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Abstract
Two classical upper bounds on the Shannon capacity of graphs are the ϑ-function due to Lovász
and the minrank parameter due to Haemers. We provide several explicit constructions of n-vertex
graphs with a constant ϑ-function and minrank at least nδ for a constant δ > 0 (over various
prime order fields). This implies a limitation on the ϑ-function-based algorithmic approach to
approximating the minrank parameter of graphs. The proofs involve linear spaces of multivariate
polynomials and the method of higher incidence matrices.
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1 Introduction

For a graph G on the vertex set V , let Gk denote the graph on the vertex set V k in which
two distinct vertices (u1, . . . , uk) and (v1, . . . , vk) are adjacent if for every 1 ≤ i ≤ k it holds
that ui and vi are either equal or adjacent in G. The Shannon capacity of G, introduced by
Shannon in 1956 [43], is defined as the limit c(G) = limk→∞

k
√
α(Gk), where α(Gk) stands

for the independence number of Gk. The study of the graph parameter c(G) is motivated
by an application in information theory, as it measures the effective alphabet size in a
communication over a noisy channel represented by G. However, computing the Shannon
capacity of a graph is a notoriously difficult task. Its exact value is not known even for small
graphs, such as the cycle on 7 vertices, and from a computational perspective, it is not known
if the problem of deciding whether the Shannon capacity of a given graph exceeds a given
value is decidable.

The difficulty in computing the Shannon capacity of graphs motivates studying upper
and lower bounds on c(G). It is known that c(G) is sandwiched between the independence
number α(G) of G and its clique cover number χ(G). In 1979, Lovász [34] introduced the
ϑ-function of graphs defined as follows: For a graph G on the vertex set V , ϑ(G) is the
minimum of maxi∈V 1

〈xi,y〉2 , taken over all choices of unit vectors y and (xi)i∈V such that
xi and xj are orthogonal whenever i and j are distinct non-adjacent vertices in G (see [32]
for several equivalent definitions). It was shown in [34] that c(G) ≤ ϑ(G) for every graph G,
and this was used to prove that the Shannon capacity of the cycle on 5 vertices is equal to√

5. The ϑ-function of graphs can be computed in polynomial running time at an arbitrary
precision using semi-definite programming [23] and it has found interesting combinatorial
and algorithmic applications over the years (see, e.g., [18, 4, 38]).

Another upper bound on the Shannon capacity of graphs is the minrank parameter
introduced by Haemers [24, 25]. For a graph G on the vertex set V = {1, . . . , n}, the minrank
of G over a field F, denoted minrkF(G), is the minimum of rankF(M) over all matrices
M ∈ Fn×n satisfying Mi,i 6= 0 for every i ∈ V , and Mi,j = 0 whenever i and j are distinct
non-adjacent vertices in G. For the field Fp of prime order p we use the notation minrkp(G).
For most graphs the minrank parameter is larger than the ϑ-function [14, 26, 22], yet it was
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shown in [24] that there are graphs for which the minrank bound on the Shannon capacity is
tighter. In recent years, the minrank parameter has attracted an intensive research motivated
by its relations to various topics in information theory, e.g., (linear) index coding [9, 7, 35, 10],
network coding [1, 17], distributed storage [37, 29], and wireless communication [36, 28],
and in theoretical computer science, e.g., Valiant’s approach to lower bounds in circuit
complexity [44, 42, 22], communication complexity [40], and randomized computation [27].

The computational problem of deciding whether the minrank of a given graph is at most
3 is known to be NP-complete over any fixed finite field [39]. Moreover, assuming a certain
variant of the unique games conjecture, it is NP-hard to approximate the minrank of a
given graph to within any constant [33] (and even to within certain super-constant factors,
as follows from [33] combined with [15]). On the algorithmic side, relations between the
minrank parameter and the tractable ϑ-function can be beneficial to efficient approximation
algorithms for minrank. This approach was taken in [13] where it was proved that every
graph G with minrk2(G) = k satisfies ϑ(G) ≤ 2k/2 + 1 − 21−k/2. This bound was used to
obtain an efficient algorithm that given an n-vertex graph G with minrk2(G) = k, where k is
a constant, finds a clique cover of G of size O(nα(k)) for some α(k) < 1 (e.g., α(3) ≈ 0.2574).
Note that such a clique cover of G in particular yields a matrix confirming the same bound
on the minrank.

The algorithm of [13] for minrank employs the semi-definite programming technique used
in the algorithm of Karger, Motwani, and Sudan for graph coloring [31]. The analysis of the
latter shows that every n-vertex graph G with a constant ϑ(G) has a clique cover of size
O(nα) for a constant α < 1. This is known to be tight in the sense that there are n-vertex
graphs G with a constant ϑ(G) and yet a clique cover number nΩ(1) [31, 12] (see also [19]).
However, the minrank of a graph might in general be much smaller than its clique cover
number (even exponentially; see [25]). It is natural to ask, then, whether a constant ϑ(G)
guarantees a stronger bound of no(1) on minrk2(G). In the current work we rule out this
possibility in a general sense, as stated below.

I Theorem 1. For every prime p there exist c = c(p) and δ = δ(p) > 0 such that for infinitely
many integers n there exists an n-vertex graph G such that ϑ(G) ≤ c and minrkp(G) ≥ nδ.

Note that for the special case of p = 2 we obtain an n-vertex graph G with ϑ(G) ≤ 16 and
minrk2(G) ≥ n0.1499. This implies a limitation on the ϑ-function-based algorithmic approach
of [13] to minrank over F2.

We also obtain the following result in which the prime p is not a constant.

I Theorem 2. There exist c and δ > 0 such that for infinitely many integers n there exists
an n-vertex graph G such that ϑ(G) ≤ c and minrkp(G) ≥ nδ for some prime p = Θ(logn).

In our final construction, the bound on the minrank holds over any field of a sufficiently
large prime order. However, the bound on the ϑ-function is relaxed to a bound on the vector
chromatic number χv of the graph’s complement (see Definition 6).

I Theorem 3. There exists a constant δ > 0 such that for infinitely many integers n
there exists an n-vertex graph G such that χv(G) ≤ 3 and minrkp(G) ≥ nδ for any prime
p ≥ Ω(logn).

All the aforementioned constructions are explicit and belong to the family of generalized
Kneser graphs (see Definition 8). Our technical contribution lies in presenting two general
methods for proving bounds on the minrank parameter, employing the tools of linear spaces
of multivariate polynomials and higher incidence matrices (see, e.g., [6, Chapters 5 and 7]).
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We demonstrate the usefulness of these tools in studying the minrank of additional graph
families (see Sections 3.2 and 3.3) and expect our techniques to have further applications in
the future.

1.1 Techniques and Related Work

As mentioned above, the constructions given in Theorems 1, 2, and 3 are all from the family
of generalized Kneser graphs. In these graphs the vertices are all subsets of a given size
of some universe, and two distinct vertices are adjacent if their intersection size lies in a
certain specified set of sizes. We are particularly interested in those graphs with only one
intersection size in the specified set, as the ϑ-function of their complement is easily bounded
(see Lemma 9).

The independence numbers of generalized Kneser graphs correspond to well-studied
combinatorial questions on the size of uniform set systems with forbidden intersection sizes
(see, e.g., [20]). Tools from linear algebra are often used in proving upper bounds in such
scenarios. This includes the celebrated works of Ray-Chaudhuri and Wilson [41] and Frankl
and Wilson [21], who obtained their bounds using the method of higher incidence matrices
(more specifically, inclusion matrices; see [6, Chapter 7]). Alon, Babai, and Suzuki [3]
provided alternative proofs and generalizations using a different approach operating on linear
spaces of multivariate polynomials (see [6, Chapter 5]). These results have found numerous
applications in combinatorics and in theoretical computer science, e.g., explicit constructions
in Euclidean Ramsey theory [5], counterexamples to Borsuk’s conjecture [30], and integrality
gap constructions for approximating graph parameters such as the chromatic number [31],
the independence number [18, 4], and the vertex cover number [12].

While the above results provide strong upper bounds on the independence numbers
of certain generalized Kneser graphs, they do not imply any meaningful bounds on their
minrank. Nevertheless, we show in this work that both the tools of higher incidence matrices
and multivariate polynomials can be used to obtain upper bounds on the minrank parameter
as well. We demonstrate these techniques and apply them to several graph families (most,
but not all, of which are of the Kneser type). To obtain the lower bounds on the minrank in
Theorems 1, 2, and 3, we apply a known relation between the minrank of a graph and the
minrank of its complement (see Lemma 5).

We note that Alon used in [2] multivariate polynomials to obtain an upper bound, closely
related to minrank, on the Shannon capacity of graphs. In addition, Lubetzky and Stav
used inclusion matrices in [35] to prove that for every prime p, an n-vertex graph can have a
multiplicative gap of n0.5−o(1), in either direction, between the ϑ-function and the minrank
over Fp. (Note that the bound on ϑ in these constructions is of

√
n.) It will be interesting to

figure out if our construction in Theorem 1 combined with the randomized graph product
technique of [8, 18] can be used to improve on this multiplicative gap.

Outline.

In Section 2 we gather a few needed definitions and lemmas. In Sections 3 and 4 we prove
upper bounds on the minrank of several graph families using, respectively, linear spaces of
multivariate polynomials and inclusion matrices. Finally, in Section 5, we prove Theorems 1, 2,
and 3.

APPROX/RANDOM 2018
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2 Preliminaries

Unless otherwise specified, a graph will refer to a simple undirected graph. We use the
notation [d] = {1, 2, . . . , d}.

2.1 Minrank
The minrank of a graph over a field F is defined as follows.

I Definition 4. Let G = (V,E) be a directed graph on the vertex set V = {1, . . . , n} and
let F be a field. We say that an n by n matrix M over F represents G if Mi,i 6= 0 for every
i ∈ V , and Mi,j = 0 for every distinct i, j ∈ V such that (i, j) /∈ E. The minrank of G over
F is defined as

minrkF(G) = min{rankF(M) |M represents G over F}.

The above definition is naturally extended to undirected graphs by replacing every
undirected edge with two oppositely directed edges. Note that for a prime p we write
rankp(M) = rankFp

(M) and minrkp(G) = minrkFp
(G).

We need the following lemma that relates the minrank of a graph to the minrank of its
complement. For a proof see, e.g., [39, Remark 2.2], [35, Claim 2.5].

I Lemma 5. For every field F and an n-vertex graph G, minrkF(G) ·minrkF(G) ≥ n.

2.2 Vector Chromatic Number
Consider the following two relaxations of the chromatic number of a graph, due to Karger,
Motwani, and Sudan [31].

I Definition 6. For a graph G = (V,E) the vector chromatic number of G, denoted χv(G),
is the minimal real value of κ > 1 such that there exists an assignment of a unit vector wi to
each vertex i ∈ V satisfying the inequality 〈wi, wj〉 ≤ − 1

κ−1 whenever i and j are adjacent
in G.

I Definition 7. For a graph G = (V,E) the strict vector chromatic number of G, denoted
χ

(s)
v (G), is the minimal real value of κ > 1 such that there exists an assignment of a unit

vector wi to each vertex i ∈ V satisfying the equality 〈wi, wj〉 = − 1
κ−1 whenever i and j are

adjacent in G.

It is well known and easy to verify that for every graph G, χv(G) ≤ χ(s)
v (G) ≤ χ(G). The

Lovász ϑ-function, introduced in [34], is known to satisfy ϑ(G) = χ
(s)
v (G) for every graph

G [31] (see Section 1 for its original definition).

2.3 Generalized Kneser Graphs
Consider the family of generalized Kneser graphs defined below. In these graphs the vertices
are subsets of some universe and the existence of an edge connecting two sets is decided
according to their intersection size.

I Definition 8. For integers s ≤ d and a set T ⊆ {0, 1, . . . , s− 1}, the graph K(d, s, T ) is
defined as follows: the vertices are all possible s-subsets of a universe [d] (i.e., subsets of [d]
of size s), and two distinct sets A,B are adjacent if |A ∩B| ∈ T .
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The following lemma provides a bound on the strict and non-strict vector chromatic
numbers of certain generalized Kneser graphs. Its proof can be found in [31, Section 9], and
we include it here for completeness.

I Lemma 9 ([31]). Let t < s < d be integers satisfying s2 > dt.
1. If T = {0, 1, . . . , t} then χv(K(d, s, T )) ≤ d(s−t)

s2−dt .
2. If T = {t} then χ(s)

v (K(d, s, T )) ≤ d(s−t)
s2−dt .

Proof. Associate every vertex A of K(d, s, T ), representing an s-subset of [d], with the vector
uA ∈ Rd defined by

(uA)i = z if i ∈ A and (uA)i = −1 if i /∈ A, for every i ∈ [d],

where z is a positive real number to be determined. Notice that ‖uA‖2 = s · z2 + d − s.
Denote by wA ∈ Rd the unit vector defined by wA = uA/‖uA‖.

We start with Item 1. Let T = {0, 1, . . . , t}. Every two adjacent vertices A and B in
K(d, s, T ) satisfy |A ∩B| ≤ t, hence |A4B| ≥ 2(s− t) and |A ∪B| ≤ d− 2s+ t. It follows
that

〈wA, wB〉 = 1
s · z2 + d− s

· 〈uA, uB〉

= 1
s · z2 + d− s

·
(
|A ∩B| · z2 − |A4B| · z + |A ∪B|

)
≤ t · z2 − 2(s− t) · z + d− 2s+ t

s · z2 + d− s
.

A straightforward calculation shows that the minimum of the above expression is attained at
z = d

s − 1 and is equal to − 1
κ−1 for κ = d(s−t)

s2−dt > 1. This completes the proof of Item 1. The
proof of Item 2 is essentially identical. For adjacent vertices A and B in K(d, s, T ) where
T = {t} we have |A ∩B| = t, hence the above upper bound on 〈wA, wB〉 is tight, as needed
for the strict vector chromatic number. J

2.4 Linear Algebra Fact
I Fact 10. Let p be a prime and let M be an integer matrix. Then, the matrix M ′ defined
by M ′ = M (mod p) satisfies rankp(M ′) ≤ rankR(M).

Proof. It suffices to show that if some rows v1, . . . , vk of M are linearly dependent over R
then, considered modulo p, they are also linearly dependent over Fp. To see this, assume that
there exist a1, . . . , ak ∈ R, at least one of which is nonzero, for which

∑k
i=1 aivi = 0. Since

the vi’s are integer vectors it can be assumed that a1, . . . , ak ∈ Z and that gcd(a1, . . . , ak) = 1.
This implies that they are not all zeros modulo p. Therefore, the same coefficients, considered
modulo p, provide a non-trivial combination of the corresponding rows of M ′ with sum zero,
and we are done. J

3 Upper Bounds on Minrank via Multivariate Polynomials

In this section we prove upper bounds on the minrank parameter of graphs using linear spaces
of multivariate polynomials. We first introduce the notion of functional bi-representations of
graphs.

APPROX/RANDOM 2018
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I Definition 11. Let G = (V,E) be a directed graph and let F be a field. A functional
bi-representation of G over F of dimension R is an assignment of two functions gi, hi : V → F
to each i ∈ [R] such that the function f : V × V → F defined by

f(u, v) =
R∑
i=1

gi(u)hi(v) (1)

satisfies
1. f(v, v) 6= 0 for every v ∈ V , and
2. f(u, v) = 0 for every distinct u, v ∈ V such that (u, v) /∈ E.
Note that the definition is naturally extended to undirected graphs.

Functional bi-representations can be used to provide an alternative definition for the
minrank parameter, as stated below.

I Lemma 12. For every (directed) graph G and a field F, minrkF(G) is the smallest integer
R for which there exists a functional bi-representation of G over F of dimension R.

Observe that Lemma 12 follows directly from Definition 4 and the linear algebra fact that
the rank of a matrix M ∈ FN×N is the smallest R for which M = A · B for two matrices
A ∈ FN×R and B ∈ FR×N , where the functions gi and hi in Definition 11 correspond to the
columns and the rows of such A and B respectively. A similar definition of the minrank
parameter was previously used by Peeters in [39] (see also [13]), where the role of the functions
in Definition 11 was taken by vectors.

3.1 Generalized Kneser Graphs
We prove now upper bounds on the minrank of generalized Kneser graphs K(d, s, T ) (recall
Definition 8). The proofs borrow ideas from [3] and [2]. We start with an upper bound on
the minrank of K(d, s, T ) over Fp for all sufficiently large primes p. Note that a slightly
improved bound is given in Section 4 (see Proposition 20).

I Proposition 13. For every integers t ≤ s ≤ d, a set T ⊆ {0, 1, . . . , s− 1} of size |T | = t,
and a prime p > s,

minrkp(K(d, s, T )) ≤
s−t∑
i=0

(
d

i

)
.

Proof. Let p > s be a prime, and let f : {0, 1}d × {0, 1}d → Fp be the function defined by

f(x, y) =
∏

j∈{0,1,...,s−1}\T

( d∑
i=1

xiyi − j
)

(mod p)

for every x, y ∈ {0, 1}d. Expanding f as a linear combination of monomials, the relation
z2 = z for z ∈ {0, 1} implies that one can reduce to 1 the exponent of each variable occurring
in a monomial. It follows that f can be represented as a multilinear polynomial in the 2d
variables of x and y. By combining terms involving the same monomial in the variables of x,
one can write f as in (1) for an integer R and functions gi, hi : {0, 1}d → Fp such that the
gi’s are distinct multilinear monomials of total degree at most s− t in d variables. It follows
that R ≤

∑s−t
i=0
(
d
i

)
.

Now, denote by V the vertex set of the graph K(d, s, T ) and identify each vertex X ∈ V
with an indicator vector cX ∈ {0, 1}d in the natural way. We observe that the functions gi
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and hi restricted to V form a functional bi-representation of K(d, s, T ) over Fp. Indeed, for
every two vertices A,B ∈ V we have f(cA, cB) =

∏
j∈{0,1,...,s−1}\T (|A ∩B| − j) (mod p). If

A and B are distinct and non-adjacent in K(d, s, T ) then |A∩B| ∈ {0, 1, . . . , s− 1} \ T , and
thus f(cA, cB) = 0. On the other hand, every vertex A satisfies |A| = s and thus, using the
assumption p > s, f(cA, cA) 6= 0. By Lemma 12 it follows that minrkp(K(d, s, T )) ≤ R, and
we are done. J

We next consider a special case of the generalized Kneser graphs corresponding to one
intersection size.

I Proposition 14. For every prime p and integer d ≥ 2p−1, minrkp(K(d, 2p−1, {p−1})) ≤∑p−1
i=0

(
d
i

)
.

Proof. For a prime p and an integer d ≥ 2p−1, consider the graph G = K(d, 2p−1, {p−1}).
Let f : {0, 1}d × {0, 1}d → Fp be the function defined by

f(x, y) =
p−2∏
j=0

( d∑
i=1

xiyi − j
)

(mod p)

for every x, y ∈ {0, 1}d. By a repeated use of the relation z2 = z for z ∈ {0, 1}, the function f
can be represented as a multilinear polynomial in the 2d variables of x and y. By combining
terms involving the same monomial in the variables of x, it follows that one can write f
as in (1) for an integer R and functions gi, hi : {0, 1}d → Fp such that the gi’s are distinct
multilinear monomials of total degree at most p − 1 in d variables. It thus follows that
R ≤

∑p−1
i=0

(
d
i

)
.

Now, denote by V the vertex set of G and, as before, identify each vertex X ∈ V with
an indicator vector cX ∈ {0, 1}d in the natural way. We observe that the functions gi and
hi restricted to V form a functional bi-representation of G over Fp. Indeed, for every two
vertices A,B ∈ V we have f(cA, cB) = 0 if and only if |A ∩B| 6= p− 1 (mod p). If A and B
are distinct non-adjacent vertices in G then |A ∩B| 6= p− 1, so since |A| = |B| = 2p− 1 it
follows that |A ∩B| 6= p− 1 (mod p) as well, thus f(cA, cB) = 0. On the other hand, every
A ∈ V satisfies |A| = 2p− 1, so |A| = p− 1 (mod p), and thus f(cA, cA) 6= 0. By Lemma 12
it follows that minrkp(G) ≤ R, and we are done. J

3.2 Orthogonality versus Non-orthogonality
For a prime p and an integer d ≥ 1, let G1(d, p) be the graph whose vertex set V consists
of the non-self-orthogonal vectors of Fdp, such that two distinct vertices are adjacent if they
are not orthogonal over Fp. The minrank of G1(d, p) over Fp is equal to d. For the lower
bound, observe that G1(d, p) contains an independent set of size d. For the upper bound,
consider the |V | × d matrix M over Fp in which the row indexed by a vertex v ∈ V is v, and
notice that the matrix M ·MT represents G1(d, p) and that its rank is at most d. Note that
variants of the graph G1(d, p) were found useful in the study of the minrank parameter (see,
e.g., [39] and [10, Section 4.1]).

It is natural to consider a variant of G1(d, p) in which the vertices are replaced by the
self-orthogonal vectors of Fdp and the edges are defined in the same way. Namely, let G2(d, p)
be the graph whose vertex set consists of the self-orthogonal vectors of Fdp, such that two
distinct vertices are adjacent if they are not orthogonal over Fp. We prove below that in
contrast to G1(d, p) the minrank of G2(d, p) over Fp, for a fixed p, grows exponentially in d.
To this end, we prove the following upper bound on the minrank of its complement. The
proof is inspired by an idea used in the context of matching vector codes by Dvir, Gopalan,
and Yekhanin [16].

APPROX/RANDOM 2018
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I Proposition 15. For every prime p and an integer d ≥ 1, minrkp(G2(d, p)) ≤
(
d+p−2
p−1

)
+ 1.

Proof. Let V be the vertex set of G2(d, p), i.e., the set of self-orthogonal vectors of Fdp. Let
f : V × V → Fp be the function defined by

f(x, y) = 1−
( d∑
i=1

xiyi

)p−1
(mod p)

for every x, y ∈ V . Expanding f as a linear combination of monomials and combining terms
involving the same monomial in the variables of x, it follows that f can be written as in (1)
for an integer R and functions gi, hi : V → Fp, where g1 = 1 and the gi’s for i ≥ 2 are
distinct monomials of degree exactly p− 1 in d variables. This yields that R ≤

(
d+p−2
p−1

)
+ 1.

Now, let us show that the functions gi and hi form a functional bi-representation of
G2(d, p) over Fp. Indeed, by Fermat’s little Theorem, f(u, v) 6= 0 if and only if u and v

are orthogonal. If u and v are distinct non-adjacent vertices in G2(d, p) then they are not
orthogonal, thus f(u, v) = 0. On the other hand, by the self-orthogonality of the vectors in
V , we have f(v, v) 6= 0 for every v ∈ V . By Lemma 12 it follows that minrkp(G2(d, p)) ≤ R,
and we are done. J

Combining Proposition 15 with Lemma 5 implies the following.

I Corollary 16. For every prime p and an integer d ≥ 1,

minrkp(G2(d, p)) ≥ n(
d+p−2
p−1

)
+ 1

,

where n stands for the number of vertices in G2(d, p). In particular, using n ≥ pd−p+1, for a
fixed prime p,

minrkp(G2(d, p)) ≥ p(1−o(1))·d.

3.3 A Directed Example
We end this section with a quick application of multivariate polynomials to the minrank of a
directed graph. The proof employs an idea of Blokhuis [11] used in the study of the Sperner
capacity of the cyclic triangle.

I Proposition 17. For an integer d ≥ 1, let G = (V,E) be the directed graph on V = {0, 1, 2}d
where for every distinct u, v ∈ V , (u, v) ∈ E if u−v ∈ {0, 2}d (mod 3). Then, minrk3(G) = 2d.

Proof. We start with the upper bound. Let f : V × V → F3 be the function defined by

f(x, y) =
d∏
i=1

(xi − yi − 1) (mod 3)

for every x, y ∈ V . Expanding f as a linear combination of monomials and combining terms
involving the same monomial in the variables of x, it follows that one can write f as in (1) for
an integer R and functions gi, hi : V → Fp, where the gi’s are distinct multilinear monomials
in d variables. This yields that R ≤ 2d.

We now show that the functions gi and hi form a functional bi-representation of G over
F3. Indeed, for every distinct vertices u, v ∈ V , if (u, v) /∈ E then ui − vi = 1 (mod 3) for
some i, and thus f(u, v) = 0. On the other hand, for every v ∈ V , f(v, v) = (−1)d 6= 0. By
Lemma 12 it follows that minrk3(G) ≤ R, as desired.

For the lower bound, observe that the subgraph of G induced by the set of vertices {0, 1}d
is acyclic. It was shown in [7] that the maximum size of an induced acyclic subgraph forms a
lower bound on the minrank parameter, thus the proof is completed. J
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4 Upper Bounds on Minrank via Inclusion Matrices

In this section we prove upper bounds on the minrank parameter of graphs using the method
of higher incidence matrices, more specifically – the class of inclusion matrices. The proofs
employ ideas from [21]. We start with a few notations and facts following [6, Chapter 7].

Binomial coefficient polynomials

For an integer k ≥ 0, the binomial coefficient
(
x
k

)
is a polynomial of degree k over R defined

by (
x

k

)
= 1
k! · x(x− 1) · · · (x− k + 1).

We say that a polynomial is integer-valued if it takes integer values on integers. We need the
following fact (see, e.g., [6, Exercise 7.3.3]).

I Fact 18. For every k ≥ 0, the integer-valued polynomials of degree at most k are precisely
all the integer linear combinations of the polynomials

(
x
0
)
,
(
x
1
)
, . . . ,

(
x
k

)
.

Inclusion matrices

For integers d ≥ s ≥ k ≥ 0, let N (d)(s, k) denote the
(
d
s

)
×
(
d
k

)
binary matrix, whose rows

and columns are indexed by all s-subsets and k-subsets of [d] respectively, defined by

(N (d)(s, k))A,B = 1 if and only if B ⊆ A

for every s-subset A and k-subset B of [d]. In addition, let M (d)(s, k) denote the
(
d
s

)
×
(
d
s

)
integer matrix defined by

M (d)(s, k) = N (d)(s, k) ·N (d)(s, k)T . (2)

Notice that the entry of M (d)(s, k) indexed by (A,B), where A,B are s-subsets of [d],
precisely counts the k-subsets X of [d] that satisfy X ⊆ A ∩B. Hence, for every s-subsets A
and B of [d],

(M (d)(s, k))A,B =
(
|A ∩B|

k

)
. (3)

I Lemma 19. For every d ≥ s ≥ ` ≥ 0 and a0, . . . , a` ∈ R, the matrix
M =

∑`
k=0 ak ·M (d)(s, k) satisfies rankR(M) ≤

(
d
`

)
.

Proof. We first claim that for every 0 ≤ k ≤ `, every column of M (d)(s, k) is a linear
combination of the columns of N (d)(s, `). For k = ` this follows immediately from (2). To
see this for 0 ≤ k < `, consider the

(
d
s

)
×
(
d
k

)
matrix N (d)(s, `) ·N (d)(`, k), and observe that

the entry indexed by (A,B) in this matrix, where A,B ⊆ [d], |A| = s, |B| = k, counts the
`-subsets X of [d] that satisfy B ⊆ X ⊆ A. If B ⊆ A then the number of these subsets is(
s−k
`−k
)
and otherwise it is 0. It follows that

N (d)(s, `) ·N (d)(`, k) =
(
s− k
`− k

)
·N (d)(s, k).

Hence, every column of N (d)(s, k) is a linear combination of the columns of N (d)(s, `), and
by (2), the same holds for the columns of M (d)(s, k) where 0 ≤ k ≤ `. As the matrix M is a
linear combination of these matrices, it follows that its columns lie in the space spanned by
the columns of N (d)(s, `) whose dimension is at most

(
d
`

)
. This yields the required bound on

the rank of M . J

APPROX/RANDOM 2018



13:10 On Minrank and the Lovász Theta Function

4.1 Generalized Kneser Graphs
As our first application of the method of inclusion matrices, we improve the bound given in
Proposition 13 for the generalized Kneser graphs K(d, s, T ) (recall Definition 8). We note,
though, that this improvement is not essential to our application in Section 5.

I Proposition 20. For every integers t ≤ s ≤ d, a set T ⊆ {0, 1, . . . , s− 1} of size |T | = t,
and a prime p > s,

minrkp(K(d, s, T )) ≤
(

d

s− t

)
.

Proof. Consider the polynomial m ∈ R[x] defined by

m(x) =
∏

j∈{0,1,...,s−1}\T

(x− j).

Notice that m is an integer-valued polynomial of degree s− t. By Fact 18, one can write

m(x) =
s−t∑
k=0

ak ·
(
x

k

)
(4)

for integer coefficients a0, . . . , as−t. Using the notation in (2), define the
(
d
s

)
×
(
d
s

)
integer

matrix

M =
s−t∑
k=0

ak ·M (d)(s, k),

and letM ′ = M (mod p) for a prime p > s. We claim thatM ′ represents the graph K(d, s, T )
over Fp. Indeed, using (3) and (4), for every two s-subsets A and B of [d] we have

MA,B =
s−t∑
k=0

ak · (M (d)(s, k))A,B =
s−t∑
k=0

ak ·
(
|A ∩B|

k

)
= m(|A ∩B|).

Every two distinct vertices A,B non-adjacent inK(d, s, T ) satisfy |A∩B| ∈ {0, 1, . . . , s−1}\T ,
and thus MA,B = m(|A ∩ B|) = 0, and in particular M ′A,B = 0. On the other hand, every
vertex A satisfies |A| = s, and thus MA,A = m(s), so using the assumption p > s it follows
that M ′A,A 6= 0. Finally, we obtain that

minrkp(K(d, s, T )) ≤ rankp(M ′) ≤ rankR(M) ≤
(

d

s− t

)
,

where the second and third inequalities follow from Fact 10 and Lemma 19 respectively, and
we are done. J

We next consider a modular variant of the generalized Kneser graphs, defined as follows.

I Definition 21. For integers t ≤ s ≤ d and q, the graph Kq(d, s, t) is defined as K(d, s, T )
where T = {i ∈ {0, 1, . . . , s− 1} | i = t (mod q)}.

The following proposition provides an upper bound on the minrank over Fp of the graph
Kq(d, s, t), where p is a prime and q is a power of p. This bound is crucial for the construction
given in Theorem 1, which separates for every fixed prime p the ϑ-function of a graph from
its minrank over Fp.
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I Proposition 22. For every prime p, a prime power q = p`, and integers t ≤ s ≤ d such
that q ≤ s+ 1 and s = t (mod q),

minrkp(Kq(d, s, t)) ≤
(

d

q − 1

)
.

Proof. Let p be a prime and let q = p` be a prime power. Consider the polynomial m ∈ R[x]
defined by m(x) =

(
x−t−1
q−1

)
. By Fact 18, m is an integer-valued polynomial of degree q − 1,

which can be written as

m(x) =
q−1∑
k=0

ak ·
(
x

k

)
(5)

for integer coefficients a0, . . . , aq−1. Using the notation in (2), define the
(
d
s

)
×
(
d
s

)
integer

matrix

M =
q−1∑
k=0

ak ·M (d)(s, k),

and let M ′ = M (mod p). We claim that M ′ represents the graph Kq(d, s, T ) over Fp.
Indeed, using (3) and (5), for every two s-subsets A and B of [d] we have

MA,B =
q−1∑
k=0

ak · (M (d)(s, k))A,B =
q−1∑
k=0

ak ·
(
|A ∩B|

k

)
= m(|A ∩B|).

To complete the argument, we need the following fact (see, e.g., [6, Proposition 5.31]).

I Fact 23. For every prime p, a prime power q = p` and an integer r, p divides
(
r−1
q−1
)
if

and only if q does not divide r.

By Fact 23 and the definition of m, M ′A,B = 0 if and only if |A ∩ B| 6= t (mod q). Every
two distinct vertices A,B non-adjacent in Kq(d, s, t) satisfy |A ∩B| 6= t (mod q), and thus
M ′A,B = 0. On the other hand, every vertex A satisfies |A| = s, so using the assumption
s = t (mod q), it follows that M ′A,A 6= 0. Finally, we obtain that

minrkp(Kq(d, s, t)) ≤ rankp(M ′) ≤ rankR(M) ≤
(

d

q − 1

)
,

where the second inequality follows from Fact 10 and the third follows from Lemma 19 using
q ≤ s+ 1, so we are done. J

5 Separations between Minrank and Other Graph Parameters

In this section we prove Theorems 1, 2, and 3. We start with the proof of Theorem 3, which
claims the existence of n-vertex graphs whose minrank, over any sufficiently large prime
order field, is polynomial in n while their complement is vector 3-colorable. The proof is
based on instances of the generalized Kneser graphs, in which pairs of sets are adjacent if
their intersection size is small. Such graphs were used in [31] to provide a similar separation
between the vector chromatic number and the chromatic number.

Proof of Theorem 3. For a sufficiently large integer t define d = 8t, s = 4t, and T =
{0, 1, . . . , t}. Let G be the complement of the graph K(d, s, T ) given in Definition 8, and
note that the number n of its vertices satisfies n =

(8t
4t
)

= 2(1−o(1))d. By Item 1 of Lemma 9,
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χv(G) ≤ d(s−t)
s2−dt = 3. Apply Proposition 20 to get that for any prime p > s = Θ(logn), we

have

minrkp(G) = minrkp(K(d, s, T )) ≤
(

d

s− |T |

)
=
(

8t
3t− 1

)
.

By Lemma 5, this implies that

minrkp(G) ≥ n( 8t
3t−1

) ≥ n1−H(3/8)−o(1) ≥ n0.0455,

where H stands for the binary entropy function. This completes the proof. J

We turn to prove Theorem 1, which claims that for every fixed prime p there exist
n-vertex graphs with constant ϑ-function and minrank over Fp polynomial in n. Here we use
the modular variant of the generalized Kneser graphs considered in Proposition 22 (recall
Definition 21). For p = 2, our graphs are related to a construction of [5].

Proof of Theorem 1. We first prove the theorem for p = 2. For a sufficiently large integer
`, let d = 2`, q = d

4 , t = d
8 , and s = t + q = 3

8 · d. Let G be the complement of the graph
Kq(d, s, t) given in Definition 21, and let n =

(
d
s

)
denote the number of its vertices. Recall

that two distinct vertices A and B, representing s-subsets of [d], are adjacent in Kq(d, s, t) if
and only if |A ∩B| = t (mod q). By 0 ≤ t < q and s = t+ q, this condition is equivalent for
distinct A and B to |A ∩B| = t, so in our setting Kq(d, s, t) = K(d, s, {t}). Recalling that
ϑ(G) is equal to the strict vector chromatic number of G, by Item 2 of Lemma 9 we obtain
that

ϑ(G) = χ(s)
v (K(d, s, {t})) ≤ d(s− t)

s2 − dt
= 1/4

(3/8)2 − 1/8 = 16.

Now, as q is a power of 2 and s = t (mod q), we can apply Proposition 22 to obtain that

minrk2(G) = minrk2(Kq(d, s, t)) ≤
(

d

q − 1

)
≤ 2H(1/4)·d,

where H stands for the binary entropy function. By Lemma 5, it follows that

minrk2(G) ≥ n

2H(1/4)·d ≥ n
1−H(1/4)

H(3/8)−o(1) ≥ n0.1499,

and we are done.
The proof for a general prime p ≥ 3 is similar. Details follow. For a sufficiently large

integer `, let d = p`, q = d
p , t = d

p2 , and s = t+ q = p+1
p2 · d. As in the case of p = 2, let G be

the complement of the graph Kq(d, s, t) = K(d, s, {t}), and let n =
(
d
s

)
denote the number of

its vertices. By Item 2 of Lemma 9 we obtain that

ϑ(G) = χ(s)
v (K(d, s, {t})) ≤ d(s− t)

s2 − dt
=

1
p

(p+1)2

p4 − 1
p2

= p3

2p+ 1 .

In particular, ϑ(G) ≤ c for some c = c(p). As q is a power of the prime p and s = t (mod q),
we can apply Proposition 22 to obtain that

minrkp(G) = minrkp(Kq(d, s, t)) ≤
(

d

q − 1

)
≤ 2H(1/p)·d.

By Lemma 5, using p ≥ 3 and the monotonicity of H in [0, 0.5], it follows that

minrkp(G) ≥ n

2H(1/p)·d ≥ n
1− H(1/p)

H((p+1)/p2)
−o(1) ≥ nδ,

for some δ = δ(p) > 0, completing the proof. J
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Finally, we prove the following theorem that confirms Theorem 2. Here we use the
generalized Kneser graphs considered in Proposition 14.

I Theorem 24. For any δ < 0.1887 there exists c = c(δ) such that for infinitely many
integers n there exists an n-vertex graph G such that ϑ(G) ≤ c and minrkp(G) ≥ nδ for some
p = Θ(logn).

Proof. For a sufficiently large prime p, let ε ∈ (0, 2) be a real number such that d = (4−ε) ·p
is an integer, and let s = 2p − 1 and t = p − 1. Let G be the complement of the graph
K(d, s, {t}). Since s2 > dt we can apply Item 2 of Lemma 9 to obtain that

ϑ(G) = χ(s)
v (G) = χ(s)

v (K(d, s, {t})) ≤ d(s− t)
s2 − dt

= (4− ε)p2

(2p− 1)2 − (4− ε)p(p− 1) = (4− ε)p2

εp2 − εp+ 1 ≤
(4− ε)p2

εp2/2 ≤ 2(4− ε)
ε

,

where in the second inequality we have used the assumption that p is sufficiently large. Now,
by Proposition 14 it follows that

minrkp(G) = minrkp(K(d, s, {t})) ≤
p−1∑
i=0

(
d

i

)
≤ 2H(1/(4−ε))·d.

Let n denote the number of vertices in G, and notice that n =
(

d
2p−1

)
=
(

d
d−2p+1

)
. Applying

Lemma 5, we get that

minrkp(G) ≥ n

2H(1/(4−ε))·d ≥ n
1− H(1/(4−ε))

H((2−ε)/(4−ε))−o(1),

where p = Θ(d) = Θ(logn).
Finally, notice that for every δ < 1 − H(1/4) ≈ 0.1887 one can choose a sufficiently

small ε > 0 for which the above construction gives an n-vertex graph G with ϑ(G) ≤ c and
minrkp(G) ≥ nδ, where c depends only on δ and p = Θ(logn). J
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