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Abstract
The Dagstuhl Seminar 18031 Personalization in Multiobjective Optimization: An Analytics Per-
spective carried on a series of five previous Dagstuhl Seminars (04461, 06501, 09041, 12041 and
15031) that were focused on Multiobjective Optimization. The continuing goal of this series is
to strengthen the links between the Evolutionary Multiobjective Optimization (EMO) and the
Multiple Criteria Decision Making (MCDM) communities, two of the largest communities con-
cerned with multiobjective optimization today. Personalization in Multiobjective Optimization,
the topic of this seminar, was motivated by the scientific challenges generated by personalization,
mass customization, and mass data, and thus crosslinks application challenges with research
domains integrating all aspects of EMO and MCDM. The outcome of the seminar was a new per-
spective on the opportunities as well as the research requirements for multiobjective optimization
in the thriving fields of data analytics and personalization. Several multi-disciplinary research
projects and new collaborations were initiated during the seminar, further interlacing the two
communities of EMO and MCDM.
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The topic of the seminar, Personalization in Multiobjective Optimization, was motivated
by ongoing changes in many areas of human activity. In particular, personalization, mass
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Table 1 Working groups (WGs) crosslinking application challenges (rows) with research domains
(columns). WG 1: Preference uncertainty quantification; WG 2: Personalization and customization
of decision support; WG 3: Invariant rule extraction; WG 4: Complex networks and MCDA; WG 5:
Metamodelling for interactive optimization.

Modelling Preferences Algorithms

Platform design and product lines WG3, WG5 WG1, WG3 WG3
Responsive and online personalization WG2, WG5 WG1, WG2 WG2
Complex networks of decision makers WG4, WG5 WG1, WG4 WG4

customization, and mass data have become essential in current business and engineering
operations creating new challenges for academic and research communities. In the seminar,
the EMO and MCDM communities, including junior and senior academic researchers as
well as industry representatives, took an effort to jointly address the ongoing changes in the
real-world with multiobjective optimization.

The purpose of multiobjective optimization is to develop methods that can solve problems
having a number of (conflicting) optimization criteria and constraints, providing a multitude
of solution alternatives, rather than pursuing only one “optimal” solution. In this aim the
field has been highly successful: its methods have a track record of improving decision
making across a broad swath of applications, indeed wherever there are conflicting goals or
objectives. Yet, multiobjective optimization has so far focused almost exclusively on serving
a single “decision maker”, providing solutions merely as potential (not actual) alternatives.
In order to fulfill the demanding aims of mass-customization, product/service variation and
personalization we see today in areas such as engineering, planning, operations, investment,
media and Web services, and healthcare, new and innovative approaches are needed. This
seminar took the first steps towards this goal by bringing together leading specialists in EMO
and MCDM.

Personalization in multiobjective optimization as the main theme of the seminar has
focused around three application challenges which are highly characteristic for real-world
decision making and represent different ways that personalization is needed or delivered in
an optimization setting. These were (i) Platform design and product lines, (ii) Responsive
and online personalization, and (iii) Complex networks of decision makers. These three
application challenges were crosslinked with three research domains that constitute the
methodological core of multiobjective optimization and have been the foundation for the
discussions at the previous Dagstuhl seminars. These were (1) Model building, (2) Preference
modelling, and (3) Algorithm design and efficiency.

During the seminar, we formed five multi-disciplinary working groups (WGs) to implement
the crosslinking between these application challenges and research domains, see Table 1.
Each working group was focused on an application challenge (a row in Table 1; WGs 2, 3 and
4) or a research domain (a column in Table 1; WGs 1 and 5), all taking specific perspectives
on the respective topics.

The program was updated on a daily basis to maintain flexibility in balancing time slots
for talks, discussions, and working groups. The working groups were established on the first
day in an open and highly interactive discussion. The program included several opportunities
to report back from the working groups in order to establish further links and allow for
adaptations and feedback. Some of the working groups split into subgroups and rejoined later
in order to focus more strongly on different aspects of the topics considered. Abstracts of
the talks and extended abstracts of the working groups can be found in subsequent chapters



Kathrin Klamroth, Joshua D. Knowles, Günter Rudolph, and Margaret M. Wiecek 35

of this report. Further notable events during the week included: (i) a hike on Wednesday
afternoon with some sunshine (despite the quite terrible weather during the rest of the week),
(ii) an announcements session allowing us to share details of upcoming events in our research
community, and (iii) a wine and cheese party made possible by the support of the ITWM
Kaiserslautern, represented by Karl-Heinz Küfer.

Outcomes

Fourteen topical presentations were complemented by discussions in five working groups,
covering the main themes of the seminar. The outcomes of each of the working groups can
be seen in the sequel. Extended versions of their findings will be submitted to a Special
Issue on “Personalization in Multiobjective Optimization: An Analytics Perspective” of the
Journal of Multicriteria Decision Analysis, edited by Theo Stewart, that is guest edited by
the organizers of this seminar. The submission deadline is July 31, 2018, and several working
groups plan to submit extended versions of their reports to this special issue.

The seminar was highly productive, very lively and full of discussions, and has thus
further strengthened the interaction between the EMO and MCDM communities. We expect
that the seminar will initiate a new research domain interrelating multiobjective optimization
and personalization, as it similarly has happened after the previous seminars in this series.
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3 Overview of Talks

3.1 Industrial applications of multicriteria decision support systems
Karl Heinz Küfer (Fraunhofer ITWM – Kaiserslautern, DE)

License Creative Commons BY 3.0 Unported license
© Karl Heinz Küfer

Most decisions in life are compromises: several objectives, most often arising from the four
families cost, quality, time or environmental impact, have to be balanced. Decision making
is rarely straight-forward because one cannot have best possible values for all of these goals
simultaneously as they are at least partially in conflict. Many decision makers are reluctant
to introduce decision support tools that directly show what the possible freedom of choice
or inherent restrictions of the problems are. They often do not want to defend personal
preferences or biases in decision rounds, which would become obvious by showing options
and limitations in a transparent way. Others are in sorrows concerning the profile of or
even their jobs. The talk will demonstrate and discuss examples of decision support tools
in medical therapy planning, chemical process engineering and in the layout of renewable
energy facilities, all of them in industrial practice for five or more years. Special attention
is paid to the reception of such concepts in the companies and their impact if successfully
implemented.

3.2 Culturally tailored multicriteria product design using crowdsourcing
Georges Fadel (Clemson University – Clemson, US)

License Creative Commons BY 3.0 Unported license
© Georges Fadel

Joint work of Georges Fadel, Ivan Mata, Mo Chen, Paolo Guarneri, Manh Tien Nguyen
Main reference Ivan Mata, Georges Fadel, Anthony Garland, Winfried Zanker: “Affordance based interactive

genetic algorithm (ABIGA)”, Design Science, Vol. 4, E5, 2018.
URL https://doi.org/10.1017/dsj.2017.30

The presentation describes an approach to involve crowds of users in the evolution of the
design of a product by having them provide feedback to a tailored interactive multi-objective
archive based micro- genetic algorithm. Affordances are defined as perceived opportunities
for action, for instance, a ladder affords elevating the user and a glass affords containing a
liquid. The users grade perceived affordances of a product and these are the criteria that the
GA uses to evolve the shape of a product. The algorithm has multiple archives that store
culturally biased solutions and use them in the evolution of solutions. After a number of
generations, the designer can extract from the stored data which physical parameters affect
specific affordances in the view of the users. The users will eventually be able to suggest
additional affordances, and the designer would have to accept or not to add such a criterion
to the system, and have possibly the designs evolve differently. A set of non-dominated
solutions is then available to the designer to choose from. The system can be used by an
individual to personalize a solution, or by a crowd to evolve the solution towards a more
satisfycing solution to the group.
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3.3 Metamodeling approaches for multiobjective optimization
Kalyanmoy Deb (Michigan State University – East Lansing, US)

License Creative Commons BY 3.0 Unported license
© Kalyanmoy Deb

In multiobjective optimization, every objective function must be approximated with a
suitable metamodel, particularly when a solution evaluation is computationally expensive.
One straightforward approach is to model every objective function separately, but a number
of other approaches are possible and may be more effective. In this talk, we proposed a
taxonomy of different metamodeling frameworks and presented our recent results of each
framework on multiple test problems. This research is motivated by practice and opens up a
number of avenues for new research and application. Some of the methods highlighted are:
(i) Specific metamodeling approaches (Kriging, RBF, or others) and their choice for every
objective and constraint function, (ii) possible switching methods from one framework to
another with iterations, (iii) possible other selection methods for metamodeling based on
EMO methodologies, and (iv) possible use of trust region methods along with metamodeling
approaches. Results on an industrial design problem was presented.

3.4 Representations: Do they have potential for customer choice?
Serpil Sayın (Koc University – Istanbul, TR)

License Creative Commons BY 3.0 Unported license
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Joint work of Serpil Sayın, Gokhan Kirlik
Main reference Gokhan Kirlik, Serpil Sayın: “Bilevel programming for generating discrete representations in

multiobjective optimization”, Math. Program., Vol. 169(2), pp. 585–604, 2018.
URL http://dx.doi.org/10.1007/s10107-017-1149-0

Representations are subsets of nondominated sets that are expected to serve in the capa-
city of the original set. Finding representations makes most sense when the latter set is
computationally difficult to obtain or practically difficult to explore. In recent years, there
have been a number of studies that focused on delivering representations for multiobjective
optimization problems. Some of these studies propose measures of quality to assess how well
a representation or an approximation mimics the original set. These studies are mostly set
in environments where finding the entire nondominated set is computationally challenging.
Therefore they have not been discussed from the perspective of representing sets when all
alternatives are explicitly available.

One problem in online retailing is presenting the items in a category to a potential
customer. In most cases, the category contains a large selection of items. The user usually
has a number of ways to customize the way she explores the category. For instance, filters
may help limit values of interest for some relevant criteria. There may be choices offered
to sort the items with respect to price, popularity, etc. I would like to ask the question if
it is possible to design a new way of presenting a category to a customer based on what
we know about representing nondominated sets. This would call for casting a customer’s
product choice problem as a multiple criteria one and delivering alternative mechanisms of
navigating the category.

This discussion relates to the application challenge responsive and online personalization
as well as representations in research domain.
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3.5 Modelling complex networks of decision makers: An analytical
sociology perspective

Robin Purshouse (University of Sheffield – Sheffield, GB)

License Creative Commons BY 3.0 Unported license
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Joint work of Robin C. Purshouse, Shaul Salomon, Gideon Avigad, Peter J. Fleming
Main reference Shaul Salomon, Robin C. Purshouse, Gideon Avigad, Peter J. Fleming: “An Evolutionary

Approach to Active Robust Multiobjective Optimisation”, in Proc. of the Evolutionary
Multi-Criterion Optimization - 8th International Conference, EMO 2015, Guimarães, Portugal,
March 29 -April 1, 2015. Proceedings, Part II, Lecture Notes in Computer Science, Vol. 9019,
pp. 141–155, Springer, 2015.

URL https://doi.org/10.1007/978-3-319-15892-1_10

Designers and planners who provide solutions for mass-markets and communities wish to
understand how individuals in those markets and communities make choices about how
they use, customise or reject those solutions. For example, a powertrain designer with
fleet-level emissions and durability objectives wants to understand the different ways in which
owners might operate a plug-in hybrid vehicle; a government planner with community-level
health and revenue objectives wants to understand how citizens might choose to exploit a
subsidised recreational facility. Whilst formulation of the higher-level multi-objective decision
problem facing designers and planners has been addressed many times by researchers, far
less attention has been paid to the, typically repeated, lower-level multi-objective decision
problem faced by users, or to the interaction between these levels. Decisions at the lower-
level are embedded within a complex socio-technical context, in which interactions between
individuals can play a key role in how decisions are made and changed over time. This talk
will introduce the framework of analytical sociology, pioneered by the Swedish sociologist
Peter Hedström, as a means of modelling mass-customisation decision problems. Analytical
sociology is a theory-based approach in which individual behaviours are driven by specified
causal mechanisms. The talk will describe the three types of mechanism captured by the
framework – situational, individual action, and transformational – and highlight the potential
role of the designer and planner in shaping the decisions of heterogeneous individuals in
mass-markets and communities.

3.6 Data-driven automatic design of multi-objective optimizers
Manuel López-Ibáñez (University of Manchester – Manchester, GB)

License Creative Commons BY 3.0 Unported license
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Recent work is increasingly showing that, given a library of good algorithmic components,
automatically designed algorithms consistently outperform human-designed ones, even for
thoroughly researched benchmark problems [1, 2, 3, 4]. The benefits of automated algorithm
design rapidly increase for more complex and less studied problems, where the intuitions
of human experts often fail. The transition from an expert-driven human-intensive design
methodology to a data-driven CPU-intensive one also leads to the production of large
amounts of data about the performance of algorithmic components. Despite some initial
work in single-objective optimization and machine learning [5], it is still an open question
how to use and analyze this data to gain insights about algorithmic components applied to
multi-objective problems. Moreover, the transition to an automated design methodology
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raises questions about performance metrics, the identification of equivalent and alternative
algorithmic components, and the role of the decision-maker; questions that are particularly
relevant in a multi-objective context.

References
1 H.H. Hoos. Programming by optimization. Communications of the ACM, 55(2):70–80,

2012.
2 A.R. KhudaBukhsh, L. Xu, H.H. Hoos, and K. Leyton-Brown. SATenstein: Automatically

Building Local Search SAT Solvers from Components. Artificial Intelligence, 232:20–42,
2016.

3 M. López-Ibáñez and T. Stützle. The Automatic Design of Multi-Objective Ant Colony
Optimization Algorithms. IEEE Transactions on Evolutionary Computation, 16(6):861–
875, 2012.

4 L.C.T. Bezerra, M. López-Ibáñez , and T. Stützle. Automatic Component-Wise Design of
Multi-Objective Evolutionary Algorithms. IEEE Transactions on Evolutionary Computa-
tion, 20(3):403–417, 2016.

5 F. Hutter, H.H. Hoos, and K. Leyton-Brown. An Efficient Approach for Assessing Hyper-
parameter Importance. In Proceedings of the 31th International Conference on Machine
Learning, volume 32, pages 754–762, 2014.

3.7 Maximizing the probability of consensus in group decision making
Michael Emmerich (Leiden University – Leiden, NL)

License Creative Commons BY 3.0 Unported license
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Joint work of Michael Emmerich, Andre Deutz, Iryna Yevseyeva

Consider the scenario of selecting a portfolio of k alternative solutions from a set of n >> k

solutions. A moderator presents k solutions to a board of decision makers. The goal is to
maximize the probability that the decision makers achieve consensus about at least one
solution in the portfolio. In advance, decision makers formulated desirability functions for the
objectives of concern – ranging from 0 (not acceptable) to 1 (fully satisfactory). Moreover,
correlations between objectives may be formulated using a dependence graph. The analysis
shows that the computation of the probability of consensus is related to specific integrals
over the dominated space, which reduces to the hypervolume indicator after coordinate
transformation in case of independent objectives. The problem of veto by overdemanding
decision makers is discussed we propose a possible remedy by replacing the probability by
higher momenta of the joint acceptance probability distribution.
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3.8 Decision analytics with multiobjective optimization and a case in
inventory management

Kaisa Miettinen (University of Jyväskylä – Jyväskylä, FI)

License Creative Commons BY 3.0 Unported license
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Joint work of Kaisa Miettinen, Juha Sipilä, Risto Heikkinen, Vesa Ojalehto
URL http://www.jyu.fi/demo

Thanks to digitalization, we have access to various types of data and must decide how to
make the most of the data. We can use descriptive or predictive analytics but to make
recommendations and informed decisions based on the data, we need prescriptive or decision
analytics. If the problems contain multiple conflicting objectives, multiobjective optimization
are to be applied.

We introduce the new thematic research area at the University of Jyväskylä called Decision
Analytics utilizing Causal Models and Multiobjective Optimization (DEMO). The objective
of DEMO is to develop elements of a seamless chain from data to decision support.

Lot sizing is an example of a data-driven optimization problem. It is important in
production planning and inventory management, where a decision maker needs support,
in particular, when the demand is stochastic. We consider the lot sizing problem of a
Finnish production company and formulate four conflicting objectives. We solve it with
two interactive multiobjective optimization methods. In interactive methods, a decision
maker directs the search for the best balance between the conflicting objectives by providing
preference information. In this way, (s)he can learn about what kind of solutions are available
for the problem and also learn about the feasibility of one’s preferences.

In the case considered, the decision maker found it useful to switch the method during
the solution process. The results of this data-driven interactive multiobjective optimization
approach are encouraging and demonstrate the practical value of decision analytics.

3.9 Actively learning a mapping for personalisation
Jürgen Branke (University of Warwick – Warwick, GB)

License Creative Commons BY 3.0 Unported license
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This talk tackles the problem of efficiently collecting data to learn a classifier, or mapping,
from each user to the best personalisation, where users are described by continuous features
and there is a finite set of personalisation options to choose from. An example would be online
advertisements, where we want to learn the best possible advertisement and advertisement
format for each user. We propose a fully sequential information collection policy based on
Bayesian statistics and Gaussian Process models. In each step, they myopically allocate to
the user the advertisement that promises the highest value of information collected.
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3.10 The NEMO framework for EMO: Learning value functions from
pairwise comparisons

Roman Słowiński (Poznan University of Technology – Poznan, PL)

License Creative Commons BY 3.0 Unported license
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Joint work of Roman Słowiński, Jürgen Branke, Salvatore Corrente, Salvatore Greco

Some years ago, we have proposed the NEMO framework to enhance multi-objective evolu-
tionary algorithms by pairwise preference elicitation during the optimisation, allowing the
algorithm to converge more quickly to the most relevant region of the Pareto front. The
framework is based on Robust Ordinal Regression. Over the years, several variations have
been developed, with different user preference models (linear, additive, Choquet-integral value
functions) and different ways of integrating this information into evolutionary algorithms (as
a surrogate fitness function, or by enriching the dominance relation). This presentation will
provide an overview of the developments in this area.

3.11 Uncertainty quantification on Pareto fronts
Mickaël Binois (University of Chicago – Chicago, US)
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In this short presentation, we review methods to approximate Pareto fronts in the case
of expensive, possibly noisy, blackbox objective functions. We concentrate on methods
involving Gaussian processes, which provide uncertainty quantification on the estimated
Pareto front. Variations on the modeling include re-interpolation and nugget estimation,
while the uncertainty is estimated from sampling, random closed sets or bootstrap.

3.12 Innovization: Unveiling invariant rules from non-dominated
solutions for knowledge discovery and faster convergence

Abhinav Gaur (Michigan State University – East Lansing, US)
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Multi-objective optimization (MOO) problems lend themselves to not one but a set of optimal
solutions also called Pareto-optimal (PO) solutions. Such PO solutions carry information on
patterns that make these solutions concurrently optimal for multiple objectives/Customer
preferences. Discovering such patterns from the PO solutions is called ‘Innovization’ or
innovation through optimization. Some of the uses of carrying out an Innovization exercize
are discovering principles that makes certain solutions PO for a MOO problem, automatically
discovering optimization heuristics for a problem and, expediting black box MOO algorithms.
In the context of “Personalized MOO”, the concepts in Innovization, Higher Level Innovization,
Lower Level Innovization, Temporal Innovization have direct applications. For example,
temporal Innovization can help us discover principles that govern how preferences of a class
of customer have changed over time. Lower level innovization can help us discover preferences
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of customers whose preferences lie at part of the PO front. Higher level Innovization can help
us discover principles that govern the customer preferences as certain problem parameters are
changed, and so on. Hence, the Innovization idea seems to be very relevant to the problem
of studying “Personalized Multi Objective Optimization”.

3.13 Compressed data structures for bi-objective 0,1-knapsack
problems

José Rui Figueira (IST – Lisbon, PT)
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Solving multi-objective combinatorial optimization problems to optimality is a computation-
ally expensive task. The development of implicit enumeration approaches that efficiently
explore certain properties of these problems has been the main focus of recent research. This
article proposes algorithmic techniques that extend and empirically improve the memory
usage of a dynamic programming algorithm for computing the set of efficient solutions both
in the objective space and in the decision space for the bi-objective knapsack problem. An
in-depth experimental analysis provides further information about the performance of these
techniques with respect to the tradeoff between CPU time and memory usage.

3.14 Recent algorithmic progress in multiobjective (combinatorial)
optimization

Andrzej Jaszkiewicz (Poznan University of Technology – Poznan, PL)
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Despite of many years of research in the area of multiobjective evolutionary algorithms
and more generally multiobjective metaheuristics many real-life multiobjective problems,
in particular combinatorial problems, constitute a serious challenge for existing methods.
Recently an important progress has been made in the algorithmic toolbox of multioobjective
optimization. Some of the new algorithms are focused on the combinatorial optimization, but
many are more generally applicable. Some of the recently proposed or improved algorithms
are:

ND-Tree data structure and algorithm for the dynamic non-dominance problem [1]. ND-
Tree allows for very efficient update of even large Pareto archives. It allows multiobjective
evolutionary algorithms and other metaheuristics to store large sets of potentially Pareto-
optimal solutions without loss of efficiency. ND-Tree can also be applied to efficiently
solve the non-dominated sorting problem often used in evolutionary algorithms.
Many-objective Pareto Local Search (MPLS) [2]. Pareto Local Search proved to be a
very effective tool in the case of the bi-objective combinatorial optimization and it was
used in a number of the state-of-the-art algorithms for problems of this kind. On the
other hand, the standard Pareto Local Search algorithm becomes very inefficient for
problems with more than two objectives. Many-Objective Pareto Local Search algorithm
uses three new mechanisms to preserve the effectiveness of PLS in many-objective case.
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The new mechanisms are: the efficient update of large Pareto archives with ND-Tree
data structure, a new mechanism for the selection of the promising solutions for the
neighborhood exploration, and a partial exploration of the neighborhoods.
New efficient algorithms for calculating the exact hypervolume of the space dominated
by a set of d-dimensional points. This value is often used as the quality indicator in
the multiobjective evolutionary algorithms and other metaheuristics and the efficiency
of calculating this indicator is of crucial importance especially in the case of large sets
or many dimensional objective spaces. Recently significant improvements have been
obtained in algorithms for calculating this indicator [3, 4, 5, 6, 7, 8]. They allow not only
to speed-up computational experiments but also to use hypervolume within multiobjective
algorithms, e.g. to guide the search or to define stopping conditions.
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4 Working Groups (WGs)

4.1 Multi-criteria decision making under performance and preference
uncertainty (WG1)

Mickaël Binois, Jürgen Branke, Alexander Engau, Carlos M. Fonseca, Salvatore Greco,
Miłosz Kadziński, Kathrin Klamroth, Sanaz Mostaghim, Patrick Reed, and Roman Słowiński
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Abstract. We propose a novel methodology for interactive multi-objective optimization
taking into account imprecision, ill-determination and uncertainty referring to both, the
technical aspects determining evaluations of solutions by objective functions and the subjective
aspects related to the preferences of the decision maker. With this aim, we consider a
probability distribution on the space of the objective functions and a probability distribution
on the space of the utility functions representing preferences of the decision maker. On
the basis of these two probability distributions, without loss of generality supposed to be
independent, one can compute a multi-criteria expected utility with a corresponding standard
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deviation, that permit to assess a quality of each proposed solution. One can also compute an
average multi-criteria expected utility and a related standard deviation for a set of solutions,
which permit to assess a quality of a population of solutions. This feature can be useful in
evolutionary multi-objective optimization algorithms to compare populations of solutions in
successive iterations.

4.1.1 Introduction

This paper summarizes the work of the Preference Uncertainty Quantification working group
at the Dagstuhl seminar 18031 “Personalized Multi-objective Programming: An Analytics
Perspective” that took place in Schloss Dagstuhl – Leibniz Center for Informatics - on
January 14–19, 2018.

4.1.2 Uncertainties

When dealing with multi-objective optimization problems, the decision makers (DMs), and
the analysts helping them to solve these problems, are confronted in their reasoning with
some uncertainties that are inherent to two kinds of “imperfect” information (see [2] and [3]):
1. Information about the preferences of DMs is always partial and ill-defined. Even more,

complete preferences do not exist a priori in DMs’ mind, because they evolve in the
decision aiding process in interaction with an analyst. The preferences are formed in
a constructive learning process in which DMs get a conviction that the most preferred
solution has been reached for a given problem statement.

2. Information about consequences of considered solutions usually depend on hardly meas-
urable or random variables. This makes that, in general, the evaluation of solutions with
respect to different criteria is imprecise or uncertain.

Therefore, there is a need to take into account these two sources of uncertainty in an
interactive multi-objective optimization process. A first consideration of this problem, but
taking into account only uncertainty related to utility functions, has been proposed in [4].

4.1.3 Problem formulation and basic notation

The multi-objective optimization process presented in this paper is formally represented as
a multi-objective programming problem under performance and preference uncertainty as
follows. Let X ⊂ Rn be an n-dimensional set of feasible decisions (or solutions, designs,
alternatives, etc.) Let f : Rn → Rm be an m-dimensional vector, called objective function,
that maps each decision x ∈ X to a corresponding consequence or performance vector
y = f(x). To model performance uncertainty, we assume that each objective function f =
(f1, f2, . . . , fm) is a random element of some (for now: a priori) given set F of cardinality k,
i.e., F = {f1, f2, . . . , fk} with random outputs yi = (yi1, yi2, . . . , yim) for each i ∈ {1, 2, . . . , k}.
In other words, for each i ∈ {1, 2, . . . , k}, the vector function f i = (f i1, f i2, . . . , f im) is one
realization of the random objective function f .

Moreover, under the additional assumption that this uncertainty is stochastic in nature,
we can assign or estimate a stochastic probability vector p = (p1, p2, . . . , pk) with

∑k
i=1 pi = 1

and with the interpretation that Pr[f = f i] = Pr[y = yi] = pi for each i ∈ {1, 2, . . . , k}. In
this way, we have defined a discrete probability distribution on the space of values taken
by the objective function. Obviously, one can consider a generic probability distribution,
not necessarily a discrete one. For a scheme of this setting, see the conceptual relationship
between technical information about the performance and conjoint probability distribution on
values of the objective function in Figure 1 on the top.
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Considered setting 

Technical information 
about the performance 
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information 

Conjoint probability distribution  
on values of the objective function 

Probability distribution  
on utility functions 

Probability distribution  
on objective functions  

/ utility functions 

Each solution is represented by 
the probability distribution  

of expected utilities 

Decision under 
uncertainty 

Figure 1 Main idea underlying the proposed methodology.

Similarly, we can describe the uncertainty about preferences of the DM, considering a
utility function u : Rm → R, such that y 7→ z = u(y). Again, u is considered to be an
element of a set U = {u1, . . . , u`}, interpreted as a set of possible realizations of an uncertain
utility function. Each utility function uj ∈ U has a probability Pr[u = uj ] = qj , j = 1, . . . , `.
This is marked in Figure 1 as preference information and probability distribution of utility
function.

A simple example

Consider a simple example, with n = 2 and X = [0, 1]2, so that the decision input to the
objective functions is a vector x = (x1, x2) composed of two decision variables.

Performance uncertainty. Let us measure the performance of x in two dimensions, i.e.,
m = 2, so that f : R2 → R2 with f = (f1, f2) for each objective realization. Moreover,
consider k = 3 uncertain realizations of the objective function, denoted by F = {f1, f2, f3},
with probabilities p = (p1, p2, p3) = (0.5, 0.2, 0.3), and taking the following form:

f1(x) := (f1
1 (x1, x2), f1

2 (x1, x2)) = (x1, x2)
f2(x) := (f2

1 (x1, x2), f2
2 (x1, x2)) = (

√
x1, 3
√
x2)

f3(x) := (f3
1 (x1, x2), f3

2 (x1, x2)) = (x2
1, x

3
2).

Note: Alternatively, supposing that the values taken by the objective function in each
realization depend on the value taken on a basic reference realization (for example the mean
value in case of an estimation through a Bayesian process) one can define the performance set
Y := {f(x) : x ∈ X} ⊂ Rm and then use a transformation φh : Rm → Rm for each possible
realization h = 1, . . . , k, so that for each y = f(x) ∈ Y we can also write φh(y) = φh(y1, y2) or
φh(f1(x), f2(x)) = (fh1 (x), fh2 (x)). For instance, in the considered example, we can take as a
basic reference realization f1(x) = f1(x1, x2) = (f1(x1, x2), f2(x1, x2)) = (y1, y2) = (x1, x2),
and for each realization h = 1, 2, 3, suppose:

φ1(y) = φ1(y1, y2) = (y1, y2)
or φ1(f(x)) = φ1(f1(x), f2(x)) = (f1

1 (x), f1
2 (x)) = (f1(x), f2(x)),

φ2(y) = φ2(y1, y2) = (√y1, 3
√
y2)

or φ2(f(x)) = φ2(f1(x), f2(x)) = (f2
1 (x), f2

2 (x)) = (
√
f1(x), 3

√
f2(x)),

φ3(y) = φ3(y1, y2) = ((y1)2, (y2)3)
or φ3(f(x)) = φ2(f1(x), f2(x)) = (f3

1 (x), f3
2 (x)) = ((f1(x))2, (f2(x))3).
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Preference uncertainty. Suppose that we have a probability distribution on a set of ` = 4
utility functions describing the preference information as follows:

q1 = 0.4 : u1(y) = 0.3y1 + 0.7y2,

q2 = 0.3 : u2(y) = 0.5y1 + 0.5y2,

q3 = 0.2 : u3(y) = 0.8y1 + 0.2y2,

q4 = 0.1 : u4(y) = 0.9y1 + 0.1y2,

where q1, q2, q3, q4 are probabilities of realization of these utility functions.

Expected utility and variance of a single solution. In the following, we assume that the
probability distributions of performance information and utility functions are independent
from each other. Therefore, the joint probability distribution on the product space F × U
assigns to each pair (f i, uj) the probability πij = pi · qj shown in the following matrix:

Π =


π11 π21 π31
π12 π22 π32
π13 π23 π33
π14 π24 π34


T

=


0.20 0.08 0.12
0.15 0.06 0.09
0.10 0.04 0.06
0.05 0.02 0.03


T

For each decision x and each realization of its performance f i in F , one can compute the
utility value uj(f i(x)) that can be presented in the form of a matrix U(x) with elements
uj(f i(x)) for i and j.

U(x) =

u1(f1(x)) u2(f1(x)) u3(f1(x)) u4(f1(x))
u1(f2(x)) u2(f2(x)) u3(f2(x)) u4(f2(x))
u1(f3(x)) u2(f3(x)) u3(f3(x)) u4(f3(x))


Assuming that x = (0.5, 0.7), one can compute the entries of matrix U(x), getting:

U(0.5, 0.7) =

0.6400 0.6000 0.5400 0.5200
0.8337 0.7975 0.7433 0.7252
0.3151 0.2965 0.2686 0.2593


In order to compute the expected utility value E(u(f(x)) of decision x, we first need to
compute the matrix:

V(x) = U(x)×Π = [
(
uj(f i(x) · πi,j

)
i=1...,k
j=1,...,`

].

In our example, we get:

V(0.5, 0.7) =

0.1280 0.0900 0.0540 0.0260
0.0667 0.0479 0.0297 0.0145
0.0378 0.0267 0.0161 0.0078


Then, the expected utility value E(u(f(x))) is obtained as:

E(u(f(x))) =
k∑
i=1

∑̀
j=1

uj(f i(x)) · πij . (1)

In our example, for x = (0.5, 0.7), the expected utility value is E(u(f(0.5, 0.7))) = 0.5452.
The variance is given by:

σ2(u(f(x))) =
k∑
i=1

∑̀
j=1

(uj(f i(x))− E(u(f(x))))2 · πij , (2)
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which, in our example, gives σ2(u(f(x))) = 0.0339.

In general, the DM will try to maximize the expected value E(u(f(x))) and to minimize
the variance of the selected solution σ2(u(f(x))). This principle can be applied in different
procedures to select a solution x from a set of feasible solutions X ∈ Rn, such as:

select a solution x ∈ X with the maximum expected utility value E(u(f(x))) provided
that its variance σ2(u(f(x))) is not greater than a given threshold σ2∗;
select a solution x ∈ X with the minimum variance σ2(u(f(x))) provided that its expected
utility value is not smaller than a given threshold E∗;
select a solution x ∈ X maximizing a scoring function S(E(u(f(x))), σ2(u(f(x)))) being
not decreasing with respect to the expected utility value E(u(f(x))) and not increasing
with respect to the variance σ2(u(f(x))), as it is the case of

S(E(u(f(x))), σ2(u(f(x)))) = E(u(f(x)))− λ · σ2(u(f(x)))

where λ ≥ 0 is a coefficient representing a DM’s aversion to risk.
Let us apply the above procedures to a set of feasible solutions X = {x1, x2, x3, x4}, where

x1 = (0.5, 0.7),
x2 = (0.8, 0.4),
x3 = (0.4, 0.8),
x4 = (0.9, 0.2).

Let us observe that solution x1 is the same as solution x considered in the above simple
example. Computing the expected utility value and the variance for each solution from X

we get
E(u(f(x1))) = 0.5452, σ2(u(f(x1))) = 0.0339,
E(u(f(x2))) = 0.5768, σ2(u(f(x2))) = 0.0350,
E(u(f(x3))) = 0.5496, σ2(u(f(x3))) = 0.0323,
E(u(f(x4))) = 0.5643, σ2(u(f(x4))) = 0.0377.

Consequently:
if the DM wants to select a solution x ∈ X with the maximum expected utility value
E(u(f(x))) provided that its variance σ2(u(f(x))) is not greater than the threshold
(σ∗)2 = 0.0340, then solution x3 is selected;
if the DM wants to select a solution x ∈ X with the minimum variance σ2(u(f(x)))
provided that its expected utility value is not smaller than the threshold E∗ = 0.55, then
solution x2 is selected;
if the DM wants to select a solution x ∈ X maximizing a scoring function

S(E(u(f(x))), σ2(u(f(x)))) = E(u(f(x)))− 2 · σ2(u(f(x))),

then we get
S(E(u(f(x1))), σ2(u(f(x1)))) = 0.4773,
S(E(u(f(x2))), σ2(u(f(x2)))) = 0.5068,
S(E(u(f(x3))), σ2(u(f(x3)))) = 0.4850,
S(E(u(f(x4))), σ2(u(f(x4)))) = 0.4890,

so that solution x2 is selected.

Another problem that can be considered in this context is the following. Suppose the DM
wants to select one solution from X ⊆ Rn, which would maximize the expected utility
value E(u(f(x))) and minimize the variance σ2(u(f(x))), taking into account a number of
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Table 2 A representation of Pareto-optimal solutions.

x1 x2 Expected value Variance
0.388 0.862 0.580 0.030
0.351 0.899 0.585 0.031
0.314 0.936 0.592 0.031
0.302 0.948 0.594 0.032
0.292 0.958 0.597 0.032
0.284 0.966 0.598 0.033
0.276 0.974 0.600 0.033
0.270 0.980 0.602 0.034
0.263 0.987 0.603 0.035
0.258 0.992 0.605 0.035
0.252 0.998 0.606 0.036
0.250 1.000 0.607 0.036

constraints concerning decision variables hs(x) ≤ 0, s = 1, . . . , S. Formally, this problem
can be formulated as follows:

maximize: E(u(f(x)))

minimize: σ2(u(f(x)))

subject to the constraints

x ∈ X, (3)
hs(x) ≤ 0, s = 1, . . . , S. (4)

Obviously, in general, it is not possible to get an optimum value of E(u(f(x))) and σ2(u(f(x)))
for the same feasible x. Instead, one gets a set of Pareto-optimal solutions x, i.e., all solutions
x ∈ X satisfying hs(x) ≤ 0, s = 1, . . . , S, for which there does not exist any other solution
x ∈ X satisfying hs(x) ≤ 0, s = 1, . . . , S, having not worse expected utility value E(u(f(x)))
and not worse variance σ2(u(f(x))), with at least one of the two being better, that is

E(u(f(x))) > E(u(f(x))), (5)
σ2(u(f(x))) ≤ σ2(u(f(x))) (6)

or

E(u(f(x))) ≥ E(u(f(x))), (7)
σ2(u(f(x))) < σ2(u(f(x))). (8)

Coming back to our example, we have X = [0, 1]2, and let us consider the constraint
h(x) = x1 + x2 − 1.25 ≤ 0. Taking into account the set of objective functions F and the set
of utility function U with respective probability distributions p and q, generating the conjoint
probability distribution Π on F × U introduced above, we can get a set of representative
Pareto-optimal solutions presented in Table 2.
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Expected utility value and variance of a set of solutions. Suppose we have a set of
solutions X = {x1, . . . , xr, . . . , xt} ⊆ Rn. In this case, it is possible to compute the expected
utility value and the variance of this population of solutions, as follows:

E(u(f(X)) =
t∑

r=1

k∑
i=1

∑̀
j=1

uj(f i(xr)) · πij (9)

σ2(u(f(X))) =
t∑

r=1

k∑
i=1

∑̀
j=1

(uj(f i(xr))− E(u(f(X))))2 · πij (10)

The expected utility value E(u(f(X))) and the variance σ2(u(f(X))) can be computed using
expected utility values and variances of particular solutions in the population, as well as
covariances between these solutions:

E(u(f(X))) =
t∑

r=1
E(u(f(xr))) (11)

σ2(u(f(X))) =
t∑

r=1
σ2(u(f(xr))) + 2

∑
r<s

σ(u(f(xr)), u(f(xs))) (12)

where σ(u(f(xr)), u(f(xs))), r, s = 1, . . . , t, r < s, is the covariance between u(f(xr)) and
u(f(xs)), that can be computed as follows:

σ(u(f(xr)), u(f(xs))) =
∑k
i=1
∑`
j=1(uj(f i(xr))− E(u(f(xr))))

·(uj(f i(xs))− E(u(f(xs)))). (13)

The concepts of the expected utility value and the variance of a set of solution can be
applied in multi-objective optimization algorithms with a different aim, for example:

find a subset of solutions Y ⊂ X of a given cardinality q having the maximum expected
utility value E(u(f(Y ))), provided that its variance σ2(u(f(Y ))) is not greater than a
given threshold σ2; the subset Y can be found by solving the following 0− 1 quadratic
programming problem:

maximize:
t∑

r=1
yrE(u(f(xr)))

subject to the constraints
t∑

r=1
yrσ

2(u(f(xr))) + 2
t−1∑
r=1

t∑
s=r+1

yrysσ(u(f(xr)), u(f(xs))) ≤ σ2, (14)

t∑
r=1

yr = q, (15)

yr ∈ {0, 1}, r = 1, . . . , t; (16)
the optimal subset Y will be composed of q solutions xr ∈ X with yr = 1;
find a subset of solutions Y ⊂ X of a given cardinality q having the minimum variance
σ2(u(f(Y ))), provided that the its expected value E(u(f(Y ))) is not smaller than a
given threshold E; the subset Y can be found by solving the following 0− 1 quadratic
programming problem:

minimize:
t∑

r=1
yrσ

2(u(f(xr))) + 2
t−1∑
r=1

t∑
s=r+1

yrysσ(u(f(xr)), u(f(xs)))
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subject to the constraints
t∑

r=1
yrE(u(f(xr))) ≥ E, (17)

t∑
r=1

yr = q, (18)

yr ∈ {0, 1}, r = 1, . . . , t; (19)
again, the optimal subset Y will be composed of q solutions xr ∈ X with yr = 1.

Coming back to our example, let us consider again the solutions from the set X =
{x1, x2, x3, x4}, and let us compute the covariances σ(u(f(xr)), u(f(xs))), obtaining the
following variance-covariance matrix Σ(X) = [σ(u(f(xr)), u(f(xs)))], where
σ(u(f(xr)), u(f(xr))) = σ2(u(f(xr))):

Σ(X) =


0.0339 0.0258 0.0318 0.0157
0.0258 0.0350 0.0182 0.0334
0.0318 0.0182 0.0323 0.0064
0.0157 0.0334 0.0064 0.0377


Let us suppose that the DM wants to select a subset of solutions Y ⊂ X with cardinality

q = 3, having the maximum expected utility value E(u(f(Y ))). Solving the 0-1 quadratic
programming problem presented above, and without considering any constraint on the
variance σ2(u(f(Y ))), we get that the DM has to select the subset Y1 = {x2, x3, x4} with
expected utility value E(u(f(Y1))) = 1.6907 and variance σ2(u(f(Y1))) = 0.2211.

If, in turn, the DM would like to select a subset of solutions Y ⊂ X with cardinality
q = 3, having the minimum variance σ2(u(f(Y ))), then, by solving the corresponding 0-1
quadratic programming problem presented above, and without considering any constraint
on the expected value E(u(f(Y ))), the DM would get the subset Y2 = {x1, x3, x4} with
expected utility value E(u(f(Y2))) = 1.6591 and variance σ2(u(f(Y2))) = 0.2118.

Suppose now that the DM would like to select a subset of solutions Y ⊂ X with cardinality
q = 2, having the maximum expected utility value E(u(f(Y ))) but under the condition that
the variance σ2(u(f(Y ))) is not greater than 0.215. In this case, solving the corresponding 0-1
quadratic programming problem, the DM would get the subset Y3 = {x3, x4} with expected
utility value E(u(f(Y3))) = 1.1139 and variance σ2(u(f(Y3))) = 0.0828.

Finally, suppose that the DM would like to select a subset of solutions Y ⊂ X with
cardinality q = 2, having the minimum variance σ2(u(f(Y ))) but under the condition that
the expected utility value E(u(f(Y ))) is not smaller than 1.1. In this case, the DM would
get again the subset Y4 = {x3, x4}.

The above two problems of selecting a subset of solutions of a given cardinality maximizing
the expected utility value with a constraint on the variance, or minimizing the variance with
a constraint on the expected value, can be interpreted as a discrete version of the Markowitz
portfolio selection problem in the context of multi-objective optimization. It is sensible to
consider also the classic continuous Markowitz portfolio selection problem which consists in
searching for a vector

y = [y1, . . . , yt], yr ≥ 0, r, . . . , t,
t∑

r=1
yr = 1,

that maximizes the expected utility value

E(u(f(y))) =
t∑

r=1
yrE(u(f(xr)))
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subject to the constraint that the variance σ2(u(f(y))) is not greater than a given threshold
σ2, that is

σ2(u(f(y))) =
t∑

r=1
yrσ

2(u(f(xr))) + 2
t−1∑
r=1

t∑
s=r+1

yrysσ(u(f(xr)), u(f(xs))) ≤ σ2.

The classic Markowitz portfolio selection problem can also be formulated as minimization
of the variance σ2(u(f(y))) under the constraint that the expected utility value E(u(f(y)))
is not smaller than a given threshold E.

Coming back to our example, let us suppose that the DM wants to compute the vector
y = [y1, . . . , y4] having the maximum expected utility value E(u(f(y))) but under the
condition that the variance σ2(u(f(y))) is not greater than 0.o25. In this case, the optimal
vector is

y1 = [0 0.4223 0.3487 0.2289],

with its corresponding expected utility value E(u(f(y1))) = 0.5644 and variance
σ2(u(f(y1))) = 0.025.

Instead, if we suppose that the DM wants to compute a vector y = [y1, . . . , y4] having
the minimum variance σ2(u(f(y))) but under the condition that the expected utility value
E(u(f(y))) is not smaller than 0.56, then the optimal vector is

y2 = [0 0.1599 0.4285 0.2118]

with its corresponding expected utility value E(u(f(y2))) = 0.56 and variance σ2(u(f(y2))) =
0.0224.

Let us finally remark, that the value of yr, r = 1, . . . , t, can be interpreted as a score
assigned by a fitness function to the corresponding solution xr in an evolutionary optimization
algorithm, such that the greater the value of yr the more probably xr should be selected to
generate a new solution.

Heat map visualization of averages and variances. For a visualization of the situation that
is described above consider Figure 2. For any two-dimensional input/decision/design/output
variable x = (x1, x2) in the domain [0, 1]× [0, 1], we can compute the mean and variance of
the l · k (here, 3 · 4 = 12) entries of the resulting matrix U(x) or U(y). Then, the figure on
its left and right side shows the thus computed mean values and variances for variables x or
y of a discretized grid on [0, 1]× [0, 1].

4.1.4 Application to sea-level rise and storm surge projections

This section describes a real-world application regarding the deep uncertainties in sea-level
rise and storm surge projections. This example represents a probabilistic generalization of
the classical Van Dantzig decision analytical application where the decision is to choose the
level of increase in dike height to reduce flood risk [1]. The two objectives are probabilistic
as a function of uncertainties in sea level rise due to climate change and local effects of
the geophysics of storm surge (i.e., two different but interdependent geophysical models).
Figure 3 illustrates the original deterministic Van Dantzig baseline, the mean trade-off
between flood risk and investment, as well as the relative locations of the minimum net
present values for investment. The challenge as emphasized in the log scale zoomed view
is the mean Pareto front would not provide a DM an understanding of the severe variance
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Figure 2 Heat map visualization of averages (on the left) and variances (on the right).

7

How	do	methodological	choices	impact	
decision	recommendations?

Tail-area	behavior	yields	a	severe	
variance	in	the	reliability	of	a	given	

investment

Figure 3 Real-world application about uncertainty in technical information (adapted from [1]).

in the potential outcomes for a given investment. For example, working with the mean
trade-off an investment 800 Million US Dollars intended to provide a 1 in 10,000 year level
of flood protection has a significant residual probability of dramatically less protection
(severe damages and potential loss of life). This probabilistic Pareto space context poses a
challenge to decision making, particularly given the potential uncertainties in preferences
or risk aversion for the residual risks. It then motivates the question of understanding the
potential joint probabilistic outcome of uncertain Pareto performance and uncertain DM’s
preferences.
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4.1.5 Open questions

In this report, we proposed a novel approach for interactive multi-objective optimization
taking into account uncertainty referring to both the evaluations of solutions by objective
functions as well as the preferences of the decision maker. We envisage the following directions
for future research.

Firstly, we aim at developing methods for elicitation of probability distributions on
objective performances and on utility functions. Secondly, we will propose some procedures
for robustness analysis that would quantify the stability of results (utilities, ranks, and pairwise
relations) obtained in view of uncertain performances and preferences. Thirdly, when aiming
to select a set of feasible options, we will account for the interactions between different
solutions. Fourthly, we will integrate the proposed methods with evolutionary multi-objective
optimization algorithms with the aim of evaluating and selecting a population of solutions.
Fifthly, we plan to adapt the introduced approach to a group decision setting, possibly
differentiating between two groups of decision makers being responsible for, respectively,
setting the goals and compromising these goals based on different utilities. Finally, we will
apply the proposed methodology to real-world problems with highly uncertain information
about the solutions’ performances and decision makers’ preferences.
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Abstract. In this report, personalization is approached from a learning perspective. We
propose a framework for a decision support system to help a decision maker who faces the
problem of identifying a most preferred from among a set of alternatives. Our framework
encompasses the idea that the objectives and the constraints of the model may not be clear
at the beginning and are likely to evolve throughout the decision process. Our proposal
deviates from the vast literature on interactive methods by allowing the model to evolve in a
very flexible way. We illustrate the need of personalized decision support systems with some
applications. We also discuss ways to present solutions to a decision maker in a qualitative
manner as this is an important part of the iterative learning and solution process.
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4.2.1 Introduction

We approach personalization from a learning perspective and propose a framework for a
decision support system to help a decision maker (DM) who faces the problem of identifying
a most preferred solution from among a set of alternatives. Our framework is general
in the sense that it allows for a continuous and discrete expression of alternatives. The
alternatives may be explicitly available or may be defined implicitly via some functions
(objectives and constraints). Our framework encompasses the idea that the objectives and the
constraints of the model may not be clear at the beginning and are likely to evolve throughout
the decision process. Thus, the process by which the DM modifies his/her perception of
preferences through restructuring of the hierarchical decision model must be facilitated. This
can be achieved, for instance, by adding/subtracting objectives, aggregating/disaggegating
objectives, modifying constraints, converting constraints into objectives and vice versa while
retaining insights gained from earlier phases of the analysis. Figure 4 illustrates the iterative
decision making process. Some Pareto optimal solutions of an initial model are studied by a
DM. These solutions reveal some findings about the problem to the DM or help him/her
discover one’s preferences. These are taken into account in a revised model and some carefully
revised new Pareto optimal solutions are presented to the DM on the next round, and so
forth. The process continues until the DM identifies a most preferred solution.

Our proposal deviates from the vast literature on interactive methods by allowing the
model to evolve in its degree of flexibility. As the objectives and constraints of the model are
modified, the Pareto optimal set shifts and changes. We have seen studies in the literature
in which the solution method is switched depending on the phase of the solution process, i.e.,
the search. However, in these studies the model usually stays the same. Here, we understand
personalization as enabling the model to evolve.

The influence of adding and subtracting objective functions to a multiobjective optimiza-
tion problem has been considered in [9]. Furthermore, the relative importance of objectives is
discussed and a definition of weights is given in [19, 20] (where weights are called coefficients)
for objective functions as well as for groups of objective functions. This approach results
in a convex combination of functions similar to linear combinations as discussed in [3].
There, strategies are discussed that reduce the size of the solution set of the multiobjective
optimization problem for instance by combining several objectives linearly, i.e. by summing
them up, before employing tools to solve the resulting multiobjective optimization problem.
Using partial preference models, where weights are partially defined, is also a way of focusing
on reduced solution sets of interest [13].

The need of iterating to find an appropriate model of a real-world problem to be solved
is demonstrated in [2, 26] with cases in optimal shape design of an air intake channel and a
two-stage separation process, respectively. In the latter case, an interactive multiobjective
optimization method helped in validating and improving the model and only after that kind
of iterating, the actual interactive solution process was conducted.

The idea of constraint optimization using multiobjective optimization models, i.e. the
idea to transform constraints to objectives, as well as the other way around, is studied in [15].
Furthermore, e.g., in [16], it is demonstrated that converting a problem with one objective and
four very demanding constraints can be solved by optimizing constraint violations besides the
original objective, i.e., a problem with five objectives. Hence, in the literature, the relation
between constrained and multiple objectives as well as between aggregated and disaggregated
multiobjective optimization problems is already studied at least in parts, while several such
models have so far not been used in an iterative manner on varying levels for steering a
decision-making process.
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solutions to DM

Figure 4 The framework for personalized decision support.

In [12], an unconstrained bi-objective discrete optimization problem is studied with the
goal of finding representations that adhere to a given quality with respect to the ε-indicator
measure. The suggested approach is related to the Nemhauser-Ullman algorithm that has
been proposed for the traditional knapsack problem which has one objective function and
one constraint. The work of [23] brings this idea closer to the discussion in this report
by formulating a bi-dimensional knapsack problem where one of the constraints is a soft
constraint. The authors model the soft constraint as an objective function, thereby ending
up with a uni-dimensional knapsack problem with two objectives. As such, they propose to
compute representative solutions for the transformed problem so as to portray the trade-off
between the objective function of the original problem and satisfaction or violation of its soft
constraint.

In [11, Section 2] and [5, Section 3], a detailed review on the literature on modeling the
relative importance of objectives is provided. In these references, as well as in [6], partial
orderings, other than the natural orderings via (non)polyhedral cones, are examined for their
impact on optimal (in that case, efficient) solution sets of multiobjective optimization problems.
These examinations might help in understanding the relationship between (dis)aggregated
multiobjective optimization problems.

Problem formulation

To give a mathematical formulation of the problem of adding/subtracting and (dis)aggregating
objectives, we make the following assumptions:

Let a nonempty subset X ⊆ Rn be given which describes the set of alternatives. For
instance, the set X might be determined by some hard constraints given by laws of nature,
which cannot be weakened and, thus, cannot be transformed to objective functions.
Let F := {fi : Rn → R | i = 1, . . . , k} be a finite collection of functions which are
potentially of interest for particular models. Then, for particular model instances, some
of these functions can appear in the formulation of the objective functions or in the
constraints.
Let h1, . . . hm, g1, . . . , gl : Rk → R be arbitrary functions describing which of the functions
f ∈ F are aggregated or chosen for the formulation of the individual objective functions
or constraints of the particular model. Thereby, m ∈ N and l ∈ N also depend on the
particular model instance.
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Under these assumptions, a particular model instance can be expressed as

min
x∈S

h1(f1(x), . . . , fk(x)), . . . , hm(f1(x), . . . , fk(x)), (PMI)

where S := {x ∈ X | gi(f1(x), . . . , fk(x)) ≤ 0, i = 1, . . . , l}.

I Example 1. Let X = Rn and F = {f1, f2, f3 : Rn → R}. For the aggregation functions hj
we only take linear combinations and selections into account. Thus, let weights w2, w3 > 0
be given. With h1(y1, y2, y3) = y1 and h2(y1, y2, y3) = w2y2 + w3y3 we get

min
x∈X

(
f1(x)

w2f2(x) + w3f3(x)

)
. (PA(w2, w3))

The corresponding disaggregated multiobjective optimization problem with functions
h1(y1, y2, y3) = y1, h2(y1, y2, y3) = y2, and h3(y1, y2, y3) = y3 is

min
x∈X

 f1(x)
f2(x)
f3(x)

 . (PD)

When disaggregating the problem (PA(w2, w3)) one might be interested in keeping the
properties of an already found Pareto optimal solution x̄ ∈ X of the bi-objective problem
(PA(w2, w3)). For instance, it might be the aim to keep the achieved level for the value f1(x̄)
while being willing to explore nearby values for f2 and f3. With gj(y1, y2, y3) = yj −∆j for
j = 1, 2, 3 and with

∆1 = f1(x̄), ∆2 = ∆3 = w2f2(x̄) + w3f3(x̄) + δ

for some scalar δ ≥ 0, also the following problem might be of interest.

min

 f1(x)
f2(x)
f3(x)


s.t.

f1(x) ≤ ∆1,

f2(x) ≤ ∆2,

f3(x) ≤ ∆3,

x ∈ X,

(PC(∆))

where we can write S = {x ∈ X | fi(x) ≤ ∆i, i = 1, 2, 3}.
The following relations are, for instance, obvious:
If a point x̄ ∈ X is Pareto optimal for (PD), then x̄ is also Pareto optimal for (PC(∆))
for any ∆ ∈ R3 with ∆i ≥ fi(x̄), i = 1, 2, 3.
If a point x̄ ∈ X is Pareto optimal for (PC(∆)) for any ∆ ∈ R3, then x̄ is also Pareto
optimal for (PD).
If a point x̄ ∈ X is Pareto optimal for (PA(w2, w3)) for some weights w2, w3 > 0, then x̄
is also Pareto optimal for (PD).

Interesting questions are also, for instance, under which assumptions a Pareto optimal
point x̄ of (PA(w2, w3)) for some weights w2, w3 > 0 is at least feasible for (PC(∆)) for
∆1 ≥ f1(x̄), δ ≥ 0 and

∆2 = ∆3 = w2f2(x̄) + w3f3(x̄) + δ .
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4.2.2 Applications

Next we illustrate the need of personalized decision support systems with some applications.

Radiotherapy

In radiotherapy, the set of alternatives consists of applicable treatment plans x. We assume
that the alternatives are judged by the DM solely based on the properties of the resulting
dose distribution. At the highest level, the properties of the dose distribution predict the
likelihood of treatment success or failure as well as the likelihood of specific complications
and side effects related to the organs at risk. To represent and compute the dose distribution,
the patient image is divided into (up to millions of) equal-sized voxels. The dose distribution
D(x) is then the vector of all voxel dose values. For the sake of simplicity, each voxel either
belongs to a target, to a specific organ at risk, or to normal tissue. For each target, there
is a prescribed dose dpresc that is deemed adequate to kill all tumor cells. For evaluating
a given dose distribution, a large collection of objective functions has been established in
the radiotherapy community. Most of these objective functions in some way measure the
average under- or overdose over all voxels belonging to a specific structure (target or organ
at risk). However, other (“lower-level”) aspects of the dose distribution also play a role, such
as smallish localized areas of too high dose far away from the target (“hot spots”). This is
where aggregation and disaggregation come into play.

Aggregation and disaggregation in radiotherapy. The dose values in the individual voxels
form a natural basis of lowest level and highest detail when assessing the dose distribution.
The following implications can be assumed to hold for any DM’s utility function:

For target voxels i, as long as the dose values are below the prescribed dose, di(x) < di(x′)
and all else equal, this implies that x is a worse treatment plan than x′.

For target voxels i, as long as the dose values are above the prescribed dose, di(x) < di(x′)
and all else equal, this implies that x is a better treatment plan than x′.

For risk and normal tissue voxels j, dj(x) < dj(x′) and all else equal, this implies that x
is a better treatment plan than x′.

Fundamental (“atomic” or “lowest-level”) objective functions F can be chosen as repres-
entations of these relations:

For target voxels i: fUDi (x) = max{0, dpresc − di(x)}.

For target voxels i: fODi (x) = max{0, di(x)− dpresc}.

For risk and normal tissue voxels j: fj(x) = dj(x).

A decision process based on F is infeasible. Given two unrelated dose distributions, a
comparison may well exceed the mental capacity of a DM. Even if a trajectory is provided
where in each comparison only a few fundamental functions differ, the search space would be
too large and any search too unstructured for efficient decision making. Thus, “higher-level”
functions are introduced that aggregate all fundamental functions of voxels of the same
structure, for example, the squared organ at risk dose:

frisk(x) =
∑
j∈risk

(dj(x))2. (20)
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The aggregation simplifies the problem by treating every voxel within the structure as
equal, disregarding position and spatial relationship to other voxels. Also, it handles the
trade-off within the voxels of the same structure automatically, depending on the exact
formulation of the aggregation (which can be chosen by the DM).

On the other hand, the aggregated function can cloud lower-level aspects of the DM’s
utility function. For example, the DM may be happy with the overall amount of dose for the
organ at risk, but there is a certain region inside the organ at risk that still gets too much
dose. One option would be to choose a different aggregated function, maybe using a higher
coefficient in order to penalize higher doses more and force a different trade-off of voxel doses
inside the organ at risk.

However, the discontent may be attributed more to the specific location and the spatial
accumulation of higher dosed voxels, rather than the values themselves. In this case, the
assumptions made when aggregating the fundamental functions – namely that all voxels are
equally independent of location and spatial relationship to other voxels – breaks down. In
this case, lower-level functions may need to be (re-)introduced in the variable model, i.e. the
model must be disaggregated.

Land use planning

Land use planning involves the allocation of facilities to specific locations or activities to
specific areas within a region of land. In most non-trivial contexts, land-use planning involves
many criteria, some at least of which will involve partially qualitative considerations such
as social impacts of displacements, destruction of old burial sites and effects of biodiversity
reduction. Typically also, conflict is generated between multiple stakeholders that needs
some resolution before any decision can be implemented.

Two examples of land use planning problems with which one of the authors has been
associated are the following. The first related to replacement of indigenous afromontane
grasslands on the eastern escarpment areas of South Africa by exotic commercial forestries [27].
The prime decision variables related to proportions of the region allocated to forestry, with
subsidiary considerations including water supply to rural communities for subsistence and
agriculture, and preservation of biodiversity in the region. The second example arose from
restoration of land for nature conservation with associated partitioning of land into intensive
and extensive agriculture, as well as other development activities, in the Netherlands [4].
The prime decision variables were binary, i.e. selection of activity for each designated parcel
of land.

Land use planning provides a challenging context within which to seek personalization of
decision support. Different stakeholders will have different perspectives on the same problem,
which need to be provided for. As different groups work together and negotiate, problem
structures and preference perceptions evolve dynamically, and this too needs to be captured
in the decision support system.

Some dynamic issues which arose in these examples included the following:
A need to incorporate policy (not entirely hard) constraints into the forestry development
problem, that for any chosen proportion of area to forestry, the precise locations of the
plantations were to be subject to environmental impact vetoes;
The original decision support models for selection of land parcel activities focused on
assessing the value of allocating each activity to each parcel as primary objectives. But
deeper reflection led to a realization that system management requires the definition
of further system-related criteria concerned with coherency of activities which are non-
additively related to decision variables.
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In the water resources component of the South African forestry land allocation, one
initially identified criterion was interests of rural village communities. But problems
encountered while attempting to evaluate decision alternatives according to this criterion
led to a realization that there were two relevant sub-criteria, that could be seen as “female”
(close access to clean water) and “male” (availability of piecework on commercial farms).

Any decision support system must be able to cope with such often unexpected develop-
ments in the problem structure as regards both the decision space and the set of criteria.

4.2.3 Research questions

In the following, we discuss some of the main research questions that need to be addressed
in a personalized iterative decision making process as described in previous sections.

Aggregating/disaggregating functions as objectives and constraints

We start again by motivating our research questions with an example. Let us consider a
problem where a DM wants to minimize cost f(x) and maximize quality g(x) of a product
to be purchased:

min f(x),max g(x).

The quality may consist of two separate components: g(x) = w1g1(x)+w2g2(x), cf. Example 1.
Let us suppose that a solution x̄ is identified by the DM after a first depiction of the

Pareto front (in the objective space) of this problem. Now, the question is to find new
solutions, not too far away from x̄, of a possible disaggregated problem. Then one might
solve the problem

min f(x),max g1(x),max g2(x)

or

min f(x)
s.t.

g1(x) ≤ g(x̄) + ∆1,

g2(x) ≤ g(x̄) + ∆2.

Open research questions include:
Are the relationships between reformulations of the problem stronger if g1 and g2 are
somehow correlated? Does the strength of the relationship depend on x̄? From a practical
point of view, is the non-correlated case of even more interest?
How can a recommendation for an initial aggregation be made in order to start the
decision-making process? How can objectives be added or removed? There can be settings
when the model is blank (unknown) or very well-known. In the first case, the model is to
be built by adding, in the other, by removing.
An expressed constraint may be found to be irrelevant after learning that the range is
too narrow to be relevant. The question is how to model this automatically.
An objective can be converted into a constraint to eliminate unwanted alternatives or to
save levels with specific objectives. The question is how to structure such approaches and
what are the relations between the solutions found.
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Navigation

To form a good base for the selection step of a solution x̄ in an iterative process, a good
presentation and a way to navigate between possible solutions is required. We state some
known approaches as well as some open questions in the following.

Navigation in a continuous space of alternatives. For a continuous multiobjective optim-
ization problem, a real-time navigation capability for the DM such as the following two-step
process can be offered:
1. Optimizing a set of representative solutions x1, . . . , xm in an offline pre-computation, with

objective function vectors Fi = F (xi). Explicitly or implicitly, the representative pairs
(xi, Fi) must have a neighborhood relationship defined, allowing neighboring solutions to
be linearly interpolated. This means that for a subset I of mutually neighboring points,
and for coefficients λi ≥ 0 with

∑
i∈I λi = 1

any interpolated solution x =
∑
i∈I λixi is feasible,

for any interpolated point x, the objective function values F (x) differ from the Pareto
optimal achievable values only by an acceptable error (“approximation quality”),
F (
∑
i∈I λixi) ≈

∑
i∈I λiFi in order for the navigation mechanisms of the item above

to work (“triangulation of Pareto front approximation”).
2. Searching the space of interpolated solutions in real-time. This can be done by solving

linear optimization problems in the interpolation coefficients.

For convex problems, this is understood (see, “sandwiching” [24] for the calculation of the
representative solutions, and real-time navigation in [7, 17, 18]), but maybe not published
well enough yet. In the convex case, many of the ingredients mentioned above come for
free (neighborhood from calculating the convex hull, feasibility of interpolated solutions)
or coincide (second and third bullet points as a consequence of sandwiching). For general
nonconvex problems, this is not the case. One way of connecting objective and decision
spaces for nonconvex problems has been proposed in [10]. Research questions include:

Formalizing the approach, maybe embedding the convex case as a special case, in order
to make it more known and understood in the community.
Properties of nonconvex problems to facilitate this approach.
Development, improvement, and description of algorithms for the calculation of repres-
entative solutions and for real-time navigation especially for the nonconvex case.

Navigation in a discrete space of alternatives. In a discrete case, the DM wants to find
the preferred solution out of a finite but typically large set of alternatives. Such a decision
problem can also be handled by real-time navigation mechanisms. However, interpolation
is not possible. Thus, when traversing a set of alternatives, the direction and size of each
navigational step cannot be controlled very well. Research questions include:

How can the wishes of a DM be stated and interpreted in the context of discrete navigation?
Should the DM follow a trajectory by jumping from alternative to alternative? If yes,
how should the next alternative be chosen? Can this choice be defined by a particular
distance measure or neighborhood relationship in the space of alternatives?
Or should the navigation mechanism focus more on eliminating alternatives?

4.2.4 Toward personalizing representations

Personalization is very much related to learning. In different domains, there may be different
aspects of learning. Expert DMs may have a good understanding of the structure of a
decision problem but they may still need to learn about the nature of the problem instance
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(e.g. in radiotherapy) and gain insight in the conflicting nature of the objectives and feasible
solutions as well as the feasibility of their preferences. Novice DMs may need to discover
their objectives, constraints and solutions.

Throughout this section, we assume that some model (as a result of processes described in
the sections before) is given together with an explicit list of n alternatives (e.g. items/products).
The properties of these alternatives are described by criteria (defined on measurable scales).
This is for example the case in online sales or consulting systems where customers are
supported in choosing some product meeting their individual demands.

In many such practical applications, the set of Pareto optimal solutions exceeds a
manageable cardinality. In order to analyze or visualize the set of alternatives and, thus, to
assist the process of making a final decision, the DM requires a concise representation of the
Pareto optimal set to obtain a quick overview. A good representation can still communicate
the nature of the set while hiding options which are not informative. In the following, we
investigate the influence of personalization on representations, adaptation of quality measures
incorporating personal preferences and algorithms to compute a personalized representation
in the context of explicitly given alternatives.

An idea to incorporate personalization in the computation of a representative subset is
based on two functionalities which can be in principle applied in an arbitrary order during a
decision making process:
1. The computation of a good and concise representation for a given region of interest.
2. The determination of the set (or a representation) of neighbors wrt. to a selected point.

During the search for a finally preferred solution, a DM may iteratively make use of these
two functionalities: A good representation for the problem/model at hand may be computed
and analyzed, the model may be changed and the first functionality may be invoked again,
or, eventually, a DM may be interested in the neighborhood of some selected point to be
informed about similar alternatives. Before presenting some specific algorithmic ideas, we
discuss these two functionalities in more detail first.

Concerning functionality 1, a crucial point relates to the notion of “goodness” of a
representation, i.e. the quality of a representation. Certainly, one goal is to determine a
representation R of the set of Pareto optimal points (also known as nondominated points)
YN ∈ Rp which is tractable for the DM and can be efficiently computed. We rely on the
classical quality measures for discrete representations suggested and discussed in [8, 22],
namely coverage, uniformity and cardinality which can be roughly characterized as follow.

Coverage: any point in YN is represented or covered by at least one point in R.
Uniformity, also called spacing: any two points in R are sufficiently spaced, avoiding
redundancies.
Cardinality refers to the cardinality |R| of the representation R. Since each representative
point has to be computed with a certain effort, the cardinality should be small.

The concepts coverage and spacing can be implemented in a variety of ways. In principle,
one can distinguish between a geometric vision based on distances and a preference-oriented
vision using some preference relation. In a geometric vision, distances between points in
YN and points in R are used to evaluate coverage. Likewise, uniformity is evaluated by
calculating pairwise distances between points in R. Alternatively, a preference-oriented vision
is based on a preference relation �. For two points y and y′, one can then say that y covers
y′ if y � y′ which implies a notion of coverage. Analogously, y and y′ are sufficiently spaced
if not (y � y′) and not (y′ � y) which then defines the notion of uniformity/spacing.
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Figure 5 Illustration of a representation based on coverage.

4.2.5 Algorithmic approaches for computing personalized representations

Based on the discussion in the previous section, several methods existing in the literature
are proposed, which can be adapted, to meet the two functionalities mentioned. The first
three methods are geometric-based approaches, while the fourth one is a preference-based
approach. These efforts may be understood as a first attempt of computing personalized
representations.

A geometric-based approach

In a geometric vision, coverage measures the quality of the representative subset by considering
the distance of the unchosen elements to their closest elements in the subset. Formally, the
coverage of a subset R ⊆ YN is computed as

IC(R, YN ) = max
y∈YN

min
y′∈R

‖y − y′‖.

The coverage representation problem consists of finding a subset of cardinality k that has
the smallest coverage value, i.e.,

min
R⊆YN

|R|=k

IC(R, YN ).

This problem is known as the k-center problem [14]. In the particular case of two objectives,
it can be solved in a polynomial amount of time [28].

Similarly, in a geometric vision, uniformity measures how far apart the k chosen elements
of the set R ⊆ YN are from each other. It is computed as the minimum distance between a
pair of distinct elements as

IU (R) = min
y,y′∈R
y 6=y′

‖y − y′‖.

The goal of the uniformity representation problem is to find a subset R, with a given
cardinality k, from a set YN that maximizes IU (R), i.e.,

max
R⊆YN

|R|=k

IU (R).
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Figure 6 Illustration of representation based on uniformity.

Note that this problem corresponds to a particular case of the k-dispersion problem in
facility-location [21]. Also for the particular case of two objectives, this problem can be
solvable in a polynomial amount of time [28].

Note, that functionality 2 suggests itself in a geometric vision: The neighborhood for the
second functionality is an ε′-neighborhood of a selected point ȳ:

y ∈ YN : ‖y − ȳ‖ ≤ ε′.

The revised boundary intersection method

The revised boundary intersection (RNBI) method computes a discrete representation of the
Pareto optimal set of a multiobjective linear optimization problem (MOLP) min{Cx : Ax 5 b}
with a bounded feasible set. It provides guarantees on both the uniformity and the coverage
error of the representation, see [25]. The following is a description of the algorithm.

1. Input: MOLP data A, b, C and ds > 0.
2. Find yAI defined by yAIk = max{yk : y ∈ Y } for k = 1, . . . , p.
3. Find a Pareto optimal point ŷ by solving the linear problem φ := min{eT y : y ∈ Y }.
4. Compute p+ 1 points vk, k = 0, . . . , p in Rp

vk
l =

{
yAI

l , l 6= k,
φ+ ŷk − eT v0 l = k.

The convex hull S of {v0, . . . , vp} is a simplex containing Y .
The convex hull Ŝ of {v1, . . . , vp} is a hyperplane with normal e supporting Y in ŷ.

5. Compute equally spaced reference points qi with a distance ds on Ŝ.
6. For each reference point q solve the linear problem min{t : q+ te ∈ Y, t = 0} and eliminate

dominated points from the resulting set R.
7. Output: Representation R.

The steps of the algorithm are illustrated in Figure 7.
Theorem 2 provides the quality guarantee for the method in terms of uniformity and

coverage error of the generated representatiom.

I Theorem 2. Let R be the representation of YN obtained with the RNBI method.
1. Let q1, q2 be two reference points with d(q1, q2) = ds that yield Pareto optimal represent-

ative points r1, r2. Then ds 5 d(r1, r2) 5 √pds. Hence, R is a ds-uniform representation
of YN .
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Figure 7 The revised boundary intersection method.

2. Assume that the width w(Sj) = ds for the projection Sj of all maximal faces Y j of YN
on Ŝ. Then R is a ds-uniform d√pds-representation of YN .

In this section we outline how to adapt to the situation where YN is an explicitly given
set of finitely many points. To this end, we now modify the RNBI method so that it becomes
applicable to the case of YN = Y = {yj : j ∈ J} being an explicily given finite set. The main
obstacle in doing this is that the sub-problem

min{t : q + te ∈ Y, t = 0}

that is solved for each reference pooint q will most often be infeasible. To avoid this situation,
we replace Y in the sub-problem by Ŷ = Y + Rq. Since YN = ŶN , this has no effect on the
Pareto optimal set, but the new sub-problem

min
{
t : q + te ∈ Y + Rp=, t = 0

}
is feasible. To solve it, we define t(q) = minj∈J maxk∈{1,...,p}{yjk−qk} and r(q) = argminj∈J
maxk∈{1,...,p}{yjk − qk}.

To compute, for reference point q, the intersecion of the ray {q+ te : t = 0} with the cone
yj + Rq= dominated by yj , the l∞-distance t(q) to the Pareto optimal point yj is computed,
and the closest point to q is chosen as a representative point r(q). Then the representative
set is R = {r(q) : q ∈ Q}.

There are a number of research questions related to this approach:
Can quality guarantees in terms of uniformity and coverage error be proven?
What is the cardinality of R given the cardinality of Q?

Representations based on clustering

A very simple, yet potentially effective idea for computing representations in the case of an
explicitly given set of alternatives in the context of a geometric vision is based on clustering.
The idea is to compute a certain number, say K clusters very quickly and retrieve information
about the quality of the representation. In many real-life datasets, the density of points is
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not uniform, but has high-density clusters representing a certain ”type” of outcome (e.g.
products which are similar). To provide a quick overview of available Pareto optimal points,
each of these types/clusters should be represented with one representative point. Clusters
can be of different sizes, but would still be represented by a single point.

Such a clustering algorithm for realizing functionality 1 can be formulated as follows:

Algorithm: MSF-Clustering
Input: n items with their objective function values; K ∈ N
Output: A representation R with |R| = K

1. Compute the pairwise distances between the items (wrt. their objective function values).
2. Sort these distances by increasing length.
3. Use Kruskal’s algorithm to compute a Minimum Spanning Forest consisting of K trees

(=cluster).
4. For each tree: Compute median/center item as the representative point of the cluster.
5. Return all representative points.

This clustering algorithm can be implemented in a running time of O(n2 + n2 · log2 n
2 +

n2 · log∗2 n2 + n2) = O(n2 logn2) and, thus, finds a representation in polynomial time. In
case a DM then updates upper bounds on the values of the objectives (this is an operation
which is likely to happen), a re-sorting can be implemented in O(n2) which results in an
O(n2 · log∗2 n2) algorithm for updating the representation.

Note that functionality 2, i.e. “display solutions close to some chosen representative point”
can be very easily realized: all points in a cluster are displayed. Further research directions
may clarify the quality of representations (wrt. uniformity and coverage) obtained with such
a clustering algorithm.

A preference-based approach

The first important question is the choice of the preference relation � to be used to compute
the representation R. Relation � must be richer than the Pareto dominance relation in order
to ensure conciseness of the representation. In cases where no a priori preference information
is available, a natural candidate relation is the ε-dominance relation �ε defined as follows:

y �ε y′ iff yi ≤ (1 + ε)y′i i = 1, . . . , p,

where ε > 0 can be interpreted as a tolerance/indifference threshold. Note that we can
use different thresholds εi > 0 for each criterion fi, i+ 1, . . . , p. We can also use additive
thresholds instead of multiplicative thresholds. The relation �ε enriches the standard Pareto
dominance relation as illustrated in Figure 8.

In order to implement functionality 1, which aims at producing a concise representation
of a region of interest, we use the concept of an (ε, ε′)-kernel, introduced in [1].

I Definition 3. Given ε, ε′ > 0, an (ε, ε′)-kernel is a set of points Kε,ε′ ⊂ Y satisfying:
(i) for any y′ ∈ YN there exists y ∈ Kε,ε′ such that y �ε y′ (ε-coverage),
(ii) for any y, y′ ∈ Kε,ε′ , not(y �ε′ y′) and not(y′ �ε′ y) (ε′-stability).

In order to guarantee the existence of an (ε, ε′)-kernel, we must have ε′ ≤ ε. Considering
that condition (i) prevails over condition (ii) in the definition of a good representation, we
must first define a threshold ε to define the precision of the representation and then set ε′ as
large as possible. When it is possible to set ε′ = ε, an (ε, ε′)-kernel is called an ε-kernel.

Some important results, established in [1], are gathered in the following theorem.

18031



68 18031 – Personalized Multiobjective Optimization: An Analytics Perspective

f2

f1

b

y

{y′ ∈ Y : y �0 y′}

y
1+ε

{y′ ∈ Y : y �ε y′}

ε-dominane �ε

1

Figure 8 Dominance (�0) and ε-dominance (�ε) relations.

I Theorem 4. If p = 2, an ε-kernel always exists (with ε′ = ε).
If p ≥ 3, an (ε, ε′)-kernel exists if and only if ε′ ≤

√
1 + ε− 1.

If Y is defined explicitly, these concepts can be computed in a linear time.

We show now how to implement functionality 2, which aims at producing alternatives
similar to a (not necessarily) feasible reference point. Let ȳ be the reference point. The
neighborhood of ȳ is:

N (ȳ) = {y ∈ YN : y �ε′ ȳ and ȳ �ε′ y}.

Note that this neighborhood is defined with a relation �ε′ which is used in the stability
condition to define an (ε, ε′)-kernel. It is indeed consistent to use this relation which was
used to impose that two elements in R should not be too similar. This concept is clearly
computable in a linear time.

4.2.6 Conclusions

This report summarizes our findings on the topic of personalization of multicriteria decision
support systems. With growing computational power, ever enlarging data storage capabilities,
then increasing availability of large data sets and the success of multiobjective optimization
methods, decision-making processes tend to ask more and more in the way of personalized
aspects to make better, faster and more confident decisions. This is especially true on complex,
professional applications which require sophisticated models and solution algorithms (e.g.
radiotherapy treatment or landuse planning). In addition, everyday applications (such as
online evaluations of products or sales for customers) with explicitly given sets of alternatives
are subject to multiple criteria and a personalized perspective as well. This report identifies
two central aspects which can be concisely described as “personalization in model building”
for complex situations and “iterative computation of personalized representation systems”
for explicitly given points. Initial ideas are presented with respect to both aspects. Yet, as
the demand for personalization grows, more sophisticated concepts are still to be developed.
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Abstract. Knowledge extraction aims at detecting similarities and patterns hidden in the
Pareto-optimal solutions arising from the outcome of a multi-objective optimization problem.
The patterns may emerge from generic relationships of several variables or objective functions.
Knowledge extraction is expected to bring out valuable information about a problem and is
termed as a task of “innovization” elsewhere. While certain automated innovization methods
have been proposed, in this report, we attempt to formalize the overall computational task
from a machine learning and data analytics point of view. The results can be used to improve
modeling and understand interdependencies among different objectives.

4.3.1 Introduction

The topic was proposed by one of the participants (Deb) who has introduced the original
idea, has been working on this topic for nearly two decades, and has called it “innovization”
(innovation through optimization) [5, 6] of (technical) models, which leads to new designs,
hence, true innovations.

The basic innovization idea has been used towards automated innovization methods, for
example, in [2, 1, 3, 4]. The concept has been applied in practice, see, for example, [10, 13, 16].
Innovization methods have also been implemented by different other visualization or machine
learning methods [14, 17, 18, 15, 7]. Since we do not aim at only reformulating the concept
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of innovization but also contributing new ideas, we use the more general term “knowledge
extraction”. Due to the recent hype in machine learning and data analytics, this topic is of
high interest. Moreover, it fits very well to the topic of this Dagstuhl seminar.

4.3.2 Problem statement

The main idea of knowledge extraction is as follows. Assume we have already modeled a
problem with at least two conflicting objectives, that is, we have formulated a multi-objective
optimization problem with certain variables, objective and constraint functions. Some of
the variables might be restricted to take only discrete values which turns the problem
into a mixed-integer multi-objective optimization problem. Furthermore, motivated from
mechanical examples, the model contains certain parameters which are specified by the end
users but might change in response to the new knowledge offered by the knowledge extraction
procedure.

During the Dagstuhl seminar, we have decided to work on the following topics.
1. General Framework: Given two sets, P (target set) and Q (non-target set), from a

problem,
RQ1: What features of the problem (described by variables (x), objectives (f), inequality

constraints (g) and equality constraints (h), or any other basis functions (b)) are present
in P (but not in Q)?

RQ2: How to represent features?
RQ3: How to find rules (knowledge) in a computationally efficient way?
RQ4: In what ways can we utilize the “knowledge”?

2. For RQ1: We shall show some examples to clarify the description of “feature”. Features
to be considered will be of the type “if condition, then decision”. The outcome
for such a feature when applied to a problem vector (x, f, g, h, b) is true or false. We
shall consider problems having (i) continuous, (ii) mixed-integer, and (iii) combinatorial
variables. We will refer to this as Task 1 in the following.

3. For RQ2: As Task 2, we shall identify subsets of variables defining features and show
some examples. The following methods can be used:

User-supplied
ANOVA, Statistics
AIC, Entropy
Forward Selection, Backward Selection, and
Rough Sets.

4. For RQ3: We shall develop feature (knowledge) extraction procedures (referred to as Task
3) to find hidden features in problem instances and data using the following methods:

Genetic Programming (GP) to find general (free-form) features
Two-level Decision Tree/Forest Approach to find decision trees, and
Other generic or specific methods to find problem-specific structures.

5. For RQ4: We shall utilize the developed features (knowledge) to facilitate the following
tasks (we refer to this as Task 4):

Knowledge elicitation to users in terms of (i) product platform scaling, (ii) putting
focus on key concepts, (iii) using observed knowledge to build theory about knowledge,
and (iv) provide leadership.
Online utilization of knowledge to improve convergence properties of optimization
algorithms.
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Figure 9 The Pareto-optimal set (left) and curves determining its three nonlinear segments
(right) for the BOQP (21).

Knowledge accumulation to modify/trust the original problem in establishing the fact
that (i) some variables may be redundant, (ii) some objectives may be redundant, and
(iii) some constraints may be redundant.

4.3.3 Examples

Continuous optimization

As a simple illustrative example consider the biobjective quadratic problem (BOQP) in which
two quadratic objective functions are minimized on a feasible set determined by three linear
constraints:

min
x1,x2

[f1(x1, x2) = (x1 − 2)2 + (x2 − 2)2, f2(x1, x2) = x2
1 + (x2 − 3)2]

s.t. g1(x1, x2) = x1 + x2 − 2.75 ≤ 0
g2(x1, x2) = 2x1 + x2 − 3.75 ≤ 0 (21)
g3(x1, x2) = x2 ≤ 2.25

The Pareto-optimal set in the objective space (f1, f2) of this BOQP is shown in the left
part of Figure 9. This set is composed of three curves whose equations, due to the simple
structure of the objective functions and the feasible set, can be derived analytically. The
three curves are depicted in the right part of this figure and have the following equations

segment 1: f2 = f1 −
√

16f1 − 1 + 4.5 for 2.3125 ≤ f1 ≤ 4.0625

segment 2: f2 = f1 −
√

18f1 − 14.0625 for 1.0625 ≤ f1 ≤ 2.3125

segment 3: f2 = f1 −
√

12.8f1 − 12.96 + 2.3 for 1.0125 ≤ f1 ≤ 1.0625

Recalling that the Pareto-optimal set is the image of the efficient set in the decision space
(x1, x2), we observe that in this particular example each of the three curves is the image
of the efficient solutions that are located along (part of) the active constraint gi(x1, x2) =
0, i = 1, 2, 3. In effect, we obtain the rules for the decision variables x1 and x2 in the form
gi(x1, x2) = 0 and the answer to the research questions RQ1 and RQ2. Since in this very
simple example the rules uniquely determine the Pareto-optimal set, the knowledge extraction
is complete and the obtained knowledge is ultimate.
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Figure 10 Solutions in the objective space corresponding to two different frequent patterns.

Combinatorial optimization

As another example we use a bi-objective traveling salesperson problem (TSP). We use
real-life data provided by the company Emapa1. The data contains travel times and distances
between each pair of 500 points located in Poland. The travel times and distances were
estimated using data about the real-life road network. The goal is to find a Hamiltonian
cycle in this graph taking into account two objectives: total travel time and total distance.
The two objectives are obviously highly correlated but also partially in conflict. For example,
a route utilizing highways may be longer but faster than a route using secondary roads.

To solve this problem we used a Two Phase Pareto Local Search (TPPSL) algorithm [12].
In the first phase we used the Lin-Kernighan heuristic [11] to generate an initial set of
potentially Pareto-optimal solutions that are passed over to the second phase in which Pareto
Local Search was run. As a result, 469 potentially Pareto-optimal solutions were found.
Each solution is characterized by a set of 500 edges forming a Hamiltonian cycle. The first
interesting observation is that these sets are highly similar. There are only 679 distinct edges
that appear at least once in this set of solutions out of 124750 possible edges. Furthermore,
245 edges appear in all of the solutions. This set of common edges could be interpreted as
a frequent pattern [9] with support (i.e., the number of matching solutions) equal to the
number of all potentially Pareto-optimal solutions. In other words, each solution contains
only 255 (out of 500) volatile edges, i.e., edges that do not belong to all of the Pareto-optimal
solutions.

Furthermore, we can search for other interesting frequent patterns with lower support.
For example, Figure 10 shows solutions supporting two different patterns presented in the
objective space. The two patterns were selected such that they are supported by at least 100
solutions each, they contain many edges, and the sets of supporting solutions are disjoint.
The first pattern is supported by 111 solutions and contains 346 edges. The second pattern
is supported by 100 solutions and contains 367 edges. As can be seen from Figure 10,
the solutions supporting the two patterns are located in different regions of the objective
space. This is an interesting observation since the values of the objectives were not taken
into account while selecting the two patterns. The two patterns could be understood as
characterizations of two regions of the set of potentially Pareto-optimal solutions.

1 http://emapa.pl/
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4.3.4 Usefulness of knowledge extraction

The a posteriori analysis of the results often reveals interesting information on the problem
at hand. Unfortunately, this analysis is computationally demanding, in general. Therefore,
it can be critically asked what this approach serves for when the optimization process
has already been terminated. In the above mentioned combinatorial example, knowledge
extraction might be used to reduce the problem size by neglecting edges which never or seldom
belong to Pareto optimal solutions. This might have a considerable effect on computational
time while basically maintaining the quality of the solutions obtained.

Another important and useful application is in the context of online algorithms. In many
applications, the same optimization problem has to be solved over and over again with only
slightly different parameter values, e.g., in the context of rolling planning in energy or water
networks. In these cases, knowledge extraction might help in solving subsequent optimization
problems much quicker and, thus, improving solution quality tremendously when only a very
short computational time for optimization is available. Moreover, if time is restricted, a true
multi-objective analysis offering different Pareto-optimal solutions is typically not possible.
Hence, it is of urgent interest to learn an appropriate setting of ‘multi-objective’ parameters
quickly. Also this task can be handled well by knowledge extraction methods.

We shall work on developing methodologies for each of the above topics and plan to write
a journal quality paper.

4.3.5 Conclusions

Pareto-optimal or near-Pareto-optimal solutions of multi-objective optimization problems
often possess specific properties that can be, for example, seen from certain patterns in the
variable values. Since general optimality conditions (like, for example, multi-objective variants
of the KKT conditions) are often difficult to apply for practical and complex problems (for
example, due to rather restrictive assumptions on the problem structure and due to the need
of finding derivatives and a reliable solution of nonlinear equations and inequalities), the
“innovization” procedure proposed by Deb [5] is a viable strategy. It is a two-step procedure
in which first a set of preferable trade-offs and near-Pareto-optimal solutions are found by
an EMO algorithm or a generative MCDM approach. In the second step, the optimized
solutions are analyzed to decipher invariant features describing the variables, objectives, and
constraint values that exist in the data. The usefulness of the basic innovization approach
has been demonstrated by Deb and his collaborators over the past 15 years and certain efforts
to automate the second step using machine learning procedures have also been proposed
[2, 1, 8].

In this report, we have attempted to formalize a systematic procedure for the innovization
task and to extend the basic concept to various computational, theoretical, and application
domains.
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4.4.1 Introduction

This report introduces a novel, generic, multi-layered network model of large-scale multi-
criteria decision making (MCDM), with a focus on the design and optimization of complex
products and platforms. The report provides some examples of network structures in MCDM
applications and develops two use-cases for the multi-layered model.

The starting point for this model was to view MCDM from the perspective of complex
networks. The study of complex networks (CS) is a topic that recently received considerable
attention across various disciplines [2]. Typical questions investigated in CS are:

modeling/formalization and visualization of networks;
dynamics of networks – both in terms of states and in terms of structure;
microscopic (e.g., node degrees, node centrality) and macroscopic (e.g., moments of the
degree distribution, sparsity, modularity, community structure) properties of networks
and how they influence each other;
algorithms on complex networks.

4.4.2 Related work

In several publications, the modeling of design and optimization processes in terms of networks
has been addressed. Here we provide only a snapshot of the current state of the art in this
domain.

Martins and Lambe [7] view networks by means of a matrix approach. Their focus is on
the coupling between disciplines via shared design variables. The coupling matrix can be
exploited by gradient based techniques via the chain rule and leads to efficient methods
with sparse matrices. From a networks perspective, the matrices can be interpreted as
adjacency matrices and therefore a translation into a network model is possible. However,
it can be argued that the approach has a too strong focus on computational models
to capture the entirety of a production environment, with aspects such as platforming,
discipline specific decision making and multi-objectivity within subdisciplines. This is
why we aim for a network model with a broader scope and emphasizing on linkage aspects,
albeit less focused on quantitative aspects.
Maulana et al. [6] introduce network models to model the relationships between objective
functions in many objective optimization. Positive links indicate complementary objectives,
negatively weighted links indicate conflicting objectives, whereas the non-existence of
links signals that objectives can be optimized independently (for instance, because they
depend on disjoint variable sets). They propose a method to derive these conflict graphs
empirically from a correlation matrix and use the networks to decompose the problem,
detect communities of objectives, and the relationship between these communities. Despite
its usefulness in structuring many-objective optimization problems, the model by Maulana
et al. is limited in scope. It represents only a single layer of the multidisciplinary problem
– the objectives layer - and falls short in terms of modeling and integrating relationships
between design variables, subsystems, and disciplines (or decision makers).

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
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Figure 11 Layered graph of a multidisciplinary optimization problem.

Braha et al. [1] aims for models of a design department of a large enterprise representing
interactions between designers and engineers as links. The model is not very detailed
in terms of node and link semantics, but due to the large size of the data sets some
interesting conclusions can be drawn about the general structure of the network, such as,
scale-free degree distributions and small word properties.
Ríos-Zapata et al. [9] consider complex decision networks in the context of traceability
within product design processes. The work is preliminary in nature, but is interesting
in its use of traceability trees to represent the multi-level relationships that connect
high-level requirements to detailed design realisations. It is possible to reformulate this
approach in MCDM terminology, where Properties are criteria, objectives or constraints
(f), Characteristics are decision variables (x), External Conditions are parameters (p) and
Relations are the models (simulations or expert opinions) that map x to f . The authors
demonstrate the approach on a simple design problem (a portable cooler), highlighting
the impact of detailed design choices on the properties of the product.
Klamroth et al. [5] introduce the concept of interwoven systems for multi-objective
optimization, in which design, optimization and decision making activities take place
within the context of interacting sub-systems. Each sub-system can be viewed as a node
within the global problem, with edges that represent shared variables and dependencies.
The paper is particularly notable in developing Pareto optimality definitions for such
interwoven systems.
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4.4.3 Towards a formalisation of complex networks for MCDM

Taking inspiration from the approach of Ríos-Zapata et al. [9], a multiobjective optimization
problem in a multidisciplinary product design setting can be viewed as a layered graph,
consisting of layers. The layered graph is visualized in Figure 11. Each layer has its own
specific type of nodes.
L1 Elementary Variables: The nodes of this layer are the decision variables. One might also

include the environmental variables which cannot be controlled.
L2 Subsystems: This layer consists of the subsystems of the production process. Subsystems

have often their individual modeling and simulation approaches that are then combined
in the multidisciplinary optimization.

L3 Objectives and Constraints: This layer consists of objectives and constraints. Some
constraints and objectives are formulated across different subsystems. An example is the
total mass of a car, to which different subsystem designs contribute, such as engine and
chassis, but others not, such as navigation software.

L4 Disciplines: Disciplines are concerned with different aspects of the design. For instance,
in car design, one might think of aerodynamics, car electronics, product marketing, and
engine design. Typically, in a product design process, disciplines are represented by
different teams with their own specific responsibilities. They are concerned with specific
objectives and constraints. For instance, the aerodynamics of a car might be of concern
for the marketing and for the environmental efficiency of a car.

L5 Products: the products are introduced into the model, in order to model platforming
strategies. A platform is a hyperedge of subsystems that can be produced in a combined
way and enter in this way into product. As a platform might include more than two
nodes, hyperedges (subsets of nodes) are considered as a model.

Relationships occur between nodes of different layers. Aiming for not modeling relation-
ships that can be deduced by means of transitive closure, we model only relationships of the
following types:
E12 Variable, Subsystem relationships: Subsystems can be viewed as functions that map

decision variables to outputs, that are then used to compute objective and constraint
function values. Formally, E12 ⊆ L1 × L2.

E23 Subsystems, Objectives relationships: The behavior and properties of subsystems
contribute to some of the objectives and constraints. Formally, E23 ⊆ L2 × L3.

E34 Objectives, Disciplines relationships: Disciplines take into consideration certain object-
ives and constraints, and it is possible that objectives and constraints are shared among
multiple disciplines. Formally, E34 ⊆ L3 × L4.

E25 Subsystem/Platform, Products relationships: Products consist of subsets of subsystems,
that might be grouped to subsets (platforms). Formally, E25 ⊆ ℘(L2)× L5. Here ℘(L2)
denotes the set of potential platforms (subsets of subsystems with cardinality bigger than
1) and subsystems, represented by the singletons. Non-overlap in terms of subsystems
applies.

All relationships are many-to-many relationships. There is total participation of each node
set in the relationship sets. This is visualized in Figure 12. An overview of the components
of a complex network for MCDM can also be found in Table 3.

4.4.4 Examples of complex networks

The above framework can be used to represent a range of applications comprising intercon-
nected components, which may be product parts and parameters, decision makers, and/or
objectives. Examples of applications that would fit the framework include the design of a
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Figure 12 Entity Relationshup Diagram.

product, planning and constructing of a facility, and determining the optimal location of
facilities (e.g. location of a school). The next two sections look in more detail on how the
framework can be mapped to two particular applications: designing a car (Section 4.4.4) and
planning and constructing a power station (Section 4.4.4).

Example I: Product design

Being able to model and facilitate the complex process of designing a sophisticated product
was one of the main motivations of this work. The reason that this task is not straightforward
is that a complex product, such as a car, consists of a large number of interconnected
components, such as an engine, the car body, suspension, electrical supply system, etc.
as illustrated in Figure 13. These components are developed by different teams often
independently of each other and with more or less conflicting goals in mind.

The availability of a structured framework to support the design of a complex product,
such as a car, will make the design process more efficient and cheaper as well as provide a tool
to visualize to the entire design team the various design components and their relationships.
Ultimately, the framework will facilitate decision making in an environment that exists of
many decision makers and different (conflicting) design goals (objectives).

What follows is a layer by layer mapping of the framework to the process of designing a
car (a less formal mapping is carried out in the next example).

Decision variables layer: This layer comprises controllable parameters that have a direct
influence on the shape, size and operation of every single component of a product. In the
car design example, this may include appearance parameters, such as the dimensions of
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Nodes Edges Layer

Disciplines or Discipline Decision
Makers

Objectives and Constraints relevant
to the discipline/decision making

Discipline

Objectives and Constraints Nodes and Subsystems that influ-
ence objectives

Objective/
Constraint

Subsystems and Nodes, can be
grouped to platforms

Variables that effect the subsystems Subsystem/
Node

Elementary variables controllable/observable Decision Vari-
able

Table 3 Overview of components, i.e. nodes, edges, and layers, of a complex network for MCDM.

Figure 13 Car parts (left plot, source: www.pinterest.co.uk) and engine parts (right plot, source:
www.anatomybody101.org).

a component and the location of a component within the overall product, and operation
parameters, such as mass, energy, power, temperature, etc required to run a particular
component.

Subsystem / node layer: The decision variable layer feeds into the subsystem layer in the
sense that specifying the setting of each of the decision variables will define the appearance
and working of a subsystem or component, such as the engine, battery, suspension, chassis,
and car body. Each component has objectives and constraints (e.g. related to the power
and noise of engine, and weight of chassis), which need to be accounted for when setting
the decision variables. Typically, there is a decision maker for each subsystem (component)
aiming to get the component at hand as optimal as possible.

The combination of several components can make up a platform. For instance, in the
context of cars, the combination of engine and suspension type may define a platform. The
characteristics of a platform, such as size and components involved, are monitored and decided
by a decision maker, who is typically different from the ones governing the components
involved in a platform.

Disciplines layer: This layer sits above the subsystem layer because it addresses multiple
components to best satisfy a joint objective and meet certain constraints. Examples of discip-
lines in car design include the acoustics of a car (noise), structures, dynamics, aerodynamics,
and heat transfer. It is common that each discipline has a decision maker associated with it.

www.pinterest.co.uk
www.anatomybody101.org
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Figure 14 Combined cycle power plant at Düsseldorf, Germany (source: www.siemens.com/press).

Product layer: The product layer links multiple components and platforms to form the
overall physical product, e.g. an actual car.

Objective / constraint layer All objectives and constraints considered in the subsystem
layer and the discipline layer are mapped onto the objective / constraint layer. In general,
there are several (conflicting) objectives in that layer including obvious ones, such as costs,
but also several other objectives one needs to account for prior to rolling out a product, such
as manufacturability, environmental impact, sustainability, product robustness, and customer
satisfaction. These objectives are typically posed by the chief engineer.

Example II: Power station planning and construction

Planning and construction of power stations is a very difficult task, which leads to a very
complex network with various complicated subsystems. Each power station is a personalized
product (product layer) because it is designed to the specific requests of every customer.
Various technologies (subsystem layer) are possible – the so-called combined heat and power
plant is the most cost-efficient way to produce power and heat (e.g., compare Figure 14).

In this subsection we present and discuss results obtained by Hirschmann [3, 4]. There are
several stages of the resulting engineering process including first planning, tender compiling,
assembling and integration, putting into operation and service. Since this large problem is
a discrete-continuous multiobjective optimization problem, the variables layer consists of
real variables (e.g. duration times of subprocesses), integer variables (e.g. number of stuff
members) and attributes (e.g. describing the quality of tools). The objective layer considers
five objectives: Project costs, fixed costs and duration have to be minimized, and flexibility
and the effective use of the resources are to be maximized. Figure 15 illustrates the discipline
layer together with the cooperation of the fields. Besides the classical disciplines such as
electrical engineering and mechanical engineering, there are additional disciplines, such as
fire and noise protection, among others.

The resulting optimization problem leads to an optimal engineering process illustrated
in Figure 16. This optimal process also considers time frames and is given in a simplified
form. Several tasks are done in parallel, but there are also common nodes as a result of these
subprocesses.
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Figure 15 Discipline layer of the construction of a power station.

Figure 16 Optimal engineering process of the construction of a power station.
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Figure 17 An example of empirical correlations between objectives.

4.4.5 Use cases for decision making in complex networks

Based on the above framework of complex networks, decision making is happening in different
layers having decision makers with roles as described in examples of Section 4.4.4. Most of
these decision situations are multi-objective by nature and the objectives in a lower level are
typically a subset or a part of the objectives considered in higher levels which makes decision
making in this setting complex. Next we will present some possible use cases for supporting
multiple criteria decision making in complex networks.

Identifying conflict and redundancy

One use case is to use empirical correlations at objective layer to identify relationships between
objectives, i.e. conflicting, harmonious and independent objectives [8]. When proceeding
downwards, one can identify candidates for platforms that minimize potential conflict(s).
In other words, what is the set of subsystems that can be used as a platform common to
different products that minimizes potential conflicts. To evaluate this, new metric(s) are
needed. On the other hand, when moving upwards, decision hotspots can be identified.
That means identifying decision makers / disciplines with conflicts of interest related to the
objectives considered requiring communication and negotiation in order to find consensus.
Finally, within the objective layer, empirical correlations can be used to find and remove
redundant objectives. An example of empirical correlations is shown in Figure 17 where
green color denotes positive correlation while red color indicates conflicts.

Case-based reasoning for product design programmes

A further potential use case for a complex MCDM network is the ability to identify likely
sources and degrees of conflict within product and platform design programmes. If existing
product design programme exemplars can be captured using layered graphs, then network
statistics can be used to quantify the features of these processes. For existing and past
programmes, experiential design expertise is often available on the presence of conflict within
the programme. This combined evidence could be used to develop case-based reasoning
for new product design programmes, indicating the likely levels of conflict that will be
experienced in the design of the product. This intelligence could be used by organisations in
resource planning and management for forthcoming design programmes.
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4.4.6 Discussion and future research ideas

We originally started our work on complex networks and MCDM collecting research questions
that came up thinking about the topic. Here are some of the research questions we discussed:
1. What examples of complex MCDA networks exist?
2. Can we simplify these to tractable examples?

What is minimum representation of multi-objective decision problem?
3. How do we represent these using formal languages?
4. How do we incorporate platform design issues?
5. How can we characterise the networks?
6. How do we analyse, design, optimise (on) these networks?
7. How do we introduce platforms in the networks?
8. How do we support decision making/consensus building on the networks?
9. What questions do we want to ask the network:

Who/what are the critical components wrt consensus finding?
Can we define useful metrics?
These might be uniqueness, computability, resilience, conflicts (levels and causes) etc.

During our work on the topic, we have been able to find some answers to these questions.
For example, Section 4.4.4 provides two examples of complex MCDM networks as an answer
to question 1. In addition, our attempt to define use cases can be seen as an answer to
question 2, however, not considering the minimisation aspect raised in the subquestion.
Finally, question 3 was the starting point for Section 4.4.3 on formalisation. Answering the
remaining question is part of future work.
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4.5.1 Introduction

An important factor in evaluating multi-objective optimization (MOO) algorithms is data
efficiency. For many real-world optimization problems, the number of evaluations of the
objective functions that can be performed is limited due to cost, time or system constraints.
Therefore, it is paramount for future MOO algorithms to be as data efficient as possible.

One approach for improving data efficiency is the use of meta-modeling (also called
in different communities Kriging or Bayesian optimization). The underlying idea behind
meta-modeling approaches is that explicitly building a model from the data collected during
the optimization makes possible to use this data to efficiently reason about the next set of
variables to evaluate. Moreover, the use of appropriate probabilistic meta-models makes the
optimization more resilient to the stochasticity of the objectives.

In the context of meta-modeling in MOO, there are several open questions that apply
also to an interactive context. One fundamental question, and the one that we discuss in this
report is: What meta-model should be learned? Or akin: At which level of abstraction should
we create the meta-models? In the literature, we can find meta-models at different levels of
abstractions: (1 ) meta-models of the the multiple objective functions by means of a model
per function [4, 9], (2 ) meta-model of the value of a scalarizing function [7, 2] that is defined
in terms of some weights that need to be varied at runtime to approximate the whole Pareto
front or (3 ) meta-models that predict some quality metric used by the optimization algorithm,
for example, the Pareto ranking of solutions [8]. For detailed citations and discussion of
related work, we refer to the recent review by Horn et al. [6]. However, despite these works,
it is unclear which choice is preferable under different circumstances. Moreover, among the
optimization algorithms that employ the third option, we did not find any work that directly
model Pareto compliant quality metrics such as the hypervolume or epsilon metrics [14].

Many recent multiobjective optimizers employ the hypervolume indicator to measure the
quality of the current solution set due to its advantageous theoretical properties [14, 11]—
among them also some prominent model-based algorithms [4, 9]. Although previous works
in the literature have shown that it is possible to compute the expected improvement of the
hypervolume contribution directly from the meta-models of the objective functions [5], we
did not find any work that has attempted to model directly the hypervolume contribution of
a point in the decision space.

In this work, we discuss several advantages of modeling the hypervolume contribution,
provide several alternative approaches for doing so, and present preliminary numerical results.
Moreover, our idea of directly modeling the hypervolume contribution can be extended to
other Pareto-compliant quality metrics [14], such as the quality metric guiding IBEA [12],
which is based on the binary ε-metric.

Another important question is which is the best meta-modeling technique to use for each
case. However, we hypothesize that, in the context of (stochastic) MOO, the actual technique
used has probably less impact than what is actually modeled. Thus, in this report, we focus
on Gaussian processes (GP) [10] and we leave the use of other meta-models for future work.
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4.5.2 Bayesian multi-objective optimization (BMO)

Let us assume the following algorithmic framework applied to the classical Bayesian optimiz-
ation scenario. We have a decision space that is a subset of Rn, where n is the number of de-
cision variables and a vector of M (expensive) objective functions ~f(~x) = {f1(~x), . . . , fM (~x)},
where fi : Rn → R (1 ≤ i ≤M), that are, without loss of generality, to be minimized. The
optimization goal is to approximate, as well as possible, the Pareto-optimal set, that is the
set of solutions X∗ that are not dominated by any other feasible solution, that is, ~x∗ ∈ X∗
iff @~x ∈ Rn such that ~f(~x) � ~f(~x∗) ∧ ~f(~x) 6= ~f(~x∗), where � is the weak Pareto dominance
relation.

A possible Bayesian optimization algorithm for solving the above problem is shown in
Algorithm 1. In this algorithm, we assume that there is a method for generating an initial set
of solutions available. The algorithm evaluates a single point ~xt per iteration t on the true
vector of objective functions ~f(~xt). Then, it builds a surrogate modelM based on the set
of solutions evaluated up to the last iteration t, Xt = {~x1, . . . , ~xt} and their true objective
function values Zt = {~f(~x1), . . . , ~f(~xt)}. How to build the model or what is the function (or
functions) predicted by the model are left unspecified. As mentioned in the introduction,
these may be the individual objective functions (fi), the value of some weighted aggregation
(scalarization) of the objective functions, or some quality metric applied to the image of the
solution set Xt. The model is then exploited at each iteration to suggest the next single
solution ~xt+1 to be evaluated on the true objective functions ~f . Again, how the model is
exploited depends on the particular implementation of this algorithmic model.

Algorithm 1 Template for Bayesian Multiobjective Optimization (BMO)
1: Initially, a set of µ solutions Xµ = {x1, . . . , xµ} ∈ Rn is generated by means of

random sampling, Latin Hypercube Design or some other method
2: Compute Zµ, the image of Xµ by evaluating the vector of true objective functions

~f(xi) ∈ RM for each xi ∈ Xµ

3: Set the iteration counter t to µ (the number of so-far evaluated solutions)
4: repeat
5: Build a modelM based on Xt and Zt
6: UseM to suggest a new point ~xt+1 based on an acquisition function

(e.g., expected improvement)
7: Evaluate the true ~f(~xt+1) and set Xt+1 = Xt ∪ xt+1 and Zt+1 = Zt ∪ ~f(~xt+1)
8: until happy or running out of time

4.5.3 A surrogate model for the HV contribution

The goal of several highly effective multi-objective optimization algorithms is to maximize the
hypervolume of the set of solutions found. The hypervolume of a solution setX = {~x1, . . . , ~xt}
(~xi ∈ Rn, ∀i = 1, . . . , t), given a reference point ~r ∈ RM is the hypervolume of the objective
space dominated by the solution set X and bounded above by the reference point:

HV(X) =
∫

1{~z∈RM | ∃~x∈X:~f(~x)�~z�~r}(~z)d~z (22)

where � is the weak Pareto dominance relation and 1A(a) the indicator function, giving one
if and only if a ∈ A. The Pareto-optimal set has the largest hypervolume of all feasible sets.

A way to guide the selection (or removal) of solutions during optimization is to select (or
discard) solutions with the highest (resp. lowest) hypervolume contribution to the current
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solution set, where the hypervolume contribution (HVC) of a solution ~x to a solution set
X is the increment in hypervolume after the addition of ~x to X, that is, HVC(~x,X) =
HV(X ∪ ~x)−HV(X). If ~x is dominated by any solution in X, then HVC(~x,X) = 0.

In the context of Bayesian optimization, a previous work [5] has shown that it is possible
to model the true objective functions and compute the hypervolume contribution of a solution
directly from this model. Our proposal here is to model directly the hypervolume contribution
(or some function related to this contribution) of a point in decision space, relative to the
archive Xt of already evaluated solutions (and their image Zt), without building any model
of the actual objective functions. One motivation for modeling directly the hypervolume
contribution is that we would model a single “function” instead of M objective functions.
Another motivation is that we conjecture that the landscape of the hypervolume contribution
is likely to be more regular and easier to navigate and model than the combined landscape
of the true objective functions.

To motivate this conjecture, we show in Fig. 18, for the simple problem of optimizing two
Sphere functions with two decision variables, the hypervolume contribution of each point
of the decision space with respect to a solution set of five solutions (marked with ×). The
center (hence, optimal) solution of each Sphere function is marked with a red and blue point,
respectively. As shown by the plot, the hypervolume contribution is a multi-modal function
but looks globally well-behaved with locally quadratic shapes and in the specific case of the
five given solutions, a single global optimum with a large basin of attraction. Although this
is not enough to prove our conjecture, specially when we move to higher dimensions and
more complex problems, it does show that the landscape of the hypervolume contribution is
not necessarily more complex than the combined landscape of the actual objective functions
being optimized.

In order to build a model that predicts the hypervolume contribution of each solution in
the decision space, we need to find out a way to build such a model using the information
contained in our current solution set Xt and its image Zt. We cannot simply use the
hypervolume contribution of each point in Xt with respect to itself, since all solutions would
have zero value. We discuss several possibilities in the next subsections.

Method 1: Use information only from dominated solutions

A first approach is to keep the assumption that the hypervolume contribution of each point
nondominated with respect to the current set Xt is zero, but assign a negative value to those
points from Xt that are dominated. We have devised up to three different ways of doing the
latter, which are illustrated in Fig. 19:
(a) A first variant assigns HV({~x})−HV(NDt) to each dominated point ~x ∈ Xt where NDt

is the set of non-dominated points in Xt. The main advantage of this method is its
simplicity. However, this variant is not smooth around zero when ~x gets closer to the
non-dominated set.

(b) A second variant assigns HVC(−)(~x,NDt)) to each dominated point ~x, where HVC(−)
denotes the contribution of ~x over the non-dominated set NDt if we maximize instead of
minimizing the objective functions and using the ideal of NDt as the reference point for
computing the hypervolume. We call this function, negative hypervolume contribution.

(c) Another possibility is to use a distance metric from ~x to NDt.
(d) Another simple strategy (not shown in Fig. 19) is to assign the negative dominance rank

(from non-dominated sorting) to each dominated point.
We expect that the metrics above would be able to approximate the hypervolume

contribution of solutions dominating the current solution set by exploiting the inherent
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Figure 18 Value of the hypervolume contribution of each point of the decision space of R2 with
respect to the solution set denoted by the symbols ×, when minimizing two Sphere functions whose
optimal solutions in (0.0) and (1, 0) respectively correspond to the blue and red points. Darker
colors indicate larger values of the hypervolume contribution.

symmetries of meta-models such as Gaussian processes. However, the fact that no distinction
is made for the nondominated solutions in our solution set may hinder the prediction power
of such a model (and waste useful information). Thus, we propose next a way to assign a
value to such nondominated solutions.

Method 2: Use information from all solutions evaluated

The idea underlying our second proposed approach is to distinguish between points in the
non-dominated set NDt by assigning different values to each of them (instead of zero like in
our first method above) in order to give even more information to the model. In particular,
given a nondominated solution ~x ∈ NDt, we assign it its actual hypervolume contribution
to the set Xt as HV(Xt) − HV(Xt \ ~x). This should result in a model with higher values
around solutions that are isolated in the objective space with the goal to force the Bayesian
optimizer to suggest new solutions that are more likely to dominate a larger part of the
objective space.

In the case of dominated points, we can use any of the variants discussed for method 1
above (see Fig. 19), leading to variants 2a, 2b, 2c, and 2d. Additionally, we could simply assign
a value of zero for such points and only use the information provided by the nondominated
solutions.
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Figure 19 Three ways of assigning an HV C-related value to the leftmost of three dominated
solutions.

Preliminary experiments

We carried out a few preliminary experiments to see whether the proposals above are able
to guide optimization. In particular we analyze methods 1a and 2a. In method 1a, each
dominated point ~x ∈ Xt \NDt is assigned the value HV({~x})−HV(NDt) ~x ∈ Xt, where NDt
is the set of non-dominated points in Xt, while points in NDt have a value of zero. In method
2a, dominated points have the same value as in method 1a, but each nondominated solution
~x ∈ NDt is assigned its actual hypervolume contribution to the set Xt as HV(Xt)−HV(Xt\~x).

We prototyped and integrated these two methods in the Algorithm 1 using the Opto
framework [1]. Subsequently, we executed the algorithms for a maximum of 60 evaluations of
the true objective function vector. We compare the results with the well-known ParEGO [7].
Figure 20 show the objective vectors of the final solution set produced by each approach on
the bi-objective Double Sphere problem with dimension n = 2. Nondominated solutions are
shown in red, while dominated solutions are shown in blue. The caption below each plot
indicates the size and the hypervolume of the nondominated set produced by each approach.
Although ParEGO produces the best results, it is encouraging that the first two runs of our
proposed approaches produce reasonable results. In particular, Method 2a produces slightly
better hypervolume but seems to have trouble generating solutions in the extremes of the
Pareto frontier and it generates solutions that are too close to each other.

When looking at the solution space (Fig. 21), we can clearly see that the solutions
produced by ParEGO are well-distributed along the Pareto set (green line), whereas the
solutions produced by methods 1a and 2a are clustered in a smaller region. This suggests
that the meta-model predicting the hypervolume contribution is not able to find extreme
solutions and keeps predicting a high hypervolume contribution in that small region.

We also apply the three approaches to the more challenging ZDT1 problem [13] and results
are shown in Fig. 22. To our surprise, our two methods are able to obtain slightly higher
hypervolume values than ParEGO, although only method 2a shows an even distribution of
solutions along the Pareto frontier, whereas method 1a produces solutions clustered in two
small regions.

Nevertheless, a single run on each of two problems only provides some support to our initial
conjecture that it is possible to guide optimization by directly modeling the hypervolume
contribution without modeling the actual objective functions. However, a proper experimental
analysis would be necessary to reach any definitive conclusions.
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(a) Method 1a: |ND| = 30, HV = 0.266164 (b) Method 2a: |ND| = 31, HV = 0.268667

(c) ParEGO: |ND| = 20, HV = 0.289163

Figure 20 Solutions, show in the objective space, produced by each approach when optimizing the
Double Sphere problem after a maximum of 60 solution evaluations. Red dots indicate nondominated
solutions, while blue dots are dominated ones.

4.5.4 A surrogate model based on binary ε-metric

As shown above, trying to directly predict the hypervolume contribution requires the definition
of alternative, but related metrics to assign a value to each point of our solution set Xt, since
the actual HVC value of those points would be zero. Instead of considering the hypervolume
contribution, a different approach to multi-objective model-based optimization was discussed
in our working group: The direct usage of the fitness function in IBEA [12] as the objective
function. This fitness function is defined as

F (~x1) =
∑

~x2∈Xt\{~x1}

−e−I(~x2,~x1)/κ (23)

where κ is a normalization parameter and the metric I() above may be, for example, the
additive binary ε-metric:

Iε+(~x2, ~x1) = max
i=1,...,M

fi(~x2)− fi(~x1) (24)

The benefit of the above fitness metric is that it naturally assigns a value to every point
in our solution set, and those values will usually be different, except for specific solution
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(a) Method 1a (b) Method 2a

(c) ParEGO

Figure 21 Solutions, shown in the decision space, produced by each approach when optimizing the
Double Sphere problem after a maximum of 60 solution evaluations. Red dots indicate nondominated
solutions, while blue dots are dominated ones. The green dashed line corresponds to the optimal
Pareto set.
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(a) Method 1a: HV = 120.297457 (b) Method 1b: HV = 120.631212

(c) ParEGO: HV = 119.385955

Figure 22 Solutions, show in the objective space, produced by each approach for the ZDT1
problem after 60 solution evaluations. Red dots indicate nondominated solutions, while blue dots
are dominated ones.
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Figure 23 Value of IBEA’s fitness function F () (using additive binary ε-indicator) at each point of
the decision space of R2 with respect to the solution set denoted by the symbols ×, when minimizing
two Sphere functions, whose optimal solutions in (0, 0) and (1, 0) respectively correspond to the blue
and red points. Darker colors indicate larger values of F (). The right plot shows the landscape of
F () after adding one (dominated) point to the solution set of the left plot.

sets that are unlikely to arise in real-world problems. In addition, IBEA has been show to
perform consistently well (when properly tuned for the scenario at hand) in a large number
of scenarios, often outperforming more recent and popular multi-objective evolutionary
algorithms [3]. Thus, this fitness function is likely to produce a similarly well-performing
Bayesian optimizer.

A quick numerical experiment, however, showed that the IBEA fitness function has the
disadvantage of fundamentally changing its landscape after adding dominated points to the
solution set into the history. Figure 23 shows the landscape of function F (~x) (Eq. 23) on
a bi-dimensional decision space when optimizing two Sphere functions, with darker colors
corresponding to higher values of F (). The optimal solutions of each Sphere function are
shown as a red and a blue point, respectively, and contour lines denote the function value of
each Sphere function. The current solution set Xt is denoted by ×. The left plot shows the
landscape of F () with respect to five solutions in Xt. The right plot shows the landscape
after adding an additional (dominated) solution to Xt at the top right. The difference in
colors between the two plots show that the landscape of the fitness function F () has changed
after adding this point, in particular, the peaks of the function have shifted towards the red
point.

4.5.5 Conclusions

Many optimization problems have objective functions that are expensive to evaluate. In this
case, meta-modeling allows predicting where to look for next solutions to be evaluated. The
insights of newly evaluated solutions are then taken into account to update or refine the model
for the problem at hand. Existing approaches either model the individual objective functions
or a weighted aggregation thereof, however, we are not aware of any attempts at modeling
directly the quality metrics that guide several multi-objective evolutionary algorithms.

In this report, we have discussed several ways to directly model the hypervolume contri-
bution. Preliminary results on two problems suggest that this approach can guide a Bayesian
multi-objective optimizer based on Gaussian Processes (GP), however, we also identified
that the solutions generated have a low diversity and appear clustered in small regions of
the decision and objective spaces. In addition, we also proposed how to model the fitness
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function of IBEA, which is based on the binary ε-indicator. This ε-based fitness seems, in
principle, easier to model directly than the hypervolume contribution, being able to directly
provide a value for every point evaluated by the algorithm.

Further work is necessary to determine the advantages and disadvantages of the variants
proposed here and empirically analyze their performance on multiple problems.
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5 Topics of Interest for Participants for the Next Dagstuhl Seminar

During the summary session on Friday, all participants had an extensive discussion on the
future challenges related to EMO and MCDM. This has lead to a plethora of suggestions for
future seminar topics continuing the series. Photographs of topics of interest for participants
for the next Dagstuhl seminar on EMO & MCDM are shown in Figure 24. The suggestions
will be used by the organizers towards the proposal for a continuation of the series.

6 Changes in the Seminar Organization Body

Joshua Knowles steps down as co-organizer
On behalf of all the participants of the seminar, KK, GR and MW would like to extend our
warm thank you to Joshua Knowles for his contributions to this Dagstuhl seminar series on
Multiobjective Optimization as he steps down from the role of co-organizer, which he has
held for three terms of office. To our large regret, Joshua could not be in Dagstuhl during
the seminar week. Nevertheless, he has played a leading role in shaping the topic, sharpening
the research questions and setting us all up on an exciting journey to personalization. We
are very thankful for his advice and activities in the preparation of this and the previous
seminars. Thank you, Joshua!

Welcome to Carlos Fonseca
We are very pleased that our esteemed colleague Carlos Fonseca has agreed to serve as co-
organizer for future editions of this Dagstuhl seminar series on Multiobjective Optimization.

7 Seminar Schedule

Monday, January 15, 2018
08:45 – 10:30: Welcome Session

Welcome and Introduction
Short presentation of all participants (2 minutes each!)
Introduction to the topic of the seminar

Coffee Break

11:00 – 12:00: Application Challenges
Karl Heinz Küfer: Industrial Applications of Multicriteria Decision Support Systems
Georges Fadel: Culturally Tailored Multicriteria Product Design using Crowdsourcing

Lunch

13:30 – 14:30: Personalization in Model Building, Approximation, and Representation
Kalyanmoy Deb: Metamodeling Approaches for Multiobjective Optimization
Serpil Sayin: Representations: Do they have Potential for Customer Choice?

Coffee Break
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Figure 24 Topics of interest for participants for the next Dagstuhl seminar.
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15:00 – 15:30: Personalization and Preference Modelling
Robin Purshouse: Modelling Complex Networks of Decision Makers: An Analytical
Sociology Perspective

15:30 – 16:00: Personalization in Algorithm Design and Efficiency
Manuel López-Ibánez: Data-Driven Automatic Design of Multi-Objective Optimizers

Break

16:15 – 18:00: Group Discussion about Hot Topics and Working Groups

Tuesday, January 16, 2018
09:00 – 10:00: Decision Analytics and Consensus Chair: Salvatore Greco

Michael Emmerich: Maximizing the Probability of Consensus in Group Decision Making
Kaisa Miettinen: Decision Analytics with Multiobjective Optimization and a Case in
Inventory Management

Coffee Break

10:30 – 12:00: Working Groups

Lunch

13:30 – 14:30: Personalization and Learning Chair: Jussi Hakanen
Jürgen Branke: Active Learning for Mapping Advertisements to Customers
Roman Slowinski: The NEMO framework for EMO: Learning value functions from
pairwise comparisons

Coffee Break

15:00 – 17:00: Working Groups

17:00 – 18:00: Reports from Working Groups
6 minutes / 3 slides per working group
General discussion and working group adaptations

Wednesday, January 17, 2018
09:00 – 10:00: Metamodelling and Knowledge Extraction Chair: Carlos Fonseca

Mickaël Binois: Uncertainty Quantification on Pareto Fronts
Abhinav Gaur: Unveiling Invariant Rules from Non-Dominated Solutions for Knowledge
Discovery and Faster Convergence

10:00: Announcements

Coffee Break

10:30 – 12:00: Working Groups

Lunch

14:00: Group Foto (Outside)

14:05 – 16:00: Hiking Trip
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16:30 – 18:00: Reports from Working Groups
15 minutes / 5 slides per working group

Thursday, January 18, 2018
9:00 – 10:00: Data Structures Chair: Christoph Lofi

José Rui Figueira: Compressed Data Structures for Bi-Objective {0, 1}-Knapsack Prob-
lems
Andrzej Jaszkiewicz: Recent Algorithmic Progress in Multiobjective (Combinatorial)
Optimization

Coffee Break

10:30 – 12:00: Working Groups

Lunch

13:30 – 15:30: Working Groups

Coffee Break

16:00 – 17:00: Working Groups

17:00 – 18:00: Continuing the Dagstuhl Seminar Series

20:00: Wine & Cheese Party (Music Room)

Friday, January 19, 2018
9:00 – 11:00: Presentation of Working Group Results

Coffee Break

11:30 – 12:00: Summary, Feedback, and Next Steps

Lunch & Goodbye
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