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Abstract
This report documents the programme of Dagstuhl Seminar 18111 “Loop Optimization”. The
seminar brought together experts from three areas: (1) model-based loop optimization, chiefly,
in the polyhedron model, (2) rewriting and program transformation, and (3) metaprogramming
and symbolic evaluation. Its aim was to review the 20+ years of progress since the Dagstuhl
Seminar 9616 “Loop Parallelization” in 1996 and identify the challenges that remain.
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Motivation
Loop optimization is at the heart of effective program optimization – even if the source
language is too abstract to contain loop constructs explicitly as, e.g., in a functional style or
a domain-specific language. Loops provide a major opportunity to improve the performance
of a program because they represent compactly a large volume of accessed data and executed
instructions. Because the clock frequency of processors fails to continue to grow (end of
Dennard scaling), the only way in which the execution of programs can be accelerated is by
increasing their throughput with a compiler: by increasing parallelism and improving data
locality. This puts loop optimization in the center of performance optimization.

Context
The quick and easy way to optimize a loop nest, still frequently used in practice, is by
restructuring the source program, e.g., by permuting, tiling or skewing the loop nest. Beside
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being laborious and error-prone, this approach favors modifications that can be easily
recognized and carried out, but which need not be the most suitable choice. A much better
approach is to search automatically for optimization options in a mathematical model of the
iteration space, in which all options are equally detectable and the quality of each option
can be assessed precisely.

Recently, the polyhedral compilation community has produced a set of robust and powerful
libraries that contain a variety of algorithms for the manipulation of Presburger sets, including
all standard polyhedral compilation techniques. They can be incorporated in a program
analysis to make other compiler optimizations more precise and powerful, like optimizers and
code generators for domain-specific languages, or aggressive optimizers for high-performance
computing.

Polyhedral loop optimization relies on strict constraints on the structure of the loop
nest and may incur a computationally complex program analysis, based on integer linear
programming. The optimization problems become much simpler when information at load
or run time is available, i.e., the optimization is done just-in-time. Also, the search for
the best optimization can be supported by other techniques, e.g., auto-tuning, machine
learning or genetic algorithms. While these techniques are all fully automatic, engineering of
software with robust performance characteristics requires programmers to have some level
of explicit control over the data distribution and communication costs. However, manually
optimized code is far too complicated to maintain. Thus, a major research area concerns
the design of tools that allow developers to guide or direct analysis (e.g., via dependence
summaries or domain-specific code generation) and optimization (e.g., via directives, sketches
and abstractions for schedules and data partitioning).

Goal
The goal of this seminar was to generate a new synergy in loop optimization research by
bringing together representatives of the major different schools of thought in this field.
The key unifying idea is to formulate loop optimization as a mathematical problem, by
characterizing the optimization space and objectives with respect to a suitable model.

One school is focused on reasoning about scheduling and parallelization using a geometric,
“polyhedral”, model of iteration spaces which supports powerful tools for measuring parallelism,
locality and communication – but which is quite limited in its applicability.

Another major school treats program optimization as program synthesis, for example by
equational rewriting, generating a potentially large space of variants which can be pruned
with respect to properties like load balance and locality. This approach has flourished in
certain application domains, but also suffers from problems with generalization.

A third family of loop optimization approaches tackles program optimization through
program generation and symbolic evaluation. Generative approaches, such as explicit staging,
support programmers in taking explicit control over implementation details at a high level of
abstraction.

The seminar explored the interplay of these various loop optimization techniques and
fostered the communication in the wide-ranging research community of model-based loop
optimization. Participants represented the various loop optimization approaches but also
application domains in high-performance computing.
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Conclusions
The seminar succeeded in making the participants aware of common goals and relations
between different approaches. Consensus emerged on the potential and importance of
tensor contractions and tensor comprehensions as an intermediate representation. There
was also some excitement in connecting the classical dependence-based optimization with
newly emerging ideas in deriving parallel algorithms from sequentially-dependent code
automatically. Guided automatic search and inference turned out to be a dominant theme.
Another important insight was that the optimization criteria currently in use are often too
coarse-grained and do not deliver satisfactory performance. More precise hardware models are
needed to guide optimization. This will require a closer collaboration with the performance
modeling and engineering community.

It was agreed that publications and collaborations fueled by the seminar will acknowledge
Schloss Dagstuhl.
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3 Overview of Talks

30-min talk slots covered the programme until Thursday mid-afternoon; four keynote present-
ations took up two slots each. The latter part of the seminar was devoted to the planning of
future collaborations. A list of talks follows in the order in which they were presented.

3.1 On the Design of Intermediate Representations for Loop Nest
Optimization (Keynote)

Albert Cohen (ENS – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Albert Cohen

Joint work of Ulysse Beaugnon, Albert Cohen, Tobias Grosser, Jacques Pienaar, Chandan Reddy, Vivek Sarkar,
Jun Shirako, Nicolas Vasilache, Sven Verdoolaege, Oleksandr Zinenko, Jie Zhao

The associated slides focus on advanced affine scheduling heuristics and attempt to derive
some lessons from the experience of customizing a rather generic framework (polyhedral
compilation) to a specific purpose (harnessing the multi-level parallelism and memory
hierarchy of modern multi-processors).

3.2 Beyond the Polyhedral Model (Keynote)
Paul Feautrier (ENS – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Paul Feautrier

The polyhedral model is a powerful tool for program analysis, verification, optimization and
parallelization. However, its applicability is restricted to regular programs with only scalar
and arrays as the only data structures, affine subscripts, and counted loops with affine bounds
as the only control constructs. As it now stands, the model is especially applicable to linear
algebra and signal processing algorithms. Many extensions to the model were proposed since
its inception, as for instance using enabling transformations or detection of static control
parts: SCoPs. I feel that the time has come for a more drastic approach: the creation and
exploration of new models, either more powerful than the polyhedral model or directed at
other families of algorithms.

I will first review early attempts at the creation of other models, as for instance the
polynomial model, the flowchart model, or models based on the theory of formal languages. A
promising research direction is the use of approximate methods, applying concepts borrowed
from the abstract interpretation theory. The flowchart model is a first attempt at combining
both types of tools.

Proof assistants like Coq may help in the construction of models. However, Coq is not
a solver, and hence is not suited for the analysis of existing programs (the “dusty deck”
problem). It may best be used for the construction of frameworks guaranteeing bug-free
programming.

http://creativecommons.org/licenses/by/3.0/
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3.3 Static Instruction Scheduling for High Performance on Limited
Hardware

Alexandra Jimborean (Uppsala University – Uppsala, SE)

License Creative Commons BY 3.0 Unported license
© Alexandra Jimborean

Joint work of Kim-Anh Tran, Trevor E. Carlson, Konstantinos Koukos, Magnus Själander, Vasileios Spiliopoulos,
Stefanos Kaxiras, Alexandra Jimborean

Complex out-of-order (OoO) processors have been designed to overcome the restrictions of
outstanding long-latency misses at the cost of increased energy consumption. Simple, limited
OoO processors are a compromise in terms of energy consumption and performance, as they
have fewer hardware resources to tolerate the penalties of long-latency loads. In the worst
case, these loads may stall the processor entirely.

We present Clairvoyance, a compiler-based technique that generates code able to hide
memory latency and better utilize simple OoO processors. By clustering loads found
across basic block boundaries, Clairvoyance overlaps the outstanding latencies to increase
memory-level parallelism. We show that these simple OoO processors, equipped with the
appropriate compiler support, can effectively hide long-latency loads and achieve performance
improvements for memory-bound applications. To this end, Clairvoyance tackles (i) statically
unknown dependencies, (ii) insufficient independent instructions, and (iii) register pressure.

Clairvoyance achieves a geomean execution time improvement of 14% for memory-
bound applications, on top of standard O3 optimizations, while maintaining compute-bound
applications’ high performance.

3.4 FPGAs vs. GPUs: How to Beat the Beast
Frank Hannig (Friedrich-Alexander University Erlangen-Nürnberg – Erlangen, DE)

License Creative Commons BY 3.0 Unported license
© Frank Hannig

Joint work of Frank Hannig, Richard Membarth, M. Akif özkan, Oliver Reiche, Moritz Schmid, Jürgen Teich

Graphics processing units (GPUs) and field-programmable gate arrays (FPGAs) are often
employed as accelerators for computationally intensive applications. Both architectures
have an abundant number of computational resources in common, albeit of different type
and granularity. However, when it comes to programming, FPGAs and GPUs are greatly
different. To bridge this sort of programmability gap, domain-specific languages (DSLs) are
a promising solution, since they separate algorithm development from parallelization and
low-level implementation details on an actual target architecture. Thus, DSLs offer high
flexibility among heterogeneous hardware targets, such as CPUs and GPUs. With the recent
rise of high-level synthesis (HLS) tools, such as Xilinx Vivado HLS and Intel/Altera OpenCL,
FPGAs become tame. Particularly in the domain of image processing, applications often
come with stringent requirements regarding performance, energy efficiency, and power, for
which FPGAs have been proven to be among the most suitable architectures.

We present the Hipacc framework, a DSL and source-to-source compiler for image
processing. We show that domain knowledge can be captured to generate tailored implement-
ations for C-based high-level software from a common high-level DSL description targeting
FPGAs. Our approach includes FPGA-specific memory architectures for handling point and
local operators, as well as several high-level transformations. We evaluate our approach by
comparing the resulting hardware accelerators to GPU implementations, generated from the
same DSL source code.
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3.5 Structured Parallel Programming: Code Generation by Rewriting
Algorithmic Skeletons

Michel Steuwer (University of Glasgow – Glasgow, GB)

License Creative Commons BY 3.0 Unported license
© Michel Steuwer

Joint work of Lift team

I will argue that we should structure our parallel programs using higher-level primitives
which encode higher-level semantics explicitly. I will draw on similarities to “structured
programming” which introduced concepts such as ‘while’ and ‘for’ loops as an answer to the
software crisis in the late 1960s. The arguments made by Dahl, Dijkstra, and Hoare are still
valid today but we need to revisit them in the context of parallelism.

I will discuss our work on the Lift project (http://www.lift-project.org) which introduces
a set of data-parallel high-level primitives, called algorithmic skeletons, which are used to
express programs in an abstract purely functional way. A rich exploration process optimizes
these programs by rewriting the high-level program into low-level programs which encode
implementations and optimization decisions explicitly. I will present encouraging performance
result and sketch our ongoing research.

3.6 Rewriting with an Index-Based Intermediate Representation
Charisee Chiw (University of Chicago – Chicago, US)

License Creative Commons BY 3.0 Unported license
© Charisee Chiw

Joint work of Charisee Chiw, John Reppy

The EIN representation is a hybrid design that embeds expression trees into a normalized
SSA representation. The representation can concisely and clearly express the indexing of
different arguments involved in a large computation as a single term. Invariant terms can
be moved in and out of loops with simple pattern matching, rewriting, and analysis. In the
future, we want to examine the entire computation at an earlier stage of compilation. Then
we can develop a more advanced approach to loop optimization.

We designed an intermediate representation (IR), EIN, for tensor math. This design
preserves the useful properties of the SSA representation, while providing flexibility in the
specification of tensor and tensor-field operations. The key property of this design is that it
allows reference to indices in the body of EIN expressions, while also providing a compact
representation of the nested iteration that is implicit in the definition of tensors and tensor
fields. A single EIN term consists of a tensor or field variable binding and indices. The index
binding and ordering describes the shape and sampling of each argument. EIN supports
standard linear algebra operations on tensors, such as addition, subtraction, the dot product,
as well as other tensor operations such as the double-dot (colon) product, the outer product,
and trace. One can think of the index space as defining an n-deep loop nest over the index
variables, where the EIN expression is the loop body that defines scalar components of the
result.

By examining the indices in EIN terms, we can do some modest loop invariant code
motion. Each summation operator represents a loop nest that will be unrolled later in the
compilation. Thus, moving operations outside the summation can avoid subsequent code
duplication. This transformation is essentially loop-invariant code hoisting for the special case

http://creativecommons.org/licenses/by/3.0/
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of summations. When there are nested summations, our method applies additional analysis
to see whether the summation can be converted into the product of independent summations.
We identify loop invariants by looking at the indices. We are currently wondering whether we
can expand on this simple idea to improve code generation. If we take a step back and look
at the mathematical structure of the larger computation, we can leverage this knowledge
into efficient code.

3.7 Synthesis of Modular Parallelism for Nested Loops
Victor Nicolet (University of Toronto – Toronto, CA)

License Creative Commons BY 3.0 Unported license
© Victor Nicolet

Joint work of Victor Nicolet, Azadeh Farzan

Parallelizing loops is notoriously difficult when there are true dataflow dependencies that
forbid parallelization using the wealth of sound code transformation techniques studied over
the years. In previous work, we tackled the problem of finding divide-and-conquer parallel
implementations of sequential loops. The idea was to first lift the loop by discovering and
adding new computation of information that is redundant in the sequential program, but
necessary for an efficient divide-and-conquer parallelization. This approach was specific to a
class of loops that traverse a linear iteration space and compute a function of a sequence,
and does not generalize to nested loops over multidimensional data. We propose a modular
approach to analyze these by treating each loop nest separately. First, we encapsulate the
inner loop to abstract its effect in the outer loop. Then, we explain how parallelizing the outer
loop, that uses only this encapsulation, can give us a parallel implementation of the initial
loop nest. I will talk about how this lets us leverage our existing automatic parallelization
solution for single loops to one for more sophisticated loops.

3.8 Multidimensional Scheduling in the Polyhedral Model
Louis-Noël Pouchet (Colorado State University – Fort Collins, US)

License Creative Commons BY 3.0 Unported license
© Louis-Noël Pouchet

Compositions of loop transformations are represented in the polyhedral compilation framework
using scheduling functions, represented as integer matrices. To find a good schedule, two
approaches can be employed: (a) computing each row of the scheduling matrix one at a
time, typically solving one integer linear program (ILP) for each row, as done for example by
the Pluto algorithm; and (b) computing all rows at once, using a single but usually more
complex ILP, as done in the Ponos tool.

We will focus on one-shot multidimensional scheduling, where a single ILP is formulated
to find the entire scheduling matrix. We will present the generic space of legal schedules
implemented in Ponos, and show how to quickly design scheduling objectives, e.g., for specific
parallelization or data locality patterns. We will present an interactive interface to the Ponos
tool, to facilitate the design of new ILP-based multidimensional scheduling techniques.
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3.9 Iterative Schedule Optimization for Parallelization in the
Polyhedron Model

Stefan Ganser (University of Passau – Passau, DE)

License Creative Commons BY 3.0 Unported license
© Stefan Ganser

Joint work of Stefan Ganser, Armin Größlinger, Norbert Siegmund, Sven Apel, Christian Lengauer

The polyhedron model is a powerful model to identify and apply systematically loop trans-
formations that improve data locality (e.g., via tiling) and enable parallelization. In the
polyhedron model, a loop transformation is, essentially, represented as an affine function.
Well-established algorithms for the discovery of promising transformations are based on
performance models. These algorithms have the drawback of not being easily adaptable
to the characteristics of a specific program or target hardware. An iterative search for
promising loop transformations is more easily adaptable and can help to learn better models.
We present an iterative optimization method in the polyhedron model that targets tiling
and parallelization. The method enables either a sampling of the search space of legal
loop transformations at random or a more directed search via a genetic algorithm. For
the latter, we propose a set of novel, tailored reproduction operators. We evaluate our
approach against existing iterative and model-driven optimization strategies. We compare
the convergence rate of our genetic algorithm to that of random exploration. Our approach
of iterative optimization outperforms existing optimization techniques in that it finds loop
transformations that yield significantly higher performance. If well configured, then random
exploration turns out to be very effective and reduces the need for a genetic algorithm.

3.10 The Polyhedral Model Beyond Static Compilation, Affine
Functions and Loops

Philippe Clauss (University of Strasbourg – Strasbourg, FR)

License Creative Commons BY 3.0 Unported license
© Philippe Clauss

The polyhedral model has been proven to be a powerful framework for automatic analysis &
transformation of loops. However, it suffers from strong limitations since it is mostly limited
to “Fortran like” loops and linear transformations. We show that its scope and efficiency
can be extended either by extending its mathematical objects to polynomials and algebraic
expressions, or thanks to its use at run time. Run-time (speculative) polyhedral compilation
opens new challenging opportunities for handling more general (non-linear) loops or handling
non-loop programs that have a looping behavior, while algebraic expressions provide greater
effectiveness and a larger scope of loop transformations. We illustrate the presentation with
the speculative polyhedral optimization framework Apollo, and with the Trahrhe expressions
(“Ehrhart” read backwards), which are the inverse of ranking Ehrhart polynomials. Some
uses of Trahrhe expressions are presented: collapsing of non-rectangular loops and algebraic
tiling.
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http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Sebastian Hack, Paul H. J. Kelly and Christian Lengauer 49

3.11 Efficient Online Tuning of Accelerator Mapping Decisions
Philip Pfaffe (KIT – Karlsruhe, DE)

License Creative Commons BY 3.0 Unported license
© Philip Pfaffe

Automatic parallelization is a key component in state-of-the-art industry-grade compilers
as well as research. With polyhedral optimization, even parallelization for heterogeneous
platforms is realizable within a well-structured framework. Nevertheless, achieving optimal
or even near-optimal performance with automatic transformations is hard, courtesy of a
multitude of degrees of freedom inherent to platform specific optimization and paralleliza-
tion. Fortunately, autotuning is an already established technique to deal with optimizing
performance in the presence of high-dimensional search spaces. In this positional talk, we
will examine the benefits that online-autotuning can offer to heterogeneous parallelization,
and discuss promising future directions in tightly coupling autotuners with parallelizing
compilers.

3.12 Loop Execution Time Modeling
Julian Hammer (Friedrich-Alexander University Erlangen-Nürnberg – Erlangen, DE)

License Creative Commons BY 3.0 Unported license
© Julian Hammer

The modeling of loop execution time allows us to evaluate optimization potentials prior to
run time. If found in closed form, they may even directly yield optimization parameters,
derived from hardware and code properties. We will present the layer condition cache model
and ongoing efforts in instruction-level out-of-order execution time prediction. We believe
that the integration of such models in compilers and auto-tuning tools will largely reduce –
or even eradicate – test-runs, decrease guessing and support informed choices during build
time.

3.13 Compiling Tensor Algebra for Finite-Element Computations
Lawrence Mitchell (Imperial College – London, GB)

License Creative Commons BY 3.0 Unported license
© Lawrence Mitchell

Joint work of Lawrence Mitchell, Thomas Gibson, David A. Ham, Miklós Homolya, Paul H. J. Kelly, Fabio
Luporini, Tianjiao Sun

At the core of a PDE, any library that uses finite elements is a large tensor contraction.
Providing a low flop count, highly efficient implementation of this contraction is either
devolved to the computational scientist (and then a general-purpose compiler), or else to a
domain-specific compiler (and thence to a general-purpose one).

I will talk about the domain-specific compiler, and the optimisation passes, that we use
in the Firedrake project (www.firedrakeproject.org), that deliver low algorithmic complexity
algorithms on a class of finite elements that exhibit kronecker product structure.

I will then cover some open questions and future research directions, in particular how
to extend the code transformation pipeline to incorporate operations on tensors that are
not easily expressible as scalar indexed expressions: of particular interest is to widen the
applicability to include tensor inverse and determinant calculations.
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3.14 Automated Cross-Element Vectorization in Firedrake
Tianjiao Sun (Imperial College – London, GB)

License Creative Commons BY 3.0 Unported license
© Tianjiao Sun

Joint work of Tianjiao Sun, Lawrence Mitchell, David A. Ham, Paul H. J. Kelly

Firedrake is a domain-specific language embedded in Python for numerical solution of partial
differential equations (PDEs) using the finite-element method. Firedrake provides the users
with a high-level interface to express the problems in a high-level mathematical language
while generating efficient low-level code. The internal intermediate representations in this
code generation pipeline offer performance optimization opportunities at different levels of
abstraction. We present one of the latest developments in Firedrake which enables automated
vectorization across elements on unstructured meshes for typical finite-element assembly
kernels, so as to address the problem of better performance and hardware utilization on
SIMD architectures.

Modern CPUs increasingly rely on SIMD instructions to achieve higher throughput and
better energy efficiency. It is therefore important to vectorize sequences of computations
in order to sufficiently utilize the hardware today and in the future. This requires the
instructions to operate on groups of data that are multiples of the width of the vector lane
(e.g., 4 doubles, 8 floats on AVX2 instructions). Finite-element computations usually require
the assembly of vectors and matrices which represents differential forms on the domain. This
process consists of applying a local assembly kernel to each element, and increment the
global data structure with the local contribution. Typical local assembly kernels suffer from
issues that often preclude efficient vectorization. These include complicated loop structure,
poor data access patterns, and loop trip counts that are not multiples of the vector width.
General-purpose compilers often perform poorly in generating efficient, vectorized code for
such kernels.

We present a generic and portable solution in Firedrake based on cross-element vector-
ization. Although vector-expanding the assembly kernel is conceptually clear, it is only
enabled by applying a chain of complicated loop transformations. Loo.py is a Python package
that defines array-style computations in the integer-polyhedral model and supports a rich
family of transformations that operate on this model. In Firedrake, we adapt the form
compiler, TSFC, to generate Loo.py kernels for local assembly operations, and systematically
generate data gathering and scattering operations across the mesh in PyOP2. Firedrake
drives loop transformations using Loo.py from this high-level interface to generate efficient
code vectorized across a group of elements which fully utilizes the vector lane. This tool
chain automates the tedious and error-prone process of data layout transformation, loop
unrolling and loop interchange, while being transparent to the users.

We will present experimental results performed on multiple kernels and meshes. We
achieve speedups consistent with the vector architecture available compared to baseline which
vectorizes inside the local assembly kernels. The global assembly computations reach tens of
percent of hardware peak arithmetic performance.
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3.15 Automated Loop Generation for High-Performance Finite
Differences (and Beyond)

Fabio Luporini (Imperial College – London, GB)

License Creative Commons BY 3.0 Unported license
© Fabio Luporini

Joint work of Fabio Luporini, Charles Yount, Mathias Louboutin, Navjot Kukreja, Philipp Witte, Tim Burger,
Michael Lange, Felix Herrmann, Gerard Gorman

We present the architecture and performance of Devito, a system to express numerical kernels
in high-level mathematical notation. We focus, in particular, on the generation of highly
optimized operators for seismic inversion. These involve solving partial differential equations
(via finite differences) as well as other non-trivial mathematical operations (e.g., sparse points
interpolation). The codes that need to be generated by the Devito compiler are therefore
quite complex, including arbitrary, non-perfect nests of regular or irregular loops. We discuss
the design of the compiler and the performance of the generated code for production-level
seismic operators, showing roofline models for two Intel architectures (Skylake, KNL).

3.16 Implementations of Loop Constructs
Shigeru Chiba (University of Tokyo – Tokyo, JP)

License Creative Commons BY 3.0 Unported license
© Shigeru Chiba

This presentation compares and discusses several implementation techniques of programming
language constructs for loops. Programmers need appropriate abstraction for describing
their loops. Compiler developers also need it to retrieve optimization hints related to data
dependency and other kinds of memory access patterns seen in the loop. Such abstraction
will be provided as (built-in) domain-specific data types and operators for programmers. A
question is how to implement these data types and operators to deliver good performance.
This presentation shows an overview of several techniques including simple object-oriented
libraries (also known as shallow embedding), C++ template meta programming, external
DSLs developed from scratch, pragmas, deep embedding, and deep reification. Benefits and
drawbacks of those techniques are mentioned. An important metric here is the implementation
costs of abstraction (the data types and operators) since providing abstraction designed for
a smaller application domain will be feasible if its implementation cost is not expensive.

3.17 Loop Iterations – Aligned and/or Pipelined?
Ayal Zaks (Intel and Technion – Haifa, IL)

License Creative Commons BY 3.0 Unported license
© Ayal Zaks

There are two distinct and complementary transformations that can be applied to the itera-
tions of a loop: aligning them to achieve data-level parallelism, also known as vectorization,
and pipelining them according to an iteration initiation interval to achieve instruction-level
parallelism at fine grain, and double-buffering to achieve memory-level parallelism at coarse
grain. Vectorization, also related to loop coarsening, can handle uniform branches and certain
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dependencies. Pipelining can handle dependencies but not branches. Both are applied to
countable loops, or loops whose trip count is known a few iterations ahead of time.

Aligning iterations is supported by data-parallel heterogeneous programming models such
as OpenCL’s ND-range, facilitating both SIMD execution and dynamic load balancing across
massively parallel GPUs. Pipelining and double-buffering, however, stitches all iterations
together and leads to the static allocation of all iterations on one device. As a result, there
is a mismatch between data-parallel models and deeply pipelined devices, such as FPGAs,
which we seek to resolve.

3.18 Parallelizing Dependent Computations
Madanlal Musuvathi (Microsoft Research – Redmond, US)

License Creative Commons BY 3.0 Unported license
© Madanlal Musuvathi

Joint work of Madanlal Musuvathi, Mike Barnett, Saeed Maleki, Todd Mytkowicz, Yufei Ding, Daniel Lupei,
Charith Mendis, Mathias Peters, Veselin Raychev

Parallelization is often synonymous with identifying independent subcomputations. On
the other hand, it is well known that certain dependent computations, such as summing
all elements in an array, can be parallelized by using the associativity of the operations
involved. I will present our recent work on generalizing this insight to mechanically parallelize
computations that appear inherently sequential.

The basic idea is to treat dependences as symbolic unknowns and use techniques inspired
by program analysis and symbolic execution to execute dependent computations in parallel.
Applications include large-scale stream processing and machine learning.

3.19 Communication-Optimal Loop Tilings (Keynote)
James Demmel (University of California – Berkeley, US)

License Creative Commons BY 3.0 Unported license
© James Demmel

Joint work of James Demmel, Michael Christ, Grace Dinh, Nicholas Knight, Alex Rusciano, Thomas Scanlon,
Katherine Yelick

It is well-known that, given a two-level memory hierarchy with a fast memory of size M, the
optimal loop tiling for classical O(n3) matrix multiplication, C = A ∗B, that minimizes data
movement (communication) between fast and slow memory, tiles A, B and C into square tiles
of size Θ(M1/2), and achieves a communication lower bound of Ω(n3/M1/2). We extend this
result as follows: Given any perfectly nested set of loops, with any number of arrays accessed
in the innermost loop, each of which may have any number of subscripts, where each subscript
may be an arbitrary affine function of the loop indices (e.g., A(i, i− j, i+2∗ j−3∗k +4, . . . )),
we present algorithms for computing (1) a constant e so that Ω(#loop_iterations/Me)
is a communication lower bound, and (2) an optimal loop tiling that achieves this lower
bound. The lower bound assumes any execution order in which the loop bodies are not
interleaved, and also that array entries cannot be allocated, used arbitrarily often, and
then freed/discarded, without requiring any memory traffic. The proof depends on a recent
discrete extension of the well-known Brascamp-Lieb inequality by Terry Tao, Michael Christ
and others.
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The optimal tiling makes two assumptions:

1. The loop bounds are large enough to fit the optimal tile. When this is not the case
(e.g., think of matrix-vector multiply as a special case of matrix-matrix multiply) then
it is possible to extend our results to get tighter lower bounds. We illustrate this with
Convolutional Neural Nets (CNNs), expressible as seven nested loops, and provide a
loop reordering that lowers the communication cost by a greater factor than possible for
matrix multiply.

2. Data dependencies between loop iterations permit reordering. In the case of uniform-
dependence algorithms, where data dependencies are represented by a finite set of constant
distance vectors, it is possible to test whether data dependencies permit reordering.
Generalizing the Brascamp-Lieb inequality to derive tighter lower bounds in the presence
of dependencies is an open problem.

Time permitting, we can describe extensions of these results to memory hierarchies with
multiple levels, and to distributed memory.

3.20 Effective Performance Modeling: A Grand Challenge for Loop
Transformations in Compilers

P. Sadayappan (Ohio-State University – Columbus, US)

License Creative Commons BY 3.0 Unported license
© P. Sadayappan

Joint work of P. Sadayappan, Changwan Hong, Aravind Sukumaran-Rajam, Sriram Krishnamoorthy, Louis-Noël
Pouchet, Fabrice Rastello

A fundamental challenge for loop optimization is effective performance modeling. Existing
loop optimizers in compilers generally use highly simplified performance models that do
not necessarily correlate very well with actual realized performance on the target platform.
This is particularly true of polyhedral loop optimization, where linear objective functions
enable elegant ILP-based solutions. While transformations based on simplified models may
improve performance over a naive baseline version, achieving performance comparable to
hand-optimized code or code generated by domain-specific compilers is extremely challenging.

We describe an approach to performance modeling for GPU kernels that used abstract
emulation of a small number of thread-blocks of the kernel. Key hardware resources like global
memory, shared memory, functional units, etc. are modeled using two parameters: latency
and gap (the inverse of throughput). Sensitivity analysis with respect to resource latency/gap
parameters is used to predict the bottleneck resource for a given kernel’s execution. Bottleneck
analysis is in turn used for performance optimization. The approach hold promise in assisting
manual code optimization, as well as automated model-driven auto tuning for performance
enhancement.
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3.21 Polyhedral Expression Propagation
Johannes Doerfert (Saarland University – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Johannes Doerfert, Shrey Sharma, Sebastian Hack

Polyhedral techniques have proven to be powerful for various optimizations, from automatic
parallelization to accelerator programming. At their core, these techniques compute accurate
dependences among statement instances in order to apply complex program transformations.
Such transformations comprise memory layout or program order modifications by optimizing
memory access functions or scheduling functions. However, these approaches treat statements
as opaque entities and do not consider changing the structure of the contained expressions or
the memory accesses involved.

We present a technique that statically propagates expressions in order to avoid commu-
nicating their result via memory. While orthogonal to other polyhedral optimizations, this
transformation can be used to enable them. Applied separately, expression propagation
can increase parallelism, eliminate temporary arrays, create independent computations and
improve cache utilization. It is especially useful for streaming codes that involve temporary
arrays and scalar variables.

For multiple image processing pipelines, we achieve portable speedups of up to 21.3x as
well as a significant memory reduction compared to a naive parallel implementation. In 6
out of 7 cases, expression propagation outperforms a state-of-the-art polyhedral optimization
especially designed for this kind of programs by a factor of up to 2.03x.

3.22 The isl Scheduler
Sven Verdoolaege (Facebook – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Sven Verdoolaege

isl is a library for manipulating integer sets and relations bounded by affine constraints, such
as those that occur in polyhedral compilation. Next to several generic operations on such
objects, isl also supports some operations tailored to polyhedral compilation, including a
row-by-row scheduler.

After a general overview of isl focusing on the representation of fundamental concepts,
some details are presented about the isl scheduler, including the representation and meaning
of the input and the output, the available algorithms and their use of ILP solvers, as well as
some issues that have been encountered in practice.
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3.23 PolyJIT: Polyhedral Optimization Just in Time
Andreas Simbürger (University of Passau – Passau, DE)

License Creative Commons BY 3.0 Unported license
© Andreas Simbürger

Joint work of Andreas Simbürger, Sven Apel, Armin Größlinger, Christian Lengauer

While polyhedral optimization appeared in mainstream compilers during the past decade, its
profitability in scenarios outside its classic domain of linear-algebra programs has remained
in question. Recent implementations, such as the LLVM plugin Polly, produce promising
speedups, but the re- striction to affine loop programs with control flow known at compile
time continues to be a limiting factor. PolyJIT combines polyhedral optimization with multi-
versioning at run time, at which one has access to knowledge enabling polyhedral optimization,
which is not available at compile time. By means of a fully-fledged implementation of a light-
weight just-in-time (JIT) compiler and a series of experiments on a selection of real-world and
bench- mark programs, we demonstrate that the consideration of run-time knowledge helps
in tackling compile-time violations of affinity and, consequently, offers new opportunities of
optimization at run time.

3.24 Organizing Computation for High Performance Graphics & Visual
Computing (Keynote)

Jonathan Ragan-Kelley (University of California – Berkeley, US)

License Creative Commons BY 3.0 Unported license
© Jonathan Ragan-Kelley

Future visual computing applications – from photorealistic real-time rendering, to 4D light
field cameras, to pervasive sensing and computer vision – demand orders of magnitude more
computation than we currently have. From data centers to mobile devices, performance
and energy scaling is limited by locality (the distance over which data has to move, e.g.,
from nearby caches, far away main memory, or across networks) and parallelism. Because
of this, I argue that we should think of the performance and efficiency of an application as
determined not just by the algorithm and the hardware on which it runs, but critically also
by the organization of computations and data. For algorithms with the same complexity –
even the exact same set of arithmetic operations and data – executing on the same hardware,
the order and granularity of execution and placement of data can easily change performance
by an order of magnitude because of locality and parallelism. To extract the full potential of
our machines, we must treat the organization of computation as a first class concern while
working across all levels from algorithms and data structures, to compilers, to hardware.

I will present facets of this philosophy in systems I have built for visual computing
applications from image processing and vision, to 3D rendering, simulation, optimization,
and 3D printing. I will show that, for data-parallel pipelines common in graphics, imaging,
and other data-intensive applications, the organization of computations and data for a
given algorithm is constrained by a fundamental tension between parallelism, locality, and
redundant computation of shared values. I will focus particularly on the Halide language
and compiler for image processing, which explicitly separates what computations define an
algorithm from the choices of organization which determine parallelism, locality, memory
footprint, and synchronization. I will show how this approach can enable much simpler
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programs to deliver performance often many times faster than the best prior hand-tuned C,
assembly, and CUDA implementations, while scaling across radically different architectures,
from ARM cores, to massively parallel GPUs, to FPGAs and custom ASICs.

3.25 AnyDSL: A Partial Evaluation System for Programming
High-Performance Libraries

Roland Leißa (Saarland University – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Roland Leißa, Klaas Boesche, Sebastian Hack, Richard Membarth, Arsène Pérard-Gayot, Philipp
Slusallek, André Müller, Bertil Schmidt

Nowadays, the computing landscape is becoming increasingly heterogeneous and this trend
is currently showing no signs of turning around. In particular, hardware becomes more
and more specialized and exhibits different forms of parallelism. For performance-critical
codes it is indispensable to address hardware-specific peculiarities. Because of the halting
problem, however, it is unrealistic to assume that a program implemented in a general-purpose
programming language can be fully automatically compiled to such specialized hardware
while still delivering peak performance.

We present AnyDSL. This framework allows to embed a domain-specific language (DSL)
into a host language. On the one hand, a DSL offers the application developer a convenient
interface; on the other hand, a DSL can serve to specify domain-specific optimizations and
effectively map DSL constructs to various architectures. In order to implement a DSL, one
usually has to write or modify a compiler. With AnyDSL, though, the DSL constructs are
directly implemented in the host language while a partial evaluator removes any abstractions
that are required in the implementation of the DSL.

3.26 Tensor Comprehensions: Framework-Agnostic High-Performance
Machine Learning Abstractions

Nicolas Vasilache (Facebook – New York City, US)

License Creative Commons BY 3.0 Unported license
© Nicolas Vasilache

Deep learning models with convolutional and recurrent networks are now ubiquitous and
analyze massive amounts of audio, image, video, text and graph data, with applications
in automatic translation, speech-to-text, scene understanding, ranking user preferences, ad
placement, etc. Competing frameworks for building these networks such as TensorFlow,
Chainer, CNTK, Torch/PyTorch, Caffe1/2, MXNet and Theano, explore different tradeoffs
between usability and expressiveness, research or production orientation and supported
hardware. They operate on a DAG of computational operators, wrapping high-performance
libraries such as CUDNN (for NVIDIA GPUs) or NNPACK (for various CPUs), and automate
memory allocation, synchronization, distribution. Custom operators are needed where
the computation does not fit existing high-performance library calls, usually at a high
engineering cost. This is frequently required when new operators are invented by researchers:
such operators suffer a severe performance penalty, which limits the pace of innovation.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Sebastian Hack, Paul H. J. Kelly and Christian Lengauer 57

Furthermore, even if there is an existing runtime call these frameworks can use, it often does
not offer optimal performance for a user’s particular network architecture and dataset, missing
optimizations between operators as well as optimizations that can be done knowing the size
and shape of data. Our contributions include (1) a language close to the mathematics of deep
learning called Tensor Comprehensions, (2) a polyhedral just-in-time compiler to convert
a mathematical description of a deep learning DAG into a CUDA kernel with delegated
memory management and synchronization, also providing optimizations such as operator
fusion and specialization for specific sizes, (3) a compilation cache populated by an autotuner.

3.27 Loop Synthesis for Basic Linear Algebra Computations with
Structured Matrices

Daniele G. Spampinato (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY 3.0 Unported license
© Daniele G. Spampinato

Joint work of Markus Püschel

I describe the loop synthesis process in LGen, a research compiler designed for the generation
of explicitly vectorized C code for small-scale basic linear algebra computations where
input and output matrices may have a structure, such as lower triangular or symmetric.
The input computation is expressed mathematically and the structures of the matrices on
which it computes are described using a polyhedral notation. These structures, and the
semantics of the operations contained in the computation, are used by LGen to produce
a SCoP representation of the computation’s iteration space. The resulting SCoPs are
finally processed by an adapted version of the CLooG generator capable of synthesizing a
mathematical formulation of the input computation where loops are expressed in terms of
summations.

3.28 A Systematic Approach to High-Performance Generalized Matrix
Multiplication Kernels

Richard Veras (Louisiana State University – Baton Rouge, US)

License Creative Commons BY 3.0 Unported license
© Richard Veras

Joint work of Richard Veras, Tyler M. Smith, Tze Meng Low, Franz Franchetti, Robert van de Geijn

A large body of problems arising from linear algebra and big data can be represented
by a generalization of the matrix-matrix multiplication operation. These domains are
performance-critical and obtaining the level of performance seen in traditional dense matrix-
matrix multiplication is a sought-after goal by the community. This is difficult because
current high-performance matrix multiplication kernels are tuned for their target architecture
and are written by hand in assembly code by expert programmers. Unfortunately, this
approach is not sustainable for producing the large span of kernels that we are interest
in. Therefore, our solution involves capturing the expert’s knowledge and automating the
application of this knowledge in the form of kernel code generator. The result is generalized
matrix-matrix multiplication kernels that perform as well as an expert implementation.
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3.29 Reasoning about Program Properties using Polyhedral Analysis
Sriram Krishnamoorthy (Pacific Northwest National Laboratory – Richland, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Sriram Krishnamoorthy, Wenlei Bao, Sanket Tavarageri, Louis-Noël Pouchet, Fabrice Rastello, P.
Sadayappan

Similarly to other program analysis techniques, polyhedral analysis can be used to reason
about and check program properties. I will present a few use cases: detecting soft memory
errors, checking program transformations, and modeling caching behavior. In addition, I
will argue the need for robust and optimized tool chains to enable broader use of loop
optimization techniques.

3.30 Using #pragmas to Direct Polly Transformations
Michael Kruse (ENS – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Michael Kruse

Polly today decides automatically which loop transformations it applies, using isl’s reschedul-
ing algorithm. This might not always be the optimal transformation, so users may want to
decide themselves which transformations lead to the most performant code. We are proposing
to use #pragmas in the source code which enforce a specific transformation. These pragmas
can either be inserted directly by the programmer, or, inserted by an autotuner framework
which explores the search space of promising optimizations.

3.31 Polyhedral Optimizations toward Performance Portability
Jun Shirako (Georgia Institute of Technology – Atlanta, US)

License Creative Commons BY 3.0 Unported license
© Jun Shirako

Performance portability, the ability to enable sufficient performance across multiple hardware
platforms, is getting more important in the era of extreme-scale heterogeneous computing.
Compiler optimizations can play a key role in achieving this goal – i.e., enabling users
to write simple and platform-independent programs and compilers to handle performance-
oriented optimizations and customizations for the target system. We introduce a series
of attempts to address this challenge based on the polyhedral model: (1) integration of
polyhedral and AST-based transformations; (2) optimizations of explicitly parallel programs;
(3) two-level parallelization for GPU accelerators; and (4) integration of data-layout and loop
transformations.
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