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—— Abstract

We study the heavy hitters and related sparse recovery problems in the low failure probability
regime. This regime is not well-understood, and the main previous work on this is by Gilbert et
al. (ICALP’13). We recognize an error in their analysis, improve their results, and contribute

new sparse recovery algorithms, as well as provide upper and lower bounds for the heavy hitters

problem with low failure probability. Our results are summarized as follows:

1. (Heavy Hitters) We study three natural variants for finding heavy hitters in the strict turnstile
model, where the variant depends on the quality of the desired output. For the weakest
variant, we give a randomized algorithm improving the failure probability analysis of the

ubiquitous COUNT-MIN data structure. We also give a new lower bound for deterministic
schemes, resolving a question about this variant posed in Question 4 in the IITTK Workshop
on Algorithms for Data Streams (2006). Under the strongest and well-studied £, /¢2 variant,
we show that the classical COUNT-SKETCH data structure is optimal for very low failure

probabilities, which was previously unknown.

2. (Sparse Recovery Algorithms) For non-adaptive sparse-recovery, we give sublinear-time al-
gorithms with low-failure probability, which improve upon Gilbert et al. (ICALP’13). In the

adaptive case, we improve the failure probability from a constant by Indyk et al. (FOCS ’11)

_ 1,099

toe , where k is the sparsity parameter.

3. (Optimal Average-Case Sparse Recovery Bounds) We give matching upper and lower bounds
in all parameters, including the failure probability, for the measurement complexity of the
l5/ly sparse recovery problem in the spiked-covariance model, completely settling its com-

plexity in this model.
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On Low-Risk Heavy Hitters and Sparse Recovery Schemes

1 Introduction

Finding heavy hitters in data streams is one of the most practically and theoretically
important problems in the streaming literature. Subroutines for heavy hitter problems, and
in particular for the COUNT-MIN sketch, are the basis for multiple problems on geometric data
streams, including k-means and k-median clustering [14, 6, 2], as well as image acquisition
[12]. Studying schemes for finding such heavy hitters has also led to important geometric
insights in ¢,-spaces [1].

Abstractly, in the heavy hitters problem, we are asked to report all frequent items in a
very long stream of elements coming from some universe. The main restriction is that the
memory consumption should be much smaller than the universe size and the length of the
stream. To rephrase the problem, consider a frequency vector z € R™, where n is the size of
the universe. Each element i in the data stream updates the frequency vector as z; < x; + 1.
At the end of the data stream, we wish to find the coordinates of x for which |z;| > €||z]1.

Oftentimes the problem is considered under a more general streaming model called the
strict turnstile model, where arbitrary deletions and additions are allowed, but at all times
the entries of x remain non-negative, that is x; > 0. More formally, the frequency vector
x € R"™ receives updates of the form (i, A), and each such update causes the change of z; to
x; + A, while ensuring that x; > 0. The goal is to maintain a data structure such that upon
query, the data structure returns the heavy hitters of the underlying vector x. The ¢, heavy
hitters problem, for p > 1, then asks to find all coordinates i for which 2} > e[|z|[5. The
algorithm that treats the ¢; case is the Count-min sketch [5], and the algorithm that treats
the {5 case is the COUNT-SKETCH [3]. Both algorithms are randomized and succeed with
probability 1 — 1/ poly(n). In [5] the authors also suggest the “dyadic” trick for exchanging
query time with space. Their “dyadic” trick allows for finding heavy hitters approximately
in (’)(% log? n) time, but with the downside of having a worse update time and a worse space
consumption by an O(logn) factor. The state of the art for heavy hitters is [17], where the
authors give an algorithm that satisfies the £, /I, guarantee, has space O(% logn), update
time O(logn), and query time O( poly(logn)). We note that the latter algorithm works
in the more general setting of the turnstile model, where there is no constraint on z;, in
contrast to the strict turnstile model.

Another set of closely related problems occurs in the compressed sensing (CS) literature,
which has seen broad applications to biomedical imaging, sensor networks, hand-held digital
cameras, and monitoring systems, among other places. Sparse compressed sensing schemes
were used for determining the attitudes®, or 3-axis orientation, of spacecraft in [12].

Abstractly, in this problem we also seek to find the large coordinates of x € R™ but with
a different goal. Instead of finding all coordinates x; for which |z;| > €||x||1, the CS problem
seeks an approximation Z to x such that the difference vector x — & has small norm. In
particular, we consider the £5/f5 error metric, that is, we require that ||z —2(|3 < (1+€)||z_x||3,
where z_j, is the vector  with the k largest entries (in magnitude) removed. If all {5 heavy
hitters are found, it is clear that the norm of x — & can be made small, but the CS problem
allows a small number of heavy hitters to be missed if their contribution to the approximation
error x — & is small.

Gilbert et al. proposed the first sublinear-time algorithm for the ¢5/¢5 problem that
achieves O(% log %) measurements with constant failure probability [9]. Earlier sublinear-
time algorithms all contain several additional logn factors in their number of measurements.

3 See https://en.wikipedia.org/wiki/Attitude_control for the notion of ‘attitude’ in this context.
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The optimality of O(% log %) measurements was shown by Price and Woodruff [21]. Later
Gilbert et al. improved the failure probability to n~*/Pely(logk) [10] while their number of
measurements has a poor dependence on ¢, which is at least e !1.

Despite the above works, our understanding of the complexity of heavy hitter and
compressed sensing schemes on the error probability is very limited. The question regarding
failure probability of these schemes is a natural one for two reasons: first, it is strongly
connected with the existence of uniform schemes via the probabilistic method, and, second,
being able to amplify the failure probability of an algorithm in a non-trivial way without
making parallel repetitions of it, makes the algorithm much more powerful application-
wise. For sparse recovery schemes, our goal is to obtain the same measurements but with
smaller failure probability, something we find important both from a practical and theoretical
perspective- obtaining the correct number of measurements in terms of all parameters €, k, n, §
would be the end of the story for compressed sensing tasks, and a challenging quest; we note
that previous algorithms achieved optimality with respect to €, k,n only. From the practical
side, a small enough failure probability would allow to re-use the same measurements all the
time, since an application of the union-bound would suffice for all vectors that might appear
in a lifetime; thus, application-wise, we could treat such a scheme as uniform. We start with
formal definitions of the problems and then state in detail our improvements over previous
work.

1.1 Problem Formulation

For € R™, we define Hy(x) to be the set of its largest k& coordinates in magnitude, breaking
ties arbitrarily. For a set S let zg be the vector obtained from x by zeroing out every
coordinate i ¢ S. We also define x_x = &)\ i, (). For the £3/{>-sparse recovery results we
define Hy, (x) = {i € [n] : |x5]* > £ [lz—x 3}

Two common models in the literature are the strict turnstile model and the (general)
turnstile model.

Strict Turnstile Model: Both insertions and deletions are allowed, and it is guaranteed
that at all times x; > 0.

(General) Turnstile Model: Both insertions and deletions are allowed, but there is no
guarantee about the value of x; at any point in time.

A sketch f : R™ — R™ is a function that maps an n-dimensional vector to m dimensions.
In this paper, all sketches will be linear, meaning f(z) = Ax for some A € R™*™. The sketch
length m will be referred to as the space of our algorithms.

» Definition 1 (Heavy hitters). For x € R™ and p > 1, a coordinate x; is called an e-heavy

hitter in £, norm if [z;[P > €[|z|[P. We consider the following three variants of the heavy

hitters problem with different guarantees:

1. Return a list containing all e-heavy hitters but no €/2-heavy hitters.

2. Return a list L of size O(1/€) containing all e-heavy hitters along with estimates &; such
that [x; — ;P < ellx_r1/q]} for all i € L.

3. Return a list of size O(1/€) containing all e-heavy hitters.

When the algorithm is randomized, it has a parameter § of failure probability; that is, the

algorithm succeeds with probability at least 1 — 4.

19:3
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The variant with Guarantee 2 above is also referred to as the ¢ /¢, problem. In this
paper we focus on p = 1 and p = 2, with corresponding COUNT-MIN [5] and COUNT-SKETCH
[3] data structures that have been studied extensively.

We note that the strongest guarantee is Guarantee 2. It is folklore that Guarantee 2
implies Guarantees 1 and 3, and Guarantee 1 clearly implies Guarantee 3. In applications,
such as sparse recovery tasks, it is often the case that one does not need the full power of
Guarantees 1 and 2, but rather is satisfied with Guarantee 3. The natural question that
arises is whether one can gain some significant advantage under this Guarantee. Indeed, we
show that Guarantee 3 allows the existence of a uniform scheme, i.e., one that works for
all vectors, in the strict turnstile model with the same space, in contrast to the other two
guarantees.

» Definition 2 (¢5/¢5 sparse recovery). An {5 /ls-recovery system A consists of a distribution
D on R™*™ and a recovery algorithm R. We will write A = (D,R). We say that A
satisfies the £o /0y guarantee with parameters (n, k, €, m, d) if for a signal « € R", the recovery
algorithm outputs & = R(®P, Px) satisfying

Po~p {17 — 2l < 1+ O)a—rl3} = 1-0.

In the above definition, each coordinate of ®z is called a measurement and the vector ®x
is referred to as the measurement vector or just as the measurements. The probability
parameter ¢ is referred to as the failure probability.

1.2 Our Results

Heavy hitters. Our first result is an improved analysis of the COUNT-MIN sketch [5] for
Guarantee 3 under the change of the hash functions from 2-wise to O(1)-wise independence.
Previous analyses for Guarantees 1 and 2 use (’)(% log %) space; in contrast our analysis shows
that this version of the COUNT-MIN sketch satisfies Guarantee 3 with only O(% log(en) +
log(3)) space. Notably, the  factor does not multiply the log(5) factor. This result has two
important consequences. First, it gives a uniform scheme for Guarantee 3; second, it implies
an improved analysis of the classic dyadic trick [5] for Guarantee 3 using O(Zlog(en) +
log n log( 1Og%)) space. For constant §, previous analyses of the dyadic trick needed space
O(%lognlog(lo%)) but our analysis shows that O(log(en) + log(en)loglog(en)) space
suffices. These results are summarized in Table 1.

Regarding the lower bound, we give the first bound for Guarantee 2 with p = 2, which is
simultaneously optimal in terms of n, any € > n_—lgg, and the failure probability §. That is,
we prove that the space has to be Q(% log &), which matches the upper bound of COUNT-
SKETCH [3] whenever € > —&5. A lower bound of Q(1 log(en)) was given in [16] and is valid
for the full range of parameters of € and n, but previous analyses cannot be adapted to obtain
non-trivial lower bounds for § < % Indeed, the lower bound instances used in arguments in

previous work have deterministic upper bounds using O(% logn) space.

We also show a new randomized lower bound of Q(1(logn + /log %)) space for p = 1,

provided that % > 4/log %. Although not necessarily optimal, this lower bound is the first to

show that a term involving log % must multiply the % factor for p = 1. The assumption that

1
€
For deterministic algorithms satisfying Guarantee 3 with p = 1, we also show a lower bound

of Q(Z) measurements, which resolves Question 4 in the IITK Workshop on Algorithms for
Data Streams [18].

> 1/log% is necessary, as there exist deterministic O(e%) space algorithms for p =1 [7, 20].
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Table 1 Summary of previous heavy hitter algorithms. The notation O(-) for space complexity
is suppressed, O(-) hides logarithmic factors in n, 1/¢ and 1/4.

Algorithm Space Guarantee | Query time
COUNT-MIN [5] Llogn + L log(3) 1,2 O(n)

This paper Llog(en) + log() 3 O(n)
Dyadic Trick [5] Llognlog(leen) 1,2 o)

This paper L log(en) + log(en) log(loggm)) 3 o)

Sparse Recovery. We summarize previous algorithms in Table 2. We give algorithms for
the {2 /{5 problem with failure probability much less than 1/ poly(n) whenever k = Q(logn).
We present two novel algorithms, one running in O(k poly(logn)) time and the other in
O(k? poly(logn)) time with a trade-off in failure probability. Namely, the first algorithm
has a larger failure probability than the second one. The algorithms follow a similar overall
framework to each other but are instantiated with different parameters. We also show how to
modify the algorithm of [10] to obtain an optimal dependence on ¢, achieving a smaller failure
probability along the way. All of these results are included in Table 2. Our algorithms, while
constituting a significant improvement over previous work, are still not entirely optimal. We
show, however, that at least in the spiked covariance model, which is a standard average-case
model of input signals, we can obtain optimal upper and lower bounds in terms of the
measurement complexity. Combined with the identification scheme from [10] we also obtain
a scheme with decoding time nearly linear in k, assuming that k& = n©(1),

Besides the above non-adaptive schemes, we also make contributions, in terms of the
failure probability, for adaptive schemes. For adaptive sparse recovery, Indyk et al. gave
an algorithm under the ¢5/¢s guarantee [15] using O((k/e)log(en/k)) measurements and
achieving constant failure probability. In followup work [19] adaptive schemes were designed
for other £,/¢, error guarantees and improved bounds on the number of rounds were given;
here our focus, as with the non-adaptive schemes we study, is on the error probability. We give
a scheme that achieves failure probability e F77 for any constant v, using the same number

of measurements. Moreover, we present an algorithm for the regime when k/e < poly(logn).
Our scheme achieves the stronger £, /{5 guarantee and fails with probability 1/ poly(logn).

Thus, our algorithms improve upon [15] in both regimes: in the high-sparsity regime we get

an almost exponential improvement in k, and in the low-sparsity regime we get 1/ poly(logn).

2  Our Techniques

Heavy hitters. All the schemes we give are for the strict turnstile model. Our first algorithm
is based on a small but important tuning to the COUNT-MIN sketch: we change the amount
of independence in the hash functions from 2-wise to O(1/e)-wise. Since the estimate of any
coordinate is an overestimate of it, we are able to show that the set of O(1/€) coordinates
with the largest estimates is a superset of the set of the e-heavy hitters. Although changing
the amount of independence might increase both the update and the query time by a
multiplicative factor of 1/¢, we show that using fast multipoint evaluation of polynomials, we
can suffer only a log?(1/€) factor in the update time in the amortized case, and a log*(1/e)
factor in query time in the worst case. The above observation for the COuNT-MIN sketch
gives also an improvement on the well-known dyadic trick which appeared in the seminal
paper of Cormode and Hadjieleftheriou [4].

19:5
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Table 2 Summary of previous sparse recovery results and the results obtained in this paper. The
notation O(-) is suppressed. The paper [10] and the third result of our paper require k = M,
The constants «, a should be thought as arbitrarily small constants, say .001. We also note that
in the regime k/e < n'~%, the decoding time of our first algorithm becomes (k/¢)log®* ¥ n. The
exponents in the poly(-) factors in [9] and [10] are at least 5, though the authors did not attempt at
an optimization of these quantities. The exponent in the poly(:) factors in [17] is at least 3. We
also note that our first result, in the regime k/e < n'=P gives also klog?™” n running time, thus
improving the running time of [9].

Paper Measurements Decoding Time Failure Probability
3] e 'klogn nlogn 1/ poly(n)
9] e 'klog(n/k) e 'k poly(log(n/k)) Q(1)
[10] e klog(n/k) k? - poly(e~" logn) (n/k)=*/ log™ k
[17] e tklogn e 'k - poly(logn) 1/ poly(n)
This paper | ¢ 'klog(n/k) ek T log® n e VE/log7 k
e 'klog(n/k) | ¢ 'k*(logk)log® ™ (n/k) e h/1og” k
e 'klog(Z) e k% poly(logn) (n/k)="/ logk

For the deterministic case, our improved analysis of the COUNT-MIN sketch implies a
deterministic algorithm that finds heavy hitters of all vectors x € R’} ; moreover, we show
how expanders that expand only on sets of size ©(1/¢) (or equivalently lossless condensers)
lead to schemes in the strict turnstile model under Guarantee 3. Then we instantiate the
Guruswami-Umans-Vadhan expander [13] properly to obtain an explicit algorithm. The
idea of using expanders in the context of heavy hitters has been employed by Ganguly [8],
although his result was for the /., /¢; problem with Q(1/€2) space. Known constructions of
these combinatorial objects are based on list decoding, and do not achieve optimal parameters.
Any improvement on explicit constructions of these objects would immediately translate to
an improved explicit heavy hitters scheme for the strict turnstile model.

Our deterministic lower bounds are based on choosing “bad input vectors” for the sketching
matrix S based on several properties of S itself. Since the algorithm is deterministic, it must
succeed even for these vectors.

Our randomized lower bounds come from designing a pair of distributions which must
be distinguished by a heavy hitters algorithm with the appropriate guarantee. They are
based on distinguishing a random Gaussian input from a random Gaussian input with a
large coordinate planted in a uniformly random position. By Lipschitz concentration of
the £1-norm and ¢3-norm in Gaussian space, we show that the norms in the two cases are
concentrated, so we have a heavy hitter in one case but not the other. Typically, the planted
large coordinate corresponds to a column in S of small norm, which makes it indistinguishable
from the noise on remaining coordinates. The proof is carried out by a delicate analysis of
the total variation distance of the distribution of the image of the input under the sketch in
the two cases.

Non-Adaptive Sparse Recovery. Our result follows a similar framework to that of [9],
though chooses more carefully the main primitives it uses and balances the parameters in
a more effective way. Both schemes consist of O(log k) so-called weak systems: a scheme
that takes as input a vector x and returns a vector & which contains a 2/3 fraction of the
heavy hitters of z (the elements with magnitude larger than ﬁ |lx—kll2) along with accurate
estimates of (most of) them. Then it proceeds by considering the vector 2 — &, which contains
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at most 1/3 of the heavy hitters of z. We then feed the vector  — & to the next weak-level
system to obtain a new vector which contains at most (2/3)(1/3)k = 2k/9 of the heavy
hitters. Proceeding in a similar fashion, after the i-th stage we will be left with at most k/3?
heavy hitters.

Each weak system consists of an identification and an estimation part. The identification

part finds a 2/3 fraction of the heavy hitters while the estimation part estimates their values.

For the identification part, the algorithm in [9] hashes n coordinates to ©(k) buckets using a
2-wise independent hash function and then uses an error-correcting code in each bucket to
find the heaviest element. Since, with constant probability, a heavy hitter will be isolated and
its value will be larger than the ‘noise’ level in the bucket it is hashed to, it is possible to find
a 2/3 fraction of the heavy hitters with constant probability in O(k poly(logn)) decoding
time. Moreover, in each bucket we use a b-tree, which is a folklore data structure in the data
stream literature, the special case of which (b = 2) first appeared in [5]. The estimation
part is a different analysis of the folklore COUNT-SKETCH data structure: we show that the
estimation scheme can be implemented with an optimal dependence on ¢, in contrast to the
the expander-based scheme in [10], which gave a sub-optimal dependence on e.

In this paper, we first design an algorithm with running time O(k? poly(logn)), as in [10],

and then improve it to O(k'** poly(logn)) time, but with a slightly larger failure probability.

The key observation is that in the first round we find a constant fraction of the heavy hitters
with e™* failure probability, in the second round we find a constant fraction of the remaining
heavy hitters with e */2 failure probability, and so on, with polynomially decreasing number
of measurements. In later rounds we can decrease the number of measurements at a slower
rate so that the failure probability can be reduced by using more measurements while the
optimality of the number of measurements is retained. Our suffering from the quadratic
dependence on k in the runtime is due to the fact that our sensing matrix is very dense, with
O(k) non-zeros per column. Hence, updating measurements y < y — ®& will incur a running
time proportional to ||Z||o - k, where # is a O(k)-sparse vector.?

But, how do we achieve an almost linear time algorithm while beating the constant failure
probability of [9]7 The idea is to use again the same analysis, but without sharpening the
failure probability in the first (1/2) log k steps. The first (1/2) log k rounds still fail with tiny
probability, and once we reach round (1/2)logk, we can afford to run the quadratic-time
algorithm above, since our sparsity is now 0(\/%) Hence we would expect the total algorithm
to run in time O((vk)? poly(logn)) = O(kpoly(logn)). Putting everything together, we
obtain substantial improvements over both [9] and [10].

A caveat of our approach, which is the reason we obtain k't dependence on the decoding
time, is the following. Since we do not want to store the whole matrix, our algorithms
are implemented differently when k < nt=2/2 and k > nl=2/2. In the former case, we
use logn = O(log(n/k)) measurements per bucket in the identification step, in order to
avoid inverting an O(k)-wise independent hash function. In the latter case, to compute the
pre-image of an O(k)-wise independent hash function we just evaluate the hash function,
which corresponds to a degree-O(k) polynomial, in all places in time O(n log? k), and trivially

4 We note an omission in the runtime analysis in [10]. Their measurement matrix contains s = 2°/i¢ (where
c is a constant) repetitions of an expander-based identification matrix (see Lemma 4.10 and Theorem 4.9
of [10]). Each repetition has at least one non-zero entry per column and thus the measurement matrix
for the i-th iteration has at least s non-zero entries per column, which implies that when ¢ = logk — 1,
each column has at least Q(k/ poly(logk)) nonzero entries. Updating measurements y < y — ®2 will
then take Q(k?/ poly(log k)) time, where & has Q(k) nonzero coordinates. Therefore we would expect
that the overall running time of the recovery algorithm will be Q(k?) instead of their claimed O(k'*?).
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find the pre-images. The asymptotic complexity of our algorithm in its full generality is
dominated by the latter case, where we obtain an O(k!'T®) decoding time. We note that in
the regime k < n'~®, the running time becomes O(klog®™ n).

Adaptive Compressed Sensing. We start by implementing a 1/poly(logn) failure probab-
ility version of the 1-sparse routine of [15]. We apply a preconditioning step before running
[15] with a different setting of parameters; this preconditioning step gives us power for the
next iteration, enabling us to achieve the desired failure probability in each round.

The lemma above leads to a scheme for ¢5/fs in the low-sparsity regime, when k <
poly(logn). The algorithm operates by hashing into poly(logn) buckets, determining the
heavy buckets using a standard variant of COUNT-SKETCH, and then running the 1-sparse
recovery in each of these buckets. The improved algorithm for 1-sparse recovery is crucial
here since it allows for a union bound over all buckets found.

For the general case of k-sparsity, we show that the main iterative loop of [15] can be
modified so that it gives exponentially smaller failure probability in k. The idea is that, as
more and more heavy hitters are found, it is affordable to use more measurements to reduce
the failure probability. Interestingly and importantly for us, the failure probability per round
is minimized in the first round, and in fact is increasing exponentially, although this was not
exploited in [15]. Therefore, in the beginning we have exponentially small failure probability,
but in later rounds we can use more measurements to boost the failure probability by making
more repetitions. This part needs care in order not to blow up the number of measurements
while achieving the best possible failure probability. We use a martingale argument to handle
the dependency issue that arises from hashing coordinates into buckets, and thus avoid
additional repetitions that would otherwise increase the number of of measurements.

The two algorithms above show how we can beat the failure probability of [15] for all
values of k: we have 1/ poly(logn) for small k and exp(—k°99) for large k, thus achieving
asymptotic improvements in every case.

We note that although in the heavy hitters schemes we take into account the space to store
the hash functions, in the sparse recovery we adopt the standard practice of not counting
the space needed to store the measurement matrix, and therefore we use full randomness.

3 Formal Statement of Results

In this section we state all of our results and in subsequent sections we shall only give an
outline of our improved analysis of COUNT-MIN and our lower bound for COUNT-SKETCH.
The proofs of all other theorems can be found in the full version. The notations Og 4, .., Qg.p,...
indicate that the constant in O- and 2-notations depend on a,b, . ...

3.1 Heavy Hitters
3.1.1 Upper Bounds

» Theorem 3 (¢; Heavy Hitters Under Guarantee 3). There exists a data structure DS which
finds the {1 heavy hitters of any x € R™ in the strict turnstile model under Guarantee 3. In
other words, we can sketch x, such that we can find a list L of O(k) coordinates that contains
all e-heavy hitters of x. The space usage is O(%log(en)), the update time is amortized
O(log2(%) log(en)) and the query time is O(n logQ(%) log(en)).

The following theorem follows by an improved analysis of the dyadic trick [4].
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» Theorem 4. There exists a data structure with space O(L log(en) + log(en) 'log(@))
that finds the {1 heavy hitters of x € R™ in the strict turnstile model under Guarantee 3 with
probability at least 1 — 6. The update time is 0(10g2(%) log(en) + elog(en) logz(%) log(w»
amortized and the query time is (’)(%(logQ(%) log(en) + log(en) logQ(%) log(%)))).

» Theorem 5 (Explicit ¢; Heavy Hitters in the Strict Turnstile Model). There exists a
fully explicit algorithm that finds the e-heavy hitters of any vector x € R™ wusing space
O(k”a(log(%)10gn)2+2/°‘). The update time is O(poly(logn)) and the query time is

O(n - poly(logn)).

3.1.2 Lower Bounds

» Theorem 6 (Strict turnstile deterministic lower bound for Guarantees 1,2). Assume that
n = Q(e=2). Any sketching matriz S must have Q(e~2) rows if, in the strict turnstile model,
it is always possible to recover from Sz a set which contains all the e-heavy hitters of x and
contains no items which are not (e/2)-heavy hitters.

» Theorem 7 (Turnstile deterministic lower bound for Guarantee 3). Assume that n = Q(e=2).
Any sketching matriz S must have Q(e=2) rows if, in the turnstile model, some algorithm
never fails in returning a superset of size O(1/€) containing the e-heavy hitters. Note that it
need not return approximations to the values of the items in the set which it returns.

» Theorem 8 (Randomized Turnstile ¢;-Heavy Hitters Lower Bound for Guarantees 1,2).

Assume that 1/e > C+/log(1/d) and suppose n > ’7646_1 log(l/&)—‘ . Then for any sketching

matriz S, it must have Q(e~1\/log(1/8)) rows if, in the turnstile model, it succeeds with
probability at least 1 — 6 in returning a set containing all the € £1-heavy hitters and containing
no items which are not (€/2) £1-heavy hitters.

» Theorem 9 (Randomized ¢s-Heavy Hitters Lower Bound with Guarantee 2). Suppose that
d < 8 and € < 1/eg for sufficiently small absolute constants dp,e9 € (0,1) and n >
[646~ 1 1og(6/0)]. Then for any sketching matriz S, it must have Q(e~*log(1/6)) rows if it
succeeds with probability at least 1 — § in returning a set containing all the e-heavy hitters
and containing no items which are not (e/2)-heavy hitters.

3.2 Non-Adaptive Sparse Recovery

» Theorem 10. Let 1 < k < n be integers and v > 0 be a constant. There exists
an £o/ly sparse recovery system A = (D,R) with parameters (n,k,e, O,(k/elog(n/ek)),
exp(—k/log® k)). Moreover, R runs in time O (k*log*™ n).

In other words, there exists an £y /ly sparse recovery system that uses O(kelog(n/ek))
measurements, runs in time O.,(k?log" ™ n), and fails with probability exp(—k/log® k).

» Theorem 11. Let 1 < k < n be integers and v > 0 be a constant. There exists
an {a/ly sparse recovery system A = (D,R) with parameters (n,k,e, O,(k/elog(n/k)),
exp(—Vk/log® k). Moreover, R runs in time O (k/elog®™ n). In other words, there ex-
ists an la/ls sparse recovery system that uses O(kelog(n/ek)) measurements, runs in time
O, (klog®t" n), and fails with probability exp(—Vk/log” k).

» Theorem 12. Suppose that k = nS),

tem A = (D, R) with parameters (n,k,e,@(%log %),(%)7ﬁ) Moreover, R runs in
O(k?/epoly(logn)) time. In other words, there exists an fo/ly sparse recovery system

that uses O(kelog(n/ek)) measurements, runs in time O(k?/epoly(logn)), and fails with
probability (n/k)~*/ 1ok,

There exists an {3/l sparse recovery sys-
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3.3 Adaptive Sparse Recovery

» Theorem 13 (Entire regime of parameters). Let z € R™ and v > 0 be a constant. There
exists an algorithm that performs O((k/e€)loglog(en/k)) adaptive linear measurements on x in
O(log* k-loglog(en/k)) rounds, and finds a vector & € R™ such that ||z — 2|3 < (1+€)||x_x|3
The algorithm fails with probability at most exp(—k'=7).

» Theorem 14 (low sparsity regime). Let x € R™ and parameters k, € be such that k/e < clogn,
for some absolute constant c. There exists an algorithm that performs O((k/¢€)loglogn)
adaptive linear measurements on x in O(loglogn) rounds, and finds a vector & € R™ such
that ||z — 2|2 < (1 + €)||v_g/cll2- The algorithm fails with probability at most 1/ poly(logn).

3.4 Spiked Covariance Model

In the spiked covariance model, the signal x is subject to the following distribution: we
choose k coordinates uniformly at random, say, i1,...,7x. First, we construct a vector
y € R", in which each yy, is a uniform Bernoulli variable on {—\/e/ik7 —|—Je/7} and these k
coordinate values are independent of each other. Then let z ~ N(0, %In) and set x =y + z.
We now present a non-adaptive algorithm (although the running time is slow) that uses
O((k/e)log(en/k) 4+ (1/€)log(1/d)) measurements and present a matching lower bound.

» Theorem 15 (Upper Bound). Assume that (k/e)log(1/5) < pn, where 8 € (0,1) is
a constant. There exists an 3/l algorithm for the spiked-covariance model that uses
O (% log < + %log %) measurements and succeeds with probability > 1 — 0. Here the random-
ness is over both the signal and the algorithm.

» Theorem 16 (Lower Bound). Suppose that § < 0 for a sufficiently small absolute constant
S0 € (0,1) and n > [64e~'1og(6/5)]. Then any ls/ls-algorithm that solves with probability >
16 the l3 /Ly problem in the spiked-covariance model must use Q(e~*log(1/6)) measurements.

Combining with the lower bound from [21] (Section 4) we get a lower bound for the
spiked covariance model of Q((k/€)log(n/k) + log(1/d)/€). We note that although the lower
bound is not stated for the spiked covariance model, inspection of the proof indicates that
the hard instance is designed in that model.

4 (¢./¢> lower bound

This section is devoted to the proof of Theorem 9. The proof is based on designing a
pair of hard distributions which cannot be distinguished by a small sketch. We show this
by using rotational properties of the Gaussian distribution to reduce our problem to a
univariate Gaussian mean estimation problem, which we show is hard to solve with low
failure probability.

4.1 Toolkit

We list some facts in measure of concentration phenomenon in this subsection and omit their
proofs owing to space limitations. Hereinafter we use Dy (-, ) to denote the total variation
distance between two distributions.

» Fact 1 (TVD Between Gaussians). Dry(N(0,1,), N(7,1.)) = Pyonco,n) {9l < lI7ll2/2}

» Fact 2 (Concentration of ¢5-Norm). Suppose x ~ N(0, I,) and n > 181n(6/0). Then

P{vn/2 < |[z]l2 <3yn/2} 2 1-6/3.
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» Fact 3 (Univariate Tail Bound). Let g ~ N(0,1). There exists 69 > 0 such that it holds for
all § < &g that P{|g| < 44/log(1/6)} >1—4§/3.

In our proofs we are interested in lower bounding the number r of rows of a sketching
matrix S.

4.2 Proof of the lower bound

Proof. Let the universe size be n = [64e ! log(6/0)|, which is large enough in order for
us to apply Fact 2 (note if the actual universe size is larger, we can set all but the first
[64e~ 1 log(6/0)| coordinates of our input to 0).

Let r be the number of rows of the sketch matrix S, where r < n. If » > n, then we
immediately obtain an Q(e~!log(1/4)) lower bound. We can assume that S has orthonormal
rows, since a change of basis to the row space of S can always be performed in a post-processing
step.

Hard Distribution. Let I be a uniformly random index in [n].

Case 1: Let 1 be the distribution N(0,I,,), and suppose x ~ 7. By Fact 2, ||z|l2 > \/n/2
with probability 1 — §/3. By Fact 3, |x;| < 44/log(1/§) with probability 1 — §/3. Let €
be the joint occurrence of these events, so that P(£) > 1 —2§/3.

By our choice of n, it follows that if £ occurs, then 7 < 16log(1/6) < §||z[]3, and
therefore I cannot be output by an />-heavy hitters algorithm.

Case 2: Let y ~ N(0,I,) and = = \/ener + y, where e; denotes the standard basis vector
in the I-th direction. By Fact 2, ||yl < 2¥* with probability 1 — /3. By Fact 3,

lyr| < 44/log(1/6) < \/en/2 with probability 1 — §/3. Let F be the joint occurrence of

these events, so that P(F) > 1 —24/3.

If event F occurs, then |z7| > 3\/en — 44/log(1/6) > 5@, and so z? > 251%. We also

have [|z||2 < 3v/en + % < 2y/n, provided € < 1/36, and so ||z||2 < 4n. Consequently,

x3 > €||x||3. Consequently, if F occurs, for an fo-heavy hitters algorithm to be correct, it

must output I.

Conditioning. Let 7’ be the distribution of 7 conditioned on &, and let 7' be the distribution
of v conditioned on F. For a distribution g on inputs y, we let i1 be the distribution of Sy.
Note that any ¢»-heavy hitters algorithm which succeeds with probability at least 1—4§ can

decide, with probability at least 1 — §, whether 2 ~ 7 or  ~ /. Hence, Dy (1/,v') > 1—6.

Observe for any measurable set A C R™ it holds that

M= (a) - i (a)| <

Wl N

0,

and so it then follows that Drv (7,%) > (Drv (1,y') — 23—5) (1-26)>1- %‘5. Therefore, to
obtain our lower bound, it suffices to show if the number r of rows of S is too small, then it
cannot hold that Dy (7,7) > 1—746/3.

Bounding the Total Variation Distance. Since S has orthonormal rows, by rotational
invariance of the Gaussian distribution, the distribution of 7 is identical to N(0, I,.) and the
distribution of 4 identical to (3/en)Sr + N(0, I.), where St is the I-th column of S.

Since S has orthonormal rows, by a Markov bound, for 9/10 fraction of values of I, it
holds that ||S7[|3 < 127, Call this set of columns 7.
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Let G be the event that I € T, then P(G) > 9/10. It follows that

Drv(7,7) < B(G)Dry (7,319) + P(=G) Drv (7, 71-G) < B(G) Dry (7,719) + 1 — (G)
=1-P(G)(1— Drv(7,7|9))

9 o
<1- E(l — Drv(n,71G))-

Hence, in order to deduce a contradiction that Dpy (7,%) < 1 —75/3, it suffices to show that
DTv(ﬁ7’7|g) <1l-— 705/27

The total variation distance between N (0, ) and (3y/en)S; + N(0,I,) for a fixed i € T
is, by rotational invariance and by rotating S; to be in the same direction as the first
standard basis vector e, the same as the total variation distance between N(0, I,) and
(3y/en)||Si||2e1 + N(0, I,.), which is equal to the total variation distance between N(0,1) and
NEyen|Silla, ).

Using that ¢ € T and so ||S;||2 < 4/10r/n, we apply Fact 1 to obtain that the variation
distance is at most P[|N(0,1)| < (3/2)\/en - \/10r/n]. Tt follows that

1 3 10r
Drv (1,75 < —Dry(n,y|I=9)< P < = ) —
v (1,71 9) < 2; g Prv@A =< B {|g < Ve y/— } )
and thus it suffices to show, when 7 is small, that Py n(o,1) {|g| > %\/ 10er} > 72i75. Observe
that the left-hand is a decreasing function in 7, and so it suffices to show the inequality above
for r = ae=1log(1/4) for some a > 0.
Invoking the well-known bound that (see, e.g., [11])
1 1 2

P SHl> . e T 1 >4/2,
g~N(0,1) ly=t}= Vor 2t =

we have that

P {Igl > 2\/10@} >

g~N(0,1)

5 0 ! > @5
4/5m Valog(1/6) 27

when « is small enough. Therefore it must hold that r > ae~!log(1/§) and the proof is

45
T

complete. <
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