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—— Abstract
We define a two-player N x N game called the 2-cycle game, that has a unique pure Nash

equilibrium which is also the only correlated equilibrium of the game. In this game, every 1/poly(N)-
approximate correlated equilibrium is concentrated on the pure Nash equilibrium. We show
that the randomized communication complexity of finding any 1/poly(~N)-approximate correlated
equilibrium of the game is Q(N). For small approximation values, our lower bound answers an
open question of Babichenko and Rubinstein (STOC 2017).
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1 Introduction

If there is intelligent life on other planets, in a majority of them, they
would have discovered correlated equilibrium before Nash equilibrium.

Roger Myerson

One of the most famous solution concepts in game theory is Nash equilibrium [28].
Roughly speaking, a Nash equilibrium is a set of mixed strategies, one per player, from
which no player has an incentive to deviate. A well-studied computational problem in
algorithmic game theory is that of finding a Nash equilibrium of a (non-cooperative) game.
Since finding a Nash equilibrium is considered hard (in particular, it is a PPAD-complete
problem), researchers studied the problem of finding an approximate Nash equilibrium,
where intuitively, no player can benefit much by deviating from his mixed strategy. The
complexity of finding an approximate Nash equilibrium has been studied in several models
of computation, including computational complexity, query complexity and communication
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complexity. For surveys on algorithmic game theory in general and equilibria in particular
see for example [29, 32, 13, 34].

When the players reach an equilibrium they learn to predict correctly the actions of the
other players. To better understand how players might learn the actions and payoffs of other
players, there is an extensive study of learning dynamics and their convergence to equilibria,
see for example [22, 37, 19]. One natural class of dynamics in which approximate equilibria
concepts are studied is that of uncoupled dynamics [17, 18], where each player knows his own
utilities and not those of the other players. The rate of convergence of uncoupled dynamics
to an approximate equilibrium is closely related to the communication complexity of finding
the approximate equilibrium [8].

Communication complexity is a central model in complexity theory that has been extens-
ively studied. In the two-player randomized model of Yao [36], each player gets an input and
their goal is to solve a communication task that depends on both inputs. The players can use
both common and private random coins and are allowed to err with some small probability.
The communication complexity of a protocol is the total number of bits communicated by
the two players. The communication complexity of a communication task is the minimum
number of bits that the players need to communicate in order to solve the task with high
probability, where the minimum is taken over all protocols. For surveys on communication
complexity see for example [25, 26, 33].

An important generalization of Nash equilibrium is correlated equilibrium [1, 2]. Whereas
in a Nash equilibrium the players choose their strategies independently, in a correlated
equilibrium the players can coordinate their decisions, choosing a joint strategy. There are
two notions of correlated equilibrium which we call correlated equilibrium (CE) and rule
correlated equilibrium (RCE)3. In a CE no player can benefit from replacing one action with
another, whereas in a RCE no player can benefit from simultaneously replacing every action
with another action (using a switching rule). While the above two notions are equivalent,
approximate CE and approximate RCE are not equivalent, but are closely related.

The communication task of finding an approximate (rule) correlated equilibrium is as
follows. The actions sets and the approximation value are known to both players. Each
player gets a utility function that specify her payoffs for every pair of actions (given as a
truth table). At the end of the communication both players should know the same correlated
mixed strategy which is an approximate (rule) correlated equilibrium.

In the multi-party setting, [16, 30, 21] showed protocols for finding an exact CE of N-player
binary action games with poly (V) bits of communication (note that the input size per player
s 2%). In the two-player setting, every N x N game has a trivial 1/N-approximate CE (the
uniform distribution over all pairs of actions, which can be found with zero communication).
However, there is no trivial approximate RCE, even for constant approximation values.
Babichenko and Rubinstein [6] raised the following questions:

Does a polylog(N) communication protocol for finding an approximate RCE of
two-player N x N games exist? Is there a poly(N) communication complezity
lower bound?

1.1 OQur Main Result

We show a communication complexity lower bound for finding a 1/poly(N)-approximate CE of
a two-player N x N game that we call the 2-cycle game. Since every approximate RCE is an
approximate CE, the same lower bound holds for RCE.

3 In most literature, both notions of correlated equilibrium are referred to by the same name. In this
paper, we choose to distinguish between them.
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» Theorem 1. Let n > 3 be an odd integer, let N = 2n and e < ﬁ. Then, every randomized
communication protocol for finding an e-approximate correlated equilibrium of the 2-cycle
N x N game, with error probability at most %, has communication complexity at least Q(N).

As far as we know, there were no communication complexity lower bounds for (exact)
CE or RCE of two-player games prior to this work. Note that Theorem 1 implies a lower
bound of Q(N) on the number of queries to the utility functions, for any randomized query
algorithm that finds a 1/poly(~)-approximate CE (or RCE) of the 2-cycle N x N game, with
probability at least 2/3.

After the first version of this paper was published online two similar results were proved.
Babichenko [4] showed that any !/poly(N)-approximate RCE in the generalized matching-
pennies game reveals the entire input of one of the players, thus proved the same lower
bound as in Theorem 1. Ko and Schvartzman [24] independently showed that for any
Q(1/N) < & < 1/10, the communication complexity of finding an e-approximate RCE is
Q(¢7"?1log N). In our opinion, the main difference between our lower bound and the above
results is that their games have no approximate RCE with succinct representation, while our
game has a unique pure Nash equilibrium (which is also a RCE with one pair of actions in its
support). We will elaborate on the importance of proving lower bounds for equilibria with
succinct representations later in this section.

It remains a very interesting open problem to determine the communication complexity of
finding a constant-approximate RCE of two-player games. Currently, there is an exponential
gap between the best known lower and upper bounds on the communication complexity of
finding a constant-approximate RCE of two-player NV x N games, where the best known lower
bound is logarithmic in N [24].

In a recent breakthrough, Babichenko and Rubinstein [6] proved the first non-trivial
lower bound on the randomized communication complexity of finding an approximate Nash
equilibrium. More precisely, they proved a lower bound of Q (N®°) on the randomized
communication complexity of finding an e-approximate Nash equilibrium of a two-player N x
N game, for every ¢ < €(, where ¢ is some small constant. Theorem 1 implies a randomized
communication complexity lower bound of Q(N) for finding a 1/poly(N)-approximate Nash

4, This is a slightly stronger lower bound but for much

equilibrium of the 2-cycle game
smaller approximation values. Our proof is more simple and straightforward, as it does not
go through several intermediate problems.

The 2-cycle game is a very simple game, in the sense that it is a win-lose, sparse game,
in which each player has a unique best response to every action. For the class of win-lose,
sparse games, our lower bound is tight up to logarithmic factors, as a player can send his
entire utility matrix using O(N log N) bits of communication. However, our lower bound
does not hold for much larger approximation values, since there are examples of approximate
equilibria of the 2-cycle game for larger approximation values, that can be found with small
amount of communication (see Appendix A for details).

Correlated Equilibrium with Succinct Representation

In the communication model, for a problem to be meaningful, we would like the output size
to be much smaller than the number of bits needed to solve it. Specifically, for the problem
of finding an approximate RCE (or CE) in N x N games, we would like the output to have a

4 We are able to improve the approximation parameter from 1/an® in Theorem 1 above to 1/16N? in the
case of approximate Nash equilibrium.
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succinet representation of size polylog(N) bits. A natural notion of succinct representation
is the support size of an equilibrium, thus we could define the communication problem
associated with finding a RCE to be finding an approximate RCE of polylog(N) support size.

For 1/poly(N) approximation values, there are two-player N x N games for which every
approximate RCE is of poly(N) support size. In contrast, Babichenko, Barman and Peretz
[5] showed that every two-player game has a constant-approximate RCE of support size
O (log N). Therefore, finding an approximate RCE of polylog(NN) support size is a total
search problem (i.e., a solution always exists) for constant approximation values®, but is not
total for 1/poly(N) approximation values.

As a step before understanding the total problem of finding a constant-approximate RCE,
we consider promise problems, where we are guaranteed to have a RCE with a small support.
Our lower bound for finding an approximate RCE implies that even for games in which we
are promised to have a RCE with a small support, finding an approximate RCE remains hard.

1.2 Sampling from a Correlated Equilibrium

We introduce another natural communication task in the context of joint strategies, which is
the task of sampling from a CE. Intuitively, in the task of sampling from a CE (or RCE)S,
the players are required to output each pair of actions with probability that is close to
the probability of this pair of actions under some CE. More formally, at the end of the
communication, each player outputs a single action, such that the distribution of the protocol
on pairs of actions is close (say, A-close in ¢; distance, for some small A) to some joint
distribution which is a CE of the game. The above problem was suggested by Moni Naor [27].

The problem of finding a CE in the communication model requires that both players
know at the end of the communication the entire joint strategy, which might be large.
We believe that the easier task of sampling from a CE is interesting in real-life scenarios,
since by sampling from an equilibrium of the game the players can act according to that
equilibrium. Sampling communication tasks were studied in many different variants in
different contexts, such as compression of randomized protocols, simulation of randomized
protocols, agreement distillation, sketching algorithms, approximation algorithms based on
rounding linear programming relaxations, the study of parallel repetition and cryptography.

When a game has a CE with a small support size, by sampling from this equilibrium the
players can recover (learn) the equilibrium with high probability. However, it might be the
case that the game has an approximate RCE with a large support from which sampling is
easy, while finding (even approximately) the entire joint strategy is hard. In particular, a
poly-logarithmic number of samples might not be enough to recover the equilibrium. For
example, if one of the players knows a CE of the game, she can sample a pair of actions
according to the equilibrium and send the other player his action. However, if the equilibrium
she knows has no succinct representation, communicating it might be hard.

The 2-cycle game has a unique exact CE which is the pure Nash equilibrium of the
game, and every 1/poly(N)-approximate CE of the game is concentrated on the pure Nash
equilibrium. Thus, by sampling a pair of actions from a 1/poly(N)-approximate CE, the players
can recover the pure Nash equilibrium with high probability. That is, not only finding a
1/poly(N)-approximate CE of the game is hard, but sampling from such an equilibrium is also
hard. Since every approximate RCE is an approximate CE, the following lower bound holds
also for RCE.

5 In fact, [5] showed that the problem is total for /polylog(N) approximation values.
6 This problem can be naturally extended to sampling from an approximate correlated equilibrium.
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» Theorem 2. Let n > 3 be an odd integer, let N = 2n, A € [0,2/3) and € < 1/4n®(2/3 — A).
Let p be an e-approximate correlated equilibrium of the 2-cycle N x N game. Then, every
randomized communication protocol for sampling from a distribution that is A-close in ¢4
distance to p, with error probability at most %, has communication complexity at least Q(N).

It remains a very interesting open problem to determine the communication complexity
of sampling from a constant-approximate RCE of two-player games.

1.3 Proof Overview

In the 2-cycle N x N game, the utility functions are constructed from two subsets of [n]
where n = N/2. The two subsets have exactly one element in common. Each player is given
one of these subsets and computes a directed graph. The two graphs have a common vertex
set of size N. The actions of each player are the N vertices. In each graph, every vertex
has a unique out-neighbor. Intuitively, each player wants to play the unique out-neighbor
(according to his graph) of the vertex played by the other player.

The construction of the utility functions of the 2-cycle game was inspired by ideas of
[35] of constructing utility functions from inputs to the fixed-point problem, that is, from
continuous functions on a compact convex space. We construct the utility functions in the
same way, but from discrete functions, i.e., the unique out-neighbor functions in directed
graphs.

To understand how the equilibria of the game look like, we examine the union of the two
graphs. An element in the intersection of the subsets creates a directed 2-cycle in the union
of the two graphs, with one edge from each graph. Given the two vertices of this 2-cycle,
one can recover the index of the element in the intersection of the subsets. The game has
a unique (exact) equilibrium which is the two vertices of the 2-cycle (that is, a pure Nash
equilibrium). Since it is hard to find the element in the intersection of the subsets, finding
an equilibrium of the game is also hard.

The heart of the proof is to show that every 1/poly(V)-approximate equilibrium is concen-
trated on the pure Nash equilibrium. For ease of presentation, we focus on the special case
of approximate Nash equilibria. Let (a*,b*) be a !/poly(N)-approximate Nash equilibrium of
the game. We say that a function f : [N] — [0,1] is concentrated on i € [N] if f(i) > f(j)
for every j € [N]\ {i}. We show that a*, b* are concentrated on u* and v* respectively,
where (u*,v*) is the pure Nash equilibrium of the game. Hence given (a*,b*), the players
can recover the pure Nash equilibrium of the game with no communication. Intuitively, for
any vertex v, a*(v) cannot be large unless one of its neighbors (in the graph of player A) has
large probability according to b*. Similarly, b*(v) cannot be large unless one of v’s neighbors
(in the graph of player B) has large probability according to a*. We use this property to
bound a* and b* on all the vertices other than u* and v* respectively, one by one, moving
along alternating edges from the two graphs.

It is interesting to see what happens when the construction of the game is used on two
subsets that do not intersect. In this case, the union of the graphs has no 2-cycle and the game
has no pure Nash equilibrium. The game has a unique exact Nash equilibrium (a*, b*), where
a* is uniform on half of the vertices that correspond to one subset and b* is uniform on half
of the vertices that correspond to the other subset. We note that this is not an equilibrium
of the game when the subsets do intersect. For the actual 2-cycle game, constructed from
intersecting subsets, we show that every 1/poly(N)-approximate equilibrium reveals the pure
Nash equilibrium of the game. Thus changing a single bit in the representation of the subsets
affects every 1/poly(N)-approximate equilibrium of the game. On a more technical note, we
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bound a* and b* on all vertices other than the ones in the 2-cycle, one by one, starting with a
vertex v such that all incoming edges to v are from vertices with small probability according
to b*. Such a vertex does not exist if there is no element in the intersection of the subsets.

1.4 Related Works

We overview previous works related to the computation of correlated equilibria of two-player
N x N games.

Computational complexity

An exact correlated equilibrium can be computed for two-player games in polynomial time
by a linear program [20]. Additionally, the decision version of finding correlated equilibria
with particular properties have also been considered in literature (for examples see [12, 7]).

Query complexity

Fearnley et al. [10] showed a deterministic query algorithm that finds a 1/2-approximate Nash
equilibrium by making O(N) queries and Fearnley and Savani [11] showed a randomized
query algorithm that finds a 0.382-approximate Nash equilibrium by making O(N log N)
queries. For coarse correlated equilibrium, Goldberg and Roth [15] provided a randomized
query algorithm that finds a constant approximate coarse correlated equilibrium by making
O(N log N) queries.

Communication complexity

Goldberg and Pastink [14] showed a communication protocol that finds a 0.438-approximate
Nash equilibrium by exchanging polylog(/N) bits of communication, and Czumaj et al. [9]
showed a communication protocol that finds a 0.382-approximate Nash equilibrium with
similar communication.

2 Preliminaries

2.1 General Notation

For n € N, we denote by [n] the set {0,1,...,n — 1}. For two bit strings z,y € {0,1}*, let
xy be the concatenation of x and y. For a bit string « € {0,1}" and an index ¢ € [n], z; is
the it 4+ 1 bit in = and Z is the negated bit string, that is z; is the negation of z;. For a
function u : Q — [0, 1], where  is some finite set, and a subset S C Q, let

u(S) = u(2).
zeS

Define p(f) = 0 and max,cy pu(z) = 0. For u € Q we say that u is concentrated on u if

w(u) > p(v)  VoeQ\ {u}.

For a function p : U x V — [0, 1], where U,V are some finite sets, a subset S C U and v € V,
let

u(S,v) = 3 pu,v).
ues

Similarly, for a subset S C V and u € U let pu(u,S) = >, cgp(u,v). Define u(d,v) =
p(u, 0) = 0.
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2.2 Approximate Correlated Equilibrium

A win-lose, finite game for two players A and B is given by two utility functions uys : U xV —
{0,1} and up : U x V — {0, 1}, where U and V are finite sets of actions. We say that the
game is an N x N game, where N = max{|U|,|V|}. A mized strategy for player A is a
distribution over U and a mixed strategy for player B is a distribution over V. A mixed
strategy is called pure if it has only one action in its support. A correlated mized strategy is
a distribution over U x V. A switching rule for player A is a mapping from U to U and a
switching rule for player B is a mapping from V to V.

» Definition 3 (Approximate Correlated Equilibrium). Let ¢ € [0,1). An e-approximate
correlated equilibrium of a two-player game is a correlated mixed strategy p such that the
following two conditions hold:

1. For all actions u,u’ € U,

Zu(u,v) (ua(u',v) —ua(u,v)) <e.

veY

2. For all actions v,v’ € V,

Z w(u,v) - (up(u,v') —up(u,v)) <e.

ueU

» Definition 4 (Approximate Rule Correlated Equilibrium). Let ¢ € [0,1). An e-approximate
rule correlated equilibrium of a two-player game is a correlated mixed strategy p such that
the following two conditions hold:

1. For every switching rule f for player A,

E(uwymp [a(f(u),v) —ua(u,v)] <e.

2. For every switching rule f for player B,

E(u )y [up(u; f(v)) = up(u,0)] <e.

When the approximation value is zero the two notions above coincide. In general, every
approximate rule correlated equilibrium is an approximate correlated equilibrium.

» Proposition 5. Fiz an N action two-player game and let € € [0,1). Then, every -
approximate rule correlated equilibrium of the game is an e-approximate correlated equilibrium
of the game. In the other direction, every e-approzimate correlated equilibrium of the game
is an (e - N)-approzimate rule correlated equilibrium of the game.

The communication task of finding an e-approximate (rule) correlated equilibrium is
as follows. Consider a win-lose, finite game for two players A and B, given by two utility
functions uy : U x V — {0,1} and ug : U x V — {0,1}.

Inputs: The actions sets U/, )V and the approximation value € are known to both players.
Player A gets the utility function ua4 and player B gets the utility function ug. The utility
functions are given as truth tables of size [U| x |V| each.

At the end of the communication: Both players know the same correlated mixed
strategy p over U x V, such that p is an e-approximate (rule) correlated equilibrium.

» Remark. Note that the communication complexity of a communication protocol for finding
an e-approximate (rule) correlated equilibrium is the total number of bits exchanged between
the two players, which might be smaller than the number of bits required to describe the
correlated mixed strategy p to an observer with no prior information.

12:7
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Figure 1 The graph G4 built from the 5 bit string 11001. The thick edges are the edges going
back (of the form ((z,0), (¢ — 1,z;—1))).

3 The 2-Cycle Game

Let n > 3 be an odd integer. The 2-cycle game is a win-lose, N x N game, where N = 2n. It
is constructed from two n-bit strings z,y € {0,1}" for which there exists exactly one index
i € [n], such that x; > y;. Throughout the paper, all operations (adding and subtracting)
are done modulo n.

The graphs

Given a string « € {0,1}", player A computes the graph G 4 on the set of vertices V =
[n] x {0,1} with the following set of directed edges (an edge (u,v) is directed from u into v):

Ea= {((Ll),(i—k 1,2i41)) i € [n]}
U {((i,@),(i+ 1,2i41)) 6 € [n], 2 = o}
U {((i,O), (i— L)) i€ n)a = 1}.

See an example of such a graph in Figure 1.
Given a string y € {0,1}", player B computes the graph Gp on the same set of vertices
V with the following set of directed edges:

Ep = {((i,z), (i 4+ 1,y41)) 4 € [n], 2 € {0, 1}}.

See an example of such a graph in Figure 2.

The actions and utility functions

The sets of actions are Y = V = V. Intuitively, each player wants to play the unique
out-neighbor (according to his graph) of the vertex played by the other player. For example,
if player B plays vertex v then player A wants to play the vertex u such that (v,u) € E4.
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Figure 2 The graph G built from the 5 bit string 10011.

Formally, the utility function u4 : V2 — {0, 1} of player A is defined for every pair of actions
(u,v) € V2 as

(. 0) 1 if (v,u) € Exs
ug(u,v) = .
A 0 otherwise

The utility function up : V2 — {0,1} of player B is defined for every pair of actions
(u,v) € V? as

(. ) 1 if (u,v) € Ep
ug(u,v) = .
b 0 otherwise

Notations and basic properties

For two vertices u,v € V, (u,v) is a 2-cycle if (v,u) € E4 and (u,v) € Ep. For a vertex
u € V, define

Ng(u)={veV : (v,u) € Eq}
Np(u)={veV : (v,u) € Ep}.
That is, N4 (u) is the set of incoming neighbors to w in E 4, and Np(u) is the set of incoming

neighbors to u in Fg. Let da(u) = |[Na(u)| and dp(u) = |[Ng(u)|. For a subset S C V,
define

Na(8) = UyesNa(v)
NB(S) = Ut;GSNB(v)'

Edges in E 4 of the form ((i,0), (i — 1,2;-1)) for i € [n] are called back-edges. Let z,y be the
strings from which the game was constructed. Note that v 4 determines x, and up determines
y. For an index i € [n] we say that i is disputed if z; > y;. Otherwise, we say that i is
undisputed. Define i* to be the unique disputed index. We denote the following key vertices:

ut = (Z* — 1733‘1‘*,1)
vt = (i%,0) = (1", yir).

12:9
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Figure 3 The 2-cycle in the union of the graphs G4 from Figure 1 and Gp from Figure 2.

To simplify notations, for a function f taking inputs from the set V and a vertex v = (i,2) € V,
we write f(i, z) instead of f((3, 2)).
The following are some useful, basic properties of the 2-cycle game.

» Proposition 6 (Out-degree). For every v € V, there exists exactly one uw € V such
that ua(u,v) = 1. Similarly, for every u € V, there exists exactly one v € V' such that
upg(u,v) =1.

» Proposition 7 (Max in-degree). For every v € V, it holds that da(v) <3 and dg(v) < 2.

To understand how the equilibria of the game look like, we will examine the union of the
graphs G4 and Gp. The union of the graphs contains a unique 2-cycle, with one edge from
G4 and one from Gg. We will see that this 2-cycle corresponds to a pure Nash equilibrium
of the game. The 2-cycle in the union of the graphs G4 from Figure 1 and G from Figure 2
appears in Figure 3.

» Proposition 8 (A 2-cycle). Let (v,u) € E4 be a back-edge. If v # v* then dp(v) = 0.
Otherwise, u = u* and (u*,v*) is a 2-cycle.

Proof. Let u = (i,24) € V, for some z4 € {0,1} and assume there exits v = (i + 1,2p) €
N4 (u), for some zp € {0,1}. By the definition of E 4,

zA=1x;, Xiy1 =1 and zp=0.

If v # v*, then y;41 = 1 and by the definition of Ep, dg(v) = 0. Otherwise v = v* and
T+ > y;=. Since v = v* it holds that u = w*. Since z;» > y;~ it holds that y;11 = 0 and by
the definition of Epg, (u,v) € Ep. <

3.1 Pure Nash Equilibrium

By Claim 9 below, the 2-cycle game has a unique pure Nash equilibrium. Together with
Proposition 8, the pure Nash equilibrium of the game corresponds to the 2-cycle in the union
of the two graphs.
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» Claim 9. The 2-cycle game has exactly one pure Nash equilibrium (u*,v*).

Proof. By Proposition 8, (u*,v*) is a 2-cycle. That is, ua(u*,v*) = 1 and up(u*,v*) = 1.
Since the maximum payoff for either player for any pair of actions is at most 1, it is easy to
see that (u*,v*) is a pure Nash equilibrium of the game.

Let u,v € V such that u # u* or v # v*. Let a’ be the mixed strategy for player A in
which she always plays u, and b’ be the mixed strategy for player B in which he always
plays v. By Proposition 8, either (v,u) ¢ E4 or (u,v) ¢ Ep. By proposition 6, there exist
u',v" € V such that (v,u’) € E4 and (u,v') € Ep. If (v,u) ¢ E4 then let a be the mixed
strategy for player A in which she always plays u’. We get that

Eyrmawrmt [ua(u’,0")] =ua(u',v) =1 and Eyrmar vrep [ua(u”,v")] = ua(u,v) = 0.

Otherwise (u,v) ¢ Ep, then let b be the mixed strategy for player B in which he always
plays v'. We get that

Eymar vreplup (W, v")] = up(u,v’) =1 and Eyrogr wrmw [up(u”,0")] = up(u,v) = 0.
Therefore, (u,v) is not a pure Nash equilibrium. <

The following theorem states that finding the pure Nash equilibrium (equivalently, the
2-cycle) of the 2-cycle game is hard. The proof is by a reduction from the following search
variant of unique set disjointness: Player A gets a bit string 2 € {0,1}™ and player B gets a
bit string y € {0,1}". They are promised that there exists exactly one index i* € [n] such
that x;+ > y;+. Their goal is to find the index i*. It is well known that the randomized
communication complexity of solving this problem with constant error probability is 2(n)
[3, 23, 31]. This problem is called the universal monotone relation. For more details on the
universal monotone relation and its connection to unique set disjointness see [25]. Note that
a lower bound for finding a pure Nash equilibrium of a different game is already known due
to [8].

» Theorem 10. Every randomized communication protocol for finding the pure Nash equi-
librium of the 2-cycle N x N game, with error probability at most %, has communication
complezity at least Q(N).

Proof. Let x,y € {0,1}" be the inputs to the search variant of unique set disjointness
described above. Consider the 2-cycle N x N game which is constructed from these inputs,
given by the utility functions u4,up. Assume towards a contradiction that there exists a
communication protocol 7 for finding the pure Nash equilibrium of the 2-cycle game with
error probability at most 1/3 and communication complexity o(NN). The players run 7 on
ua,up and with probability at least 2/3, at the end of the communication, player A knows u
and player B knows v, such that (u,v) is the pure Nash equilibrium of the game. By Claim 9,
u =u* and v = v*. Given u*,v* to the players A and B respectively, both players know the
index ¢*, which is a contradiction. <

4 From Approximate Equilibrium to the Pure Nash

In this section we prove Theorem 1. Let n > 3 be an odd integer, let N = 2n and & < 1/an3.
Let p be an e-approximate correlated equilibrium of the 2-cycle N x N game, and let x,y be
the strings from which the game was constructed. Recall that the pure Nash equilibrium
of the game is denoted (u*,v*), where u* = (i* — 1,24~_1) and v* = (:*,0) = (i*, y;)
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(see Claim 9). The following theorem implies that u is concentrated on (u*,v*), that is
p(u*,v*) > p(u,v) for every u,v € V such that u # u* or v # v*. Therefore given pu, the
players know the pure Nash equilibrium with no communication, and Theorem 1 follows
from Theorem 10.

» Theorem 11. p(u,v) < (3N 4 1)e < I/N? for every u,v € V such that u # u* or v # v*.

Next we prove Theorem 11. Let u,v € V and denote a(u) = p(u, Na(u)), b(v) =
w(Ng(v),v). By Proposition 6, there exists v’ € V such that u € Ng(v'), therefore

(u,0) < p(Np(0'),v) < bv) +<, (1)

where the second step follows from the definition of approximate correlated equilibrium (see
Definition 3). Similarly it holds that p(u,v) < a(u) + €. For every i € [n], it holds that
Na(i,z;) = 0 and Ng(i, ;) = 0, therefore a(i, ;) = b(7,y;) = 0. We will bound a(i,z;) for
every i € [n] \ {i* — 1} and b(4,y;) for every i € [n] \ {i*}.

» Claim 12. For every i € [n]\ {i* — 1}, if (i,yi—1) € Na(i,z;) then
a(i, ;) < b(i —1,y:-1) + 3e,

otherwise, a(i,x;) < 3e. For every i € [n]\ {i*},
b(i,y;) <ali—1,z;-1) + 2¢.

Proof. Let i € [n]\ {i* — 1}. By Equation (1), for every v € V it holds that u((i,2;),v) <
b(v) + e. Summing for every v € N4(i,x;) we get that a(i,x;) < b(Na(i,z;)) + 3¢, where we
bounded the right-hand side using a bound on the maximum in-degree, see Proposition 7.
If there exists a back-edge (v, (i,2z;)) € E4 than by Proposition 8, dg(v) = 0 (that is
Ng(v) =0), and b(v) = 0. Therefore back-edges do not contribute to the bound on a(i, ;).
It remains to consider edges from (i — 1,y;—1) and (¢ — 1,4;—1). If (¢,9:-1) € Na(4,2;) then

CL(’I:,JCZ‘) < b(l - 1ayi—1) + b(l - 1vgi—1) +3e = b(l - 1ayi—1) + 36a
otherwise, a(i,2;) < b(i — 1,9;—1) + 3¢ = 3e. Similarly for every i € [n] \ {i*},

a(z — 171'7;_1) + a(z — 1,.’51‘_1) + 26
a(i—l,xi,1)+2g. <

Using Claim 12 we can bound a(i, x;) for every i € [n] \ {¢* — 1} and b(4, y;) for every
i € [n]\ {i*} as follows. Let 6 = 3e. We start with (¢* + 1, 2;+41). Since z;+ = 1 and y;» = 0,
it holds that (¢*,yix) & Na(i* + 1, 24+41). Therefore by Claim 12,

CL(Z* + 1,:17,;*4_1) S 0.

Once we bound a(v) (or b(v)) for some vertex v, we can apply Claim 12 again to bound the
value of b (respectively a) on a neighbor of v. We get that

B(i* + 2,y 12) < a(i® + 1,24 1) + 0 < 26,
then

a(i* + 3,$i*+3) < b(Z* + 2,91’*—&-2) +0 <36
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and so on. After we apply Claim 12 n times, since n is odd, we get that a(i*, z;») < nd. We
apply Claim 12 (n — 2) more times, until get that

b(i* — 2,y —2) < né+ (n—2)8 < 2né.

This concludes the proof as we showed that every a(i,x;) for i € [n]\ {i* — 1} and every
b(i,y;) for i € [n]\ {¢*} is at most 2nd = 3Ne.

4.1 Sampling from a Correlated Equilibrium

Theorem 2 immediately follows from the fact that the correlated equilibria are concentrated
on the pure Nash equilibrium: Let n > 3 be an odd integer, let N = 2n, A € [0,2/3)
and € < 1/4n3(2/3 — A). Let u be an e-approximate correlated equilibrium of the 2-cycle
N x N game, and let z,y be the strings from which the game was constructed. Recall that
the pure Nash equilibrium of the game is denoted (u*,v*), where u* = (i* — 1,2;~_1) and
v* = (i*,0) = (i*, y;+) (see Claim 9). By Theorem 11 above, u(u,v) < (3N + 1)e for every
u,v € V such that u # u* or v # v*. Thus,

1
p(u,v*) >1— (N? =1)(3N +1)e > 1 — 4N3% > 3 tA

If the players can sample from a distribution that is A-close in ¢; distance to p, using o(N)
communication bits, then they can find (u*,v*) after O(1) attempts with high probability,
using o(N') communication bits, in contradiction to Theorem 10.
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A  Trivial Approximate Equilibria of The 2-Cycle Game

In this section, we provide trivial approximate correlated equilibrium of the 2-cycle game
from which it is not possible to recover the disputed index.

Let us suppose that for all 7 € [% + 3}, we have x; = y; = 0.

We define a joint distribution p as follows

1%04isz,zB:Oand%—kllgi,jgg-FQ,

60 if 24,25 =0,24+2<j<2+2andi="2+3,
16 n . n . n

- , B2 if 24,25 =0,242<i<Z+2and j=2+3,
/*1’((27214)7(]723)) = 16c 640p(n/4—i—‘,—73;l . 2 L. n4 . .
=t i 24,25 =0,2<4,j < T +2and i — j =1,

6o _ GAoc(/A—it8) if ) 25 =0,2<4,j <2 +2and j—i=1,

0 otherwise,

where o is some normalizing constant less than 2 such that Z(u,v)ev2 w(u,v) = 1.

Let ¢ = 64a/n3. For every action u = (i,24) of Alice such that z4 # 0, we have that
w(u,v) = 0 for all v € V. Similarly for every action v = (j, z5) of Bob such that zg # 0,
we have that pu(u,v) = 0 for all w € V. Also, for every action u = (i,24) of Alice such that
i€{n/2+3,...,n} U{1}, we have that p(u,v) =0 for all v € V. And, similarly for every
action v = (j, zp) of Bob such that j € {n/2+3,...,n} U{1}, we have that u(u,v) =0 for
all uw € V. Since p is symmetric’, it follows that in order to show that p is an e-approximate
correlated equilibrium we only need to consider a vertex u = (i,0) when i € [g + 2].

First, we consider when i < % 4+ 2. Let ' € V. We have

Z w(u, U) ’ (UA(UI’U) - UA(U"U» = p(u, NA<UI>> - M(U’NA(U))

16 64a- (n/4—i+3)
n

— a(u, Na () =

" e, w(u,v) = p(v,u) for all u,v € V.
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Now if v = (j,28) € Na(v') and |j — i| # 1 then, we have u(u,v) = 0. Thus, we assume
j—1=1, as we suppose u # u’. Then, we have

i, Na(u')) < 100 _ Oda-(/4—i=1+3)

n? n3
160 64 (n/4—i+3) 64a
=7~ 5 +toE
n n n
This implies,
64c
> o) - (wa(W',v) = walu,) € =8 = e.

veV

Next, we consider when % +4 <3< % + 2. Let v/ € V. We have

S i, v) - (wa e, v) — wau, v) = p(u, Nalw')) = plu, Na(u)

veV

Now if v = (j,2p) € Na(u’) and j > % + 3 then, we have pu(u,v) = 0. Also if j < % +2 then,
we have p(u,v) = 0. Thus, we assume j € [n/4+ 3,n/4 + 2] and 8 = 0. Then, we have

16«

plu Nalu)) < 5.

This implies,

Zu u,v) - (ua(u',v) —ua(u,v)) <0.
veV

Finally, we consider when i = § + 3. Let v’ = (i, 2);) € V. We have

16 64a
Z /,L(’LL,U) : (UA(ulvv) - UA(U,’U» = M(U’NA(U’/)) -t 5 n3
veV
Now if v = (j, 2p) € Na(u') and j > § + 3 then, we have p(u,v) =0. Also if j < § +2
and |j — i| # 1 then, we have u(u,v) = 0. Since u # v’ we have that j € [n/4+ 3,n/4 + 2]
and 8 = 0. Then we have

16
M(U,NA(’U,/)) = n2 :
This implies,
4
Zp u,v) - (ua(u',v) —ua(u,v)) < 6—3 =e.
n

veV

Thus, u is an e-approximate correlated equilibrium and an (e - N)-approximate rule

correlated equilibrium.
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