7, ‖A‖ = (1+o(1))d
almost surely, and the accuracies of both the classical and quantum algorithms are the same.
Therefore, we are only going to see an advantage when we restrict the number of vertices that
are allowed to have degree close to the maximum (which will be O(polylogN) by necessity).
In general, in an effort to make ‖A‖ = o(d), we should only allow at most O(logN) vertices
to have degree close to the maximum, and the others must have asymptotically smaller (e.g.
constant) degree. A class of graphs that satisfies this requirement is the class of power law
graphs.

A distribution on power-law graphs is given in [7] for which d, d̄ and β are parameters
that can be varied freely. In graphs of this type, the number of vertices with degree k is
proportional to k−β , and d is the maximum expected degree of a vertex in the graph, while
d̄ is the average degree. We have the following results, also from [7]:

1. For β > 3 and d > d̄2 log3+εN , the largest eigenvalue of the graph is almost surely
(1 + o(1))

√
d, for some ε = O(1), and where d̄ denotes the average degree.

2. For 2.5 < β < 3 and d > d̄(β−2)/(β−2.5) log3/(β−2.5) N , the largest eigenvalue of the graph
is almost surely (1 + o(1))

√
d.

3. For 2 < β < 2.5 and m > log3/2.5−β N , the largest eigenvalue is almost surely (1 + o(1))d̃.

Note that in all of the above, the bounds still apply when the graph is sparse (i.e. d =
O(polylogN)). Hence, for power law graphs with exponent β > 2.5, we almost always get a
quadratic improvement in accuracy over the classical algorithm. As the exponent decreases,
so does the advantage gained by the quantum algorithm.

Some interesting subclasses of power law graphs have exponents between 2 and 2.5. For
example, ‘internet graphs’ have exponents between 2.1 and 2.4, and the ‘Hollywood’ graph
has exponent ≈ 2.3 [8]. In these cases, we might expect some quantum improvement over a
classical approach, but not the full square root improvement.

References
1 D. Aharonov, V. Jones, and Z. Landau. A polynomial quantum algorithm for approximating

the Jones polynomial. In Proceedings of the thirty-eighth annual ACM symposium on Theory
of computing, pages 427–436. ACM, 2006. arXiv:quant-ph/0511096.

2 D. Aharonov and T. Naveh. Quantum NP-a survey. arXiv:quant-ph/0210077, 2002.
3 A. Ben-Aroya, O. Regev, and R. de Wolf. A hypercontractive inequality for matrix-valued

functions with applications to quantum computing and LDCs. In FOCS’08, pages 477–486.
IEEE, 2008. arXiv:0705.3806.

4 D. Berry, G. Ahokas, R. Cleve, and B. Sanders. Efficient quantum algorithms for simulat-
ing sparse Hamiltonians. Communications in Mathematical Physics, 270(2):359–371, 2007.
arXiv:quant-ph/0508139.

C. Cade and A. Montanaro 4:13

5 D. W Berry, A. Childs, and R. Kothari. Hamiltonian simulation with nearly optimal
dependence on all parameters. In Foundations of Computer Science (FOCS), 2015 IEEE
56th Annual Symposium on, pages 792–809. IEEE, 2015. arXiv:1312.1414.

6 F. Brandão. Entanglement theory and the quantum simulation of many-body physics.
arXiv:0810.0026, 2008.

7 F. Chung, L. Lu, and V. Vu. Spectra of random graphs with given expected degrees.
Proceedings of the National Academy of Sciences, 100(11):6313–6318, 2003.

8 Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law relationships
of the internet topology. In ACM SIGCOMM computer communication review, volume 29,
pages 251–262. ACM, 1999.

9 O. Goldreich. On promise problems: A survey. In Theoretical computer science, pages
254–290. Springer, 2006.

10 I. Gutman. The energy of a graph: old and new results. In Algebraic combinatorics and
applications, pages 196–211. Springer, 2001.

11 A. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for linear systems of equations.
Physical review letters, 103(15):150502, 2009. arXiv:0811.3171.

12 P. Hayden and A. Winter. Counterexamples to the maximal p-norm multiplicativity con-
jecture for all p > 1. Communications in mathematical physics, 284(1):263–280, 2008.
arXiv:0807.4753.

13 D. Janzing and P. Wocjan. BQP-complete problems concerning mixing properties of clas-
sical random walks on sparse graphs. arXiv:quant-ph/0610235, 2006.

14 D. Janzing and P. Wocjan. A Simple PromiseBQP-complete Matrix Problem. Theory of
computing, 3(1):61–79, 2007.

15 J. Kempe, A. Kitaev, and O. Regev. The complexity of the local Hamiltonian problem.
SIAM Journal on Computing, 35(5):1070–1097, 2006.

16 A. Kitaev, A. Shen, and M. Vyalyi. Classical and quantum computation, volume 47. Amer-
ican Mathematical Society Providence, 2002.

17 E. Knill and R. Laflamme. Power of one bit of quantum information. Physical Review
Letters, 81(25):5672, 1998. arXiv:quant-ph/9802037.

18 E. Knill and R. Laflamme. Quantum computing and quadratically signed weight enumer-
ators. Information Processing Letters, 79(4):173–179, 2001. arXiv:quant-ph/9909094.

19 X. Li, Y. Shi, and I. Gutman. Graph energy. Springer Science & Business Media, 2012.
20 S. Lloyd. Universal quantum simulators. Science, 273(5278):1073, 1996.

quant-ph/9703054.
21 T. Morimae. Hardness of classically sampling one clean qubit model with constant total

variation distance error. arXiv:1704.03640, 2017.
22 T. Morimae, K. Fujii, and Joseph F. Fitzsimons. Hardness of classically simulating the

one-clean-qubit model. Physical review letters, 112(13):130502, 2014. arXiv:1312.2496.
23 M. Nielsen and I. Chuang. Quantum computation and quantum information. Cambridge

university press, 2010.
24 D. Perez-Garcia, M. Wolf, D. Petz, and M. Ruskai. Contractivity of positive and trace-

preserving maps under Lp norms. Journal of Mathematical Physics, 47(8):083506, 2006.
arXiv:math-ph/0601063.

25 D. Shepherd. Computation with unitaries and one pure qubit. arXiv:quant-ph/0608132,
2006.

26 P. Shor and S. Jordan. Estimating Jones polynomials is a complete problem for one clean
qubit. Quantum Information & Computation, 8(8):681–714, 2008. arXiv:0707.2831.

27 J. Watrous. Quantum computational complexity. In Encyclopedia of complexity and systems
science, pages 7174–7201. Springer, 2009. arXiv:0804.3401.

TQC 2018

4:14 The Quantum Complexity of Computing Schatten p-norms

A Error Analysis of DQC1 Algorithm

A.1 Error from Hamiltonian Simulation

First we consider the error that arises in the circuit from Hamiltonian simulation. We assume
that the Hamiltonian simulation step implements a unitary V that approximates eiA in the
sense that ||V − eiA|| ≤ δ, so that the eigenvalues of V and eiA can differ by at most δ. For
now, we will assume that the phase estimation routine works perfectly (i.e. introduces no
error). Recall that this part of the circuit outputs an estimate for an eigenvalue of A in the
range [−π, π). Denote by λj and µj the output of the phase estimation routine when it is
run using eiA and V , respectively. We have∣∣eiλj − eiµj ∣∣ ≤ δ
by the bound on the error of the Hamiltonian simulation, where we can assume |µj −λj | ≤ π,
by adding multiples of 2π to λj if necessary. The left hand side can be written as

∣∣∣1− ei(µj−λj)
∣∣∣ =

∣∣∣∣ei (µj−λj)
2

(
e−i

(µj−λj)
2 − ei

(µj−λj)
2

)∣∣∣∣
=

∣∣∣∣e−i (µj−λj)
2 − ei

(µj−λj)
2

∣∣∣∣
= 2

∣∣∣∣sin(µj − λj2

)∣∣∣∣ = 2 sin
∣∣∣∣µj − λj2

∣∣∣∣ (since |µj − λj | ≤ 2π).

We will use the inequality (2/π)θ ≤ sin θ for 0 ≤ θ ≤ π/2. Therefore, we have that

(4/π) |µj − λj |2 ≤ 2 sin
∣∣∣∣µj − λj2

∣∣∣∣ ≤ δ
and hence

|µj − λj | ≤ πδ/2.

To see how this affects the accuracy of the algorithm, we consider the difference in the trace
of U ′ when using V in place of eiA.

2

∣∣∣∣∣∣
∑
j

f(λj)−
∑
j

f(µj)

∣∣∣∣∣∣ ≤ 2
∑
j

|f(λj)− f(µj)|

≤ 2
∑
j

K |λj − µj | by the Lipschitz condition

≤ 2
∑
j

Kπδ/2 = 2nKπδ.

Choosing the simulation accuracy to be δ ≤ ε/(2π), this contributes an error term of 2nεK/2.
Thus, we have

2

∣∣∣∣∣∣
∑
j

f(λj)−
∑
j

f(µj)

∣∣∣∣∣∣ ≤ 2nεK/2. (1)

C. Cade and A. Montanaro 4:15

A.2 Error from Phase Estimation
Here we consider the error that arises from using the phase estimation routine to estimate
the eigenvalues µj of the unitary V from the previous sub-section. The phase estimation
routine requires the addition of a ancilla qubits, which are used to control the application of
powers of V on an n-qubit register. More precisely, the lth ancilla qubit is used to control
the application of the unitary V 2l , so that we apply the controlled gate

Wl := |0〉〈0|l ⊗ I + |1〉〈1|l ⊗ V
2l

where the subscript l denotes that the projector acts on the lth ancilla/control qubit (and as
the identity everywhere else). Let W := W1W2 · · ·Wa. Then the phase estimation routine
consists of applying Hadamard gates to all of the control qubits, applying W , and then
applying the inverse quantum Fourier transform to the control qubits.

If we apply phase estimation to an eigenvector of V with eigenvalue ei2πθ, and measure
the control register, we obtain some output x ∈ {0, 1, ..., 2a − 1} such that

Pr(|θ − x/2a| < η) > 1− ϕ (2)

for ϕ, η > 0. To obtain this level of accuracy and probability of failure, it is sufficient [23] to
set

a = dlog(1/η)e+ dlog(2 + (1/(2ϕ)))e. (3)

Let φ be defined as follows:

φ(x) :=
{
x2π/2a if x ≤ 2a−1

x2π/2a − 2π otherwise

Then let φ(xj) be our estimate of the eigenvalue µj corresponding to the eigenvector |ψj〉,
which, by the definition of φ above, lies in the interval [−π, π). By Equation (2), if we
apply phase estimation to an eigenvector |ψj〉 of V with corresponding eigenvalue eiµj , and
measure, we have

Pr(|µj − φ(xj)| < 2πη) > 1− ϕ (4)

where the extra factor of 2π results from rescaling the value of xj by 2π.

In our case, we do not measure the control register, and therefore we do not collapse
the superposition over eigenvalues that phase estimation produces. Here we consider the
effect that this has on the output of the algorithm, and simultaneously bound the error
introduced by this part of the circuit. When phase estimation does not work perfectly, the
algorithm consists of the following steps, implementing a unitary Ũ :
1. Apply phase estimation on V ≈ eiA with the input |ψj〉, to obtain a superposition over

estimates φ(k) of the eigenvalue µj = 2πθj :

|ψj〉 (α |0〉+ β |1〉) |0 . . . 0〉 7→ |ψj〉 (α |0〉+ β |1〉)
∑
k

γk|j |φ(k)〉

where γk|j = 1
N

∑
a e

2πia(θj−k/N).
2. Perform controlled phase rotations:

|ψj〉 (α |0〉+ β |1〉)
∑
k

γk|j |φ(k)〉

7→ |ψj〉
∑
k

γk|j(αei arccos(f(φ(k))) |0〉+ βe−i arccos(f(φ(k))) |1〉) |φ(k)〉 .

TQC 2018

4:16 The Quantum Complexity of Computing Schatten p-norms

3. Undo the phase estimation to uncompute the value in the 3rd register. To undo phase
estimation we: a) apply the QFT to the register containing the φ(k)’s, b) apply controlled
powers of the unitary V † ≈ e−iA, and c) apply Hadamard gates to all qubits in the third
register.
a. Apply the QFT:

|ψj〉
1√
N

∑
k

γk|j(αei arccos(f(φ(k))) |0〉+ βe−i arccos(f(φ(k))) |1〉)
∑
w

e2πiwk/N |w〉 .

b. Apply the controlled (on the third register) V † gates:

|ψj〉
1√
N

∑
k

γk|j(αei arccos(f(φ(k))) |0〉+βe−i arccos(f(φ(k))) |1〉)
∑
w

e2πiwk/Ne−2πiθjw |w〉 .

c. Apply Hadamard gates to each of the ancilla qubits:

|ψj〉
1
N

∑
k

γk|j(αei arccos(f(φ(k))) |0〉

+βe−i arccos(f(φ((k))) |1〉)
∑
w

∑
x

e2πiwk/Ne−2πiθjw(−1)w·x |x〉 .

This means that Ũ performs the mapping

|ψj〉 (α |0〉+ β |1〉) |0 . . . 0〉

7→ |ψj〉
1
N

∑
k

γk|j(αei arccos(f(φ(k))) |0〉

+βe−i arccos(f(φ(k))) |1〉)
∑
x

(∑
w

e2πiwk/Ne−2πiθjw(−1)w·x
)
|x〉

for each eigenvector |ψj〉 of V .
Let {|ψj〉 |b〉 |φ〉, b ∈ {0, 1}} be a basis for the tensor product of the three registers. By

design, the only states that contribute to the trace of U ′ are those of the form |ψj〉 |b〉 |0 . . . 0〉.
Hence, we can consider the trace of Ũ ′ – the submatrix of Ũ in which the third register is in
the state |0 . . . 0〉) – which is given by:

Tr(Ũ ′) =
∑
j

〈ψj | 〈0|
(
|ψj〉

1
N

∑
k

γk|j
∑
w

e2πiwk/Ne−2πiθjwei arccos(f(φ(k))) |0〉
)

+
∑
j

〈ψj | 〈1|
(
|ψj〉

1
N

∑
k

γk|j
∑
w

e2πiwk/Ne−2πiθjwe−i arccos(f(φ(k))) |1〉
)

= 1
N

∑
j,k

γk|j
∑
w

e2πiwk/Ne−2πiθjw
(
ei arccos(f(φ(k))) + e−i arccos(f(φ(k)))

)
= 1

N

∑
j,k

γk|j2f(φ(k))
∑
w

e2πiw(k/N−θj)

= 2
∑
j,k

∣∣γk|j∣∣2 f(φ(k))

= 2
∑
k

f(φ(k))
∑
j

∣∣γk|j∣∣2 .

C. Cade and A. Montanaro 4:17

Suppose that θj = zj/N for some zj – that is, each θj can be represented precisely by an n-bit
rational number zj/N . Then γk|j = δk,zj , and so Tr(Ũ ′) = 2

∑
j f(µj). This corresponds to

the case in which phase estimation works perfectly; in reality, we will not be able to express
all eigenvalues precisely as n-bit rational numbers. Instead, suppose that θj = z̃j/N + δj ,
where z̃j/N is the closest n-bit approximation of θj , and so 0 ≤ δj ≤ 1/(2N). The difference
between the trace in the two cases is given by

2

∣∣∣∣∣∣
∑
j

f(µj)−
∑
j

∑
k

∣∣γk|j∣∣2 f(φ(k))

∣∣∣∣∣∣ ≤ 2
∑
j

∣∣∣∣∣f(µj)−
∑
k

∣∣γk|j∣∣2 f(φ(k))

∣∣∣∣∣
= 2

∑
j

∣∣∣∣∣∑
k

∣∣γk|j∣∣2 (f(µj)− f(φ(k)))

∣∣∣∣∣
≤ 2

∑
j

∑
k

∣∣γk|j∣∣2 |f(µj)− f(φ(k))| ,

where the second step follows because
∑
k

∣∣γk|j∣∣2 = 1. The coefficient
∣∣γk|j∣∣2 is precisely the

probability of measuring φ(k) on the ancilla register when the true eigenvalue is µj . By the
promises of phase estimation (Equation (4)), with probability ≤ ϕ we have |µj − φ(k)| > 2πη,
in which case |f(µj)− f(φ(k))| ≤ 2fmax; and with probability ≥ 1−ϕ we have |µj − φ(k)| ≤
2πη, in which case |f(µj)− f(φ(k))| ≤ 2πKη. Hence, the error from this part of the circuit
is bounded above by

2

∣∣∣∣∣∣
∑
j

f(µj)−
∑
j

∑
k

∣∣γk|j∣∣2 f(φ(k))

∣∣∣∣∣∣ ≤ 4
∑
j

(πKη + ϕfmax) = 2n+2(πKη + ϕfmax).

Choosing η < ε/(8π) and ϕ < ε/8, and assuming that fmax ≤ 1 (as stated earlier), this
becomes

2

∣∣∣∣∣∣
∑
j

f(µj)−
∑
j

∑
k

∣∣γk|j∣∣2 f(φ(k))

∣∣∣∣∣∣ ≤ 2n 1
2ε(K + 1). (5)

Now we consider how this contributes to the overall error. As before, let λj denote the
eigenvalues of eiA. Then the error of the algorithm, taking into account both the Hamiltonian
simulation and phase estimation steps, is

2

∣∣∣∣∣∣
∑
j

f(λj)−
∑
j

∑
k

∣∣γk|j∣∣2 f(k)

∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣
∑
j

f(λj)−
∑
j

f(µj)

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
∑
j

f(µj)−
∑
j

∑
k

∣∣γk|j∣∣2 f(k)

∣∣∣∣∣∣
where the first term on the right corresponds to the error from the Hamiltonian simulation
part of the circuit (i.e. the difference between the trace of the circuit when using V instead of
eiA), and the second term corresponds to the error introduced by phase estimation. A bound
on the first term is given by Equation (1), and the second term is bounded via Equation (5).
Therefore, the difference in the trace of U ′ in the case where Hamiltonian simulation and
phase estimation both work perfectly, and when they do not, is bounded by

2

∣∣∣∣∣∣
∑
j

f(λj)−
∑
j

∑
k

∣∣γk|j∣∣2 f(k)

∣∣∣∣∣∣ ≤ 2nε(K + 1/2). (6)

TQC 2018

4:18 The Quantum Complexity of Computing Schatten p-norms

A.3 Error from estimating Tr(U ′)/2n in the DQC1 model
The one clean qubit model can estimate the normalised trace of a 2n × 2n sub-matrix of
a 2n+O(logn) × 2n+O(logn) unitary matrix (implemented by a poly(n)-sized circuit) up to
accuracy ζ = Ω(1/ poly(n)). Therefore, using the one clean qubit model to estimate the trace
of U ′ will introduce an extra error term ζ. Let T̃r(U ′)/2n be the output from the one clean
qubit algorithm. Then choosing ζ = ε/2, and using the bound from Equation (6), we have∣∣∣∣∣∣ 2

2n
∑
j

f(λj)− T̃r(U ′)/2n
∣∣∣∣∣∣ ≤ ε(K + 1). (7)

Hence, we can estimate 1
2n
∑
j f(λj) in polynomial time with accuracy ε(K + 1) for any

ε = Ω(1/ poly(n)).

B Classical Algorithms

Here we describe a classical algorithm for diagonal entry estimation, which is the problem
of estimating an entry on the diagonal of the matrix Ap, up to reasonable error. Given the
ability to estimate the diagonal entries of a matrix, we are able to estimate the normalised
trace of that matrix.

We first present an algorithm for the special case where A contains only 0, 1 entries, and
then in Appendix B.1 discuss how it can be extended to work for arbitrary real matrices. In
the first case, the matrix A defines an unweighted, undirected graph with N vertices. The
value of (Ap)jj is equivalent to the number of distinct walks (i.e. traversals around the graph
that may traverse any edge more than once, or not at all) of length p starting and ending at
vertex j.

We begin by observing that (Ap)jj can be re-interpreted as the total number of walks
of length p leaving j multiplied by the probability that such a walk ends at vertex j. We
can obtain an estimate of the latter by performing a number of random walks of length p,
beginning at vertex j, and counting how many of them return to vertex j on the final step.

In order to obtain an estimate of the total number of walks of length p leaving a given
vertex, we can do the following: given an upper bound d on the degree of the graph, we
generate a number of sequences of p integers chosen independently and uniformly at random
from the range [0, d]. Any given sequence provides a ‘candidate’ walk of length p on the
graph, which may or may not be realisable on the graph defined by A. Given a candidate
walk of the form (n0, n1, ..., np), we test whether or not it is realisable by starting a walk at
vertex j, and then moving to the n0th neighbour of j. We then move to the n1th neighbour
of that vertex, and so on. If, at any step i of the walk, a vertex does not have a neighbour
ni, we terminate the process and conclude that the candidate is not realisable.

If we tried all dp possible candidate walks from vertex j, then by counting the number
of successes we would know the exact value of the number of walks of length p that leave
vertex j; however, this would require O(dp) walks to be performed. If instead we sample
from the set of all possible walks by generating a number of sequences at random, we can
obtain a close estimate of the true number of walks. Below is the full algorithm for diagonal
entry estimation. We assume that we are given some bound d on the degree of the graph,
and that we wish to estimate (Ap)jj .
1. Estimate the total number of walks of length p leaving vertex j:

a. Define variables Xi for i ∈ [k], for some value of k to be determined later.

C. Cade and A. Montanaro 4:19

b. For i = 1 to k:
i. Generate a sequence (n0, n1, ..., np), where each nl ∈ [d].
ii. Attempt to follow the walk defined by the sequence.
iii. If the walk was successful, set Xi = 1, otherwise set Xi = 0.

c. Then X = dp

k (X1 +X2 + ...+Xk) provides an estimate of the total number of walks
of length p leaving vertex j.

2. Estimate the probability that a given walk returns to vertex j:
a. Define variables Yi for i ∈ [k′], for some value of k′ to be determined later.
b. For i = 1 to k′:

i. Perform a random walk of length p starting at vertex j.
ii. If the walk returns to vertex j (as its final step), then set Yi = 1, otherwise set it to

0.
c. Then Y = 1

k′ (Y1 + Y2 + ...+ Yk′) gives an estimate of the probability that a given walk
returns to vertex j.

3. Multiplying the two values together gives us our desired estimate: (Ãp)jj = X · Y .

To analyse the accuracy of this estimation, we will look at the errors in the two estimates X
and Y .

In both steps, we are essentially aiming to estimate the success probability of some
Bernoulli process: in step 1 we aim to estimate the probability with which a randomly
generated sequence of ‘moves’ succeeds in generating a valid walk around the graph, and in
step 2 we are estimating the probability that a given (valid) walk of length p succeeds in
returning to its starting vertex on the final step of the walk. In both cases, we can estimate
the appropriate probability up any desired accuracy ε by choosing the number of samples (k
in step 1, and k′ in step 2) to be inverse polynomial in ε.

We use Hoeffding’s inequality to bound the accuracy of both estimates. For step 1, we
absorb the factor of dp into the random variables Xi, and use the general form of the bound:

Pr
[
|X − E[X]| ≥ εdp

]
≤ 2e−2ε2k.

And for step 2, we have

Pr
[
|Y − E[Y]| ≥ ε′

]
≤ 2e−2ε′2k′ .

Therefore, by choosing k = poly(1/ε) and k′ = poly(1/ε′), we can estimate (Ap)jj up to
additive error that is at most dp(ε + ε′ + εε) = dpδ for δ = 1/poly(n), with a constant
probability of failure.

B.1 Extension to real matrices
In this section we extend the diagonal entry estimation algorithm of the previous section
to work for arbitrary real matrices. Recall that this algorithm works for matrices with
0, 1 entries by interpreting the input matrix as the adjacency matrix for an unweighted,
undirected graph. More general (symmetric) matrices may be viewed as undirected graphs
with weighted edges, and a similar interpretation of the value of (Ap)jj holds in these cases.

In the case of general matrices, the value of (Ap)jj depends not only on the number of
closed walks (i.e. those that return to their start vertex) leaving vertex j, but also on the
‘weight’ of those walks. Let Cjp be the set of all closed walks of length p leaving vertex j, and
E(ω) be the set of edges that make up a given walk ω.

TQC 2018

4:20 The Quantum Complexity of Computing Schatten p-norms

Then we have

(Ap)jj =
∑
c∈Cjp

∏
e∈E(c)

weight(e).

In order to estimate this quantity, we proceed similarly to the above case.
Let us denote the set of all (not necessarily closed) walks of length p originating at vertex

j by Wj
p . Then we can re-write the above quantity as

(Ap)jj = Wp Eω∈Wj
p

 ∏
e∈E(ω)

weight(e)

 ,
by using the same reasoning as before – i.e. that the jth diagonal entry of Ap is given by
the total number of walks of length p leaving vertex j multiplied by the expected ‘weight’ of
each walk, where we assign a weight of 0 if the walk does not return to vertex j.

We can estimate the expectation on the right by sampling from the set of closed walks of
length p originating at vertex j. This can be done by performing random walks of length p
starting at vertex j, and recording the total weights of those walks that return to vertex j.
This is easily incorporated into the existing algorithm: we set the variable Yi to 0 if the ith
walk does not return to vertex j, and otherwise we set it to the total weight of the walk (i.e.
the product over the weights of the edges of the walk). Wp can be estimated as before, up
to error εdp. The error in estimating the expectation value depends upon the largest total
weight of a closed walk in the graph. This is smaller than or equal to ‖A‖pmax, where ‖A‖max
is the maximum absolute size of an entry in A. A bound on the accuracy of estimating the
expectation value is once again given by Hoeffding’s inequality:

Pr[|Y − E[Y]| ≥ ε′‖A‖pmax] ≤ 2e−2ε′2k′ .

Multiplying the two estimates together, we obtain an estimate of (Ap)jj up to accuracy
δdp‖A‖pmax with constant probability.

B.2 Estimating Tr(Ap)/N Classically
We can use the classical version of diagonal entry estimation to estimate the normalised
trace of a matrix. More precisely, we obtain the empirical mean of (Ap)jj over a sample of
values of j chosen uniformly at random. To see that the mean value of (Ap)jj for j ∈ [N]
does indeed give us the desired value, we observe that

Ej [(Ap)jj] = 1
N

N−1∑
j=0

(Ap)jj = Tr(Ap)
N

.

Let the output of the diagonal entry estimation algorithm be (Ãp)jj (which is an estimate of
(Ap)jj up to additive error δdp‖A‖pmax). Then let (Ãp)jj be the mean value of the variable
(Ãp)jj after sampling k times for randomly chosen values of j. The value of (Ãp)jj is bounded
in the interval [−(d‖A‖max)p, (d‖A‖max)p]. Then by Hoeffding’s inequality:

Pr
[∣∣∣(Ãp)jj − E[(Ãp)jj]

∣∣∣ ≥ δdp‖A‖pmax

]
≤ 2 exp

(
−δ2

2 k

)
.

Thus, choosing k to be inverse polynomial in δ allows us to obtain an estimate of E[(Ap)jj] =
Tr(Ap)/N up to error δdp‖A‖pmax. Note that for 0, 1 and −1, 0,+1 matrices, ‖A‖max = 1
and therefore the accuracy of the estimation in this case is just δdp.

	Introduction
	The One Clean Qubit Model of Computation
	DQC1-complete Problems

	Schatten p-norms and Graph Energy
	Our results
	Estimating ||A||_p

	Relation to Previous Work
	Comparison with Classical Algorithms
	Organisation

	Estimating Tr(|A|^p)/2^n is DQC1-hard
	Estimating Tr(|A|^p)/2^n is in DQC1
	Constructing the Unitary
	Error Analysis
	How many clean qubits are needed?
	Simulating log-local Hamiltonians
	Proof that computing Tr(|A|^p)/2^n is in DQC1

	Quantum vs. Classical
	Random Graphs
	Restriction to Sparse Graphs

	Error Analysis of DQC1 Algorithm
	Error from Hamiltonian Simulation
	Error from Phase Estimation
	Error from estimating Tr(U)/2^n in the DQC1 model

	Classical Algorithms
	Extension to real matrices
	Estimating Tr(A^p)/N Classically

