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Abstract
We study the quantum complexity of solving the subset sum problem, where the elements
a1, . . . , an are randomly chosen from Z2`(n) and t =

∑
i ai ∈ Z2`(n) is a sum of n/2 elements.

In 2013, Bernstein, Jeffery, Lange and Meurer constructed a quantum subset sum algorithm with
heuristic time complexity 20.241n, by enhancing the classical subset sum algorithm of Howgrave-
Graham and Joux with a quantum random walk technique. We improve on this by defining a
quantum random walk for the classical subset sum algorithm of Becker, Coron and Joux. The
new algorithm only needs heuristic running time and memory 20.226n, for almost all random
subset sum instances.
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1 Introduction

The subset sum (aka knapsack) problem is one of the most famous NP-hard problems. Due
to its simpleness, it inspired many cryptographers to build cryptographic systems based
on its hardness. In the 80s, many attempts for building secure subset sum based schemes
failed [20], often because these schemes were built on subset sum instances (a1, . . . , an, t)
that turned out to be solvable efficiently.

Let a1, . . . , an be randomly chosen from Z2`(n) , I ⊂ {1, . . . , n} and t ≡
∑
i∈I ai mod 2`(n).

The quotient n/`(n) is usually called the density of a subset sum instance. In the low
density case where `(n)� n, I is with high probability (over the randomness of the instance)
a unique solution of the subset sum problem. Since unique solutions are often desirable
for cryptographic constructions, most initial construction used low-density subset sums.
However, Brickell [8] and Lagarias, Odlyzko [17] showed that low-density subset sums with
`(n) > 1.55n can be transformed into a lattice shortest vector problem that can be solved in
practice in small dimension. This bound was later improved by Coster et al. [9] and Joux,
Stern [15] to `(n) > 1.06n. Notice that this transformation does not rule out the hardness
of subset sum in the low-density regime, since computing shortest vectors is in general also
known to be NP-hard [2].
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5:2 Subset Sum Quantumly in 1.17n

In the high-density regime with ` = O(logn) dynamic programming solves subset sum
efficiently, see [11]. However, for the case `(n) ≈ n only exponential time algorithms are
known. Impagliazzo and Naor showed constructions of cryptographic primitives in AC0 that
can be proven as hard as solving random subset sums around density 1. Many efficient
cryptographic constructions followed, see e.g. [18, 10] for some recent constructions – including
a CCA-secure subset sum based encryption scheme – and further references.

Classical complexity of subset sum

Let us assume that ` = poly(n) such that arithmetic in Z2`(n) can be performed in time
poly(n). Throughout this paper, for ease of notation we omit polynomial factors in exponential
running times or space consumptions.

For solving subset sum with a = (a1, . . . , an), one can naively enumerate all e ∈ {0, 1}n
and check whether 〈e,a〉 ≡ t mod 2`(n) in time 2n.

Let a(1) = (a1, . . . , an/2) and a(2) = (an/2+1, . . . , an). In the Meet-in-the-Middle approach
of Horowitz and Sahni [13], one enumerates all e(1), e(2) ∈ {0, 1}n/2 and checks for an identity
〈e(1),a(1)〉 ≡ t − 〈e(2),a(2)〉 mod 2`(n). This improves the time complexity to 2n/2, albeit
using also space 2n/2.

Schroeppel and Shamir [21] later improved this to time 2n/2 with only space 2n/4. It
remains an open problem, whether time complexity 2n/2 can be improved in the worst
case [4]. However, when studying the complexity of random subset sum instances in the
average case, the algorithm of Howgrave-Graham and Joux [14] runs in time 20.337n. This
is achieved by representing e = e(1) + e(2) with e(1), e(2) ∈ {0, 1}n ambiguously, also called
the representation technique. In 2011, Becker, Coron and Joux [5] showed that the choice
e(1), e(2) ∈ {−1, 0, 1}n leads to even more representations, which in turn decreases the
running time on average case instances to 20.291n, the best classical running time currently
known.

Quantum complexity of subset sum

In 2013, Bernstein, Jeffery, Lange and Meurer [6] constructed quantum subset sum algorithms,
inspired by the classical algorithms above. Namely, Bernstein et al. showed that quantum
algorithms for the naive and Meet-in-the-Middle approach achieve run time 2n/2 and 2n/3,
respectively. Moreover, a first quantum version of Schroeppel-Shamir with Grover search [12]
runs in time 23n/8 using only space 2n/8. A second quantum version of Schroeppel-Shamir
using quantum walks [1, 3] achieves time 20.3n. Eventually, Bernstein, Jeffery, Lange and
Meurer used the quantum walk framework of Magniez et al. [19] to achieve a quantum version
of the Howgrave-Graham, Joux algorithm with time and space complexity 20.241n.

Our result

Interestingly, Bernstein et al. did not provide a quantum version of the best classical
algorithm – the BCJ-algorithm by Becker, Coron and Joux [5] – that already classically
has some quite tedious analysis. We fill this gap and complete the complexity landscape
quantumly, by defining an appropriate quantum walk for the BCJ-algorithm within the
framework of Magniez et al. [19]. Our run time analysis relies on some unproven conjecture
that we make explicit in Section 4. Under this conjecture, we show that all but a negligible
fraction of instances of subset sum can be solved quantumly in time and space 20.226n,
giving polynomial speedups over the best classical complexity 20.291n and the best quantum
complexity 20.241n.
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In a nutshell, our conjecture states that in the run-time analysis we can replace in a
quantum walk an update with expected constant cost by an update with polynomially
upper-bounded cost (that might stop), without significantly affecting the error probability
and the structure of the random walk graph. While it might be legitimate to use an unproven
non-standard conjecture to say something reasonable on the quantum complexity of problems
in post-quantum cryptography, especially in the context of the present NIST standardization
process, our conjecture is somewhat unsatisfactory from a theoretical point of view. We hope
that our work encourages people to base this conjecture on more solid theoretical foundations.

Apart from that our result holds for random subset sums with ` = poly(n), i.e. with
polynomial density. However, our algorithm behaves worst for subset sum instances with
unique solution, i.e. in the case `(n) ≥ n. In the high-density case `(n) < n, our analysis is
non-optimal and might be subject to improvements.

The complexity 20.226n is achieved for subset sum solutions t ≡
∑
i∈I ai mod 2`(n) with

worst case |I| = n/2. We also analyze the complexity for |I| = βn with arbitrary β ∈ [0, 1].
For instance for β = 0.2, our quantum-BCJ algorithm runs in time and space 20.175n.

The paper is organized as follows. Section 2 defines some notation. In Section 3, we
repeat the BCJ algorithm and its classical complexity analysis that we later adapt to the
quantum case. In Section 4, we analyze the cost of a random walk on the search space defined
by the BCJ algorithm and define an appropriate data structure. In Section 5, we put things
together and analyze the complexity of the BCJ algorithm, enhanced by a quantum walk
technique.

2 Preliminaries

Let D = {−1, 0, 1} be a digit set, and let α, β ∈ Q ∩ [0, 1] with 2α + β ≤ 1. We use
the notation e ∈ Dn[α, β] to denote that e ∈ Dn has αn (−1)-entries, (α + β)n 1-entries
and (1 − 2α − β)n 0-entries. Especially, e ∈ Dn[0, β] is a binary vector with βn 1-entries.
Throughout the paper we ignore rounding issues and assume that αn and (α+ β)n take on
integer values.

We naturally extend the binomial coefficient notation
(
n
k

)
= n!

k!(n−k)! to a multinomial
coefficient notation(

n

k1, . . . , kr

)
= n!
k1! . . . kr!(n− k1 − . . .− kr)!

.

Let H (x) = −x · log2 (x)− (1− x) · log2 (1− x) denote the binary entropy function. From
Stirling’s formula one easily derives(

αn

βn

)
≈ 2α·H( βα )n,

where the ≈-notation suppresses polynomial factors.
Analogous, let g(x, y) := −x · log2 (x)− y · log2 (y)− (1− x− y) · log2 (1− x− y). Then(

αn

βn, γn

)
≈ 2α·g(

β
α ,

γ
α )n.

Let Z2`(n) be the ring of integers modulo 2`(n). For the n-dimensional vectors a =
(a1, . . . , an) ∈ (Z2`(n))n, e = (e1, . . . , en) ∈ Dn[α, β] the inner product is denoted

〈a, e〉 =
n∑
i=1

aiei mod 2`(n).

TQC 2018



5:4 Subset Sum Quantumly in 1.17n

We define a random weight-β (solvable) subset sum instance as follows.

I Definition 1 (Random Subset Sum). Let a be chosen uniformly at random from (Z2`(n))n.
For β ∈ [0, 1], choose a random e ∈ Dn[0, β] and compute t = 〈a, e〉 ∈ Z2`(n) . Then
(a, t) ∈ (Z2`(n))n+1 is a random subset sum instance. For (a, t), any e′ ∈ {0, 1}n with
〈a, e′〉 ≡ t mod 2`(n) is called a solution.

3 Subset Sum Classically – The BCJ Algorithm

Let D = {−1, 0, 1} and let (a, t) = (a1, . . . , an, t) ∈ (Z2`(n))n+1 be a subset sum instance
with solution e ∈ Dn[0, 1

2 ]. That is 〈e,a〉 ≡ t mod 2`(n), where n/2 of the coefficients of e
are 1 and n/2 coefficients are 0.

Representations

The core idea of the Becker-Coron-Joux (BCJ) algorithm is to represent the solution e
ambiguously as a sum

e = e(1)
1 + e(2)

1 with e(1)
1 , e(2)

1 ∈ Dn[α1, 1/4].

This means that we represent e ∈ Dn[0, 1/2] as a sum of vectors with α1n (−1)-entries,
(1/4 + α1)n 1-entries and (3/4− 2α1)n 0-entries. We call (e(1)

1 , e(2)
1 ) a representation of e.

Thus, every 1-coordinate ei of e can be represented as either 1 + 0 or 0 + 1 via the
ith-coordinates of e(1)

1 , e(2)
1 . Since we have n/2 1-coordinates in e, we can fix among these

n/4 0-coordinates and n/4 1-coordinates in e(1)
1 , determining the corresponding entries in

e(1)
2 . This can be done in

(
n/2
n/4
)
ways.

Analogously, the 0-coordinates in e can be represented as either (−1)+1, 1+(−1) or 0+0.
Again, we can fix among these n/2 coordinates α1n (−1)-coordinates, α1n 1-coordinates and
n/2− 2α1n 0-coordinates in e(1)

1 . This can be done in
(

n/2
α1n,α1n

)
ways.

Thus, in total we represent our desired solution e in

R1 =
(
n/2
n/4

)(
n/2

α1n, α1n

)
ways.

However, notice that constructing a single representation of e is sufficient for solving subset
sum. Thus, the main idea of the BCJ algorithm is to compute only a 1/R1-fraction of all
representations such that on expectation a single representation survives.

This is done by computing only those representations (e(1)
1 , e(2)

1 ) such that the partial
sums

〈e(1)
1 ,a〉 and t− 〈e(2)

1 ,a〉

attain a fixed value modulo 2r1 , where r1 = blogR1c. This value can be chosen randomly,
but for simplicity of notation we assume in the following that both partial sums are 0 modulo
2r.

More precisely, we construct the lists

L
(1)
1 = {(e(1)

1 , 〈e(1)
1 ,a〉) ∈ Dn[α1, 1/4]× Z2`(n) | 〈e(1)

1 ,a〉 ≡ 0 mod 2r1} and
L

(2)
1 = {(e(2)

1 , 〈e(2)
1 ,a〉) ∈ Dn[α1, 1/4]× Z2`(n) | t− 〈e(2)

1 ,a〉 ≡ 0 mod 2r1}.

Hence, L(1)
1 , L

(2)
1 have the same expected list length, which we denote shortly by

E[|L1|] =
(

n
α1n,(1/4+α1)n

)
2r1

.
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Constructing the lists

L
(1)
1 , L

(2)
1 are constructed recursively, see also Fig. 1. Let us first explain the construction of

L
(1)
1 . We represent e(1)

1 ∈ Dn[α1, 1/4] as

e(1)
1 = e(1)

2 + e(2)
2 with e(1)

2 , e(2)
2 ∈ Dn[α2, 1/8], where α2 ≥ α1/2.

By the same reasoning as before, the number of representations is

R2 =
(
α1n

α1/2n

)(
(1/4 + α1)n

(1/8 + α1/2)n

)(
(3/4− 2α1)n

(α2 − α1/2)n, (α2 − α1/2)n

)
,

where the three factors stand for the number of ways of representing (−1)-, 1- and 0-
coordinates of e(1)

1 . Let r2 = blogR2c. We define

L
(j)
2 = {(e(j)

2 , 〈e(j)
2 ,a〉) ∈ Dn[α2, 1/8]× Z2`(n) | 〈e(j)

2 ,a〉 ≡ 0 mod 2r2} for j = 1, 2, 3,
L

(4)
2 = {(e(4)

2 , 〈e(4)
2 ,a〉) ∈ Dn[α2, 1/8]× Z2`(n) | t− 〈e(4)

2 ,a〉 ≡ 0 mod 2r2}.

Thus, we obtain on level 2 of our search tree in Fig. 1 expected list sizes

E[|L2|] =
(

n
α2n,(1/8+α2)n

)
2r2

.

An analogous recursive construction of level-3 lists L(j)
3 from our level-2 lists yields

E[|L3|] =
(

n
α3n,(1/16+α3)n

)
2r3

,

where r3 = blogR3c with

R3 =
(
α2n

α2/2n

)(
(1/8 + α2)n

(1/16 + α2/2)n

)(
(7/8− 2α2)n

(α3 − α2/2)n, (α3 − α2/2)n

)
.

The level-3 lists are eventually constructed by a standard Meet-in-the-Middle approach
from the following level-4 lists (where we omit the definition of L(15)

4 , L
(16)
4 that is analogous

with t− 〈e(·)
4 ,a〉)

L
(2j−1)
4 = {(e(2j−1)

4 , 〈e(2j−1)
4 ,a〉) ∈ Dn/2[α3/2, 1/32]× 0n/2 × Z2`(n)} and

L
(2j)
4 = {(e(2j)

4 , 〈e(2j)
4 ,a〉) ∈ 0n/2 ×Dn/2[α3/2, 1/32]× Z2`(n)} for j = 1, . . . , 7

of size

|L4| =
(

n/2
(α3/2)n, (1/32 + α3/2)n

)
.

Let us define indicator variables

Xi,j = 〈e(2j−1)
i ,a〉 and X+

i,j = 〈e(2j)
i ,a〉 for i = 1, 2, 3, 4 and j = 1, . . . , 2i−1.

By the randomness of a, we have Pr[Xi,j = c] = Pr[X+
i,j = c] = 1

2`(n) for all c ∈ Z2`(n) . Thus,
all Xi,j , X+

i,j are uniformly distributed in Z2`(n) , and therefore also uniformly distributed
modulo 2ri for any ri ≤ `(n). Unfortunately, for fixed i, j the pairXi,j , X

+
i,j is not independent.

We assume in the following that this (mild) dependence does not affect the run time analysis.

I Heuristic 1. For the BCJ runtime analysis, we can treat all pairs Xi,j , X
+
i,j as independent.

TQC 2018



5:6 Subset Sum Quantumly in 1.17n

Figure 1 Tree structure of the BCJ-Algorithm.

Under Heuristic 1 it can easily be shown that for all but a negligible fraction of random
subset sum instances the lists sizes are sharply concentrated around their expectation. More
precisely, a standard Chernoff bound shows that for all but a negligible fraction of instances
the list size of L(j)

i lies in the interval

E(|Li|)− E(|Li|)1/2 ≤ |Li| ≤ E(|Li|) + E(|Li|)1/2 for i = 1, 2, 3. (1)

In other words, for all but some pathological instances we have |Li| = O(E(|Li|).

We give a description of the BCJ algorithm in Algorithm 1. Here we assume in more
generality that a subset sum instance (a, t) has a solution e ∈ Dn[0, β]. As one would expect,
Algorithm 1 achieves its worst-case complexity for β = 1

2 with a balanced number of zeros
and ones in e. However, one can also analyze the complexity for arbitrary β, as we will do
for our quantum version of BCJ.

For generalizing our description from before to arbitrary β, we have to simply replace
e(j)
i ∈ Dn[αi, 1

2 2−i] by e(j)
i ∈ Dn[αi, β2−i].

By the discussion before, the final condition |L(1)
0 | > 0 in Algorithm 1 implies that we

succeed in constructing a representation (e(1)
1 , e(2)

1 ) ∈ (Dn[α1, βn/2])2 of e ∈ Dn[0, β], where
the e(j)

1 recursively admit representations (e(2j−1)
2 , e(2j−1)

2 ) ∈ (Dn[α2, βn/4])2), and so forth.
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Algorithm 1: Becker-Coron-Joux (BCJ) algorithm.

Input : (a, t) ∈ (Z2`(n))n+1, β ∈ [0, 1]
Output : e ∈ Dn[0, β]
Parameters :Optimize α1, α2, α3.
Construct all level-4 lists L(j)

4 for j = 1, . . . , 16.
for i = 3 down to 0 do

Compute L(j)
i from L

(2j−1)
i+1 , L(2j)

i+1 for j = 1, . . . , 2i.
end
if |L(1)

0 | > 0 then output an arbitrary element from L
(1)
0 .

Thus, one can eventually express

e = e(1)
4 + e(2)

4 + . . .+ e(16)
4 .

However, notice that we constructed all lists in such a way that on expectation at least one
representation survives for every list L(j)

i from the for-loop of Algorithm 1. This implies that
the BCJ algorithm succeeds in finding the desired solution e, and therefore the leaves of
our search tree in Fig. 1 contain elements that sum up to e. The following theorem and its
proof show how to optimize the parameters αi, i = 1, 2, 3 such that BCJ’s running time is
minimized while still guaranteeing a solution.

I Theorem 2 (BCJ 2011). Under Heuristic 1 Algorithm 1 solves all but a negligible fraction
of random subset sum instances (a, t) ∈ (Z2`(n))n+1 (Definition 1) in time and memory
20.291n.

Proof. Numerical optimization yields the parameters

α1 = 0.0267, α2 = 0.0302, α3 = 0.0180.

This leads to

R3 = 20.241n, R2 = 20.532n, R1 = 20.799n representations,

which in turn yield expected list sizes

|L4| = 20.266n, E(|L3|) = 20.2909n, E(|L2|) = 20.279n, E(|L1|) = 20.217n, E(|L0|) = 1.

For i = 1, 2, 3 the level-i lists L(j)
i can be constructed in time 20.2909n by looking at all pairs

in L(2j−1)
i−1 × L(2j)

i−1 . Under Heuristic 1, we conclude by Eq. (1) that for all but a negligible
fraction of instance we have |Li| = O(E(|Li|) for i = 1, 2, 3. Thus, the total running time
and memory complexity can be bounded by 20.291n. J

4 From Trees to Random Walks to Quantum Walks

In Section 3, we showed how the BCJ algorithm builds a search tree t whose root contains a
solution e to the subset sum problem. More precisely, the analysis of the BCJ algorithm in
the proof of Theorem 2 shows that the leaves of t contain a representation (e(1)

4 , . . . , e(16)
4 ) ∈

L
(1)
4 × . . .× L

(16)
4 of e, i.e. e = e(1)

4 + . . .+ e(16)
4 .

TQC 2018
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Idea of Random Walk

In a random walk, we no longer enumerate the lists L(j)
4 completely, but only a random subset

U
(j)
4 ⊆ L

(j)
4 of some fixed size |U4| := |U (j)

4 |, that has to be optimized. We run on these
projected leaves the original BCJ algorithm, but with parameters α1, α2, α3 that have to be
optimized anew. On the one hand, a small |U4| yields small list sizes, which in turn speeds
up the BCJ algorithm. On the other hand, a small |U4| reduces the probability that BCJ
succeeds. Namely, BCJ outputs the desired solution e iff (e(1)

4 , . . . , e(16)
4 ) ∈ U (1)

4 × . . .×U (16)
4 ,

which happens with probability

ε =
(
|U4|
|L4|

)16
. (2)

The graph G = (V, E) of our Random Walk

We define vertices V with labels U (1)
4 × . . . × U

(16)
4 . Each vertex v ∈ V contains the

complete BCJ search tree with leaf lists defined by its label. Two vertices with labels
` = U

(1)
4 × . . .× U (16)

4 and `′ = V
(1)

4 × . . .× V (16)
4 are adjacent iff their symmetric difference

is |∆(`, `′)| = 1. I.e., we have U (j)
4 = V

(j)
4 for all j but one V (i)

4 6= V
(i)

4 for which U (i)
4 , V

(i)
4

differ by only one element.

I Definition 3 (Johnson graph). Given an N -size set L the Johnson graph J (N, r) is an
undirected graph GJ = (VJ , EJ) with vertices labeled by all r-size subsets of L. An edge
between two vertices v, v′ ∈ VJ with labels `, `′ exists iff |∆(`, `′)| = 1.

In our case, we define N = |L4|, r = |U4| and for each of our 16 lists L(j)
4 its corresponding

Johnson graph Jj(N, r). However, by our construction above we want that two vertices are
adjacent iff they differ in only one element throughout all 16 lists.

Let us therefore first define the Cartesian product of graphs. We will then show that our
graph G = (V,E) is exactly the Cartesian product

J16(N, r) := J1(N, r)× . . .× J16(N, r).

I Definition 4. Let G1 = (V1, E1), G2 = (V2, E2) be undirected graphs. The Cartesian
product G1 ×G2 = (V,E) is defined via

V = V1 × V2 = {v1v2 | v1 ∈ V1, v2 ∈ V2} and
E = {(u1u2, v1v2) | (u1 = v1 ∧ (u2, v2) ∈ E2) ∨ ((u1, v1) ∈ E1 ∧ u2 = v2)}

Thus, in J1(n, r)× J2(n, r) the labels v1v2 are Cartesian products of the labels U (1)
4 , U

(2)
4 .

An edge in J1(n, r)× J2(n, r) is set between two vertices with labels U (1)
4 ×U (2)

4 , V (1)
4 × V (2)

4
iff U (1)

4 = V
(1)

4 and U (2)
4 , V (2)

4 differ by exactly one element or vice versa, as desired.

Mixing time

The mixing time of a random walk depends on its so-called spectral gap.

I Definition 5 (Spectral gap). Let G be an undirected graph. Let λ1, λ2 be the eigenvalues
with largest absolute value of the transition matrix of the random walk on G. Then the
spectral gap of a random walk on G is defined as δ(G) := |λ1| − |λ2|.
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For Johnson graphs it is well-known that δ(J(N, r)) = N
r(N−r) = Ω( 1

r ). The following
lemma shows that for our graph J16(N, r) we have as well

δ(J16(N, r)) = Ω
(

1
r

)
= Ω

(
1
|U4|

)
. (3)

I Lemma 6 (Kachigar, Tillich [16]). Let J (N, r) be a Johnson graph, and let Jm (N, r) :=
m

×
i=1

J (n, r). Then δ (Jm) ≥ 1
mδ (J).

Walking on G

We start our random walk on a random vertex v ∈ V , i.e. we choose random U
(j)
4 ⊆ L(j)

4 for
j = 1, . . . , 16 and compute the corresponding BCJ tree tv on these sets. This computation of
the starting vertex v defines the setup cost TS of our random walk.

Let us quickly compute TS for the BCJ algorithm, neglecting all polynomial factors.
The level-4 lists U (j)

4 can be computed and sorted with respect to the inner products
〈e(j)

4 ,a〉 mod 2r3 in time |U4|. The level-3 lists contain all elements from their two level-4
children lists that match on the inner products. Thus we expect E(|U3|) = |U4|2 /2r3 elements
that match on their inner products. Analogous, we compute level-2 lists in expected time
|U3|2/2r2−r3 . However, now we have to filter out all e(j)

2 that do not possess the correct
weight distribution, i.e. the desired number of (−1)s, 0s, and 1s. Let us call any level-i e(j)

i

consistent if e(j)
i has the correct weight distribution on level i. Let p3,2 denote the probability

that a level-2 vector constructed as a sum of two level-3 vectors is consistent. From Section 3
we have

|L3|2

2r2−r3
· p3,2 = E(|L2|),

which implies

p3,2 :=
(

n
α2n,(1/8+α2)n

)(
n

α3n,(1/16+α3)n
)2 · 2

r2−r3 .

Thus, after filtering for the correct weight distribution we obtain an expected level-2 list
size of E(|U2|) = |U3|2/2r2−r3 · p3,2. Analogous, on level 1 we obtain expected list size
E(|U1|) = |U2|2/2r1−r2 · p2,1 with

p2,1 :=
(

n
α1n,(1/4+α1)n

)(
n

α2n,(1/8+α2)n
)2 · 2

r1−r2 .

The level-0 list can be computed in expected time |U1|2/2n−r1 . In total we obtain

E[TS ] = max
{
|U4|,

|U4|2

2r3
,
|U3|2

2r2−r3
,
|U2|2

2r1−r2
,
|U1|2

2n−r1

}
Analogous to the reasoning in Section 3 (see Eq. 1), for all but a negligible fraction of random
subset sum instances we have |Ui| = O (E(|Ui|)). Thus, for all but a negligible fraction of
instances and neglecting constants we have

TS = max
{
|U4|, |U4|2

2r3 , E(|U3|)2

2r2−r3 ,
E(|U2|)2

2r1−r2 ,
E(|U1|)2

2n−r1

}
(4)

≤ max
{
|U4|, |U4|2

2r3 , |U4|4
2r2+r3 ,

|U4|8
2r1+r2+2r3 ,

|U4|16

2n+r1+2r2+4r3

}
:= T̃S . (5)
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If tv contains a non-empty root with subset-sum solution e, we denote v marked. Hence,
we walk our graph G = J1(|L4|, |U4|) × . . . × J16(|L4|, |U4|) until we hit a marked vertex,
which solves subset sum.

The cost for checking whether a vertex v is marked is denoted checking cost TC . In
our case checking can be done easily by looking at tv’s root. Thus, we obtain (neglecting
polynomials)

TC = 1. (6)

Since any neighboring vertices v, v′ in G only differ by one element in some leaf U (j)
4 ,

when walking from v to v′ we do not have to compute the whole tree tv′ anew, but instead
we update tv to tv′ by changing the nodes on the path from list U (j)

4 to its root accordingly.
The cost of this step is therefore called update cost TU . Our cost TU heavily depends on the
way we internally represent tv. In the following, we define a data structure that allows for
optimal update cost per operation.

4.1 Data Structure for Updates
Let us assume that we have a data structure that allows the three operations search, insertion
and deletion in time logarithmic in the number of stored elements. In Bernstein et al. [7],
it is e.g. suggested to use radix trees. Since our lists have exponential size and we ignore
polynomials in the run time analysis, every operation has cost 1. This data structure also
ensures the uniqueness of quantum states |U (1)

4 , . . . , U
(16)
4 〉, which in turn guarantees correct

interference of quantum states with identical lists.

Definition of data structure

Recall from Section 3, that BCJ level-4 lists are of the form L
(j)
4 = {(e(j)

4 , 〈e(j)
4 ,a〉)}. For our

U
(j)
4 ⊂ L(j)

4 we store in our data structure the e(j)
4 and their inner products with a separately

in

E
(j)
4 = {e(j)

4 | e(j)
4 ∈ U (j)

4 } and S
(j)
4 = {(〈e(j)

4 ,a〉, e(j)
4 ) | e(j)

4 ∈ U (j)
4 }, (7)

where in S
(j)
4 elements are addressed via their first datum 〈e(j)

4 ,a〉. Analogous, for U (j)
i ,

i = 3, 2, 1 we also build separate E(j)
i and S(j)

i . For the root list U (1)
0 , it suffices to build

E
(1)
0 .
We denote the operations on our data structure as follows. Insert(E(j)

i , e) inserts e
into E

(j)
i , whereas Delete(E(j)

i , e) deletes one entry e from E
(j)
i . Furthermore, {ei} ←

Search(S(j)
i , 〈e(j)

i ,a〉) returns the list of all ei with first datum 〈e(j)
i ,a〉.

Deletion/Insertion of an element

Our random walk replaces a list element in exactly one of the leaf lists U (j)
4 . We can perform

the update by first deleting the replaced element and update the path to the root accordingly,
and second adding the new element and again updating the path to the root.

Let us look more closely at the deletion process. On every level we delete a value, and
then compute via the sibbling vertex, which values we have to be deleted recursively on the
parent level. For illustration, deletion of e in U (3)

4 triggers the following actions.
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Delete (E(3)
4 , e).

{e(4)
4 } ← Search(S(4)

4 , 〈e,a〉 mod 2r3) // E(|{e(4)
4 }|) = |U4|

2r3

For all e(2)
3 = e + e′ with e′ ∈ {e(4)

4 }
Delete (E(2)

3 , e(2)
3 )

{e(1)
3 } ← Search(S(1)

3 , 〈e(2)
3 ,a〉 mod 2r2) // E(|{e(1)

3 }|) = |U3|
2r2−r3

For all e(1)
2 = e(2)

3 + e′ with e′ ∈ {e(1)
3 }

∗ Delete (E(1)
2 , e(1)

2 )
∗ {e(2)

2 } ← Search(S(2)
2 , 〈e(1)

2 ,a〉 mod 2r1) // E(|{e(2)
2 }|) = |U2|

2r1−r2

∗ For all e(1)
1 = e(1)

2 + e′ with e′ ∈ {e(2)
2 }

· Delete (E(1)
1 , e(1)

1 ).
· {e(2)

1 } ← Search(S(2)
1 , 〈e(1)

1 ,a〉 mod 2n) // E(|{e(2)
1 }|) = |U1|

2n−r1

· For all e(1)
0 = e(1)

1 + e′ with e′ ∈ {e(2)
1 }

o Delete (E(1)
0 , e(1)

0 ).
Insertion of an element is analogous to deletion. Hence, the expected update cost is

E(TU ) = max
{

1, |U4|
2r3

,
|U4|E(|U3|)

2r2
,
|U4|E(|U3|)E(|U2|)

2r1
,
|U4|E(|U3|)E(|U2|)E(|U1|)

2n

}
(8)

≤ max
{

1, |U4|
2r3

,
|U4|3

2r2+r3
,
|U4|7

2r1+r2+2r3
,
|U4|15

2n

}
:= T̃U . (9)

Notice that for the upper bounds T̃S , T̃U from Eq. (5) and (9) we have

T̃S = |U4| · T̃U . (10)

Quantum Walk Framework

While random walks take time T = TS + 1
ε

(
TC + 1

δTU
)
, their quantum counterparts achieve

some significant speedup due to their rapid mixing, as summarized in the following theorem.

I Theorem 7 (Magniez et al. [19]). Let G = (V,E) be a regular graph with eigenvalue gap
δ > 0. Let ε > 0 be a lower bound on the probability that a vertex chosen randomly of G
is marked. For a random walk on G, let TS , TU , TC be the setup, update and checking cost.
Then there exists a quantum algorithm that with high probability finds a marked vertex in
time

T = TS + 1√
ε

(
TC + 1√

δ
TU

)
.

Stopping unusually long updates

Recall that for setup, we showed that all instances but an exponentially small fraction finish
the construction of the desired data structure in time TS . However, the update cost is
determined by the maximum cost over all superexponentially many vertices in a superposition.
So even one node with unusually slow update may ruin our run time.

Therefore, we modify our quantum walk algorithm QW by imposing an upper bound
of κ = poly(n) steps for the update. After κ steps, we simply stop the update of all nodes
and proceed as if the update has been completed. We denote by Stop-QW the resulting
algorithm.

A first drawback of stopping is that some nodes that would get marked in QW, might
stay unmarked in Stop-QW. However, since the event of stopping should not dependent
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5:12 Subset Sum Quantumly in 1.17n

on whether a node is marked or not, the ratio between marked and unmarked nodes and
thus the success probability ε should not change significantly between QW and Stop-QW.
Moreover, under Heuristic 1 and a standard Chernoff argument the probability of a node not
finishing his update properly after κ steps is exponentially small.

A second drawback of stopping is that unfinished nodes partially destroy the structure
of the Johnson graph, since different (truncated) representations of the same node do no
longer interfere properly in a quantum superposition. We conjecture that this only mildly
affects the spectral gap of the graph. A possible direction to prove such a conjecture might
be to allow some kind of self-repairing process for a node. If a node cannot finish its update
in time in one step, it might postpone the remaining work to subsequent steps to amortize
the cost of especially expensive updates. After the repair work, a node then again joins the
correct Johnson graph data structure in quantum superposition.

In the following heuristic, we assume that the change from QW to Stop-QW changes
the success probability ε and the bound δ for the spectral gap only by a polynomial factor.
This in turn allows us to analyze Stop-QW with the known parameters ε, δ from QW.

I Heuristic 2. Let ε be the fraction of marked states and δ be the spectral gap of the random
walk in QW. Then the fraction of marked states in Stop-QW is at least εstop = ε

poly(n) ,
and the spectral gap of the random walk on the graph in StopQW is at least δstop = δ

poly(n) .
Moreover, the stationary distribution of Stop-QW is close to the distribution of its setup.
Namely, we obtain with high probability a random node of the Johnson graph with correctly
built data structure.

With the upcoming NIST standardization for post-quantum cryptography, there is an
even stronger need to analyze quantum algorithms for cryptographic problems. There is
a strong need to provide more solid theoretical foundations that justify assumptions like
Heuristic 2, since cryptographic parameter selections will be based on best quantum attacks.
Hence, any progress in proving Heuristic 2 finds a broad spectrum of applications in the
cryptographic community.

5 Results

In this section, we describe the BCJ algorithm enhanced by a quantum random walk, see
Algorithm 2. Our following main theorem shows the correctness of our quantum version of
the BCJ algorithm and how to optimize the parameters for achieving the stated complexity.

I Theorem 8 (BCJ-QW Algorithm). Under Heuristic 1 and Heuristic 2, Algorithm 2 solves
with high probability all but a negligible fraction of random subset sum instances (a, t) ∈
(Z2`(n))n+1 (as defined in Definition 1) in time and memory 20.226n.

Proof. By Theorem 7, the running time T of Algorithm 2 can be expressed as

T = TS + 1
√
εstop

(
TC + 1√

δstop
TU

)
.

We recall from Heuristic 2, Eq. (2), (3) and (6)

εstop ≈ ε =
(
|U4|
|L4|

)16
, δstop ≈ δ = Ω

(
1
|U4|

)
and TC = 1,

where the ≈-notation suppresses polynomial factors.
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Algorithm 2: BCJ-QW algorithm.

Input : (a, t) ∈ (Z2`(n))n+1, β ∈ [0, 1]
Output : e ∈ Dn[0, β]
Parameters :Optimize α1, α2, α3.
Construct all level-4 lists E(j)

4 and S(j)
4 for j = 1, . . . , 16. . Setup (see Eq. (7))

Construct all level-3 lists E(j)
3 and S(j)

3 for j = 1, . . . , 8.
Construct all level-2 lists E(j)

2 and S(j)
2 for j = 1, . . . , 4.

Construct all level-1 lists E(j)
1 and S(j)

1 for j = 1, 2.
Construct level-0 list E0.

. Checkwhile E0 6= ∅ do
for 1/

√
δ times (via phase estimation) do

Take a quantum step of the walk. . Update
Update the data structure accordingly, stop after κ = poly(n) steps.

end
end
Output e ∈ E0.

Let us first find an optimal size of |U4|. Plugging ε, δ and TC into T and neglecting
constants yields run time

T = TS + |L4|8|U4|−15/2TU .

Let us substitute TU by its expectation E[TU ]. We later show that TU and E[TU ] differ by
only a polynomial factor, and thus do not change the analysis. We can upper bound the
right hand side using our bounds T̃S ≥ TS , T̃U ≥ E[TU ] from Eq. (5) and (9). We minimize
the resulting term by equating both summands

T̃S = |L4|8|U4|−15/2T̃U .

Using the relation T̃S = |U4| · T̃U from Eq. (10) results in

|U4| = |L4|16/17.

Therefore, |L4|8|U4|−15/2 · E[TU ] = |U4| · E[TU ]. Thus for minimizing the runtime T of
Algorithm 2, we have to minimize the term max{TS , |U4| · E[TU ]}, which equals T up to a
factor of at most 2. Recall from Eq. (4), which holds under Heuristic 1 and for all but a
negligible fraction of instances, and Eq. (8) that

TS = max
{
|U4|,

|U4|2

2r3
,
E(|U3|)2

2r2−r3
,
E(|U2|)2

2r1−r2
,
E(|U1|)2

2n−r1

}
,

E[TU ] = max
{

1, |U4|
2r3

,
|U4|E(|U3|)

2r2
,
|U4|E(|U3|)E(|U2|)

2r1
,
|U4|E(|U3|)E(|U2|)E(|U1|)

2n

}
.

Numerical optimization for minimizing max{TS , |U4| · E[TU ]} leads to parameters

α1 = 0.0120, α2 = 0.0181, α3 = 0.0125.

This gives

2r3 = 20.2259n, 2r2 = 20.4518n, 2r1 = 20.6627n representations,
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Figure 2 c = log T
n

as a function of β for BCJ-QW.

which in turn yield expected list sizes

|U4| = 20.2259n, E(|U3|) = 20.2259n, E(|U2|) = 20.2109n, E(|U1|) = 20.1424n.

Plugging these values into our formulas for TS , E[TU ] gives

TS = max{20.2259n, 20.2259n, 20.2259n, 20.2109n, 2−0.0524n} and
|U4| · E[TU ] = max{20.2259n, 20.2259n, 20.2259n, 20.2259n, 20.0310n}.

It follows that E[TU ] = 1. Since we have TU ≤ κ = poly(n) by definition in Algorithm 2, the
values TU and E[TU ] differ by only a polynomial factor that we can safely ignore (by rounding
up the runtime exponent). Thus, we conclude that Algorithm 2 runs in time T = 20.226n

using |U4| = 20.226n memory. J

I Remark. As in the classical BCJ case, a tree depth of 4 seems to be optimal for BCJ-QW.
When analyzing varying depths, we could not improve over the run time from Theorem 8.

Complexity for the unbalanced case

We also analyzed subset sum instances with t =
∑
i∈I ai, where |I| = βn for arbitrary

β ∈ [0, 1]. Notice that w.l.o.g. we can assume β ≤ 1/2, since for β > 1/2 we can solve a
subset sum instance with target t′ =

∑n
i=1 ai − t. Hence, the complexity graph is symmetric

around β = 1/2. Fig. 2 shows the run time exponent c for our BCJ-QW algorithm with time
T = 2cn as a function of β.
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