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Quantum Ciphertext Authentication and Key
Recycling with the Trap Code
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Florian Speelman1
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Abstract
We investigate quantum authentication schemes constructed from quantum error-correcting codes.
We show that if the code has a property called purity testing, then the resulting authentication
scheme guarantees the integrity of ciphertexts, not just plaintexts. On top of that, if the code
is strong purity testing, the authentication scheme also allows the encryption key to be recycled,
partially even if the authentication rejects. Such a strong notion of authentication is useful in
a setting where multiple ciphertexts can be present simultaneously, such as in interactive or
delegated quantum computation. With these settings in mind, we give an explicit code (based
on the trap code) that is strong purity testing but, contrary to other known strong-purity-testing
codes, allows for natural computation on ciphertexts.
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1 Introduction

A central topic in cryptography is authentication: how can we make sure that a message
remains unaltered when we send it over an insecure channel? How do we protect a file
from being corrupted when it is stored someplace where adversarial parties can potentially
access it? And, especially relevant in the current era of cloud computing, how can we let an
untrusted third party compute on such authenticated data?
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1:2 Quantum Ciphertext Authentication and Key Recycling with the Trap Code

Following extensive research on authentication of classical data, starting with the seminal
work by Wegman and Carter [17], several schemes have been proposed for authenticating
quantum states [5, 1, 6]. One notable such scheme is the trap code [6], an encoding scheme
that surrounds the data with dummy qubits that function as traps, revealing any unauthorized
attempts to alter the plaintext data. A client holding the classical encryption key can guide
a third party in performing computations directly on the ciphertext by sending input-
independent auxiliary quantum states that help bypass the traps, and updating the classical
key during the computation. The result is an authenticated output ciphertext.

The trap code distinguishes itself from other quantum authentication schemes in two ways.
First, individually-authenticated input qubits can be entangled during the computation, but
still be de-authenticated individually. This contrasts for example the Clifford code [1], where
de-authentication needs to happen simultaneously on all qubits that were involved in the
computation, including any auxiliary ones. Second, the trap code allows for ‘authenticated
measurements’: if a third party measures a ciphertext, the client can verify the authenticity
of the result from the classical measurement outcomes only. It is not known how to perform
authenticated measurements on other codes. These two qualities make the trap code uniquely
suited for quantum computing on authenticated data. It was originally designed for its use
in quantum one-time programs [6], but has found further applications in zero-knowledge
proofs for QMA [7], and in quantum homomorphic encryption with verification [2].

The extraordinary structure of the trap code is simultaneously its weakness: an adversary
can learn information about the secret key by altering the ciphertext in a specific way, and
observing whether or not the result is accepted by the client. Thus, to ensure security
after de-authentication, the key needs to be refreshed before another quantum state is
authenticated. This need for a refresh inhibits the usefulness of the trap code, because
computation on multiple qubits under the trap code requires these qubits to be authenticated
under overlapping secret keys.

In recent years, several works have refined the original definition of quantum authentication
by Barnum et al. [5]. The trap code is secure under the weakest of these definitions [10],
where only authenticity of the plaintext is guaranteed. But, as argued, it is not under the
stronger ‘total authentication’ [12], where no information about the key is leaked if the client
accepts the authentication. As Portmann mentions in his work on authentication with key
recycling in the abstract-cryptography framework [15], it is not even clear whether the trap
code can be regarded as a scheme with partial key leakage, as defined in [12], because of
the adaptive way in which it can be attacked. In a different direction, Alagic, Gagliardoni,
and Majenz [3] define a notion of quantum ciphertext authentication (QCA), where also
the integrity of the ciphertext is guaranteed, and not just that of the plaintext. Ciphertext
authentication is incomparable with total authentication: neither one implies the other.
Before the current work, it was unknown whether the trap code authenticates ciphertexts.

Barnum et al. [5] built schemes for authentication of quantum data based on quantum
error-correcting codes that are purity testing, meaning that any bit or phase flip on the message
is detected with high probability. Portmann [15], working in the abstract-cryptography
framework, showed that if the underlying code satisfies a stronger requirement called strong
purity testing, the resulting authentication scheme allows for complete key recycling in the
accept case, and for partial key recycling in the reject case. The trap code can be seen as a
purity-testing error-correcting code, but it is not strong purity testing. This is consistent
with the observation that keys in the trap code cannot be recycled.

Quantum plaintext authentication with key recycling has been studied before. Oppenheim
and Horodecki [14] showed partial key recycling for schemes based on purity testing codes,
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Figure 1 Overview of different definitions of quantum authentication. Three previously defined
notions (in gray) and their relations were already known: DNS [10] is strictly weaker than GYZ [12]
(total authentication) and QCA [3]. These last two are incomparable: there exist schemes that satisfy
either one, but not the other. On the bottom right, our new definition QCA-R is displayed: it is
strictly stronger than both GYZ and QCA. For justifications of the relations displayed in this figure,
refer to pages 6 (for DNS 9 GYZ), 6 (for DNS 9 QCA), 6 (for GYZ = QCA), and 9 (for GYZ 9
QCA-R and QCA 9 QCA-R).

under a weaker notion of security. Hayden, Leung, and Mayers [13] adapted Barnum et
al.’s construction to use less key and show its authenticating properties in the universal-
composability framework. Fehr and Salvail [11] develop a quantum authentication scheme
for classical messages that achieves the same key-recycling rate as Portmann [15], but is not
based on quantum error-correction and only requires the client to prepare and measure.

1.1 Our contributions

We investigate the relation between (strong) purity testing and quantum ciphertext authenti-
cation (QCA), and give a variation on the trap code with stronger security guarantees. We
specify our contributions in more detail below.

Section 3: Definition of quantum ciphertext authentication with key recycling (QCA-R).
We give a new definition for quantum authentication, QCA-R, that provides both ciphertext
authentication and key recycling, and is thereby strictly stronger than existing definitions.
See Figure 1 for a comparison of different notions of authentication.

Section 3.1: Purity-testing codes give rise to QCA-secure encryption. We prove that
Barnum et al.’s canonical construction of authentication schemes from purity-testing codes [5]
produces schemes that are not only plaintext authenticating, but also ciphertext authenticat-
ing (QCA). The proof generalizes the proofs in [8] that the trap code and Clifford code are
plaintext authenticating, using a different (but still efficient) simulator. Note that our result
immediately implies that the trap code is ciphertext authenticating.

Section 3.1: Strong-purity-testing codes give rise to QCA-R-secure encryption. Purity-
testing codes are generally not sufficient for constructing QCA-R schemes, but strong-purity-
testing codes are: we prove that Barnum et al.’s canonical construction achieves QCA-R
when a strong-purity-testing code is used as a resource. In case the authenticated message is
accepted, the entire key can be reused. Otherwise, all but the quantum-one-time-pad key
can be reused.

TQC 2018



1:4 Quantum Ciphertext Authentication and Key Recycling with the Trap Code

Section 4: A strong-purity-testing version of the trap code. We give an explicit con-
struction of a strong-purity-testing code that is inspired by the trap code. In this strong trap
code, the underlying error-correcting code is not only applied to the data qubits, but also to
the trap qubits. The result is a quantum authentication scheme which satisfies the strong
notion of QCA-R, but still maintains the computational properties that make the original
trap code such a useful scheme.

Section 5: Security under parallel encryption. To illustrate the power of recycling key
in the reject case, we consider a setting with a different type of key reuse: reusing (part
of) a key immediately to authenticate a second qubit, even before the first qubit is verified.
We show that, if multiple qubits are simultaneously authenticated using a scheme that is
based on a strong-purity-testing code, then de-authenticating some of these qubits does not
jeopardize the security of the others, even if their keys overlap. This property is especially
important when using the computational capabilities of the strong trap code, since computing
on authenticated qubits needs multiple qubits to use overlapping keys.

2 Preliminaries

2.1 Notation
We use conventional notation for unitary matrices (U or V ), pure states (|ψ〉 or |ϕ〉), and
mixed states (ρ or σ). We reserve the symbol τ for the completely mixed state I/d, and |Φ+〉
for the EPR pair 1√

2 (|00〉 + |11〉). The m-qubit Pauli group is denoted with Pm, and its
elements with P` where ` is a 2m-bit string indicating the bit-flip and phase-flip positions. By
convention, P0 is identity. The X-weight (, Y-weight, or Z-weight) of a Pauli is the number
of qubits on which it acts as an X (, Y, or Z) operation.

We often specify the register(s) on which a unitary acts by gray superscripts (as in UR);
it is implicit that the unitary acts as identity on all other registers. The trace norm of
a density matrix ρ is written as ‖ρ‖tr. The diamond norm of a channel Ψ is written as
‖Ψ‖� := supρ‖(I⊗Ψ)(ρ)‖tr. If we want to talk about the distance between two channels Ψ
and Ψ′, we use the normalized quantity 1

2‖Ψ−Ψ′‖�, which we refer to as the diamond-norm
distance.

2.2 Quantum authentication
A secret-key quantum encryption scheme consists of three (efficient) algorithms: key genera-
tion KeyGen, encryption Encryptk, and decryption Decryptk. Throughout this work, we will
assume that KeyGen selects a key k uniformly at random from some set K; our results still
hold if the key is selected according to some other distribution. By Lemma B.9 in [4], we
can characterize the encryption and decryption maps as being of the form

Encryptk : ρM 7→ UMT
k (ρ⊗ σTk )(U†k)MT , (1)

Decryptk : ρMT 7→ TrT
[
(Πacc

k )T
(
U†kρU

MT
k

)
(Πacc

k )T
]

+DMT
k

[
(Πrej

k )T
(
U†kρU

MT
k

)
(Πrej

k )T
]
. (2)

Here, M is the message register, σk is some key-dependent tag state in register T , and Uk
is a unitary acting on both. Πacc

k and Πrej
k are orthogonal projectors onto the support of

σk and its complement, respectively. Finally, Dk is any channel: we will usually assume
that Dk(·) = TrMT (·) ⊗ |⊥〉〈⊥|M , i.e., it traces out the message and tag register entirely,
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and replaces the message with some dummy state that signifies a reject. Because of the
above characterization, we will often talk about encryption schemes as a keyed collection
{(Uk, σk)}k∈K of unitaries and tag states.

There are several definitions of the authentication of quantum data. All definitions involve
some parameter ε; unless otherwise specified, we require ε to be negligibly small in the size
of the ciphertext.

The simplest definition is that of plaintext authentication, presented in [10] (although
their definition was in phrased terms of the trace norm), where no guarantees are given about
the recyclability of the key.

I Definition 1 (Quantum plaintext authentication (DNS) [10]). A quantum encryption scheme
{(Uk, σk)}k∈K is plaintext ε-authenticating (or ε-DNS) if for all CP maps A (acting on the
message register M , tag register T , and a side-information register R), there exist CP maps
Sacc and Srej such that S := Sacc + Srej is trace-preserving, and

1
2

∥∥∥∥E
k

[
Decryptk ◦ AMTR ◦ Encryptk

]MR −
(
IM ⊗ SRacc + |⊥〉〈⊥|M (TrM ⊗ SRrej)

)∥∥∥∥
�
≤ ε,

where Encryptk and Decryptk are of the form of equations (1) and (2).

The simulator in Definition 1 reflects the ideal functionality of an authentication scheme:
in the accept case, the message remains untouched, whereas in the reject case, it is completely
discarded and replaced with the fixed state |⊥〉〈⊥|. Any action on the side-information
register R is allowed.

I The trap code. An example of a plaintext-authenticating scheme is the trap code [6].
This scheme encrypts single-qubit messages by applying a fixed distance-d CSS code E to the
message, producing n physical qubits, and then appending 2n “trap" qubits (n computational-
basis traps in the state |0〉〈0|, and n Hadamard-basis traps in the state |+〉〈+|). The resulting
3n qubits are permuted in a random fashion according to a key k1, and one-time padded
with a second key k2. At decryption, the one-time pad and permutation are removed, the
traps are measured in their respective bases, and the syndrome of the CSS code is checked.2
The trap code, for a key k = (k1, k2), is characterized by Uk = Pk2πk1(E ⊗ I⊗n ⊗ H⊗n) and
σk = |0〉〈0|⊗(3n−1), where πk1 is a unitary that permutes the 3n qubits. A proof that the
trap code is plaintext (2/3)d/2-authenticating can be found in e.g. [8].

Another definition of quantum authentication is presented in [12] (where it is called
‘total authentication’): in this definition, the key should be recyclable in the accept case.
This is modeled by revealing the key to the environment after use, and requiring that it is
indistinguishable from a completely fresh and uncorrelated key. If that is the case, it can be
recycled for another round.

I Definition 2 (Quantum plaintext authentication with key recycling (GYZ) [12]). A quantum
encryption scheme {(Uk, σk)}k∈K is plaintext ε-authenticating with key recycling (or ε-GYZ) if
for all CP maps A (acting on the message register M , tag register T , and a side-information
register R), there exist CP maps Sacc and Srej such that S := Sacc + Srej is trace preserving,

2 We differ from the analysis by Broadbent and Wainewright [8] in that we consider the variant that uses
error detection instead of error correction on the data qubits.

TQC 2018



1:6 Quantum Ciphertext Authentication and Key Recycling with the Trap Code

and

1
2

∥∥∥∥∥Ek
[
ρMR 7→ TrT

(
Πacc
k U†k

(
AMTR

(
Uk(ρ⊗ σTk )U†k

))
UkΠacc

k

)
⊗ |k〉〈k|

]
−
(
IM ⊗ SRacc ⊗ τK

) ∥∥∥∥∥
�

≤ ε.

Note that Definition 2 only specifies what should happen in the accept case. Nevertheless, it
is a strictly stronger definition than DNS authentication [4].

The trap code is not plaintext ε-authenticating with key recycling for sub-constant ε. To
see this, consider an adversary A that applies X to (only) the first qubit of the MT register.
With probability 2/3, the attack lands on a data qubit or a |0〉〈0| trap, and is detected. Thus,
in the real accept scenario, the key register will contain a mixture of only those keys that
permute a |+〉〈+| into the first position. All other keys are diminished by the projector
Πacc
k . Since the ideal scenario contains a mixture of all possible keys in the key register,

the difference between the two channels is considerable. In practice, if an adversary learns
whether the authentication succeeded, she gets information about the positions of the traps.

I The Clifford code. A simple yet powerful code that authenticates plaintexts with key
recycling is the Clifford code [1]. In this code, we fix a parameter t, and set σk = |0t〉〈0t|
for all k, and Uk a uniformly random Clifford on t + 1 qubits. The Clifford code (and
any authentication code that is based on a 2-design) is plaintext ε-authenticating with key
recycling for ε = O(2−t) [4].

Strengthening Definition 1 in a different direction, Alagic, Gagliardoni, and Majenz
recently introduced the notion of quantum ciphertext authentication [3]. This notion does
not limit the amount of key leaked, but requires that if authentication accepts, the entire
ciphertext was completely untouched. Ciphertext authentication is used as an ingredient for
quantum encryption that is secure against chosen-ciphertext attacks [3].

I Definition 3 (Quantum ciphertext authentication (QCA) [3]). A quantum encryption scheme
{(Uk, σk =

∑
r pk,r|ϕk,r〉〈ϕk,r|)}k∈K is ciphertext ε-authenticating (or ε-QCA) if it is plaintext

ε-authenticating as in Definition 1, and the accepting simulator Sacc is of the form

Sacc : ρR 7→ E
k′,r

[
〈ϕk′,r|T 〈Φ+|M1M2U†k′A

M1TR
(
UM1T
k′ ρRM1M2T

k′,r U†k′
)
Uk′ |ϕk′,r〉|Φ+〉

]
.

where ρk′,r := ρR ⊗ |Φ+〉〈Φ+|M1M2 ⊗ |ϕk′,r〉〈ϕk′,r|T is the input state before (simulated)
encryption.

In QCA, the accepting simulator tests whether the message remains completely untouched
by encrypting half of an EPR pair (stored in register M1) as a ‘dummy message’, under a
key k′ that it generates itself. It remembers the randomness r used in creating the tag state
σk, so that it can test very accurately whether the tag state was untouched. Because Sacc
remembers the randomness, a scheme that appends a qubit at the end of its ciphertexts, but
never checks its state at decryption time, cannot be ciphertext authenticating. The Clifford
code is QCA [3], as is the trap code (see Section 3.1).

In general, key recycling as in Definition 2 does not imply QCA. To see this, take any
scheme {(Uk, σk)}k∈K that is plaintext authenticating with key recycling, and alter it by
appending a qubit in the fully mixed state to σk (and extending Uk to act as identity on
this qubit). This scheme still satisfies Definition 2, but cannot be ciphertext authenticating,
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because attacks on this last qubit are not noticed in the real scenario. Conversely, not all
ciphertext-authenticating schemes have key recycling. Take any scheme that is QCA, and
alter it by adding one extra bit b of key, and setting σkb := σk ⊗ |b〉〈b| and Ukb := Uk ⊗ I,
effectively appending the bit of key at the end of the ciphertext. This scheme still satisfies
Definition 3, but leaks at least one bit of key.3 For an overview of the relations between DNS,
GYZ, and QCA, refer to Figure 1 on page 3.

2.3 (Strong) purity testing in quantum error correction
An [[n,m]] quantum error-correcting code (QECC), characterized by a unitary operator V ,
encodes a message ρ consisting of m qubits into a codeword V (ρ ⊗ |0t〉〈0t|)V † consisting
of n qubits, by appending t := n −m tags |0〉〈0|, and applying the unitary V . Decoding
happens by undoing the unitary V , and measuring the tag register in the computational
basis. The measurement outcome is called the syndrome: an all-zero syndrome indicates that
no error-correction is necessary. In this work, we will only use the error-detection property
of QECCs, and will not worry about how to correct the message if a non-zero syndrome is
measured. If that happens, we will simply discard the message (i.e., reject).

For any bit string x ∈ {0, 1}m, let |xL〉 (for “logical |x〉") denote a valid encoding of |x〉,
i.e., a state that will decode to |x〉 without error. A defining feature of any QECC is its
distance: the amount of bit and/or phase flips required to turn one valid codeword into
another. If we want to be explicit about the distance d of an [[n,m]] code, we will refer to it
as an [[n,m, d]] code.

I Definition 4 (Distance). The distance of an [[n,m]] code is the minimum weight of a Pauli
P such that P |xL〉 = |yL〉 for some x 6= y, with x, y ∈ {0, 1}m.

In a cryptographic setting, it can be useful to select a code from a set of codes {Vk}k∈K
for some key set K. We will again assume that the key k is selected uniformly at random.

Following [5] and [15], we restrict our attention to codes for which applying a Pauli to a
codeword is equivalent to applying a (possibly different) Pauli directly to the message and
tag register. In other words, the unitary V must be such that for any P` ∈ Pm+t, there exists
a P`′ ∈ Pm+t and a θ ∈ R such that P`V = eiθV P`′ . With our attention restricted to codes
with this property, we can meaningfully define the following property:

I Definition 5 (Purity testing [5]). A set of codes {Vk}k∈K is purity testing with error ε if
for any Pauli P` ∈ Pm+t\{I⊗(m+t)},

Pr
k

[
V †k P`Vk ∈ (Pm\{I⊗m})⊗ {I,Z}⊗t

]
≤ ε.

In words, for any non-identity Pauli, the probability (over the key) that the Pauli alters the
message but is not detected (i.e., no tag bit is flipped) is upper bounded by ε.

The trap code (see page 5) based on an [[n, 1, d]] CSS code, without the final quantum
one-time pad, is a purity-testing code with error (2/3)d/2 [6]. In our framework, the trap code
is described as a QECC with m = 1, t = 3n− 1, and Vk = πk(E ⊗ I⊗n ⊗ H⊗n).

Note that purity-testing codes do not necessarily detect all Pauli attacks with high
probability: it may well be that a Pauli attack remains undetected, because it acts as
identity on the message. Flipping the first bit of a trap-code ciphertext is an example of

3 We thank Gorjan Alagic and Christian Majenz for providing these example schemes that show the
separation between Definitions 2 and 3.

TQC 2018



1:8 Quantum Ciphertext Authentication and Key Recycling with the Trap Code

such an attack: it remains undetected with probability 1/3 (if it hits a |+〉 trap), but unless
it is detected, it also does not alter the message. An attacker may use this fact to learn
information about the permutation πk by observing whether or not the QECC detects an
error.

The above exploitation of purity-testing codes has led Portmann to consider a stronger
notion of purity testing that should allow for keys to be safely reusable. In this definition,
even the Paulis that act as identity on the message should be detected:
I Definition 6 (Strong purity testing [15]). A set of codes {Vk}k∈K is strong purity testing
with error ε if for any Pauli P` ∈ Pm+t\{I⊗(m+t)},

Pr
k

[
V †k P`Vk ∈ Pm ⊗ {I,Z}⊗t

]
≤ ε.

The Clifford code is strong purity testing with error 2−t, as is any other unitary 2-
design [15]. As informally discussed above, the trap code is not strong purity testing for any
small ε.

Barnum et al. [5] described a canonical method of turning a QECC set {Vk1}k1∈K1 into
a symmetric-key encryption scheme. The encryption key k consists of two parts: the key
k1 ∈ K1 for the QECC, and an additional one-time pad key k2 ∈ {0, 1}2(m+t). The encryption
map is then defined by setting Uk1,k2 := Pk2Vk1 , and σk1,k2 = |0t〉〈0t|. Since σk1,k2 is key-
independent, the projectors Πacc = |0t〉〈0t| and Πrej = I − |0t〉〈0t| are key-independent as
well. In Construction 1, the complete protocol is described. In [6], protocols of this form are
called “encode-encrypt schemes”.

Construction 1 Barnum et al.’s canonical construction [5] of a symmetric-key encryption scheme
from an [[m+ t,m]] quantum error-correcting code {Vk1}k1∈K1 .
Generate keys: sample k1 ← K1 and k2 ← K2 = {0, 1}2(m+t).
Encrypt : ρM 7→ PMT

k2 V MT
k1 (ρM ⊗ |0t〉〈0t|T )V MT

k1 PMT
k2 .

Decrypt : ρMT 7→ 〈0t|
(
V †k1

P †k2
ρPk2Vk1

)
|0t〉+ |⊥〉〈⊥|M ⊗ TrM

[∑
i6=0t

〈i|
(
V †k1

P †k2
ρPk2Vk1

)
|i〉

]

When using Construction 1 with a strong-purity-testing code, plaintext authentication
with key recycling is achieved, even with partial key recycling in the reject case [15]. If just a
purity-testing code is used for the construction, the resulting encryption scheme is plaintext
authenticating [5], but not necessarily with key recycling (the trap code is a counterexample).

3 Quantum ciphertext authentication with key recycling (QCA-R)

In this section, we will define a notion of quantum authentication that is stronger than all of
Definitions 1, 2, and 3. We will show that Construction 1, when used with a strong-purity-
testing code, results in an authentication scheme in this new, stronger sense.
I Definition 7 (Quantum ciphertext authentication with key recycling (QCA-R)). A quantum
encryption scheme {(Uk, σk =

∑
r pk,r|ϕk,r〉〈ϕk,r|)}k∈K is ciphertext ε-authenticating with

key recycling (or ε-QCA-R), with key recycling function f , if for all CP maps A (acting on
the message register M , tag register T , and a side-information register R), there exists a CP
map Srej such that

R : ρMR 7→ Ek
[
TrT

(
Πacc

(
U†kA

MTR
(
UMT
k (ρ⊗ σTk )U†k

)
Uk

)
Πacc

)
⊗ |k〉〈k|

+ |⊥〉〈⊥|M ⊗ TrMT

(
Πrej

(
U†kA

MTR
(
UMT
k (ρ⊗ σTk )U†k

)
Uk

)
Πrej

)
⊗ |f(k)〉〈f(k)|

]
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is ε-close in diamond-norm distance to the ideal channel,

I : ρMR 7→
(
IM ⊗ Sacc) (ρMR)⊗ τK + |⊥〉〈⊥|M ⊗ Srej(ρR)⊗ Ek [|f(k)〉〈f(k)|] ,

where S := Sacc + Srej is trace preserving, and Sacc is as in Definition 3 of QCA, that is,

Sacc : ρR 7→ E
k′,r

[
〈ϕk′,r|T 〈Φ+|M1M2U†k′A

M1TR
(
UM1T
k′ ρRM1M2T

k′,r U†k′
)
Uk′ |ϕk′,r〉|Φ+〉

]
for ρk′,r := ρR ⊗ |Φ+〉〈Φ+|M1M2 ⊗ |ϕk′,r〉〈ϕk′,r|T .

The first condition (closeness of the real and ideal channel) is a strengthening of Defi-
nition 2: following Portmann [15], we also consider which part of the key can be recycled
in the reject case. If the recycling function f is the identity function, all of the key can be
recycled. If f maps all keys to the empty string, then no constraints are put on key leakage
in the reject case.

QCA-R strengthens both GYZ and QCA, but not vice versa: the schemes from Section 2.2
that separate the two older notions are immediately examples of schemes that are GYZ or
QCA but cannot be QCA-R.

3.1 Constructing QCA-R from any strong-purity-testing code
It was already observed that if a set of quantum error-correcting codes {Vk1}k1∈K1 is purity
testing, then the encryption scheme resulting from Construction 1 is plaintext authenticat-
ing [5]. We strengthen this result by showing that the construction turns purity-testing codes
into ciphertext-authenticating schemes (Theorem 8), and strong-purity-testing codes into
QCA-R schemes (Theorem 9). Only purity testing is in general not enough to achieve QCA-R:
the trap code is again a counterexample.

I Theorem 8. Let {Vk1}k1∈K1 be a purity-testing code with error ε. The encryption scheme
resulting from Construction 1 is quantum ciphertext ε-authenticating (ε-QCA).

Sketch. In order to prove Theorem 8, we define a simulator that runs the adversary on
encrypted halves of EPR pairs, so that the simulator is of the correct form for Definition 3.
We prove that the ideal and the real channel are close by considering the accept and the
reject cases separately, and by showing that they are both ε/2-close. First, we decompose
the adversarial attack into Paulis by Pauli twirling [9] it with the quantum-one-time-pad
encryption from Construction 1. In the accept case, the difference between the real and the
ideal scenario lies in those attacks that are accepted in the real case, but not in the ideal
case. These are exactly those Paulis that, after conjugation with the key k1 that indexes the
purity-testing code, are in the set (Pm⊗{I,Z}⊗t)\({I⊗m}⊗{I,Z}⊗t) = (Pm\{I⊗m})⊗{I,Z}⊗t.
The purity-testing property guarantees that the probability over k1 of a Pauli attack landing
in this set is small. The reject case is similar. J

A full proof of Theorem 8 can be found in the full version. The proof of Theorem 9 below
uses the same techniques. It follows the proof structure of [15, Theorem 3.5], but with a
simulator that is suitable for QCA-R.

I Theorem 9. Let {Vk1}k1∈K1 be a strong-purity-testing code with error ε. The encryption
scheme resulting from Construction 1 is quantum ciphertext (

√
ε+ 3

2ε)-authenticating with
key recycling (ε-QCA-R), with recycling function f(k1, k2) := k1.
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1:10 Quantum Ciphertext Authentication and Key Recycling with the Trap Code

Proof. Let A be an adversary as in Definition 7. Define a simulator S on the side-information
register R as follows: prepare an EPR pair |Φ+〉〈Φ+| in the register M1M2 and encrypt
the first qubit using a freshly sampled key (k′1, k′2) ∈ K := K1 × K2 (that is, initialize the
tag register T in the state |0t〉〈0t|, and apply Pk′2Vk′1 to M1T ). Then, run the adversary on
the registers M1TR, keeping M2 to the side. Afterwards, run the decryption procedure by
undoing the encryption unitary and measuring whether the registers M1M2T are still in the
state |Φ+, 0t〉〈Φ+, 0t| (= |Φ+〉〈Φ+| ⊗ |0t〉〈0t|). If so, accept, and if not, reject. Note that this
simulator is of the required form in the accept case (see Definition 7).

We show that for this simulator, the distance 1
2‖I−R‖� between the ideal and the real

channel is upper bounded by
√
ε + 3

2ε. Let ρMRE be any quantum state on the message
register, side-information register, and an environment register E. Let UMTR be a unitary4
map representing the adversarial channel A, and let µreal

k1,k2
and µideal

k1,k2
be the effective output

states in the real and ideal world, respectively:

µreal
k1,k2

:= V †k1
P †k2

UMTRPMT
k2

VMT
k1

(ρ⊗ |0t〉〈0t|)V †k1
P †k2

U†Pk2Vk1 , (3)

µideal
k1,k2

:= V †k1
P †k2

UM1TRPM1T
k2

VM1T
k1

(ρ⊗ |0t,Φ+〉〈0t,Φ+|)V †k1
P †k2

U†Pk2Vk1 . (4)

Then we can write the result of the real and the ideal channels as

R(ρ) = E
k1,k2

[
〈0t|Tµreal

k1,k2
|0t〉 ⊗ |k1k2〉〈k1k2|

+ |⊥〉〈⊥|M ⊗ TrM

∑
i 6=0t

〈i|Tµreal
k1,k2
|i〉

⊗ |k1〉〈k1|

]
, (5)

I(ρ) = E
k′1,k

′
2

[
〈Φ+, 0t|M1M2Tµideal

k′1,k
′
2
|Φ+0t〉 ⊗ τK

+ |⊥〉〈⊥|M ⊗ TrM

 ∑
i 6=(Φ+,0t)

〈i|M1M2Tµideal
k′1,k

′
2
|i〉

⊗ τK1

]
. (6)

These expressions are obtained simply by plugging in the description of the authentication
scheme (see Construction 1) and the simulator into the channels of Definition 7. Since the
accept states are orthogonal to the reject states in the M register, and since the key states
are all mutually orthogonal, the distance 1

2‖I(ρ)−R(ρ)‖tr can be written as

E
k1,k2

1
2

∥∥∥∥∥ Ek′1,k′2
(
〈Φ+, 0t|µideal

k′1,k
′
2
|Φ+, 0t〉

)
− 〈0t|µreal

k1,k2
|0t〉

∥∥∥∥∥
tr

+ E
k1

1
2

∥∥∥∥∥∥ Ek′1,k′2
TrM

∑
i6=(0t,Φ+)

〈i|µideal
k′1,k

′
2
|i〉

−E
k2

TrM
∑
i6=0t

〈i|µreal
k1,k2
|i〉

∥∥∥∥∥∥
tr

. (7)

For a complete derivation, see the full version. We can thus focus on bounding the two
terms in equation (7), for accept and reject, separately. Note the difference between the two
terms: in the reject case, the expectation over the one-time pad key k2 does not have to

4 We can assume unitarity without loss of generality: if the adversary’s actions are not unitary, we can
dilate the channel into a unitary one by adding another environment and tracing it out afterwards. In
the proof, the environment takes on the same role as the side-information register R, so we omit it for
simplicity.



Y. Dulek and F. Speelman 1:11

be brought outside of the trace norm, since it is not recycled after a reject. This will make
bounding the second term in equation (7) the simpler of the two, so we will start with that
one.

Decompose the attack as UMTR =
∑
` α`P

MT
` ⊗ UR` . Intuitively, the two states inside

the second trace norm differ on those Paulis P` that are rejected in the ideal scenario, but
not in the real one. The strong-purity-testing property promises that these Paulis are very
few. However, we have to be careful, because the simulator independently generates its own
set of keys. We will now bound the second term in equation (7) more formally.

By rearranging sums, commuting Paulis, and applying projectors (for details: see the full
version), we can rewrite the second term inside the trace norm, the state in the real reject
case for k1, as

E
k2

TrM
∑
i 6=0t

〈i|µreal
k1,k2
|i〉

 = TrM

 ∑
` : V †

k1
P`Vk1 6∈Preal

|α`|2 UR` ρMRU†`

 , (8)

where Preal contains the Paulis that are accepted by the real projector, i.e., Preal := Pm ⊗
{I,Z}⊗t. Similarly, defining Pideal := {I⊗m} ⊗ {I,Z}⊗t to be the set of Paulis that are allowed
by the ideal projector, the resulting state in the reject case is

E
k′1,k

′
2

TrM
∑

i6=(0t,Φ+)

〈i|µideal
k′1,k

′
2
|i〉

 = TrM


∑
` 6=0

E
k′1∈K1

V †
k′1
P`Vk′1

6∈Pideal

|α`|2 UR` ρMRU†`

 (9)

≈ε TrM

∑
` 6=0

E
k′1∈K1

|α`|2 UR` ρMRU†`

 , (10)

where the approximation sign means that the trace distance between the two states is
upper bounded by ε. The closeness follows from the strong-purity-testing property of the
code: the two states differ in those keys k′1 for which V †k′1P`Vk′1 ∈ Pideal ⊆ Preal, and for any
non-identity Pauli P`, this set is small by strong purity testing. Combined with the facts
that tr(U`ρU†` ) = 1 and

∑
` |α`|

2 = 1, it follows that the states in equations (9) and (10) are
ε-close. Note that none of the terms in equation (10) depends on k′1, so we can remove the
expectation over it.

Applying the triangle inequality (twice), the second term in equation (7) is found to be
small:

E
k1

1
2

∥∥∥∥∥∥ Ek′1,k′2
TrM

∑
i 6=(0t,Φ+)

〈i|µideal
k′1,k

′
2
|i〉

−E
k2

TrM
∑
i6=0t

〈i|µreal
k1,k2
|i〉

∥∥∥∥∥∥
tr

(11)

≤ ε

2 +E
k1

1
2

∥∥∥∥∥∥∥TrM
 ∑
` : V †

k1
P`Vk1∈Preal\{I⊗(m+t)}

|α`|2 U`ρU†`


∥∥∥∥∥∥∥
tr

(12)

≤ ε

2 + 1
2 Ek1

∑
` : V †

k1
P`Vk1∈Preal\{I⊗(m+t)}

|α`|2 , (13)

which we can upper bound by ε by applying the strong-purity-testing property once more.
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Next, we bound the first term of equation (7): the difference between the ideal and the
real channel in the accept case. The strategy is identical to the reject case that we just
treated, but because we want to recycle both k1 and k2 in the accept case, we have to be
more careful. The state in the real scenario, 〈0t|µreal

k1,k2
|0t〉, cannot be rewritten into the

compact form of, e.g., equation (8), because we cannot average over the Pauli key k2. Using
a technical lemma from [15] and Jensen’s inequality in order to take the expectation over the
keys inside, we obtain the bound

E
k1,k2

∥∥∥∥∥ Ek′1,k′2
(
〈Φ+, 0t|µideal

k′1,k
′
2
|Φ+, 0t〉

)
− 〈0t|µreal

k1,k2
|0t〉

∥∥∥∥∥
tr

≤ ε

2 +
√
ε. (14)

For a complete derivation, see the full version.
We have now upper bounded 1

2‖I(ρ)−R(ρ)‖tr ≤
√
ε+ 3

2ε for any state ρMRE , resulting
in 1

2‖I−R‖� ≤
√
ε+ 3

2ε, as desired. J

4 A strong-purity-testing variation on the trap code

Theorem 9 already gives us a quantum-ciphertext-authenticating code with key recycling:
the Clifford code. However, the Clifford code is not very well suited for quantum computing
on authenticated data. Although all Clifford-group operations can be performed easily
by updating the key client-side, it is not known how to perform non-Clifford gates and
measurements on the Clifford code. Moreover, if an entangling operation is performed on
two separately encoded qubits, their keys also have to be combined into a key for a single,
bigger ciphertext. This prevents output qubits from being decrypted individually.

In this section, we therefore present a strong-purity-testing variation on the trap code,
the strong trap code, which does allow for computation on the ciphertexts in a meaningful
and efficient way. By Theorem 9, this construction immediately gives rise to a ciphertext
authentication scheme with key recycling (QCA-R). Note that the strong trap code is also
secure in Portmann’s abstract-cryptography definition of quantum plaintext authentication
with key recycling [15].

4.1 Benign distance and weight sparsity

The strong trap code requires the existence of a family of quantum error-correcting codes
with two specific properties: a high benign distance, and weight sparsity. We specify these
properties here.

If a QECC has distance d, it is not necessarily able to detect all Pauli errors of weight
less than d. For example, if one of the qubits in a codeword is in the state |0〉, then a Pauli-Z
remains undetected. In general, any Pauli error that stabilizes all codewords will remain
undetected by the code. Of course, such an error does not directly cause harm or adds noise
to the state, because it effectively performs the identity operation. However, in an adversarial
setting, even such ‘benign’ Pauli errors indicate that someone tried to modify the state.

We consider an alternative distance measure for quantum error-correcting codes that
describes the lowest possible weight of a stabilizer:

I Definition 10 (Benign distance). The benign distance of an [[n,m]] code is the minimum
weight of a non-identity Pauli P` such that P`|xL〉 = |xL〉 for all x ∈ {0, 1}m. If such P` does
not exist, the benign distance is ∞.
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To distinguish the benign distance from the notion of difference defined in Definition 4, we
will often use the term conventional distance to refer to the latter.

The benign distance in a fixed relation to the conventional distance. For example, the
[[7, 4]] Steane code has distance 3, but benign distance 4. On the other hand, the [[49, 1]]
concatenated Steane code has distance 9, but a benign distance of only 4 (any non-identity
stabilizer for the [[7, 4]] Steane code is also a stabilizer on the [[49, 1]] code if it is concatenated
with identity on the other blocks). Even though the two quantities do not bound each other
in general, we observe that the benign distance of weakly self-dual CSS codes (i.e., CSS codes
constructed from a weakly self-dual classical code) grows with their conventional distance:
see the full version.

We define a second property of interest: weight sparsity. Intuitively, weight sparsity
means that for any set of X-, Y-, and Z-weights, randomly selecting a Pauli operator with
those weights only yields a stabilizer with very small probability. This probability should
shrink whenever the codeword length grows; for this reason, we consider weight sparsity as a
property of code families rather than of individual codes.

I Definition 11 (Weight-sparse code family). Let (Ei)i∈N be a family of quantum error-
correcting codes with parameters [[n(i),m(i), d(i)]]. For each i ∈ N, and for all non-negative
integers x, y, z such that x+ y + z ≤ n(i), let Ai(x, y, z) denote the set of n(i)-qubit Paulis
with X-weight x, Y-weight y, and Z-weight z. Let Bi(x, y, z) denote set of benign Paulis in
Ai(x, y, z).

The family (Ei)i∈N is weight-sparse if the function

f(i) := max
x+y+z≤n(i)

|Bi(x, y, z)|
|Ai(x, y, z)|

is negligible5 in n(i).

In the full version of this paper, we construct a weight-sparse family of weakly self-dual
CSS codes that have benign distance O(

√
n(i)), where n(i) is the codeword length of the

ith code in the family. The CSS codes are constructed from a punctured version of classical
Reed–Muller codes [16].

4.2 The strong trap code

We present a modified version of the trap code, which we call the strong trap code. Contrary
to the regular trap code, which appends 2t trap qubits, the strong trap code only appends
a single |0〉 trap and a single |+〉 trap. These two traps are subsequently encoded using a
quantum error-correcting code that has the desired properties described above, resulting in a
ciphertext of the same length as the original trap code.

I Definition 12 (Strong trap code). Let (Ei)i∈N be a weight-sparse family of weakly self-dual
CSS codes with parameters [[n(i), 1, d(i) = Ω(

√
n(i)]] and benign distance Ω(

√
n(i)). Then

the ith strong trap code {Vi,k}k∈Ki
encodes m = 1 qubit using t = 3n(i)− 1 tags with the

unitaries Vi,k := πkE
⊗3
i H2n(i)+1 (where H2n(i)+1 = I⊗2n(i) ⊗ H⊗ I⊗(n(i)−1)).

5 A function f(x) is negligible in x if for all c ∈ N, there exists an x0 such that for all x ≥ x0, f(x) < x−c.
This definition is extended by stating that a function f(x) is negligible in another function g(x) if for
all c ∈ N, there exists an x0 such that for all x ≥ x0, f(x) < (g(x))−c.
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The strong trap code invokes two layers of security: the CSS codes Ei, which detect low-
weight attacks, and the traps |0〉 and |+〉, which detect higher-weight attacks by revealing
bit and phase flips, respectively.

One can verify that computing on quantum states authenticated with the strong trap
code works in much the same way as for the original trap code. For details, see [6].6

I Theorem 13. The strong trap code is a strong-purity-testing code with error negl(n(i)).

Proof. Consider an arbitrary i and non-identity Pauli P` ∈ P3n(i)\{I⊗3n(i)}. Let wx and wz
denote the X-weight and Z-weight (respectively) of P`, and note that max(wx, wz) > 0.

We bound the probability that P`′ := π†kP`πk remains undetected by the code Ei and the
traps. Because Ei is a CSS code, it detects X and Z errors separately: let us write P`′ = PxPz
with Px ∈ {I,X}⊗3n(i) and Pz ∈ {I,Z}⊗3n(i), and focus first on the probability that Px remains
undetected, i.e., the probability that H2n(i)+1(E†i )⊗3PxE

⊗3
i H2n(i)+1 ∈ P1 ⊗ {I,Z}⊗3n(i)−1.

Because of the permutation πk, Px is a random Pauli in {I,X}⊗3n(i) with weight wx.
(Note that Pz is also a random Pauli with weight wz, but is correlated with Px: any overlap
in the locations of X and Z operators in P` is preserved by the permutation.)

Consider all possible values of wx = w1 + w2 + w3, where w1 denotes the weight of Px
on the first (data) codeword, w2 the weight on the second (|0〉-trap) codeword, and w3 the
weight on the third (|+〉-trap) codeword:

If wx = 0, then the Pauli Px is identity, and remains undetected with probability 1.
If 0 < wx < d(i), then 0 < wj < d(i) for at least one j ∈ {1, 2, 3}. Ei detects an error on
the jth block with certainty, since the weight of the error is below the distance and the
benign distance.
If d(i) ≤ wx ≤ 3n(i)− d(i), the attack Px will likely be detected on the second block, the
|0〉-trap. We can be in one of four cases:
w2 > 0 and Px is detected in the second block by the CSS code Ei.
w2 > 0 and Px acts as a logical operation on the second block. Since Px consists of
only I’s and X’s, this logical operation can only be an X by the construction of CSS
codes. In this case, Px is detected by the projection that checks whether the trap is
still in the |0〉 state.
w2 > 0 and Px acts as a stabilizer on the second block, and remains undetected on
that block. However, by the weight-sparsity of the code family, the probability that
this is the case is negligible in n(i).
w2 = 0. In this case, Px acts as identity on the second block. The probability that
this case occurs, however, is small:

Pr
k

[w2 = 0] =
(2n(i)
wx

)(3n(i)
wx

) < (2
3

)wx

≤
(

2
3

)d(i)
. (15)

The first inequality holds in general for binomials, and the second one follows from the
fact that wx ≥ d(i). Since d(i) = Ω(

√
n(i)), this probability is negligible in n(i).

In total, the probability of the attack remaining undetected for d(i) ≤ wx ≤ 3n(i)− d(i)
is negligible in n(i).

6 For some applications, authenticating through measurement (cf. [6, Appendix B.2]) can be very useful.
Our underlying code has all the requirements to achieve this in principle, but in this work we focus on
quantum authentication and do not formulate the full security notions needed to properly describe this
scenario.
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If 3n(i)− d(i) < wx < 3n(i): as in the second case, there is at least one j ∈ {1, 2, 3} such
that n(i)− d(i) < wj < n(i), causing the attack to be detected (recall that X⊗3n(i) is a
logical X, and therefore this mirrors the 0 < wx < d(i) case).
If wx = 3n(i), then the logical content of the second block, the |0〉-trap, is flipped. This
is detected with certainty as well.

We see that unless wx = 0, the Pauli Px remains undetected only with probability negligible
in n(i). A similar analysis can be made for Pz: it is always detected with high probability,
unless wz = 0. We stress that these probabilities are not independent. However, we can say
that

Pr
k

[Px and Pz undetected] ≤ min
{

Pr
k

[Px undetected], Pr
k

[Pz undetected]
}
, (16)

and since at least one of wx and wz is non-zero, this probability is negligible in n(i). J

5 Simultaneous encryptions with key reuse

Earlier work on key reuse for quantum authentication deals explicitly with key recycling, the
decision to reuse (part of) a key for a new encryption after completing the transmission of
some other quantum message. The key is reused only after the honest party decides whether
to accept or reject the first message, so recycling is a strictly sequential setting.

If Construction 1 is instantiated with a strong-purity-testing code (such as the strong trap
code), the resulting scheme is able to handle an even stronger, parallel, notion of key reuse.
As long as the one-time pads are independent, it is possible to encrypt multiple qubits under
the same code key while preserving security. Even if the adversary is allowed to interactively
decrypt a portion of the qubits one-by-one, the other qubits will remain authenticated. This
property is especially important for the strong trap code: computing on data authenticated
with the strong trap code requires all qubits to be encrypted under the same permutation
key.

The original trap code is secure in this setting (as long as the one-time pads are fresh; see
Section 5.2 of [6]), but only if all qubits are decrypted at the same time. If some qubits can
be decrypted separately, the adversary can deduce the location of the |+〉 traps by applying
single-qubit X operations to different ciphertexts at different locations, and observing which
ones are rejected. Repeating this for the Z operator to learn about the |0〉 traps, the adversary
can completely break the authentication on the remaining qubits.

Suppose we encrypt two messages using an authentication scheme based on a strong-
purity-testing code {Vk0}K0 , using the same code key k0 but a fresh one-time pad. If we then
decrypt the first message, the scheme is still QCA-R-authenticating on the second message
with only slightly worse security.

I Theorem 14 (informal). Let (Encrypt,Decrypt) be an ε-QCA-R-authenticating scheme
resulting from Construction 1, using a strong-purity-testing code {Vk0}K0 . Let M1,M2 denote
the plaintext registers of the two messages, C1 = M1T1, C2 = M2T2 the corresponding
ciphertext registers, and R a side-information register. Let A1, A2 be arbitrary adversarial
channels. Consider the setting where the adversary acts on the qubits, encrypted with keys
k0, k1, k2, as

DecryptC2→M2
k0,k2

◦AM1,C2,R
2 ◦DecryptC1→M1

k0,k1
◦AC1,C2,R

1 ◦
(

EncryptM1→C1
k0,k1

⊗ EncryptM2→C2
k0,k2

)
,

so that the key k0 is used for both messages. Then, the scheme is 2ε-QCA-R-authenticating
on the second qubit.
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Sketch. As a first step, we rewrite the encryption of the second qubit as using encoding
and teleportation, by using the equivalence between applying a random quantum one-time
pad and teleporting a state. The encryption of the second qubit can then be thought of as
happening after decryption of the first qubit. Next, we apply QCA-R security of the first
qubit, where we are using the property that k0 is recycled both in the accept and the reject
case. Finally we undo the rewrite and can directly apply QCA-R security on the remaining
state. J

The complete proof can be found in the full version. The argument easily extends to any
polynomial number of authenticated qubits.

6 Conclusion

We presented a new security definition, QCA-R, for ciphertext authentication with key
recycling, and showed that schemes based on purity-testing codes satisfy quantum ciphertext
authentication, while strong purity testing implies both ciphertext authentication and key
recycling. This is analogous to the security of quantum plaintext-authentication schemes
from purity-testing codes [5, 15].

Additionally, we constructed the strong trap code, a variant of the trap code which is a
strong-purity-testing code and therefore is QCA-R secure (as well as secure under all notions
of plaintext authentication). This new scheme can strengthen security and add key-recycling
to earlier applications of the trap code. It is also applicable in a wider range of applications
than the original trap code, because encrypted qubits remain secure even if other qubits
sharing the same key are decrypted earlier.

A potential application of the strong trap code is the design of a quantum CCA2-secure
encryption scheme (as in [3, Definition 9]) that allows for computation on the encrypted
data. By only using the pseudo-random generator for the one-time-pad keys, and recycling
the key for the underlying error-correcting code, this security level could be achieved.

As future work, our definition of QCA-R could be generalized in different ways. First, one
can consider a variant of the definition in the abstract-cryptography or universal-composability
framework, in order to ease the composition with other cryptographic primitives. Second,
because it can be useful to authenticate measurements in delegated computation applications,
one could extend the definition of QCA-R to deal with the measurement of authenticated data.
We expect no real obstacles for this extension of the definition, and refer to [6, Appendix B.2]
for comparable work on the original trap code.
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Abstract
The complexity of the commuting local Hamiltonians (CLH) problem still remains a mystery after
two decades of research of quantum Hamiltonian complexity; it is only known to be contained in
NP for few low parameters. Of particular interest is the tightly related question of understanding
whether groundstates of CLHs can be generated by efficient quantum circuits. The two problems
touch upon conceptual, physical and computational questions, including the centrality of non-
commutation in quantum mechanics, quantum PCP and the area law. It is natural to try to
address first the more physical case of CLHs embedded on a 2D lattice, but this problem too
remained open apart from some very specific cases [4, 17, 24]. Here we consider a wide class of
two dimensional CLH instances; these are k-local CLHs, for any constant k; they are defined on
qubits set on the edges of any surface complex, where we require that this surface complex is not
too far from being “Euclidean”. Each vertex and each face can be associated with an arbitrary
term (as long as the terms commute). We show that this class is in NP, and moreover that the
groundstates have an efficient quantum circuit that prepares them. This result subsumes that
of Schuch [24] which regarded the special case of 4-local Hamiltonians on a grid with qubits,
and by that it removes the mysterious feature of Schuch’s proof which showed containment in
NP without providing a quantum circuit for the groundstate and considerably generalizes it. We
believe this work and the tools we develop make a significant step towards showing that 2D CLHs
are in NP.
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2:2 On the Complexity of Two Dimensional Commuting Local Hamiltonians

1 Introduction

1.1 Commuting local Hamiltonians
The Local Hamiltonian (LH) problem is central to the theory of quantum complexity. In
1998 it was proved by Kitaev to be QMA-complete [21], initiating by that the area of
quantum Hamiltonian complexity. This result is often considered as the quantum analogue
of the celebrated Cook-Levin theorem, which states that the Boolean Satisfiability problem
(SAT) is NP-complete [23]. In 2003 Bravyi and Vyalyi [9] raised the question of what is the
complexity of the intermediate class in which all terms mutually commute (commuting local
Hamiltonians, or CLHs). The question begs an answer not only because the commutation
restriction is natural and often made in physics; but this is also a computational probe to the
fundamental question: is the uncertainty exhibited by non-commuting operators necessary
for quantum systems to exhibit their full quantum nature? or, perhaps, it happens to be the
(much less expected) case that even commuting quantum systems can express full quantum
power.

The CLH problem may seem at first sight to be trivially in NP, since by the commutation
condition, there exists a common basis of eigenstates to all terms, where each constraint has a
well defined value on each eigenstate; the problem seems like a classical constraint satisfaction
problem (CSP). This hope breaks down when realizing that the eigenstates themselves maybe
highly complex. While in CSP, a proof for satisfiability is simply a string, i.e. a satisfying
assignment, in the quantum case the eigenstates themselves may be highly entangled. Indeed,
a beautiful example is Kitaev’s toric code [20], whose global entanglement is characterized
by topological properties. In the general case, we do not no whether groundstates of CLHs
have an efficient classical description at all (that is, a polynomial size classical representation
from which the result of any local measurement can be deduced efficiently).

The question of CLHs touches upon some of the most important aspects of quantum
many body systems: fundamental, physical and complexity theoretical. For a start, stabilizer
codes can be viewed as ground spaces of CLHs; these constitute by far the most common
framework for the study of quantum error correcting codes. CLHs are also a very convenient
place to start with when studying open problems and toy examples; for example in the study
of the quantum PCP conjecture [2, 3, 7] often CLHs are used as a case study (e.g. [5, 13, 18]).
Moreover, CLH systems provide the simplest examples for systems obeying the area law
bounding the entanglement in groundstates of gapped systems1. In the one dimensional case,
the area law was recently shown in a breakthrough result to provide an efficient classical
algorithm for constructing groundstates [22]. In two or higher dimensions such an algorithm
cannot be expected, since CLHs become NP hard in 2D. However it is still possible that
groundstates satisfying the area law have polynomial size quantum circuits (which may
be hard to find). Understanding whether groundstates of 2D CLH systems have efficient
descriptions is thus an essential first step towards clarifying how the area law affects the
complexity of groundstates.

Despite the importance and fundamental nature of this class, and fourteen years after
the problem was posed [9], the complexity of the CLH problem remains a mystery, even in
the physically motivated case of 2D. A trivial upper bound to the complexity of the CLH
problem is that it belongs to QMA. A simple lower bound exists as well: if we let d denote the
dimension of the particles, and let k denote the maximal number of particles that each local

1 The area law states that the entanglement in the groundstate between two regions grows like the size of
the boundary between these two regions, rather than their volume.
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term acts on, then we may define CLH(k, d) accordingly. Using this notation CLH(k, d) is
NP-hard if k, d ≥ 2. The question becomes then to distinguish between those cases which
are within NP, those which are QMA hard, and possibly, the intermediate cases. However,
excluding a few special cases of CLH, not much is known.

1.2 Previous results
Bravyi and Vyalyi proved that CLH(2, d), namely the class of instances in which the particle
dimensionality d is an arbitrary constant, whereas the interactions only involve two such
particles (this is called two-local CLHs), is in NP [9]. The proof relies on a decomposition
lemma based on the theory of finite dimensional C*-algebra representations [26]. This tool
has become essential in all following results about this problem.

Aharonov and Eldar [4] then considered the 3-local case with qubits and qutrits. They
showed that CLH(3, 2) ∈ NP and also thatNE−CLH(3, 3) ∈ NP where NE is a geometrical
restriction on the interaction called nearly Euclidean [4]. An important fact about the proofs
for both of these results is that the witness which is sent by the prover is virtually a constant
depth quantum circuit which prepares a groundstate for the system, starting from a product
state. Hastings called states which can be generated by constant depth quantum circuits
“trivial” [18]; the name is justified since indeed, local observables can be computed classically
in an efficient way for such states, given the circuit that generates them, because the light
cone of qubits affecting the output qubits of a local observable is of constant size. Thus, the
above mentioned results not only prove containment in NP, but also show that such systems
have groundstates with very restricted multi-particle entanglement which is in some sense
local.

In this regard, Aharonov and Eldar [4] mentioned a tight “threshold” which can be
drawn at this point: commuting systems with parameters as above are essentially classical;
But, when raising k or d just by 1, i.e when considering CLH(4, 2) or CLH(3, 4), we arrive
at a new regime in which the quantum system can exhibit global entanglement, namely,
the groundstates are no longer trivial (by Hastings’ definition). In fact, such systems can
exhibit global entanglement even when the system is embedded on a square lattice: Kitaev’s
toric code [20] is a wonderful example, as it can indeed be shown that groundstates of this
code with nearest neighbor interactions cannot be generated by a constant depth quantum
circuit [8]. This raises the possibility [4] that general CLH systems with parameters above the
“transition point” are too complex for containment in NP, as they allow global entanglement.

There are several examples beyond the transition point which indicate that though global
entanglement is possible, it might still be the case that CLH systems remain "classically
accessible" even in that regime. First, it is known that despite their global entanglement,
toric code states can be constructed in logarithmic depth quantum circuits called MERA [1]
which moreover, allow local measurements to be simulated classically efficiently. In addition,
Schuch proved that CLHs in which all qubits and all 4-local constraints are embedded on a
square lattice (generalizing the toric code to general interactions with the same geometry and
dimensionality) also belong to NP [24]. Interestingly enough though, Schuch’s proof bypasses
the question of whether an efficient description of a groundstate exists; instead, the witness
which is sent by the prover convinces the verifier that a low energy state exists without
describing that state at all. Schuch’s result thus leaves open the possibility, suggested in [4],
that when crossing the transition point from local to global entanglement mentioned above,
groundstates may in general become difficult to describe classically (not including the toric
code special case).

TQC 2018
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Hastings provided two other results proving upper bounds on the complexity of the CLH
problem in certain cases. In [18] he considered k-local CLHs whose interaction graphs are
1-localizable; roughly speaking, these are instances whose interaction graphs can be mapped
to graphs continuously, such that the preimage of every point is of bounded diameter. This
extends the result of [9] that two local Hamiltonians are in NP, to slightly more general
constructions which are in some sense, two-local in every local region. In another result of
Hastings [17], he considered CLHs on a planar lattice, and proved that the problem is in
NP under certain restrictive conditions on the C*-algebraic decomposition (essentially, that
when dividing the lattice to stripes, the transformation which disentangles adjacent stripes,
a’la Bravyi and Vyalyi [9], is local). Hastings also provided parts of a proof that 2D CLH is
in NP, and suggested that the proof will be completed elsewhere, however this was not done.

We note that an interesting clue pointing in fact in the other direction, namely suggesting
that the CLH problem could be harder than NP, was given recently by Gosset, Mehta and
Vidick [14]; they show that a certain problem regarding the connectivity of the ground space
of CLHs is as hard as that of general LHs. It is suggested in [14] that this is probably true
even for CLHs in 2D, though this remains to be worked out.

We are left with the mystery: possibly the above "classical" examples are just special
cases, and in the general case above the low parameters threshold, global entanglement
prevents an efficient description of the groundstates of CLHs; or maybe, the "classicality" of the
entanglement in the toric code groundstates as well as in the other examples mentioned [17,24]
is generic for all CLHs, and thus the problem lies in NP.

1.3 Results
We consider a wide subclass of CLH in 2D. Specifically, we consider CLH(k, 2) instances (i.e
with qubits) where the qubits are arranged on the edges of a polygonal complex K whose
underlying topological space is a surface. We refer to those as 2D complexes2. The local
terms live on the vertices of K (these are called stars), and on its faces (plaquettes), where
each of these terms acts on the edges attached to the vertex or the face, respectively. In
Section 2, this class is formally defined and denoted by 2D−CLH∗(k, 2). We shall emphasize
that the Hamiltonian terms need not be of the form of products of σx or σz Paulis as in
Kitaev’s surface codes, but can be general operators on the relevant qubits (as long as they
commute). Moreover, the locality parameter k, which in this case equals the maximal degree
of vertices and faces of K (a degree of a face is the number of its edges), is an arbitrary
constant as well.

An example of a polygonal complex, where each vertex and each face has a degree of at
most 5. One may define on this complex a 2D − CLH∗(5, d) instance by assigning to each
star and plaquette a Hamiltonian acting on the attached edges, where those Hamiltonians
mutually commute.

We note that there is no restriction whatsoever on the topology of the complex K; it can
be of any genus, and may or may not include a boundary. We impose one condition on K,
which is a metric-geometric condition that we call quasi-Euclidity (though of similar flavor,
it shouldn’t be confused with the nearly-Euclidean condition of [4]). This condition ensures
that the surface induced by the complex admits a triangulation in which the triangles may
be slim (as in hyperbolic geometry) and may be fat (as in elliptic geometry) but only up to
some constant. This makes the complex in some sense Euclidean up to a constant distortion,
and prevents “wild” situations. Any physically natural 2D setting should be covered by this.

2 despite some friction with ordinary simplicial 2-complexes as in e.g [19] which do not necessarily define
topologically a surface
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Figure 1.1 Polygonal complex.

Our main two results are:

I Theorem 1. The 2D − CLH∗(k, 2) problem on quasi-Euclidean complexes is in NP.

I Theorem 2. For any instance of 2D − CLH∗(k, 2) defined on a quasi-Euclidean complex,
there exists a polynomial depth quantum circuit which prepares a groundstate.

Importantly, these results replace the mysterious feature of Schuch’s result [24] providing
a proof for containment in NP without an efficient groundstate description, by one in which
the groundstate can be efficiently classically described; this seems to strengthen the common
feeling that containment in NP should go hand in hand with efficient description for the
groundstate. Moreover, our results hold for a wide class of cases, which includes not only
the 4-local case in a square lattice of Schuch [24], but CLHs with arbitrary locality k,
that are defined on any quasi-Euclidian 2D complex. We remark that our definition of
2D − CLH∗(k, 2) unfortunately does not capture the most general k-local quantum systems
of qubits embedded on a surface (see Section 2).

1.4 Proof overview
Our starting point is a folklore quantum algorithm for preparing the groundstates of the
toric code. Recall that the toric code Hamiltonian [20] acts on qubits set on the edges of an
n× n grid with boundary conditions which make it topologically a torus. The Hamiltonian
has two types of constraints, one for each vertex (star) denoted s, and one for each face
(plaquette) denoted p:

As =
⊗
e∈s

σez, Bp =
⊗
e∈p

σex, H = −
∑
s

As −
∑
p

Bp (1.1)

The groundstates of this Hamiltonian form a code space, and exhibit global-entanglement.
Consider creating “holes” in the torus, by removing a small fraction of the plaquettes, in

a regular manner. Figure 1.2 (A) shows how by removing enough plaquettes we are left with
a punctured Hamiltonian H̃, which involves two local interactions between super-particles
comprised each of constantly many qubits. By [9] there is a constant depth quantum circuit
which prepares a groundstate (denote it |ψ〉) for H̃.

This doesn’t seem at first as real progress, since |ψ〉 is a trivial state, whereas groundstates
of the original Hamiltonian are globally entangled. The key idea is that now we can correct for
the plaquettes we have removed, using the known idea of applying string operators connecting
pairs of “holes”.

To do this, we first measure in the state |ψ〉 each of the plaquette terms which were
removed. Due to the commutation relations, the resulting state is still a groundstate of H̃
but now it is also an eigenstate of the toric code, with a known eigenvalue for each of the
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(a) Punctured Hamiltonian (b) Logical Operators

Figure 1.2 (A) The white squares are the holes. The dotted lines induce a partition of the set
of qubits (edges) to squares (tilted in 45 degrees), which are the super-particles, each containing a
constant number of qubits. Every local term (star or plaquette) of the punctured Hamiltonian acts
on qubits which belong to at most 2 super-particles. (B): A hole with a spot inside indicates an
excitation (i.e. a violation). The dotted lines are string logical operators (copaths) which annihilate
particles in pairs. The edges in bold denote the qubits on which the logical operator acts.

terms. Viewing the toric code as a subcode of the punctured code (the groundspace of the
punctured Hamiltonian H̃), what we now need is a set of logical operators in the punctured
code, that act within it and can transform our state into a toric code groundstate.

To this end, we recall the notion of string operators which are Pauli operators acting
on the paths (strings) connecting a pair of holes [20]. Such an operator changes the values
of the measurements corresponding to the constraints in both holes, while keeping all the
other values intact. Notice that this process always works on pairs of holes. The dependency
relations between the local terms (

∏
sAs =

∏
pBp = 1) [20] imply that for any eigenstate

of the toric code there is an even number of plaquette (and also star) terms which are in
their excited states. Since all plaquettes in the punctured Hamiltonian are satisfied (i.e., not
excited), it follows that there is an even number of excited plaquettes out of those which we
removed, and thus such a pairing exists.

Note that we could have actually removed all plaquettes, resulting in a punctured
Hamiltonian H̃ consisting only of As terms; Starting with the state |0n〉, which is a groundstate
of H̃, we could then proceed as in the above algorithm, to derive a groundstate of the toric
code (without any help of the prover). We will make use of both approaches in this paper; the
“regular holes” approach is the one we will generalize (conceptually) to more general instances,
while the second more specific approach is used as a subroutine in our final algorithm, for
technical reasons. We will thus present and prove it formally in Section 4.

1.4.1 Physical interpretation

The toric code has a physical interpretation which will be very useful for us [20]. The value
of the edges in the σx and σz basis are interpreted as a Z2 vector potential or electric field,
respectively. When a constraint is violated, we interpret this as if an elementary excitation,
or a particle, is created. The star constraints can be viewed as requiring that the electric
flux from the vertex (namely the values of the qubits in the computational basis) is zero,
i.e., that this vertex will have no electrical charge. If a vertex constraint is violated, we
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say that there is an “electric charge” at that vertex. Likewise, the plaquette constraints
require that the magnetic flux which passes through the face is zero (mod 2). If a plaquette
constraint is violated we say that there is a "magnetric vortex" in this plaquette [20]. The
toric code consists of the states in which neither electrical charges, nor magnetic vortices
appear. The punctured system however allows particles to be created at the sites which
we have removed. After measuring these terms, we know exactly where these particles are.
It is left to annihilate them. Having a closed surface with no boundary, such as the torus,
the total charge on it, as well as the total magnetic flux passing through it, must be zero
(as Gauss and Stoke’s laws imply, respectively). This means that there must be an even
number of electrical charges, and an even number of magnetic vortexes, which can then be
annihilated in pairs, by what is called “string operators” connecting pairs of charges or pairs
of vortexes (see [20]). In the above algorithm for the toric code we only needed to annihilate
magnetic vortices (plaquettes).

1.4.2 From toric code to general 2D − CLH∗(k, 2)

It is far from clear how the methods above concerning the toric code can be applied to
general 2D CLH systems; after all, surface codes seem to be an extremely restricted type of
2D CLHs (where the local terms must take the form of tensor products of either σx or σz
Pauli operators), whereas we are concerned with arbitrary commuting local terms. Theorem
13 in Section 5 provides our first main step in the proof: we show that all 2D − CLH∗(k, 2)
instances are "equivalent to the toric code permitting boundaries". This in particular means
that if all terms, stars and plaquettes, act non-trivially on all of their attached edges,
(plus K is closed, i.e topologically has no boundary), then the instance is, up to a minor
modification, equal to the toric code. In the general case, terms may act trivially on some
of their qubits (edges); we will call such edges boundary/coboundary edges. Theorem 13
says that 2D − CLH∗(k, 2) instance are virtually the toric code, except for those essentially
1D behaving boundary areas (and thus the term "permitting boundaries"). The proof of
this structure theorem relies heavily on the C*-algebraic techniques mentioned earlier. We
emphasize that Theorem 13 holds only after some transformation of the instance to one with
no "classical qubits" whose value is simply a classical bit which can be provided by the prover
(see subsection 3.3).

1.4.3 Constructing the Punctured Hamiltonian
The above equivalence theorem raises the idea of using a similar algorithm as for the toric
code groundstates, and somehow handling the special boundary/coboundary qubits. However,
we encounter two challenges. First, we do not have sufficient control on operators near the
boundary/coboundary. If we carelessly tear out holes in their vicinity, we might not know
how to repair them- the correcting process of the toric code heavily relies on the specific
commutation and anti-commutation relations between a string operator and the Hamiltonian
terms (equation 1.1). We handle this difficulty by tearing out holes only in the interior regions
(that is regions without boundary/coboundary qubits) where we do have resemblance to the
toric code. It turns out that there is no need to tear holes close to boundary/coboundary
qubits as in some sense these special qubits are already punctured: by definition such qubits
are not surrounded by Hamiltonians acting on them non-trivially.

The second challenge is that we do no longer have the dependencies
∏
sAs =

∏
pBp = 1

that ensured earlier an even number of excitations of any given type, and so the idea of
fixing holes in pairs is irrelevant. In the physical interpretation, the latter means that the
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Figure 1.3 Logical operators.

total charge on the manifold can be different than 0 since now flux can escape through the
boundary. In section 6 we show that the curse of boundaries is in fact a blessing, since now
we can also dump excitations to the boundary/coboundary with string operators, similarly
to logical operators in surface codes [10] (figure 1.4).

The latter idea, which can be viewed as the main conceptual idea in the paper, introduces
a new challenge - we have two types of special qubits. Boundary qubits give rise to copath
string logical operators whereas coboundary qubits give rise to path string logical operators.
We cannot expect that puncturing only plaquette terms out of the surface will allow us to
fix them later on. Figure 1.3 shows simple examples of systems in which only one type of
term (star/plaquette) have access to the boundary/coboundary via copath/path. In short,
plaquettes play nicely with boundary edges whereas stars play nicely with coboundary edges.

The white plaquette and the white plus indicate holes. In a complex with boundary
but no coboundary only plaquette holes can be connected via a copath to utilize a logical
operator, whereas in a complex with coboundary but no boundary only star holes can be
connected via paths to utilize a logical operator.

A major technical effort in the paper is proving Lemma 15 which roughly states that for
any adjacent plaquette and star, at least one of them has access to the boundary/coboundary
(unless they are both already touching the boundary/coboundary), hence a hole in one of
them will be fixable

With this in mind, we construct the punctured Hamiltonian as follows: we start by
considering the set W of "fixable" terms. These are terms which are not in the boundary of
the system (and thus are in the form of a toric code term) and in addition have access to the
boundary or coboundary via a copath or path depending on whether it is a plaquette or star
term respectively (see Definition 14 and Figure 6.1). By Lemma 15 the fixable holes are very
“dense”. We shall not hesitate to remove all of those terms since, by how the elements of the
set W were chosen, we can correct their values later on.

We call the Hamiltonian obtained by removing all of the terms in W the punctured
Hamiltonian H̃.

1.4.4 2-locality of the punctured Hamiltonian
Lemma 15 guarantees that at any large enough constant size area, either there are boundary
qubits (recall these are qubits which are acted trivially by at least one of its surrounding
terms) which may serve as a hole, or else there must be a fixable term in that area, i.e a
member of W, which was removed. In the case of the grid it is now very simple to generate
a 2-local structure among constant size super-particles: just consider a coarse grained grid
of 5 × 5, and use Lemma 15 to conclude that there must be some hole inside each 5 × 5
square. However we are allowing much more general geometries than the grid; it is here
and only here, that we make use of the quasi-Euclidity condition. This is what allows us
to follow a similar process, and to tear holes in some regular manner. Technically, we need



D. Aharonov, O. Kenneth, and I. Vigdorovich 2:9

(a) Punctured Hamiltonian. (b) Logical Operators.

Figure 1.4 (A) Even when boundaries/coboundaries exist, one can tear out holes to obtain a
2-local instance w.r.t superparticles of constant size. (B) After measuring each hole, it remains to
correct it if needed by connecting it to the boundary/coboundary via a string operator depending
on the hole type (i.e plaquette/star).

to apply Moore’s bound [6,15] to bound the number of edges (qubits) which belong to any
super-particle resulting from the process; together with some other combinatorial arguments
the proof goes through.

Now that the punctured Hamiltonian is 2-local, we again are guaranteed that a groundstate
can be generated by a constant depth quantum circuit [9]. This is the only place where the
prover is needed. Note that this groundstate is in general not the groundstate of the original
Hamiltonian, yet, the fact that we have torn out only terms of W , namely the fixable terms,
implies that we can apply the approach of measuring them and correcting them with string
operators to the boundary/coboundary of the system (Figure 1.4 (B)).

1.5 Organization of the paper

In Section 2 we formalize the problem. Section 3 gives some background: "the induced
algebra", "classical qubits", and notations. Section 4 provides the efficient algorithm for
generating toric code states which we use as a subroutine. Section 5 contains Theorem
13, stating that 2D − CLH∗(k, 2) instances are "equivalent to the toric code permitting
boundaries". Based on this, in Section 6 we prove lemma 15 which shows that many fixable
terms (those with "access to the boundary") exist, and define the punctured Hamiltonian, in
which all these terms are removed. In Section 7 we show that the punctured Hamiltonian is
indeed 2-local with respect to super-particles of constant size. Section 8 combines all these
results to prove Theorems 1,2. In Section 9 we discuss the results, their implications, and
state open questions.

This version does not include all proofs in their complete form. Those can be found in
the more techinical version of this paper [6].
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2 Formulation of the problem

2.1 Definitions
I Definition 1 (CLH instance). An instance of CLH(k, d) consists of a set of Hamiltonian
terms (Hermitian matrices) acting on n qudits (particles of dimension d), where each term
acts non-trivially on at most k of the n qudits. The norm of each term is bounded by 1, and
the terms mutually commute.

To be precise, we note that as usual, the Hermitian matrices are given with entries
represented by poly(n) bits.

We consider the cases where the CLH instance is defined on a 2D complex. The type of
complexes we allow (see definition bellow) is a generalization of a simplicial 2-complex; while
in simplicial complexes the 2-cells must be 2-simplexes (triangles), we allow the 2-cells to
be any simple polygon. Topologically speaking, we may define a simple polygon to be any
set homeomorphic to the closed disk D = {x ∈ R2 | ||x|| ≤ 1} with some choice of a finite
amount (at least three) of points on its boundary to be called the vertices of the polygon.
The arcs on the boundary which connect two adjacent vertices are called the sides of the
polygon. Such complexes are often called polygonal complexes [15].

I Definition 2 (polygonal complex). A polygonal complex K is a collection of points (called
0-cells or vertices), line segments (1-cells, or edges), and simple polygons (2-cells, or faces)
glued to each other such that:
1. Any side of a 2-cell in K is a 1-cell in K. Every endpoint of a 1-cell in K is a 0-cell in K.
2. The intersection of any two distinct 2-cells of K is either empty or else it is a single 1-cell

(along with its endpoints). The intersection of any two distinct 1-cells of K is either
empty or else it is a single 0-cell.

If all polygons have exactly three vertices then K is called a simplicial 2-complex. The
1-skeleton of K is by definition the graph obtained by removing all 2-cells from K. Finally, K
is called two dimensional (2D) if the topological space which it defines S =

⋃
K is a surface.

By surface we mean the topological definition of a surface3 allowing boundaries [25]; that
is a topological space such that each point in the interior has a neighborhood homeomorphic
to R2 whereas each point in the boundary has a neighborhood which is homeomorphic to
the the upper plane {(x, y) ∈ R2 | y ≥ 0}. We shall remark that if K is finite (which will
be the only case we consider) then S is compact. If in addition S has no boundary (in the
ordinary topological sense) then we say that S (and thus also K) is closed.

Note that 2D polygonal complexes have the property that every 1-cell is the face of at
most two 2-cells (one if that 1-cell is in the boundary, and two if it is in the interior). That
is because if 3 or more 2-cells are attached at that 1-cell then the neighborhoods of points in
the interior of that 1-cell are neither homeomorphic to R2 nor to the upper plane.

The 1-skeleton of K admit the natural graph metric in which the distance between any
two vertices is the length of the minimal path between them, where the length of every edge
is 1.

I Definition 3 (triangulation). A triangulation of a topological space X is a finite simplicial
2-complex T together with a homeomorphism f : T → X. The 2-cells of T are called the
triangles of the triangulation.

3 In many texts (e.g [19]) second countability and Hausdorff are required in the definition as well. In
our case however, we are only considering finite polygonal complexes which always satisfy these two
conditions.
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Figure 2.1 Quasi-Euclidean polygonal complex.

The following definition is inspired by metric geometry in which hyperbolic spaces are
roughly defined to be metric spaces which have only r-slim triangles - triangles which do not
contain any ball of radius r; whereas elliptic metric spaces are such which have a bound on
the diameter of triangles [11].

I Definition 4 (quasi-euclidean 2D complex). Let K be a 2D polygonal complex with underly-
ing surface S. A triangulation of S is said to be (r,R)−quasi-Euclidean for some 0 < r < R

if each of its triangles contains a ball of radius r in K (w.r.t metric defined above) and the
subgraph in it is of diameter at most R. The degree of a triangulation is by definition the
maximal degree of its 1-skeleton. In the case where S admits such a triangulation we say
that K is (r,R)-quasi-Euclidean.

We emphasize that there is no demand from the triangulation to be in any sort in
accordance with the complex structure of K (e.g vertices of T do not need to be located on
vertices of K).

A triangulation T (dark lines) of the surface S on which the complex K lies. T is
(r,R)-quasi-Euclidean with r = 2,R = 12 since each triangle contains a ball of radius 2 but
its diameter is less than 12. The makes K a (r,R)-quasi-Euclidean complex. Having each
triangle contain a ball of radius r ≥ 2k (here k = 7) ensures that there exists a polygon
which is contained in the triangle, as well as all other polygons touching it. The fact that
the diameter of each triangle is at most R implies that the number of edges in each triangle
is bounded by a number dependent only on R and k, by Moore’s bound [15].

I Definition 5 (2D − CLH∗(k, d) instance). Consider instances x of CLH(k, d) for which:
1. There exists a two dimensional polygonal complex K.
2. There exists a 1-1 mapping between qudits of x and edges of K.
3. There exists a 1-1 mapping between local terms of x and the set of vertices and faces of
K.

4. If h corresponds to a vertex v then the set of qudits {q1, ..., qr} which h acts on corresponds
to the set of edges {e1, ..., er} attached to v.

5. If h corresponds to a face f then the set of qudits {q1, ..., qr} which h acts on corresponds
to the set of edges {e1, ..., er} which are in the boundary of f .

We consider the restriction of this class to quasi-Euclidean complexes - those which admit a
(r,R)-quasi-Euclidean triangulation of degree D, for some arbitrary constants D > 0 and
R > r > 2k. We call such 2D − CLH∗(k, d) instances quasi-Euclidean.
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The quasi-Euclidean condition doesn’t limit the topology in any way. Specifically, for any
compact surface S there exists a quasi-Euclidean polygonal complex K such that S is its
underlying surface (i.e S =

⋃
K) [25]. This condition is needed only in Section 7. Hence in

the following we ignore it and treat general 2D−CLH∗(k, 2) instances; only in Section 7 we
will mention this condition again.

Another possible way to define a CLH on a 2D polygonal complex is to place the qudits
on the vertices rather than the edges, and then local terms are associated with faces alone.
We denote the class of such instances by 2D − CLH(k, d) (i.e without the star symbol).
The latter definition captures the notion of a 2D system in a more general way: every
2D − CLH∗(k, 2) instance can be converted to a 2D − CLH(k, 2) whereas the converse is
true only when the instance has no vertices of degree 3. In addition, if our results can be
generalized to 2D − CLH∗(k, d) for arbitrary d, this will in fact imply that they also hold
for 2D − CLH(k, d), under a mild condition similar to quasi-Euclidity (see [6]).

To each of those classes corresponds the local Hamiltonian problem of deciding, given
a < b with b− a < 1

poly(n) , whether the ground energy of the system (i.e the sum of all local
terms) is bellow a or above b, provided the promise that one of these cases hold. We use
the same notation to denote both the class of such instances (as in Theorem 2) and the
corresponding decision problem (as in Theorem 1).

3 Notation and Background

3.1 Notations
Throughout this paper we use H to denote Hilbert spaces, q to denote qubits, and accordingly
Hq to denote the Hilbert space associated with the qubit q. K denotes the complex on which
the 2D−CLH∗(k, 2) is defined whereas S denotes its underlying surface. We use s to denote
stars, p to denote plaquettes and let |s| and |p| denote the degree of a star or a plaquette, i.e
the number of edges which belong to s or to p. As denotes the local term which corresponds
to s and Bp denotes the local term which corresponds to p. h denotes a local term in general.
We say that two stars (plaquettes) are adjacent if they share an edge, and say that a star and
plaquette are adjacent if they share two edges (which is the only way a star and a plaquette
can intersect). When more geometrical aspects are discussed we will consider vertices instead
of stars denoted by v, edges instead of qubits denoted by e and faces instead of plaquettes
denoted by f . We let H denote the sum of all local terms H =

∑
sAs +

∑
pBp where s

and p range over the stars and plaquettes of the instance. When we construct a punctured
Hamiltonian, i.e a Hamiltonian obtained by removing some terms from the original one, we
will always denote it by H̃.

3.2 The induced algebra
I Definition 6 (induced algebra). Let h be an operator on a tensor product Hilbert space
Hq1 ⊗ Hq2 and let h =

∑m
i=1 h

i
q1
⊗ hiq2

be a Schmidt decomposition4 of h. The induced
algebra of h on Hq1 is denote by AhHq1

or in short Ahq1
and is defined to be the C*-algebra

generated by {I} ∪ {hiq1
}mi=1 (I denotes the identity operator).

4 That is to say: hi
q1 ∈ L (Hq1 ), hi

q2 ∈ L (Hq2 ) for each i and the that sets
{

hi
q1

}m

i=1
,
{

hi
q2

}m

i=1
are

orthogonal with respect to the Hilbert-Schmidt inner product i.e tr(hi
ql

† · hj
ql

) = 0 for any i 6= j and
l = 1, 2.
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3.3 Classical qubits
The equivalence to the toric code which we are aiming for can be shown only after performing
a certain reduction of removing "classical qubits". Classical qubits are classical in the sense
that they do not participate in the entanglement of the system and consequently, the prover
may hand us its correct value as a classical bit.

I Definition 7 (trivial qubit). A qubit (or qudit) is called trivial, if no local term acts on it
non-trivially.

I Definition 8 (classical qubit). A qubit (or qudit) is called classical if its Hilbert space can
be decomposed into a direct sum of 1-dimensional subspaces which are invariant under all
local terms in the Hamiltonian H.

When we say that a Hamiltonian h acts trivially on a certain qubit we simply mean that
it can be written as h = I ⊗ h′ where I is the identity operator on that qubit, and h′ acts
only on other qubits.

Note that due to the low dimension of qubits, once such a non-trivial direct sum decom-
position exists then the subspaces must be one dimensional and so the qubit is classical.
Note also that every trivial qubit is in particular classical - any direct sum decomposition
will do. The following claim says that whenever there is a classical qubit q, the instance can
be reduced to a new instance in which it is a trivial qubit.

I Claim 9 (removing classical qubits). To derive theorems 1,2 it is sufficient to prove it under
the restriction of 2D − CLH∗(k, 2) to instances with the condition that every classical qubit
is trivial.

This claim is the key idea in the proof that the 2-local commuting Hamiltonian problem
lies in NP [9]; In fact, one can easily construct a formal proof for claim 9 using the same
arguments as in [9] (see [6]).

Thus, we shall assume from now on that all classical qubits were turned to be trivial
qubits.

4 Generating a toric code state

The toric code is a special case of a 2D − CLH∗(k, 2) instance. We shall not restrict to the
particular setting of a grid on a torus, so by saying toric code we refer to any 2D−CLH∗(k, 2)
instance defined on a closed complex K (i.e it topologically has no boundary) with the usual
star and plaquette local terms (equation 1.1).

Starting with the state |0〉⊗n, we measure all plaquettes and record the measurement
results by λ̄ = (λp)p (where λp = ±1). As a result, the system collapses to a state
corresponding to the measured values: |ψλ̄〉. Note that |ψλ̄〉 is a toric code state (i.e a
groundstate of the Hamiltonian given in equation 1.1) precisely when λp = 1 for each
plaquette p.

Whenever we have two plaquettes p1,p2 with λp1 = λp2 = −1 we can connect them by
a copath γ∗, apply L∗ =

⊗
e∈γ∗ Ze, and obtain a new state |ψλ̄′〉 where λ and λ′ are the

same except for the value on the plaquettes p1,p2 (see [6] for a more elaborate explanation of
logical and string operators). In other words, a pair of plaquette terms which are in their
excited state can always be relaxed. After matching pairs of excitations, and annihilating
them by applying string operators between them, we obtain a toric code state. It is thus left
to show that such a matching always exists:
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I Claim 10 (even amount of excitations). The number of plaquettes p for which λp = −1 is
even.

Proof. Since K is closed so
∏
pBp = 1 (and also

∏
sAs = 1). Therefore:

|ψλ̄〉 = 1 |ψλ̄〉 =
∏
p

Bp |ψλ̄〉 =
∏
p

λp |ψλ̄〉 = (
∏
p

λp) |ψλ̄〉

It follows that
∏
p λp = 1. J

This is summarized in the following algorithm:

Algorithm - constructing a toric code state (folklore):

1. Start with the tensor product state |0〉⊗n.
2. For each star p measure Bp and record the measured value λp.
3. As long as −1 ∈ {λp}p choose two stars p1, p2 with λp1 = λp2 = −1, find a copath γ∗

connecting them (with some linear time path-finding classical algorithm) and apply Z
along that copath, that is the operator L =

⊗
q∈γ Zq. Then change the values of λp1 , λp2

from −1 to 1.

It is not hard to be convinced that a similar approach works also for a variation of the
toric code where each term is as in the toric code but with some scalar factor (see [6]). This
remark is relevant since the equivalence to the toric code (which we formulate in the following
section) allows such factors.

5 Equivalence to the toric code

We now formulate the notion of equivalence between general 2D−CLH∗(k, d) instances and
the toric code.

I Definition 11 (boundary/coboundary qubit). A qubit is said to be in the boundary of the
system if it is acted non-trivially by at most one plaquette; it said to be in the coboundary of
the system if it is acted non-trivially by at most one star. Other qubits are said to be in the
interior. A local term which acts only on interior qubits is said to be in the interior of the
system.

Qubits that live on edges which are topologically on the boundary of the manifold are of
course in the boundary of the system; however qubits which are (topologically) in the interior
of the manifold can also be in the boundary/coboundary of the system if a Hamiltonian term
acts trivially on them. When this happens, these qubits serve, in spirit, as “holes”. We will
later exploit this fact in order to tear out holes only in the interior of the system to obtain
the 2-local punctured Hamiltonian and a constant depth circuit that generates groundstate
for it.

Following [9], we will make use of the notion of induced algebras (Definition 6) of any
term in the Hamiltonian, on any set of qubits it acts on. The induced algebra from a star
(plaquette) term s (p) on qubits q1, ...qr is denoted Asq1,...,qr

(Apq1,...,qr
). In addition, given

an operator h we denote by 〈h〉 the algebra generated by this operator. We can now state
the definition of equivalence to the toric code:
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I Definition 12 (equivalence to the toric code permitting boundaries). An instance of 2D −
CLH∗(k, 2) is said to be equivalent to the toric code if its underlying surface S is closed (it
topologically doesn’t have boundary) and there exists a choice of basis for each qubit such
that As ∈

〈
Z⊗|s|

〉
\C · I, Bp ∈

〈
X⊗|p|

〉
\C · I for any s, p.

An instance is said to be equivalent to the toric code permitting boundaries if there exists
a choice of basis for each qubit such that:
1. Asq1,...,qr

= 〈Z⊗r〉 for any star s, for (q1, ..., qr) a copath of qubits of s which are not in
the coboundary, with no two consecutive qubits in the boundary.

2. Apq′1,...,q′r = 〈X⊗r〉 for any plaquette p, for (q′1, ..., q′r) a path of qubits of p which are not
in the boundary, with no two consecutive qubits in the coboundary.

I Theorem 13 (equivalence to the toric code permitting boundaries). Every 2D−CLH∗(k, 2)
instance (after removing all classical qubits as described in subsection 3.3) is equivalent to the
toric code permitting boundaries. In particular, if it has no qubits which are in the boundary
or in the coboundary then it is equivalent to the toric code.

The first step in the proof is to classify the possible induced algebras of a Hamiltonian on
a single qubit in the interior and show that these algebras are always generated by a single
Pauli operator (i.e., an operator which is equal to a Pauli matrix up to a change of basis).
This can be done quite easily using the ordinary C*-algebraic techniques as in [9,24]. The
main technical part is to establish severe restrictions on the induced algebras on pairs of
qubits (which are in the interior, roughly), and essentially showing that they must be similar
to those of the toric code. This analysis involves a close and fairly technical study of the
implication of the commutation relations between the Hamiltonians on the algebras that
they induce.

An immediate implication of Theorem 13 is that we now know how to generate a
groundstate for any 2D − CLH∗(k, 2) instance which has no qubits in the boundary or
coboundary of the system, since such instances are equivalent to the toric code.

6 Construction of punctured Hamiltonian

We are now ready to show how we can generate a groundstate of an arbitrary quasi-Euclidean
2D − CLH∗(k, 2) instance, even when there are qubits in the boundary/coboundary.

I Definition 14 (access to the boundary/coboundary). A star s is said to have access to
the coboundary if there exists a path γ starting from s which ends at a coboundary edge
such that L =

⊗
q∈γ Xq anti-commutes with As and commutes with any other local term.

Similarly, a plaquette p is said to have access to the boundary if there exists a copath γ∗
starting from p which ends at a boundary edge such that L∗ =

⊗
q∈γ∗ Zq anti-commutes

with Bp and commutes with any other local term.

Access to the boundary or coboundary means that either L∗ or L serve as an appropriate
logical operator for the corresponding plaquette or star respectively in the sense that it flips
its value while keeping the value of all other constraints in tact.

I Lemma 15 (Main lemma: access to the boundary/coboundary). Let s, p be adjacent star
and plaquette which are in the interior of the system. Then either s has access to the
coboundary, or p has access to the boundary.

The proof of Lemma 15 relies on the a further study of the induced algebras near the
boundary/coboundary of the system. The idea is to start with an edge shared by s and p
and start drawing a ribbon from it which is briefly a juxtaposition of a path and an adjacent

TQC 2018



2:16 On the Complexity of Two Dimensional Commuting Local Hamiltonians

Figure 6.1 A ribbon to the boundary

copath (see Figure 6.1). We do this until we encounter a boundary/coboundary edge. At
areas far from the boundary, we are in a regime which look like the toric code and thus the
desired commutation and anti-commutation relations hold. Near the boundary/coboundary
there are enough restrictions on the induced algebras to conclude that either the path or the
copath within the ribbon can serve as the support for a logical operator which can correct p
or s respectively (see [6]).

The labeled edges in bold form a ribbon. The stars and plaquettes which are shared
between two adjacent edges in the ribbon are labeled as well. Ribbons include in them both
a path which can easily be seen in the figure and a copath which is drawn as a dotted line.
The last qubit of the ribbon is in the boundary and so we say that the first qubit has access
to the boundary via a copath. See [6] for a full explanation.

Construction of punctured Hamiltonian: Let W denote the set consisting of all stars and
plaquettes in the interior of the system which have access to the coboundary or to the
boundary, respectively. This set can be thought of as the set of “fixable” terms. Let H̃ be
the punctured Hamiltonian: the local Hamiltonian obtained by replacing all terms which are
in W by the identity operator.

7 2-locality of the punctured Hamiltonian

We now show with the help of Lemma 15 that the punctured Hamiltonian H̃ has so many
holes that it is 2-local.

The division to superparticles is based on the quasi-Euclidean condition (this is the
only place we use this condition). Recall that by definition, the quasi-Euclidity condition
(Definition 4) provides us with a triangulation T of S of degree D = O(1) such that each
triangle contains a ball of radius 2k and is of diameter R = O(1) (with the ordinary graph
metric with edge length 1).

We now construct a graph which will help us divide the qubits to superparticles. The
vertices of this graph will be associated with terms in the Hamiltonian. A local term can be
associated with a point in the surface in a natural way: each star is naturally realized as the
vertex which is associated with it, and each plaquette p is associated with some arbitrarily
chosen point in its interior to be called “the center of the plaquette”. This allows us to
precisely speak of a local term as a point on the surface.

I Claim 16 (punctured triangles). For each triangle T ∈ T there exists a term h of H̃ such
that all of the edges attached to it (i.e the edges associated with the qubits which h acts on),
are fully contained in T and moreover, h acts trivially on at least one of its qubits.
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Figure 7.1 Choosing a holes in each triangle and separating to regions.

The idea of the proof is very simple: T contains a ball of radius 2k and thus must contain
a pair of adjacent star and plaquette which are in the interior. By Lemma 15 at least one of
them belongs to W so let h be that term.

Choose such a term h for every triangle T ∈ T and call it “the center of the triangle T”.
Such a term acts trivially on some edge e (when considered as a term in H̃; if h was removed,
then this term is in fact the identity). In addition, for each 1-cell of T , that is a side of
a triangle T ∈ T , choose some point in its interior to be called “the center of the 1-cell”.
Then connect each triangle center with 3 paths to the centers of the sides of T . Those paths
should be non intersecting, contained in the interior of T (except at the end of the paths)
and in addition must satisfy one more condition: clearly, those three non-intersecting paths
divide T into 3 regions; the paths should be drawn such that e belongs to one region and all
the other edges of h belong to the two other regions (that way h will act non-trivially on at
most 2 regions). To be sure that such paths can always be drawn, it suffices to show it for
an equilateral triangle - this can of course be done. Then the general case is obtained as a
homeomorphism of the triangle (see figure 7.1).

According to Claim 16, every triangle includes a local term h which acts trivially on (at
least) one of its edges e (this edge is marked as a double edge). Whether a star term or a
plaquette term, we can connect it to the three triangle sides with three paths (dotted curves)
such that e belongs to one region, and the other edges belong to the two other regions.

This construction gives rise to a graph G which highly resembles T ∗ the dual of T . The
vertices of G consist of the chosen triangles center of T , as well as the centers of 1-cells of
triangles in T which are on the boundary of S. Between any two vertices of G corresponding
to the centers of two triangle T1, T2 which share a side (i.e T1 ∩ T2 is a 1-cell of T ) let there
be an edge; in addition, for every triangle which has a side on the boundary of the surface,
let there be an edge between the triangle center and the boundary. The edges of G are drawn
on S as the paths constructed in the previous paragraph.

Consequently, vertices of T are in one-to-one correspondence with faces of G. Those
faces induce a partition P of the set of qubits Q according to the face of G which they
belong to (if an edge of K touches more then one face of T ∗ then join it to one of those faces
arbitrarily) [12]. We accordingly have: H =

⊗
q∈QHq =

⊗
P∈P HP with HP :=

⊗
q∈P Hq.

We refer to each cluster P ∈ P and to its Hilbert space HP as a super-particle.
The dark lines are the quasi-Euclidean triangulation. The dotted curves are the edges of

the graph G realized as the chosen paths in S. The faces of G induce a partition of the qubits
into superparticles. The fatness of the triangles and the bounded degree of the triangulation
implies that the superparticles’ size is constant.

So far we have only used the “slimness” of a triangle condition in the definition of
quasi-Euclidean condition. Here is where we need the bound on the fatness of triangles and
the upper bound on its degree.
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Figure 7.2 The graph embedding of G in S.

I Claim 17 (constant sized super-particles). Each super-particle includes at most D · kR+2

qubits (in particular O(1)).

The proof is a straightforward consequence of Moore’s bound [6, 15] which provides a
bound on the number of vertices and edges which are contained in some ball in a graph of
bounded degree. Since each vertex of K is of degree at most k, and the diameter of each
triangle is at most R we immediately obtain a bound on the number of edges in each triangle
and thus in each super-particle (since the number of triangles it intersects is at most D - the
maximal degree of T ).

I Claim 18 (punctured Hamiltonian is 2-local). Each local term of H̃ acts on at most two
super-particles.

The proof follows by the observation that the only plaquettes/stars which act on 3
super-particles are the ones near the vertices of G which were removed (see Figure 7.2)

8 Completing the algorithm and the proofs for Theorems 1 & 2.

We now proof Theorems 1 & 2. By Claims 17, 18, it is possible to prepare a ground space∣∣ψ̃〉 of H̃, using a constant depth quantum circuit. Given such a groundstate, we measure
every h ∈ W one by one. Actually it will be simpler to measure I − 2 ·πh instead where πh is
the orthogonal projector onto the ground space of h. Record that result of the measurement
by λh. Accordingly, having λh = 1 indicates that

∣∣ψ̃〉 is already a groundstate of h whereas
λh = −1 indicates an excitation at that spot. The state we had

∣∣ψ̃〉 collapses by these
measurements to a new state |ψ〉 which is an eigenstate of every h ∈ W, while still being
in the ground space of H̃. Recall that the set of terms we measured (the set W) all have
access to the boundary (Definition 14). Thus their value can be changed via string logical
operators while not effecting the value of any other term. This is summarized by the following
algorithm:

Algorithm (constructing a groundstate for an arbitrary quasi-Euclidean
2D − CLH∗(k, 2) instance):
1. If the instance has no boundary or coboundary qubits, then it is equivalent to the toric

code, so apply algorithm 4 and terminate.
2. Else, generate a groundstate of H̃ with a constant depth quantum circuit.
3. For each term h ∈ W which was removed, measure I−2 ·πh, and record the measurement

value as λh = ±1. (πh is the orthogonal projector onto the groundspace of h).
4. Fix every h ∈ W for which λh = −1: if h is a star term s, find a path γ from s to the

coboundary and apply L =
⊗

q∈γ Xq. If h is a plaquette term p, find a copath γ∗ from p

to the boundary and apply L∗ =
⊗

q∈γ∗ Zq.
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This proves Theorem 2. Theorem 1 follows as well: if the instance has no boundary/-
coboundary qubits (and this can of course be checked efficiently by the verifier) then the
system is equivalent to the toric code, so it’s ground energy can be computed easily (see [6]
for the case where the local terms are as in the toric code only upto a factor of a scalar).
Otherwise, the problem of computing the ground energy of H reduces to computing the
ground energy of H̃, since the verifier knows that any groundstate of H̃ can be corrected to
a (possibly other) groundstate of H̃ such that all terms in W are satisfied (i.e the energy
with respect to the terms in W is minimal). It is thus left to note that H̃ is a 2-local CLH,
and this problem is in NP by [9].

9 Discussion

An interesting property of the algorithm is that all of the quantum operations are summed up
to have only constant depth. Indeed, the algorithm consists of three steps: a constant depth
quantum circuit that generates a groundstate for the punctured Hamiltonian, a non-constant
depth computation of path finding which can be carried out in a classical manner, and finally
a constant depth quantum circuit of logical operators (tensor product of Pauli operators).

This observation regards the complexity of the algorithm, but it is interesting also
conceptually. While the quantum circuit presented here is of polynomial depth, it is enough
for the verifier to obtain only a constant depth circuit description, and verify that it is indeed
a groundstate of the punctured Hamiltonian, in order to be know the ground energy of the
whole system (since the verifier knows that these holes can always be fixed). This means that
while the time it takes to generate a groundstate for the system is concentrated on creating
global entanglement, all the hardness and potential frustration of the groundstate comes
into play only at the level of local entanglement of the groundstate of the 2-local punctured
system.

Moreover, our results shed new light on the possible threshold phenomenon suggested
in [4]. Recall that this threshold (described above in subsection 1.2) regards the fact that
up until k = 3, d = 3, and also for k = 2 and arbitrary d, CLH(k, d) always have trivial
groundstate, which in turn implies that those problems are in NP. The threshold refers to the
fact one cannot expect the exact same phenomenon for higher parameters since then there
are systems with topological quantum order which are known to have no trivial groundstates.
It is thus interesting that our proof extends this trivial state phenomenon even beyond this
transition point into the regime of potentially global entanglements, in the sense that even
here the prover hands us a description of a trivial state - a ground state of H̃ (even though
it cannot in general be a groundstate of the actual instance). This raises the question of
whether such a property holds for more general CLHs.

Can these results be extended to all 2D systems? A generalization from qubits to qudits
of dimension larger than 2 would imply this, under the quasi-Euclidity assumption. Thus,
the main open problem is to generalize our results to higher dimensional particles. We note
that in any case one can still tear holes in a regular manner (using e.g the quasi-Euclidity
assumption) to obtain a punctured Hamiltonian which is 2-local with respect to superparticles,
and thus has a trivial groundstate. The problem is that we do not know how to fix those
holes later on: our characterization of 2D − CLH∗(k, 2) instances (i.e Theorem 13) and
of fixable terms (namely, the creation of logical operators in Lemma 15) strongly uses the
fact that the particles are 2 dimensional. It is open whether further generalization could be
derived using more general characterizations of commuting local Hamiltonians, perhaps over
general finite groups (e.g the quantum double model [20]).
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We mention that if indeed the results can be generalized to qudits, it might also be
possible to generalize to 3D manifolds or more, perhaps in an inductive manner.

A more technical question is whether the quasi-Euclidity condition can be relaxed.
Quasi-Euclidity seems closely related to the notion of 1-localizablity introduced in Hastings’
paper [18] already mentioned (In fact, the quasi-Euclidity condition we use can be replaced
by the technical assumption used in [18] regarding the girth of the complex; we could then
deduce the existence of a groundstate for H̃ from 1-localizabilty instead of 2-locality). This
raises the question of whether manifolds which are very non-Euclidean and which have low
girths, can exhibit much more complex multi-particle entanglement (we mention in this
context [16]).
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Abstract
In this paper, we study quantum query complexity of the following rather natural tripartite
generalisations (in the spirit of the 3-sum problem) of the hidden shift and the set equality
problems, which we call the 3-shift-sum and the 3-matching-sum problems.

The 3-shift-sum problem is as follows: given a table of 3×n elements, is it possible to circularly
shift its rows so that the sum of the elements in each column becomes zero? It is promised that,
if this is not the case, then no 3 elements in the table sum up to zero. The 3-matching-sum
problem is defined similarly, but it is allowed to arbitrarily permute elements within each row.
For these problems, we prove lower bounds of Ω(n1/3) and Ω(

√
n), respectively. The second lower

bound is tight.
The lower bounds are proven by a novel application of the dual learning graph framework

and by using representation-theoretic tools from [7].

2012 ACM Subject Classification Theory of computation → Quantum query complexity

Keywords and phrases Adversary Bound, Dual Learning Graphs, Quantum Query Complexity,
Representation Theory

Digital Object Identifier 10.4230/LIPIcs.TQC.2018.3

Related Version https://arxiv.org/abs/1712.10194

Acknowledgements Part of this research was done while A.B. was visiting the Centre for Quan-
tum Technologies at the National University of Singapore. A.B. would like to thank Miklos
Santha for hospitality.

1 Introduction

One of the starting points of this paper was the following problem, posed by Aaronson and
Ambainis [1]: construct a partial Boolean function with polylogarithmic quantum query
complexity but whose randomised query complexity is ω(

√
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input variables. There are relatively many functions known with the required quantum
query complexity and randomised query complexity Θ(

√
n). For instance, one can take the
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and randomised query complexity ω(
√
n) is known. As shown in [10, 2], such a function

would also yield a larger than 5/2-power separation between quantum and randomised query
complexities for total Boolean functions.

Aaronson and Ambainis proposed a candidate function, which they call the k-fold
forrelation. It has a very simple quantum O(1)-query algorithm, but it seems hard to lower
bound its randomised query complexity. However, it is also possible to go in the opposite
direction: find a function whose randomised query complexity is ω(

√
n), and construct an

efficient quantum algorithm computing this function. A potential candidate might be a
modification of a function already known to be easy quantumly, preserving the hope the
modification is still easy.

One particularly neat starting function, in our opinion, is the following hidden shift
problem. Given two strings x, y ∈ [q]n, the task is to distinguish two cases: in the positive
case, x is a circular shift of y; in the negative case, all the input variables in x and y

are distinct. This problem is equivalent to the hidden subgroup problem in the dihedral
group [17], and its quantum query complexity is logarithmic.3 It is also easy to see that its
randomised query complexity is Θ(

√
n).

In this paper we consider the following modification, which we call the 3-shift-sum problem.
We are given an input string x ∈ [q]3n, which we treat as a 3× n table. In the positive case,
it is possible to circularly shifts the rows of the table so that the sum of the elements in each
column becomes divisible by q. In the negative case, no matter how we shift the rows, there
is no column with the sum of its elements divisible by q. (In other words, there is no three
elements, one from each row, whose sum is divisible by q.) This is a natural amalgamation
of the hidden shift and the 3-sum problem, both studied quantumly.

It is easy to see that the randomised query complexity of this problem is Θ(n2/3). This
raises the question of what its quantum query complexity is. Our first result is a simple
proof that, unlike the hidden shift problem, the quantum query complexity of the 3-shift-sum
problem is polynomial: Ω(n1/3). Thus, the 3-shift-sum problem fails to provide the desired
separation.

Similarly as the 3-shift-sum problem is a tripartite version of the hidden shift problem, the
3-matching-sum problem is a tripartite version of the set equality problem. In the set equality
problem, the negative inputs are as in the hidden shift problem, but in a positive input, y is
an arbitrary permutation of x, not necessary a circular shift. Unlike the hidden shift problem,
the set equality problem has polynomial quantum query complexity: Θ(n1/3) [23, 25, 7]. In
our tripartite version of it, the negative inputs are the same as in the 3-shift-sum problem,
but for a positive input, there exists an arbitrary permutation of the elements within each
row such that the sum of each column becomes divisible by q. Our second result is a complete
characterisation of the quantum query complexity of this problem: it is Θ(

√
n).

1.1 Techniques

Our main tool is the framework of dual learning graphs, which is “compiled” to the adversary
lower bound.

3 The canonical version of the Dihedral HSP also assumes that all the symbols in x are pairwise distinct
and all the symbols in y are pairwise distinct. However, this condition is not relevant for the query
complexity being logarithmic as easily follows from [14, Theorem 2]. Since it is not immediately obvious
how to generalise this condition for the tripartite version, we omitted it from our definition of the hidden
shift problem. Also note that this is the decision version of the problem, where it is not required to find
the shift. The latter may be difficult if x contains repeated symbols.
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The first version of the adversary method was developed by Ambainis [3]. This version,
later known as the positive-weighted adversary, is easy to use, and it has found many
applications, but it is also subject to some limitations: the certificate complexity [24, 26]
and the property testing [15] barriers. The property testing barrier, which is relevant to
our problems, states that, if any positive input differs from any negative input on at least ε
fraction of the input variables, the positive-weighted adversary fails to prove a lower bound
better than Ω(1/ε). In most cases ε = Ω(1), thus this only gives a trivial lower bound.

The next version of the bound, the negative-weighted adversary [15], is known to be
tight [20], but it is also harder to apply. An application of the bound to the k-sum problem
was obtained in [9]. This result was later stated in the framework of dual learning graphs [6],
which we are about to describe.

Learning graphs is a model of computation introduced in [4, 5]. They are most naturally
stated in terms of certificate structures, which describe where 1-certificates can be located in
a positive input. Learning graphs capture quantum query complexity of certificate structures
in the following sense. Let L be the learning graph complexity of a certificate structure
C. First, for any function with certificate structure C, there exists a quantum algorithm
solving it in O(L) queries. Second, there exists some function with certificate structure C
and quantum query complexity Ω(L). In general these functions are rather contrived, yet
one example of them being natural are the following sum problems. A sum problem is a
total function parametrised by a family S of O(1)-sized subsets of [n]. The task, given an
input string x ∈ [q]n, is to detect whether there exists S ∈ S such that

∑
i∈S xi is divisible

by q. Note that our problems do not fall into this category, because every positive input is
promised to have many such subsets.

While dual learning graphs give tight lower bounds for all of the above sum problems, in
general, of course, they do not give lower bounds for all problems with a given certificate
structure. For example, the learning graph complexity of the certificate structure corres-
ponding to the hidden shift problem is Θ(n1/3), whereas its quantum query complexity is
logarithmic. What about the 3-shift-sum problem? It turns out that dual learning graphs
are still of help here, but in a slightly different way. The learning graph complexity of the
corresponding certificate structure is Θ(

√
n), yet we do not know whether it can be converted

into a quantum query lower bound. However, a dual learning graph for a different certificate
structure can be converted into, albeit not tight, but still a polynomial lower bound. This
shows that dual learning graphs are more versatile than we thought.

Another interesting feature of our result is that it might be the simplest constructed
example of the adversary bound surpassing the property testing barrier. Examples of the
negative-weighted adversary breaking the certificate complexity and the property testing
barriers were already obtained in [15]. But [15] did not cover the most interesting regime
ε = Ω(1) of the property testing barrier. The sum problems of [6] are relatively simple
examples of overcoming the certificate complexity barrier. An example for the ε = Ω(1)
regime of the property testing barrier was constructed in [7], but the construction is quite
technical. Our result gives a similar example by much simple means, comparable to that
of [6].

Concerning the 3-matching-sum problem, our lower bound is an application of the
technique developed for the set equality problem [7]. It is based on the representation theory
of the symmetric group. Surprisingly, the technique can be used for the 3-matching-sum
problem with essentially no modifications: our proof uses representation theory to a minimal
extent, and mostly follows from combinatorial estimates involving the dual learning graph.
This indicates that our technique has a potential to be used in proving lower bounds for
other symmetric problems.
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1.2 Results in property testing

In the property testing model, one is given some property (a set of positive inputs), and the
task is to distinguish whether the input possesses the property, or is ε-far, in the relative
Hamming distance, from any input that has the property.

Overcoming the property testing barrier automatically gives a lower bound for a property
testing problem—that of testing whether the input is positive. But it is not always the most
natural way to state the problem. We give an example of a lower bound for a problem that
is most naturally stated in the setting of property testing.

The 3-shift-sum problem, as formulated above, must have relatively large q for the problem
to be interesting. For instance, it is easy to see that for q = 2 there are almost no negative
inputs. In our lower bound, we require that q = Ω(n3). But it is possible to formulate a
version of the problem that is interesting even when the input alphabet is Boolean. Define
the set of positive inputs as before, and define the set of negative inputs as being at relative
Hamming distance at least, say, 1/7 to it. We prove a lower bound of Ω(n1/3) also for this
version of the problem.

Although there is quite a number of quantum algorithms for property testing problems,
there are not so many quantum lower bounds known. (An interested reader might consult a
recent survey [19] for more information on the topic.) One of the main reasons, of course, is
the property testing barrier for the positive-weighted adversary. Up to our knowledge, our
result is the first property testing lower bound proven using the adversary method, which
answers the problem mentioned in [19]. This shows yet another area of applications of dual
learning graphs.

2 Preliminaries

For positive integers m and ` ≥ m, let [m] denote the set {1, 2, ...,m} and [m..`] denote the
set {m,m+ 1, . . . , `}. For P a predicate, we use 1P to denote the variable that is 1 if P is
true, and 0 otherwise.

For an I × J -matrix A, i ∈ I, and j ∈ J , we denote by A[[i, j]] its (i, j)-th entry. For
I ′ ⊆ I and J ′ ⊆ J , A[[I ′,J ′]] denotes the corresponding submatrix. We use similar notation
also for vectors. Next, ‖·‖ denotes the spectral norm (the largest singular value), and ◦
denotes the Hadamard (i.e., entry-wise) product of matrices. We often identify projectors
with the spaces they project onto.

2.1 Adversary Bound

For background on quantum query complexity the reader may refer to [11]. In the paper, we
only require the knowledge of the (negative-weighted) adversary bound for decision problems,
which we are about to define.

Let f : D → {0, 1} with D ⊆ [q]n. An adversary matrix for f is a non-zero f−1(1)×f−1(0)-
matrix Γ. For any j ∈ [n], the f−1(1)× f−1(0)-matrix ∆j is defined by

∆j [[x, y]] =
{

0, if xj = yj ;
1, if xj 6= yj .

(1)
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I Theorem 1 (Adversary bound, [15, 18, 9]). In the above notation, the quantum query
complexity of the function f is Θ

(
ADV±(f)

)
, where ADV±(f) is the optimal value of the

semi-definite program

maximise ‖Γ‖ (2a)
subject to ‖∆j ◦ Γ‖ ≤ 1 for all j ∈ [m], (2b)

where the maximisation is over all adversary matrices Γ for f .

We can choose any adversary matrix Γ and scale it so that the condition ‖∆j ◦ Γ‖ ≤ 1 holds.
Thus, we often use the condition ‖∆j ◦ Γ‖ = O(1) instead of ‖∆j ◦ Γ‖ ≤ 1.

Working with the matrix ∆j ◦ Γ might be cumbersome, so we do the following transform-
ation instead. We write Γ ∆j7−→ Γ′ if Γ ◦∆j = Γ′ ◦∆j . In other words, we modify the entries
of Γ with xj = yj . Now, from the fact [18] that γ2(∆j) = maxB

{
‖∆j ◦B‖ : ‖B‖ ≤ 1

}
≤ 2,

we conclude that ‖∆j ◦ Γ‖ ≤ 2‖Γj‖, hence we can replace ∆j ◦ Γ with Γ′ in (2b).
It is sometimes convenient [9] to allow several rows or columns corresponding to the same

input x. We add labels to distinguish different rows corresponding to the same input.

2.2 Certificate Structures and Dual Learning Graphs
Let f : D → {0, 1} be a function with domain D ⊆ [q]n. For x ∈ f−1(1), a certificate for x is
a subset S ⊆ [n] such that f(z) = 1 for all z ∈ D satisfying xi = yi for all i ∈ S. A certificate
structure C is a collection of non-empty subsets of 2[n]. We say that f has certificate structure
C if, for every x ∈ f−1(1), there existsM∈ C such that every S ∈M is a certificate for x.
It is natural to assume that allM∈ C are upward closed.

There are two formulations of the learning graph complexity: primal and dual. For
the purposes of this paper, it is enough to state the dual one. A dual learning graph for a
certificate structure C is a feasible solution to the following optimisation problem:

maximise
√∑

M∈C
α(M, ∅)2 (3a)

subject to
∑
M∈C

(
α(M, S)− α(M, S ∪ {j})

)2 ≤ 1 ∀S ⊆ [n], ∀j ∈ [n] \ S; (3b)

α(M, S) = 0 ∀S ∈M; (3c)
α(M, S) ∈ R ∀M ∈ C, ∀S ⊆ [n]. (3d)

The optimal value of this optimisation problem is called the learning graph complexity of C.
We call a solution to the dual learning graph for C any mapping α(M, S) satisfying (3d),

where we implicitly assume (3c). A solution is feasible if it satisfies (3b). It is easy to see
that any optimal solution α(M, S) to (3) is entry-wise non-negative and non-increasing in S.
We will implicitly assume that any feasible solution satisfies these requirements.

Inspired by this optimisation problem, we define the norm of a solution α as ‖α‖ =
maxS⊆[n]

√∑
M∈C α(M, S)2. It satisfies the usual axioms of a norm, although we will not

use this fact. For j ∈ [n], we define an operation ∂j given by

∂jα(M, S) =
{
α(M, S)− α(M, S ∪ {j}), if j /∈ S;
0, if j ∈ S.

If α is a solution to the dual learning graph, so is ∂jα. Condition (3b) can be restated as
‖∂jα‖ ≤ 1 for all j ∈ [n]. If α(M, S) is non-increasing in S, the objective value (3a) is given
by ‖α‖.
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3:6 Quantum Lower Bound for Tripartite Hidden Shift

Dual learning graphs have close connection to adversary matrices, which we discuss in
Section 4.

2.3 Representation Theory
In this section, we introduce basic notions from the representation theory of finite groups
with special emphasis on the symmetric group. For more background, the reader may refer
to [12, 22] for general theory, and to [16, 21] for the special case of the symmetric group.

Assume G is a finite group. The group algebra CG is the complex vector space with the
elements of G forming an orthonormal basis, where the multiplication law of G is extended
to CG by linearity. A (left) G-module, also called a representation of G, is a complex vector
space V with the left multiplication operation by the elements of CG satisfying the usual
associativity and distributivity conditions. We can treat elements of CG as linear operators
acting on V .

A G-morphism (or just morphism, if G is clear from the context) between two G-modules
V and W is a linear operator θ : V →W that commutes with all α ∈ CG: θα = αθ, where
the first α acts on V and the second one on W .

A G-module is called irreducible (or just irrep for irreducible representation) if it does
not contain a non-trivial G-submodule. For any G-module V , one can define its canonical
decomposition into the direct sum of isotypic subspaces, each spanned by all copies of a fixed
irrep in V . Different isotypic subspaces in this decomposition are orthogonal. If an isotypic
subspace contains at least one copy of the irrep, we say that V uses this irrep.

If G and H are finite groups, then the irreducible G × H-modules are of the form
V ⊗W where V is an irreducible G-module and W is an irreducible H-module. And the
corresponding group action is given by (g, h)(v ⊗ w) = gv ⊗ hw, with g ∈ G, h ∈ H, v ∈ V ,
and w ∈W , which is extended by linearity.

We use the following results:

I Lemma 2 (Schur’s Lemma). Assume θ : V → W is a morphism between two irreducible
G-modules V and W . Then, θ = 0 if V and W are non-isomorphic; otherwise, θ is uniquely
determined up to a scalar multiplier.

I Lemma 3 ([7]). Let θ : V →W be a morphism between two G-modules V and W . Then,
there exists an irrep in V all consisting of right-singular vectors of θ of singular value ‖θ‖.
(We call such right-singular vectors principal.)

Let SL denote the symmetric group on a finite set L, that is, the group with the
permutations of L as elements, and composition as the group operation. If m is a positive
integer, Sm denotes the isomorphism class of the symmetric groups SL with |L| = m.
Representation theory of Sm is closely related to Young diagrams, defined as follows.

A partition λ of an integer m is a non-increasing sequence (λ1, . . . , λt) of positive integers
satisfying λ1 + · · ·+ λt = m. A partition λ = (λ1, . . . , λt) is often represented in the form of
a Young diagram that consists, from top to bottom, of rows of λ1, λ2, . . . , λt boxes aligned by
the left side. We say that a partition has k boxes below the first row if λ1 = m− k. For each
partition λ of m, there exists an irreducible Sm-module Sλ, called the Specht module. All
these modules are pairwise non-isomorphic, and give a complete list of all the irreps of Sm.

3 Formulation of the Problems and Easy Observations

In this section, we formulate the 3-shift-sum problem and define the closely related 3-
matching-sum problem. We also sketch proofs of few simple observations about these
problems.
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Both the 3-shift-sum and the 3-matching-sum are partial Boolean functions defined on
[q]3n, with q and n positive integers. The 3n input variables are divided into three groups
A = [1..n], B = [n+ 1..2n], and C = [2n+ 1..3n]. A 3-dimensional matching is a partition µ
of the set [3n] into n triples, µ = {T1, . . . , Tn}, such that |Ti ∩A| = |Ti ∩B| = |Ti ∩ C| = 1
for all i. This is a natural generalisation of the usual (2-dimensional) matching between sets
A and B. We denote the set of 3-dimensional matchings by Mm (we omit n, assuming its
value is clear from the context). We consider a special type of 3-dimensional matchings, we
call 3-shifts. A 3-shift is a matching µ = {T1, . . . , Tn} such that there exist two numbers
b, c ∈ [n] such that Ti =

{
i, n + 1 + (i + b mod n), 2n + 1 + (i + c mod n)

}
for all i. We

denote the set of 3-shifts by Ms.
We define the 3-shift-sum and the 3-matching-sum problems as follows. Let Mq stand

for Ms in 3-shift-sum and for Mm in 3-matching-sum. In a positive input x ∈ [q]3n, there
exists µ ∈Mq such that xa + xb + xc is divisible by q for every triple {a, b, c} ∈ µ. We say
that x is of the form µ in this case. In a negative input y ∈ [q]3n, we have ya + yb + yc 6≡ 0
(mod q) for any choice of a ∈ A, b ∈ B, and c ∈ C. The task is to determine whether the
input is positive or negative, provided that one of the two options holds. Since 3-shift-sum is
a special case of 3-matching-sum, the latter is a harder problem.

3.1 Randomised and Quantum Complexity
Let us describe what we can immediately say about quantum and randomised query com-
plexities of these problems. Neither result will be relevant later in the paper.

I Proposition 4. The quantum query complexity of the 3-shift-sum and the 3-matching-sum
problems is O(

√
n).

Proof sketch. Consider a positive input x, and let µ ∈Mq be its form. Take random subsets
A′ ⊆ A and B′ ⊆ B of size approximately

√
n, and query all the variables in A′ ∪B′. With

high probability, there exists T ∈ µ that intersects both A′ and B′. Now use Grover’s search
to find an element c ∈ C satisfying xa+xb+xc ≡ 0 (mod q) for some a ∈ A′ and b ∈ B′. J

I Proposition 5. The randomised query complexity of the 3-shift-sum and the 3-matching-
sum problems is Θ(n2/3).

The proof is totally standard, and it can be found in the full version of the paper [8].

3.2 Certificate Structures
It is easy to describe the certificate structures Cs and Cm of the 3-shift-sum and the 3-
matching-sum problems. For each µ ∈Mq, there is a correspondingMµ ∈ Cq obtained as
follows: a subset S ⊆ [n] is inMµ if and only if there exists a triple T ∈ µ satisfying T ⊆ S.

The lower bound from the following proposition will be our main source of inspiration
when constructing adversary bounds later in the paper.

I Proposition 6. The learning graph complexity of the certificate structures Cs and Cm is
Θ(
√
n).

Proof. The upper bound is similar to Proposition 4, and we omit the proof. The upper
bound is stated here for completeness, and we do not use it further in the paper.

Let us prove the lower bound. For that we have to construct a feasible solution to the
dual learning graph. ForM∈ Cq, define

α(M, S) = 1√
|Mq|

max
{√

n− |S|, 0
}

if S /∈M, (4)
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3:8 Quantum Lower Bound for Tripartite Hidden Shift

and as 0 otherwise. It is easy to see that the objective value (3a) is
√
n, and that (3c) holds.

It remains to check (3b). Fix S and j. If |S| ≥
√
n, then the left-hand side of (3b) is zero,

so assume |S| ≤
√
n. We have the following contributions to the left-hand side of (3b):

If S ∪ {j} /∈M, then the value of α(M, S) changes by 1√
|Mq|

as |S| increases by 1.

If µ ∈Mq is taken uniformly at random, the probability is O
(
(|S|/n)2) = O(1/n) that

S /∈Mµ but S ∪ {j} ∈ Mµ. In this case, α(Mµ, S) changes by at most
√

n
|Mq| .

Altogether we have:∑
M∈C

(
α(M, S)− α(M, S ∪ {j})

)2 ≤ |Mq| ·
1
|Mq|

+O

(
|Mq|
n

)
· n

|Mq|
= O(1).

Scaling down α by a constant factor, we get a feasible solution with objective value Ω(
√
n). J

4 Basic Definitions

In this section we introduce our basic notation, and describe a procedure of converting a
solution to the dual learning graph into an adversary matrix. This is a general procedure
from [6] tailored for the special case of the 3-shift-sum and the 3-matching-sum problems.
This procedure does not immediately result in good adversary matrices for these problems,
but we are able modify it in Sections 5 and 6 so that it works. Let again Mq stand for either
Ms or Mm.

4.1 Fourier Basis
Let H = CZq and e0, . . . , eq−1 be the Fourier basis of H. Recall that it is an orthonormal
basis given by ei[[j]] = 1√

qω
ij , where ω = e2πi/q. For m a positive integer, the Fourier basis of

H⊗m is given by tensor products ea1 ⊗ · · · ⊗ eam . A component eai in this tensor product is
called non-zero if ai 6= 0. The weight of the Fourier basis element is the number of non-zero
components.

We define two projectors in H: Π0 = e0e
∗
0 and Π1 = I − Π0 =

∑q−1
i=1 eie

∗
i . All the entries

of Π0 are equal to 1/q. Important relations are Π0
∆7−→ Π0 and Π1

∆7−→ −Π0, where ∆ is as
in (1) and acts on the sole variable. For two sets R ⊆ T , we define a projector ΠT

R in the
space HT by ΠT

R =
⊗

j∈T Π1j∈R . As R ranges over all subsets of T , this gives an orthogonal
decomposition of HT . By the above relations:

ΠT
R

∆j7−→ ΠT
R if j /∈ R and ΠT

R

∆j7−→ −ΠT
R\{j} if j ∈ R. (5)

If A is a collection of subsets of T , we can define projector ΠT
A =

∑
R∈AΠT

R. We clearly
have ΠAΠB = ΠA∩B. We will use this construction only for some special cases, in particular,
for a positive integer k, we define ΠT

k =
∑
R⊆T,|R|=k ΠT

R.

4.2 Basic Operators
Let µ = {T1, . . . , Tn} be a 3-dimensional matching. Let Pµ denote the set of positive inputs
of form µ. We use P for the set of pairs (µ, x) with µ ∈Mq and x ∈ Pµ. Think of P as the
set of positive inputs with additional labels so that some inputs x can appear multiple times.
We use N for the set of negative inputs, and U = [q]3n for the set of all strings. Similarly to
the proof of Proposition 5, U will be close to N , and we use the former as a proxy for the
latter.
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Now assume T is a triple of elements. Think of it as an element of a 3-dimensional
matching µ. Denote

PT =
{

(a, b, c) ∈ [q]T | a+ b+ c ≡ 0 (mod q)
}
. (6)

Thus, Pµ is the Cartesian product
∏
T∈µ P

T . For R ⊆ T , define ΨT
R = √q ΠT

R [[PT , [q]T ]],
where the factor √q is introduced to account for the reduced number of rows. For S ⊆ [3n],
let

Ψµ
S =

⊗
T∈µ

ΨT
S∩T = qn/2 Π[3n]

S [[Pµ,U ]].

As for ΠT
A, we will use Ψµ

A =
∑
S∈AΨµ

S for a family A of subsets of [3n]. Again, Ψµ
AΠ[3n]
B =

Ψµ
A∩B. Using (5), we have

Ψµ
S

∆j7−→ Ψµ
S if j /∈ S and Ψµ

S

∆j7−→ −Ψµ
S\{j} if j ∈ S. (7)

4.3 From Dual Learning Graphs to Adversary Matrices

Now we explain how to convert a solution α to the dual learning graph (3) into a P×U -matrix
G(α). In [6], the adversary matrix Γ was obtained by restricting Γ = G(α)[[P,N ]]. It is
convenient to allow all the columns corresponding to U , and restrict them to N only at the
very end.

If µ ∈Mq, let us for brevity write α(µ, S) for α(Mµ, S). The matrix G(α) is defined block-
wise by G(α)[[Pµ,U ]] = Gµ(α) =

∑
S⊆[n] α(µ, S)Ψµ

S . Eq. (7) gives the following important
relation:

G(α) ∆j7−→ G(∂jα). (8)

4.4 Extended Matrices

Eq. (8) gives one connection between G(α) and the optimisation problem in (3). Here we
give another one. For that, we define an extended version G̃(α) of G(α).

Let Ũ = Mq × U . We use Ũµ to denote {µ} ⊗ U . The Ũ × U-matrix G̃(α) is defined
block-wise: G̃(α)[[Uµ,U ]] = G̃µ(α) =

∑
S⊆[n] α(µ, S)Π[3n]

S . Clearly, G(α) = qn/2G̃(α)[[P,U ]].
Using that

{
Π[3n]
S

}
is a decomposition of H3n into orthogonal subspaces, we get

G̃(α)∗G̃(α) =
∑
µ∈Mq

(
G̃µ(α)

)∗
G̃µ(α) =

∑
S⊆[3n]

[ ∑
µ∈Mq

α(µ, S)2
]
Π[3n]
S .

As ‖A‖ =
√
‖A∗A‖ for any matrix A, we obtain another important relation:

‖G̃(α)‖ = ‖α‖. (9)

Of course it also holds for ∂jα. If ‖G̃(α)‖ and ‖G(α)‖ were close, then any feasible solution
α would give an adversary matrix Γ = G(α)[[P,N ]] with value ‖α‖. It is easy to lower bound
‖Γ‖ in terms of ‖α‖, see Lemma 8 below, but, in general, ‖G(∂jα)‖ will be much larger than
‖G̃(∂jα)‖. In particular, this is the case when α is the solution from Proposition 6. Our
main challenge in the coming sections will be to find ways to reduce ‖G(∂jα)‖.
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4.5 Reducing Extended Matrices
Here we will give a finer relation between G(α) and G̃(α) than the trivial relation G(α) =
qn/2G̃(α)[[P,U ]]. ForMµ ∈ Cq, we define

Πµ =
∑

S⊆[3n],S /∈Mµ

Π[3n]
S and Ψµ =

∑
S⊆[3n],S /∈Mµ

Ψµ
S . (10)

By condition (3c), we have G̃µ(α) = ΠµG̃µ(α), and, thus, Gµ(α) = ΨµG̃µ(α). If we define a
linear operator Ψq : HŨ → HP by Ψq =

⊕
µ∈Mq

Ψµ, we get

G(α) = ΨqG̃(α). (11)

In the light of discussion after (9), it would help if we could upper bound the norm of
Ψq. Unfortunately, its norm is exponential. Indeed, we can write Ψµ =

⊗
T∈µ ΨT

≤2,where
ΨT
≤2 =

∑
R⊂T,R 6=T ΨT

R. We prove its basic properties in the next claim, where we also study
the operator ΨT

≤1 =
∑
R⊂T,|R|≤1 ΨT

R.

I Claim 7. We have the following estimates
(a)

∥∥ΨT
≤2
∥∥ =
√

3,
(b)

∥∥ΨT
≤2(Π0 ⊗ IH ⊗ IH)

∥∥ =
∥∥ΨT
≤2(IH ⊗Π0 ⊗ IH)

∥∥ =
∥∥ΨT
≤2(IH ⊗ IH ⊗Π0)

∥∥ = 1,
(c)

∥∥ΨT
≤1
∥∥ = 1,

(d) (ΨT
∅ )∗ΨT

≤2 = ΠT
∅ , and ‖ΨT

∅ ‖ = 1.

The proof of the claim can be found in the full version of the paper. In the next sections,
we will use points (b) and (c) of this claim to upper bound the norm of G(∂jα) using (11).

4.6 Restricting from U to N
Finally, we give a general way of bounding the norm of Γ = G(α)[[P,N ]] in terms of α. For
our upcoming application in Section 6, we prove a slightly more general result. Note that
the bound is related to the objective value (3a) of α.

I Lemma 8. Let α be a solution to the dual learning graph of Cq, and V is an arbitrary linear
operator in CU satisfying Π[3n]

∅ V = Π[3n]
∅ . Then,

∥∥∥(G(α)V )[[P,N ]]
∥∥∥ ≥√ |N ||U| ∑µ∈Mq

α(µ, ∅)2.

An easy proof of this lemma can be found in the full version of the paper.

5 Lower Bound for the 3-Shift-Sum Problem

The goal is to prove a quantum query lower bound for the 3-shift-sum problem.

I Theorem 9. Assume q ≥ 2n3. Then the quantum query complexity of the 3-shift-sum
problem is Ω(n1/3).

The main idea behind the lower bound is to use Claim 7(c). In order to do that, we
perform a transition to a different certificate structure C′s. For each µ ∈ Ms, there is a
correspondingM′µ ∈ C′s obtained as follows: a subset S ⊆ [3n] is inM′µ if and only if there
exists a triple T ∈ µ satisfying |T ∩ S| ≥ 2. Note that this is not the certificate structure
for the 3-shift-sum problem. Rather it is the certificate structure of a problem one might
call the 3-shift-equal problem. The input is a 3× n-matrix. In the positive case, there exist
circular shifts of rows such that the elements in each column become equal. In the negative
case, any two elements from two different rows are different.
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I Proposition 10. The learning graph complexity of the certificate structure C′s is Ω(n1/3).

Proof. The proof is similar to that of Proposition 12 from [6] for the hidden shift problem.
We have |C′s| = n2. Define

α(M, S) = 1
n

max
{
n1/3 − |S|, 0

}
if S /∈M, (12)

and as 0 otherwise. It is easy to see that the objective value (3a) is n1/3, and that (3c) holds.
Fix S and j, and let us check (3b). If |S| ≥ n1/3, then the left-hand side of (3b) is zero,

so assume |S| ≤ n1/3. There are n2 choices ofM ∈ C′s. If S ∪ {j} /∈ M, then the value of
α(M, S) changes by 1/n as the size of S increases by 1. Also, there are at most |S|n ≤ n4/3

choices ofM such that S /∈ M but S ∪ {j} ∈ M. For each of them, the value of α(M, S)
changes by at most n−2/3. Thus,∑
M∈C

(
α(M, S)− α(M, S ∪ {j})

)2 ≤ n2 · 1
n2 + n4/3 · n−4/3 = O(1). J

5.1 Regular Version
In this section we prove Theorem 9. Let α′s be the feasible solution (12) for the C′s certificate
structure. It is also a feasible solution for the Cs certificate structure. As in Section 4, we
define the adversary matrix by Γ = G(α′s)[[P,N ]]. By Lemma 8, we get ‖Γ‖ = Ω(n1/3) if we
prove that |N | = Ω(|U|). But that is easy: for a uniformly random triple (a, b, c) ∈ [q]3, the
probability that a+ b+ c is divisible by q is 1/q. There are n3 possible triples having one
element in each of A, B, and C. Hence, by the union bound, a uniformly random input in
[q]3n is negative with probability at least 1− n3/q ≥ 1/2. That is, |N | ≥ q3n/2.

Now let us prove that ‖Γ ◦∆j‖ = O(1). By (8) and using that Γ is a submatrix of G(α′s),
it suffices to prove that ‖G(∂jα′s)‖ = O(1).

Following (10), let us define an analogue of Ψs for our new certificate structure C′s by Ψ′µ =∑
S⊆[3n],S /∈M′µ

Ψµ
S and Ψ′s =

⊕
µ∈Ms

Ψ′µ. Similarly to (11), we get G(∂jα′s) = Ψ′sG̃(∂jα′s).
We have ‖G̃(∂jα′s)‖ = O(1) by (9) and Proposition 10. It suffices to prove that ‖Ψ′s‖ = O(1).
But it is easy to see that Ψ′µ =

⊗
T∈µ ΨT

≤1, and, by Claim 7, ‖Ψ′µ‖ = 1, hence, ‖Ψ′s‖ = 1.

5.2 Property Testing Version
In this section, we prove a quantum lower bound for the property testing version of the
3-shift-sum problem. Unlike the original version of the 3-shift-sum problem, this problem
makes sense even for q = 2, so, for concreteness, we will define it for Boolean alphabet,
however, similar results also hold for larger alphabet sizes.

An input is a string in {0, 1}3n. For a positive input x, there exists µ ∈ Ms such that
xa ⊕ xb ⊕ xc = 0 for every triple {a, b, c} ∈ µ. Here ⊕ stands for xor. The negative inputs
are defined as being at relative Hamming distance at least ε to the set of positive inputs.

I Theorem 11. For ε ≤ 1
7 , the property testing version of the 3-shift-sum problem requires

Ω(n1/3) quantum queries to solve.

The construction is identical to that in Section 5.1. The proof of ‖Γ ◦∆j‖ = O(1) is
identical. In this part of the proof only P and U are used, which are the same in the regular
and the property testing versions of the problem, and the size of the alphabet is never used.

The only place where the size of the alphabet is used is in lower bounding ‖Γ‖, where it
is proven that |N | = Ω(|U|). If we prove this for this version of the problem, we will be done.
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Recall that we treat x as an 3× n-matrix. Fix the last two rows. The input x is negative
if its first row is at relative Hamming distance at least 3

7 from the xor of any of n2 circular
shifts of the last two rows. A simple application of the Chernoff and the union bounds shows
that this is the case with probability 1− o(1).

6 Lower Bound for the 3-Matching-Sum Problem

The goal of this section is to prove the following theorem:

I Theorem 12. Assume q ≥ 2n3. Then the quantum query complexity of the 3-matching-sum
problem is Ω(

√
n).

Let αm be the feasible solution (4) to the dual learning graph of Cm from Proposition 6.
We will obtain an adversary matrix to the 3-matching-sum problem multiplying G(αm) by a
suitably chosen projector V . We define it using symmetries of the problem.

The group Sn acts on the set [q]n in the natural way: π ∈ Sn maps x = (x1, . . . , xn) to
πx = (xπ−1(1), . . . , xπ−1(n)), and by linearity we extend this action to Hn, the latter thus
becoming an Sn-module.

Similarly, the group G = SA × SB × SC acts on U : a group element (πA, πB , πC) ∈
G acts on x = (xA, xB , xC) ∈ U by mapping it to (πAxA, πBxB , πCxC). This action
renders CU a G-module. Let G act on µ ∈ Mm by mapping each triple (a1, a2, a3) ∈ µ to
(πA(a1), πB(a2), πC(a3)). Together with the action on inputs of length 3n, this gives us an
action of G on P, hence, CP is also a G-module.

The 3-matching-sum problem is invariant under this action of G: positive inputs are
mapped to positive inputs, and negative inputs are mapped to negative inputs. This means
that CN is a G-submodule of CU . It is easy to see that αm is symmetric with respect to G,
hence, G(αm) is symmetric with respect to G. In other words, it commutes with any element
of G, or, different still, it is a G-morphism.

Let T be a finite set. It is easy to see that ΠT
k is a ST -submodule of ΠT . From [7], the

module ΠT
k only contains irreps with at most k boxes below the first row. Denote by Π̄T

k the
projector onto the span of all irreps with exactly k boxes below the first row. In particular,
Π̄T

0 = ΠT
0 .

In order to simplify statements of some results, in particular Lemma 15, let us assume
there is a cutting point K such that

α(µ, S) = 0 whenever |S| > K. (13)

For αm, we take K = b
√
nc. Define the projectors V T =

∑K
k=0 Π̄T

k and V = V A ⊗ V B ⊗ V C .
Note that (ΠkA ⊗ΠkB ⊗ΠkC )V = (Π̄kA ⊗ Π̄kB ⊗ Π̄kC ) for all kA, kB , kC between 0 and K.

The adversary matrix Γ is obtained as Γ =
(
G(αm)V

)
[[P,N ]].

We know from Section 5.1 that |N | = Ω(|U|). Also Π[3n]
∅ V = Π̄[3n]

∅ = Π[3n]
∅ . Hence, by

Lemma 8 and Proposition 6, we have ‖Γ‖ = Ω(
√
n).

It remains to prove that ‖∆j ◦ Γ‖ = O(1) for any j, which we do in the remaining part of
this section. Due to symmetry, ‖∆j ◦ Γ‖ is the same for all j, so it suffices to consider j = 1.
Note that ∆1 ◦ Γ is a G′-morphism, where G′ = S[2..n] ⊗SB ⊗SC .

We have to understand how ∆1 acts on V , or, in particular, how it acts on Π̄[n]
k . For the

usual projector, Π[n]
k , we have the identity Π[n]

k = Π0⊗Π[2..n]
k + Π1⊗Π[2..n]

k−1 . Ref. [7] gives the
following analogue of this identity for Π̄[n]

k , where one should think of Φ[n]
k as an error term.

I Lemma 13. Let Φ[n]
k = Π̄[n]

k −Π0⊗Π̄[2..n]
k −Π1⊗Π̄[2..n]

k−1 . If k < n/3, then
∥∥Φ[n]

k

∥∥ = O(1/
√
n).
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Define ΦA =
∑K
k=1 ΦAk . It is easy to see that ΠA

k ΦAk ΠA
k = ΦAk , hence, ‖ΦAk ‖ = O(1/

√
n).

Let Φ = ΦA ⊗ V B ⊗ V C and V ′ = Π0 ⊗ V [2..n] ⊗ V B ⊗ V C .
From Lemma 13, we get the following variant of relation (8), whose proof is relatively

straightforward and can be found in the full version of the paper.

I Lemma 14. Let α be a solution to Cm satisfying (13). Then, G(α)V ∆17−→ G(∂1α)V ′+G(α)Φ.

Applying Lemma 14 to G(αm), we obtain G(αm)V ∆17−→ G(∂1αm)V ′ + G(αm)Φ. Denote
W = IA ⊗ V B ⊗ V C , where IA is the identity operator on HA. Note that V ′ = WV ′ and
Φ = WΦ. Also, ‖V ′‖ = 1 and ‖Φ‖ = O(1/

√
n). Thus, since Γ is a submatrix of G(αm)V , it

suffices to prove that∥∥G(∂1αm)W
∥∥ = O(1) and

∥∥G(αm)W
∥∥ = O(

√
n), (14)

which is reasonable since ‖∂1αm‖ = O(1) and ‖αm‖ = O(
√
n). We prove this using the

following somewhat technical estimate on the norm of G(α)W , whose proof can be found in
the full version of the paper.

I Lemma 15. Let α be a solution to the dual learning graph of Cm satisfying (13) and
symmetric with respect to SB ×SC . Then ‖G(α)W‖ ≤ maxkB ,kC∈[0..K] ΛkB ,kC (α), where
ΛkB ,kC (α) is defined in the following way. Let RB = [n+ 1..n+ 2kB ] and RC = [2n+ 1..2n+
2kC ]. Let L(µ,RB , RC) be the number of triples in the matching µ that intersect both RB
and RC . Then

ΛkB ,kC (α) =
√ ∑
µ∈Mm

3L(µ,RB ,RC) max
S⊆A∪RB∪RC

α(µ, S)2. (15)

Now we show how to use Lemma 15 to prove the estimates in (14). The exponential term
in (15) might be somewhat of a concern, but we prove that the fraction of matchings with
large L(µ,RB , RC) decreases even faster.

I Lemma 16. Assume |RB |, |RC | ≤ 2
√
n. Then, Prµ

[
L(µ,RB , RC) = `

]
≤ 8`/`!, where the

probability is over uniformly random µ ∈Mm.

Proof. Fix ` elements in each RB and RC . The probability that these elements are mutually
matched by a random µ is

(
n
`

)−1. Hence, by the union bound, the probability that for a
randomly chosen µ there are ` (or more) elements in RB matched to elements in RC is at

most
(|RB |

`

)(|RC |
`

)/(
n
`

)
≤ (2

√
n)2`

`!(n/2)` ≤
8`
`! , where we have assumed that n is large enough so

that ` ≤ 2
√
n < n/2. J

I Claim 17. We have
∥∥G(αm)W

∥∥ = O(
√
n).

Proof. We apply Lemma 15. By (4), we have αm(µ, S)2 ≤ n/|Mm| for all µ and S. Hence,
ΛkB ,kC (αm) ≤

√
n
√
Eµ∈Mm

[
3L(µ,RB ,RC)

]
. And, using Lemma 16:

Eµ∈Mm

[
3L(µ,RB ,RC)] ≤ ∞∑

`=0
3` · 8`

`! = e24 = O(1), (16)

which gives the required bound. J

I Claim 18. We have
∥∥G(∂1αm)W

∥∥ = O(1).
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Proof. We apply Lemma 15. By the analysis in Proposition 6, we see that

max
S⊆A∪RB∪RC

∂1αm(µ, S)2 ≤ 1
|Mm|

{
n, if 1 is matched by µ to elements in both RB and RC ;
1, otherwise.

Let us call the event in the first case above Z(µ). Then,

ΛkA,kB (∂1αm)2 ≤ Eµ∈Mm

[
3L(µ,RB ,RC)

]
+ Prµ[Z(µ)] · 3nEµ∈Mm

[
3L(µ,RB ,RC)−1

∣∣∣ Z(µ)
]
.

The first term is O(1) by (16). For the second term, it is easy to see that Prµ[Z(µ)] =
|RB ||RC |/n2 = O(1/n), and the conditioned expectation the same as in (16), because we
can remove the triple containing 1 from consideration thus reducing to the same problem
with n, |RB |, and |RC | smaller by 1. This gives the required bound of O(1). J

7 Open Problems

The obvious open problem is to resolve the quantum query complexity of the 3-shift-sum
problem. So far we only have an Ω(n1/3) lower bound and an O(n1/2) upper bound, however,
it is not clear how to improve on either of them.

For the 3-matching-sum problem, we have proven matching upper and lower bounds
of Θ(

√
n). An interesting problem is to generalise this to the k-matching-sum problem for

arbitrary k. The main limitation seems to be the norm of the error term in Lemma 13.
Some other open problems can be formulated. What functions with randomised query

complexity ω(
√
n) could potentially have poly-logarithmic quantum query complexity? Or,

can a relatively general result be proven that excludes some of such functions? For what
other problems can the dual learning graph framework be useful?
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Abstract
We consider the quantum complexity of computing Schatten p-norms and related quantities, and
find that the problem of estimating these quantities is closely related to the one clean qubit
model of computation. We show that the problem of approximating Tr(|A|p) for a log-local n-
qubit Hamiltonian A and p = poly(n), up to a suitable level of accuracy, is contained in DQC1;
and that approximating this quantity up to a somewhat higher level of accuracy is DQC1-hard.
In some cases the level of accuracy achieved by the quantum algorithm is substantially better
than a natural classical algorithm for the problem. The same problem can be solved for arbitrary
sparse matrices in BQP. One application of the algorithm is the approximate computation of the
energy of a graph.
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1 Introduction

It is widely believed that quantum computers will be capable of solving certain computational
problems more efficiently than any classical computer. However, the exact characterisation of
the class of problems that allow for a quantum speedup is the subject of ongoing research. In
complexity theory, this class is known as BQP [27] – the set of languages efficiently decidable
by a uniform family of polynomial-size quantum circuits with bounded error. A useful way
to understand and identify the types of problems that are efficiently solvable by a quantum
computer, but unlikely to be efficiently solvable by a classical computer, is to find problems
that are complete1 for BQP; that is, problems that can be solved by a polynomial-time

1 We note that what we are really referring to here are PromiseBQP-complete problems, since there are
in fact no known BQP-complete problems. For a detailed discussion on this point see [14, 9].
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quantum computer, and that any other problem in BQP can be reduced to. Intuitively, these
are the very hardest problems in BQP.

Several BQP-complete problems are known, including approximating the Jones polynomial
[1], estimating quadratically signed weight enumerators (QSWEs)[18], and estimating diagonal
entries of powers of sparse matrices [14]. The latter problem is particularly interesting, since
it is a relatively natural problem that is not obviously ‘quantum’ in nature.

Knill and Laflamme [18] showed that a more constrained version of the QSWE problem is
efficiently solvable in the one clean qubit model of computation – an apparently non-universal
model of quantum computation that is weaker than full quantum computation, but that can
seemingly solve some problems more efficiently than a classical computer [25]. Understanding
the power of such intermediate classes of computation could shed light on the types of
problems that are efficiently solvable by a fully universal quantum computer.

We consider the computational complexity of estimating Schatten p-norms of matrices.
We find that for certain values of p and certain families of matrices, this problem is closely
related to the one clean qubit model of computation: depending on the accuracy of the
estimation, the problem can be efficiently solved in the one clean qubit model, or is hard
for this model of computation. We also consider similar quantities related to the spectra of
matrices, such as the so-called “energy” of graphs [19, 10], and provide quantum algorithms
for estimating them that are more efficient than any known classical algorithms.

1.1 The One Clean Qubit Model of Computation
The one clean qubit model of quantum computation initially arose as an idealised model for
computation on highly mixed initial states, such as those that appear in NMR implementations
[17]. In this model, we are given a quantum state consisting of a single ‘clean’ qubit in the
pure state |0〉, and n qubits in the maximally mixed state. This can be represented by the
density matrix

ρ = |0〉〈0| ⊗ I2n

2n .

We then apply an arbitrary polynomial-sized quantum circuit to ρ, and measure the first
qubit in the computational basis. Following [17], we will refer to the class of problems that
can be solved in polynomial time using this model of computation as DQC1 – deterministic
quantum computation with a single clean qubit.

The canonical problem that can be solved in this model is that of estimating the normalised
trace of a 2n × 2n unitary matrix U corresponding to a polynomial-size quantum circuit.
This is achieved by applying a controlled version of U to ρ, where the clean qubit is used
as the control qubit and is put into the state (|0〉+ |1〉)/

√
2 using a Hadamard gate. More

precisely, we apply the controlled-U operator to the state

ρ′ = 1
2(|0〉+ |1〉)(〈0|+ 〈1|)⊗ I2n

2n

and then apply a Hadamard gate to the first qubit, before measuring it. The probability of
measuring zero is 1

2 + 1
2

Re(Tr(U))
2n , which can be estimated up to accuracy ε by repeating the

procedure O(1/ε2) times. The imaginary part of the trace of U can be estimated similarly
by starting with the first qubit in the state 1√

2 (|0〉 − i |1〉). This problem has been shown to
be complete for the class DQC1 [26].

More generally, we might consider the DQCk model of computation. That is, deterministic
quantum computation with k pure qubits. If k = O(log(n)), then the DQCk model is



C. Cade and A. Montanaro 4:3

equivalent to DQC1 [26]. This result is important for us since the quantum circuit that we
apply to the initial state may require a number of ancilla qubits initialised to |0〉 in order to
correctly perform its computation. For example, if the quantum circuit implementing the
unitary U performs the phase estimation routine, then it will usually require an additional
O(logn) clean qubits. In the context of estimating the trace of a unitary matrix, this result
tells us that it is possible in DQC1 to compute the trace of a sub-matrix whose size is an
inverse-polynomially large fraction of the size of the input matrix.

1.1.1 DQC1-complete Problems
Knill and Laflamme [17] showed that the problem of estimating a coefficient in the Pauli
decomposition of a quantum circuit, up to polynomial accuracy, is complete for the class
DQC1. In fact, the aforementioned problem of estimating the normalised trace of a quantum
circuit is a special case of this problem [26]. Shor and Jordan [26] added to the relatively
short list of DQC1-complete problems by showing that the problem of estimating the ‘trace
closure’ of Jones polynomials is also complete for the class DQC1. Finally, Brandão [6]
showed that two problems related to Hamiltonians were DQC1-complete: computing the
partition function of a class of (quantum) Hamiltonians, and computing the sum of all
eigenvalues of a Hamiltonian that fall between two given energy levels.

These quantities appear to be hard to compute classically, and therefore the one clean
qubit model of computation seems to be more powerful than classical computation. However,
it is unlikely that DQC1 contains all of BQP [25], and thus this model of computation
appears to have a computational power that is somewhere in between BPP and BQP. Some
evidence in this direction was recently provided by Morimae [21], who built on earlier work
([22]) to show that the output distribution of the one clean qubit model is difficult to sample
from classically up to constant total variation distance error, provided that some complexity
theoretic conjectures hold.

Here we show that the problem of computing Schatten p-norms of matrices is also closely
related to the class DQC1.

1.2 Schatten p-norms and Graph Energy
Schatten p-norms are ubiquitous in Quantum Information theory (see for example [24, 3, 12]).
This family of matrix norms includes the three most commonly used norms in quantum
information theory: the Schatten 1-norm is more commonly called the trace norm, the
Schatten 2-norm is also known as the Frobenius norm, and the Schatten∞-norm is called the
operator norm or spectral norm. Here we consider the normalised Schatten p-norm, defined
as

‖A‖p :=
(∑

j |λj |p

2n

)1/p

for a 2n × 2n Hermitian matrix A, where the sum ranges over the eigenvalues of A.
For instance, the Schatten 1-norm is the average of the absolute values of the eigenvalues

of A,

‖A‖1 = Tr(|A|)
2n =

∑
j |λj |
2n .

If we consider the matrix A to be the adjacency matrix of a graph, this quantity is known as
the ‘Graph Energy’, and has applications in chemistry, where it is related to the total electron
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energy of a class of organic molecules [19, 10]. More generally, quantities relating to the
spectra of adjacency matrices are used throughout Graph Theory to reveal information about
the graphs that they represent. In the present work, we consider some ‘global’ properties of
the spectra of matrices and graphs – i.e. those of the form Tr(f(A))/2n, for some suitably
chosen function f . The Schatten p-norms are examples of such quantities.

1.3 Our results
We study the complexity of approximately computing Schatten p-norms of sparse matrices
and relate this to quantum computation. We consider Hermitian matrices of size 2n × 2n,
where at most d = poly(n) entries in each row are non-zero, and call such matrices d-sparse.
One fairly natural class of sparse matrices that can be expressed concretely is the class
of ‘log-local’ Hamiltonians. That is, k-local n-qubit Hamiltonians, with k = O(logn) - i.e.
Hermitian matrices that can be written as a sum A =

∑m
j=1 Aj , for some m, where each Aj

is a Hermitian matrix that acts non-trivially on at most k = O(logn) qubits. We assume
that we are given the individual matrices Aj directly, that ‖Aj‖ = O(poly(n)) for all j, and
that m = poly(n). Throughout this work, we use ‖A‖ to denote the operator norm of A.

I Theorem 1. Let A be a sparse Hermitian matrix on n qubits, and let p, 1/ε = O(poly(n)).
Then the problem of estimating Tr(|A|p)

2n up to additive accuracy ε‖A‖p is contained in BQP.
If the matrix A is log-local, then this problem is also contained in DQC1.

I Theorem 2. Let A be a log-local Hermitian matrix on n qubits. Then the problem of
estimating Tr(|A|p)

2n up to additive accuracy ε
(
‖A‖

2

)p
for arbitrary p, 1/ε = O(poly(n)) is hard

for the class DQC1.

The BQP case of Theorem 1 follows from the result of Janzing and Wocjan [13], who
gave a BQP algorithm for estimating diagonal entries of f(A), for a sparse matrix A and an
appropriate function f which can be taken to be f(x) = |x|p.

We therefore see that the problem of computing Schatten p-norms for p = O(poly(n))
is closely related to the one clean qubit model of computation. By contrast, for different
values of p the problem is related to other classes of computation. For instance, ‖A‖∞ is the
operator norm of A, and the problem of computing it approximately is QMA-complete2, even
for 2-local Hamiltonians. To see this, suppose we have some upper bound ∆ = O(poly(n)) on
the largest eigenvalue of a 2-local n-qubit Hamiltonian A. Define the matrix B := ∆I2n −A.
Then the largest eigenvalue of B (in absolute value) corresponds to the smallest eigenvalue
of A. Hence, if we can compute the smallest eigenvalue of A, then we can compute ‖B‖, and
vice versa. Since the problem of estimating the smallest eigenvalue of a k-local Hamiltonian
is QMA-complete for k ≥ 2 [15], this implies QMA-completeness of the problem of estimating
the operator norm of a 2-local Hamiltonian.

Note that the required accuracies of the estimates in Theorems 1 and 2 differ by a factor
of 1/2p. Unfortunately, we were unable to reconcile this difference, and therefore we did not
find a variant of the problem that is complete for DQC1.

Theorem 1 gives us the following corollary:

I Corollary 3. Let A be a log-local matrix corresponding to the adjacency matrix of a 2n-
vertex graph G, and let p, 1/ε = O(poly(n)). The normalised Graph Energy of G, Tr(|A|)/2n,
can be estimated up to additive accuracy ε‖A‖ in DQC1.

2 For a definition of the class QMA, see [27].
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In proving Theorem 1, we also show that there exists a polynomial-time quantum algorithm
(in DQC1) for estimating Tr(Ap)/2n up to error ε‖A‖p for 1/ε, p ∈ O(poly(n)). This is useful
in the context of graph theory because it allows for an estimation of the expected number of
closed walks that start from each vertex in a 2n-vertex graph. To obtain these algorithms,
we prove a more general result:

I Lemma 4. For a log-local Hamiltonian A, and any log-space polynomial-time computable
function f : I → [−1, 1] (where I contains the spectrum of A) that is Lipschitz continuous
with constant K (i.e. |f(x)−f(y)| ≤ K|x−y| for all x, y ∈ I), there exists a DQC1 algorithm
to estimate Tr(f(A))/2n =

∑
j f(λj)/2n up to additive accuracy ε(K + 1), where λj denote

the eigenvalues of A, and ε = Ω(1/ poly(n)).

Often, one is interested in calculating the properties of general sparse matrices. We note that
it is easy to give a quantum algorithm for estimating the above quantities for sparse matrices
by making use of a result of Janzing and Wocjan [14, 13], who give a BQP algorithm for
estimating the diagonal entries of f(A), for some function f that satisfies certain continuity
constraints, but this comes at the expense of moving to the class BQP.

It is interesting to note that the results from [6] also make use of log-local Hamiltonians.
In both these and our results, it is not clear how to drop the restriction of log-locality without
losing the fact that the various problems are contained in DQC1.

1.3.1 Estimating ‖A‖p

Given a log-local n-qubit Hamiltonian A, the algorithm of section 3 outputs

Tr(|A|p)/2n ± ε‖A‖p.

By taking the pth root, we obtain an estimate of ‖A‖p of the form(
Tr(|A|p)

2n ± ε‖A‖p
)1/p

= ‖A‖p
(

1 + 2nε‖A‖p

Tr(|A|p)

)1/p
.

The error will be small when Tr(|A|p) takes a value close to its maximum of 2n‖A‖p. In the
best case, the relative error is close to (1 + ε)1/p. This suggests that in these ‘good’ cases,
our algorithm can estimate ‖A‖p up to a reasonable additive error in polynomial time. On
the other hand, we can always bound

2n‖A‖p

Tr(|A|p) ≤
2n‖A‖p

2n|λmin|p
= κ(A)p,

where λmin is the minimal eigenvalue of A in absolute value, and κ(A) = ‖A‖‖A−1‖ is the
condition number of A. In this case the relative error is at most (1 + εκ(A)p)1/p.

Since we consider p = poly(n), the algorithm allows us to achieve relative error close to
κ(A) by taking ε = 1− 1/κ(A)p ≈ 1. Alternatively, we could achieve relative error (1 + δ)
for some δ = O(1/ poly(n)) by setting ε = ((1 + δ)p − 1)/κ(A)p. In this case, we sacrifice the
run-time of the algorithm in order to improve the accuracy.

1.4 Relation to Previous Work
Our techniques are similar to those used in [14] and [11]. In particular, we use the same
combination of Hamiltonian simulation and phase estimation for estimating and manipulating
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the eigenvalues of a Hermitian matrix. To show DQC1-hardness, we use techniques from the
Hamiltonian complexity literature, and in particular ideas due to Kitaev et al. [16, 15].

By using a previous result of Janzing and Wocjan [14], we can obtain a BQP algorithm for
estimating Tr(Ap)/2n for general sparse matrices; however, it is not clear how to implement
this algorithm in DQC1, since it uses O(n) ancilla qubits for the Hamiltonian simulation
step. In [14], the authors describe a polynomial-time quantum algorithm for estimating the
diagonal entries of the matrix Ap up to error ε‖A‖p, for ε = O(1/ poly(n)), and show that
this problem is in fact BQP-complete for sparse symmetric matrices. The problem remains
BQP-complete even for matrices with only 0,±1 entries.

1.5 Comparison with Classical Algorithms
We were not able to find any previous results in the literature regarding the complexity
of estimating the above quantities for sparse matrices. In Appendix B, we give a classical
algorithm for estimating the normalised trace of a sparse matrix raised to some power, and
prove some bounds on the accuracy that this algorithm can achieve.

We find that for some types of matrix, the value Tr(Ap)/2n can be estimated efficiently
classically, and for others, a quantum algorithm appears to have some advantage over a
classical one. In Appendix B, we prove the following:

I Theorem 5. Given a 2n × 2n, d-sparse matrix A, there exists a classical algorithm to
estimate Tr(Ap)/2n up to accuracy εdp‖A‖pmax in time that is polynomial in n, p and 1/ε,
where ε = O(1/ poly(n)) and ‖A‖max is used to denote the maximum absolute size of an
entry in A.

Therefore, in the cases where ‖A‖ � d‖A‖max, we can get an advantage by making use of
the algorithm of Theorem 1. We find that for certain classes of random graph (namely power-
law graphs), the BQP algorithm for computing Tr(Ap)/2n obtains a quadratic improvement
in accuracy over the corresponding classical algorithm.

For log-local Hamiltonians and constant p, there exists an efficient exact classical algorithm
for computing Tr(Ap). By using conventional matrix multiplication, it is possible to calculate
the value of Ap by multiplying the individual matrices Aj . This can be seen from the
expression for Tr(Ap):

Tr(Ap) =
∑

j1,j2,...,jp

Tr(Hj1Hj2 · · ·Hjp),

where each index ji ranges from 1 to m. Every Hji is k-local, and the complexity of
multiplying a k-local matrix by an l-local matrix is O(23(k+l)) (using a naive algorithm), and
results in a (k + l)-local matrix. If we perform the matrix multiplications from left to right,
then, for each term in the sum, the first multiplication will take time O(23(2k)), the second
O(23(3k)), and so on, until the final multiplication takes time O(23(pk)). There will be p− 1
of these multiplications performed in total, with each taking at most O(23·pk) time, and
hence the trace of Aj1Aj2 · · ·Ajp can be calculated in O(23·pk) steps. There are mp terms in
the sum, and therefore the complexity of the entire computation is O(mp23·pk).

If we take k = O(logn) (i.e. take A to be a log-local Hamiltonian), the time complexity is
mpnO(p). For p = O(1), this time complexity is polynomial and the output of this algorithm
is better than the corresponding quantum algorithm, as it computes the desired value exactly.

Note that the problem of computing Tr(|A|p) appears to be substantially harder classically
for odd p, since it cannot be found by simply computing powers of a matrix, and instead
requires more knowledge about the eigenvalues of A.
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1.6 Organisation
We begin by providing a proof of Theorem 2 in Section 2. Section 3 describes a proof of
Theorem 1, via an algorithm in the one clean qubit model that can estimate Tr(f(A))/2n
for a 2n × 2n log-local matrix A and an appropriately continuous function f . Following
this, in Section 4, we compare the performance of the quantum algorithm with its classical
counterpart, which is described in Appendix B. Finally, appendix A contains a detailed
analysis of the quantum algorithm used in Section 3.

2 Estimating Tr(|A|p)/2n is DQC1-hard

In this section, we show that the problem of estimating Tr(|A|p)/2n for a 2n × 2n log-local
Hamiltonian A up to a given accuracy is hard for the class DQC1. More precisely, we assume
that we have access to an algorithm that can estimate Tr(|A|p)/2n up to accuracy ε

(
‖A‖

2

)p
,

for ε = O(1/ poly(n)) and p = poly(n), and show that this implies that we can solve any
problem contained in DQC1.

To do this we show that, given as input a real unitary U (implemented by some polynomial-
sized quantum circuit acting on n qubits), it is possible to construct a log-local Hamiltonian
A such that Tr(|A|p)/2n = Tr(U)/2n, for some p = poly(n). Furthermore, we show that
an estimation accuracy of ε

(
‖A‖

2

)p
is sufficient to provide an estimate of Tr(U)/2n up to

accuracy 1/ poly(n). This problem is complete for the class DQC1 [26], which implies that
the problem of estimating Tr(|A|p)/2n up to the stated accuracy is DQC1-hard.

The construction is based on ideas from Hamiltonian complexity, and in particular Kitaev’s
clock construction for the local Hamiltonian problem [2]. We assume that we have a decom-
position U = UM−1...U1U0 of the circuit into M elementary gates. Since U is described by a
polynomial-sized circuit, we have M = poly(n). We add dlogMe additional qubits to act as
a ‘clock’ register, which is used to control the application of the individual unitaries, and
define a unitary operator

W :=
M−1∑
l=0
|l + 1〉〈l| ⊗ Ul,

where addition is taken to be modulo M . It is straightforward to check that

WM =
M−1∑
l=0
|l〉〈l| ⊗ Ul+M ...Ul+2Ul+1.

Then we have

Tr(WM ) =
M−1∑
l=0

Tr(|l〉〈l|) · Tr(Ul+M ...Ul+2Ul+1) =
M−1∑
l=0

Tr(UM ...U2U1) = M Tr(U),

where the second step follows from invariance of the trace under cyclic permutations.
W is log-local with m = poly(n) terms, since each clock operator |l + 1〉 〈l| acts on

dlogMe qubits, and each of the unitaries Ul act on at most O(1) qubits each. Define the
Hermitian matrix

A := 1
2(W +W †).
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Then the trace of AM gives the real part of the trace of 2WM

2M , since AM equals 1/2M (WM +
W †

M ) plus some other powers of W and W † that are traceless (since the clock unitaries can
only have a trace if they return the clock state back to its initial state, which takes at least
M applications of W ), and therefore do not contribute to the trace of AM .

W is a 2n+dlogMe × 2n+dlogMe unitary matrix, and so we have ‖A‖ ≤ 1. Thus, given the
ability to estimate the normalised trace of Ap up to accuracy

(
‖A‖

2

)p
ε, we can estimate the

value of Re[Tr(U)]/2n up to accuracy 1/ poly(n), which is the level of accuracy required for
the class DQC1. To see this, we observe that, taking p = M and assuming (without loss of
generality) that M is a power of 2 (which also means that |A|M = AM ),

Tr(AM )
2n+logM ±

ε

2M = 2 Re(Tr(WM ))
2M2n+logM ± ε

2M = 2M Re(Tr(U))
M2M2n ± ε

2M .

Multiplying by 2M , we obtain Re(Tr(U))
2n ±ε, which is precisely the quantity that is DQC1-hard

to compute. This is sufficient to show that the problem of estimating Tr(Ap)/2n up to
accuracy

(
‖A‖

2

)p
ε for a log-local n-qubit Hamiltonian is hard for the class DQC1.

Note that we were not able to use standard techniques from the Hamiltonian complexity
literature to make this construction work for k-local Hamiltonians with constant k [15, 16].
These techniques involve the introduction of a larger clock space that is then acted upon by
k-local Hamiltonians. A term is then added to the Hamiltonian to ‘penalise’ invalid clock
states and prevent them from contributing to the ground state energy. In our case, we care
about the entire space on which the Hamiltonian acts and not just the subspace containing
the valid clock states, and therefore the invalid clock states contribute to the trace of AM in
a non-trivial way.

3 Estimating Tr(|A|p)/2n is in DQC1

Here we show that the problem of estimating Tr(|A|p)/2n for a log-local Hamiltonian A, up
to reasonable error, is in DQC1. In precise terms, we are given a k-local n-qubit Hamiltonian
A, with k = O(logn); then the problem is to estimate Tr(|A|p)/2n up to error ε‖A‖p, for
some integer p = O(poly(n)) and accuracy ε = Ω(1/ poly(n)). Our approach is to construct
a unitary U such that the normalised trace of U approximates the normalised trace of |A|p.
We show that this construction can be performed in polynomial time (that is, the unitary U
takes poly(n, p, 1/ε) time to implement). Using this approach, we can use the DQC1 model
to compute the normalised trace of the matrix |A|p, hence showing that this problem is
contained in DQC1. We will use the following corollary of Lemma 4:

I Corollary 6. For a log-local Hamiltonian A, and any log-space polynomial-time computable
function f : I → R (where I contains the spectrum of A) that is Lipschitz continuous with
constant K ′ (i.e. |f(x)−f(y)| ≤ K ′|x−y| for all x, y ∈ I), there exists a DQC1 algorithm to
estimate Tr(f(A))/2n =

∑
j f(λj)/2n up to additive accuracy ε(K ′ + fmax), where λj denote

the eigenvalues of A, ε = Ω(1/ poly(n)), and fmax is the supremum of |f | on the interval I.

The proof of Lemma 4 (and hence the above corollary) is split into roughly three parts.
The first part, in Section 3.1, describes how the algorithm works, via a description of the
unitary that is constructed from the input matrix. Following this, Section 3.2 discusses
the accuracy and failure probability of the algorithm, and finally, Section 3.3 shows that
the number of ancilla qubits required (and therefore the number of pure qubits needed) to
implement the algorithm is at most O(logn).
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3.1 Constructing the Unitary
We are given a log-local Hamiltonian A with eigenvectors |ψj〉 and corresponding eigenvalues
λj . The basic idea is to construct a unitary U whose eigenvalues correspond to the eigenvalues
of A in a useful way. In particular, we construct a polynomial-sized circuit whose associated
unitary has eigenvalues λ′j such that λ′j = f ′(λj), for some function f ′ that depends on f .

The first step is to use Hamiltonian simulation to implement the unitary eiA, which has
eigenvalues eiλj for each eigenvector |ψj〉 of A. Section 3.4 discusses the time complexity
of this part of the circuit. Then the circuit performs the following sequence of operations,
which we will describe in terms of their effects on an eigenvector |ψj〉 of A and an arbitrary
single qubit state of the form α |0〉 + β |1〉. We use |0 . . . 0〉 to denote an arbitrarily large
ancilla register (with each qubit initialised to 0), and assume that both the phase estimation
and Hamiltonian simulation parts of the circuit work perfectly.
1. Apply phase estimation on eiA with the input |ψj〉, to obtain an estimate of the eigen-

value λj :

|ψj〉 (α |0〉+ β |1〉) |0 . . . 0〉 7→ |ψj〉 (α |0〉+ β |1〉) |λj〉

2. Perform controlled phase rotations, where the phase depends on a function f of λj
contained in the 3rd register (for example, f(x) = xp):

|ψj〉 (α |0〉+ β |1〉) |λj〉 7→ |ψj〉 (αei arccos(f(λj)) |0〉+ βe−i arccos(f(λj)) |1〉) |λj〉

3. Undo the phase estimation to uncompute the value in the 3rd register:

7→ |ψj〉 (αei arccos(f(λj)) |0〉+ βe−i arccos(f(λj)) |1〉) |0 . . . 0〉

This gives us a unitary U that performs the mapping

|ψj〉 (α |0〉+ β |1〉) |0 . . . 0〉 7→ (αe+i arccos(f(λj)) |ψj〉 |0〉+ βe−i arccos(f(λj)) |ψj〉 |1〉) |0 . . . 0〉

for each eigenvector |ψj〉 of A. Therefore, for each eigenvalue λj of A, U has two corresponding
eigenvalues e±i arccos(f(λj)).

By using the results described in Section 1.1, we can compute the trace of a sub-matrix of
U in the one clean qubit model, provided that the number of ancilla qubits used is O(logn)
(we check that this is indeed the case at the end of this section). In particular, we compute
the trace of U ′, the sub-matrix of U obtained by fixing the ancilla qubits (except the one
explicitly mentioned above) to |0〉. Then the trace of U ′ is

Tr(U ′) =
∑
j

e±i arccos(f(λj)) =
∑
j

cos(± arccos(f(λj))) + i sin(± arccos(f(λj)))

=
∑
j

2 cos(arccos(f(λj))) + i sin(arccos(f(λj)))− i sin(arccos(f(λj)))

=
∑
j

2f(λj).

3.2 Error Analysis
Errors can arise in three places. Firstly, we will have some error in the Hamiltonian simulation
part of the circuit. Secondly, there will be errors in estimating eigenvalues by using the
phase estimation routine. And finally, there will be some error in the estimation of the
normalised trace of U from using the one clean qubit model. In Appendix A, we consider the
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effect of all three sources of error, and show that we can estimate 1
2n
∑
j f(λj) with additive

error at most ε(K + 1), for any ε = Ω(1/ poly(n)), where K is the Lipschitz constant of f .
The analysis in this section is analogous to that of [14], since we use the same method for
estimating an eigenvalue of A via simulation of eiA, but uses different methods to bound the
errors introduced by phase estimation and Hamiltonian simulation.

3.3 How many clean qubits are needed?
Here we consider how many clean qubits are required to implement the circuit described in
Section 3.1 up to the desired accuracy. Any time the circuit uses ancilla qubits, these qubits
will generally need to be initialised in the all-zeros state – that is, they must be under our
control, and be ‘clean’. As discussed in Section 1.1, we can use O(logn) clean qubits without
changing the model of computation. In this section we argue that the implementation of the
circuit described above requires no more than O(logn) ancilla qubits.

The two main parts of the circuit are the phase estimation routine, and Hamiltonian
simulation. The rest of the circuit consists of more basic operations that require only a
constant number of ancilla qubits (provided that the function f we choose is sufficiently easy
to compute).

To achieve the accuracy stated in the previous section, we show in Appendix A that
the phase estimation part of the circuit must be able to achieve an additive accuracy of
1
2ε(K + 1), for which it only requires O(logn) ancilla qubits. Hence, the number of clean
qubits required to implement the phase estimation part of the circuit is O(logn).

In order to implement the simulation of the Hamiltonian A, we can use techniques based
on the Lie-Trotter product formula [20]. This requires no more than a constant number of
ancilla qubits, and, since we assume that we are given the Hamiltonian directly as a set
of m individual Hamiltonians that each act on O(logn) qubits, there are no ancilla qubits
required to ‘load’ the input into the system, which would be the case if we considered the
case where the input Hamiltonian is specified by an oracle (it is precisely for this reason that
we define the problem in terms of a log-local Hamiltonian rather than a sparse Hamiltonian).
In our case, we can run a polynomial-time classical algorithm to compute the quantum circuit
required to implement the unitary eiA, given such a description of A. This is discussed more
fully in the following section.

3.4 Simulating log-local Hamiltonians
We are required to implement the unitary eiA for some log-local Hamiltonian A. We
are limited to using at most O(logn) ancilla qubits, which rules out the more advanced
Hamiltonian simulation techniques that are based on quantum walks (e.g. [5]). Instead, we
use the ‘vanilla’ version of Hamiltonian simulation, which is based on the Lie-Trotter product
formula [20].

We are given a log-local n-qubit Hamiltonian A, and wish to implement a unitary operator
that approximates eiAt for some value of t, up to a specified accuracy δ (in the operator
norm). That is, we want to construct, in classical polynomial time, a quantum circuit that
implements a unitary operator V such that

‖V − eiAt‖ ≤ δ.

It is straightforward to check that the standard techniques, which are usually presented for
O(1)-local Hamiltonians, indeed work for log-local Hamiltonians, and allow us to simulate
eiAt up to accuracy δ in time

O(poly(m,n, τ, 1/δ)),
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where τ = t‖A‖, using a circuit that can be computed by a polynomial-time classical
algorithm3. The time complexity could be improved by the use of more complicated
simulation techniques [4], but we do not consider this here.

In the circuit described in Section 3.1, we set t = 1, and require that δ = O(1/ poly(n)).
Thus, the time taken to implement the Hamiltonian simulation part of the circuit will be
O(poly(n)).

3.5 Proof that computing Tr(|A|p)/2n is in DQC1
The proof of Theorem 1, which states that the problem of estimating Tr(|A|p)/2n up to error
ε‖A‖p is in DQC1 for p, 1/ε = poly(n), follows almost immediately from Lemma 4. The
same proof also applies to the problem of estimating Tr(Ap)/2n. It is straightforward to
check that, on the interval [−b, b], both f(x) = xp and f(x) = |x|p are Lipschitz continuous
with Lipschitz constant K = pbp−1. Furthermore, fmax = bp for both functions. In our case
we can take b = ‖A‖, since f is a function of the eigenvalues of A. Putting these values into
Corollary 6, and replacing ε with ε

p/‖A‖+1 , we obtain an estimate of Tr(|A|p)
2n up to accuracy

ε‖A‖p. Furthermore, this estimate can be obtained in DQC1 in time that is polynomial in n
and inverse polynomial in ε.

4 Quantum vs. Classical

Here we compare the complexities of the (BQP) quantum and classical algorithms for
computing Tr(Ap), for random N ×N matrices. Recall that the quantum algorithm has an
accuracy of ε‖A‖p, and that the classical algorithm has an accuracy of εdp‖A‖pmax, where
p = polylog(N).

In the event that ‖A‖ � d, the quantum algorithm achieves an improvement in accuracy
over the classical algorithm. However, since the quantum algorithm requires the matrix A to
be sparse, we must restrict our attention to only sparse matrices that have this property.
Towards this end, we will begin by considering a general model for random graphs, and
introduce some results that relate the degrees of the vertices of the graph to the eigenvalues
of the adjacency matrix. Following this, we will consider how these results apply to sparse
graphs.

4.1 Random Graphs
We consider a general model for unweighted random graphs (see e.g. [7]), in which each
vertex v is associated with a weight wv. Then a random graph G is constructed by assigning
an edge independently to each pair of vertices (i, j) with probability wiwj∑

i
wi
, such that the

expected degree of vertex v is given by wv. Denote by d the maximum expected degree, and
by d̃ the value

d̃ :=
∑N
i=1 w

2
i∑N

i=1 wi
.

Then we have the following results from [7]:

3 The details of this simulation can be found in the full version of this paper.
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I Theorem 7. If d̃ >
√
d lnN , then as N → ∞ the largest eigenvalue of a random graph

G(w) is almost surely (1 + o(1))d̃.

I Theorem 8. If
√
d > d̃ ln2 N , then as N →∞ the largest eigenvalue of a random graph

G(w) is almost surely (1 + o(1))
√
d

Intuitively, ‖A‖ is (asymptotically) the maximum of
√
d and d̃ if the two values

√
d and d̃

are far apart (i.e. by a power of logN).

4.2 Restriction to Sparse Graphs
We are interested in sparse graphs – i.e. those in which the degree of every vertex is
O(polylog(N)). If we use the random graph model above, and set d = Θ(log2 N), then if we
allow all vertices to have an expected degree similar to d, then by Theorem 7, ‖A‖ = (1+o(1))d
almost surely, and the accuracies of both the classical and quantum algorithms are the same.
Therefore, we are only going to see an advantage when we restrict the number of vertices that
are allowed to have degree close to the maximum (which will be O(polylogN) by necessity).
In general, in an effort to make ‖A‖ = o(d), we should only allow at most O(logN) vertices
to have degree close to the maximum, and the others must have asymptotically smaller (e.g.
constant) degree. A class of graphs that satisfies this requirement is the class of power law
graphs.

A distribution on power-law graphs is given in [7] for which d, d̄ and β are parameters
that can be varied freely. In graphs of this type, the number of vertices with degree k is
proportional to k−β , and d is the maximum expected degree of a vertex in the graph, while
d̄ is the average degree. We have the following results, also from [7]:

1. For β > 3 and d > d̄2 log3+εN , the largest eigenvalue of the graph is almost surely
(1 + o(1))

√
d, for some ε = O(1), and where d̄ denotes the average degree.

2. For 2.5 < β < 3 and d > d̄(β−2)/(β−2.5) log3/(β−2.5) N , the largest eigenvalue of the graph
is almost surely (1 + o(1))

√
d.

3. For 2 < β < 2.5 and m > log3/2.5−β N , the largest eigenvalue is almost surely (1 + o(1))d̃.

Note that in all of the above, the bounds still apply when the graph is sparse (i.e. d =
O(polylogN)). Hence, for power law graphs with exponent β > 2.5, we almost always get a
quadratic improvement in accuracy over the classical algorithm. As the exponent decreases,
so does the advantage gained by the quantum algorithm.

Some interesting subclasses of power law graphs have exponents between 2 and 2.5. For
example, ‘internet graphs’ have exponents between 2.1 and 2.4, and the ‘Hollywood’ graph
has exponent ≈ 2.3 [8]. In these cases, we might expect some quantum improvement over a
classical approach, but not the full square root improvement.
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A Error Analysis of DQC1 Algorithm

A.1 Error from Hamiltonian Simulation

First we consider the error that arises in the circuit from Hamiltonian simulation. We assume
that the Hamiltonian simulation step implements a unitary V that approximates eiA in the
sense that ||V − eiA|| ≤ δ, so that the eigenvalues of V and eiA can differ by at most δ. For
now, we will assume that the phase estimation routine works perfectly (i.e. introduces no
error). Recall that this part of the circuit outputs an estimate for an eigenvalue of A in the
range [−π, π). Denote by λj and µj the output of the phase estimation routine when it is
run using eiA and V , respectively. We have∣∣eiλj − eiµj ∣∣ ≤ δ
by the bound on the error of the Hamiltonian simulation, where we can assume |µj −λj | ≤ π,
by adding multiples of 2π to λj if necessary. The left hand side can be written as

∣∣∣1− ei(µj−λj)
∣∣∣ =

∣∣∣∣ei (µj−λj)
2

(
e−i

(µj−λj)
2 − ei

(µj−λj)
2

)∣∣∣∣
=

∣∣∣∣e−i (µj−λj)
2 − ei

(µj−λj)
2

∣∣∣∣
= 2

∣∣∣∣sin(µj − λj2

)∣∣∣∣ = 2 sin
∣∣∣∣µj − λj2

∣∣∣∣ (since |µj − λj | ≤ 2π).

We will use the inequality (2/π)θ ≤ sin θ for 0 ≤ θ ≤ π/2. Therefore, we have that

(4/π) |µj − λj |2 ≤ 2 sin
∣∣∣∣µj − λj2

∣∣∣∣ ≤ δ
and hence

|µj − λj | ≤ πδ/2.

To see how this affects the accuracy of the algorithm, we consider the difference in the trace
of U ′ when using V in place of eiA.

2

∣∣∣∣∣∣
∑
j

f(λj)−
∑
j

f(µj)

∣∣∣∣∣∣ ≤ 2
∑
j

|f(λj)− f(µj)|

≤ 2
∑
j

K |λj − µj | by the Lipschitz condition

≤ 2
∑
j

Kπδ/2 = 2nKπδ.

Choosing the simulation accuracy to be δ ≤ ε/(2π), this contributes an error term of 2nεK/2.
Thus, we have

2

∣∣∣∣∣∣
∑
j

f(λj)−
∑
j

f(µj)

∣∣∣∣∣∣ ≤ 2nεK/2. (1)
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A.2 Error from Phase Estimation
Here we consider the error that arises from using the phase estimation routine to estimate
the eigenvalues µj of the unitary V from the previous sub-section. The phase estimation
routine requires the addition of a ancilla qubits, which are used to control the application of
powers of V on an n-qubit register. More precisely, the lth ancilla qubit is used to control
the application of the unitary V 2l , so that we apply the controlled gate

Wl := |0〉〈0|l ⊗ I + |1〉〈1|l ⊗ V
2l

where the subscript l denotes that the projector acts on the lth ancilla/control qubit (and as
the identity everywhere else). Let W := W1W2 · · ·Wa. Then the phase estimation routine
consists of applying Hadamard gates to all of the control qubits, applying W , and then
applying the inverse quantum Fourier transform to the control qubits.

If we apply phase estimation to an eigenvector of V with eigenvalue ei2πθ, and measure
the control register, we obtain some output x ∈ {0, 1, ..., 2a − 1} such that

Pr(|θ − x/2a| < η) > 1− ϕ (2)

for ϕ, η > 0. To obtain this level of accuracy and probability of failure, it is sufficient [23] to
set

a = dlog(1/η)e+ dlog(2 + (1/(2ϕ)))e. (3)

Let φ be defined as follows:

φ(x) :=
{
x2π/2a if x ≤ 2a−1

x2π/2a − 2π otherwise

Then let φ(xj) be our estimate of the eigenvalue µj corresponding to the eigenvector |ψj〉,
which, by the definition of φ above, lies in the interval [−π, π). By Equation (2), if we
apply phase estimation to an eigenvector |ψj〉 of V with corresponding eigenvalue eiµj , and
measure, we have

Pr(|µj − φ(xj)| < 2πη) > 1− ϕ (4)

where the extra factor of 2π results from rescaling the value of xj by 2π.

In our case, we do not measure the control register, and therefore we do not collapse
the superposition over eigenvalues that phase estimation produces. Here we consider the
effect that this has on the output of the algorithm, and simultaneously bound the error
introduced by this part of the circuit. When phase estimation does not work perfectly, the
algorithm consists of the following steps, implementing a unitary Ũ :
1. Apply phase estimation on V ≈ eiA with the input |ψj〉, to obtain a superposition over

estimates φ(k) of the eigenvalue µj = 2πθj :

|ψj〉 (α |0〉+ β |1〉) |0 . . . 0〉 7→ |ψj〉 (α |0〉+ β |1〉)
∑
k

γk|j |φ(k)〉

where γk|j = 1
N

∑
a e

2πia(θj−k/N).
2. Perform controlled phase rotations:

|ψj〉 (α |0〉+ β |1〉)
∑
k

γk|j |φ(k)〉

7→ |ψj〉
∑
k

γk|j(αei arccos(f(φ(k))) |0〉+ βe−i arccos(f(φ(k))) |1〉) |φ(k)〉 .
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3. Undo the phase estimation to uncompute the value in the 3rd register. To undo phase
estimation we: a) apply the QFT to the register containing the φ(k)’s, b) apply controlled
powers of the unitary V † ≈ e−iA, and c) apply Hadamard gates to all qubits in the third
register.
a. Apply the QFT:

|ψj〉
1√
N

∑
k

γk|j(αei arccos(f(φ(k))) |0〉+ βe−i arccos(f(φ(k))) |1〉)
∑
w

e2πiwk/N |w〉 .

b. Apply the controlled (on the third register) V † gates:

|ψj〉
1√
N

∑
k

γk|j(αei arccos(f(φ(k))) |0〉+βe−i arccos(f(φ(k))) |1〉)
∑
w

e2πiwk/Ne−2πiθjw |w〉 .

c. Apply Hadamard gates to each of the ancilla qubits:

|ψj〉
1
N

∑
k

γk|j(αei arccos(f(φ(k))) |0〉

+βe−i arccos(f(φ((k))) |1〉)
∑
w

∑
x

e2πiwk/Ne−2πiθjw(−1)w·x |x〉 .

This means that Ũ performs the mapping

|ψj〉 (α |0〉+ β |1〉) |0 . . . 0〉

7→ |ψj〉
1
N

∑
k

γk|j(αei arccos(f(φ(k))) |0〉

+βe−i arccos(f(φ(k))) |1〉)
∑
x

(∑
w

e2πiwk/Ne−2πiθjw(−1)w·x
)
|x〉

for each eigenvector |ψj〉 of V .
Let {|ψj〉 |b〉 |φ〉, b ∈ {0, 1}} be a basis for the tensor product of the three registers. By

design, the only states that contribute to the trace of U ′ are those of the form |ψj〉 |b〉 |0 . . . 0〉.
Hence, we can consider the trace of Ũ ′ – the submatrix of Ũ in which the third register is in
the state |0 . . . 0〉) – which is given by:

Tr(Ũ ′) =
∑
j

〈ψj | 〈0|
(
|ψj〉

1
N

∑
k

γk|j
∑
w

e2πiwk/Ne−2πiθjwei arccos(f(φ(k))) |0〉
)

+
∑
j

〈ψj | 〈1|
(
|ψj〉

1
N

∑
k

γk|j
∑
w

e2πiwk/Ne−2πiθjwe−i arccos(f(φ(k))) |1〉
)

= 1
N

∑
j,k

γk|j
∑
w

e2πiwk/Ne−2πiθjw
(
ei arccos(f(φ(k))) + e−i arccos(f(φ(k)))

)
= 1

N

∑
j,k

γk|j2f(φ(k))
∑
w

e2πiw(k/N−θj)

= 2
∑
j,k

∣∣γk|j∣∣2 f(φ(k))

= 2
∑
k

f(φ(k))
∑
j

∣∣γk|j∣∣2 .
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Suppose that θj = zj/N for some zj – that is, each θj can be represented precisely by an n-bit
rational number zj/N . Then γk|j = δk,zj , and so Tr(Ũ ′) = 2

∑
j f(µj). This corresponds to

the case in which phase estimation works perfectly; in reality, we will not be able to express
all eigenvalues precisely as n-bit rational numbers. Instead, suppose that θj = z̃j/N + δj ,
where z̃j/N is the closest n-bit approximation of θj , and so 0 ≤ δj ≤ 1/(2N). The difference
between the trace in the two cases is given by

2

∣∣∣∣∣∣
∑
j

f(µj)−
∑
j

∑
k

∣∣γk|j∣∣2 f(φ(k))

∣∣∣∣∣∣ ≤ 2
∑
j

∣∣∣∣∣f(µj)−
∑
k

∣∣γk|j∣∣2 f(φ(k))

∣∣∣∣∣
= 2

∑
j

∣∣∣∣∣∑
k

∣∣γk|j∣∣2 (f(µj)− f(φ(k)))

∣∣∣∣∣
≤ 2

∑
j

∑
k

∣∣γk|j∣∣2 |f(µj)− f(φ(k))| ,

where the second step follows because
∑
k

∣∣γk|j∣∣2 = 1. The coefficient
∣∣γk|j∣∣2 is precisely the

probability of measuring φ(k) on the ancilla register when the true eigenvalue is µj . By the
promises of phase estimation (Equation (4)), with probability ≤ ϕ we have |µj − φ(k)| > 2πη,
in which case |f(µj)− f(φ(k))| ≤ 2fmax; and with probability ≥ 1−ϕ we have |µj − φ(k)| ≤
2πη, in which case |f(µj)− f(φ(k))| ≤ 2πKη. Hence, the error from this part of the circuit
is bounded above by

2

∣∣∣∣∣∣
∑
j

f(µj)−
∑
j

∑
k

∣∣γk|j∣∣2 f(φ(k))

∣∣∣∣∣∣ ≤ 4
∑
j

(πKη + ϕfmax) = 2n+2(πKη + ϕfmax).

Choosing η < ε/(8π) and ϕ < ε/8, and assuming that fmax ≤ 1 (as stated earlier), this
becomes

2

∣∣∣∣∣∣
∑
j

f(µj)−
∑
j

∑
k

∣∣γk|j∣∣2 f(φ(k))

∣∣∣∣∣∣ ≤ 2n 1
2ε(K + 1). (5)

Now we consider how this contributes to the overall error. As before, let λj denote the
eigenvalues of eiA. Then the error of the algorithm, taking into account both the Hamiltonian
simulation and phase estimation steps, is

2

∣∣∣∣∣∣
∑
j

f(λj)−
∑
j

∑
k

∣∣γk|j∣∣2 f(k)

∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣
∑
j

f(λj)−
∑
j

f(µj)

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
∑
j

f(µj)−
∑
j

∑
k

∣∣γk|j∣∣2 f(k)

∣∣∣∣∣∣
where the first term on the right corresponds to the error from the Hamiltonian simulation
part of the circuit (i.e. the difference between the trace of the circuit when using V instead of
eiA), and the second term corresponds to the error introduced by phase estimation. A bound
on the first term is given by Equation (1), and the second term is bounded via Equation (5).
Therefore, the difference in the trace of U ′ in the case where Hamiltonian simulation and
phase estimation both work perfectly, and when they do not, is bounded by

2

∣∣∣∣∣∣
∑
j

f(λj)−
∑
j

∑
k

∣∣γk|j∣∣2 f(k)

∣∣∣∣∣∣ ≤ 2nε(K + 1/2). (6)
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A.3 Error from estimating Tr(U ′)/2n in the DQC1 model
The one clean qubit model can estimate the normalised trace of a 2n × 2n sub-matrix of
a 2n+O(logn) × 2n+O(logn) unitary matrix (implemented by a poly(n)-sized circuit) up to
accuracy ζ = Ω(1/ poly(n)). Therefore, using the one clean qubit model to estimate the trace
of U ′ will introduce an extra error term ζ. Let T̃r(U ′)/2n be the output from the one clean
qubit algorithm. Then choosing ζ = ε/2, and using the bound from Equation (6), we have∣∣∣∣∣∣ 2

2n
∑
j

f(λj)− T̃r(U ′)/2n
∣∣∣∣∣∣ ≤ ε(K + 1). (7)

Hence, we can estimate 1
2n
∑
j f(λj) in polynomial time with accuracy ε(K + 1) for any

ε = Ω(1/ poly(n)).

B Classical Algorithms

Here we describe a classical algorithm for diagonal entry estimation, which is the problem
of estimating an entry on the diagonal of the matrix Ap, up to reasonable error. Given the
ability to estimate the diagonal entries of a matrix, we are able to estimate the normalised
trace of that matrix.

We first present an algorithm for the special case where A contains only 0, 1 entries, and
then in Appendix B.1 discuss how it can be extended to work for arbitrary real matrices. In
the first case, the matrix A defines an unweighted, undirected graph with N vertices. The
value of (Ap)jj is equivalent to the number of distinct walks (i.e. traversals around the graph
that may traverse any edge more than once, or not at all) of length p starting and ending at
vertex j.

We begin by observing that (Ap)jj can be re-interpreted as the total number of walks
of length p leaving j multiplied by the probability that such a walk ends at vertex j. We
can obtain an estimate of the latter by performing a number of random walks of length p,
beginning at vertex j, and counting how many of them return to vertex j on the final step.

In order to obtain an estimate of the total number of walks of length p leaving a given
vertex, we can do the following: given an upper bound d on the degree of the graph, we
generate a number of sequences of p integers chosen independently and uniformly at random
from the range [0, d]. Any given sequence provides a ‘candidate’ walk of length p on the
graph, which may or may not be realisable on the graph defined by A. Given a candidate
walk of the form (n0, n1, ..., np), we test whether or not it is realisable by starting a walk at
vertex j, and then moving to the n0th neighbour of j. We then move to the n1th neighbour
of that vertex, and so on. If, at any step i of the walk, a vertex does not have a neighbour
ni, we terminate the process and conclude that the candidate is not realisable.

If we tried all dp possible candidate walks from vertex j, then by counting the number
of successes we would know the exact value of the number of walks of length p that leave
vertex j; however, this would require O(dp) walks to be performed. If instead we sample
from the set of all possible walks by generating a number of sequences at random, we can
obtain a close estimate of the true number of walks. Below is the full algorithm for diagonal
entry estimation. We assume that we are given some bound d on the degree of the graph,
and that we wish to estimate (Ap)jj .
1. Estimate the total number of walks of length p leaving vertex j:

a. Define variables Xi for i ∈ [k], for some value of k to be determined later.
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b. For i = 1 to k:
i. Generate a sequence (n0, n1, ..., np), where each nl ∈ [d].
ii. Attempt to follow the walk defined by the sequence.
iii. If the walk was successful, set Xi = 1, otherwise set Xi = 0.

c. Then X = dp

k (X1 +X2 + ...+Xk) provides an estimate of the total number of walks
of length p leaving vertex j.

2. Estimate the probability that a given walk returns to vertex j:
a. Define variables Yi for i ∈ [k′], for some value of k′ to be determined later.
b. For i = 1 to k′:

i. Perform a random walk of length p starting at vertex j.
ii. If the walk returns to vertex j (as its final step), then set Yi = 1, otherwise set it to

0.
c. Then Y = 1

k′ (Y1 + Y2 + ...+ Yk′) gives an estimate of the probability that a given walk
returns to vertex j.

3. Multiplying the two values together gives us our desired estimate: (Ãp)jj = X · Y .

To analyse the accuracy of this estimation, we will look at the errors in the two estimates X
and Y .

In both steps, we are essentially aiming to estimate the success probability of some
Bernoulli process: in step 1 we aim to estimate the probability with which a randomly
generated sequence of ‘moves’ succeeds in generating a valid walk around the graph, and in
step 2 we are estimating the probability that a given (valid) walk of length p succeeds in
returning to its starting vertex on the final step of the walk. In both cases, we can estimate
the appropriate probability up any desired accuracy ε by choosing the number of samples (k
in step 1, and k′ in step 2) to be inverse polynomial in ε.

We use Hoeffding’s inequality to bound the accuracy of both estimates. For step 1, we
absorb the factor of dp into the random variables Xi, and use the general form of the bound:

Pr
[
|X − E[X]| ≥ εdp

]
≤ 2e−2ε2k.

And for step 2, we have

Pr
[
|Y − E[Y ]| ≥ ε′

]
≤ 2e−2ε′2k′ .

Therefore, by choosing k = poly(1/ε) and k′ = poly(1/ε′), we can estimate (Ap)jj up to
additive error that is at most dp(ε + ε′ + εε) = dpδ for δ = 1/poly(n), with a constant
probability of failure.

B.1 Extension to real matrices
In this section we extend the diagonal entry estimation algorithm of the previous section
to work for arbitrary real matrices. Recall that this algorithm works for matrices with
0, 1 entries by interpreting the input matrix as the adjacency matrix for an unweighted,
undirected graph. More general (symmetric) matrices may be viewed as undirected graphs
with weighted edges, and a similar interpretation of the value of (Ap)jj holds in these cases.

In the case of general matrices, the value of (Ap)jj depends not only on the number of
closed walks (i.e. those that return to their start vertex) leaving vertex j, but also on the
‘weight’ of those walks. Let Cjp be the set of all closed walks of length p leaving vertex j, and
E(ω) be the set of edges that make up a given walk ω.
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Then we have

(Ap)jj =
∑
c∈Cjp

∏
e∈E(c)

weight(e).

In order to estimate this quantity, we proceed similarly to the above case.
Let us denote the set of all (not necessarily closed) walks of length p originating at vertex

j by Wj
p . Then we can re-write the above quantity as

(Ap)jj = Wp Eω∈Wj
p

 ∏
e∈E(ω)

weight(e)

 ,
by using the same reasoning as before – i.e. that the jth diagonal entry of Ap is given by
the total number of walks of length p leaving vertex j multiplied by the expected ‘weight’ of
each walk, where we assign a weight of 0 if the walk does not return to vertex j.

We can estimate the expectation on the right by sampling from the set of closed walks of
length p originating at vertex j. This can be done by performing random walks of length p
starting at vertex j, and recording the total weights of those walks that return to vertex j.
This is easily incorporated into the existing algorithm: we set the variable Yi to 0 if the ith
walk does not return to vertex j, and otherwise we set it to the total weight of the walk (i.e.
the product over the weights of the edges of the walk). Wp can be estimated as before, up
to error εdp. The error in estimating the expectation value depends upon the largest total
weight of a closed walk in the graph. This is smaller than or equal to ‖A‖pmax, where ‖A‖max
is the maximum absolute size of an entry in A. A bound on the accuracy of estimating the
expectation value is once again given by Hoeffding’s inequality:

Pr[|Y − E[Y ]| ≥ ε′‖A‖pmax] ≤ 2e−2ε′2k′ .

Multiplying the two estimates together, we obtain an estimate of (Ap)jj up to accuracy
δdp‖A‖pmax with constant probability.

B.2 Estimating Tr(Ap)/N Classically
We can use the classical version of diagonal entry estimation to estimate the normalised
trace of a matrix. More precisely, we obtain the empirical mean of (Ap)jj over a sample of
values of j chosen uniformly at random. To see that the mean value of (Ap)jj for j ∈ [N ]
does indeed give us the desired value, we observe that

Ej [(Ap)jj ] = 1
N

N−1∑
j=0

(Ap)jj = Tr(Ap)
N

.

Let the output of the diagonal entry estimation algorithm be (Ãp)jj (which is an estimate of
(Ap)jj up to additive error δdp‖A‖pmax). Then let (Ãp)jj be the mean value of the variable
(Ãp)jj after sampling k times for randomly chosen values of j. The value of (Ãp)jj is bounded
in the interval [−(d‖A‖max)p, (d‖A‖max)p]. Then by Hoeffding’s inequality:

Pr
[∣∣∣(Ãp)jj − E[(Ãp)jj ]

∣∣∣ ≥ δdp‖A‖pmax

]
≤ 2 exp

(
−δ2

2 k

)
.

Thus, choosing k to be inverse polynomial in δ allows us to obtain an estimate of E[(Ap)jj ] =
Tr(Ap)/N up to error δdp‖A‖pmax. Note that for 0, 1 and −1, 0,+1 matrices, ‖A‖max = 1
and therefore the accuracy of the estimation in this case is just δdp.
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Abstract
We study the quantum complexity of solving the subset sum problem, where the elements
a1, . . . , an are randomly chosen from Z2`(n) and t =

∑
i ai ∈ Z2`(n) is a sum of n/2 elements.

In 2013, Bernstein, Jeffery, Lange and Meurer constructed a quantum subset sum algorithm with
heuristic time complexity 20.241n, by enhancing the classical subset sum algorithm of Howgrave-
Graham and Joux with a quantum random walk technique. We improve on this by defining a
quantum random walk for the classical subset sum algorithm of Becker, Coron and Joux. The
new algorithm only needs heuristic running time and memory 20.226n, for almost all random
subset sum instances.
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1 Introduction

The subset sum (aka knapsack) problem is one of the most famous NP-hard problems. Due
to its simpleness, it inspired many cryptographers to build cryptographic systems based
on its hardness. In the 80s, many attempts for building secure subset sum based schemes
failed [20], often because these schemes were built on subset sum instances (a1, . . . , an, t)
that turned out to be solvable efficiently.

Let a1, . . . , an be randomly chosen from Z2`(n) , I ⊂ {1, . . . , n} and t ≡
∑
i∈I ai mod 2`(n).

The quotient n/`(n) is usually called the density of a subset sum instance. In the low
density case where `(n)� n, I is with high probability (over the randomness of the instance)
a unique solution of the subset sum problem. Since unique solutions are often desirable
for cryptographic constructions, most initial construction used low-density subset sums.
However, Brickell [8] and Lagarias, Odlyzko [17] showed that low-density subset sums with
`(n) > 1.55n can be transformed into a lattice shortest vector problem that can be solved in
practice in small dimension. This bound was later improved by Coster et al. [9] and Joux,
Stern [15] to `(n) > 1.06n. Notice that this transformation does not rule out the hardness
of subset sum in the low-density regime, since computing shortest vectors is in general also
known to be NP-hard [2].
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In the high-density regime with ` = O(logn) dynamic programming solves subset sum
efficiently, see [11]. However, for the case `(n) ≈ n only exponential time algorithms are
known. Impagliazzo and Naor showed constructions of cryptographic primitives in AC0 that
can be proven as hard as solving random subset sums around density 1. Many efficient
cryptographic constructions followed, see e.g. [18, 10] for some recent constructions – including
a CCA-secure subset sum based encryption scheme – and further references.

Classical complexity of subset sum

Let us assume that ` = poly(n) such that arithmetic in Z2`(n) can be performed in time
poly(n). Throughout this paper, for ease of notation we omit polynomial factors in exponential
running times or space consumptions.

For solving subset sum with a = (a1, . . . , an), one can naively enumerate all e ∈ {0, 1}n
and check whether 〈e,a〉 ≡ t mod 2`(n) in time 2n.

Let a(1) = (a1, . . . , an/2) and a(2) = (an/2+1, . . . , an). In the Meet-in-the-Middle approach
of Horowitz and Sahni [13], one enumerates all e(1), e(2) ∈ {0, 1}n/2 and checks for an identity
〈e(1),a(1)〉 ≡ t − 〈e(2),a(2)〉 mod 2`(n). This improves the time complexity to 2n/2, albeit
using also space 2n/2.

Schroeppel and Shamir [21] later improved this to time 2n/2 with only space 2n/4. It
remains an open problem, whether time complexity 2n/2 can be improved in the worst
case [4]. However, when studying the complexity of random subset sum instances in the
average case, the algorithm of Howgrave-Graham and Joux [14] runs in time 20.337n. This
is achieved by representing e = e(1) + e(2) with e(1), e(2) ∈ {0, 1}n ambiguously, also called
the representation technique. In 2011, Becker, Coron and Joux [5] showed that the choice
e(1), e(2) ∈ {−1, 0, 1}n leads to even more representations, which in turn decreases the
running time on average case instances to 20.291n, the best classical running time currently
known.

Quantum complexity of subset sum

In 2013, Bernstein, Jeffery, Lange and Meurer [6] constructed quantum subset sum algorithms,
inspired by the classical algorithms above. Namely, Bernstein et al. showed that quantum
algorithms for the naive and Meet-in-the-Middle approach achieve run time 2n/2 and 2n/3,
respectively. Moreover, a first quantum version of Schroeppel-Shamir with Grover search [12]
runs in time 23n/8 using only space 2n/8. A second quantum version of Schroeppel-Shamir
using quantum walks [1, 3] achieves time 20.3n. Eventually, Bernstein, Jeffery, Lange and
Meurer used the quantum walk framework of Magniez et al. [19] to achieve a quantum version
of the Howgrave-Graham, Joux algorithm with time and space complexity 20.241n.

Our result

Interestingly, Bernstein et al. did not provide a quantum version of the best classical
algorithm – the BCJ-algorithm by Becker, Coron and Joux [5] – that already classically
has some quite tedious analysis. We fill this gap and complete the complexity landscape
quantumly, by defining an appropriate quantum walk for the BCJ-algorithm within the
framework of Magniez et al. [19]. Our run time analysis relies on some unproven conjecture
that we make explicit in Section 4. Under this conjecture, we show that all but a negligible
fraction of instances of subset sum can be solved quantumly in time and space 20.226n,
giving polynomial speedups over the best classical complexity 20.291n and the best quantum
complexity 20.241n.
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In a nutshell, our conjecture states that in the run-time analysis we can replace in a
quantum walk an update with expected constant cost by an update with polynomially
upper-bounded cost (that might stop), without significantly affecting the error probability
and the structure of the random walk graph. While it might be legitimate to use an unproven
non-standard conjecture to say something reasonable on the quantum complexity of problems
in post-quantum cryptography, especially in the context of the present NIST standardization
process, our conjecture is somewhat unsatisfactory from a theoretical point of view. We hope
that our work encourages people to base this conjecture on more solid theoretical foundations.

Apart from that our result holds for random subset sums with ` = poly(n), i.e. with
polynomial density. However, our algorithm behaves worst for subset sum instances with
unique solution, i.e. in the case `(n) ≥ n. In the high-density case `(n) < n, our analysis is
non-optimal and might be subject to improvements.

The complexity 20.226n is achieved for subset sum solutions t ≡
∑
i∈I ai mod 2`(n) with

worst case |I| = n/2. We also analyze the complexity for |I| = βn with arbitrary β ∈ [0, 1].
For instance for β = 0.2, our quantum-BCJ algorithm runs in time and space 20.175n.

The paper is organized as follows. Section 2 defines some notation. In Section 3, we
repeat the BCJ algorithm and its classical complexity analysis that we later adapt to the
quantum case. In Section 4, we analyze the cost of a random walk on the search space defined
by the BCJ algorithm and define an appropriate data structure. In Section 5, we put things
together and analyze the complexity of the BCJ algorithm, enhanced by a quantum walk
technique.

2 Preliminaries

Let D = {−1, 0, 1} be a digit set, and let α, β ∈ Q ∩ [0, 1] with 2α + β ≤ 1. We use
the notation e ∈ Dn[α, β] to denote that e ∈ Dn has αn (−1)-entries, (α + β)n 1-entries
and (1 − 2α − β)n 0-entries. Especially, e ∈ Dn[0, β] is a binary vector with βn 1-entries.
Throughout the paper we ignore rounding issues and assume that αn and (α+ β)n take on
integer values.

We naturally extend the binomial coefficient notation
(
n
k

)
= n!

k!(n−k)! to a multinomial
coefficient notation(

n

k1, . . . , kr

)
= n!
k1! . . . kr!(n− k1 − . . .− kr)!

.

Let H (x) = −x · log2 (x)− (1− x) · log2 (1− x) denote the binary entropy function. From
Stirling’s formula one easily derives(

αn

βn

)
≈ 2α·H( βα )n,

where the ≈-notation suppresses polynomial factors.
Analogous, let g(x, y) := −x · log2 (x)− y · log2 (y)− (1− x− y) · log2 (1− x− y). Then(

αn

βn, γn

)
≈ 2α·g(

β
α ,

γ
α )n.

Let Z2`(n) be the ring of integers modulo 2`(n). For the n-dimensional vectors a =
(a1, . . . , an) ∈ (Z2`(n))n, e = (e1, . . . , en) ∈ Dn[α, β] the inner product is denoted

〈a, e〉 =
n∑
i=1

aiei mod 2`(n).
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We define a random weight-β (solvable) subset sum instance as follows.

I Definition 1 (Random Subset Sum). Let a be chosen uniformly at random from (Z2`(n))n.
For β ∈ [0, 1], choose a random e ∈ Dn[0, β] and compute t = 〈a, e〉 ∈ Z2`(n) . Then
(a, t) ∈ (Z2`(n))n+1 is a random subset sum instance. For (a, t), any e′ ∈ {0, 1}n with
〈a, e′〉 ≡ t mod 2`(n) is called a solution.

3 Subset Sum Classically – The BCJ Algorithm

Let D = {−1, 0, 1} and let (a, t) = (a1, . . . , an, t) ∈ (Z2`(n))n+1 be a subset sum instance
with solution e ∈ Dn[0, 1

2 ]. That is 〈e,a〉 ≡ t mod 2`(n), where n/2 of the coefficients of e
are 1 and n/2 coefficients are 0.

Representations

The core idea of the Becker-Coron-Joux (BCJ) algorithm is to represent the solution e
ambiguously as a sum

e = e(1)
1 + e(2)

1 with e(1)
1 , e(2)

1 ∈ Dn[α1, 1/4].

This means that we represent e ∈ Dn[0, 1/2] as a sum of vectors with α1n (−1)-entries,
(1/4 + α1)n 1-entries and (3/4− 2α1)n 0-entries. We call (e(1)

1 , e(2)
1 ) a representation of e.

Thus, every 1-coordinate ei of e can be represented as either 1 + 0 or 0 + 1 via the
ith-coordinates of e(1)

1 , e(2)
1 . Since we have n/2 1-coordinates in e, we can fix among these

n/4 0-coordinates and n/4 1-coordinates in e(1)
1 , determining the corresponding entries in

e(1)
2 . This can be done in

(
n/2
n/4
)
ways.

Analogously, the 0-coordinates in e can be represented as either (−1)+1, 1+(−1) or 0+0.
Again, we can fix among these n/2 coordinates α1n (−1)-coordinates, α1n 1-coordinates and
n/2− 2α1n 0-coordinates in e(1)

1 . This can be done in
(

n/2
α1n,α1n

)
ways.

Thus, in total we represent our desired solution e in

R1 =
(
n/2
n/4

)(
n/2

α1n, α1n

)
ways.

However, notice that constructing a single representation of e is sufficient for solving subset
sum. Thus, the main idea of the BCJ algorithm is to compute only a 1/R1-fraction of all
representations such that on expectation a single representation survives.

This is done by computing only those representations (e(1)
1 , e(2)

1 ) such that the partial
sums

〈e(1)
1 ,a〉 and t− 〈e(2)

1 ,a〉

attain a fixed value modulo 2r1 , where r1 = blogR1c. This value can be chosen randomly,
but for simplicity of notation we assume in the following that both partial sums are 0 modulo
2r.

More precisely, we construct the lists

L
(1)
1 = {(e(1)

1 , 〈e(1)
1 ,a〉) ∈ Dn[α1, 1/4]× Z2`(n) | 〈e(1)

1 ,a〉 ≡ 0 mod 2r1} and
L

(2)
1 = {(e(2)

1 , 〈e(2)
1 ,a〉) ∈ Dn[α1, 1/4]× Z2`(n) | t− 〈e(2)

1 ,a〉 ≡ 0 mod 2r1}.

Hence, L(1)
1 , L

(2)
1 have the same expected list length, which we denote shortly by

E[|L1|] =
(

n
α1n,(1/4+α1)n

)
2r1

.
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Constructing the lists

L
(1)
1 , L

(2)
1 are constructed recursively, see also Fig. 1. Let us first explain the construction of

L
(1)
1 . We represent e(1)

1 ∈ Dn[α1, 1/4] as

e(1)
1 = e(1)

2 + e(2)
2 with e(1)

2 , e(2)
2 ∈ Dn[α2, 1/8], where α2 ≥ α1/2.

By the same reasoning as before, the number of representations is

R2 =
(
α1n

α1/2n

)(
(1/4 + α1)n

(1/8 + α1/2)n

)(
(3/4− 2α1)n

(α2 − α1/2)n, (α2 − α1/2)n

)
,

where the three factors stand for the number of ways of representing (−1)-, 1- and 0-
coordinates of e(1)

1 . Let r2 = blogR2c. We define

L
(j)
2 = {(e(j)

2 , 〈e(j)
2 ,a〉) ∈ Dn[α2, 1/8]× Z2`(n) | 〈e(j)

2 ,a〉 ≡ 0 mod 2r2} for j = 1, 2, 3,
L

(4)
2 = {(e(4)

2 , 〈e(4)
2 ,a〉) ∈ Dn[α2, 1/8]× Z2`(n) | t− 〈e(4)

2 ,a〉 ≡ 0 mod 2r2}.

Thus, we obtain on level 2 of our search tree in Fig. 1 expected list sizes

E[|L2|] =
(

n
α2n,(1/8+α2)n

)
2r2

.

An analogous recursive construction of level-3 lists L(j)
3 from our level-2 lists yields

E[|L3|] =
(

n
α3n,(1/16+α3)n

)
2r3

,

where r3 = blogR3c with

R3 =
(
α2n

α2/2n

)(
(1/8 + α2)n

(1/16 + α2/2)n

)(
(7/8− 2α2)n

(α3 − α2/2)n, (α3 − α2/2)n

)
.

The level-3 lists are eventually constructed by a standard Meet-in-the-Middle approach
from the following level-4 lists (where we omit the definition of L(15)

4 , L
(16)
4 that is analogous

with t− 〈e(·)
4 ,a〉)

L
(2j−1)
4 = {(e(2j−1)

4 , 〈e(2j−1)
4 ,a〉) ∈ Dn/2[α3/2, 1/32]× 0n/2 × Z2`(n)} and

L
(2j)
4 = {(e(2j)

4 , 〈e(2j)
4 ,a〉) ∈ 0n/2 ×Dn/2[α3/2, 1/32]× Z2`(n)} for j = 1, . . . , 7

of size

|L4| =
(

n/2
(α3/2)n, (1/32 + α3/2)n

)
.

Let us define indicator variables

Xi,j = 〈e(2j−1)
i ,a〉 and X+

i,j = 〈e(2j)
i ,a〉 for i = 1, 2, 3, 4 and j = 1, . . . , 2i−1.

By the randomness of a, we have Pr[Xi,j = c] = Pr[X+
i,j = c] = 1

2`(n) for all c ∈ Z2`(n) . Thus,
all Xi,j , X+

i,j are uniformly distributed in Z2`(n) , and therefore also uniformly distributed
modulo 2ri for any ri ≤ `(n). Unfortunately, for fixed i, j the pairXi,j , X

+
i,j is not independent.

We assume in the following that this (mild) dependence does not affect the run time analysis.

I Heuristic 1. For the BCJ runtime analysis, we can treat all pairs Xi,j , X
+
i,j as independent.
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5:6 Subset Sum Quantumly in 1.17n

Figure 1 Tree structure of the BCJ-Algorithm.

Under Heuristic 1 it can easily be shown that for all but a negligible fraction of random
subset sum instances the lists sizes are sharply concentrated around their expectation. More
precisely, a standard Chernoff bound shows that for all but a negligible fraction of instances
the list size of L(j)

i lies in the interval

E(|Li|)− E(|Li|)1/2 ≤ |Li| ≤ E(|Li|) + E(|Li|)1/2 for i = 1, 2, 3. (1)

In other words, for all but some pathological instances we have |Li| = O(E(|Li|).

We give a description of the BCJ algorithm in Algorithm 1. Here we assume in more
generality that a subset sum instance (a, t) has a solution e ∈ Dn[0, β]. As one would expect,
Algorithm 1 achieves its worst-case complexity for β = 1

2 with a balanced number of zeros
and ones in e. However, one can also analyze the complexity for arbitrary β, as we will do
for our quantum version of BCJ.

For generalizing our description from before to arbitrary β, we have to simply replace
e(j)
i ∈ Dn[αi, 1

2 2−i] by e(j)
i ∈ Dn[αi, β2−i].

By the discussion before, the final condition |L(1)
0 | > 0 in Algorithm 1 implies that we

succeed in constructing a representation (e(1)
1 , e(2)

1 ) ∈ (Dn[α1, βn/2])2 of e ∈ Dn[0, β], where
the e(j)

1 recursively admit representations (e(2j−1)
2 , e(2j−1)

2 ) ∈ (Dn[α2, βn/4])2), and so forth.
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Algorithm 1: Becker-Coron-Joux (BCJ) algorithm.

Input : (a, t) ∈ (Z2`(n))n+1, β ∈ [0, 1]
Output : e ∈ Dn[0, β]
Parameters :Optimize α1, α2, α3.
Construct all level-4 lists L(j)

4 for j = 1, . . . , 16.
for i = 3 down to 0 do

Compute L(j)
i from L

(2j−1)
i+1 , L(2j)

i+1 for j = 1, . . . , 2i.
end
if |L(1)

0 | > 0 then output an arbitrary element from L
(1)
0 .

Thus, one can eventually express

e = e(1)
4 + e(2)

4 + . . .+ e(16)
4 .

However, notice that we constructed all lists in such a way that on expectation at least one
representation survives for every list L(j)

i from the for-loop of Algorithm 1. This implies that
the BCJ algorithm succeeds in finding the desired solution e, and therefore the leaves of
our search tree in Fig. 1 contain elements that sum up to e. The following theorem and its
proof show how to optimize the parameters αi, i = 1, 2, 3 such that BCJ’s running time is
minimized while still guaranteeing a solution.

I Theorem 2 (BCJ 2011). Under Heuristic 1 Algorithm 1 solves all but a negligible fraction
of random subset sum instances (a, t) ∈ (Z2`(n))n+1 (Definition 1) in time and memory
20.291n.

Proof. Numerical optimization yields the parameters

α1 = 0.0267, α2 = 0.0302, α3 = 0.0180.

This leads to

R3 = 20.241n, R2 = 20.532n, R1 = 20.799n representations,

which in turn yield expected list sizes

|L4| = 20.266n, E(|L3|) = 20.2909n, E(|L2|) = 20.279n, E(|L1|) = 20.217n, E(|L0|) = 1.

For i = 1, 2, 3 the level-i lists L(j)
i can be constructed in time 20.2909n by looking at all pairs

in L(2j−1)
i−1 × L(2j)

i−1 . Under Heuristic 1, we conclude by Eq. (1) that for all but a negligible
fraction of instance we have |Li| = O(E(|Li|) for i = 1, 2, 3. Thus, the total running time
and memory complexity can be bounded by 20.291n. J

4 From Trees to Random Walks to Quantum Walks

In Section 3, we showed how the BCJ algorithm builds a search tree t whose root contains a
solution e to the subset sum problem. More precisely, the analysis of the BCJ algorithm in
the proof of Theorem 2 shows that the leaves of t contain a representation (e(1)

4 , . . . , e(16)
4 ) ∈

L
(1)
4 × . . .× L

(16)
4 of e, i.e. e = e(1)

4 + . . .+ e(16)
4 .
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Idea of Random Walk

In a random walk, we no longer enumerate the lists L(j)
4 completely, but only a random subset

U
(j)
4 ⊆ L

(j)
4 of some fixed size |U4| := |U (j)

4 |, that has to be optimized. We run on these
projected leaves the original BCJ algorithm, but with parameters α1, α2, α3 that have to be
optimized anew. On the one hand, a small |U4| yields small list sizes, which in turn speeds
up the BCJ algorithm. On the other hand, a small |U4| reduces the probability that BCJ
succeeds. Namely, BCJ outputs the desired solution e iff (e(1)

4 , . . . , e(16)
4 ) ∈ U (1)

4 × . . .×U (16)
4 ,

which happens with probability

ε =
(
|U4|
|L4|

)16
. (2)

The graph G = (V, E) of our Random Walk

We define vertices V with labels U (1)
4 × . . . × U

(16)
4 . Each vertex v ∈ V contains the

complete BCJ search tree with leaf lists defined by its label. Two vertices with labels
` = U

(1)
4 × . . .× U (16)

4 and `′ = V
(1)

4 × . . .× V (16)
4 are adjacent iff their symmetric difference

is |∆(`, `′)| = 1. I.e., we have U (j)
4 = V

(j)
4 for all j but one V (i)

4 6= V
(i)

4 for which U (i)
4 , V

(i)
4

differ by only one element.

I Definition 3 (Johnson graph). Given an N -size set L the Johnson graph J (N, r) is an
undirected graph GJ = (VJ , EJ) with vertices labeled by all r-size subsets of L. An edge
between two vertices v, v′ ∈ VJ with labels `, `′ exists iff |∆(`, `′)| = 1.

In our case, we define N = |L4|, r = |U4| and for each of our 16 lists L(j)
4 its corresponding

Johnson graph Jj(N, r). However, by our construction above we want that two vertices are
adjacent iff they differ in only one element throughout all 16 lists.

Let us therefore first define the Cartesian product of graphs. We will then show that our
graph G = (V,E) is exactly the Cartesian product

J16(N, r) := J1(N, r)× . . .× J16(N, r).

I Definition 4. Let G1 = (V1, E1), G2 = (V2, E2) be undirected graphs. The Cartesian
product G1 ×G2 = (V,E) is defined via

V = V1 × V2 = {v1v2 | v1 ∈ V1, v2 ∈ V2} and
E = {(u1u2, v1v2) | (u1 = v1 ∧ (u2, v2) ∈ E2) ∨ ((u1, v1) ∈ E1 ∧ u2 = v2)}

Thus, in J1(n, r)× J2(n, r) the labels v1v2 are Cartesian products of the labels U (1)
4 , U

(2)
4 .

An edge in J1(n, r)× J2(n, r) is set between two vertices with labels U (1)
4 ×U (2)

4 , V (1)
4 × V (2)

4
iff U (1)

4 = V
(1)

4 and U (2)
4 , V (2)

4 differ by exactly one element or vice versa, as desired.

Mixing time

The mixing time of a random walk depends on its so-called spectral gap.

I Definition 5 (Spectral gap). Let G be an undirected graph. Let λ1, λ2 be the eigenvalues
with largest absolute value of the transition matrix of the random walk on G. Then the
spectral gap of a random walk on G is defined as δ(G) := |λ1| − |λ2|.
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For Johnson graphs it is well-known that δ(J(N, r)) = N
r(N−r) = Ω( 1

r ). The following
lemma shows that for our graph J16(N, r) we have as well

δ(J16(N, r)) = Ω
(

1
r

)
= Ω

(
1
|U4|

)
. (3)

I Lemma 6 (Kachigar, Tillich [16]). Let J (N, r) be a Johnson graph, and let Jm (N, r) :=
m

×
i=1

J (n, r). Then δ (Jm) ≥ 1
mδ (J).

Walking on G

We start our random walk on a random vertex v ∈ V , i.e. we choose random U
(j)
4 ⊆ L(j)

4 for
j = 1, . . . , 16 and compute the corresponding BCJ tree tv on these sets. This computation of
the starting vertex v defines the setup cost TS of our random walk.

Let us quickly compute TS for the BCJ algorithm, neglecting all polynomial factors.
The level-4 lists U (j)

4 can be computed and sorted with respect to the inner products
〈e(j)

4 ,a〉 mod 2r3 in time |U4|. The level-3 lists contain all elements from their two level-4
children lists that match on the inner products. Thus we expect E(|U3|) = |U4|2 /2r3 elements
that match on their inner products. Analogous, we compute level-2 lists in expected time
|U3|2/2r2−r3 . However, now we have to filter out all e(j)

2 that do not possess the correct
weight distribution, i.e. the desired number of (−1)s, 0s, and 1s. Let us call any level-i e(j)

i

consistent if e(j)
i has the correct weight distribution on level i. Let p3,2 denote the probability

that a level-2 vector constructed as a sum of two level-3 vectors is consistent. From Section 3
we have

|L3|2

2r2−r3
· p3,2 = E(|L2|),

which implies

p3,2 :=
(

n
α2n,(1/8+α2)n

)(
n

α3n,(1/16+α3)n
)2 · 2

r2−r3 .

Thus, after filtering for the correct weight distribution we obtain an expected level-2 list
size of E(|U2|) = |U3|2/2r2−r3 · p3,2. Analogous, on level 1 we obtain expected list size
E(|U1|) = |U2|2/2r1−r2 · p2,1 with

p2,1 :=
(

n
α1n,(1/4+α1)n

)(
n

α2n,(1/8+α2)n
)2 · 2

r1−r2 .

The level-0 list can be computed in expected time |U1|2/2n−r1 . In total we obtain

E[TS ] = max
{
|U4|,

|U4|2

2r3
,
|U3|2

2r2−r3
,
|U2|2

2r1−r2
,
|U1|2

2n−r1

}
Analogous to the reasoning in Section 3 (see Eq. 1), for all but a negligible fraction of random
subset sum instances we have |Ui| = O (E(|Ui|)). Thus, for all but a negligible fraction of
instances and neglecting constants we have

TS = max
{
|U4|, |U4|2

2r3 , E(|U3|)2

2r2−r3 ,
E(|U2|)2

2r1−r2 ,
E(|U1|)2

2n−r1

}
(4)

≤ max
{
|U4|, |U4|2

2r3 , |U4|4
2r2+r3 ,

|U4|8
2r1+r2+2r3 ,

|U4|16

2n+r1+2r2+4r3

}
:= T̃S . (5)
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If tv contains a non-empty root with subset-sum solution e, we denote v marked. Hence,
we walk our graph G = J1(|L4|, |U4|) × . . . × J16(|L4|, |U4|) until we hit a marked vertex,
which solves subset sum.

The cost for checking whether a vertex v is marked is denoted checking cost TC . In
our case checking can be done easily by looking at tv’s root. Thus, we obtain (neglecting
polynomials)

TC = 1. (6)

Since any neighboring vertices v, v′ in G only differ by one element in some leaf U (j)
4 ,

when walking from v to v′ we do not have to compute the whole tree tv′ anew, but instead
we update tv to tv′ by changing the nodes on the path from list U (j)

4 to its root accordingly.
The cost of this step is therefore called update cost TU . Our cost TU heavily depends on the
way we internally represent tv. In the following, we define a data structure that allows for
optimal update cost per operation.

4.1 Data Structure for Updates
Let us assume that we have a data structure that allows the three operations search, insertion
and deletion in time logarithmic in the number of stored elements. In Bernstein et al. [7],
it is e.g. suggested to use radix trees. Since our lists have exponential size and we ignore
polynomials in the run time analysis, every operation has cost 1. This data structure also
ensures the uniqueness of quantum states |U (1)

4 , . . . , U
(16)
4 〉, which in turn guarantees correct

interference of quantum states with identical lists.

Definition of data structure

Recall from Section 3, that BCJ level-4 lists are of the form L
(j)
4 = {(e(j)

4 , 〈e(j)
4 ,a〉)}. For our

U
(j)
4 ⊂ L(j)

4 we store in our data structure the e(j)
4 and their inner products with a separately

in

E
(j)
4 = {e(j)

4 | e(j)
4 ∈ U (j)

4 } and S
(j)
4 = {(〈e(j)

4 ,a〉, e(j)
4 ) | e(j)

4 ∈ U (j)
4 }, (7)

where in S
(j)
4 elements are addressed via their first datum 〈e(j)

4 ,a〉. Analogous, for U (j)
i ,

i = 3, 2, 1 we also build separate E(j)
i and S(j)

i . For the root list U (1)
0 , it suffices to build

E
(1)
0 .
We denote the operations on our data structure as follows. Insert(E(j)

i , e) inserts e
into E

(j)
i , whereas Delete(E(j)

i , e) deletes one entry e from E
(j)
i . Furthermore, {ei} ←

Search(S(j)
i , 〈e(j)

i ,a〉) returns the list of all ei with first datum 〈e(j)
i ,a〉.

Deletion/Insertion of an element

Our random walk replaces a list element in exactly one of the leaf lists U (j)
4 . We can perform

the update by first deleting the replaced element and update the path to the root accordingly,
and second adding the new element and again updating the path to the root.

Let us look more closely at the deletion process. On every level we delete a value, and
then compute via the sibbling vertex, which values we have to be deleted recursively on the
parent level. For illustration, deletion of e in U (3)

4 triggers the following actions.
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Delete (E(3)
4 , e).

{e(4)
4 } ← Search(S(4)

4 , 〈e,a〉 mod 2r3) // E(|{e(4)
4 }|) = |U4|

2r3

For all e(2)
3 = e + e′ with e′ ∈ {e(4)

4 }
Delete (E(2)

3 , e(2)
3 )

{e(1)
3 } ← Search(S(1)

3 , 〈e(2)
3 ,a〉 mod 2r2) // E(|{e(1)

3 }|) = |U3|
2r2−r3

For all e(1)
2 = e(2)

3 + e′ with e′ ∈ {e(1)
3 }

∗ Delete (E(1)
2 , e(1)

2 )
∗ {e(2)

2 } ← Search(S(2)
2 , 〈e(1)

2 ,a〉 mod 2r1) // E(|{e(2)
2 }|) = |U2|

2r1−r2

∗ For all e(1)
1 = e(1)

2 + e′ with e′ ∈ {e(2)
2 }

· Delete (E(1)
1 , e(1)

1 ).
· {e(2)

1 } ← Search(S(2)
1 , 〈e(1)

1 ,a〉 mod 2n) // E(|{e(2)
1 }|) = |U1|

2n−r1

· For all e(1)
0 = e(1)

1 + e′ with e′ ∈ {e(2)
1 }

o Delete (E(1)
0 , e(1)

0 ).
Insertion of an element is analogous to deletion. Hence, the expected update cost is

E(TU ) = max
{

1, |U4|
2r3

,
|U4|E(|U3|)

2r2
,
|U4|E(|U3|)E(|U2|)

2r1
,
|U4|E(|U3|)E(|U2|)E(|U1|)

2n

}
(8)

≤ max
{

1, |U4|
2r3

,
|U4|3

2r2+r3
,
|U4|7

2r1+r2+2r3
,
|U4|15

2n

}
:= T̃U . (9)

Notice that for the upper bounds T̃S , T̃U from Eq. (5) and (9) we have

T̃S = |U4| · T̃U . (10)

Quantum Walk Framework

While random walks take time T = TS + 1
ε

(
TC + 1

δTU
)
, their quantum counterparts achieve

some significant speedup due to their rapid mixing, as summarized in the following theorem.

I Theorem 7 (Magniez et al. [19]). Let G = (V,E) be a regular graph with eigenvalue gap
δ > 0. Let ε > 0 be a lower bound on the probability that a vertex chosen randomly of G
is marked. For a random walk on G, let TS , TU , TC be the setup, update and checking cost.
Then there exists a quantum algorithm that with high probability finds a marked vertex in
time

T = TS + 1√
ε

(
TC + 1√

δ
TU

)
.

Stopping unusually long updates

Recall that for setup, we showed that all instances but an exponentially small fraction finish
the construction of the desired data structure in time TS . However, the update cost is
determined by the maximum cost over all superexponentially many vertices in a superposition.
So even one node with unusually slow update may ruin our run time.

Therefore, we modify our quantum walk algorithm QW by imposing an upper bound
of κ = poly(n) steps for the update. After κ steps, we simply stop the update of all nodes
and proceed as if the update has been completed. We denote by Stop-QW the resulting
algorithm.

A first drawback of stopping is that some nodes that would get marked in QW, might
stay unmarked in Stop-QW. However, since the event of stopping should not dependent
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on whether a node is marked or not, the ratio between marked and unmarked nodes and
thus the success probability ε should not change significantly between QW and Stop-QW.
Moreover, under Heuristic 1 and a standard Chernoff argument the probability of a node not
finishing his update properly after κ steps is exponentially small.

A second drawback of stopping is that unfinished nodes partially destroy the structure
of the Johnson graph, since different (truncated) representations of the same node do no
longer interfere properly in a quantum superposition. We conjecture that this only mildly
affects the spectral gap of the graph. A possible direction to prove such a conjecture might
be to allow some kind of self-repairing process for a node. If a node cannot finish its update
in time in one step, it might postpone the remaining work to subsequent steps to amortize
the cost of especially expensive updates. After the repair work, a node then again joins the
correct Johnson graph data structure in quantum superposition.

In the following heuristic, we assume that the change from QW to Stop-QW changes
the success probability ε and the bound δ for the spectral gap only by a polynomial factor.
This in turn allows us to analyze Stop-QW with the known parameters ε, δ from QW.

I Heuristic 2. Let ε be the fraction of marked states and δ be the spectral gap of the random
walk in QW. Then the fraction of marked states in Stop-QW is at least εstop = ε

poly(n) ,
and the spectral gap of the random walk on the graph in StopQW is at least δstop = δ

poly(n) .
Moreover, the stationary distribution of Stop-QW is close to the distribution of its setup.
Namely, we obtain with high probability a random node of the Johnson graph with correctly
built data structure.

With the upcoming NIST standardization for post-quantum cryptography, there is an
even stronger need to analyze quantum algorithms for cryptographic problems. There is
a strong need to provide more solid theoretical foundations that justify assumptions like
Heuristic 2, since cryptographic parameter selections will be based on best quantum attacks.
Hence, any progress in proving Heuristic 2 finds a broad spectrum of applications in the
cryptographic community.

5 Results

In this section, we describe the BCJ algorithm enhanced by a quantum random walk, see
Algorithm 2. Our following main theorem shows the correctness of our quantum version of
the BCJ algorithm and how to optimize the parameters for achieving the stated complexity.

I Theorem 8 (BCJ-QW Algorithm). Under Heuristic 1 and Heuristic 2, Algorithm 2 solves
with high probability all but a negligible fraction of random subset sum instances (a, t) ∈
(Z2`(n))n+1 (as defined in Definition 1) in time and memory 20.226n.

Proof. By Theorem 7, the running time T of Algorithm 2 can be expressed as

T = TS + 1
√
εstop

(
TC + 1√

δstop
TU

)
.

We recall from Heuristic 2, Eq. (2), (3) and (6)

εstop ≈ ε =
(
|U4|
|L4|

)16
, δstop ≈ δ = Ω

(
1
|U4|

)
and TC = 1,

where the ≈-notation suppresses polynomial factors.
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Algorithm 2: BCJ-QW algorithm.

Input : (a, t) ∈ (Z2`(n))n+1, β ∈ [0, 1]
Output : e ∈ Dn[0, β]
Parameters :Optimize α1, α2, α3.
Construct all level-4 lists E(j)

4 and S(j)
4 for j = 1, . . . , 16. . Setup (see Eq. (7))

Construct all level-3 lists E(j)
3 and S(j)

3 for j = 1, . . . , 8.
Construct all level-2 lists E(j)

2 and S(j)
2 for j = 1, . . . , 4.

Construct all level-1 lists E(j)
1 and S(j)

1 for j = 1, 2.
Construct level-0 list E0.

. Checkwhile E0 6= ∅ do
for 1/

√
δ times (via phase estimation) do

Take a quantum step of the walk. . Update
Update the data structure accordingly, stop after κ = poly(n) steps.

end
end
Output e ∈ E0.

Let us first find an optimal size of |U4|. Plugging ε, δ and TC into T and neglecting
constants yields run time

T = TS + |L4|8|U4|−15/2TU .

Let us substitute TU by its expectation E[TU ]. We later show that TU and E[TU ] differ by
only a polynomial factor, and thus do not change the analysis. We can upper bound the
right hand side using our bounds T̃S ≥ TS , T̃U ≥ E[TU ] from Eq. (5) and (9). We minimize
the resulting term by equating both summands

T̃S = |L4|8|U4|−15/2T̃U .

Using the relation T̃S = |U4| · T̃U from Eq. (10) results in

|U4| = |L4|16/17.

Therefore, |L4|8|U4|−15/2 · E[TU ] = |U4| · E[TU ]. Thus for minimizing the runtime T of
Algorithm 2, we have to minimize the term max{TS , |U4| · E[TU ]}, which equals T up to a
factor of at most 2. Recall from Eq. (4), which holds under Heuristic 1 and for all but a
negligible fraction of instances, and Eq. (8) that

TS = max
{
|U4|,

|U4|2

2r3
,
E(|U3|)2

2r2−r3
,
E(|U2|)2

2r1−r2
,
E(|U1|)2

2n−r1

}
,

E[TU ] = max
{

1, |U4|
2r3

,
|U4|E(|U3|)

2r2
,
|U4|E(|U3|)E(|U2|)

2r1
,
|U4|E(|U3|)E(|U2|)E(|U1|)

2n

}
.

Numerical optimization for minimizing max{TS , |U4| · E[TU ]} leads to parameters

α1 = 0.0120, α2 = 0.0181, α3 = 0.0125.

This gives

2r3 = 20.2259n, 2r2 = 20.4518n, 2r1 = 20.6627n representations,
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Figure 2 c = log T
n

as a function of β for BCJ-QW.

which in turn yield expected list sizes

|U4| = 20.2259n, E(|U3|) = 20.2259n, E(|U2|) = 20.2109n, E(|U1|) = 20.1424n.

Plugging these values into our formulas for TS , E[TU ] gives

TS = max{20.2259n, 20.2259n, 20.2259n, 20.2109n, 2−0.0524n} and
|U4| · E[TU ] = max{20.2259n, 20.2259n, 20.2259n, 20.2259n, 20.0310n}.

It follows that E[TU ] = 1. Since we have TU ≤ κ = poly(n) by definition in Algorithm 2, the
values TU and E[TU ] differ by only a polynomial factor that we can safely ignore (by rounding
up the runtime exponent). Thus, we conclude that Algorithm 2 runs in time T = 20.226n

using |U4| = 20.226n memory. J

I Remark. As in the classical BCJ case, a tree depth of 4 seems to be optimal for BCJ-QW.
When analyzing varying depths, we could not improve over the run time from Theorem 8.

Complexity for the unbalanced case

We also analyzed subset sum instances with t =
∑
i∈I ai, where |I| = βn for arbitrary

β ∈ [0, 1]. Notice that w.l.o.g. we can assume β ≤ 1/2, since for β > 1/2 we can solve a
subset sum instance with target t′ =

∑n
i=1 ai − t. Hence, the complexity graph is symmetric

around β = 1/2. Fig. 2 shows the run time exponent c for our BCJ-QW algorithm with time
T = 2cn as a function of β.
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Abstract
The Solovay-Kitaev theorem states that universal quantum gate sets can be exchanged with low
overhead. More specifically, any gate on a fixed number of qudits can be simulated with error ε
using merely polylog(1/ε) gates from any finite universal quantum gate set G. One drawback to
the theorem is that it requires the gate set G to be closed under inversion. Here we show that
this restriction can be traded for the assumption that G contains an irreducible representation
of any finite group G. This extends recent work of Sardharwalla et al. [29], and applies also
to gates from the special linear group. Our work can be seen as partial progress towards the
long-standing open problem of proving an inverse-free Solovay-Kitaev theorem [16, 23].
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1 Introduction

Quantum computing promises to solve certain problems exponentially faster than classical
computers. For instance, quantum computers can factor integers [34], simulate quantum
mechanics [7], and compute certain knot invariants [4] exponentially faster than the best
known classical algorithms. The power of quantum computing is formalized using the notion
of quantum circuits, in which polynomial number of quantum gates are applied to a standard
input state, and the answer to the computational problem is obtained by measuring the final
state. This results in the complexity class BQP (see [24, 20] for an introduction).
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may vary between different realizations of quantum computing. Each gate can act on at most
some finite number k of quantum systems at a time, where each individual system (or qudit)
has d levels. A gate set G is called universal3 if it is capable of approximately generating any
quantum transformation on a sufficiently large number of qudits [15].

In general, the computational power of a quantum device may depend on the gate set G
at its disposal. Clearly, if a gate set is not universal, it may have restricted computational
power.4 But a priori, the computational power of different universal gate sets could vary as
well. This is because universality simply implies that the gates from G densely generate all
unitaries, but it does not specify how quickly one can approximate arbitrary gates.5

While BQP consists of those computations that use poly(n) gates on an n-bit input, the
degree of the polynomial for a specific algorithm could in principle depend on the actual gate
set used. For example, if we are given an O(n)-gate algorithm over some gate set and we
want to implement it using another gate set G, we have to compile each gate to accuracy
O(1/n) in terms of G. However, if our compiler uses, say, O(1/ε) gates to achieve accuracy
O(ε), the total number of gates would become O(n2). This would be a strange situation for
quantum computation, since the runtime of polynomial-time algorithms would be defined
only up to polynomial factors. In particular, this would render Grover’s speed-up useless.

Fortunately, this is not the case since the Solovay-Kitaev theorem [19, 20, 24, 16] (see
also [14, 25]) provides a better compiler, so long as the universal gate set G is closed under
inversion. More specifically, this theorem states that any universal gate set G can be used to
simulate any gate U from any other universal gate set to accuracy ε using only polylog(1/ε)
gates from G. Furthermore, there is an efficient algorithm, the Solovay-Kitaev algorithm, to
perform this conversion between the gate sets.

Before formally stating the Solovay-Kitaev theorem, let us make a few remarks. First, we
can assume without loss of generality that all gates in G are single-qudit gates in some fixed
dimension d. Indeed, if G contains multi-qudit gates or if G becomes universal only on some
larger number of qudits, we can simply set the new dimension to be dk (for a sufficiently
large constant k) and replace G by a larger gate set that consists of the original gates acting
on all ordered subsets of k systems. Second, as we are now dealing with a single system,
we can replace the universality of G by a requirement that G generates a dense subgroup of
SU(d) [31]. Third, we can assume that G is itself a subset of the special unitary group SU(d)
rather than U(d), since the global phase of a quantum gate has no physical effect. In fact,
U(1) actually does not satisfy the Solovay-Kitaev theorem, hence the theorem does not hold
for U(d) either, because in general we cannot approximate the elements of U(d) accurately
enough due to their global phase.

With this fine print aside, we are now ready to state the theorem.

I Theorem (Solovay-Kitaev theorem [16]). For any fixed d ≥ 2, if G ⊂ SU(d) is a finite gate
set which is closed under inverses and densely generates SU(d), then there is an algorithm
which outputs an ε-approximation to any U ∈ SU(d) using merely O

(
log3.97(1/ε)

)
elements

from G.

Therefore if one wishes to change the gate set used for a BQP computation (which requires
compiling each gate to 1/poly accuracy), a change of gate set only incurs polylogarithmic

3 This is also known as physical universality.
4 But not always! Some gate sets which are not physically universal are nevertheless capable of universal

quantum computing via an encoding; this is known as encoded universality [24].
5 By a simple counting argument, generic unitaries on an n-qubit system require Ω̃(2n) gates to implement
(even approximately) irrespectively of the gate set [24, Section 4.5.4].
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overhead in the input size n. In particular this implies the runtimes of quantum algorithms
based on inverse-closed gate sets are well-defined up to polylog factors in n; an O(nc)
algorithm using one particular universal gate set implies an Õ(nc) algorithm using any other
(inversion-closed) universal gate set. It also implies that the choice of a particular universal
gate set is unimportant for quantum computation; changing between gate sets incurs low
overhead.

Given the central importance of the Solovay-Kitaev theorem to quantum computing, prior
works have improved the theorem in various directions. For instance, a number of works (see,
e.g., [21, 26, 32, 8, 9, 30, 28, 22, 27]) have decreased the overheads of the Solovay-Kitaev
theorem for particular inverse-closed gate sets by improving the exponent in the logarithm
from 3.97 to 1 (which is optimal) or even by improving the hidden constants in front of
the logarithm. Such works are important steps towards making compilation algorithms
practically efficient. Additionally prior work has shown a version of the Solovay-Kitaev
algorithm for inverse-closed non-unitary matrices [2] and as well more general Lie groups [23].
Note that there is also an information-theoretic non-algorithmic version of the Solovay-Kitaev
theorem with exponent 1 for generic inverse-closed gate sets [18]. This has subsequently been
extended also to inverse-free gate sets [35].

In this work, rather than improving the overheads of the Solovay-Kitaev theorem, we work
towards removing the assumption that the gate set contains inverses of all its gates. This is
important for several reasons. First, on a theoretical level it would be surprising if the power
of noiseless quantum computers could be gate set dependent. Of course, in the real world
one could apply fault-tolerance [3] to allow the use of approximate inverses in place of exact
inverses, but it seems strange to have to resort to such a powerful technique to deal with a
seemingly minor issue which is easily stated in a noiseless setting. Furthermore, this would
not answer the original mathematical question about how fast unitary gate sequences fill
the space of all unitaries, since a fault-tolerant implementation corresponds to a completely
positive rather than a unitary map (it implements the desired map on an encoded subspace
of a larger-dimensional Hilbert space).

Second, an inverse-free Solovay-Kitaev theorem would be very helpful towards classifying
the computational power of quantum gate sets. It remains open6 to prove a classification
theorem describing which gate sets G are capable of universal quantum computing, which
are efficiently classically simulable, and which can solve difficult sampling problems like
BosonSampling or IQP [1, 12]. A number of recent works have made partial progress on
this problem [11, 10]. However, a common bottleneck in these proofs is that they need to
invoke the Solovay-Kitaev theorem on various “postselection gadgets” to argue that one can
perform hard sampling problems, and the set of these gadgets is not necessarily closed under
inversion. In the above works this problem is tackled on an ad-hoc, case specific basis. An
inverse-free Solovay-Kitaev theorem would simplify these proofs and expand the frontier for
gate classification.

Finally, such theorem would enable further progress in quantum Hamiltonian complexity
where universal gate sets are used to encode computational instructions by the interaction
terms of local Hamiltonians. The ground states of such Hamiltonians have very complic-
ated structure and computing their ground energy is typically QMAEXP-complete [17], a
phenomenon that can occur even when the local dimension of each individual subsystem is
relatively small [5, 6]. Since low local dimension is physically more relevant, it is desirable to
minimize the dimensions of these constructions even further. A significant roadblock in this is

6 Even for the case of two-qubit gate sets [15, 11]!
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the size of the universal gate set used to encode the computation. Since each gate contributes
additional dimensions, one would like to have as few gates as possible. Considering how
intricate and hard to optimize the known constructions [5, 6] are, getting rid of inverses
would be an easy way forward.

For the reasons outlined above, we believe this longstanding open problem (noted in
[16, 23]) is an important one to resolve. In this work, we make partial progress towards this
goal by replacing the inverse-closedness assumption with the requirement that the gate set
contains any (projective) irreducible representation (a.k.a. irrep) of a finite group. Roughly
speaking, a projective irrep is a set of unitary matrices that form a group (up to a global
phase) and that do not leave any non-trivial subspace invariant. A canonical example is the
set of Pauli matrices {I,X, Y, Z}.

I Theorem 1 (Solovay-Kitaev theorem with an irrep instead of inverses). For any fixed d ≥ 2,
suppose G ⊂ SU(d) is a finite gate set which densely generates SU(d), and furthermore G
contains a (projective) irrep of some finite group G. Then there is an algorithm which outputs
an ε-approximation to any U ∈ SU(d) using merely O(polylog(1/ε)) elements from G.

In other words, the inverses of some of the gates of G—namely those which constitute
an irrep of G—are also in G, but the inverses of the remaining gates may not be in G. So
we are trading inverses for some other structure in the gate set G. This extends recent
work of Sardharwalla, Cubitt, Harrow and Linden [29] which proved this theorem in the
special case that G is the Weyl (or generalized Pauli)7 group. Sardharwalla et al.’s result has
already found application in gate set classification [10]. We therefore expect that our result
will likewise enable further progress on the gate set classification problem. We also extend
our theorem to the non-unitary case (see Theorem 4 in Appendix C), thus generalizing the
(inverse-closed) non-unitary Solovay-Kitaev theorem of [2] (this may further extend to more
general Lie groups as well following [23]). We expect that this version of the theorem will be
particularly useful in gate classification as postselection gadgets are often non-unitary [11].

1.1 Proof techniques
Our proof works in a similar manner to those in [16, 29]. The basic idea is to take an
ε0-approximation V of some gate U and improve it to an O(ε20)-approximation of U , while
taking the length of the approximation from `0 to c`0 for some constant c. Iterating this
improvement step allows one to obtain a polylogarithmic overhead for compilation.8 The key
in any proof of a Solovay-Kitaev theorem is to make use of V in this construction in such a
way that one does not incur O(ε0) error in the resulting approximation, as one would naively
have from the triangle inequality. In other words, one needs the error in the approximation
of U to cancel out to lowest order in ε0.

In the proof of the regular (inverse-closed) Solovay-Kitaev theorem, this is achieved using
group commutators [16], which manifestly require inverses in the gate set. Sardharwalla et
al. [29] instead achieve this by applying a group averaging function over the Weyl group.
They show by direct computation that the lowest order error term in ε cancels out (at least
in a neighborhood of the identity).

7 Note the Weyl operators only form a group up to global phase, but as we only require a projective irrep
they meet the criteria of our theorem.

8 One can easily see the lengths of the gate sequences increase exponentially with each application of this
operation, while the error decreases doubly exponentially, which implies the desired polylog dependence
of the error.
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In our proof, we also consider a group averaging function f : SU(d)→ SU(d) based on
some (projective) irrep R : G→ SU(d) of a finite group G:

f(W ) :=
∏
g∈G

R(g)WR(g)†. (1)

Our main technical contribution consists in showing that the lowest order error term cancels
here, due to certain orthogonality relations obeyed by irreducible representations. We show
this follows from the fact that the multiplicity of the trivial irrep in the adjoint action of
any irrep is one. Therefore our proof both shows that efficient compilation can occur with a
wider family of gate sets than was previously known, and also explains the mathematical
reason that Sardharwalla et al.’s proof works as it does.

2 Proof of the main result

To aid the understanding of our main result, let us first briefly define the relevant notions
from representation theory (see [33, 13] for further details).

A d-dimensional representation of a group G is a map R : G → U(d) such that
R(g1)R(g2) = R(g1g2) for all g2, g2 ∈ G. Similarly, R is a projective representation if
it obeys this identity up to a global phase, i.e. R(g1)R(g2) = eiθ(g1,g2)R(g1g2) for some
function θ : G×G→ R. A representation R is reducible if there is a unitary map U ∈ U(d)
and two other representations R1 and R2 of G such that UR(g)U† = R1(g)⊕R2(g) for all
g ∈ G. If this is not the case, R is called irreducible (or irrep for short). Finally, if A ⊂ B
are two sets, we say that A is dense in B if for any ε > 0 and any b ∈ B there exists a ∈ A
such that ‖a− b‖ ≤ ε for some suitable notion of distance ‖·‖.

I Theorem 1 (Solovay-Kitaev theorem with an irrep instead of inverses). For any fixed d ≥ 2,
suppose G ⊂ SU(d) is a finite gate set which densely generates SU(d), and furthermore G
contains a (projective) irrep of some finite group G. Then there is an algorithm which outputs
an ε-approximation to any U ∈ SU(d) using merely O(polylog(1/ε)) elements from G.

Proof. By assumption, our gate set is of the form

G := R(G) ∪ {U1, U2, . . . , UN} (2)

where R(G) := {R(g) : g ∈ G} and N ≥ 0 is some integer. Here
R : G→ SU(d) is a projective irreducible representation of some finite group G,
Ui ∈ SU(d) are some additional elements whose inverses U†i are not necessarily in G.

For the sake of simplicity, we will assume that R is an actual irrep rather than a projective
irrep (we describe how to generalize the proof to projective irreps in Appendix B). Note that
by the G ⊂ SU(d) assumption we implicitly require that the representation R is in SU(d)
rather than in U(d). While many irreps are ruled out by this restriction, one can deal with
such irreps by first converting them to projective irreps and then applying the techniques
discussed in Appendix B. We divide the rest of the proof into several steps marked as below.

Original gate sequence. Given a gate U ∈ SU(d) which we wish to approximate to accuracy
ε, we first run the usual Solovay-Kitaev algorithm (see Section 1) to obtain a sequence Sε/2
of gates whose product ε/2-approximates U , using elements from G and their inverses. This
sequence contains both elements from the set R(G) (which is closed under inversion), as
well as gates Ui and U†i . All of these are in the gate set G except the U†i—and there are
only O

(
log3.97(1/ε)

)
many of these. To prove Theorem 1, it therefore suffices to give a
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6:6 Trading Inverses for an Irrep in the Solovay-Kitaev Theorem

Solovay-Kitaev algorithm for approximating the U†i in terms of a sequence of O(polylog(1/ε))
gates from the set G.

More concretely, assume we show how to ε-approximate each U†i using O(logc(1/ε))
gates from G for some constant c > 0. Then we can set ε′ := ε

2/O
(
log3.97(1/ε)

)
and run

this algorithm to ε′-approximate each U†i appearing in the sequence Sε/2 produced by the
regular Solovay-Kitaev algorithm. If we substitute these approximations of U†i back into
Sε/2, by the triangle inequality the existing error of ε/2 in Sε/2 will be increased by another
ε/2 contributed jointly by all U†i ’s. These two contributions together give us the desired
ε-approximation of U . Note that an ε′-approximation of U†i requires O

(
logc(1/ε)

)
gates.9

Hence the ε-approximation to U in total will use O
(
logc+3.97(1/ε)

)
gates from G.

Initial approximation of U†
i . Since G generates a dense subgroup of SU(d), there exists a

finite length `0 such that length-`0 sequences of elements of G are ε0-dense in SU(d), for a
small fixed constant

ε0 := 1
6|G|(d− 1)! + 2|G|2 . (3)

Let us pick among these sequences an initial ε0-approximation of U†i and denote it by V .
Then

ε0 ≥ ‖V − U†i ‖ = ‖V Ui − I‖, (4)

where ‖·‖ denotes the operator norm which is unitarily invariant.

Symmetrization. Now consider the operator f on SU(d) defined by

f(W ) :=
∏
g∈G

R(g)WR(g)†, (5)

where the order of the products is taken arbitrarily, as long as the last (rightmost) element of
the product corresponds to the identity element e ∈ G. We are interested in the action of f
on V Ui. If we denote the difference in eq. (4) by O := V Ui − I and distribute the product in
eq. (5) into several sums (with no O’s, with a single copy of O, two copies of O, etc.), we get

f(V Ui) =
∏
g∈G

R(g)(I +O)R(g)† (6)

= I +
∑
g∈G

R(g)OR(g)† +
∑
g,g′∈G
g<g′

R(g)OR(g)†R(g′)OR(g′)† (7)

+ · · ·+
∏
g∈G

R(g)OR(g)†, (8)

where the order of terms in all products is inherited from eq. (5) and g < g′ refers to this
order. Note that the number of terms with k copies of O is

(|G|
k

)
.

If one were to naively apply the triangle inequality to this sum, one would obtain that

‖f(V Ui)− I‖ ≤ |G|‖O‖+
(
|G|
2

)
‖O‖2 + . . . (9)

9 One can easily see that logc
( log3.97(1/ε)

ε

)
= O

(
logc(1/ε)

)
as the additional log3.97(1/ε) factor only adds

lower order log log(1/ε) terms.
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In other words, one would get that we have moved f(V Ui) further from the identity than we
started. To fix this, we will show that the first term of the above is actually much smaller—of
order ‖O‖2—and therefore our application of f has moved us closer to the identity. To see
this, first note that using representation theory, one can show that the norm of the first-order
term in eq. (8) is∥∥∥∥∥∥

∑
g∈G

R(g)OR(g)†
∥∥∥∥∥∥ =

∥∥∥∥|G|TrO
d

I

∥∥∥∥ (10)

= |G| |Tr(V Ui − I)|
d

. (11)

In other words, the traceless component of the first order term vanishes. This follows from
certain orthogonality relations obeyed by irreps, and is proven in Claim 2 in Appendix A.

Next, we show that the trace of O = V Ui − I is small compared to its norm, namely

|Tr(V Ui − I)| ≤ (2d + d!)‖V Ui − I‖2. (12)

This is proven in Claim 3 in Appendix A, and follows essentially because the Lie algebra of
the special unitary group is traceless. Plugging this in to eq. (11), we see that∥∥∥∥∥∥

∑
g∈G

R(g)OR(g)†
∥∥∥∥∥∥ ≤ |G|2

d + d!
d
‖V Ui − I‖2 (13)

≤ |G|2
d + d!
d

ε20 (14)

where we used Claim 3 to get the first inequality and eq. (4) to get the second.
Hence, by applying these results and then applying the triangle inequality to eq. (8) we

get

‖f(V Ui)− I‖ ≤ |G|
2d + d!
d

ε20 +
|G|∑
k=2

εk0

(
|G|
k

)
(15)

≤

|G|2d + d!
d

+ |G|
2

2 + |G|2
|G|−2∑
k=1

εk0 |G|k
ε20 (16)

≤
(
|G|2

d + d!
d

+ |G|
2

2 + |G|
2

2

)
ε20 (17)

Where in eq. (16) we used the fact that
(|G|

2
)
≤ |G|

2

2 and
(|G|
k

)
≤ |G|k, and in eq. (17) we

used the fact that ε0 < 1
2|G|2 , so since |G| > 2 (as G has an irrep of dimension at least 2), we

have that ε0|G| ≤ 1/4 so the geometric sum converges to a quantity ≤ 1
2 .

Replacing this with a crude upper bound that 2d ≤ 2d! for d > 1, we get that

‖f(V Ui)− I‖ ≤
(
3|G|(d− 1)! + |G|2

)
ε20 =: ε1 (18)

Since we chose ε0 to be 1
2(3|G|(d−1)!+|G|2) in eq. (3), ε1 ≤ ε0

2 – in other words f(V Ui) is closer
to the identity than V Ui.

Multiplying f(V Ui) − I in eq. (18) by U†i on the right, we have that f(V Ui)U†i is an
ε1-approximation to U†i . We chose the identity to come last in the definition of f in eq. (5),
so the string of operators f(V Ui) has the form

f(V Ui) = R(g1)V UiR(g1)†R(g2)V UiR(g2)† · · ·V Ui. (19)
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6:8 Trading Inverses for an Irrep in the Solovay-Kitaev Theorem

Since UiU†i cancels at the end, f(V Ui)U†i is an ε1-approximation to U†i using only terms
from G.

Iterative refinement. To complete the proof, we iterate this construction by considering

f (k)(V Ui) := f(f(· · · f(V Ui))). (20)

Note from eq. (18) that f (k)(V Ui)U†i is an εk-approximation to U†i , where εk ≤ (3|G|(d −
1)! + |G|2)ε2k−1. The length of the sequence f (k), denoted `k, obeys `k = |G|`k−1 + 2|G|.
Again f (k)(V Ui)U†i can be expressed only in terms of elements of G (since the last Ui in the
expansion of f (k)(V Ui) cancels with the rightmost U†i as before). One can easily show that
these recurrence relations imply that as k grows:

the approximation error εk shrinks doubly exponentially: εk ≤ 2ε0
22k ;

the length of the sequence `k grows exponentially: `k = O(|G|k`0).
Note that this sort of asymptotic behavior occurs simply because εk = O(ε2k−1) while `k =
O(`k−1) (though of course the value of ε0 used in the recurrence may depend on the hidden
constant in the big-O notation). This immediately implies that one can approximate U†i to
accuracy ε with merely polylog overhead, as desired. More specifically, such approximation
uses

O
(
`0 loglog2 |G|(1/ε)

)
(21)

elements of G. By our analysis at the beginning of the proof, this gives a Solovay-Kitaev
theorem with an exponent of log2 |G|+3.97 in the polylog, completing the proof of Theorem 1.

J

We have therefore shown that one can ε-approximate any U†i using only gates from our gate
set G using merely polylog(1/ε) gates. The exponent of the polylog for approximating each
U†i is again easily computed to be O(log2 |G|). So putting this all together, our approximation
for the overall unitary U requires

O
(
loglog2 |G|(1/ε)

)
(22)

gates from G. Note that the dependence on dimension d and order of the group G is hidden
in the big-O notation, which hides a factor of `0, the length of sequences required to achieve
an initial ε0-net of SU(d). By a volume argument `0 = Ω(d2) [16]. In fact our choice of ε0
implies that `0 = Ω(d3 log d) in our construction.10

2.1 Extensions of our theorem
We have shown a Solovay-Kitaev theorem for any gate set G that contains an irrep of a finite
group G, without requiring G to be inverse-closed. Our result can be easily generalized in
two directions.

First, our proof also works if instead of an irrep we have a projective irrep. That is, a
map R : G→ SU(d) such that, for any g1, g2 ∈ G,

R(g1)R(g2) = eiθ(g1,g2)R(g1g2) (23)

10Since an ε0-ball occupies Θ(εd
2

0 ) volume in SU(d), `0 = Ω
(
d2 log(1/ε0)

)
[16]. Since we set ε0 =

(2|G|2 + 6|G|(d − 1)!)−1 in eq. (3), we have that `0 = Ω
(
d3 log d

)
since log d! scales as O(d log d) by

Stirling’s formula.



A. Bouland and M. Ozols 6:9

for some collection of phases11 θ(g1, g2) ∈ [0, 2π). In such case one still has a Solovay-
Kitaev theorem for any universal gate set that includes R(G). For instance, the Pauli
matrices {I,X, Y, Z} form a projective irrep, but not an irrep (though the matrices {±1,±i} ·
{I,X, Y, Z} do form an irrep). Since the exponent of the logarithm of our version of the
Solovay-Kitaev theorem contains log2 |G|, this generalization improves the exponent (e.g.
using the four Pauli matrices instead of the eight-element Pauli group improves the exponent
by an additive 2). We give details on why projective irreps suffice in Appendix B.

Second, we note that our proof can be extended to the special linear group SL(d,C) as
well. That is, one can also efficiently compile non-singular matrices, so long as a (projective)
irrep is present in a gate set that is universal for SL(d,C). A Solovay-Kitaev Theorem (with
inverses) for the special linear group was first shown by Aharnov, Arad, Eban and Landau
[2], who used it to prove that additive approximations to the Tutte polynomial are BQP-hard
in many regimes. It was also applied by [11] to the problem of classifying quantum gate
sets, where it arose naturally because the “postselection gadgets” used in their proof are
non-unitary. For a formal description of the non-unitary version of this theorem, please see
Appendix C. Since postselection gadgets are often non-unitary [11], we likewise expect this
version of the theorem will be more useful for gate classification problems.

3 Open problems

The main unresolved problem left by our work is to prove a generic inverse-free Solovay-Kitaev
theorem, which has been a longstanding open problem [16, 23].

I Conjecture (Inverse-free Solovay-Kitaev theorem). For any fixed d ≥ 2, if G ⊂ SU(d) is a
finite gate set which densely generates SU(d), then there is an algorithm which outputs an
ε-approximation to any U ∈ SU(d) using merely O(polylog(1/ε)) elements from G.

One can easily see that for any universal gate set (possibly without inverses), one can
ε-approximate arbitrary unitaries with O(1/ε) overhead. This follows from simply running
the Solovay-Kitaev theorem with inverses, and then approximating each inverse W † with
W k for some integer k (which one can do with O(1/ε) overhead as this is simply composing
irrational rotations about a single axis). However current approaches seem to be unable to
improve this compilation algorithm from O(1/ε) to polylog(1/ε). As discussed in Section 1.1,
current proofs of the Solovay-Kitaev theorem require a special cancellation of error terms in
order to convert an ε-approximation of some operator into an O(ε2)-approximation. This
cancellation of error terms can be achieved by taking group commutators [16] or, as in this
work and [29], it can be achieved by averaging over irreps and using the orthogonality of
irreps. However, there is no known technique for achieving this sort of error cancellation
without having some structure in the gate set.12

Additionally, a natural question is whether the value of ε0 can be improved. This would
improve the scaling of our result with dimension. In our result (and in the inverse-closed
Solovay-Kitaev Theorem) the big-O notation hides a factor of `0—the length of the initial
sequences required to achieve an ε0-net. In our result ε0 scales as 1/d!, and hence a volume
argument implies `0 = Ω(d3 log d). In contrast the (inverse-closed) Solovay-Kitaev theorem

11The quantity eiθ(g1,g2) is also known as a Schur multiplier of G.
12For example, Zhiyenbayev, Akulin, and Mandilara [36] have recently studied an alternative setting

where instead of inverses a certain “isotropic” property of the gates is assumed.
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6:10 Trading Inverses for an Irrep in the Solovay-Kitaev Theorem

merely requires ε0 = Θ(1) resulting in `0 = Ω(d2) [16]. It is a natural question if one can
improve the value of ε0 and therefore improve dimension dependence of our construction.

A somewhat simpler open problem is whether our theorem can be improved by considering
particular orders of the group elements in eq. (5). The function f(U) which we iterate when
proving Theorem 1 is defined by averaging over the irrep of G in an arbitrary order; our
theorem essentially works because if U is ε-close to the identity then f(U) is O(ε2)-close
to the identity. However, we have found by direct calculation that for the 2-dimensional
irrep of S3, considering particular orders of the group can lead to the O(ε2) terms cancelling
out as well, leaving only O(ε3) terms. It is an interesting open problem if these additional
cancellations can be generalized to other groups. If so, they would improve the log2 |G| in
the exponent of the logarithm of our result to logk |G|, where k is the lowest order remaining
error term.

Finally, we note one may be able to extend our results to compilation over more general Lie
groups, just as Kuperberg extended the inverse-closed Solovay-Kitaev theorem to arbitrary
connected Lie groups whose Lie algebra is perfect [23]. We leave this as an open problem.

A Auxiliary claims

I Claim 2. If R is a d-dimensional (projective) irrep of some finite group G and M is any
d× d complex matrix then∑

g∈G
R(g)MR(g)† = |G|TrM

d
I. (24)

Proof. If R and R′ are any two irreps of a finite group G, with dimensions dR and dR′

respectively, their matrix entries obey the following orthogonality relations [33]:

dR
|G|

∑
g∈G

R(g)ij R′(g)kl = δRR′δikδjl, ∀i, j ∈ {1, . . . , dR}, ∀k, l ∈ {1, . . . , dR′}. (25)

In particular, if R = R′ and we write the matrix entries as R(g)ij = 〈i|R(g)|j〉 then

d

|G|
∑
g∈G
〈i|R(g)|j〉〈l|R(g)†|k〉 = δikδjl, ∀i, j, k, l ∈ {1, . . . , d} (26)

where d := dR = dR′ . If we multiply both sides by |i〉〈k| and then sum over i and k, we get

d

|G|
∑
g∈G

R(g)|j〉〈l|R(g)† = Iδjl, ∀j, l ∈ {1, . . . , d}. (27)

If M =
∑d
j,l=1 mjl|j〉〈l| then by linearity,

d

|G|
∑
g∈G

R(g)MR(g)† = I

d∑
j,l=1

mjlδjl = I TrM, (28)

which completes the proof. J

Another way to see this result is by noticing that the adjoint action of R decomposes as
a direct sum of the trivial representation (acting on the 1-dimensional space spanned by the
identity matrix) and a (d2 − 1)-dimensional representation without any trivial component.
This follows from Schur’s first lemma. The result then follows by the orthogonality relations
obeyed by the irrep decomposition of the adjoint action.
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I Claim 3. If M ∈ SL(d,C) then |TrM − d| ≤ (2d + d!)‖M − I‖2.

Proof. Let A := M − I and denote the entries of A by aij where i, j = 1, . . . , d. We know
that 1 = detM = det(A+ I), so expanding in terms of the aij ’s, we have that

1 =
∑
σ∈Sd

sgn(σ)
d∏
i=1

(aiσ(i) + δiσ(i)). (29)

Now let us simply take out the term with σ = ε, the identity permutation:

1 =
d∏
i=1

(aii + 1) +
∑

σ∈Sd\{ε}

sgn(σ)
d∏
i=1

(aiσ(i) + δiσ(i)). (30)

And now expanding the first term we see

1 = 1 +
d∑
i=1

aii +
∑
i6=j

aiiajj + · · ·+ a11a22 · · · add +
∑

σ∈Sd\{ε}

sgn(σ)
d∏
i=1

(aiσ(i) + δiσ(i)), (31)

which implies

−TrA =
∑
i 6=j

aiiajj + · · ·+ a11a22 · · · add +
∑

σ∈Sd\{ε}

sgn(σ)
d∏
i=1

(aiσ(i) + δiσ(i)). (32)

Now observe that each of the terms on the right hand side is quadratic in the aij ’s—this
is because any non-identity permutation displaces at least two items. Let c ≤ 2d + d! denote
the number of the terms present, which is constant in any fixed dimension d. Hence we have
that

|TrM − d| = |TrA| ≤ cmax
i,j
|aij |2 ≤ c‖A‖2 = c‖M − I‖2 (33)

where we used |aij | ≤ ‖A‖ in the last inequality (this follows by choosing the j-th standard
basis vector in the definition of the operator norm). J

Note that this claim, i.e. that elements ε-close to the identity have trace substantially
smaller than ε, is a reflection of the fact that the Lie algebra of the special linear group is
traceless.

B Representations vs projective representations

Throughout our proof of Theorem 1, we assumed that R is an irrep of the group G. Here
we show that the same construction works also for a projective irrep of G. In other words,
even if R(g1)R(g2) = eiθ(g1,g2)R(g1g2) for some phase θ(g1, g2) ∈ [0, 2π), our version of
the Solovay-Kitaev theorem still holds. As the Weyl operators merely form a projective
representation, this allows our result to strictly generalize that of [29]. Intuitively, such
generalization is to be expected since global phases are non-physical in quantum theory. We
make this precise below.

Suppose that we have a projective representation R of a finite group G. It is convenient to
think of R(G) as a subset of the projective unitary group PU(d) that consists of equivalence
classes of elements of U(d) that differ only by global phase. Note that PU(d) = PSU(d), the
special projective unitary group, since det(U)U ∈ SU(d) for any U ∈ U(d). Now, consider
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extending the projective representation R in PSU(d) into a representation13 R′ in SU(d).
Since

PSU(d) = SU(d)/Zd, (34)

i.e. the only difference between projective and non-projective representations are factors of
e2πi/dI, this merely increases the size of the group by an integer multiple k which is a divisor
of d. Let us denote this larger group by G′.

Now consider applying our proof of Theorem 1 to R′ and G′. The corresponding averaging
operator is

f ′(W ) :=
∏
g∈G′

R′(g)WR′(g)†. (35)

Our proof essentially uses two facts:
1. The trace of W is small relative to its distance from the identity (Claim 3).
2. The traceless component of W vanishes to lowest order because from Claim 2 we have

that for any tracless O,∑
g∈G′

R′(g)OR′(g)† = 0. (36)

Note that if g, h ∈ G′ are such that R′(g) = eiθR′(h) for some θ ∈ R, then they contribute
identical terms in the above sum, since the global phase factors commute through and cancel
out. Since the any projectively equivalent group elements g, h contribute the same quantity
to the sum, and G′ is simply a (projective) k-fold cover of G, this means that we can rewrite
eq. (36) as

k
∑
g∈G

R′(g)OR′(g)† = 0, (37)

where we have simply summed over one representative from each set of projectively equivalent
representatives.

Therefore, if we had instead considered averaging over the projective representation only
using the original averaging operator (which involves a factor k fewer products),

f(W ) :=
∏
g∈G

R(g)WR(g)†, (38)

the corresponding sum in eq. (36) (which is the above sum divided by k) would be 0 as well.
Therefore, the cancellation of lowest-order terms for the traceless component of the error—i.e.
the second fact listed above—still holds. Furthermore, the first fact is true independent of
the group G considered, and is simply a fact about matrices of determinant 1 which are close
to the identity. Therefore, the proof of Theorem 1 works exactly as before if R is merely a
projective representation.

C Extension to the special linear group

In this appendix we describe how to extend our proof of Theorem 1 to the non-unitary case.
Namely, we want to approximate some matrix M ∈ SL(d,C), our gate set G ⊂ SL(d,C) is

13This is known as a central extension of the representation.
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dense in SL(d,C), and it contains a (possibly non-unitary) irrep of a finite group G as well
as some additional gates Ui ∈ SL(d,C).

Let us argue that an ε-approximation ofM can be obtained using the same algorithm as in
the proof of Theorem 1, but with one minor change. Namely, in the first step of the algorithm
one must apply the non-unitary Solovay-Kitaev Theorem (with inverses) of Aharonov, Arad,
Eban, and Landau [2] rather than the usual unitary Solovay-Kitaev Theorem (with inverses).
As before, the problem therefore reduces to finding an expression for the elements U−1

i

in terms of G. Note that no other step of our proof requires any matrices to be unitary!
Recall that the heart of the proof was in showing that if V Ui is ε-close to I then f(V Ui) is
O(ε2)-close to I, where V denotes the initial ε0-approximation of U−1

i . The key facts that
we used to show this are:

Claim 2, which states that the traceless component of V Ui vanishes to first order under
the application of f due to the orthogonality of irreps.
Claim 3, which states that matrices of determinant 1 which are ε-close to the identity
have trace O(ε2).

Neither of these depends on the matrices involved being unitary—indeed the Schur ortho-
gonality relations between irreps in eq. (25) also hold for non-unitary irreps. Therefore, our
proof implies the following:

I Theorem 4. For any fixed d ≥ 2, suppose G ⊂ SL(d,C) is a finite gate set that contains
a (projective) irrep of some finite group G. Let r > 0 be any fixed radius, let Br be the
ball of radius r about the identity in SL(d,C), and suppose that G densely generates all
transformations in Br. Then there is an algorithm which outputs an ε-approximation to any
M ∈ Br using merely O(polylog(1/ε)) elements from G.

Other than the replacement of SU(d) with SL(d,C), the only thing that differs between this
theorem and Theorem 1 is the additional restriction that the matrix M we are approximating
is a finite distance from the identity (as is present in the non-unitary Solovay-Kitaev
theorem of [2] as well). This restriction arises simply because SL(d,C) is not compact, and
approximating elements very far from the identity requires longer sequences of gates. For
instance, it requires more applications of the gate

( 2 0
0 1/2

)
to reach

(
21000 0

0 2−1000

)
than it

requires to reach
(

22 0
0 2−2

)
. Since points arbitrarily far from the identity require arbitrarily

long gate sequences to approximate, one cannot upper bound the length of sequences required
to ε-approximate arbitrary M ∈ SL(d,C) as a function of ε only—rather the length would
depend on the distance of M to the identity as well. Restricting M ’s distance to the identity
allows one to upper bound the length of the approximating sequence in terms of ε only.
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Abstract
In this paper, we further investigate the many ways of using stabilizer operations to generate
a single qubit output from a two-qubit state. In particular, by restricting the input to certain
product states, we discover probabilistic operations capable of transforming stabilizer circuit
outputs back into stabilizer circuit inputs. These secondary operations are ideally suited for
recovery purposes and require only one extra resource input to proceed. As a result of reusing
qubits in this manner, we present an alternative to the original state preparation process that
can lower the overall costs of executing a two-qubit stabilizer procedure involving non-stabilizer
resources.
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1 Introduction

There has been significant progress to building quantum computers. We can protect qubits
with quantum codes, and we can combat the spread of errors with fault-tolerance; high
thresholds approaching 1% [17] is already within reach. Rather, one of the central challenges
is in the efficient handling of noise, where it is necessary to strike a delicate balance between
quality and cost. Currently many physical qubits are required to achieve this desired level
of protection on a logical qubit [10], but this comprises only one part of a larger problem.
The fact remains that most fault-tolerant schemes are constrained to a finite number of
native operations, so there is a limit to the type of computations that we can perform. This
usually consists of stabilizer operations – Clifford group unitaries, Pauli measurements, and
ancilla |0〉 preparation – which are efficiently simulable on classical computers and capable of
producing highly entangled states. Unfortunately, stabilizer operations by themselves are
not universal, placing a premium on any non-stabilizer resource added to a circuit.

Magic state distillation is one solution addressing this inherent limitation of stabilizer
operations [4]. It works as follows: prepare imperfect “magic states,” measure certain
stabilizer code syndrome operators, then postselect on some target outcome. The process is
repeated recursively until the qubits are at a high enough quality to consume: the magic
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states are injected into quantum circuits to implement quantum gates outside the Clifford
group of operations. Despite being quite resource intensive in the early days, numerous
proposals over the last few years have progressively increased the efficiency of distilling
magic states [3, 7, 8, 12, 19], although the overall format more or less remains the same.
Interestingly, stabilizer operations are enough to perform the distillation, which is a testament
to their versatility. Then given a supply of non-Clifford gates, we may employ any number of
pre-existing synthesis algorithms to approximate unitaries over this basis. Previous work has
already succeeded in producing solutions able to generate sequences for single qubit rotations
in an optimal fashion [15, 16, 22, 23]. A recent one even suggests a kind of distill-and-synthesis
hybrid to reduce resource usage even further: a factor of 3 savings with quadratic error
suppression is possible over traditional distill-then-synthesize methods [5, 6].

The creativity that went into designing these distillation protocols is one reason motivating
our broader study of stabilizer operations. Other uses include procedures for distilling multiple
types of magic qubits [7, 8, 12, 18], as well as implementing phase rotations with low depth
circuits. Some notable examples of the latter are contained in [9] and [13], both of which
feature the same stabilizer circuit to perform the operation. The differences lie in the pre-
computed ancillae injected into the circuit, where Duclos-Cianci and Svore [9] additionally
demonstrated how to use the same circuit to create other resource qubits. At any rate,
though simple, both displayed the advantages of having a large set of non-homogeneous
states at our disposal, and all that is required is a two-qubit stabilizer circuit.

Inspired by the magic state model to universal quantum computation, we consider general
two-to-one stabilizer procedures that take a two-qubit state and produce a single qubit output
using stabilizer operations only. Our intent is to explore these processes from a different angle,
outside the realm of state distillation, and simply examine their behavior on more arbitrary
input. And though our problem size is small, we discover some encouraging ideas that are
worth pursuing for larger settings. Some limits on distilling two-qubit states are already
discussed in [21]. Instead, we refine the implementation details first provided by Reichardt
[21] to identify three circuit configurations characterizing all such two-to-one procedures.
These three forms suggest that in addition to Pauli measurements and postselection, single
qubit Clifford gates and at most one CNOT or SWAP are enough to realize any stabilizer
procedure acting on two qubits. When the input set is further confined to certain product
states, we discover an interesting connection between stabilizer circuits of the single CNOT
variety – “interacting” circuits in our dictionary. That is, there are “recovery circuits” that
can recuperate a product state input from a corrupted stabilizer circuit output. Informally
our main result (Theorem 12) states the following.

Main Result (informal): For any interacting two-to-one stabilizer procedure there exist
recovery circuits, and all such recovery circuits are equivalent to one-and-another and hence
have the same probability of recovery.

The magic state injection process is one good area for utilizing such a recovery technique.
We end the article with a few numerical experiments showcasing the benefits of the derived
recovery protocols.
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C
Z b

Figure 1 A postselected two-to-one stabil-
izer circuit (C, b) consists of a stabilizer circuit
component C and a postselected bit value b.

ρ

{
C

ϕ

Z b

Figure 2 The qubit ϕ = Φb(C, ρ) is the
output of a postselected two-to-one stabilizer
circuit (C, b) on the two-qubit input ρ.

2 Preliminaries

This section provides an overview of the elementary stabilizer operations and basic concepts.
The single qubit Pauli matrices are

I =
[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (1)

They satisfy not only the identities X2 = Y 2 = Z2 = I and XY = iZ, but they also form
a basis for the space of 2× 2 Hermitian matrices. We can expand any single qubit density
matrix ϕ in terms of Pauli matrices using the expression ϕ = (I + xX + yY + zZ) /2. If we
collect the three previous coefficients, then (x, y, z) ∈ R3 is the Bloch vector of ϕ.

An n-qubit stabilizer circuit is limited to certain quantum gates and measurements. It
may use elements from the Clifford group C(n), and it may apply measurements in the
Z-basis. The Clifford group is generated by the Controlled-NOT (CNOT), Hadamard (H),
and Phase (P ) operators:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , H = 1√
2

[
1 1
1 −1

]
, P =

[
1 0
0 i

]
. (2)

A stabilizer circuit thus contains entirely of CNOT, H, and P gates. For the values of n
we are concerned with, C(1) and C(2) have sizes 24 and 11520, respectively, modulo global
phases. The circuit diagram for a Z-measurement is given by the left image below:

Z
×
×

while the right image represents a qubit SWAP. A Clifford circuit is a stabilizer circuit that
excludes measurements and implements a Clifford group unitary only.

3 Postselected Two-to-One Stabilizer Circuits

We revisit the study of stabilizer reductions from [21] to derive Lemma 4. Part of the novelty
that Lemma 4 brings is the realization of recovery circuits described in the next section.
We first introduce some terminology and notation to more concisely capture Reichardt’s
observations in [21] to present our result.

An n-to-1 stabilizer reduction is a procedure that accepts an n-qubit state and generates
a single qubit output using stabilizer operations only. This means all post-measurement
activities are also restricted to classical control over stabilizer operations. Reichardt showed
that any reduction can be standardized to a particular form: an application of a Clifford
unitary on n qubits, followed by a projection of qubits 2 to n onto a computational basis
state [21]. Since our focus is on n = 2, we have the following definition.

TQC 2018
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G1 • G3

G2 Z 0

(a)

G1

G2 Z 0

(b)

× G1

× G2 Z 0

(c)

Figure 3 Any stabilizer procedure generating one qubit from two can be described by a postselected
circuit (C, b) resembling circuit (a), circuit (b), or circuit (c). The choice of single qubit Clifford
gates G1, G2, and G3 depend on C and the postselected measurement b. Circuit (a) is known as an
interacting postselected circuit; the precise definition is provided in Section 4.

I Definition 1 (postselected two-to-one stabilizer circuit). A postselected two-to-one stabilizer
circuit (C, b) is a two-qubit quantum circuit that implements a Clifford unitary C, followed
by a Z-measurement on the second qubit with an outcome b ∈ {0, 1}.

I Definition 2 (probability and output). Let (C, b) be a postselected two-to-one stabilizer
circuit and let ρ be a two-qubit state. Then the probability Qb of outcome b on the transformed
state CρC† is Qb(C, ρ) = Tr((I ⊗ 〈b|)CρC†(I ⊗ |b〉)). If Qb(C, ρ) > 0, then the output Φb of
a postselected circuit (C, b) on an input ρ is

Φb(C, ρ) = (I ⊗ 〈b|)CρC†(I ⊗ |b〉)
Qb(C, ρ) . (3)

At times, we may say run circuit C, which translates to an application of the unitary C
on the input ρ, followed by a Z-measurement on the second qubit. This is often followed
by details on what course of action to take conditional on b (or 1 − b). The term circuit
C thus references the stabilizer circuit piece only of the postselected circuit, including the
measurement at the end. The next definition describes what it means for postselected circuits
to produce similar outputs.

I Definition 3 (equivalent postselected two-to-one stabilizer circuits). Two postselected two-
to-one stabilizer circuits (C1, b1) and (C2, b2) are Clifford equivalent, (C1, b1) ∼ (C2, b2), if
and only if there is a single qubit Clifford gate G such that for all two-qubit states ρ, we
have the equality

(I ⊗ 〈b1|)C1ρC
†
1(I ⊗ |b1〉) = G(I ⊗ 〈b2|)C2ρC

†
2(I ⊗ |b2〉)G†. (4)

Note that a Clifford equivalence implies that the probabilities of observing a b1 or b2 are the
same for the two circuits i.e. Qb1(C1, ρ) = Qb2(C2, ρ). We say two postselected circuits are
simply equivalent, (C1, b1) ≡ (C2, b2), if and only if G = I in Equation 4.

We may alter the circuits using |b2〉 = X|1− b2〉 in Equation 4 so that both postselect on
the same value. As we mentioned before, any two-to-one stabilizer reduction can be achieved
through a postselected two-to-one stabilizer circuit. Despite |C(2)| = 11520, the number of
actual reductions we need to consider is 30: one for each nontrivial two-qubit Pauli, plus
the bit [21]. As such, we can introduce three forms in the following lemma to represent all
postselected circuits (C, b). The proof is provided in Appendix A.

I Lemma 4. For every postselected two-to-one stabilizer circuit (C, b), there exist single qubit
Clifford gates G1 and G2 such that either (C, b) ∼ (I⊗G1, 0), or (C, b) ∼ ((I⊗G1)SWAP, 0),
or (C, b) ∼ (CNOT(G1 ⊗G2), 0).

I Corollary 5. If a postselected two-to-one stabilizer circuit (C, b) is Clifford equivalent to
(C ′, 0), where C ′ = I ⊗G1, or C ′ = (I ⊗G1)SWAP, or C ′ = CNOT(G1 ⊗G2), and G1 and
G2 are single qubit Clifford gates, then (C, 1− b) ∼ ((I ⊗X)C ′, 0).
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Due to Lemma 4, we have a remarkably much easier time studying postselected circuits.
We may substitute (C, b) with another that likely uses fewer gates but behaves in exactly
the same way. Because there are many identities on Pauli operators and Clifford gates, G1
and G2 are not unique e.g. ((CNOT(Z ⊗ I), 0) ≡ ((Z ⊗ I)CNOT, 0) ∼ (CNOT, 0). Of the
30 reductions available, it is easy to see that there are 18 varieties of (CNOT(G1 ⊗G2), 0),
and 6 each for (I ⊗G1, 0) and ((I ⊗G1)SWAP, 0). If we want to separate the circuits by the
stricter kind of equivalence “≡”, the number of classes is multiplied by 24 e.g. 18 · 24 = 432
for ((G3 ⊗ I)CNOT(G1 ⊗G2), 0), since there are |C(1)| = 24 choices of G3.

4 Recovery Circuits

A quantum circuit involving measurements likely has outcomes that we prefer over others. If
we are less than fortunate, convention dictates that we discard the output and rerun the
circuit on new input instances until we succeed. This is not much of an issue when the initial
overhead is low, but can become problematic otherwise. If the cost associated with state
preparation is a barrier to large computations, any method that alleviates this burden is
highly desirable. It turns out when ρ is a tensor product state, i.e. ρ = ϕ⊗ |ψ〉〈ψ|, we have
an alternative: there exist operations capable of reusing an undesirable output to try and
recovery ϕ.

This input requirement means the only circuit configuration of Lemma 4 worth considering
is (CNOT(G1 ⊗ G2), 0). We can easily see that when (C, b) ∼ (I ⊗ G1, 0), the output of
(C, b) on ϕ1 ⊗ ϕ2 is essentially ϕ1. The output is always an input, and the same is similarly
true for all circuits (C, b) ∼ ((I ⊗G1)SWAP, 0).

I Definition 6 (interacting postselected circuit). A postselected two-to-one stabilizer circuit
(C, b) is interacting if and only if there are single qubit Clifford gates G1 and G2 such
that (C, b) ∼ (CNOT(G1 ⊗ G2), 0). We say circuit C is interacting if and only if (C, 0) is
interacting.

With that, we define the notion of a recovery circuit. For convenience, we use ψ in place
|ψ〉〈ψ| throughout the remainder of our discussion on recovery circuits.

I Definition 7 (recovery circuit). Let (C, b) be an interacting postselected circuit. A postse-
lected two-to-one stabilizer circuit (C ′, b′) is a recovery circuit of (C, b) if and only if for all
two-qubit states ϕ⊗ ψ, we have ϕ = Φb′ (C ′,Φ1−b(C,ϕ⊗ ψ)⊗ ψ).

Notice that an input qubit to (C ′, b′) is the output of (C, 1− b) on ϕ⊗ψ. In this context,
if b is more desirable than 1 − b, then we say circuit C is successful upon measuring b

on C (ϕ⊗ ψ)C†. Otherwise circuit C is unsuccessful, and the recovery circuit provides a
second chance at obtaining the output of (C, b) on ϕ ⊗ ψ. The presumption is that the
implementation of C ′ is far simpler to pursue than the original method to prepare ϕ. Our
next lemma presents one way on how to design such a recovery circuit to (C, b).

I Lemma 8. Every interacting postselected circuit (C, b) has a recovery circuit.

Proof. Let (C, b) ∼ (CNOT(G1 ⊗ G), 0), where G1 and G are single qubit Clifford gates.
By Corollary 5, we know (C, 1 − b) ∼ (CNOT(G1 ⊗ G), 1), which means there is a single
qubit Clifford gate G2 such that (C, 1− b) ≡ ((G†2 ⊗ I)CNOT(G1 ⊗G), 1). We shall show
that ((G†1 ⊗ I)CNOT(G2 ⊗G), 0) is a recovery circuit of (C, b). Figure 4 includes reference
diagrams to aid comprehension.

If the input to circuit C is ϕ1 ⊗ ψ, consider ϕ′1 ⊗ ψ′ = G1ϕ1G
†
1 ⊗GψG†. Let (x1, y1, z1)

be the Bloch vector of ϕ′1 and (x, y, z) be the Bloch vector of |ψ′〉. For ease of notation, we
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ϕ1 G1 ϕ′1 • ϕ′2 G†2 ϕ2

|ψ〉 G |ψ′〉 Z 1
(a)

ϕ2 G2 • G†1 ϕ1

|ψ〉 G Z 0
(b)

Figure 4 Suppose (C, 1 − b) ≡ ((G†2 ⊗ I)CNOT(G1 ⊗ G), 1). This equivalence allows us to
study (C, 1− b) via its substitute in (a) and come up with the recovery circuit in (b). We include
intermediate states like ϕ′1 and ϕ′2 = G2ϕ2G

†
2 in (a) to signify stages in the circuit.

define outputs ϕ′2 = Φ1(CNOT, ϕ′1 ⊗ ψ′) and ϕ2 = G†2ϕ
′
2G2 = Φ1−b(C,ϕ1 ⊗ ψ). Then the

Bloch vector (x2, y2, z2) of ϕ′2 becomes

x2 = x1x+ y1y

1− z1z
, y2 = y1x− x1y

1− z1z
, z2 = z1 − z

1− z1z
. (5)

Now suppose ϕ3 = Φ0(CNOT(G2⊗G), ϕ2⊗ψ). For postselected circuits with one CNOT,
the equations for computing the output’s Bloch vector are essentially the same:

x3 = x2x− y2y

1 + z2z
, y3 = y2x+ x2y

1 + z2z
, z3 = z2 + z

1 + z2z
, (6)

where (x3, y3, z3) represents the Bloch vector of ϕ3. Using x2 + y2 + z2 = 1, we can show

x3 = x1x
2 + xy1y − xy1y + x1y

2

1− z1z + z1z − z2 = x1. (7)

Likewise, y3 = y1 and z3 = z1, which means ϕ3 = ϕ′1 = G1ϕ1G
†
1. The circuit ((G†1 ⊗

I)CNOT(G2 ⊗G), 0) is therefore a recovery circuit of (C, b). J

Between (C, b) and its recovery circuit ((G†1 ⊗ I)CNOT(G2 ⊗G), 0), there is a relatively
straightforward relationship between the probability that circuit C would have been successful
and the probability that circuit C ′ = (G†1 ⊗ I)CNOT(G2 ⊗G) will be successful.

I Corollary 9. Let ϕ1 ⊗ ψ be a two-qubit state and let C ′ = (G†1 ⊗ I)CNOT(G2 ⊗G) be a
two-qubit Clifford unitary such that (C ′, 0) is a recovery circuit of (C, b). Then

Q0(C ′,Φ1−b(C,ϕ1 ⊗ ψ)⊗ ψ) = (1− z2)/4
1−Qb(C,ϕ1 ⊗ ψ) (8)

where z = 〈ψ|G†ZG|ψ〉.

Proof. We assume for simplicity that C = CNOT and b = 0, which implies G1 = G2 = G = I.
Let z1 = Tr(Zϕ1) and z = 〈ψ|Z|ψ〉. Also let ϕ2 = Φ1(C,ϕ1 ⊗ ψ). Then

Q1(C,ϕ1 ⊗ ψ) = 1− z1z

2 , z2 = Tr(Zϕ2) = z1 − z
1− z1z

. (9)

The probability of recovering ϕ1 is now clear:

Q0(C ′, ϕ2 ⊗ ψ) = 1 + z2z

2 = 1− z1z + z1z − z2

4
( 1−z1z

2
) = (1− z2)/4

1−Q0(C,ϕ1 ⊗ ψ) (10)

since the circuits perform a single measurement. J
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Another implication of the proof to Lemma 8 is that Φ1−b(C,ϕ1 ⊗ ψ) is always ϕ1, up
to a single qubit Clifford gate, whenever |ψ〉 is an eigenstate of X, Y , or Z (a stabilizer
qubit). Under these circumstances, the behavior of (C, b) on these types of inputs is actually
no different than non-interacting circuits. Hence it does not warrant the use of a circuit
C ′ = (G†1 ⊗ I)CNOT(G2 ⊗G) to try and perform a recovery because the qubit is basically
ϕ1. It is also quite evident by now that there is only one type of recovery circuit, especially
given our construction in Lemma 8.

I Lemma 10. All recovery circuits are interacting postselected circuits.

Proof. Let (C, b) be an interacting postselected circuit and suppose (C ′, b′) is a recovery
circuit of (C, b). If (C ′, b′) is not an interacting postselected circuit, then (C ′, b′) ∼ (I ⊗G, 0)
or (C ′, b′) ∼ ((I ⊗G)SWAP, 0), where G is a single qubit Clifford gate. We can easily find a
two-qubit state ϕ⊗ψ such that (C ′, b′) fails to recover ϕ on the input Φ1−b(C,ϕ⊗ψ)⊗ψ. J

Lastly, it should not come as a surprise that more than one recovery circuit of (C, b)
exists. Even so, we can guarantee that not any one recovery circuit will outperform another.

I Lemma 11. Let (C, b) be an interacting postselected circuit, and let C ′′ = (G†2 ⊗
I)CNOT(G1 ⊗ G) be a two-qubit Clifford unitary such that (C, 1 − b) ≡ (C ′′, 1). Then
(C ′, b′) is a recovery circuit of (C, b) if and only if (C ′, b′) ≡ ((G†1 ⊗ I)CNOT(G2 ⊗G), 0).

Proof. In the reverse direction, equivalence of postselected stabilizer circuits means both
produce the exact same output at the same success rate for all two-qubit states ρ. This
certainly includes all two-qubit product states ϕ2 ⊗ ψ, where ϕ2 is the output of (C, 1− b)
on another input ϕ1 ⊗ ψ.

In the forward direction, Lemmas 14 and 15 in the appendices do most of the job:
(C ′, b′) ∼ ((G†1 ⊗ I)CNOT(G2 ⊗G), 0). We just need to prove equivalence. We look back at
the definition of Clifford equivalent postselected circuits, where we must have a single qubit
Clifford gate G′ such that

(G′ ⊗ 〈b′|)C ′ρC ′†(G′† ⊗ |b′〉) =

(G†1 ⊗ 〈0|)CNOT(G2 ⊗G)ρ(G†2 ⊗G†)CNOT(G1 ⊗ |0〉) (11)

for all two-qubit states ρ. If it is indeed the case that they are strictly Clifford equivalent i.e.
G′ 6= I, then (C ′, b′) cannot have been a recovery circuit of (C, b) because the output from
(C ′, b′) on ρ will be rotated by G′†. Thus the two must be equivalent (with “≡”). J

From Lemmas 8 and 11, we reach our main result, with Corollary 13 as an immediate
consequence to our theorem.

I Theorem 12. Every interacting postselected circuit (C, b) has a recovery circuit (C ′, b′).
Moreover, all recovery circuits of (C, b) are equivalent to (C ′, b′).

I Corollary 13. Every recovery circuit (C ′, b′) has its own recovery circuit (C ′′, b′′).

5 Example Routines Featuring Recovery Circuits

Recovery circuits appear in the literature, where the use cases for our recovery operation seem
more pertinent to state injection and implementing non-Clifford operations than to state
distillation itself. For instance, the programmable ancilla rotation (PAR) of [13] uses qubits of
the type |θ〉 = (|0〉+ eiθ|1〉)/

√
2 and an interacting circuit CNOT to rotate |q〉 = α|0〉+ β|1〉
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α|0〉+ β|1〉 • α|0〉+ eiθβ|1〉

|θ〉 = |0〉+eiθ|1〉√
2 Z 0

Figure 5 Procedure with the postselected
circuit (CNOT, 0) from [13] to rotate α|0〉+β|1〉
by θ about the Z-axis.

|Hi〉 • |Hi+1〉

|H0〉 Z 0

Figure 6 The same circuit (CNOT, 0) ap-
pears in [9] to produce “ladder” qubits |Hi+1〉
from |Hi〉 ⊗ |H0〉, where H|H0〉 = |H0〉.

|H0〉 • |q1〉

|H0〉 Z 0
⇒
|H0〉 • |q2〉

|q1〉 H Z 0
⇒
|q2〉 H • |q3〉

|H0〉 Z 0

Figure 7 Approach to generate |q3〉 with three postselected circuits and four |H0〉 states. This
qubit appears in [9] (as |ψ0

0〉) to help create more diverse “ladder” qubits. If we measure 1 at any of
the three steps, then we restart from the first circuit on the left with two new |H0〉 copies. Adding
recovery for the last two-qubit circuit additionally improves the average |H0〉 cost.

about the Z-axis by an angle θ. This is demonstrated in Figure 5. On the chance that
the Z-measurement returns 1, then instead of |q + θ〉 = α|0〉+ eiθβ|1〉, the output becomes
|q− θ〉 = α|0〉+ e−iθβ|1〉, which is |q〉 rotated by −θ. Jones et. al [13] suggest pairing |q− θ〉
with |2θ〉 as a direct line to |q+ θ〉, but we can alternatively break this down into two smaller
steps if |θ〉 are the only states available. We first run the CNOT circuit on |q − θ〉 ⊗ |θ〉. If
we measure 0, then we recover |q〉, and we proceed with rerunning circuit CNOT on |q〉 ⊗ |θ〉.

The method in [9] is similar. It uses the same interacting circuit with a single CNOT to
obtain “ladder” qubit states of the kind

|Hi〉 = cos (θi) |0〉+ sin (θi) |1〉, cot (θi) = coti+1 (π/8) (12)

for i ≥ 0. The production starts by supplying two copies of the magic state H|H0〉 = |H0〉
to the circuit, as seen in Figure 6. Each time we gain a new state |Hi〉, we reuse the qubit
to try and create the next |Hi+1〉. If the attempt fails, then the output of (CNOT, 1) on
|Hi〉 ⊗ |H0〉 is |Hi−1〉. Given that the recovery circuit of (CNOT, 0) is itself, the method to
recover |Hi〉 from |Hi−1〉 ⊗ |H0〉 is no different than the procedure to create it.

Another example is provided in Figure 7. Here, we show our recovery technique improves
the average magic |H0〉 cost to produce

|q3〉 = cos(φ3)|0〉+ sin(φ3)|1〉, cos(2φ3) = 6 + 5
√

2
6 + 6

√
2
, 2φ3 ≈ 0.4456. (13)

This qubit participates in the same ladder routine of [9] to generate more varied ladder
states. Duclos-Cianci and Svore’s method [9] leads to an average cost 12.5 |H0〉 states, but
we find |q3〉 is also obtainable following the procedure in Figure 7. As such, we may consider
incorporating a recovery step at one or two places to try and optimize our magic state usage.
Simulations of the process in Figure 7 without recovery report an average 10.04 |H0〉 qubits,
but adding recovery for the final stabilizer circuit brings the number down slightly to 9.45.
Although the reduction is small, the Section 6 experiments suggest the potential is greater
when the relative cost increases between |q2〉 and |H0〉.

In general, if we start with the two-qubit state ϕ⊗ ψ, then ϕ is allowed to be mixed, and
it can even be part of a larger entangled system. As a quick demonstration, suppose we have
the situation as illustrated in the left circuit of Figure 8. Let (C ′, b′) be a recovery circuit of
(C, b) and let

UρU† = 1
2n (PI ⊗ I + PX ⊗X + PY ⊗ Y + PZ ⊗ Z) (14)
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Uρ

...
...

ϕ
C

|ψ〉 Z b


(a)

ϕ
C

ϕ′

|ψ〉 Z 1− b

ϕ′

C ′
ϕ

|ψ〉 Z b′

(b)

Figure 8 Recovery circuits are also applicable when one of the qubits is entangled with another
system. In (a), we trace out all but the n-th qubit of UρU† to get ϕ⊗ψ as input to circuit C. If we
measure 1− b as pictured in the top circuit of (b), then we execute circuit C′ on ϕ′ ⊗ ψ to try and
recover ϕ. We succeed with the recovery if we measure b′.

where PL are Pauli operator sums on the first n− 1 qubits. While the proof to Lemma 8 is
generalizable to include the unused portions PL of the entangled state, the math is simpler
and works out the same if we trace out the first n− 1 qubits, keeping only the last qubit
ϕ = Tr1,n−1

(
UρU†

)
that we need for the two-qubit circuit. If we are unlucky, then qubit n

becomes ϕ′ = Φ1−b(C,ϕ⊗ ψ), but we can try to regain ϕ by executing circuit C ′ on ϕ′ ⊗ ψ.
If the recovery is successful, then we have another opportunity at the output Φb(C,ϕ⊗ ψ).
In all likelihood, this is a less lengthy process than preparing another ρ and running the
circuit of U again; by some estimates, a synthesis of U over a universal gate set may require
an exponential number of gates [11]. This is a stark contrast to C ′, which uses one CNOT
with possibly a couple more single qubit Clifford gates.

6 Experimentation with Recovery Circuits

Consider a two-qubit Clifford unitary C1 and a two-qubit state ϕ⊗ ψ. Suppose we have a
target outcome of b1; the intent is to produce output Φb1(C1, ϕ⊗ ψ). Then by Corollary 13,
we can define a depth k protocol to be a procedure on k− 1 postselected circuits (C1, b1), . . .,
(Ck−1, bk−1) such that (Ci+1, bi+1) is the recovery circuit of (Ci, bi). We start by running
circuit C1 on ϕ⊗ ψ. If circuit C1 is successful i.e. we measure b1, then no recovery attempts
are necessary and we declare success. Otherwise, we enlist circuit C2 to try and obtain ϕ.
More generally, if circuit Ci is successful, then we recover an input qubit to circuit Ci−1; if
not, we run circuit Ci+1 to recover an input qubit to circuit Ci.

The value of k represents a stopping point in our protocol: when circuit Ck−1 is unsuc-
cessful, we declare failure, discard the output, and restart with a new copy ϕ⊗ ψ to circuit
C1. Thus this process on k− 1 circuits is nothing more than a classical random walk on k+ 1
integers {0, . . . , k}, where the walk begins at location 1, a step onto 0 signifies success, and a
step onto k means failure. The success probability of circuit Ci is the probability of a left
step from i to i− 1 and is determined recursively by Equation 8 in Corollary 9. A step in
either direction consumes one |ψ〉.

We conduct simulations of this process to obtain a better idea for Nk, the expected
number of |ψ〉 resources needed to create one Φb1(C1, ϕ⊗ ψ) with our depth k protocol. Let
d be the cost to prepare a single instance of ϕ relative to the cost of |ψ〉. Then the cost of
one execution or trial is the same as d plus the number of |ψ〉 qubits used before halting,
regardless of declaring success or fail. The costs from all trials are averaged to obtain Nk.
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Figure 9 The success probability between circuit Ci and circuit Ci+1 defined recursively in
Corollary 9 drops more dramatically as z moves closer to 1. This leads to a greater expected cost
Nk of our protocol since the recovery is less likely to succeed relative to other choices of z. On the
other end of the spectrum, the success probability of each circuit Ci is uniform when z = 0.

We compare this against the expected cost without recovery (k = 2), which is

N2 = d+ 1
Qb1(C1, ϕ⊗ ψ) . (15)

We assume for the sake of simplicity that (C1, b1) = (CNOT, 0), which means (C2, b2) =
(CNOT, 0), and so forth for the other k − 3 recovery circuits.

We further assume that Q0(CNOT, ϕ⊗ψ) = 1/2. Since we fix the first success probability,
Nk is dependent on the parameter z = 〈ψ|Z|ψ〉 that appears in the recovery success
rate Equation 8. Technically, we need a different ϕ with each choice of |ψ〉 to maintain
Q0(CNOT, ϕ⊗ψ) = 1/2 and the same output Φ0(CNOT, ϕ⊗ψ). Usually different ϕ means
different costs d, but we will ignore this momentarily and assume the preparation overhead d
for each ϕ is the same for the purposes of a broader comparison of Nk across different |ψ〉
qubits. In the first set of experiments, we include only one recovery circuit (k = 3). The
following table summarizes the expected costs for four samples of z obtained over the course
of 100000 trials:

d N2 N3 : z =
√

0.96 N3 : z =
√

0.50 N3 : z =
√

0.04 N3 : z = 0
10−1 2.2 3.20 3.18 3.15 3.15
100 4.0 4.99 4.75 4.51 4.50
101 22 22.7 20.5 18.2 18.0
102 202 200.4 177.9 155.1 157.7
103 2002 1988.9 1750.7 1521.9 1498.7
104 20002 19816.4 17488.0 15215.4 14998.7

The first row with d = 0.1 should be interpreted as ϕ being cheaper to prepare than |ψ〉. We
clearly see an improvement when factoring in recovery in the face of large relative preparation
overhead between ϕ and |ψ〉. We also see a trend of lower costs as z grows smaller, when |ψ〉
is moving closer to the XY -plane in the Bloch sphere. This is due to the differences in the
recovery success rate at circuit C2, which are 0.02, 0.25, 0.48, and 0.5, respectively.

In the second batch of experiments, we maintain d = 1000 but vary the number of circuits
parameterized by k. Again, Q0(CNOT, ϕ⊗ ψ) = 1/2 and we run 100000 trials. Data for Nk
is compiled together in the table below, starting with k = 3:
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k Nk : z =
√

0.96 Nk : z =
√

0.50 Nk : z =
√

0.04 Nk : z = 0
3 1981.7 1753.2 1522.9 1501.6
4 1982.9 1720.5 1372.2 1336.9
5 1982.4 1716.5 1302.9 1255.2
6 1987.5 1710.9 1266.6 1206.2
7 1982.5 1715.3 1246.7 1174.7
10 1991.7 1717.0 1221.5 1120.8
20 2002.5 1727.3 1220.2 1072.9
30 2006.3 1734.6 1231.4 1064.5
40 2023.5 1743.7 1240.8 1066.3

Observe that the value of Nk continues to lower noticeably for some of the |ψ〉 cases as
more circuits are added before increasing again. This behavior is no surprise since at some
point, the penalty to sustain the recovery process will exceed the overhead of repeating the
computation. If we look at the success probabilities for the first eight circuits of the protocol
for each of the four z samples in Figure 9, we also see the success rates decrease to some
lower boundary as i increases, with the exception of when z = 0. The drop in probabilities
from circuit C1 to circuit C3 is quite significant when z is close to 1 (and 1− z2 is small), so
the chance of recovery at circuit C3 is only slightly larger than 0. This explains why there is
no apparent change in Nk between one recovery circuit (k = 3) versus two (k = 4) for the
case z =

√
0.96. The ideal situation is to know beforehand how many circuits to include to

minimize resource usage.

7 Conclusion

We have shown two-qubit stabilizer circuits require nothing more than a few Clifford gates
to perform a job. These simplifications shed light into the complementary nature between
interacting circuits. Despite measurements generally being irreversible, we find an exception
when handling a two-qubit product state ϕ ⊗ ψ. That is, we can use |ψ〉 in conjunction
with a specific circuit to salvage the expensive resource qubit ϕ. What direct effects the
recovery operation will have on larger, more complex distillation schemes is unclear. At the
moment, we are only able to recognize a small number of applications that involve injecting
a non-stabilizer resource state into a computation.

To better gauge the utility of recovery circuits, one direction we may pursue is a more
detailed and thorough examination of the depth k protocol in Section 6. In particular, there
is an optimal number of circuits to employ that uses the fewest number of resources in
expectation on each invocation. As we saw earlier, the behavior of our protocol is akin to
that of a (possibly non-uniform) random walk. This modeling of probabilistic circuits is
nothing new (see [1, 9, 13]). One matter we need to keep in mind is the costs of attaining
qubits ϕ and |ψ〉. The amount of work that went into preparing ϕ should exceed that of |ψ〉
in order for the recovery to be cost effective, which stems from the fact that we need a copy
of |ψ〉 to operate each circuit. The random walk techniques in [14] should also prove useful
for gathering a more precise cost estimate.

Since our two-qubit setting is appropriate for only a limited number of scenarios, a
natural follow-up is whether something resembling recovery circuits can easily be extended
to larger stabilizer circuits. This question has been answered to an extent for the Clifford+T
gate set in [1, 2, 20], where we can treat |ψ〉 = HP †|H0〉 to perform a non-Clifford π/4
phase rotation T . The goal in [1, 2, 20] uses a multiqubit circuit of Clifford+T gates to
approximate an arbitrary single qubit unitary U up to some error ε. If the measurements
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are unfavorable, then there is a backup operation that either returns the qubits to the initial
state, or directly tries to approximate U using a secondary circuit. It is worth investigating
whether there exist conditions that enable larger stabilizer circuits to exhibit the recovery
feature we demonstrated here on general |ψ〉 resources.
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A Proof of Lemma 4

Similar to a single qubit, a two-qubit density matrix ρ can be expressed as a real combination
of two-qubit Pauli operators σjk = σj ⊗ σk, where σ0 = I, σ1 = X, σ2 = Y , and σ3 = Z

e.g. σ13 = X ⊗ Z. We omit the tensor product and use σjk for notation reasons. We define
P± = {±σjk | j 6= 0 and k 6= 0} to be a set of nontrivial two-qubit Pauli operators.

To prove Lemma 4, we start by rewriting Equation 4 in Definition 3 as

C1Π1ρΠ1C
†
1 = (G⊗ I)C2Π2ρΠ2C

†
2(G† ⊗ I) (16)

where Π1 = C†1(I ⊗ |b1〉〈b1|)C1 and Π2 = C†2(I ⊗ |b2〉〈b2|)C2 are projection operators.
Reichardt [21] showed that Equation 16 holds for some single qubit Clifford G on all states
ρ if Π1 = Π2. In our two-qubit case, there are only 30 cases of Π1 = Π2. We make some
refinements here to make the ideas in [21] a little more digestible in our notation.

I Lemma 14. Let (C1, b1) and (C2, b2) be postselected two-to-one stabilizer circuits. If
Π = C†1(I ⊗ |b1〉〈b1|)C1 = C†2(I ⊗ |b2〉〈b2|)C2, then (C1, b1) ∼ (C2, b2).

Proof. Note that 2(I ⊗ |bj〉〈bj |) = σ00 + (−1)bjσ03. Let 2Π = σ00 + λ03, where λ03 ∈ P±,
and let λ10, λ20, λ30 ∈ P± be two-qubit Pauli operators such that [λ03, λ10] = [λ03, λ20] =
[λ03, λ30] = 0 and iλ30 = λ10λ20. Let ρ be a two-qubit state. Then

ΠρΠ = 1
8 (wσ00 + wλ03 + xλ10 + xλ13 + yλ20 + yλ23 + zλ30 + zλ33) (17)

where λk3 = λ03λk0 and x = Tr((λ10 + λ13)ρ). The coefficients w, y, z are determined
similarly with σ00 + λ03, λ20 + λ23, and λ30 + λ33, respectively. Our starting condition
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Cjλ03C
†
j = (−1)bjσ03 implies

Cjλ10C
†
j , Cjλ20C

†
j ∈ {σ10, (−1)bjσ13,−σ10, (−1)bj+1σ13,

σ20, (−1)bjσ23,−σ20, (−1)bj+1σ23,

σ30, (−1)bjσ33,−σ30, (−1)bj+1σ33 }. (18)

This means there are single qubit Clifford gates Gj to permute the operators in a way that

(Gj ⊗ I)Cjλ10C
†
j (G†j ⊗ I) ∈ {σ10, (−1)bjσ13 } (19)

(Gj ⊗ I)Cjλ20C
†
j (G†j ⊗ I) ∈ {σ20, (−1)bjσ23 }. (20)

The value of (Gj ⊗ I)Cjλ30C
†
j (G†j ⊗ I) is fixed given the other two. Our unnormalized

post-measurement states ρ′j = (Gj ⊗ I)CjΠρΠC†j (G†j ⊗ I) are now

ρ′j = 1
4 (wI + xX + yY + zZ)⊗ |bj〉〈bj |. (21)

The first qubit of ρ′1 and ρ′2 are the same after G1 and G2. Therefore (C1, b1) ∼ (C2, b2). J

We now have the tools to prove Lemma 4. Note that a Clifford equivalence (C1, b1) ∼
(C2, b2) is invariant with respect to Clifford circuits that execute prior to circuits C1 and C2
i.e. (C1, b1) ∼ (C2, b2) if and only if (C1U, b1) ∼ (C2U, b2) for any Clifford unitary U .

Proof. We partition the 15 Pauli operators σjk into the following sets:

PA = {σjk | j, k ∈ {1, 2, 3}}, PB = {σ01, σ02, σ03}, PC = {σ10, σ20, σ30}. (22)

We look at σ33 first. Suppose there is a bit b′ such that Cσ33C
† = (−1)b′

σ03. For
readability, set C ′ = CNOT. Knowing C ′σ33C

′† = σ03, we obtain (C, b) ∼ (CNOT, b +
b′ mod 2) from Lemma 14. For the remaining σjk ∈ PA, suppose CσjkC† = ±σ03. Choose
single qubit Clifford gates G1 and G2 such that (G1 ⊗ G2)σjk(G†1 ⊗ G

†
2) = σ33. Define

C ′′ = C(G†1 ⊗G
†
2). Then C ′′σ33C

′′† = (−1)b′
σ03 for some b′. The rest follows from previous

arguments to conclude (C ′′(G1 ⊗G2), b) = (C, b) ∼ (CNOT(G1 ⊗G2), b+ b′ mod 2).
For the operator σ03 ∈ PB , assume Cσ03C

† = (−1)b′
σ03. Then (C, b) ∼ (σ00, b+b′ mod 2).

Coverage of the other five from PB and PC is similar to the above.
To finish, suppose (C, b) ∼ (I ⊗ G, b + b′ mod 2), where G is a single qubit Clifford

gate. If b + b′ mod 2 = 1, then (C, b) ∼ (I ⊗ G, 1) ≡ (I ⊗ XG, 0). The same applies
when (C, b) ∼ ((I ⊗ G)SWAP, 1). If (C, b) ∼ (CNOT(G1 ⊗ G2), 1), then we include (I ⊗
X)CNOT(G1 ⊗G2) = CNOT(G1 ⊗XG2). The other case b+ b′ mod 2 = 0 follows directly
from Lemma 14. J

B Additional Material on Recovery Circuits

We may use the following to help us determine when two recovery circuits are Clifford
equivalent. In particular, it dispels concerns that there may be two recovery circuits where
one has a better chance of succeeding than the other. We use the same notation for two-qubit
Paulis σjk and P± as in Appendix A.

I Lemma 15. Let (C1, b1) be a recovery circuit of an interacting postselected circuit (C, b).
If (C2, b2) is also a recovery circuit of (C, b), then C†1(I ⊗ |b1〉〈b1|)C1 = C†2(I ⊗ |b2〉〈b2|)C2.
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Proof. It is easier to prove the contrapositive. Specifically, we show the recovery from
(C2, b2) will fail on one particular pair of qubits ϕ2 and |ψ〉, although many exist that
are equally as good. Suppose Π2 = C†2(I ⊗ |b2〉〈b2|)C2. Let 2Π2 = σ00 + λ03, where
λ03 ∈ {±σjk | j, k ∈ {1, 2, 3}}, and let λ30 and λ33 be two-qubit Pauli operators from P±
such that [λ03, λ30] = 0 and λ03 = λ30λ33. The qubits ϕ2 and |ψ〉 we choose shall have Bloch
vectors

ϕ2 : (x2, y2, z2) =
(√

2
17 ,
√

5
17 ,
√

10
17

)
, |ψ〉 : (x, y, z) =

(√
1
11 ,
√

3
11 ,
√

7
11

)
. (23)

Let ϕ1 be a qubit so that ϕ2 = Φ1−b(C,ϕ1 ⊗ ψ). Let ϕ′1 = Φb2(C2, ϕ2 ⊗ ψ).
To prove the recovery by (C2, b2) will fail, we merely need to verify that the Bloch vectors

from all 18 choices of λ03 are different, which implies ϕ′1 6= ϕ1 whenever C†1(I ⊗ |b1〉〈b1|)C1 6=
Π2. We track the coefficients ajk = Tr(λjk(ϕ2 ⊗ ψ)). Then

Tr (Π2 (ϕ2 ⊗ ψ) Π2) = 1 + a03

2 , Tr (λ30Π2 (ϕ2 ⊗ ψ) Π2) = a30 + a33

2 , (24)

yielding v = (a30 + a33)/(1 + a03) as a Bloch vector component of ϕ′1. The most convenient
choices for λ30 and λ33 are tensor products with the identity e.g. λ03 = −σ33, λ30 = σ30,
λ33 = −σ03, and λ03 = σ11, λ30 = σ10, λ33 = σ01, which means that a03 = a30a33. If we look
at the coefficients from the first example with λ03 = −σ33, then a30 = z2 and a33 = −z. We
get the following components for each of the positive possibilities for λ03:

λ03 a03 λ30 a30 λ33 a33 v

σ11 x2x σ10 x2 σ01 x 0.5841
σ12 x2y σ10 x2 σ02 y 0.7338
σ13 x2z σ10 x2 σ03 z 0.8957
σ21 y2y σ20 y2 σ01 x 0.7252
σ22 y2y σ20 y2 σ02 y 0.8296
σ23 y2z σ20 y2 σ03 z 0.9354
σ31 z2x σ30 z2 σ01 x 0.8678
σ32 z2y σ30 z2 σ02 y 0.9205
σ33 z2z σ30 z2 σ03 z 0.9708

and the following for each of the negative possibilities for λ03:

λ03 a03 λ30 a30 λ33 a33 v

−σ11 −x2x σ10 x2 −σ01 −x 0.0463
−σ12 −x2y σ10 x2 −σ02 −y −0.2183
−σ13 −x2z σ10 x2 −σ03 −z −0.6260
−σ21 −y2y σ20 y2 −σ01 −x 0.2879
−σ22 −y2y σ20 y2 −σ02 −y 0.0280
−σ23 −y2z σ20 y2 −σ03 −z −0.4501
−σ31 −z2x σ30 z2 −σ01 −x 0.6055
−σ32 −z2y σ30 z2 −σ02 −y 0.4083
−σ33 −z2z σ30 z2 −σ03 −z −0.0792

Neither are any of the values v the same if we multiple each one by −1, which may come about
from an application of a single qubit Pauli on the output. Thus our statement holds. J
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Abstract
We study stabilizer circuits that use non-stabilizer qubits and Z-measurements to produce other
non-stabilizer qubits. These productions are successful when the correct measurement outcome
occurs, but when the opposite outcome is observed, the non-stabilizer input qubit is potentially
destroyed. In preceding work [arXiv:1803.06081 (2018)] we introduced protocols able to recreate
the expensive non-stabilizer input qubit when the two-qubit stabilizer circuit has an unsuccessful
measurement outcome. Such protocols potentially allow a deep computation to recover from
such failed measurements without the need to repeat the whole prior computation. Possible
complications arise when the recovery protocol itself suffers from a failed measurement. To deal
with this, we need to use nested recovery protocols. Here we give a precise analysis of the potential
advantage of such recovery protocols as we examine its optimal nesting depth. We show that if
the expensive input qubit has cost d, then typically a depth O(log d) recovery protocol is optimal,
while a certain special case has optimal depth O(

√
d). We also show that the recovery protocol

can achieve a cost reduction by a factor of at most two over circuits that do not use recovery.
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1 Introduction

In [21] we saw another treatment of two-qubit stabilizer circuits for recovery purposes on a
select set of input states. Here, we give a more thorough assessment of its potential to better
determine its influence on quantum computations.

As of now, such studies are still necessary to address one major difficulty to building
quantum computers, and that is the large overhead required to ensure a reliable system for
handling noise [10]. Over the course of a long computation, a quantum state may encounter
unwanted influences from the outside (the environment) and from within (faulty parts)
that affect the qubits in undesirable ways. Any realistic solution must include quantum
error correction and fault-tolerance to prevent an uncontrollable spread of errors, and often,
stabilizer operations which consist of Clifford group unitaries, Pauli measurements, and ancilla
|0〉 preparation are considered a viable option to serve as the foundation of a fault-tolerant
scheme. One of their most memorable characteristics is perhaps that which is famously

© Wim van Dam and Raymond Wong;
licensed under Creative Commons License CC-BY

13th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2018).
Editor: Stacey Jeffery; Article No. 8; pp. 8:1–8:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vandam@ucsb.edu
https://orcid.org/0000-0001-7852-6158
mailto:rwong@ucsb.edu
http://dx.doi.org/10.4230/LIPIcs.TQC.2018.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


8:2 Recovery Circuits II: Analysis

stated in the Gottesman-Knill theorem: that stabilizer operations are efficiently simulable on
classical computers. On the other hand, it also means stabilizer operations are inadequate
for universal quantum computation (UQC).

To resolve this, Bravyi and Kitaev introduced magic state distillation [5]. It is a technique
in which noisy magic states are distilled to a higher quality, then consumed to implement
quantum gates outside the Clifford group of operations e.g. π/4 phase rotation T . This is
entirely sufficient for UQC since any non-Clifford gate with stabilizer operations is enough to
form a universal basis. Many improvements have appeared since its debut [4, 6, 8, 9, 11, 15, 16],
but even more impressive is that some of these recent proposals [6, 8, 11, 15] support the
distillation of multiple kinds of magic qubits, which enables the implementation of other
non-Clifford gates and yields richer bases. Related work on circuit synthesis has also surged,
using number theory as the foundation for designing efficient algorithms over universal gate
sets [1, 2, 3, 18, 20]. For single qubit unitaries, optimal usage of T -gates is possible [14, 19].

Research originating from state distillation and gate synthesis has inspired other studies
on stabilizer operations. One such example [21] expanded on ideas from [9, 12, 17] to produce
some interesting results. In particular, van Dam and Wong [21] (and indirectly by Reichardt
[17]) found that any stabilizer procedure generating a single qubit output from a two-qubit
input can be realized by a postselected stabilizer circuit of single qubit Clifford gates and at
most one CNOT or SWAP. Then for those involving a CNOT, there exist “recovery circuits”
that essentially recycle a stabilizer circuit output back into a reusable form. Such operations
pair nicely with processes that inject magic states toward the tail end of a long and expensive
computation. Thus if the original state preparation is an extremely costly endeavor, recovery
circuits provide a welcome alternative. For the moment, two conditions are required for
recovery circuits to be of service: (1) the two-qubit input is a product state, and (2) one of
the qubits is pure.

In this paper, we continue the evaluation of recovery circuits. Specifically we pursue
a more rigorous examination of a nested recovery protocol previously described in [21] to
answer questions about its optimal nesting depth. Though the current applications for such a
recovery technique are limited, we cannot rule out the possibility of similarly defined recovery
operations for larger stabilizer circuits and inputs. For that reason, it is worthwhile to know
how helpful the nested recovery protocol will be even in the two-qubit domain. Through
our analysis, we learn that for an initial preparation cost of about d, a protocol of depth
O(log d) is optimal in generic situations, while the depth is allowed to grow to O(

√
d) in one

special case (Theorem 16). Under this assumption, we discover up to a factor of two savings
is achievable over a protocol that ignores recovery (Theorem 17).

2 Background

This section covers the main concepts and notation. We refer the reader to [21] for a more
detailed account on the subjects presented in Subsections 2.2 and 2.3.

2.1 Pauli Matrices and Stabilizer Circuits
The Pauli group consists of n-qubit Pauli operators on the four matrices

I =
[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (1)

An n-qubit stabilizer state is then a simultaneous +1 eigenstate of n independent and
commuting operators from the Pauli group; there are six such states when n = 1. The
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normalizer of the Pauli group is known as the Clifford group and is generated by the
Controlled-NOT (CNOT), Hadamard (H), and Phase (P ) gates. The matrices of these three
operators are

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , H = 1√
2

[
1 1
1 −1

]
, P =

[
1 0
0 i

]
. (2)

A stabilizer circuit is therefore a quantum circuit of CNOT, H, P gates and measurements
in the Z-basis. In a quantum circuit diagram, we use

Z
×
×

to represent a Z-measurement and a qubit swap, respectively.

2.2 Postselected Two-to-One Stabilizer Circuits
To reiterate, the following terminology appear in [21].

I Definition 1 (postselected two-to-one stabilizer circuit). A postselected two-to-one stabilizer
circuit (C, b) is a two-qubit quantum circuit that implements a Clifford unitary C, followed
by a Z-measurement on the second qubit with an outcome b ∈ {0, 1}.

I Definition 2 (probability and output). Let (C, b) be a postselected two-to-one stabilizer
circuit and let ρ be a two-qubit state. Then the probability Qb of outcome b on the transformed
state CρC† is Qb(C, ρ) = Tr((I ⊗ 〈b|)CρC†(I ⊗ |b〉)). If Qb(C, ρ) > 0, then the output Φb of
a postselected circuit (C, b) on an input ρ is

Φb(C, ρ) = (I ⊗ 〈b|)CρC†(I ⊗ |b〉)
Qb(C, ρ) . (3)

The expression run circuit C shall mean an application of unitary C on the initial state
ρ, followed by a Z-measurement on the second qubit; circuit C shall reference the stabilizer
circuit piece only of the postselected circuit (C, b), including the measurement gate. Because
different postselected stabilizer circuits may produce the same output on a given input state
ρ, we have the following definition.

I Definition 3 (equivalent postselected two-to-one stabilizer circuits). Two postselected two-
to-one stabilizer circuits (C1, b1) and (C2, b2) are Clifford equivalent, (C1, b1) ∼ (C2, b2), if
and only if there is a single qubit Clifford gate G such that for all two-qubit states ρ, we
have the equality

(I ⊗ 〈b1|)C1ρC
†
1(I ⊗ |b1〉) = G(I ⊗ 〈b2|)C2ρC

†
2(I ⊗ |b2〉)G†. (4)

Note that a Clifford equivalence implies that the probabilities of observing a b1 or b2 are
the same for the two circuits i.e. Qb1(C1, ρ) = Qb2(C2, ρ). The two postselected circuits are
equivalent, (C1, b1) ≡ (C2, b2), if and only if G = I in Equation 4.

We can classify a postselected circuit (C, b) into one of three types. More precisely, there
are always single qubit Clifford gates G1 and G2 such that either (C, b) ∼ (I ⊗ G1, 0), or
(C, b) ∼ ((I ⊗G1)SWAP, 0), or (C, b) ∼ (CNOT(G1 ⊗G2), 0). If we know (C, b) ∼ (C ′, b′),
where C ′ is one of three previous forms, then (C, 1− b) ∼ ((I ⊗X)C ′, b′) ≡ (C ′, 1− b′). A
summary of the configurations is provided in Figure 1. Depending on the type of circuit and
input we are dealing with, (C, b) may be eligible for a recovery circuit [21].
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G1 • G3

G2 Z 0

(a)

G1

G2 Z 0

(b)

× G1

× G2 Z 0

(c)

Figure 1 Any stabilizer procedure generating a single qubit output from a two-qubit input can
be implemented by a postselected stabilizer circuit (C, b) taking on one of the three forms above.
The exact single qubit Clifford gates G1, G2, and G3 depend on C and b and are not unique.

2.3 Recovery Circuits
If ρ is the product state ϕ ⊗ |ψ〉〈ψ|, then only postselected circuits of the kind (C, b) ∼
(CNOT(G1 ⊗G2), 0) qualify for a recovery circuit. For convenience, we use ψ in place of the
density matrix |ψ〉〈ψ| from this point on.

I Definition 4 (interacting postselected circuit). A postselected two-to-one stabilizer circuit
(C, b) is interacting if and only if there are single qubit Clifford gates G1 and G2 such
that (C, b) ∼ (CNOT(G1 ⊗ G2), 0). We say circuit C is interacting if and only if (C, 0) is
interacting.

I Definition 5 (recovery circuit). Let (C, b) be an interacting postselected circuit. Then a
postselected two-to-one stabilizer circuit (C ′, b′) is a recovery circuit of (C, b) if and only if
for all two-qubit states ϕ⊗ ψ, we have ϕ = Φb′ (C ′,Φ1−b(C,ϕ⊗ ψ)⊗ ψ).

Thus if an outcome b is more desirable than 1 − b, we say an interacting circuit C
is successful if the measurement on C(ϕ ⊗ ψ)C† yields b and unsuccessful otherwise. If
unsuccessful, then given a recovery circuit (C ′, b′) of (C, b), we may run circuit C ′ on
the input state described above to try and recover ϕ. There is also a relatively simple
construction to acquire a recovery circuit. If (C, b) ∼ (CNOT(G1 ⊗G), 0) for single qubit
Clifford gates G1 and G, then there is a third Clifford gate G2 satisfying (C, 1 − b) ≡
((G†2 ⊗ I)CNOT(G1 ⊗G), 1). We may then use this to design a recovery circuit (C ′, 0) of
(C, b), where C ′ = (G†1 ⊗ I)CNOT(G2 ⊗G) [21].

The success probabilities of circuits C and C ′ on their respective input are also interrelated.
If we start with a two qubit state ϕ1 ⊗ ψ, then the probability of recovering ϕ1 is

Q0(C ′,Φ1−b(C,ϕ1 ⊗ ψ)⊗ ψ) = (1− z2)/4
1−Qb(C,ϕ1 ⊗ ψ) (5)

where z = 〈ψ|G†ZG|ψ〉. More than one recovery circuit of (C, b) exists, but all recovery
circuits of (C, b) are equivalent to each other and hence have the same recovery success rate.
Furthermore, recovery circuits are interacting postselected circuits as well, leading to the
following corollary [21].

I Corollary 6. Every recovery circuit (C ′, b′) has its own recovery circuit (C ′′, b′′).

Finally, there is a Clifford gate G such that Φ1−b(C,ϕ1 ⊗ ψ) = Gϕ1G
† whenever |ψ〉 is a

stabilizer qubit [21]. Since the output is essentially ϕ1, recovery circuits are no longer helpful
for this combination of input qubits.

3 Depth k Protocol with Recovery

Suppose our goal is to produce the output of a postselected circuit (C1, b1) on a two-qubit
state ϕ1⊗ψ. By Corollary 6, we can derive a depth k protocol on k−1 interacting postselected
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0 1 i− 1 i i+ 1 k − 1 k

L(i) 1− L(i)

Figure 2 The behavior of a depth k protocol corresponds to a random walk on integers {0, . . . , k}
and starts at position 1. The random walk ends upon reaching 0 or k, with 0 representing success
and k representing failure. The transition from i to i− 1 is the success probability of the i-th circuit
Ci from the protocol.

circuits such that (Ci+1, bi+1) is a recovery circuit of (Ci, bi). We may assume without loss
of generality a desirable outcome bi = 0 for all k − 1 circuits. Thus when circuit C1 is
unsuccessful i.e. measure a 1, we fall back on circuit C2. If circuit C2 is also unsuccessful, we
depend on circuit C3, and so on all the way down to circuit Ck−1. In more detail, our depth
k protocol works as follows:
1. Let ϕ1 ⊗ ψ be the initial state, and let (C1, 0), . . . , (Ck−1, 0) be interacting postselected

circuits such that (Ci+1, 0) is a recovery circuit of (Ci, 0).
2. Run circuit C1 on ϕ1 ⊗ψ. If we measure 0, then we declare success. Otherwise, let ϕ2 be

the output of (C1, 1) on ϕ1 ⊗ ψ.
3. Run circuit C2 on ϕ2 ⊗ ψ. If we measure 0, then we recover ϕ1 and we repeat step 2.

Otherwise we get the output ϕ3 of (C2, 1) on ϕ2 ⊗ ψ.
4. Repeat step 3 as necessary for other circuits Ci. That is, let ϕi be the output of (Ci−1, 1)

on ϕi−1⊗ψ. Run circuit Ci on ϕi⊗ψ. On measuring 0, the output is ϕi−1 and we rerun
circuit Ci−1 on ϕi−1 ⊗ ψ. Otherwise, we proceed with circuit Ci+1 on ϕi+1 ⊗ ψ.

5. If circuit Ck−1 is unsuccessful on ϕk−1 ⊗ ψ, then we declare failure and stop.

We repeat this setup on k−1 circuits until we secure the output qubit ϕ0 = Φ0(C1, ϕ1⊗ψ).
By involving more than one circuit, we prolong our attempts at gaining ϕ0 while reducing
the number of times we rerun the prior computation on new copies of ϕ1. As pointed out by
the simulations in [21], we expect the protocol is more useful when ϕ1 is the result of a long
and resource intensive preparation procedure. The depth k affects the amount of resource
qubits |ψ〉 our protocol consumes on each invocation. We give a more thorough explanation
on how to choose k later in the paper.

We may view the process of generating ϕ0 as a random walk on k + 1 integers {0, . . . , k},
starting at location 1. A step onto 0 signals success, and a step onto k indicates failure. The
success probability of circuit Ci is the left step transition probability from position i to i− 1.
Not surprisingly, we can compute the recovery probability for every circuit C2 to Ck−1 if
we know the first success probability Q0(C1, ϕ1 ⊗ ψ). The next lemma is an extension of
Equation 5.

I Lemma 7. Consider a series of k − 1 interacting postselected circuits (Ci, 0) such that
(Ci+1, 0) is a recovery circuit of (Ci, 0). Then given a two-qubit state ϕ1 ⊗ ψ and outputs
ϕi = Φ1(Ci−1, ϕi−1 ⊗ ψ), the success probability of each circuit Ci is

L(i) = Q0(Ci, ϕi ⊗ ψ) =


Q0(C1, ϕ1 ⊗ ψ) if i = 1
(1− z2)/4

1− L(i− 1) if i ∈ {2, . . . , k − 1}
(6)

where z ∈ {〈ψ|X|ψ〉, 〈ψ|Y |ψ〉, 〈ψ|Z|ψ〉}.
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Proof. We primarily need to explain why the numerator stays the same at every step i,
since we can infer the form from Equation 5. Suppose (C1, 1) ≡ ((G†2⊗ I)CNOT(G1⊗G), 1),
where G, G1, and G2 are single qubit Clifford gates. This means

(C1, 0) ∼ (CNOT(G1 ⊗G), 0) (7)

(C2, 0) ≡ ((G†1 ⊗ I)CNOT(G2 ⊗G), 0). (8)

Next, there is a Clifford gate G3 such that (C2, 1) ≡ ((G†3 ⊗ I)CNOT(G2 ⊗ G), 1), which
implies (C3, 0) ≡ ((G†2 ⊗ I)CNOT(G3 ⊗ G), 0). Continuing in this manner, we find single
qubit Clifford gates Gi and G†i+1 satisfying

(Ci, 1) ≡ ((G†i+1⊗)CNOT(Gi ⊗G), 1) (9)

(Ci+1, 0) ≡ ((G†i ⊗ I)CNOT(Gi+1 ⊗G), 0) (10)

for all i ≥ 1. We study the effects of each postselected circuit (Ci, 1) on ϕi ⊗ ψ and (Ci+1, 0)
on ϕi+1 ⊗ ψ via the equivalent postselected circuits just described.

Consider the qubits |ψ′〉 = G|ψ〉 and ϕ′i = GiϕiG
†
i . From our Gi+1 selection, this means

ϕ′i+1 = Φ1(CNOT, ϕ′i ⊗ ψ′) = Gi+1ϕi+1G
†
i+1 (11)

ϕ′i = Φ0(CNOT, ϕ′i+1 ⊗ ψ′). (12)

Observe that both gates Gi and G†i+1 to the control qubit in ((G†i+1 ⊗ I)CNOT(Gi ⊗G), 1)
are always neutralized by the recovery circuit ((G†i ⊗ I)CNOT(Gi+1⊗G), 0). In other words,
at each step i, we always apply CNOT on qubits ϕ′i and |ψ′〉 as if the rotations by Gi and
G†i+1 never took place. In the last section (and [21]), we saw (C1, 0) ∼ (CNOT(G1 ⊗G, 0)
and (C2, 0) ∼ (CNOT(G2⊗G, 0) pave the way to Equation 5. We apply the same arguments
between (Ci, 0) and (Ci+1, 0) to obtain the recurrence above. J

We can also narrow the success probability of each circuit Ci to a more specific range.

I Lemma 8. Consider a series of k − 1 interacting postselected circuits (Ci, 0) such that
(Ci+1, 0) is a recovery circuit of (Ci, 0). Then given a two-qubit state ϕ1 ⊗ ψ and outputs
ϕi = Φ1(Ci−1, ϕi−1 ⊗ ψ), the success probability of each circuit Ci is bounded above and
below by

1−
√

1− 4λ
2 ≤ L(i) = Q0(Ci, ϕi ⊗ ψ) ≤ 1 +

√
1− 4λ
2 (13)

where λ = (1− z2)/4 and z ∈ {〈ψ|X|ψ〉, 〈ψ|Y |ψ〉, 〈ψ|Z|ψ〉}.

Proof. Assume Ci = CNOT for simplicity. Then z = 〈ψ|Z|ψ〉 and zi = Tr(Zϕi). This gives

1− |z|
2 ≤ L(i) = 1 + ziz

2 ≤ 1 + |z|
2 (14)

since zi ∈ [−1, 1]. But we can also say

1 +
√

1− 4λ
2 = 1 + |z|

2 ,
1−
√

1− 4λ
2 = 1− |z|

2 (15)

which implies the inequality. J

We only care for positive values of λ = (1− z2)/4 ≤ 1/4. It equals zero if z = ±1, which
occurs whenever |ψ〉 undergoes a Clifford rotation G such that G|ψ〉 = |0〉 or |1〉 prior to
CNOT (see proof to Lemma 7 for greater details). Moreover, as 1 − z2 = x2 + y2 for the
Block vector (x, y, z) of G|ψ〉, we may interpret λ as the reduced overlap that G|ψ〉 makes
with the XY -plane.
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4 Performance Analysis of Protocol

We consume a certain number of |ψ〉 qubits every time we run the protocol. The amount we
expend varies with the depth k, so it is imperative we find the ideal depth to minimize our
|ψ〉 usage.

4.1 Expected Cost
We first need to know the resource requirements of our protocol. To facilitate the presentation
of our results, observe that abstractly our protocol is essentially a sequence of numbers L(1),
. . ., L(k − 1), generated entirely by a recurrence relation L(i) defined on two real numbers
which we call λ and γ. The depth k only serves to indicate a stopping point when generating
that sequence, so our protocol is basically controlled by three parameters (λ, γ, k). We will
usually say that an instance of our protocol is set according to an assignment on these three
values. As we alluded to a moment ago, λ is the reduced XY -overlap of resource qubit |ψ〉,
and γ is the starting success probability Q0(C1, ϕ1 ⊗ ψ). However, if we want to treat λ and
γ simply as real numbers, we need these two parameters to comply with certain constraints
for the L(i) numbers to be valid probabilities. Definition 9 brings together all relevant details
about λ and γ that are necessary to define a difference equation adhering to Lemma 8.

I Definition 9 (probability specification and boundary). Given real numbers (λ, γ), let

α = 1 +
√

1− 4λ
2 , β = 1− α = 1−

√
1− 4λ
2 . (16)

Then (λ, γ) is a probability specification if and only if 0 ≤ λ ≤ 1/4 and β ≤ γ ≤ α. A
probability specification is restricted if and only if 0 < λ < 1/4 and β < γ < α. The values
(α, β) are the boundaries of the probability specification.

I Definition 10 (intermediate functions and rde). Let (λ, γ) be a probability specification
and let (α, β) be its boundaries. The following are the intermediate functions of (λ, γ):

A1(i) = αi − βi, A2(i) = αi + βi, Bj(i) = Aj(i+ 1)− γAj(i), (17)

and the following is a rational difference equation (rde) on (λ, γ):

L(i) = λB1(i− 2)
B1(i− 1) =

γ if i = 1
λ

1− L(i− 1) otherwise.
(18)

As the name implies, the purpose of the intermediate functions is to help us build smaller
results leading up to our main propositions. We also realize right away that because L(i) is
a rational difference equation on a probability specification (λ, γ), the boundaries α and β
are fixed points of L(i). We end up with a similar situation to λ = 0. When α = γ > 1/2,
this suggests either input qubit |ψ〉 or ϕ1 is a stabilizer state, and we have an analogous
implication with β = γ < 1/2. Hence we define a restricted probability specification as
satisfying both 0 < λ < 1/4 and β < γ < α. On the other hand, λ = 1/4 means γ no longer
has the freedom to take on more than one value.

I Lemma 11. There is only one probability specification with λ = 1/4. It forces β = γ =
α = 1/2, which leads to L(i) = 1/2.

There are three ingredients to computing a protocol’s expected cost.
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I Definition 12 (startup cost, success probability (of protocol), and expected demand). Consider
a depth k protocol that starts by running circuit C1 on a two-qubit state ϕ1 ⊗ ψ. Then we
define the following quantities of the protocol:
i. startup cost: cost to prepare one ϕ1 qubit relative to the cost of one |ψ〉 qubit
ii. success probability (of protocol): probability of declaring success before declaring failure
iii. expected demand: expected number of |ψ〉 states used in each execution, regardless of

the final success or fail outcome.

I Definition 13 (expected cost). The expected cost of a depth k protocol is determined by
N = (d+ s)/p, where d is the startup cost, p is the protocol’s success probability, and s is
the expected demand.

In the next lemma, we present the success probability and expected demand of a protocol
in the general situation.

I Lemma 14. Let A1(i) and B2(i) be intermediate functions of a restricted probability
specification (λ, γ). Then the success probability p and expected demand s of a protocol set to
(λ, γ) and depth k are

p = γA1(k − 1)
A1(k) , s = A1(k − 1) (γ − 2λ) + (k − 1)A1(1)B2(k − 1)

(A1(1))2
A1(k)

. (19)

Proof. As we mentioned earlier, we model our protocol as a random walk on the integers
{0, . . . , k}. Since we are dealing with a restricted probability specification, we look towards
Lemma 27 of Appendix B. Plugging i = 1 into the equations returns the solutions above. J

A protocol given an assignment of (λ, γ, k) behaves quite differently when λ = 1/4 versus
the more general (λ, γ) a restricted probability specification. Because we have to treat the
protocol specially when λ = 1/4, we end up with two expected cost equations.

I Lemma 15. The expected cost of a protocol with startup cost d and set to a restricted
probability specification (λ, γ) and depth k is

N(k) = dA1(k)
γA1(k − 1) + (k − 1)B2(k − 1)

γA1(1)A1(k − 1) + γ − 2λ
γ (A1(1))2 (20)

where A1(i) and B2(i) are intermediate functions of (λ, γ). The expected cost of a protocol
with λ = 1/4 is

N(k) = k2 + kd− k
k − 1 . (21)

Proof. The proof is straightforward from N(k) = (d+s)/p, where s = k−1 and p = (k−1)/k
when λ = 1/4 by Lemma 28, and by Lemma 14 when (λ, γ) is a restricted probability
specification. J

4.2 Minimizing Expected Cost
We want to find the integer k ≥ 2 that minimizes the expected cost N(k). That is, we wish
to solve Nopt = mink∈{2,3,...}N(k) and determine the depth kopt such that Nopt = N(kopt).
Fortunately, there is evidence to suggest N(k) has a single critical point. Figure 3 shows the
expected cost for several protocol instances set to varying restricted probability specifications
(λ, γ) and startup costs d. The examples provide a convincing argument to assume N(k) has
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Figure 3 This figure contains plots of the expected cost N(k) for three choices of the reduced
XY -overlap λ ∈ (0, 1/4) and varying starting probabilities γ. Although the curve of γ = 0.84355 for
λ = 1/8 appear to reach a constant, the close-up in the top right graph suggests otherwise. Notice
how every curve has a minimum at a point k > 1 before a region of continuous increase. Equation 23
indicates that the rate of change eventually reaches a nonzero positive constant.

a single minimum. This means if we find the point kmin that minimizes N(k), we can easily
find kopt.

There is a good reason to running kopt − 1 circuits: if the depth k is too small, then we
are stopping prematurely and not taking full advantage of the recovery ability of two-qubit
stabilizer circuits; if k is too large, then we are putting more work into running the recovery
than it is to start over.

4.2.1 Optimal Depth: Generic Case
Given the nature of the expected cost functions from Lemma 15, we devote most of our
efforts to answering kopt for a protocol set to a restricted probability specification (λ, γ). By
the end, we propose that kopt scales logarithmically with respect to the startup cost d. Let
(α, β) be the boundaries of (λ, γ). Then the first derivative in its entirety is

N ′(k) =−
ln(α/β)

(
(α− β)2d+ (k − 1)(1− 2γ)

)
(α− β)

(
1− (β/α)k−1

)(
(α/β)k−1 − 1

)
γ

+

(
α+ (β/α)k−1

β −
(

1 + (β/α)k−1
)
γ
)

(α− β)
(

1− (β/α)k−1
)
γ

(22)

Seeing how N ′(k) is transcendental, we rely on a combination of numerical and analytical
approaches to justify our claim. A quick look at the limits of N ′(k) reveals its behavior falls
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Figure 4 The data for kmin suggests a protocol set to a restricted probability specification should
use O(log d) circuits to keep costs to a minimum, where d is the startup cost.

within our expectations. That is, N ′(k)→ −∞ as k → 1+ and

lim
k→∞

N ′(k) = lim
k→∞

(
α+ (β/α)k−1

β −
(

1 + (β/α)k−1
)
γ
)

(α− β)
(

1− (β/α)k−1
)
γ

= α− γ
(α− β) γ > 0 (23)

since β < γ < α. The first term in Equation 22 also zeroes out as a consequence of β < α.
This is typical of a function with at least one minimum. If we let k′ = k − 1 and make some
rearrangements, then we rewrite N ′(k) as

N ′(k′) =−
ln(α/β)

(
(α− β)2

d+ (1− 2γ) k′
)

(α− β)
(

1− (β/α)k
′
)(

(α/β)k
′
− 1
)
γ

+ (α− γ) (α/β)k
′
+ (γ − β) (β/α)k

′
− α+ β

(α− β)
(

1− (β/α)k
′
)(

(α/β)k
′
− 1
)
γ

. (24)

We come up with a lower bound of N ′(k′) by dropping the term (γ − β)(β/α)k′ ≤ 1:

N ′lb(k′) =
(α− γ) (α/β)k

′
− α+ β − ln(α/β)

(
(α− β)2

d+ (1− 2γ) k′
)

(α− β)
(

1− (β/α)k
′
)(

(α/β)k
′
− 1
)
γ

(25)

which may be used to locate an upper bound of kmin. Starting with N ′lb(k′) = 0, we get(
α

β

)k′

= ln
(
α

β

)(
1− 2γ
α− γ

)
k′ + ln (α/β) (α− β)2

d+ α− β
α− γ

. (26)
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Making the substitution

−t = k′ + ln (α/β) (α− β)2
d+ α− β

ln (α/β) (1− 2γ) (27)

turns Equation 26 into

t

(
α

β

)t
= − 1

t0

(
α

β

)− t1
t0

(28)

where

t0 = ln
(
α

β

)(
1− 2γ
α− γ

)
, t1 = ln (α/β) (α− β)2

d+ α− β
α− γ

. (29)

The solution t to Equation 28 indicates that

kmin ≤ kup = −
W

(
− ln (α/β)

t0

(
α

β

)− t1
t0

)
ln (α/β) − t1

t0
+ 1 (30)

where W is the Lambert W function. If in addition γ = 1/2, then N ′(k′) = 0 is easier to
solve, leading to

kup =
ln
(

ln (α/β) (α− β)2
d+ α− β

)
− ln (α− 1/2)

ln (α/β) + 1. (31)

Figure 4 contains plots of kmin found using conventional optimization techniques. Aside
from smaller values of the startup cost d, the graphs provide a compelling case that kopt =
O(log d). Equation 31 is a good starting point to begin a search for the exact value of kopt.

4.2.2 Optimal Depth: Special Case

The derivative of N(k) when λ = 1/4 is much simpler by comparison: N ′(k) = (k−1)2−d
(k−1)2 .

The roots are 1±
√
d, of which only one is positive. From what we can gather, the optimal

depth has a sublinear relationship with respect to the startup cost in both domains.

I Theorem 16. Let d be the startup cost of a protocol set to a probability specification (λ, γ).
Then the optimal depth is kopt = min(d1 +

√
de, b1 +

√
dc) when λ = 1/4 and O(log d) when

(λ, γ) is a restricted probability specification.

4.3 Cost Ratio
To determine the effectiveness of our recovery, we compare N(2) – the method with no
recovery whatsoever – against N(kopt). We look at N(2)/N(kopt) under the assumptions of
Theorem 16.

I Theorem 17. Let kopt be the optimal depth of a protocol with startup cost d. Then

lim
d→∞

N(2)
N(kopt)

≤ 2. (32)
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Proof. We consider a restricted probability specification (λ, γ) first. Let (α, β) be its
boundaries and let A1(i), B2(i) be its intermediate functions. Given that N(2) = (d+ 1)/γ,
the exact ratio is

N(2)
N(k) = (d+ 1)A1(k − 1) (A1(1))2

dA1(k) (A1(1))2 + (k − 1)B2(k − 1)A1(1) + (γ − 2λ)A1(k − 1)
. (33)

In addition to A1(i) ≤ 1 and B2(i) ≤ 2 for all integers i ≥ 0, we can factor out αk−1 from
the top and bottom to say

N(2)
N(kopt)

=
(A1(1))2

(
1− (β/α)kopt−1

)
(d+ 1)

(A1(1))2
(

1− (β/α)kopt
)
αd+O(kopt)

(34)

where we ignore lower order terms in the denominator. Since in this case kopt = O(log d)
and β < α, our conclusion now is more apparent:

lim
d→∞

(A1(1))2
(

1− (β/α)O(log d)
) (

1 + 1
d

)
(A1(1))2

(
1− (β/α)O(log d)

)
α+ O(log d)

d

= 1
α
. (35)

A protocol with uniform success probabilities L(i) = 1/2 is very much the same. For
simplicity, we use kmin = 1 +

√
d:

lim
d→∞

N(2)
N(kmin) = lim

d→∞

2d
√
d+ 2

√
d

d
√
d+ 2d+

√
d

= 1
α

(36)

since α = 1/2. J

4.4 Potential Improvements with Commonly Used Resource Qubits
According to Theorem 17, the best scenario is when λ = 1/4, which translates to α = 1/2 and
an expected cost reduction by up to half. We achieve this when performing phase rotations
with a single CNOT and |ψ〉 = |θ〉 = (|0〉+ eiθ)/

√
2 at angles 0 < θ < π/2 and θ 6= π/4. The

probability of rotating in either +θ or −θ direction is both 1/2. An alternative to recovery
is to try a correction with |2θ〉. This shifts the cost to preparing |2θ〉 from two |θ〉 qubits
but turns out to be actually less optimal. Observe that if we fail with |2θ〉, then we need to
prepare |22θ〉, and so on up to some max power of 2 exponent j. Since the optimal depth is
about

√
d for startup cost d, the gap between 2j and

√
d may be large, meaning this is worse

than following the recovery protocol directly.
One particular example that may benefit are the V -basis gate implementations from [1].

For the non-Clifford operation

V3 = 1 + 2i√
5

[
1 0
0 − 3

5 − i
4
5

]
, (37)

the idea is to inject |θ1〉 such that cos(θ1) = 7
√

2/10 and sin(θ1) =
√

2/10. Bocharov,
Gurevich, and Svore [1] show that single qubit unitary approximations in the Clifford+V
universal basis has the potential to be lower than Clifford+T , where T is the π/4 phase
rotation. If we have a long sequence of Clifford+V gates Ul · · ·U1, then including recovery
for the V gate implementations around Ul may prove helpful. More research is needed to
determine one way or the other.

Previous work [21] also lists one concrete example in which the recovery protocol improves
the average |H〉 cost, where H|H〉 = |H〉 is a magic state. The procedure is provided in
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|H〉 • |q1〉

|H〉 Z 0
⇒
|H〉 • |q2〉

|q1〉 H Z 0
⇒
|q2〉 H • |q3〉

|H〉 Z 0

Figure 5 Approach to generate |q3〉 with three postselected circuits and four |H〉 states as seen
in [21]. Adding recovery for the last two-qubit circuit lowers the average |H〉 usage.

Figure 5 for self-containment. In particular, the method without recovery uses 10.04 |H〉
qubits on average, but reduces slightly to about 9.45 with recovery. This represents a change
of about 5.9%. If we now consider an even longer chain of postselected circuits to prepare an
arbitrary resource ϕ1 from |H〉 states, Theorem 17 says the savings grows more to about
17%. This is assuming (C1, 0) ≡ (CNOT, 0) and |ψ〉 = |H〉 to yield α ≈ 0.8536. Direct use of

|T 〉〈T | = 1
2

[
I + 1√

3
(X + Y + Z)

]
, (38)

the +1 eigenstate of eiπ/4PH, in (CNOT, 0) means 1/α ≈ 1.267. But as far as we know,
there are yet to be significant applications that directly use |T 〉 besides to create |π/6〉 [5].
This starts from |T 〉 ⊗ |T 〉, so our recovery operation is not beneficial in this use case.

5 Conclusion

We have proposed a protocol built on the recovery potential of two-qubit stabilizer circuits
that has the capacity to lower the expected costs of obtaining some target qubit over the
naive approach. To be of greater practical value, one direction of interest is how the protocol
holds up in the face of noisy |ψ〉, since the errors may spread to ϕi and accumulate as it
passes through each circuit Ci. A numerical study with |H〉 states in [9] shows a decay for
certain error rates, but whether this observation is retained for arbitrary non-stabilizer |ψ〉
states is unknown. A related question is how the optimal depth is affected by the presence
of errors, where we expect kopt to decrease but by what amount.

In the long run, we predict our results are less likely to have a direct impact on current and
future state distillation schemes, and are more suited toward resource intensive computations
that require the injection of already finely distilled non-stabilizer states. Namely, that we
have one resource qubit |ψ〉, and another relatively more costly ϕ1, which may be entangled
with another system and for which we have spent much effort to obtain. At the moment, we
can only identify such setups to have any cost improvement when factoring in our approach.
However we hope that our demonstration can serve as a starting point for an investigation
into the reversibility of larger n-to-k stabilizer circuits on arbitrary non-stabilizer states |ψ〉,
and the viability of such operations for resource optimization.
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A Identities on Definition 10 Intermediate Functions

Appendix B relies heavily on the next lemma.

I Lemma 18. Let (λ, γ) be a restricted probability specification. Then we have the following
identities on its intermediate functions Aj(i) and Bj(i):
i. Aj(i+ 1) = Aj(i)− λAj(i− 1)
ii. Bj(i+ 1) = Bj(i)− λBj(i− 1)
iii. A1(j)A1(i) = A2(j + i)− λiA2(j − i)
iv. A2(j)A1(i) = A1(j + i)− λiA1(j − i)
v. B1(i)A1(i+ 1)A1(1) + λB1(2i) = B1(2i+ 2)− 2λi+1A1(1) + γλiA1(1)
vi. B1(j − i)A1(i) = B2(j)− λiB2(j − 2i)
vii. λiA2(j − 2i)A1(1) +A2(j − i+ 1)A1(i) = A2(j − i)A1(i+ 1)
viii. λiB2(j − 2i− 1)A1(1) +B2(j − i)A1(i) = B2(j − i− 1)A1(i+ 1)

Proof. Note that λ = αβ and A2(1) = α+ β = 1 for boundaries (α, β) of (λ, γ). The first
equation is obvious from Aj(i)−λAj(i−1) = αi+ (−1)jβi−αiβ− (−1)jαβi, and the second
one follows immediately. The next two are just as easy to prove. The fifth identity looks a
little more involved, but we just need to show

B1(i)A1(i+ 1) = A1(i+ 1)A1(i+ 1)− γA1(i+ 1)A1(i) (39)
= A2(2i+ 2)− 2λi+1 − γA2(2i+ 1) + γλi (40)
= B2(2i+ 1)− 2λi+1 + γλi (41)

B2(2i+ 1)A1(1) = A2(2i+ 2)A1(1)− γA2(2i+ 1)A1(1) (42)
= A1(2i+ 3)− λA1(2i+ 1)− γA1(2i+ 2) + γλA1(2i) (43)
= B1(2i+ 2)− λB1(2i) (44)

and the result becomes clear. The following covers (vi):

B1(j − i)A1(i) = A1(j − i+ 1)A1(i)− γA1(j − i)A1(i) (45)
= A2(j + 1)− λiA2(j − 2i+ 1)− γA2(j) + γλiA2(j − 2i) (46)
= B2(j)− λiB2(j − 2i) (47)

while (vii) is based on (iv):

λiA2(j − 2i)A1(1) +A2(j − i+ 1)A1(i) = αiβi (A1(j − 2i+ 1)− αβA1(j − 2i− 1))
+A1(j + 1)− αiβiA1(j − 2i+ 1) (48)

= A1(j + 1)− αi+1βi+1A1(j − 2i− 1) (49)
= A2(j − i)A1(i+ 1). (50)

The last one is a consequence of (vii). J

B Random Walk Modeling of Depth k Protocol

We model our depth k protocol as a 1-dimensional random walk on the integers {0, . . . , k},
with Equation 18 as the left step probability at each location on the number line. Every
time we execute the protocol, we start a random walk at location i = 1. When we obtain
Φ0(C1, ϕ1 ⊗ ψ), this represents a step onto the left boundary 0.

Random walk processes have been studied extensively in [7] and [13]. We borrow two
functions from [7] to compute certain aspects about our protocol.

TQC 2018
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I Definition 19 (success probability of random walk). Consider a random walk over the
integers {0, . . . , k}. Define P (i) to be the probability that the walk, starting at i, successfully
reaches 0 before it reaches k. Then the P (i) probabilities are described by

P (i) =


1 if i = 0
0 if i = k

L(i)P (i− 1) + (1− L(i))P (i+ 1) otherwise
(51)

where L(i) is the probability of a left step from i to i− 1.

I Definition 20 (expected number of steps in random walk). Similar to Definition 19, define
S(i) to be the expected number of steps that the walk, starting at i, takes to reach 0 or k.
Then the S(i) expectations are described by

S(i) =
{

0 if i = 0 or i = k

L(i)S(i− 1) + (1− L(i))S(i+ 1) + 1 otherwise
(52)

where L(i) is the probability of a left step from i to i− 1.

We solve for the closed-form expressions of P (i) and S(i) with Equation 18 as the
transition. Because of Lemma 11, there are two sets of solutions based on the nature of L(i),
which we present in Lemmas 27 and 28. We start with the general framework for computing
P (i) and S(i) individually as it appears in [13].

A 1-dimensional random walk on integers {0, . . . , k} is also called an absorbing Markov
chain, where the endpoints 0 and k serve as absorbing states. It has k − 1 transient
(non-absorbing) states, and we may write down the transition matrix in canonical form as

2︷︸︸︷ k − 1︷︸︸︷ I O

U V

} 2}
k − 1

(53)

where O contains all zeroes and I is the 2× 2 identity. Each row sums to 1, and the first and
second rows represent transitions from the left and right boundaries. The block matrices U
and V contain transition probabilities from transient to absorbing and transient to transient
states, respectively. We arrange the rows and columns of V such that

Vi,j =


L(i) if j = i− 1
R(i) if j = i+ 1
0 otherwise

(54)

where L(i) is the probability from i to i− 1 and R(i) = 1− L(i). It has nonzero entries only
at places immediately adjacent to the main diagonal. The U matrix is mostly zeroes with
the exception of two spots: U1,1 = L(1) and Uk−1,2 = R(k − 1). As an example,

1 0 0 0 0
0 1 0 0 0

L(1) 0 0 R(1) 0
0 0 L(2) 0 R(2)
0 R(3) 0 L(3) 0

 (55)

is the canonical transition matrix of a random walk with k = 4.
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At the heart of proving Lemma 27 is the inverse E = (I−V )−1 known as the fundamental
matrix. According to [13], we may use E to obtain P (i) = (EU)i,1 and S(i) = (E~1)i, where
~1 is a column vector of ones. If S(i) is an expectation in the number of steps taken, then the
variance is (2E− I)E~1− Sq(E~1), where Sq(E~1) squares each entry of E~1. The fundamental
matrix basically allows us to gather a number of meaningful statistics that we may want
when evaluating a Markov chain.

The generic form of E = (I − V )−1 for the random walk can be found through various
derivations, but regardless of which method we use, we may write an entry of the matrix in
terms of the following recurrences:

F (i) = F (i− 1)− L(i)R(i− 1)F (i− 2), F (0) = 1, F (−1) = 0 (56)
F (i, k) = F (i+ 1, k)−R(i)L(i+ 1)F (i+ 2, k), F (k, k) = 1, F (k + 1, k) = 0. (57)

The F (i, k) function mirrors F (i), with k acting as the base. To give an example, if k = 4
and we start with

[
I − V I

]
=

 1 −R(1) 0 1 0 0
−L(2) 1 −R(2) 0 1 0

0 −L(3) 1 0 0 1

 (58)

then Gaussian elimination eventually yields

E =



F (2, 4)F (0)
F (1, 4)

R(1)F (3, 4)F (0)
F (1, 4)

R(2)R(1)F (4, 4)F (0)
F (1, 4)

L(2)F (3, 4)F (0)
F (1, 4)

F (3, 4)F (1)
F (1, 4)

R(2)F (4, 4)F (1)
F (1, 4)

L(3)L(2)F (4, 4)F (0)
F (1, 4)

L(3)F (4, 4)F (1)
F (1, 4)

F (4, 4)F (2)
F (1, 4)


(59)

as our inverse. Substituting Equation 18 into the matrix leads to Lemma 23, but to realize
this, we prove some identities on F (i) and F (i, k) to make the algebra easier to handle later.

I Lemma 21. Let F (i) = F (i− 1)−αβ F (i− 2) with initial conditions F (−1) = 0, F (0) = 1
and positive real numbers α, β such that α+ β = 1. Then

F (i) =
i∑

j=0
αi−jβj = αi + αi−1β + . . .+ αβi−1 + βi. (60)

Moreover, (α− β)F (i) = αi+1 − βi+1.

Proof. We prove the lemma by induction on i. The base cases are trivial to see: the first is
an empty sum, and the second is a single term. Assuming F (l) is true for all l < i, then

F (i) = (α+ β)
i−1∑
j=0

αi−1−jβj − αβ
i−2∑
j=0

αi−2−jβj (61)

=
i−1∑
j=0

αi−jβj + β

i−2∑
j=0

αi−1−jβj − β
i−2∑
j=0

αi−1−jβj + βi (62)

=
i∑

j=0
αi−jβj . (63)
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For the second identity,

(α− β)F (i) = αi+1 +
i−1∑
j=0

αi−jβj+1 −
i−1∑
j=0

αi−jβj+1 − βi+1 = αi+1 − βi+1 (64)

which finishes the proof. J

I Lemma 22. Let α, β be positive real numbers such that α+β = 1. Let k ≥ 2 be an integer.
Then the two recurrences

F (i) = F (i− 1)− αβ F (i− 2), F (0) = 1, F (−1) = 0 (65)
F (i, k) = F (i+ 1, k)− αβF (i+ 2, k), F (k, k) = 1, F (k + 1, k) = 0 (66)

are related by F (i, k) = F (k − i).

Proof. The induction goes in decreasing values of i. Immediately, we see F (k + 1, k) =
F (−1) = 0 and F (k, k) = F (0) = 1. Assuming F (j, k) = F (k − j) holds for all j > i, then

F (i, k) = F (i+ 1, k)− αβF (i+ 2, k) (67)
= F (k − (i+ 1))− αβF (k − (i+ 2)) (68)
= F (k − i− 1)− αβF (k − i− 2) = F (k − i). (69)

This completes the proof. J

Lemmas 23 and 24 describe what the fundamental matrix E will be in our application.

I Lemma 23. Let L(i) be an rde on a restricted probability specification (λ, γ). If L(i)
determines the left step probabilities of a random walk over {0, . . . , k}, then the following
describes the entries of the fundamental matrix E:

Ei,j =


λi−jA1(k − i)A1(j)B1(j − 1)

A1(1)A1(k)B1(i− 1) if i ≥ j

A1(k − j)A1(i)B1(j − 1)
A1(1)A1(k)B1(i− 1) otherwise

(70)

where A1(i) and B1(i) are intermediate functions of (λ, γ).

Proof. Let (α, β) be the boundaries of (λ, γ). After we adapt the example matrix in Equation
59 with Equation 18, we check if what we get for E is in fact the inverse of I − V (the block
matrix V comes from the canonical representation of the transition matrix).

The non-recursive formulas of L(i) and R(i) are

L(i) = λB1(i− 2)
B1(i− 1) , R(i) = B1(i)

B1(i− 1) . (71)

The pattern in Equation 59 suggests

Ei,j =



F (j + 1, k)F (i− 1)
F (1, k)

j−1∏
l=i

R(l) if i < j

F (i+ 1, k)F (i− 1)
F (1, k)

if i = j

F (i+ 1, k)F (j − 1)
F (1, k)

i∏
l=j+1

L(l) if i > j.

(72)
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If we combine L(i)R(i− 1) = λ = αβ, Lemma 21, Lemma 22, and

i∏
l=j+1

L(l) = λi−jB1(j − 1)
B1(i− 1) ,

j−1∏
l=i

R(l) = B1(j − 1)
B1(i− 1) (73)

then we obtain Equation 70 above.
We validate Ei,j as the last step in our proof. All rows and columns of I − V have at

most three non-zero entries, all lying near the main diagonal. When we examine row i of
I − V and column j of E such that i < j, we get

((I − V )E)i,j = − λB1(i− 2)
B1(i− 1)

A1(k − j)A1(i− 1)B1(j − 1)
A1(1)A1(k)B1(i− 2)

+ A1(k − j)A1(i)B1(j − 1)
A1(1)A1(k)B1(i− 1)

− B1(i)
B1(i− 1)

A1(k − j)A1(i+ 1)B1(j − 1)
A1(1)A1(k)B1(i) = 0 (74)

by Lemma 18(i). The special case i = 1 < j involves only two terms, but the result remains
the same since A1(2) = A1(1). The other situations follow similarly, where ((I − V )E)i,j = 1
when i = j and ((I − V )E)i,j = 0 when i > j. The same logic applies for E(I − V ). J

I Lemma 24. The fundamental matrix E for a uniform random walk over {0, . . . , k} is

Ei,j =


2 (k − i) j

k
if i ≥ j

2 (k − j) i
k

otherwise.
(75)

Proof. We have F (i) = (i+ 1)/2i as a consequence of α = β = 1/2 by Lemma 11. For i < j,

Ei,j = F (j + 1, k)F (i− 1)
F (1, k)

j−1∏
l=i

R(l) = k − j
2k−j−1

i

2i−1
2k−1

k

1
2j−i = (k − j) i

2−1k
. (76)

The other case is similar. J

Given matrix E, we sum across row i to compute the expected steps S(i). We separate
the summation into two parts, one from column 1 to column i and another from i + 1 to
k − 1. We show a couple identities on these two smaller sums before the final proof.

I Lemma 25. Let A1(i) and B1(i) be intermediate functions of a restricted probability
specification (λ, γ). Then for all integers i ≥ 0,

J1(i) =
i∑

j=0
λi−jB1(j)A1(j + 1) = B1(2i+ 2)

A1(1) − ((2i+ 3)λ− (i+ 1)γ)λi. (77)

Proof. Recognizing A1(3) = A2(2)A1(1) + λA1(1) and A1(2) = A1(1), we can show

J1(0) = A1(3)− γA1(2)
A1(1) − 3λ+ γ (78)

= A1(1) (A2(2) + λ− γ)
A1(1) − 3λ+ γ (79)

= A2(2)− 2λ = A1(1)A1(1). (80)

TQC 2018



8:20 Recovery Circuits II: Analysis

This acts as a base case for an induction on J1(i) = λJ1(i − 1) + B1(i)A1(i + 1). If we
continue forward, then

J1(i) = B1(i)A1(i+ 1) + λB1(2i)
A1(1) − ((2i+ 1)λ− iγ)λi (81)

= B1(2i+ 2)
A1(1) − 2λi+1 + γλi − (2i+ 1)λi+i + iγλi (82)

as a result of Lemma 18(v). J

I Lemma 26. Let A1(i) and B2(i) be intermediate functions of a restricted probability
specification (λ, γ). Let k ≥ 2 be an integer. Then for all integers i ≥ 1,

J2(i) =
i∑

j=1
B1(k − j − 1)A1(j) = (i+ 1)B2(k − 1)− A1(i+ 1)

A1(1) B2(k − i− 1). (83)

Proof. Again, we give a proof by induction. Starting with i = 1,

J2(1) = B1(k − 1− 1)A1(1) +B2(k − 1)−B2(k − 1) (84)

= 2B2(k − 1)− A1(1) (B2(k − 1) + λB2(k − 3))
A1(1) (85)

= 2B2(k − 1)− A1(2)
A1(1)B2(k − 2) (86)

using Lemma 18. Assuming J2(j) is true for all j < i, let us look at

J2(i) = B1(k − i− 1)A1(i) + J2(i− 1) (87)

= B1(k − i− 1)A1(i) + iB2(k − 1)− A1(i)
A1(1)B2(k − i). (88)

By Lemma 18(vi), we end up with

J2(i) = (i+ 1)B2(k − 1)− λiB2(k − 2i− 1)− A1(i)
A1(1)B2(k − i). (89)

After gathering the last two terms under a common denominator, the numerator becomes

−λiB2(k − 2i− 1)A1(1)−B2(k − i)A1(i) = −B2(k − i− 1)A1(i+ 1) (90)

due to Lemma 18(viii). J

We are ready to solve Equations 51 and 52.

I Lemma 27. If the left step probabilities of a random walk over {0, . . . , k} are determined
by an rde on a restricted probability specification (λ, γ), then the following are solutions to
Equations 51 and 52 of the random walk:

P (i) = A1(1)A1(k − i)γλi−1

A1(k)B1(i− 1) (91)

S(i) =
A1(k − i)

(
γλi−1 − 2λi

)
i+ (k − i)A1(i)B2(k − 1)

A1(1)A1(k)B1(i− 1) (92)

where A1(i) and Bj(i) are intermediate functions of (λ, γ).
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Proof. More formally,

S(i) =
k−1∑
j=1

Ei,j = A1(k − i)J1(i− 1) +A1(i)J2(k − i− 1)
A1(1)A1(k)B1(i− 1) (93)

where J1(i− 1) and J2(k − i− 1) are defined in Lemmas 25 and 26. Note that J2(k − i− 1)
starts the summation index from the right end of fundamental matrix E and moves inward.
With the help of

A1(i)B2(i) = A1(i)A2(i+ 1)− γA1(i)A2(i) (94)
= A1(2i+ 1)− γA1(2i)− λiA1(1) (95)
= B1(2i)− λiA1(1) (96)

and Lemma 18, we arrive at

A1(i)J2(k − i− 1) = (k − i)A1(i)B2(k − 1)− A1(k − i)
A1(1) B1(2i) + λiA1(k − i). (97)

Then combining it with

A1(k − i)J1(i− 1) = A1(k − i)
A1(1) B1(2i)−A1(k − i) ((2i+ 1)λ− iγ)λi−1 (98)

we see that a couple terms cancel out, leaving Equation 92 as desired.
The derivation of P (i) from E is easier to obtain. Recall that P (i) = (EU)i,1, where U

is a (k − 1)× 2 matrix with U1,1 = γ and 0 for the rest of column 1. As such,

P (i) = γEi,1 = A1(k − i)A1(1)B1(0)γλi−1

A1(1)A1(k)B1(i− 1) = A1(1)A1(k − i)γλi−1

A1(k)B1(i− 1) (99)

since B1(0) = A1(1). J

I Lemma 28. The solutions to Equations 51 and 52 are P (i) = (k− i)/k and S(i) = ki− i2
for a uniform random walk over {0, . . . , k}.

Proof. The solutions are already discussed in [7], but we can reach the same conclusion by
way of Lemma 24. Accordingly,

S(i) =
i∑

j=1

2 (k − i) j
k

+
k−1∑
j=i+1

2 (k − j) i
k

(100)

= 2 (k − i)
k

(i+ 1) i
2 + 2i

k

(k − i) (k − i− 1)
2 (101)

= (i+ 1 + k − i− 1) (k − i) i
k

= ki− i2. (102)

The P (i) solution is simpler to derive. J
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9:2 Efficient Population Transfer via Non-Ergodic Ext. States in Quantum Spin Glass

efficiently simulate tunneling transitions away from local minima if the tunneling is effectively
dominated by a single path. We analyze a new computational role of coherent multi-qubit
tunneling that gives rise to bands of non-ergodic extended (NEE) quantum states each formed
by a superposition of a large number of deep local minima with similar energies. NEE provide
a coherent pathway for population transfer (PT) between computational states with similar
energies. In this regime, PT cannot be efficiently simulated by QMC. PT can serve as a new
quantum subroutine for quantum search, quantum parallel tempering and reverse annealing
optimization algorithms. We study PT resulting from quantum evolution under a transverse field
of an n-spin system that encodes the energy function E(z) of an optimization problem over the
set of bit configurations z. Transverse field is rapidly switched on in the beginning of algorithm,
kept constant for sufficiently long time and switched off at the end. Given an energy function of
a binary optimization problem and an initial bit-string with atypically low energy, PT protocol
searches for other bitstrings at energies within a narrow window around the initial one. We
provide an analytical solution for PT in a simple yet nontrivial model: M randomly chosen marked
bit-strings are assigned energies E(z) within a narrow strip [−n−W/2, n+W/2], while the rest of
the states are assigned energy 0. The PT starts at a marked state and ends up in a superposition
of L marked states inside the narrow energy window whose width is smaller than W. The best
known classical algorithm for finding another marked state is the exhaustive search. We find that
the scaling of a typical PT runtime with n and L is the same as that in the multi-target Grover’s
quantum search algorithm, except for a factor that is equal to exp(n/(2B2)) for finite transverse
field B � 1. Unlike the Hamiltonians used in analog quantum unstructured search algorithms
known so far, the model we consider is non-integrable and the transverse field delocalizes the
marked states. As a result, our PT protocol is not exponentially sensitive in n to the weight of
the driver Hamiltonian and may be initialized with a computational basis state. We develop the
microscopic theory of PT by constructing a down-folded dense Hamiltonian acting in the space
of marked states of dimension M. It belongs to the class of preferred basis Levy matrices (PBLM)
with heavy-tailed distribution of the off-diagonal matrix elements. Under certain conditions, the
band of the marked states splits into minibands of non-ergodic delocalized states. We obtain
an explicit form of the heavy-tailed distribution of PT times by solving cavity equations for the
ensemble of down-folded Hamiltonians. We study numerically the PT subroutine as a part of
quantum parallel tempering algorithm for a number of examples of binary optimization problems
on fully connected graphs.

2012 ACM Subject Classification Theory of computation → Quantum computation theory,
Theory of computation → Discrete optimization, Theory of computation → Machine learning
theory

Keywords and phrases Quantum algorithms, Discrete optimization, Quantum spin glass, Ma-
chine learning

Digital Object Identifier 10.4230/LIPIcs.TQC.2018.9

1 Introduction

Analog quantum enhanced search and optimization algorithms could, at the very least,
provide a stop-gap solution for quantum applications prior to fault-tolerant universal quantum
computation [34]. Typically the classical cost function in binary optimization problems is
encoded in a n-qubit Hamiltonian Hcl =

∑
z Ez |z〉〈z| diagonal in the computational basis

{|z〉}. The energy landscape {Ez} of a typical hard optimization problem is characterized
by a large number of spurious local minima. While close in energy, they can be separated

http://dx.doi.org/10.4230/LIPIcs.TQC.2018.9
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by large Hamming distances. This landscape gives rise to an interesting computational
primitive: given an initial bit-string with sufficiently low energy, we are to produce other
bit-strings within a certain narrow range of energies ∆Ecl in the vicinity of the initial state.
In general, this is a hard computational task. For instance, given a solution of a SAT
problem finding another solution of a similar quality is generally as hard as finding the initial
solution. Inspired by previous work in analogue quantum computing [22, 16, 8], we propose
the following quantum population transfer (PT) protocol: given an initial computational
state |z0〉 with classical energy Ez0 , we evolve with the Hamiltonian

H = Hcl +HD, HD = −B⊥
n∑
j=0

σxj , (1)

where HD is the driver Hamiltonian, without fine-tuning the evolution time or the strength
of the transverse field B⊥. Finally we measure in the computational basis and check the
energy Ez of the outcome |z〉 if z 6= z0. Practically, analog implementation requires rapid
(diabatic) ramp on/off of the transverse field at the beginning/end of the protocol.

The distribution ρ(Eγ) of the eigenvalues of H, where H |ψγ〉 = Eγ |ψγ〉, is typically well
localized around the mean classical energy, with an exponentially decaying tail reaching
towards the low energy states. The initial state |z0〉 is located at a deep local minimum of the
classical landspace {Ez}, at the tail the distribution ρ(Eγ). The non-diagonal matrix elements
−B⊥ give rise to hopping between states separated by one bit-flip. Matrices with diagonal
disorder and hoping between neighbors correspond to the Anderson model introduced in the
context of transport and localization in disordered media [5]. The transverse field B⊥ couples
the local minima via perturbation theory in a high order given by the Hamming distance
between them. In this model (1), as well as in the original Anderson model, there exist bands
of localized and extended states separated in energy by a so-called “mobility edge”. It was
demonstrated in Ref. [4] that localization is responsible for the failure of Quantum Annealing
to find a solution of the constraint satisfaction problem (although, the detailed analysis of
this effect is still lacking [24, 23]). Nonetheless, extended states could provide a mechanism
for population transfer away from the initial state. In spin-systems with transverse field the
existence of a so-called “mobility edge” at the tail of the distribution ρ(Eγ), separating in
the energy spectrum localized and delocalized eigenstates of H, has been recently studied in
Refs. [37, 27, 31].

The population transfer corresponds to the formation of a “conduction band” that could
be understood from the following arguments. We express the probability of a transition from
|z0〉 to |z〉,

P (t, z|z0) =

∣∣∣∣∣∑
γ

〈z|ψγ〉 〈ψγ |z0〉 e−iEγt
∣∣∣∣∣
2

, (2)

in terms of the eigenstates {|ψγ〉} and eigenvalues {Eγ} of the system Hamiltonian H. In
the delocalized phase the state |z0〉 has a sizable overlap with a large set of eigenstates of
size Ω with energies within some range |Eγ − Eγ′ | ∼ ∆E. These are the eigenstates that
dominate the sum in Eq. (2). The eigenstates in this set posses an important property
extensively studied in the theory of transport in disordered systems [26, 3, 2]. They have
largely overlapping supports over a support set S of bit-strings. This implies, from Eq. (2),
that after a typical population transfer time tPT ∝ 1/∆E and for any initial state z0 ∈ S the
population is spread over the entire set S , that is P (tPT, z1|z0) ∼ 1/|S | for all z1 ∈ S . The
conduction band is formed by the eigenstates within a spectrum width ∆E associated with
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9:4 Efficient Population Transfer via Non-Ergodic Ext. States in Quantum Spin Glass

the bit-strings in S . From the point of view of condensed matter physics, the eigenstates
that overlap with |z0〉 are non-ergodic. Nevertheless, they form a conduction miniband with
energies below the quantum spin glass transition at the tail of ρ(Eγ) [27, 2].

The formation of the conduction band explained above is the physical mechanism that we
intend to exploit in the PT protocol to solve the computational primitive defined above. It is
well established that simulating unitary time quantum dynamics in the delocalized phase to
approximate P (tPT, z1|z0) can not be done efficiently by known numerical techniques, such
as quantum Monte-Carlo or tensor network methods, due to the coherent many-body nature
of this transport phenomena. In addition to tunneling the transverse field B⊥ gives rise to
shifts in the classical energies Ecl distributed over the width ∆Ecl. This limits how narrow
the target window of classical energies in the primitive can be.

More generally, the PT protocol can provide a useful primitive to explore energy landscapes
on the way to lower energy states for optimization, reverse annealing [33] and quantum
machine learning [10, 7]. The output of PT z can be used as an input of a classical
optimization heuristic such as simulated annealing or parallel tempering in a “hybrid”
optimization algorithm [32] where quantum and classical steps can be used sequentially to
gain the complementary advantages of both [11]. A quantum advantage of the population
transfer primitive would imply an advantage of such quantum parallel tempering over similar
classical algorithms.

We propose a theoretical approach to analyze this problem with detailed analysis presented
in [36]. Here we provide the results. Our approach exploits the existence of two relevant
energy scales. The first scale is the width of the non-ergodic conduction miniband ∆E.
The second scale is the typical change in classical energy Ecl corresponding to one spin flip.
Because of the large Hamming distances separating states in the support of the conduction
band S , the effecitive coupling elements that couple them correspond to high order in
perturbation theory in B⊥, and therefore |Ecl| � ∆E. The dynamics within the miniband is
described by the effective downfolded Hamiltonian

H =
M∑
j=1

εj |j〉 〈j|+
M∑

j,k=1
Vjk |j〉 〈k| . (3)

The sum is over a size M of the subset of computational basis states |zj〉 sufficiently wide
such that it contains the support set S . The εj ’s are appropriately renormalized energies
of the Hamiltonian Hcl. The non-diagonal matrix elements Vjk correspond to the sum over
all elementary spin-flip processes that begin in state |j〉, proceed through virtual states
separated by energies at least E from the miniband, and return back to the miniband only at
the last step, at the state |k〉. We emphasize that in general Vjk takes into account all loops
where the process returns back to the same virtual state without visiting the miniband.

In this paper we apply this analytical framework to "impurity band" model which
demonstrates a quantum spin glass behavior yet allows analytical description of the quantum
dynamics in the course of the PT protocol. In the second part of the paper we present
numerical analysis of a set of more practical models defined by 2-local Hamiltonians. The
impurity band model is defined by the Hamiltonian,

H = Hcl −B⊥
n∑
j=0

σxj , Hcl =
M∑
j=1
E(zj) |zj〉 〈zj | (4)

where the n-bit-strings {zj}Mj=1 are chosen uniformly at random from all bit-strings of
length n, there are M � 1 marked states |zi〉, with energies Ezj = −n + εj . The εj ’s are
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independently distributed around 0 with a narrow width W � 1 to be discussed below. All
other states have energy 0 and are separated by a large gap ∼ n from the very narrow band
of marked states. The typical distance between marked states is n/2. If M is exponentially
large in n the typical distance dmin to the nearest marked state is much smaller than n/2 but
remains extensive dmin = O(n). As such, each marked state |zj〉 is a deep local minimum of
E(z) coupled to other marked states via transverse field induced multiqubit tunneling with
amplitude decreasing exponentially with Hamming distance d.

We obtain an explicit analytical form for the statistical properties of the PT dynamics in
the above model (4) by deriving in the form of Eq. (3) an effective down-folded Hamiltonian
in the energy strip associated with the PT [36]

Hij = δijεj + (1− δij)Vij
√

2 sinφ(dij) . (5)

Here the diagonal elements εj are given by the marked state energies counted off from the
center of the impurity band shifted due to the effect of the transverse field ∼ B2

⊥. Their
PDF is assumed to be exponentially bounded with some width W .

Explicit analytical form of the off-diagonal elements is obtained using WKB approach.
In Eq. (5) φ(d) ≡ φ(E(0), d) is a WKB phase that describes the oscillation of the matrix
elements with the Hamming distance. The tunneling amplitude Vij equals

Vij ≡ V (dij), V (d) =
√
A(d/n,B⊥) n

5/4 e−nθ(B⊥)√(
n
d

) , (6)

where i 6=j and the coefficient A(ρ,B⊥) is a smooth function of its arguments. The function
θ(B⊥) is given in [36]. Below we use its asymptotical form in the limit B⊥ � 1,

θ ' 1
4B2
⊥

+ 1
24B4

⊥
+ 1

60B6
⊥

+ . . . . (7)

In this limit θ � 1. We shall refer to H in (5) as the Impurity Band (IB) Hamiltonian.
The typical matrix element corresponds to tunneling at distance n/2 given by,

Vtyp ∼ n22−n/2e−n/(4B
2
⊥). (8)

At the same time the typical distance from a marked state to its nearest neighbor is extensive
dmin = O(n) which corresponds to a matrix element, see Eq. (6), exponentially larger than
the typical value Vtyp. Therefore there is a hierarchy of off-diagonal matrix elements of Hij .
The off diagonal matrix elements of random realizations of H are described by a heavy-tailed
probability density function [14, 30]. Such random matrices are called Levi matrices.

The PDF of the rescaled squared amplitudes wij = V 2(dij)/V 2
typ can be obtained in the

explicit form [36],

PDF(w) = 1
w2√π logw

, w ∈ [1,∞). (9)

The particular form of scaling is the direct consequence of the fact that our problem has no
"structure": the tunneling matrix elements depend only on Hamming distance and marked
states are chosen at random.

The key difference of the ensemble of matrices Hij from Levi matrices studied in the
literature [38, 30, 29, 14] is that the dispersion, W , of the diagonal matrix elements is much
larger than the typical magnitude of the off-diagonal elements Vtyp. Therefore Hij can be
called preferred basis Levi matrices (PBLM).
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We note that the existence of heavy tails in the PDF of the off-diagonal matrix elements
of the down-folded Hamiltonian H is due to the infinite dimension of the Hilbert space of
the original problem (1) for n → ∞. This happens because the exponential decay of the
matrix elements with the Hamming distance d is compensated by the exponential growth
of the number of states at the distance d from a given state. We expect that this PBLM
structure is a generic feature of the effective Hamiltonians for PT at the tail of the density of
states in quantum spin glass problems.

The competition between the exponential decrease of the matrix element and the increase
of the number of neighbors at distance d can result in eigenstates |ψβ〉 of H associated with
the impurity band becoming delocalized over a large subset of marked states Sβ with size
1 � |Sβ | ∝ Mα and 0 < α ≤ 1. For α = 0 the eigenstate |ψβ〉 is localized, for α = 1 the
eigenstate is delocalized in the entire space of marked states. For 0 < α < 1 the eigenstate
can be considered "non-ergodic" and its support set Sβ is sparse in the space of the marked
states. The PBLM matrices support non-ergodic delocalized states when the width W is
much bigger than the largest off-diagonal matrix element in a typical row of Hij and much
smaller than the largest off-diagonal element in a matrix

VtypM
1/2 �W � VtypM . (10)

For smaller dispersionW > VtypM
1/2 the matrix eigenstates are ergodic while forW ? VtypM

the eigenstates are localized. This non-ergodic regime is a distinct feature of the PBLM and
is absent in Levi matrices. Such phase diagram resembles the one in the Rosenzweig-Porter
(RP) model [26, 15]. The difference of RP from PBLM is that the statistics of the off-diagonal
matrix elements in the RP ensemble are Gaussian [35] rather than polynomial (9). In this
paper we focus on PT transfer within the non-ergodic delocalized phase, which is more likely
to generalize to other models. We note that the localized phase does not support population
transfer.

In the delocalized phase eigenstates with largely overlapping supports ∩βSβ ≈ S (zj)
form narrow mini-bands. The mini-band width Γ may be interpreted as the inverse scrambling
time and determines the width of the plateau in the Fourier-transform of the typical transition
probability P̃ (ω, z|zj) [26].2 In other words, the significant PT of P (t, z|zj) from the initial
marked state |zj〉 ∈ S into other states of the same miniband S occurs over time tPT ∼ 1/Γ.

Because of the PBLM structure of the Hamiltonian H one can expect that the runtime
of the PT protocol tPT will have a heavy-tailed PDF whose form is of practical interest. It
is closely related to the PDF of the miniband widths Γ ∼ 1/tPT. We obtained the PDF(Γ)
using the cavity method for random symmetric matrices [1, 14, 9, 38].

Previously cavity equations were solved only in their linearized form, i.e., near the
localization transition. We were able to solve the fully nonlinear cavity equations in the
delocalized non-ergodic phase [36]. We obtained boundaries of the non-ergodic phase
analytically in terms of the ratio of W/Vtyp and the form of the PDF P(Γ) inside the phase.
It is given by the alpha-stable Levi distribution [19, 14] with the tail index 1, see Fig. 1

P(Σ′′) = 1
C
L1,1

1

(Σ′′ − Σ′′typ

C

)
, (11)

Σ′′typ = µΩΣ′′∗ , C = σΩΣ′′∗ . (12)

2The same plateau width characterizes the frequency dependence of the eigenfunction overlap correlation
coefficient K(ω) = M

∑M

j=1

∑
β,β′ | 〈j|ψβ〉 |2| 〈j|ψβ′〉 |2δ(ω − Eβ + Eβ′ ) [26].
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Here Σ′′typ is a shift of the distribution and C its scale parameter (characteristic width) and
we introduced a notation Σ′′∗ = πV 2

typ/(W/M).

µΩ '
1
σΩ

+ 2σΩ(1− γEuler)
π

. (13)

σΩ =
√

π

4 log Ω . (14)

Here Ω is the number of states in the miniband. This number Ω = (πMVtyp/W )2 is a square
function of the ratio of the typical tunneling matrix element Vtyp to the level separation
W/M .

We introduce the scaling of the width of the distribution of εm with the matrix size M ,

W = λMγ/2Vtyp , (15)

where γ is a real non-negative parameter that controls the scaling of the ratio of the typical
diagonal to off-diagonal matrix element Vtyp given in Eq. (8), and λ is an auxiliary constant
of order one. With this scaling ansatz we get [36],

Ω =
(π
λ

)2
M2−γ . (16)

Using the above scaling ansatz (15) and the expressions for σΩ (14) and µΩ (13) we
obtain,

Σ′′typ '
2π1/2

λ
VtypM

1−γ/2(log Ω)1/2 , (17)

C ' π3/2

2λ VtypM
1−γ/2(log Ω)−1/2 . (18)

The most probable value of the miniband width is Γtyp = Vtyp(πΩ log Ω/4)1/2, and its
characteristic dispersion πΓtyp/(4 log Ω). In a non-ergodic delocalized phase M � Ω � 1
and the typical PT time tPT ∼ 1/Γtyp obeys the condition

(M logM)−1/2 � tPTVtyp ∼ (Ω log Ω)−1/2 � 1 . (19)

2 Complexity of the Population Transfer protocol

Starting at t = 0 from a marked state |zj〉 the probability for the population to be transferred
to other marked states is 1− ψ2(zj , t). At the initial stage the survival probability ψ2(zj , t)
decays exponentially with the mean decay time 1/Γj = 1/(2Σ′′j ).

The initial marked state |zj〉 decays into the eigenstates |ψβ〉 of the IB Hamiltonian H

with typical energies Eβ inside the narrow interval corresponding to the miniband associated
with |zj〉. It has width Σ′′j and is centered around Hjj = εj . Typical classical energies ε of
the bit-strings measured at the end of PT protocol will obey the probability distribution
P(ε− εj − Σ′j) where Σ′j is the self-energy shift of the marked state εj and P is the rescaled
Cauchy distribution shown in Fig. 1 which reads [36],

P(Σ′) = 1
π

Σ′typ(
Σ′typ

)2 + (Σ′)2 , Σ′typ = Σ′′∗

√
4 logM
π

. (20)
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L1
1,1(x) ~ 2

π x2

x ≫1

-4 0 4 8 12
0.0

0.1
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0.3

x

L 11,
1 (
x)

,
L 11,

0 (
x)

Figure 1 Black solid line shows the plot of the Levi alpha-stable distribution LC,βα (x) [14] with tail
index α = 1, asymmetry parameter β = 1 and unit scale parameter C = 1. Inset shows asymptotic
behavior of the distribution at large positive x. At −x� 1 the function decays steeply as a double
exponential, logL1,1

1 (x) ∝ − exp(−π2 x). Blue line shows the Cauchy distribution L1,0
1 (x) = 1

π(1+x2) .
We follow here the definition introduced in [14] and used in subsequent papers on Levi matrices in
physics literature. In mathematical literature [39] a different definition is usually used, corresponding
to f(x;α, β, C1/α, 0) = LC,βα (x).

The success of PT protocol is to find a bit-string distinct from zj at a time t with energy
inside the window ∆Ecl around εj . The PT success time therefore equals

tjPT = 1
2Σ′′j p∆E

, p∆E =
∫ ∆Ecl

0
P
(
ε− Σ′j −

∆Ecl

2

)
dε .

Here p∆E is the probability of detecting a bit-string inside the target window ∆Ecl under
the condition that initial state has decayed. Assume that the PT window is as wide as the
typical miniband width, ∆Ecl = Σ′′typ. In this case p∆E differs from 1 only by a constant
factor that does not depend on M . Therefore after a sufficiently long time a solution, a
bit-string inside the PT window, is detected with finite probability. Because the initial state
|zj〉 is picked at random the typical time to success of PT tPT ∼ 1/Σ′′typ corresponds to the
inverse typical width of the miniband. All of the states in a miniband are populated at
(roughly) the same time tPT because the transition rate to a subset of states on a distance
d away from |zj〉 depends on d very weakly. This is a result of a cancellation between the
combinatorial number

(
n
d

)
of states (and hence decay channels) at distance d from a given

marked state and the dependence of the matrix element squared on d, see (6).
We characterize the PT by the relation between the typical success time of PT tPT and

the number of states Ω over which the population is spread during PT

tPT ∼
1

Vtyp
√

Ω log Ω
∼
(

2n

nΩ log Ω

)1/2
e2θn , (21)

where we set ∆Ecl ∼ Σ′′∗ (see discussion above). The time tG for the Grover algorithm for
unstructured quantum search to find Ω items in a database of the size 2n is tG ∼ (2n/Ω)1/2.
PT time tPT scales worse than Grover time tG by an additional exponential factor e2θn ' e

n

2B2
⊥

(7). At large transverse fields 1� B⊥ = O(n0) the scaling exponent is small 2θ � 1.
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3 Comparison with the analogue Grover search

Inspired by the Hamiltonian version of Grover algorithm proposed in [18] we consider the PT
protocol in the IB model Hcl starting from the ground state of HD which is a fully symmetric
state |S〉 = 2−n/2

∑n
j=1 |z〉 in a computational basis. This protocol can be implemented by

adjusting the value of transverse field B⊥ ≈ 1 so that the ground state energy of the driver
is set near the center of the IB. Then we can replace the full driver with the projector on its
ground state, HD → −nB⊥ |S〉 〈S|. The quantum evolution is described by the Hamiltonian

HG = −nB⊥ |S〉 〈S|+
M∑
j=1
E(zj) |zj〉 〈zj | , (22)

with the initial condition |ψ(0)〉 = |S〉. In the case where all impurity energies are equal to
each other, {E(zj) = −n}Mj=1, and B⊥ = 1 the Hamiltonian HG is a generalization of the
analog version of Grover search [18] for the case of M target states. The system performs
Rabi oscillations between the initial state |S〉 and the state which is an equal superposition
of all marked (solution) states. Time to solution is the half-period of the oscillations, the
"Grover time" tG

tG = π

2nB⊥

√
2n
M

. (23)

Hamiltonian versions of Grover search with transverse field driver whose ground state were
tuned at resonance with that of the solution state were considered in [17, 12].

We assume as before that marked state energies take distinct values E(zj) = −n + εj
randomly distributed over some narrow rangeW . We investigate the effect of systematic error
in the Grover diffusion operator [20]. In the Hamiltonian formulation [18] this corresponds
to the deviation from unity of the parameter B⊥ that controls the weight of the driver in
(23). We will define the driver error ε0 by,

B⊥ = 1− ε0
n
. (24)

Assuming that N �M one can instead of the state |S〉 consider the decay of the state
|0〉 ≡ 1√

N−M
∑N
j=M+1 |zj〉, where j ∈ [1,M ] corresponds to marked states. We use (24) and

omit constant terms and small corrections O(M/N) in HG. The non-zero matrix elements
Hij
G = 〈i|HG |j〉 in this subspace S have the form

Hjj
G = εj , Hj0

G = −(1− δj0)V, V = n2−n/2 , (25)

where j ∈ [0,M ] and Hj0
G = H0j

G . On a time scale t� 1/δε = M/W much smaller than the
inverse spacing of the energies εj the quantum evolution with initial condition |ψ(0)〉 = |0〉
corresponds to the decay of the discrete state with energy ε0 into the continuum [28] with
the finite spectral width W [25]. We assume that ε0 �W while the spread of the marked
state energies W . V

√
M , so that absent driver errors, PT time would follow a Grover-like

scaling law t ∼ 1/(V
√
M).

The state |0〉 is coupled non-resonantly to a continuum with narrow bandwidth. The
expression for the population transfer to the marked states can be obtained from the
time-dependent perturbation theory in the parameter ε0/W

M∑
m=1
|ψm(t)|2 = 2MV 2

ε20

(
1− cos(ε0t)

sin(Wt/2)
Wt/2

)
.

TQC 2018
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Maximum transfer occurs at the time t0 = π/ε0 with the total transferred probability
p0 = 4MV 2/ε20. Typical time tPT ' t0/p0 to achieve the successful population transfer to
marked states involves repeating the experiment 1/p0 times

tPT = 1
Γ0

π2ε0
W

, (26)

where Γ0 = 2πV 2/(W/M) and the first factor in r.h.s gives the typical transfer time in
absence of driver errors. Errors increase the transfer time by a large factor ε0/W .

For the maximum possible bandwidth W when nearly all states are populated, W ∼
Γ0∼V

√
M , the time of population transfer (26) is

tPT ∼ tG (tGε0) (ε0 � t−1
G ∼ V

√
M) . (27)

As expected, when the driver error exceeds inverse Grover time 1/tG the performance of
analogue Grover algorithms (22) degrades relative to tG. This is a direct consequence of
the fact that the quantum evolution begins from fully symmetric state which is a ground
state of the driver Hamiltonian whose energy is tuned at resonance with the marked states.
In this case the transverse field Hamiltonian driver effectively corresponds to the projector
(22). Because the ground state is not degenerate, the resonance region is exponentially
narrow (∼ 2−n/2

√
M). This results in the exponential sensitivity of the Grover algorithm

performance to the value of driver weight. This critical behavior was studied in the work on
quantum spatial search [13] for the case of one marked state.

In contrast, in the PT protocol considered in this paper there was no need to fine-tune
the value of B⊥ other than making it large, B⊥ � 1. This happened because the effective
coupling between the marked states described by the down-folded Hamiltonian H (5) was
not due to any one particular eigenstate of the driver (such as the state |S〉 for the Grover
case). Instead this coupling was formed due to an exponentially large (in n) number of
non-resonant, virtual transitions between the marked states and highly exited states of the
transverse field Hamiltonian HD. This resulted in a significant improvement in robustness
for the proposed PT relative to the analogue Grover algorithm.

4 Numerical simulations of population transfer

We illustrate by numerical simulations the potential of the PT subroutine for hybrid quantum-
classical search and optimization algorithms. We consider a model defined by the following
2-local Hamiltonian,

H = Hcl + Γ
n∑
i,j

(
δij(|hi|+ 1)σxi + (|Jij |+ 1)σxi σxj

)
, Hcl =

n∑
i=1

hiσ
z
i +

n∑
i,j

Jijσ
z
i σ

z
j , (28)

where δij is the Kronecker symbol, Jij ∈ [−1, 1] and hi ∈ [−1, 1] are uniformly distributed
random numbers with finite 6-bit precision. A subset of n/2 bonds (i, j) are chosen to be
dimers, non-overlapping pairs of spins with strong ferromagnetic interactions Jij = −4. Note
that we are using "matched" driver whose strength scales with the total longitudinal field
acting on a given qubit.

We simulate of n = 25 qubit system. A single bit flip steepest descent (SD) algorithm
starting from all possible bistrings identifies all local minima of a given realization of the
model Hcl in Eq. (28). Optimization of simulated annealing parameters for this type of
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Figure 2 Left panel shows a histogram of normalized weights of classical energies in H(2)
cl . E(H)

is the density of states in the original Hamiltonian spectrum. The classical steepest descent (SD)
distribution shows the probability of ending up in a local minimum following a steepest descent
run performed greedily by single spin flips. PT histogram shows the weight of classical energies
in the output wave function following a population transfer (PT) run relative to the initial state
energy (dotted black line). The SD-PT run is the distribution of local minimum starting from a
state measured from the PT state. We note that the SD and SD-PT distributions are plotted as
adjacent histograms to increase visibility of the data, but depicted bins are actually overlapping and
not alternating. Right panel shows the distribution of Hamming distances from the initial state for
states that fall within 1 standard deviation of the energy from the peak of the population transfer
(PT) distribution for several methods.

instances suggested that SD (low temperature limit) is near optimal and therefore can
serve as a proxy for hardness of finding a given bitstring, see histogram in the left panel
of Fig. 2. Starting from a low-energy local minimum we perform a population transfer,
Hamiltonian evolution with a fixed strength of the driver strength Γ = 0.2 for sufficiently
long time. The quantum evolution is simulated using Trotter decomposition with 300 steps.
The evolution time is chosen sufficiently long for the population transfer to approximately
saturate. The histogram of weights of classical energies in the output wave function, Fig. 2,
shows significant weight remaining in the low energy region of the spectrum in the vicinity of
the initial bitstring energy. The PT output wave function has support on bitstrings separated
from the initial state by large Hamming distances, see right panel in Fig. 2. Moreover,
repeated sampling from the PT output produces bitstrings separated by large Hamming
distances from each other, see left panel in Fig. 3. Bitstrings sampled from the PT output
wave function can be used as starting states for SD which finds some of the low energy
minima with higher probability than SD initialized with uniformly random bitstrings, see
right panel in Fig. 3. Therefore PT protocol provides a quantum coherent pathway between
low energy states that is complementary to SD and simulated annealing and therefore PT
could potentially serve as useful subroutine in hybrid algorithms such as quantum parallel
tempering.
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Figure 3 Left panel shows the histogram of Hamming distance between all pairs of states within

1 standard deviation of the energy from the peak of the population transfer (PT) distribution.
Hamming distances are weighted by their joint probability within the PT distribution. The 0
hamming distance self contributions are excluded. The even-odd pattern that is observed results
from the dimer structure of the Hamiltonian and the corresponding match driver. Right panel plots
every local minimum with respect to single spin flips in the spectrum, which is concentrated to
the low energy sector of the total Hamiltonian. For each local minimum we depict the ratio of the
probability of ending up in that local minimum when starting from the PT distribution against a
uniformly random initial state. We see that a significant fraction of states are enriched in the PT
case, including the global minimum.

5 Conclusion

We analyze the computational role of coherent multiqubit tunneling that gives rise to bands
of nonergodic delocalized quantum states as a coherent pathway for population transfer (PT)
between computational states with close energies. In this regime PT cannot be efficiently
simulated by QMC.

We solve this problem using the following quantum population transfer (PT) protocol:
prepare the system in a computational state |zj〉 with classical energy E(zj), then evolve it
with the transverse-field quantum spin Hamiltonian. Classical energies E(z) are encoded
in the problem Hamiltonian diagonal in the basis of states |z〉. The key difference between
PT protocol and QA [22, 16, 8] or analogue quantum search Hamiltonians [18, 13] is that
the transverse field is kept constant throughout the algorithm and is not fine-tuned to any
particular value. At the final moment of PT we projectively measure in the computational
basis and check if the outcome z is a “solution”, i.e., z 6= zj , and the energy E(z) is inside
the window ∆Ecl.

In this paper we analyzed PT dynamics in Impurity Band (IB) model with a “bimodal”
energy function: E(z) = 0 for all states except for M “marked” states |zj〉 picked at random
with energies forming a narrow band of the width W separated by a large gap O(n) from the
rest of the states. This landscape is similar to that in analogue Grover search [18, 17] with
multiple target states and a distribution of oracle values for the targets. The best known
classical algorithm for finding another marked state has cost O(2n/M).
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Figure 4 For comparison we include the analog of Figs. 2 and 3 (for n = 22) for a model without
dimers, where SD performs better.

The PT dynamics is described by the down-folded M ×M Hamiltonian H that is dense
in the space of the marked states |zj〉. The distribution of matrix elements Hij has a heavy
tail decaying as a cubic power for V (d)� Vtyp. This is a remarkable result of the competition
between the very steep decay of the off-diagonal tunneling matrix element with the Hamming
distance d, and the steep increase in the number of marked states Md ∝

(
n
d

)
at distance

d. We emphasize that such polynomial tail in the distribution of matrix elements is only
possible either in infinite dimension or in presence of long-range interactions (e.g, dipolar
glass).

The dispersion of the diagonal elements Hjj = E(zj) is expected to be large, W ∼
VtypM

γ/2 � Vtyp with γ ∈ [1, 2]. In the range 1 < γ < 2 there exist minibands of non-
ergodic delocalized eigenstates of H . Their width is proportional to 1/tPT � W . Each
miniband associated with a support set S over the marked states.

The distribution of miniband widths Γ obeys alpha-stable Levi law with tail index 1. The
typical value of Γ and its characteristic variance exceeds the typical matrix element of H by
a factor Ω1/2 where Ω = (MVtyp/W )2 is a size of the support set in a typical miniband.

We demonstrate that quantum PT finds another state within a target window of energies
Ω in time tPT ∝ 2n/2Ω−1/2 exp(n/(2B2

⊥)). The scaling exponent of tPT with n differs from
that in Grover’s algorithm by a factor ∝ B−2

⊥ , which can be made small with large transverse
fields n� B2

⊥ � 1.
Crucial distinctions between this case and the Hamiltonian in the analogue version of

Grover’s algorithm [18] for the case of multiple target states are the non-integrability of our
model, and the delocalized nature of the eigenstates within the energy band W . Furthermore,
analogue Grover’s algorithm for multiple targets is exponentially sensitive in n to the weight
of the driver Hamiltonian, and cannot be initialized with a computational basis state.

The quantum spin Hamiltonian in (1) can be described using n-body, infinite-range
interactions. However, it shares key properties with the infinite range spin-glass models
involving only p-body interactions at finite values of p >2 that could be implemented on a
quantum computer with polynomial in n resources. The evidence of non-ergodic extended
states were recently uncover numerically in the low-energy part of the spectrum of the
quantum transverse field p-spin model [6].

TQC 2018
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Similar to the model (1) the low-energy part of the spectrum of transverse field p-spin
model is characterized by the proliferation of statistically independent deep local minima
separated by large, O(n), number of spin flips. Model of this type are characterized by a
RSB-1 type of spin glass transition and were studied in the context of quantum annealing [21].
They represent perhaps the next step to study PT algorithms.

Finally, we analyzed numerically the PT initiated at a low energy local minimum of a
2-local spin glass model and observed that sampling PT output together with subsequent
application of classical steepest descent allows exploring the energy landscape in a way
complimentary to steepest descent and simulated annealing. This suggest possible use of PT
as a subroutine for hybrid quantum-classical algorithms for search and optimization such as
quantum paralleled tempering.
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Abstract
This paper considers the communication over a quantum multiple-unicast network where r sender-
receiver pairs communicate independent quantum states. We concretely construct a quantum
network code for the quantum multiple-unicast network as a generalization of the code [Song
and Hayashi, arxiv:1801.03306, 2018] for the quantum unicast network. When the given node
operations are restricted to invertible linear operations between bit basis states and the rates of
transmissions and interferences are restricted, our code certainly transmits a quantum state for
each sender-receiver pair by n-use of the network asymptotically, which guarantees no information
leakage to the other users. Our code is implemented only by the coding operation in the senders
and receivers and employs no classical communication and no manipulation of the node operations.
Several networks that our code can be applied are also given.
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1 Introduction

When we transmit information via network, it is useful to make codes by reflecting the network
structure. Such type of coding is called network coding and was initiated by Ahlswede et
al. [1]. This topic has been extensively researched by many researchers. Network coding
employs computation-and-forward in intermediate nodes instead of the naive routing method
in traditional network communication. For the quantum network, the paper [5] started the
discussion of the quantum network coding, and many papers [2, 9–12] have advanced the
study of quantum network coding.

In the network coding, unicast network is the most basic network model that the entire
network is used by a sender and a receiver. As one of the remarkable achievements of network
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coding for the unicast network, on the classical linear network with malicious adversaries,
the papers [6, 7] proposed codes that implement the classical communication by asymptotic
n-use of the network. In [6, 7], when the transmission rate m in absence of attacks is at
least the maximum rate a of attack (i.e., a < m), the codes in [6, 7] implement the rate
m− a communication asymptotically. As a quantum generalization of the codes in [6, 7], the
paper [14] constructed a quantum network code that transmits a quantum state correctly
and secretly by asymptotic n-use of the network. Similarly to [6, 7], when the transmission
rate m without attacks is at least twice of the maximum number a of the attacked edges (i.e.,
2a < m), the code in [14] implements the rate m−2a quantum communication asymptotically.

However, since a network is used by several users in general, it is needed to treat the
network model with multiple users instead of the unicast network. For this purpose, the
multiple-unicast network has been researched, in which disjoint r sender-receiver pairs
(S1, T1), . . . , (Sr, Tr) communicate over a network. The paper [8] studied a quantum network
code for the multiple-unicast network. The code in [8] transmits a state successfully for
each use of the network. However, [8] has a limitation that the code should manipulate the
node operations in the network and therefore the code depends on the network structure. In
addition, the code in [8] requires the free use of the classical communication.

This paper proposes a quantum network code for the multiple-unicast network which is a
generalization of the unicast quantum network code in [14] and overcomes the shortcomings
of the multiple-unicast quantum network code in [8]. In the same way as [14], the given node
operations are invertible linear with respect to the bit basis states, which is called quantum
invertible linear operations described in Section 2, our code requires the asymptotic n-use
of the network for the correct transmission of the state, and the encoding and decoding
operations are performed on the input and output quantum systems of the n-use of the
network, respectively. On the other hand, differently from [8], our code can be implemented
without any manipulation of the network operations and any classical communication.
Moreover, our code makes no information leakage asymptotically from a sender Si to the
receivers other than Ti because the correctness of the transmitted state guarantees no
information leakage [13].

To discuss the achievable rate by our code, we consider the situation that the input states
of all senders are the bit basis states. Then, our network can be considered as a classical
network, called bit classical network, because a bit basis state is transformed to another bit
basis state by our quantum node operations. In the bit classical network, we assume that
when the inputs of the senders other than Si are to zero, the transmission rate from Si to Ti
is mi, which is the same as the number of outgoing edges of Si and incoming edges of Ti.
Also, when we define the interference rate by the rate of the transmitted information to Ti
from the senders other than Si, we assume that the interference rate to Ti is at most ai in
the bit classical network. In the same way, in case that the input states of all senders are
set to the phase basis states (defined in Section 2), we call the network as phase classical
network. In the phase classical network, we also assume that the transmission rate from Si to
Ti is mi when the inputs of the senders other than Si are zero. Also, the interference rate to
Ti is at most a′i in the phase classical network. Under these constraints, if ai + a′i < mi, our
code achieves the rate mi − ai − a′i quantum communication from Si to Ti asymptotically.

To help the understanding of the rates described above, we explain the achievable
transmission rate from S1 to T1 in the network in Fig. 1. The bit and the phase classical
networks (Fig. 1b and Fig. 1c) are determined from the quantum network (Fig. 1a) (see
Section 2). When X ′1 = X ′2 = Y ′1 = Y ′2 = 0, the transmission rates from S1 to T1 are 2 for
both networks, i.e., m1 = 2, which is also the number of outgoing edges of S1 and incoming
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S1 S2

T1 T2

L(A1)

|X2〉b

|X1〉b

|X ′1〉b

|X ′2〉b

|X2 +X ′1〉b

|X ′1〉b

(a) Quantum network

A1

S1 S2

T1 T2

X2

X1

X ′1

X ′2

X2 +X ′1

X ′1

(b) Bit classical network

Â1

S1 S2

T1 T2

Y2

Y1

Y ′1

Y ′2

Y2

Y ′1 − Y2

(c) Phase classical network

Figure 1 Toy example of a multiple-unicast network. In quantum network (a), |·〉b denote bit
basis states and L(A1) is the network operation (see Section 2). The network (b) and (c) is the bit
and phase classical networks of the quantum network (a).

edges of T1. Also, the interference rates from S2 to T1 are 1 and 0 for the bit and the phase
classical networks, respectively. On this network, if our code from S1 to T1 with the rates
(m1, a1, a

′
1) = (2, 1, 0) is constructed, the conditions a1 ≥ 1, a′1 ≥ 0 and a1 + a′1 < m1 are

satisfied, and therefore our code implements the rate m1− a1− a′1 = 1 quantum transmission
from S1 to T1 asymptotically.

In the practical sense, our code can cope with the node malfunctions in the following
case: on the multiple-unicast network with quantum invertible linear operations, the network
operations are well-determined so that there is no interference between all sender-receiver
pairs, but three broken nodes apply quantum invertible linear operations different from the
determined ones. Moreover, let the transmission rate m1 without interferences from S1 to
T1 be 100 and the number of outgoing edges of the three broken nodes be 4. In this case,
3× 4 = 12 outgoing edges of the three broken nodes transmit the unexpected information
which implies the bit (phase) interference rate is at most 12. Therefore, by our code with
m1 = 100 and a1, a

′
1 > 12, the sender S1 can transmit quantum states to the receiver T1

correctly with the rate 100− a1 − a′1 < 76 by asymptotically many uses of the network.
The remaining of this paper is organized as follows. Section 2 introduces the formal

description of the quantum multiple-unicast network with quantum invertible linear operations.
Section 3 gives the main results of this paper. Based on the preliminaries in Section 4, Section
5 concretely constructs our code with the free use of negligible rate shared randomness. The
encoder and decoder of our code is given in this section. Section 6 analyzes the correctness
of the code in Section 5. Then, Section 7 constructs our code without the assumption of
shared randomness by attaching the secret and correctable communication protocol [15] to
the code given in Section 5, which proves the main result given in Section 3. Section 8 gives
several examples of the network that our code can be applied. Section 9 is the conclusion of
this paper.

2 Quantum Network with Invertible Linear Operations

Our code is designed on the quantum network which is a generalization of a classical
multiple-unicast network. In this section, we first introduce the multiple-unicast network
with classical invertible linear operations and generalize this network as a network with
quantum invertible linear operations. The node operations introduced in this section are
identical to the operations in [14, Section II].
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2.1 Classical Network with Invertible Linear Operations
First, we describe the multiple-unicast network with classical invertible linear operations.
The network topology is given as a directed Graph G = (V,E). The r senders and r receivers
are given as r source nodes S1, . . . , Sr and r terminal nodes T1, . . . , Tr. The sender Si has
mi outgoing edges and the receiver Ti has mi incoming edges. Define m := m1 + · · ·+mr.
The intermediate nodes are numbered from 1 to c (= |V | − 2r) accordingly to the order of
the transmission. The intermediate node numbered t has the same number kt of incoming
and outgoing edges where 1 ≤ kt ≤ m.

Next, we describe the transmission and the operations on this network. Each edge
sends an element of the finite field Fq where q is a power of a prime number p. The t-th
node operation is described as an invertible linear operation At from the information on kt
incoming edges to that of kt outgoing edges. Since node operations are invertible linear, the
entire network operation is written as K = Ac · · ·A1 ∈ Fm×mq . For the network operation K,
we introduce the following notation:

K :=


K1,1 K1,2 · · · K1,r
K2,1 K2,2 · · · K2,r
...

. . .
...

Kr,1 Kr,2 · · · Kr,r

 , Ki,j ∈ Fmi×mj
q .

Then, Ki,j is the network operation from Si to Tj . We assume rankKi,i = mi which means
the information from Si to Ti is completely transmitted if there is no interference.

When the network inputs by senders S1, . . . , Sr are x1 ∈ Fm1
q , . . . , xr ∈ Fmr

q , the output
yi ∈ Fmi

q at the receiver Ti (i = 1, . . . , r) is written as

yi =
r∑
j=1

Ki,jxj = Ki,ixi +Kiczic , (1)

Kic :=[Ki,1 · · · Ki,i−1 Ki,i+1 · · · Ki,r] ∈ Fmi×(m−mi)
q ,

zic :=[xT
1 · · · xT

i−1 xT
i+1 · · · xT

r ]T ∈ Fm−mi
q .

The second term Kiczic of (1) is called the interference to Ti, and rankKic is called the rate
of the interference to Ti.

Consider the n-use of the above network. When the inputs by senders S1, ..., Sr are
X1 ∈ Fm1×n

q , . . . , Xr ∈ Fmr×n
q , the output Yi ∈ Fmi×n

q at the receiver Ti (i = 1, . . . , r) is

Yi =
r∑
j=1

Ki,jXj = Ki,iXi +KicZic ,

Zic :=[XT
1 · · · XT

i−1 XT
i+1 · · · XT

r ]T ∈ F(m−mi)×n
q .

2.2 Quantum Network with Invertible Linear Operations
We generalize the multiple-unicast network with classical invertible linear operations to the
network with quantum invertible linear operations. In this quantum network, the network
topology is the same graph G = (V,E). Each edge transmits a quantum system H which is
q-dimensional Hilbert space spanned by the bit basis {|x〉b}x∈Fq

. In n-use of the network,
we treat the quantum system H⊗mi×n spanned by the bit basis {|X〉b}X∈Fmi×n

q
. The sender

Si sends a quantum system HSi
:= H⊗mi×n and the receiver Ti receives a quantum system

HTi := H⊗mi×n

To describe the quantum node operation, we define the following quantum operations.
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I Definition 2.1 (Quantum Invertible Linear Operation). For invertible matrices A ∈ Fm×mq

and B ∈ Fn×nq , two unitaries L(A) and R(B) are defined for any X ∈ Fm×nq as

L(A)|X〉b := |AX〉b, R(B)|X〉b := |XB〉b.

The operations L(A) and R(B) are called quantum invertible linear operations.

The t-th node operation is given as L(At) and it is called quantum invertible linear
operation. The entire network operation is written as the unitary L(K) = L(Ac · · ·A1) =
L(Ac) · · · L(A1). When a state ρ on HS1 ⊗ · · · ⊗ HSr

is transmitted by senders S1, . . . , Sr,
the network output σTi

at HTi
is written as

σTi
:= Tr

T1,...,Ti−1,Ti+1,...,Tr

L(K)ρL(K)†,

where TrT1,...,Ti−1,Ti+1,...,Tr
is the partial trace on the systemHT1 ⊗ . . .⊗HTi−1 ⊗HTi+1 ⊗ . . .⊗

HTr
.
When the input state on the network is |M〉b on HS1 ⊗ · · · ⊗ HSr

, this quantum network
can be considered as the classical network in Subsection 2.1. In the same way as the classical
network, we assume rankKi,i = mi which means Si transmits any bit basis states completely
to Ti if the input states on source nodes Sj (j 6= i) are zero bit basis states. Similarly,
rankKic is called the rate of the bit interference to Ti.

We can discuss the interference similarly on the phase basis {|z〉p}z∈Fq defined in [3, Section
8.1.2] by

|z〉p := 1
√
q

∑
x∈Fq

ω− tr xz|x〉b,

where ω := exp 2πi
p and tr y := TrMy (y ∈ Fq) with the multiplication map My : x 7→ yx

identifying the finite field Fq with the vector space Ftp. For the analysis of the phase basis
interference, we give Lemma 2.2 which explains how node operations L(At) are applied to
the phase basis states.

I Lemma 2.2 ( [14, Appendix A]). Let A ∈ Fm×mq and B ∈ Fn×nq be invertible matrices. For
any M ∈ Fm×nq , we have

L(A)|M〉p = |(AT)−1M〉p, R(B)|M〉p = |M(BT)−1〉p.

For notational convenience, we denote Â := (AT)−1. When the input state is a phase basis
state |M〉p onHS1 ⊗ · · ·⊗HSr

, the network operation L(K) is applied by L(K)|M〉p = |K̂M〉p.
In this case, this quantum network can also be considered as a classical network with network
operation K̂ = Âc · · · Â1. Then, K̂i,j is defined from K̂ in the same way as Ki,j .

K̂ :=


K̂1,1 K̂1,2 · · · K̂1,r

K̂2,1 K̂2,2 · · · K̂2,r
...

. . .
...

K̂r,1 K̂r,2 · · · K̂r,r

 , K̂i,j ∈ Fmi×mj
q ,

K̂ic :=[K̂i,1 · · · K̂i,i−1 K̂i,i+1 · · · K̂i,r].

Similarly to the condition rankKi,i = mi, we also assume rank K̂i,i = mi. We also call
rank K̂ic the rate of phase interference to Ti. The transmission rates from Si to Ti are
summarized in Table 1.
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10:6 Quantum Network Code for Multiple-Unicast Network with QIL Operations

Table 1 Definitions of Information Rates.

Rate Meaning

mi = rankKi,i = rank K̂i,i Bit (phase) transmission rates from Si to Ti without interference
rankKic Rate of interference to Ti

rank K̂ic Rate of phase interference to Ti

ai Maximum rate of bit interference to Ti

a′i Maximum rate of phase interference to Ti

3 Main Results

In this section, we propose two main theorems of this paper. The two theorems state the
existence of our code with and without negligible rate shared randomness, respectively. The
codes stated in the theorems are concretely constructed in Section 5 and 7, respectively. The
theorems are stated with respect to the completely mixed state ρmix and the entanglement
fidelity F 2

e (ρ, κ) := 〈x|κ⊗ ιR(|x〉〈x|)|x〉 for the quantum channel κ and a purification |x〉 of
the state ρ.

I Theorem 3.1. Consider the transmission from the sender Si to the receiver Ti over
a quantum multiple-unicast network with quantum invertible linear operations given in
Section 2. Let mi be the bit and phase transmission rates from Si to Ti without interferences
(mi = rankKi,i = rank K̂i,i), and ai, a′i be the upper bounds of the bit and phase interferences,
respectively (rankKic ≤ ai, rank K̂ic ≤ a′i). When the condition ai + a′i < mi holds and the
sender Si and receiver Ti can share the randomness whose rate is negligible in comparison
with the block-length n, there exists a quantum network code whose rate is mi−ai−a′i and the
entanglement fidelity F 2

e (ρmix, κi) satisfies n(1− F 2
e (ρmix, κi))→ 0 where κi is the quantum

code protocol from sender Si to receiver Ti.

Section 5 constructs the code stated in Theorem 3.1 and Section 6 shows that this
code has the performance in Theorem 3.1. Note that this code does not depend on the
detailed network structure, but depends only on the information rates mi, ai and a′i. As
explained in [14, Section III], our code has no information leakage from the condition
n(1− F 2

e (ρmix, κi))→ 0.
Although Theorem 3.1 assumed the free use of the negligible rate shared randomness, it is

possible to design the code of the same performance without negligible rate shared randomness
as follows. The paper [15] gives the secret and correctable classical network communication
protocol for the classical network with malicious attacks, when the transmission rate is more
than the sum of the rate of attacks and the rate of information leakage. By applying the
protocol in [15] to our quantum network with bit basis states, the negligible rate shared
randomness can be generated. By this method, we have the following Theorem 3.2 and the
details are explained in Section 7.

I Theorem 3.2. Consider the transmission from the sender Si to the receiver Ti over
a quantum multiple-unicast network with quantum invertible linear operations given in
Section 2. Let mi be the bit and phase transmission rates from Si to Ti without interferences
(mi = rankKi,i = rank K̂i,i), and ai, a′i be the upper bounds of the bit and phase interferences,
respectively (rankKic ≤ ai, rank K̂ic ≤ a′i). When ai + a′i < mi, there exists a quantum
network code whose rate is mi − ai − a′i and the entanglement fidelity F 2

e (ρmix, κi) satisfies
n(1− F 2

e (ρmix, κi))→ 0 where κi is the quantum code protocol from sender Si to receiver Ti.
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Quantum Network
(Multiple-Unicast)

Encoder

(Private Randomness Ui,1)

Decoderρi DSRi
i (σTi

)

(Shared Randomness SRi)

ESRi,Ri

i (ρi) σTi

S1...
Si

...

Sr

T1...
Ti

...

Tr

Figure 2 Overview of code protocol from a sender Si to a receiver Ti. States ρi and DSRi
i (σTi )

are in code space H′code.

4 Preliminaries for Code Construction

Before code construction, we prepare the extended quantum system, notations, and CSS
code used in our code.

4.1 Extended Quantum System

Although the unit quantum system for the network transmission is H, our code is constructed
based on the extended quantum system H′ described below.

First, dependently on the block-length n, we choose a power q′ := qα to satisfy n ·
(n′)mi/(q′)mi−max{ai,ai} → 0 (e.g. q′ = O(n1+(max{ai,a

′
i}+2)/(mi−max{ai,a

′
i})) ) where n′ :=

n/α. Let Fq′ be the α-dimensional field extension of Fq. Similarly, let H′ := H⊗α be the
quantum system spanned by {|x〉b}x∈Fq′ . Then, the n-use of the network over H can be
considered as the n′-use of the network over H′. The quantum invertible linear operations
(Definition 2.1) can also be defined for invertible matrices A′ ∈ Fm×mq′ and B′ ∈ Fn×nq′ as

L′(A)|X〉b = |AX〉b, R′(B)|X〉b = |XB〉b, for any X ∈ Fm×nq′ .

4.2 Notations for Quantum Systems and States in Our Code

We introduce notations used in our code. By the n-use of the network, the sender Si
transmits the system HSi

= H⊗mi×n and the receiver Ti receives the system HTi
=

H⊗mi×n, which are identical to H′⊗mi×n′ . We partition the quantum system H′⊗mi×n′ as
H′A⊗H

′
B ⊗H

′
C := H′⊗mi×mi ⊗H′⊗mi×mi ⊗H′⊗mi×(n′−2mi). Furthermore, we partition the

systems H′A,H′B,H′C by

H′A = H′A1⊗H
′
A2⊗H

′
A3 := H′⊗ai×mi ⊗H′⊗(mi−ai−a′i)×mi ⊗H′⊗a

′
i×mi ,

H′B = H′B1⊗H
′
B2⊗H

′
B3 := H′⊗ai×mi ⊗H′⊗(mi−ai−a′i)×mi ⊗H′⊗a

′
i×mi ,

H′C = H′C1⊗H′C2⊗H′C3 := H′⊗ai×(n′−2mi)⊗H′⊗(mi−ai−a′i)×(n′−2mi)⊗H′⊗a
′
i×(n′−2mi) .

For states |φ〉 ∈ H′A1, |ψ〉 ∈ H
′
A2, and |ϕ〉 ∈ H′A3, the tensor product state in H′A is
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denoted as |φ〉|ψ〉
|ϕ〉

 := |φ〉 ⊗ |ψ〉 ⊗ |ϕ〉 ∈ H′A . (2)

The bit or phase basis state of (X,Y, Z) ∈ Fai×mi

q′ × F(mi−ai−a′i)×mi

q′ × Fa
′
i×mi

q′ is denoted as∣∣∣∣∣∣
XY
Z

〉
b

:=

 |X〉b|Y 〉b
|Z〉b

 ,
∣∣∣∣∣∣
XY
Z

〉
p

:=

 |X〉p|Y 〉p
|Z〉p

 . (3)

We also introduce notations for the states in H′B and H′C in the same way as (2) and (3). In
the following, we denote the k × l zero matrix as 0k,l.

4.3 CSS Code in Our Code
In our code construction, we use the CSS code defined in this subsection which is similarly
defined from [14, Subsection IV-B]. Define two classical codes C1, C2 ⊂ Fmi×(n′−2mi)

q′ which
satisfy C1 ⊃ C⊥2 as

C1 :=


0ai,n′−2mi

X2
X3

 ∈ Fmi×(n′−2mi)
q′

∣∣∣∣X2 ∈ F(mi−ai−a′i)×(n′−2mi)
q′ , X3 ∈ Fa

′
i×(n′−2mi)
q′

,
C2 :=


 X1

X2
0a′

i
,n′−2mi

 ∈ Fmi×(n′−2mi)
q′

∣∣∣∣X1 ∈ Fai×(n′−2mi)
q′ , X2 ∈ F(mi−ai−a′i)×(n′−2mi)

q′

.
For any [M1] ∈ C1/C

⊥
2 whereM1 ∈ F(mi−ai−a′i)×(n′−2mi)

q′ , define the quantum state |[M1]〉b ∈
HC by

|[M1]〉b := 1√
|C⊥2 |

∑
Y ∈C⊥2

∣∣∣∣∣∣
0ai,n′−2mi

M1
0a′

i
,n′−2mi

+ Y

〉
b

=

|0ai,n′−2mi
〉b

|M1〉b
|0a′

i
,n′−2mi

〉p

 .
With the above definitions, the code space is given as H′code := H′C2 = H′⊗(mi−ai−a′i)×(n′−2mi)

and a pure state |φ〉 ∈ H′code is encoded as a superposition of the states |[M1]〉b in this CSS
code by|0ai,n′−2mi

〉b
|φ〉

|0a′
i
,n′−2mi

〉p

 ∈ HC .
5 Code Construction with Negligible Rate Shared Randomness

In this section, we construct our code that allows a sender Si to transmit a state ρi on
H′code = H′⊗(mi−ai−a′i)×(n′−2mi) correctly to a receiver Ti by n-use of the network when the
encoder and decoder share the negligible rate random variable SRi := (Ri, Vi).

The encoder and decoder are defined depending on the private randomness Ui,1 owned
by encoder and the randomness SRi shared between the encoder and decoder. These
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random variables are uniformly chosen from the values or matrices satisfying the following
respective conditions: the variable Ri := (Ri,1, Ri,2) ∈ F(mi−ai)×mi

q′ × F(mi−a′i)×mi

q′ satisfies
rankRi,1 = mi − ai and rankRi,2 = mi − a′i, the random variable Vi := (Vi,1, . . . , Vi,4mi

)
consists of 4mi values Vi,1, . . . , Vi,4mi ∈ F4mi

q′ and the random variable Ui,1 ∈ Fmi×mi

q′ satisfies
rankUi,1 = mi.

Next, we construct the encoder ESRi,Ui,1
i and decoder DSRi

i . Depending on SRi and
Ui,1, the encoder ESRi,Ui,1

i of the sender Si is defined as an isometry channel from H′code
to HSi = H′⊗mi×n′ . Depending on SRi, the decoder DSRi

i of the receiver Ti is defined as
a TP-CP map from HTi

= H′⊗mi×n′ to H′code. Note that the randomness SRi is shared
between the encoder and the decoder. Because SRi consists of αmi(2mi − ai − a′i + 4)
elements of Fq, the size of the shared randomness SRi is sublinear with respect to n (i.e.,
negligible).

5.1 Encoder ESRi,Ui,1
i of the sender Si

The encoder ESRi,Ui,1
i consists of three steps. In the following, we describe the encoding of

the state |φ〉 in H′code.

Step E1 The isometry map URi
i,0 encodes the state |φ〉 with the CSS code defined in

Subsection 4.3 and the quantum systems H′A and H′B as

|φ1〉 := URi
i,0 |φ〉 =

∣∣∣∣∣∣
0ai,mi

Ri,1

〉
b

⊗

∣∣∣∣∣∣
 Ri,2

0a′
i
,mi

〉
p

⊗

|0ai,mi
〉b

|φ〉
|0a′

i
,mi
〉p

 ∈ H′A⊗H′B ⊗H′C = HSi
.

Step E2 By quantum invertible linear operation L′(Ui,1), the encoder maps |φ1〉 to
|φ2〉 := L′(Ui,1)|φ1〉.

Step E3 From random variable Vi = (Vi,1, . . . , Vi,4mi
), define matrices Qi,1;j,k :=

(Vi,k)j , Qi,2;j,k := (Vi,mi+k)j for 1 ≤ j ≤ n′ − 2mi, 1 ≤ k ≤ mi, and Qi,3;j,k :=
(Vi,2mi+k)j , Qi,4;j,k := (Vi,3mi+k)j for 1 ≤ j, k ≤ mi. With these matrices, define the
matrix UVi

i,2 ∈ Fn
′×n′
q′ as

UVi
i,2 :=

 Imi 0mi,mi 0mi,n′−2mi

QT
i,3Qi,4 Imi

0mi,n′−2mi

0n′−2mi,mi
0n′−2mi,mi

In′−2mi

 ·
 Imi 0mi,mi 0mi,n′−2mi

0mi,mi
Imi

QT
i,2

0n′−2mi,mi
0n′−2mi,mi

In′−2mi


·

 Imi
0mi,mi

0mi,n′−2mi

0mi,mi
Imi

0mi,n′−2mi

Qi,1 0n′−2mi,mi In′−2mi

 ,
where Id is the identity matrix of size d. By quantum invertible linear operation
R′(UVi

i,2), the encoder maps |φ2〉 to R′(UVi
i,2)|φ2〉.

By above three steps, the encoder ESRi,Ui,1
i is described as an isometry map

ESRi,Ui,1
i : |φ〉 7→ R′(UVi

i,2)L′(Ui,1)URi
i,0 |φ〉 ∈ HSi

.
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5.2 Decoder DSRi
i of the receiver Ti

Decoder DSRi
i consists of two steps. In the following, we describe the decoding of the state

|ψ〉 ∈ HTi .

Step D1 Since (UVi
i,2)−1 can be constructed from shared randomness Vi by

(UVi
i,2)−1 =

 Imi
0mi,mi

0mi,n′−2mi

0mi,mi Imi 0mi,n′−2mi

−Qi,1 0n′−2mi,mi
In′−2mi

 ·
 Imi

0mi,mi
0mi,n′−2mi

0mi,mi Imi −QT
i,2

0n′−2mi,mi
0n′−2mi,mi

In′−2mi


·

 Imi
0mi,mi

0mi,n′−2mi

−QT
i,3Qi,4 Imi

0mi,n′−2mi

0n′−2mi,mi
0n′−2mi,mi

In′−2mi

 ,
the decoder applies the reverse operation R′(UVi

i,2)† = R′((UVi
i,2)−1) of Step E3 as

|ψ1〉 := R′(UVi
i,2)†|ψ〉.

Step D2 Perform the bit and phase basis measurements on H′A and H′B, respectively,
and let Oi,1, Oi,2 ∈ Fmi×mi

q′ be the respective measurement outcomes. By Gaussian
elimination, find invertible matrices DRi,1,Oi,1

i,1 , D
Ri,2,Oi,2
i,2 ∈ Fmi×mi

q′ satisfying

PWi,1D
Ri,1,Oi,1
i,1 Oi,1 =

0ai,mi

Ri,1

 , PWi,2D
Ri,2,Oi,2
i,2 Oi,2 =

 Ri,2

0a′
i
,mi

 . (4)

where PW is the projection from Fmi

q′ to the subspace W , the subspace Wi,1 consists
of the vectors whose 1-st, . . . , ai-th elements are zero and the subspace Wi,2 consists
of the vectors whose (mi − a′i + 1)-st, . . . , mi-th elements are zero. The case of
non-existence of DRi,1,Oi,1

i,1 nor DRi,2,Oi,2
i,2 means decoding failure, which implies that

the decoder performs no more operations. Also, when DRi,1,Oi,1
i,1 and DRi,2,Oi,2

i,2 are not
determined uniquely, the decoder chooses DRi,1,Oi,1

i,1 and D
Ri,2,Oi,2
i,2 deterministically

depending on Oi,1, Ri,1 and Oi,2, Ri,2, respectively.
Based on DRi,1,Oi,1

i,1 and DRi,2,Oi,2
i,2 found by (4), the decoder applies L′(DRi,1,Oi,1

i,1 ) and

L′(D̂Ri,2,Oi,2
i,2 ) consecutively to |ψ1〉, and the resultant state on Hcode is the output of

Step D2. Then, Step D2 is written as the following TP-CP map DRi
i :

DRi
i (|ψ1〉〈ψ1|) := Tr

C1,C3

∑
Oi,1,Oi,2∈F

mi×mi
q′

U
Ri,Oi,1,Oi,2
D σOi,1,Oi,2(URi,Oi,1,Oi,2

D )†,

where the matrices URi,Oi,1,Oi,2
D and σOi,1,Oi,2 are defined as

U
Ri,Oi,1,Oi,2
D :=L′(D̂Ri,2,Oi,2

i,2 )L′(DRi,1,Oi,1
i,1 ),

σOi,1,Oi,2 := Tr
A,B
|ψ1〉〈ψ1|(|Oi,1〉bb〈Oi,1| ⊗ |Oi,2〉pp〈Oi,2| ⊗ IC),

with the identity operator IC on HC .
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By above two steps, the decoder DSRi
i is described as

DSRi
i (|ψ〉〈ψ|) := DRi

i

(
R′(UVi

i,2)†|ψ〉〈ψ|R′(UVi
i,2)
)
.

Since the size of the shared randomness SRi is sublinear with respect to n, our code is
implemented with negligible rate shared randomness.

6 Correctness of Our Code

In this section, we confirm that our code correctly transmits the state from the sender Si to
the receiver Ti. As is mentioned in Section 3, we show the condition n(1−F 2

e (ρmix, κi))→ 0
which implies the correctness of our code.

First, we describe the quantum code protocol κi from Si to Ti, which is an integration of
the encoding, transmission, and decoding. The encoding and decoding in κi is given by the
probabilistic mixture of the code in Section 5 depending on the uniformly chosen random
variables SRi and Ui,1. Then, the code protocol κi is written as, for the state ρi on H′code,

κi(ρi) :=
∑

SRi,Ui,1

1
N
DSRi
i

(
Tr

T1,...,Ti−1,Ti+1,...,Tr

L(K)
(
ESRi,Ui,1
i (ρi)⊗ ρic

)
L(K)†

)
,

where ρic is the state in HS1 ⊗ · · · ⊗ HSi−1 ⊗HSi+1 ⊗ · · · ⊗ HSr
of senders other than Si,

and N := q′
4mi + |{Ui,1 ∈ Fmi×mi

q′ | rankUi,1 = mi}| + |{Ri,1 ∈ F(mi−ai)×mi

q′ | rankRi,1 =
mi − ai}|+ |{Ri,2 ∈ F(mi−a′i)×mi

q′ | rankRi,1 = mi − a′i}|.
As explained in [14, Section IV], 1− F 2

e (ρmix, κi) is upper bounded by the sum of the bit
error probability and the phase error probability. The bit error probability is the probability
that a bit basis state |X〉b ∈ H

′
code is sent but the bit basis measurement outcome on the

decoder output is not X. In the similar way, the phase error probability is defined for the
phase basis. We will show in Subsections 6.2 and 6.3 that the bit and phase error probabilities

are upper bounded by O
(

max
{

1
q′ ,

(n′)mi

(q′)mi−ai

})
and O

(
max

{
1
q′ ,

(n′)mi

(q′)mi−a′
i

})
, respectively.

Therefore, we have

n(1− F 2
e (ρmix, κi)) ≤ nO

(
max

{ 1
q′
,

(n′)mi

(q′)mi−max{ai,a′i}

})
. (5)

Since q′ is taken in Section 4 to satisfy n·(n′)mi

(q′)mi−max{ai,a′
i
} → 0, the RHS of (5) converges to 0

and therefore n(1− F 2
e (ρmix, κi))→ 0. This completes the proof of Theorem 3.1.

6.1 Notation and Lemmas for Bit and Phase Error Probabilities
In this subsection, we prepare a notation and lemmas for proving the upper bounds of the bit
and phase error probabilities. The upper bounds of these probabilities are shown separately
in Subsections 6.2 and 6.3.

We introduce the notation X := (XA, XB, XC) ∈ Fk×mi

q′ × Fk×mi

q′ × Fk×(n′−2mi)
q′ for

X ∈ Fk×n
′

q′ with arbitrary positive integer k. Also, we prepare the following lemmas.

I Lemma 6.1. For integers d0 ≥ d1 + d2, let W1 ⊂ Fd0
q′ be a d1-dimensional subspace and

W2 ⊂ Fd0
q′ be a d2-dimensional subspace. Assume the following three conditions.

(Γ1) W1 ∩W2 = {0d0,1}.
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(Γ2) Let m̄ ≥ d1 + d2. The vectors x1, . . . , xm̄ ∈ W1 and y1, . . . , ym̄ ∈ W2 satisfy

span((x1, y1), . . . , (xm̄, ym̄)) =W1 ⊕W2.

(Γ3) Let W ′1 ⊂ Fd0
q′ be a d1-dimensional subspace and r1, . . . , rm̄ ∈ W ′1. There exists an

invertible linear map A :W ′1 →W1 which maps

[x1, . . . , xm̄] = A[r1, . . . , rm̄].

Then, the following two statements hold.
(∆1) There exists invertible linear map D : Fd0

q′ → Fd0
q′ that

PW′1D[(x1, y1), . . . , (xm̄, ym̄)] = A−1[x1, . . . , xm̄] = [r1, . . . , rm̄]. (6)

(∆2) For the above linear map D, it holds for any x ∈ W1 and y ∈ W2 that

PW′1D(x, y) = A−1x. (7)

Proof. First, we show the item (∆1). Let W3 be a subspace of Fd0
q′ that satisfies W1 ⊕W2 ⊕

W3 = Fd0
q′ . If D is defined as D|W1 = A−1 and D|W2⊕W3(W2 ⊕W3) =W ′⊥1 , we obtain (6),

i.e., (∆1) from

PW′1D((xi, yi)) = PW′1(D|W1(xi) +D|W2⊕W3(yi)) = A−1xi = ri.

Next, we show that the item (∆2). Since arbitrary (x, y) ∈ W1 ⊕ W2 is spanned by
(x1, y1), . . . , (xm̄, ym̄), Eq. (6) implies (7), which yields (∆2). J

I Lemma 6.2 ( [14, Lemma 7.1]). For integers da ≥ db + dc, fix a db-dimensional subspace
W ⊂ Fda

q′ , and randomly choose a dc-dimensional subspace R ⊂ Fda

q′ with the uniform
distribution. Then, we have

Pr[W ∩R = {0da,1}] = 1−O(q′db+dc−da−1).

I Lemma 6.3. For d ≥ d′,

Pr
[
rank[t1, . . . , td] = d′

∣∣∣ t1, . . . , td ∈ Fd
′

q′

]
≥ 1−O

(
1
q′

)
.

Proof. From d ≥ d′, we have

Pr
[
rank[t1, . . . , td] = d′

∣∣∣ t1, . . . , td ∈ Fd
′

q′

]
≥ Pr

[
rank[t1, . . . , td′ ] = d′

∣∣∣ t1, . . . , td′ ∈ Fd
′

q′

]
. (8)

On the other hand, the RHS of (8) is equivalent to the probability to choose d′ independent
vectors in Fd′q′ :

Pr
[
rank[t1, . . . , td′ ] = d′

∣∣∣ t1, . . . , td′ ∈ Fd
′

q′

]
= q′

d′

q′d
′ ·
q′
d′ − q′

q′d
′ · · · q

′d′ − q′d
′−1

q′d
′ = 1−O

(
1
q′

)
.

By combining the above inequality and equality, we have the lemma. J

I Lemma 6.4 ( [14, Lemmas 7.2 and 7.4]). For the random matrix UVi
i,2 defined in Step E3,

we have

max
0n′,1 6=x∈Fn′

q′

Pr[xT((UVi
i,2)−1)A=01,mi

] ≤
(n′−2mi

q′

)mi

,

max
0n′,1 6=x∈Fn′

q′

Pr[xT((ÛVi
i,2)−1)B=01,mi

] ≤
(n′−2mi

q′

)mi

.
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6.2 Bit Error Probability
In this subsection, we show that when arbitrary bit basis state |M〉b ∈ H′code is the input
state of the sender Si, the original message M is correctly recovered with probability at least
1−O

(
max

{
1
q′ ,

(n′)mi

(q′)mi−ai

})
.

Step 1: We derive a necessary condition for correct decoding of the original message M in
bit basis. When arbitrary bit basis state |M〉b ∈ H′code is the input state of the sender Si,
the encoded state is written as

ESRi,Ri

i (|M〉b) =
∑

Ē1∈F
mi×mi
q′

,Ē2∈F
a′

i
×(n′−2mi)

q′

∣∣∣∣∣∣Ui,1
 0ai,mi

Ē1

0ai,n′−2mi

Ri,1
M

Ē2

UVi
i,2

〉
b

,

where we ignore the normalizing factors and phase factors.
Note that bit state measurement on network output system HTi = H′⊗mi×n′i commutes

with the decoding operation DSRi
i on HTi

. Therefore, in the analysis of the bit error
probability, we take the method to perform bit state measurement to HTi

first, and then
apply the decoding operation corresponding to DSRi

i , instead of decoding first and performing
bit state measurement.

By performing the bit basis measurement to the network output σTi = κi(|M〉bb〈M |), we
have the following measurement outcome Y :

Y = Ki,iUi,1

 0ai,mi

Ē1

0ai,n′−2mi

Ri,1
M

Ē2

UVi
i,2 +KicZ,

where Ē1 ∈ Fmi×mi

q′ , Ē2 ∈ Fa
′
i×(n′−2mi)
q′ and Z ∈ F(m−mi)×n′

q′ . By Step D1, Y is decoded to

Ȳ = Y (UVi
i,2)−1 = Ki,iUi,1

0ai,mi

Ē1

0ai,n′−2mi

Ri,1
M

Ē2

+KicZ(UVi
i,2)−1.

The measurement outcome Oi,1 in Step D2 is

Oi,1 = Ȳ A = Ki,iUi,1

0ai,mi

Ri,1

+ (KicZ(UVi
i,2)−1)A.

Since the decoder knows Oi,1 and Ri,1, the matrix DRi,1,Oi,1
i,1 is found by Gaussian elimination

to the left equation of (4) which is written as

PWi,1D
Ri,1,Oi,1
i,1 Oi,1 =PWi,1D

Ri,1,Oi,1
i,1

Ki,iUi,1

0ai,mi

Ri,1

+ (KicZ(UVi
i,2)−1)A

=

0ai,mi

Ri,1

 . (9)

Therefore, if the matrix DRi,1,Oi,1
i,1 derived in (9) satisfies the following equation

PWi,1D
Ri,1,Oi,1
i,1 Ȳ C=PWi,1D

Ri,1,Oi,1
i,1

Ki,iUi,1

0ai,n′−2mi

M

Ē2

+(KicZ(UVi
i,2)−1)C

=

0ai,n′−2mi

M

Ē2

 , (10)

the original message M is correctly recovered.
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Step 2: In the next step, we show that the conditions (Γ1), (Γ2) and (Γ3) of Lemma 6.1 in
the following case imply Eq. (10);

W1 := col

Ki,iUi,1

0ai,mi

Ri,1

, W2 := col
(
KicZ(UVi

i,2)−1), W ′1 :=Wi,1, m̄ := mi,

[x1, . . . , xm̄] := Ki,iUi,1

0ai,mi

Ri,1

 , [y1, . . . , ym̄] := (KicZ(UVi
i,2)−1)A,

[r1, . . . , rm̄] :=

0ai,mi

Ri,1

 , A := (Ki,iUi,1)|W′1 , (d0, d1, d2) := (mi,mi − ai, rankKicZ),

where col(T ) of the matrix T is the column space of T and Wi,1 is defined in Step D2 of
Subsection 5.2.

Applying Lemma 6.1, we show that Eq. (10) holds if the conditions (Γ1), (Γ2) and
(Γ3) are satisfied. Assume that (Γ1), (Γ2) and (Γ3) are satisfied. Then, the condition (∆1)
holds which implies the existence of DRi,1,Oi,1

i,1 in (9). Moreover, (∆2) implies that for any
r ∈ W ′1, y ∈ W2 and x = Ki,iUi,1r ∈ W1, it holds

PW′1D
Ri,1,Oi,1
i,1 (x+ y) = A−1x =

(
(Ki,iUi,1)|W′1

)−1(Ki,iUi,1r) = r,

and this yields (10).

Step 3: In the third step, we show that the relations (Γ1), (Γ2) and (Γ3) hold at least with
probability 1−O

(
max

{
1
q′ ,

(n′)mi

(q′)mi−ai

})
, which proves the desired statement by combining

the conclusion of Steps 1 and 2.

Step 3-1: In this substep, we show that the probability satisfying (Γ1), (Γ2) and (Γ3) is
obtained by

Pr[(Γ1) ∩ (Γ2) ∩ (Γ3)] = Pr[(Γ1)] · Pr[(Γ2′)] · Pr[(Γ2)|(Γ2′) ∩ (Γ1)], (11)

where the condition (Γ2′) is given as
(Γ2′) rankKicZ((UVi

i,2)−1)A = rankKicZ.
Eq. (11) is derived by the following reductions:

Pr[(Γ1) ∩ (Γ2) ∩ (Γ3)] (a)= Pr[(Γ1) ∩ (Γ2)] (b)= Pr[(Γ1)] · Pr[(Γ2)|(Γ1)]
(c)= Pr[(Γ1)] · Pr[(Γ2) ∩ (Γ2′)|(Γ1)] (d)= Pr[(Γ1)] · Pr[(Γ2′)|(Γ1)] · Pr[(Γ2)|(Γ2′) ∩ (Γ1)]
(e)= Pr[(Γ1)] · Pr[(Γ2′)] · Pr[(Γ2)|(Γ2′) ∩ (Γ1)].

The equality (a) follows from the fact that (Γ3) is always satisfied for A defined in Step 2,
and (b) and (d) are trivial. (c) is obtained because (Γ2′) is a necessary condition for (Γ2).
Since span(y1, . . . , ym̄) =W2 is a necessary condition for (Γ2) in Lemma 6.1, the condition
(Γ2′) is also necessary for (Γ2) from

rankKicZ((UVi
i,2)−1)A=rank(KicZ(UVi

i,2)−1)A=dimspan(y1, . . . , ym̄)

=dimW2 =rankKicZ(UVi
i,2)−1 =rankKicZ.

The equality (e) follows from the fact that (Γ1) and (Γ2′) are independent, which will be
shown by Pr[(Γ1)|(Γ2′)] = Pr[(Γ1)] in Step 3-2.
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Step 3-2: In this step, we prove Pr[(Γ1)] ≥ 1 − O(1/q′) and Pr[(Γ1)|(Γ2′)] = Pr[(Γ1)].
Fix Ri,1 and UVi

i,2. Then, W1 is randomly chosen d1-dimensional subspace under uniform
distribution and W2 is fixed d2-dimensional subspace. Therefore, Lemma 6.2 can be applied
with (da, db, dc,W) := (d0, d2, d1,W2) and Pr[(Γ1)] = 1 − O(q′d2+d1−d0−1) ≥ 1 − O(1/q′).
On the other hand, since Pr[(Γ1)] does not depend on UVi

i,2 but Pr[(Γ2)] depends only on
UVi
i,2, we have Pr[(Γ1)|(Γ2′)] = Pr[(Γ1)].

Step 3-3: In this step, we show Pr[(Γ2′)] ≥ 1 − n′mi

q′mi−ai
. The condition (Γ2′) holds if

and only if xTKicZ((UVi
i,2)−1)A 6= 01,mi

for any vector x ∈ Fmi

q′ satisfying xTKicZ 6= 01,n′

(considering Kic , Z and ((UVi
i,2)−1)A as linear maps on row vector spaces, this is equivalent

that ((UVi
i,2)−1)A has trivial kernel {01,n′} for the image of KicZ). Therefore, by applying

Lemma 6.4 for all distinct xTKicZ which is not zero vector, we have

Pr[(Γ2′)] ≥ 1− q′rankKicZ
(
n′ − 2mi

q′

)mi

≥ 1− q′ai

(
n′ − 2mi

q′

)mi

≥ 1− n′mi

q′mi−ai
.

Step 3-4: Now we evaluate the probability Pr[(Γ2)|(Γ2′) ∩ (Γ1)] ≥ 1 − O(1/q′−1). Fix
the random variable UVi

i,2 so that (Γ2′) holds in the following. Define matrices Tx =
[xi(1), . . . , xi(d1+d2)], Ty = [yi(1), . . . , yi(d1+d2)] and T = Tx + Ty ∈ Fd0×(d1+d2)

q′ where
i : {1, . . . , d1 + d2} → {1, . . . , m̄} is an injective index function such that yi(1), . . . , yi(d2) are
linearly independent i.e., rank Ty = d2. Then, we have

Pr
[
(Γ2)|(Γ2′)∩(Γ1)

]
≥Pr[span

(
(xi(1),yi(1)),. . . , (xi(d1+d2), yi(d1+d2))

)
=W1⊕W2 |(Γ2′)∩(Γ1)]

(a)= Pr
[
rank T = d1+d2 | (Γ2′)∩(Γ1)

]
= Pr

[
kerT = {0d1+d2,1} | (Γ2′) ∩ (Γ1)

]
(b)= Pr

[
kerTx ∩ kerTy = {0d1+d2,1} | (Γ2′) ∩ (Γ1)

]
,

where (a) follows from span
(
(xi(1), yi(1)), . . . , (xi(d1+d2), yi(d1+d2))

)
⊂ W1 ⊕ W2, and (b)

follows from the condition (Γ1). Since rank Tx ≤ d1 follows from its definition and the
dimension of kerTy is d1, the condition rank Tx = d1 is a necessary condition for kerTx ∩
kerTy = {0d1+d2,1}. Therefore, we have

Pr[kerTx ∩ kerTy = {0d1+d2,1} | (Γ2′) ∩ (Γ1)]
= Pr[kerTx ∩ kerTy | rank Tx = d1 ∩ (Γ2′) ∩ (Γ1)] · Pr[rank Tx = d1 | (Γ2′) ∩ (Γ1)]. (12)

By applying Lemma 6.2 for (da, db, dc,W) := (d1 +d2, d1 =dim kerTy, d2 =dim kerTx, kerTy),
the first multiplicand of (12) equals to 1−O(1/q′−1). From Pr[rank Tx = d1 | (Γ2′) ∩ (Γ1)] ≥
Pr
[

rank[t1, . . . , td1+d2 ] = d1 | t1, . . . , td1+d2 ∈ Fd1
q′

]
and Lemma 6.3, the second multiplicand

of (12) is greater than or equal to 1 − O(1/q′−1). Therefore, Pr[(Γ2)|(Γ2′) ∩ (Γ1)] ≥ 1 −
O(1/q′−1).

In summary, we obtain

Pr[(Γ1) ∩ (Γ2) ∩ (Γ3)] = Pr[(Γ1)] · Pr[(Γ2′)] · Pr[(Γ2)|(Γ2′) ∩ (Γ1)]

≥
(

1−O
(

1
q′

))
·
(

1− n′mi

q′mi−ai

)
·
(

1−O
(

1
q′

))
= 1−O

(
max

{ 1
q′
,

(n′)mi

(q′)mi−ai

})
.

6.3 Phase Error Probability
In this subsection, we show that the original message M ′ in the phase basis is correctly

recovered with probability at least 1−O
(

max
{

1
q′ ,

(n′)mi

(q′)mi−a′
i

})
.
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Step 1: We derive a necessary condition for correct decoding of the original message M ′ in
phase basis. For the analysis of the phase error probability, we apply the same discussion
as the bit error probability. When a phase basis state |M ′〉p ∈ H′code is the input state of
sender Si, the encoded state is written as

ESRi,Ri

i (|M ′〉p) =
∑

Ē′1∈F
mi×mi
q′

,Ē′2∈F
ai×(n′−2mi)
q′

∣∣∣∣∣∣Ûi,1
 Ē′1

Ri,2
Ē′2
M ′

0a′
i
,mi

0a′
i
,n′−2mi

 ÛVi
i,2

〉
p

,

where we ignore normalizing factors and phase factors.
Since phase basis measurement and decoding operation DSRi

i commutes, we first apply
phase basis measurement, and then decode the measurement outcome for the analysis of
the phase error probability. Then, the phase basis measurement outcome Y ′ on the network
output of Ti is written as

Y ′ = K̂i,iÛi,1

 Ē′1
Ri,2

Ē′2
M ′

0a′
i
,mi

0a′
i
,n′−2mi

 ÛVi
i,2 + K̂icZ,

where Ē′1 ∈ Fmi×mi

q′ , Ē′2 ∈ Fai×(n′−2mi)
q′ and Z ∈ F(m−mi)×n′

q′ . By Step D1, Y ′ is decoded to

Ȳ ′ = Y ′(ÛVi
i,2)−1 = K̂i,iÛi,1

 Ē′1
Ri,2

Ē′2
M ′

0a′
i
,mi

0a′
i
,n′−2mi

+ K̂icZ(ÛVi
i,2)−1.

By Step D2, the measurement outcome Oi,2 is given as Oi,2 = Ȳ ′B = K̂i,iÛi,1

 Ri,2

0a′
i
,mi

 +

(K̂icZ(ÛVi
i,2)−1)B, and DRi,2,Oi,2

i,2 is found by Gaussian elimination to the right equation of (4)
which is written as

PWi,2D
Ri,2,Oi,2
i,2 Oi,2 =PWi,2D

Ri,2,Oi,2
i,2

K̂i,iÛi,1

 Ri,2

0a′
i
,mi

+(K̂icZ(ÛVi
i,2)−1)B

=

 Ri,2

0a′
i
,mi

 . (13)

Thus, the correct estimate of M ′ is obtained when the following relation holds for DRi,2,Oi,2
i,2

derived in (13):

PWi,2D
Ri,2,Oi,2
i,2 Ȳ ′C=PWi,2D

Ri,2,Oi,2
i,2

K̂i,iÛi,1

 Ē′2
M ′

0a′
i
,n′−2mi

+(K̂icZ(ÛVi
i,2 )−1)C

=

 Ē′2
M ′

0a′
i
,n′−2mi

. (14)

Step 2: In the next step, we show that the equation (14) holds with probability at least

1−O
(

max
{

1
q′ ,

(n′)mi

(q′)mi−a′
i

})
, which shows the desired statement by combining Step 1.

In the same way as Subsection 6.2, the conditions (Γ1), (Γ2) and (Γ3) of Lemma 6.1 in
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the following case imply Eq. (14);

W1 := col

K̂i,iÛi,1

 Ri,2

0a′
i
,mi

, W2 := col
(
K̂icZ(ÛVi

i,2)−1
)
, W ′1 :=Wi,2, m̄ := mi,

[x1, . . . , xm̄] := K̂i,iÛi,1

 Ri,2

0a′
i
,mi

 , [y1, . . . , ym̄] := (K̂icZ(ÛVi
i,2)−1)B,

[r1, . . . , rm̄] :=

 Ri,2

0a′
i
,mi

 , A := (K̂i,iÛi,1)|W′1 , (d0, d1, d2) := (mi,mi − a′i, rank K̂icZ),

where Wi,2 is defined in Step D2 of Subsection 5.2. Also, in the same way, the conditions

(Γ1), (Γ2) and (Γ3) holds with probability at least 1−O
(

max
{

1
q′ ,

(n′)mi

(q′)mi−a′
i

})
.

7 Code Construction Without Free Classical Communication

We show that our code in Theorem 3.1 can be implemented without the assumption of
negligible rate shared randomness. The paper [15] shows the following Proposition 7.1 by
constructing a secret and correctable classical communication protocol for the classical unicast
linear network. Due to the relation between the phase error and the information leakage
in the bit basis [4, Lemma 5.9], we find that the dimension of leaked information is a′i in
the information transmission from the sender Si to the receiver Ti. We apply Proposition
7.1 to the sender-receiver pair (Si, Ti) with c1 := ai and c2 := a′i. Therefore, the protocol of
Proposition 7.1 can be implemented in our multiple-unicast network by preparing the input
state of Si in the bit basis. By attaching Proposition 7.1 to our code in the above method,
we can implement our code satisfying Theorem 3.2.

I Proposition 7.1 ( [15, Theorem 1]). Let q1 be the size of the finite field which is the
information unit of the network edges. We assume the inequality c1 + c2 < c0 for the classical
network where c0 is the transmission rate from the sender S to the receiver T , c1 is the
rate of noise injection, and c2 is the rate of information leakage. Define q2 := qc0

1 . Then,
there exists a k-bit transmission protocol of block-length n1 := c0(c0 − c2 + 1)k over Fq2 such
that Perr ≤ kc0/q2 and I(M ;E) = 0, where Perr is the error probability and I(M ;E) is the
mutual information between the message M ∈ Fk2 and the leaked information E.

The proof of Theorem 3.2 takes a similar method to the proof of [14, Theorem 3.2].

Proof of Theorem 3.2. To construct the code satisfying the conditions of Theorem 3.2,
we generate the shared randomness SRi by Proposition 7.1 and then apply the code in
Section 5. To apply Proposition 7.1 in our quantum network, we prepare the input state as
a bit basis state. Given a block-length n, we take q1 = qβ such that β = b 2 log2 log2 n

mi log2 q
c i.e.,

q2/(logn)2 = qmi
1 /(logn)2 → 1, and q′ = qα such that α = b (mi+2) log2 n

log2 q
c i.e., q′/nmi+2 → 1.

First, by the protocol of Proposition 7.1 with (c0, c1, c2) := (mi, ai, a
′
i), the sender Si

and the receiver Ti share the randomness SRi. Since SRi consists of mi(2mi − ai − a′i + 4)
elements of Fq′ , the number of bits to be shared is

k = dmi(2mi − ai − a′i + 4) log2 q
′e =

⌈
mi(2mi − ai − a′i + 4)

⌊
(mi + 2) log2 n

log2 q

⌋
log2 q

⌉
≤ dmi(mi + 2)(2mi − ai − a′i + 4) log2 ne.

TQC 2018
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The error probability is Perr≤ (mi/q
mi
1 )·dmi(mi+2)(2mi−ai−a′i+4) log2 ne=O

(
log2 n

(log2 n)2

)
→

0, and the block-length over Fq is

n1 =mi(mi−a′i+1)kβ≤mi(mi−a′i+1) ·dmi(mi+2)(2mi−ai−a′i+4) log2 ne·
⌊

2 log2 log2 n

mi log2 q

⌋
,

which implies n1/n→ 0. Therefore, the sharing protocol is implemented with negligible rate
uses of the network.

Next, we apply the code in Section 5 with the extended field of size q′ and n2 := n− n1
uses of the network. The relation n2/n = (n− n1)/n→ 1 holds and therefore the field size
q′ satisfies n2 · (n′2)mi/(q′)mi−max{ai,ai} → 0 where n′2 := n2/α. Thus, this code implements
the code in Theorem 3.2. J

8 Examples of Network

In this section, we give several network examples that our code can be applied.
First, as the most trivial case, if rankKi,i = mi and any distinct sender-receiver pairs do

not interfere with each other, i.e, Ki,j (i 6= j) are zero matrices, the network operation K is
a block matrix. This is the case where each pair independently communicates. In this case,
our code is implemented with the rate mi.

8.1 Simple Network in Fig. 1
In the network in Fig. 1, the network and node operations are described as

K =


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 , K̂ =


1 0 0 0
0 1 0 0
0 −1 1 0
0 0 0 1

 , A1 =
[
1 1
0 1

]
.

When we consider the transmission from S1 to T1, the rates of bit and phase interferences are

rankK1c = rank
[
0 0
1 0

]
= 1, rank K̂1c = rank

[
0 0
0 0

]
= 0.

In this network, by constructing our code with (m1, a1, a
′
1) := (2, 1, 0), our coding protocol

transmits the state of rate m1 − a1 − a′1 = 1 asymptotically from S1 to T1.

8.2 Network with Bit Interference from One Sender
As a generalization of the network in Fig. 1, consider the case where the network consists of
two sender-receiver pairs, and there is no bit interference from the sender S1 to receiver T2.
The network operation of this network can be described by L(K) with

K =
[
K1,1 K1,2

0m2,m1 K2,2

]
, K̂ =

[
(KT

1,1)−1 0m1,m2

−(KT
2,2)−1KT

1,2(KT
1,1)−1 (KT

2,2)−1

]
.

In this network, there is no phase interference from the sender S2 to receiver T1, and
the other two rates rankK1,2 and rank(KT

2,2)−1KT
1,2(KT

1,1)−1 coincide from rankK1,2 =
rankKT

1,2 = rank(KT
2,2)−1KT

1,2(KT
1,1)−1. Therefore, by implementing our code with ai, a

′
i

(i = 1, 2) satisfying rankK1,2 ≤ a1, a
′
2 < mi and a′1 = a2 := 0, each sender-receiver pair can

transmit the states.
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Moreover, we generalize the above network for arbitrary r sender-receiver pairs where the
interferences are generated only from one sender S1. In this network, the network operation
is given by the unitary operator L(K) with K defined as follows:

K =


K1,1 K1,2 K1,3 · · · K1,r

0m2,m1 K2,2 0m2,m3 · · · 0m2,mr

...
...

...
. . .

...
0mr,m1 0mr,m2 0mr,m3 · · · Kr,r

 ,

K̂ =


(KT

1,1)−1 0m1,m2 0m1,m3 · · · 0m1,mr

−(KT
2,2)−1KT

1,2(KT
1,1)−1 (KT

2,2)−1 0m2,m3 · · · 0m1,mr

...
...

...
. . .

...
−(KT

r,r)−1KT
1,r(KT

1,1)−1 0mr,m2 0mr,m3 · · · (KT
r,r)−1

 ,
where the ranks of mi × mi matrices Ki,i are mi, resepctively. In this network, if ai, a′i
(i = 1, . . . , r) are set to a1 ≥ rank[K1,2 K1,3 · · · K1,r], a′i ≥ rankK1,i (i = 2, . . . , r), and
a′1 = a2 = a3 = · · · = ar ≥ 0 and the condition ai + a′i < mi holds, the sender Si can send to
the receiver Ti the rate mi − ai − a′i state asymptotically by our code.

8.3 Network with Two Way Bit Interferences
In this subsection, we consider the code implementation over the network described as follows:
The size q is 3, there exists two pairs (S1, T1) and (S2, T2) in the network, S1, S2, T1, T2 are
connected to three edges, and the network operation is given by L(K) of

K =
[
K1,1 K1,2
K2,1 K2,2

]
=


1 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
−1 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , K̂ =


2 0 0 2 0 0
0 1 0 0 0 0
0 0 1 0 0 0
−2 0 0 2 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

Then, differently from the previous examples, there are bit interferences both from S1 to T2
and from S2 to T1 because K1,2 and K2,1 are not zero matrix.

In the above network, we construct our code for S1 to T1 with (m1, a1, a
′
1) := (3, 1, 1).

Then, our code implements the rate mi − ai − a′i = 3− 1− 1 = 1 quantum communication
asymptotically from the relations

rankK11 =rank K̂11 =m1 =3, rankK1c =rank

[
1 0 0
0 0 0
0 0 0

]
=1, rank K̂1c =rank

[
2 0 0
0 0 0
0 0 0

]
=1.

9 Conclusion

In this paper, we have proposed a quantum network code for the multiple-unicast network
with quantum invertible linear operations. As the constraints of information rates, we
assumed that the bit and phase transmission rates from Si to Ti without interference are mi

(mi = rankKi,i = rank K̂i,i), the upper bounds of the bit and phase interferences are ai, a′i,
respectively (rankKic ≤ ai, rank K̂ic ≤ a′i), and ai + a′i < mi holds. Under these constraints,
our code achieves the rate mi − ai − a′i quantum communication by asymptotic n-use of the
network. The negligible rate shared randomness plays a crucial role in our code, and it is
realized by attaching the protocol in [15].

TQC 2018



10:20 Quantum Network Code for Multiple-Unicast Network with QIL Operations

Our code can be applied for the multiple-unicast network with the malicious adversary.
When the eavesdropper attacks at most a′′i edges connected with the sender Si and the
receiver Ti, if ai + a′i + 2a′′i < mi holds, our code implements the rate mi − ai − a′i − 2a′′i
quantum communications asymptotically. This fact can be shown by integrating the methods
in this paper and [14].
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