
Deterministic O(1)-Approximation Algorithms to
1-Center Clustering with Outliers
Shyam Narayanan
Harvard University, Cambridge, Massachusetts, USA
shyamnarayanan@college.harvard.edu

Abstract
The 1-center clustering with outliers problem asks about identifying a prototypical robust statistic
that approximates the location of a cluster of points. Given some constant 0 < α < 1 and n

points such that αn of them are in some (unknown) ball of radius r, the goal is to compute a ball
of radius O(r) that also contains αn points. This problem can be formulated with the points in
a normed vector space such as Rd or in a general metric space.

The problem has a simple randomized solution: a randomly selected point is a correct solu-
tion with constant probability, and its correctness can be verified in linear time. However, the
deterministic complexity of this problem was not known. In this paper, for any Lp vector space,
we show an O(nd)-time solution with a ball of radius O(r) for a fixed α > 1

2 , and for any normed
vector space, we show an O(nd)-time solution with a ball of radius O(r) when α > 1

2 as well as
an O(nd log(k)(n))-time solution with a ball of radius O(r) for all α > 0, k ∈ N, where log(k)(n)
represents the kth iterated logarithm, assuming distance computation and vector space opera-
tions take O(d) time. For an arbitrary metric space, we show for any C ∈ N an O(n1+1/C)-time
solution that finds a ball of radius 2Cr, assuming distance computation between any pair of
points takes O(1)-time, and show that for any α,C, an O(n1+1/C)-time solution that finds a ball
of radius ((2C − 3)(1− α)− 1)r cannot exist.

2012 ACM Subject Classification Theory of computation → Facility location and clustering;
Theory of computation → Divide and conquer

Keywords and phrases Deterministic, Approximation Algorithm, Cluster, Statistic

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2018.21

Acknowledgements I want to thank Professors Piotr Indyk and Jelani Nelson, who proposed
this problem in a course I took with them. I would also like to thank them both for providing
a lot of feedback on my work and write-up. I would also like to thank James Tao for a helpful
discussion.

1 Introduction

Data clustering that is tolerant to outliers is a well-studied task in machine learning and
computational statistics. In this paper, we deal with one of the simplest examples of this
class of problems: 1-center clustering with outliers. Informally, given n points such that
there exists an unknown ball of radius r containing most of the points, we wish to find a
ball of radius O(r) also containing a large fraction of the points. More formally, suppose
0 < α < 1 is some fixed constant. Given points a1, ..., an in space Rd (where points are given
as coordinates) under an Lp norm for some p ≥ 1, in some other normed vector space, or in
an arbitrary metric space (where we just have access to distances), suppose we know there
exists a ball of radius r containing at least αn points but do not know the location of the
ball. Then, can we efficiently provide a C-approximation to finding the ball, i.e. find the
center of a ball of radius Cr for some C ≥ 1 containing at least αn points?

© Shyam Narayanan;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2018).
Editors: Eric Blais, Klaus Jansen, José D. P. Rolim, and David Steurer; Article No. 21; pp. 21:1–21:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shyamnarayanan@college.harvard.edu
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


21:2 Deterministic O(1)-Approximation Algorithms to 1-Center Clustering with Outliers

The problem has a simple linear-time Las Vegas randomized algorithm: a randomly
selected point is a correct solution with constant probability, and its correctness can be
verified in linear time. In fact, an even faster randomized algorithm works by picking O(1)
points randomly, computing pairwise distances, and selecting a cluster if it exists. However,
the deterministic complexity of this problem appears more intriguing, and to the best of
our knowledge, no linear-time or even subquadratic-time (let alone simple) solution for this
problem was known. A trivial quadratic-time algorithm exists by enumerating over all points
and checking pairwise distances, so the goal of the paper is to obtain deterministic algorithms
whose running time is faster than the above. This situation bears similarity to the closely
related 1-median problem, where given a set of points a1, ..., an we want to find a point
p∗ that (approximately) minimizes the sum of the distances between p∗ and all ai’s. It
is a folklore fact that a randomly selected point is a 2(1 + ε)-approximate 1-median with
probability at least ε

1+ε . However, in the deterministic case for an arbitrary metric space,
no constant-factor approximation in linear time is possible [7, 5], and non-trivial tradeoffs
between the approximation factor and the running time exist [6, 4]. The goal of this paper is
to establish an analogous understanding of the deterministic complexity of 1-center clustering
with outliers.

1.1 Main results
Our results are depicted in Table 1. They primarily fall into two main categories: results
in normed vector spaces and results in arbitrary metric spaces. For Rd with the Lp norm,
assuming we are given coordinates of points, our algorithm runs in O(nd) time with an
O((α − 0.5)−1/p)-approximation, assuming α > 1

2 . Such a runtime even for the Euclidean
case was previously unknown. For arbitrary normed vector spaces, our algorithm runs
in Oα(nd) time with an O((α − 0.5)−1)-approximation whenever α > 0.5, assuming that
distance calculation, vector addition, and vector multiplication can be done in O(d) time. For
0 < α ≤ 0.5, we solve the problem for arbitrary normed vector spaces in Oα,k(nd log(k)(n)) =
Oα,k(nd log log ... logn) time for any integer k.

For arbitrary metric spaces, assuming distance calculation takes O(1) time, we give an
Oα,C(n1+1/C)-time algorithm with approximation constant 2C. While this is much weaker
than for normed vector spaces, it is not possible to do much better, as for any fixed α and C,
there is no O(n1+1/C)-time algorithm with approximation constant (2C − 3)(1− α)− 1 that
works for an arbitrary metric space. In particular, there is no O(n polylog n)-time solution
to solve the general metric space problem, even for large α. See Appendix A for the proof.

As a note, subscripts of α, k, and C on our O factors mean that the constants may depend
on α, k, and C but are at most some increasing function of the subset of α−1, k, C in the
subscript.

1.2 Motivation and Relation to Previous Work
1-center clustering with outliers is a very simple example of a robust statistic, i.e. its location
is usually resistant to large changes to a small fraction of the data points. Robust statistics
are reviewed in detail in [14]. When α > 1

2 , addition of a large number of points does not
change the statistic up to O(r), as it only slightly decreases the value of α. Even if α < 1

2 , the
statistic is still robust as if we find some ball containing αn points that are disjoint from the
intended ball, we can remove those points and now there is some ball with at least α′ = α

1−α
of the remaining points which we need to get close to, so inducting on bα−1c shows that the
statistic is robust.



S. Narayanan 21:3

Table 1 Our results.

Space Assumptions Runtime Approximation Comments

Lp normed α > 1
2 O(nd) O

(
(α− 0.5)−1/p) Implies Euclidean

Normed α > 1
2 Oα(nd) O

(
(α− 0.5)−1)

Normed α > 0 Oα,k(nd log(k)(n)) Oα,k(1) Implies for Lp space,
k any positive integer

Metric α > 0 Oα,C(n1+1/C) 2C Can be done even if
the radius is unknown,
C any positive integer

Metric α > 0 ω(n1+1/C) (2C − 3)(1− α)− 1 Reduction from metric
1-median lower bound,
see Appendix A

Robust statistics have a lot of practical use in statistics and machine learning [9, 13].
Since machine learning often deals with large amounts of data, it is difficult to obtain a large
amount of data with high accuracy in a short period of time. Therefore, if we can compute a
robust statistic quickly, we can get more data in the same amount of time and have a good
understanding of the approximate location of a good fraction of the data.

This question is valuable from the perspective of derandomization. One solution to the
1-center clustering problem is to randomly select a point and check if it is at most 2r away
from αn−1 other points, and repeat the process if it fails. This algorithm is efficient and gets
a ball of radius 2r with αn points after O(α−1n) expected computations, but is a Las Vegas
algorithm that can be slow with reasonable probability. A faster Monte Carlo algorithm
involves choosing an O(1)-size subset of the points and running the brute force quadratic
algorithm, though similarly this algorithm may fail with reasonable probability. Therefore,
this problem relates to the question of the extent to which randomness is required to solve
certain computational problems.

The Euclidean problem is useful in the amplification of an Approximate Matrix Mul-
tiplication (AMM) algorithm described in [11]. To compute ATB up to low Frobenius
norm error with probability 2/3 in low time and space, the algorithm approximates ATB
as C = (SA)T (SB), where S is a certain randomized sketch matrix. Then, if this process
is repeated O(log δ−1) times to get C1, ..., CO(log δ−1), with probability 1− δ, at least 3/5 of
the Ci’s satisfy ||Ci−ATB||F ≤ ε||A||F ||B||F . We are able to approximate ||A||F ||B||F with
high probability using L2 approximation algorithms from [1]. If we think of Ci and ATB as
vectors, at least 3/5 of them are in a ball of radius r = ε||A||F ||B||F with probability 1− δ.
To approximate the center of this ball, i.e. ATB, they use the Las Vegas algorithm. If we
only assume that at least 3/5 of the vectors are in a ball of radius r, approximating the ball
this way with probability 1− δ requires Ω((log δ−1)2) pairwise distance computations and
thus Ω(d(log δ−1)2) time where d is the dimension of ATB as a vector. However, Theorem 2
gives a method that only requires O(log δ−1) distance computations and O(d log δ−1) time,
thus making amplification of the error for this AMM algorithm linear in log δ−1.

1-center clustering with outliers is also related to the standard 1-center problem (without
outliers), which asks for a point p that minimizes maxi ρ(p, ai), where ρ denotes distance
[16]. 1-center with outliers has been studied, e.g., in [18], but under the assumption that the
number of outliers is o(n), instead of up to (1− α)n. The 1-center and 1-center with outliers
problems also have extensions to k-center [3] and k-center with outliers [15, 8], where there

APPROX/RANDOM 2018



21:4 Deterministic O(1)-Approximation Algorithms to 1-Center Clustering with Outliers

are up to k allowed covering balls. It also relates to the geometric 1-median approximation
problem, which asks, for a set of points a1, ..., an, for some point p∗ such that

n∑
i=1

ρ(p∗, ai) ≤ C ·min
p

n∑
i=1

ρ(p, ai),

i.e. finding a C-approximation to the geometric 1-median problem. The geometric 1-
median problem has been studied in detail, though usually focusing on randomized (1 + ε)-
approximation algorithms in Euclidean space [12, 10]. For the deterministic case in an
arbitrary metric space, there exist tight upper [6, 4] and lower time bounds [7, 5] for all C.
The geometric 1-median problem is closely related to the 1-center clustering with outliers
problem since we will show in Lemma 12 a reduction from geometric 1-median, with slight
increases in approximation constant and runtime. Therefore, in combination with the lower
bounds of geometric 1-median, this establishes a nontrivial lower bound for 1-center clustering
with outliers in general metric space.

As a remark, our Theorem 2 uses an idea of deleting points that are far apart from each
other, which is similar to certain ideas for `1-heavy hitters by Boyer and Moore and by Misra
and Gries [2, 17], in which seeing many distinct elements results in a similar deletion process.

1.3 Notation
For many of our proofs, we deal with a weighted generalization of the problem, defined as
follows. Let α and a1, ..., an be as in the original problem statement, but now suppose each
ai has some weight wi ≥ 0 such that w1 + ...+wn > 0. Furthermore, assume there is a ball of
radius r containing some points ai1 , ..., ais such that wi1 +...+wis ≥ α(w1 +...+wn). The goal
is then to find a ball of radius O(r) containing points aj1 , ..., ajt

such that wj1 + ...+ wjt
≥

α(w1 + ...+ wn), which we call containing at least α(w1 + ...+ wn) weight.
Given points a1, ..., an with weights w1, ..., wn, we let w =

∑
1≤i≤n wi, i.e. the total

weight. For any set S ⊂ [n], let aS = {ai : i ∈ S} and let wS =
∑
i∈S wi. For some

results, we define a new set of points q1, ..., qm with weights v1, ..., vm, so we will use the
terms “w-weight” and “v-weight” accordingly if necessary. Similarly for any set S ⊂ [m], let
qS = {qi : i ∈ S} and let vS =

∑
i∈S vi.

For computing distances, ||x− y|| denotes distance in a normed vector space, and ρ(x, y)
denotes distance in an arbitrary metric space.

Since α, the fraction of points or weight in the ball of radius r, is variable, we define the
problem 1-center clustering with approximation constant C and fraction α as the problem
where if there is a ball of radius r containing αn points (or αw weight), we wish to explicitly
find a ball of radius Cr with the same property.

Finally, for any function f in this paper, the following assumptions are implicit: f is
nondecreasing, f(n) ≥ 1, f(n) = O(n), and f(an) ≤ af(n) for any a ≥ 1, n ∈ N.

1.4 Proof Ideas
While many of our proofs assume the weighted problem, we assume the unweighted problem
here for simplicity. This is a very minor issue, since the weighted and unweighted problems
are almost equivalent, by Lemma 10 (see Appendix A).

The algorithm for the Lp normed vector space simply returns the point whose ith
coordinate is the median of the ith coordinates of a[n]. The proof is done shortly and is
quite brief, so it is not included in this section. We now describe the algorithm intuition for
normed vector spaces when α > 1

2 . Our goal is to reduce the n point problem into an n/2



S. Narayanan 21:5

point problem in Oα(nd) time, which means the overall runtime is Oα(nd). To do this, we
divide the n points into n/2 pairs of points just by grouping the first two points, then the
next two, and so on. The idea is that when two points are far away, i.e. more than 2r apart,
at most one of them can actually be in our ball B, so deleting both of them still means at
least α of the points are in the ball of radius r. However, when the two points are within
2r of each other, we “join” the points by pretending the second point is at the location of
the first point, though as a result now we are only guaranteed a ball of radius 3r concentric
with B having α of the points, because we may join a point in the ball with a point close
to the ball but not in it. This means if we have a C approximation for n/2 points, we can
get a 3C-approximation for n points, since every remaining pair has the points in the same
location so we keep only one point from each pair. However, to go from a ball of radius 3Cr
to a ball of radius Cr, we look at the original set of points and take the centroid of all the
points in the ball of radius 3Cr. The ball of radius r containing at least αn points will cause
the centroid to move closer to the ball, assuming C is not too small. We may have to repeat
the process several times with smaller balls until we get sufficiently close, i.e. back to less
than Cr away from B, but this only requires Oα(1) iterations and thus Oα(nd) total time.

Unfortunately, for normed vector spaces when α ≤ 1
2 , the centroid of the points within a

certain radius may not be closer to the desired ball. The idea to fix this is to assume that B
has at least αn more points than BC\B for a certain constant C, where for any A, BA is
the ball of radius Ar concentric with B. Then, if we split the points into two halves, at least
one half satisfies the same property. Suppose that given n/2 points with this property we
can find a ball of radius Kr that not only contains at least αn points but also intersects B,
for some K ≤ C−3

2 . Then, the ball of radius (K + 2)r around one of these points contains B
but is contained in BC , so if we restrict to the ball of radius (K + 2)r around that point,
at least 1+α

2 of the remaining points are in B, which has αn points. Now, use the previous
algorithm with some constant which is at least 1+α

2 > 1
2 to find a ball of radius Kr with

αn points, where we make sure K is not too small. However, there is an issue of multiple
completely disjoint balls of radius O(r), each having at least αn points, as α < 1

2 . To salvage
this, we have to first find a ball of radius Kr containing αn points, then remove the points
in the ball and repeat the procedure with a higher value of α, in case the ball we found
does not actually intersect B. Overall, this happens to make the runtime O(nd polylog n).
One issue is that we don’t know whether there is some B that contains at least αn more
points than BC\B, but if there were some B of radius r that contains at least αn total
points, for some b = O(logα−1), BCb contains at least α

2 n more points than BCb+1\BCb

,

or else the number of points would become too large. Therefore, we attempt the procedure
with fraction α

2 for radius r, radius Cr, radius C2r, and so on until CO(logα−1)r. Finally, we
can go from nd polylog n to nd log(k) n using a brute force divide and conquer. Namely, if
we can solve the problem in time ndf(n), split the points into buckets of size f(n), run the
algorithm on each bucket, perhaps with a smaller value of α, and return O( n

f(n) ) points in
time O(ndf(f(n))). If we choose the points well, we get that most of the chosen points will
be at most Cr away from our desired ball B, so with a larger constant on the order of C2,
we can run the algorithm on the O( n

f(n) ) points, which takes O(nd) time. We can repeat the
procedure to get O(ndf (k)(n)) for any k, though C may become very large.

Our metric space bound ideas are almost identical in the cases of α > 1
2 and α ≤ 1

2 ,

except for the issue that when α ≤ 1
2 , we run into issues of finding a ball of radius Cr with

αn points that isn’t near the desired ball of radius r and αn points. This issue is fixed by
ideas of removing the points in the ball of radius Cr and retrying the algorithm for a larger
value of α if necessary. For simplicity we assume α > 1

2 for the rest of this section.

APPROX/RANDOM 2018



21:6 Deterministic O(1)-Approximation Algorithms to 1-Center Clustering with Outliers

••
••• •

•• •

•

•• •••
••

•
•

•••

•

• •

Figure 1 Here is an example for n = 25, α = 13/25 = 0.52, and C = 2. We split the 25 points
into

√
n = 5 buckets of

√
n = 5 points each, color coded red, blue, green, pink, and orange. The

black circle represents the desired ball B of radius r. By brute force we try to find a ball of radius
2r containing at least an α fraction for each color, and succeed for red, blue, and green (represented
by dashed circles). It takes O(

√
n

2) = O(n) time to try for each color, so the total time for this is
O(n
√
n). However, at least an α fraction of points of some color (in this case red) must be in B by

Pigeonhole, so the brute force algorithm must succeed in finding a ball of radius 2r containing an α
fraction of the red points, and since α > 1/2, the radius 2r ball must contain some point in B and
thus must intersect B. This means the ball of radius 4r concentric with the dashed red circle must
contain B by the triangle inequality, and thus has at least αn points. We can check this for any ball
in O(n) time and there are at most

√
n balls to check, so the total time for this is O(n

√
n).

For metric space upper bounds, one can use brute force divide and conquer. Suppose in
time O(n1+1/K) we can solve the problem with approximation constant C. Then, split the n
points into blocks of size nK/(K+1). If we let the ith block be called Di, then some block
must have at least α|Di| points. Therefore, if we run the algorithm on all blocks, which
takes O(n · (nK/(K+1))1/K) = O(n1+1/(K+1)) time, for at least one block we will get a point
at most Cr away from B, which means the ball of radius (C + 2)r from some point must
contain B and thus at least αn total points. There are O(n1/(K+1)) points we have to check,
each of which takes O(n) time to verify, so we will find a point such that the ball of radius
(C + 2)r contains at least αn total points in O(n1+1/(K+1)) time. As α > 1

2 , this ball by
default intersects any ball of radius r with at least αn points. Therefore, if we can solve the
problem with approximation constant C in O(n1+1/K) time, we can solve the problem with
constant C + 2 in time O(n1+1/(K+1)), since the divide and conquer procedure and checking
both take O(n1+1/(K+1)) time. Since a 2-approximation in n2 time is trivial, this should
give a 2C approximation in O(n1+1/C) time. See Figure 1 for an example when C = 2.

For metric space lower bounds, first it turns out that our divide and conquer technique can
be modified to work even with an unknown value for our radius r (see Section 4). It turns out
we can also repeat the process C = logn times rather than a constant number of times to get
a 2 logn approximation. The algorithm’s time is not quite n1+1/C = O(n) since the constants
in the big O get larger: the total time ends up being O(n logn). An O(n logn) time solution
with a 2 logn-approximation helps us bound the minimum value of r by s ≤ r ≤ 2s logn,
where we found a 2s logn-radius ball with αn points. Say that p is the geometric median of
a1, ..., an and R is the radius of the smallest ball around p with at least αn points. Then,∑
ρ(p, ai) ≥ (1− α)Rn since at least (1− α)n points are at least R away from p. However,

if we knew the value of r exactly, then if there is an algorithm that solves metric 1-center
clustering with outliers with fraction α and approximation constant C in O(nf(n)) time,
then the point p∗ we get is at most Cr+R ≤ (C+ 1)R away from p, and thus by the triangle
inequality

∑
ρ(p∗, ai)−

∑
ρ(p, ai) ≤ (C + 1)Rn. This thereby gets a C+1

1−α + 1 approximation
to geometric 1-median, but the lower bounds in [5] that deal with geometric 1-median in
arbitrary metric spaces show that a 2h−Θ(1)-approximation to geometric 1-median requires



S. Narayanan 21:7

Ω(n1+1/h) time. We have not dealt with the fact that we don’t exactly know r, but since we
have an O(logn) approximation, we can try O(ε−1 log logn) attempts of setting r between t
and (1 + ε)t for t = s(1 + ε)b, so the overall time is O(n logn+ ε−1nf(n) log logn), which for
f(n) = n1+1/K is at most O(n1+1/(K−1)). We may be slightly off with our guess for r, but
our geometric 1-median approximation only becomes about 1 + ε times as bad.

2 Normed Vector Space Algorithms: α > 1/2

For Lp norms over Rd, there exists a straightforward algorithm. Assume we are given the
points a1, ..., an with weights w1, ..., wn such that (aj)i is the ith coordinate of aj . Then,
consider the point x = (x1, ..., xd) such that xi is the weighted median of (a1)i, ..., (an)i
where (aj)i has weight wj . Weighted median finding is known to take O(n) time, so x can
be found in O(nd) time. Clearly, if there is a ball of radius r around some q with αw weight,
where α > 1

2 , then clearly |qi − xi| ≤ r for each i, so ||q − x||p ≤ r · d1/p. However, we can
actually get another more valuable bound.

I Theorem 1. If q is a point such that B(q), the Lp-norm ball of radius r around q, contains

αw weight for some α > 1
2 , then ||x− q||p ≤

(
α

α−1/2

)1/p
r, implying an O(nd) time solution

with fraction α and approximation constant O((α− 1/2)−1/p).

Proof. Let (q1, ..., qd) be the coordinate representation of q, and assume WLOG that qi ≤ xi
for each 1 ≤ i ≤ d. Suppose B(q) contains exactly βw weight, where β ≥ α. If we let (aj)i
denote the ith coordinate of point aj , the set of points in {a1, ..., an} ∩B(q) with (aj)i ≥ xi
have at least (β − 1/2)w weight, as xi is the weighted median of the ith coordinate of all n
points. Therefore,∑

aj∈B(q)

wj |(aj)i − qi|p ≥
(
β − 1

2

)
w(xi − qi)p

for each i, meaning that if we sum over all i,

∑
aj∈B(q)

wj ||aj − q||pp =
d∑
i=1

∑
aj∈B(q)

wj |(aj)i − qi|p

≥
d∑
i=1

(
β − 1

2

)
w(xi − qi)p =

(
β − 1

2

)
w||x− q||pp.

However, aj ∈ B(q) means ||aj − q||pp ≤ rp, and as the weight of points in B(q) equals βw,

(βw) · rp ≥
∑

aj∈B(q)

wj ||aj − q||pp ≥
(
β − 1

2

)
w||x− q||pp

which implies that

||x− q||p ≤
(

β

β − 1
2

)1/p
r ≤

(
α

α− 1
2

)1/p
r.

Thus, the ball of radius
((

α
α−1/2

)1/p
+ 1
)
r around x contains B(q), and therefore contains

at least αw weight. J

APPROX/RANDOM 2018



21:8 Deterministic O(1)-Approximation Algorithms to 1-Center Clustering with Outliers

We next present an algorithm that runs in Oα(nd) time for any normed vector space
with fraction α > 1

2 and approximation constant O((α − 1/2)−1), if distances and vector
addition/scalar multiplication can be computed in O(d) time, which is true for Rd with an
Lp norm, for example.

I Theorem 2. For α > 1
2 , in any normed vector space, if distances and addition/scalar

multiplication of vectors can be calculated in O(d) time, there exists an algorithm that solves
the weighted problem in Oα(nd) time with fraction α and approximation constant C = 4α

2α−1 .

Proof. If n = 1 we just return the first point so assume n ≥ 2. Given n points, split the
points into n/2 groups of 2. Assume n is even, since if n is odd, we can add a final point with
0 weight. Letting m = n

2 , we construct balls B1, ..., Bm, each of radius 2r as follows. The
ball Bi will be centered around the point a2i−1 or a2i with higher weight (we break ties with
a2i−1), so if w2i−1 ≥ w2i we center around a2i−1 and if w2i−1 < w2i we center around a2i.

Let qi be the center of Bi, i.e. qi is either a2i−1 or a2i. Let B be a ball of radius r
containing points of total weight at least αw, and let q be the center of B.

We construct the new set of weights vi for the points qi. We let vi be the total w-
weight of the subset of {a2i−1, a2i} which is contained in Bi minus the total w-weight
of the subset which is not contained in Bi. In other words, if ||a2i−1 − a2i|| ≤ 2r, then
vi = w2i−1 +w2i and otherwise, vi = max(w2i−1, w2i)−min(w2i−1, w2i). Note that the total
weight of {a2i−1, a2i} ∩Bi is w2i−1+w2i+vi

2 . Clearly, for all i, 0 ≤ vi ≤ w2i−1 + w2i.
Next, if ||qi − q|| > 3r, then Bi and B do not intersect. This means that the total

w-weight of {a2i−1, a2i} ∩B is at most w2i−1+w2i−vi

2 . If ||qi − q|| ≤ 3r, the total w-weight of
the intersection {a2i−1, a2i} ∩B is at most w2i−1+w2i+vi

2 , since if both a2i−1, a2i ∈ B, then
both are in Bi, and if exactly one of a2i−1, a2i is in B, then the one with larger weight is in
Bi because it is the center, qi.

Now, define S ⊂ [m] to be the set of i such that ||qi − q|| ≤ 3r, i.e. S = {i : 1 ≤ i ≤
m, ||qi − q|| ≤ 3r}. Then, by looking at the total w-weight of the subset of a[n] in B,∑

i∈S

w2i−1 + w2i + vi
2 +

∑
i6∈S

w2i−1 + w2i − vi
2 ≥

∑
ai∈B

wi ≥ αw.

Since w is nonzero and α > 1
2 , at least one vi is nonzero. The left hand side equals

w

2 + 1
2
∑
i∈S

vi −
1
2
∑
i 6∈S

vi,

which means∑
i∈S

vi −
∑
i6∈S

vi ≥ (2α− 1)w ≥ (2α− 1)
∑

1≤i≤m
vi ⇒

∑
i∈S

vi ≥ α
∑

1≤i≤m
vi.

Therefore, the ball of radius 3r around q contains at least α of the total v-weight of
the points qi. Since at least one of the vi’s is nonzero and all are nonnegative, we can find
a ball of radius 3Cr around some point p containing at least α of the total v-weight by
performing the same algorithm on a size m set q1, ..., qm. Therefore, the ball of radius 3r
around q intersects the ball of radius 3Cr around p, as some qi must be in both balls, so the
ball of radius (3C + 4)r around p must contain B. Given this, if we can get some ball of
radius Cr that contains B, we are done.

We do this via looking at centroids, where the weighted centroid of points x1, ..., xm
with weights w1, ..., wm equals w1x1+...+wmxm

w1+...+wm
. Let ε = α− 1

2 and choose some K ≥ 2 + 1
ε .



S. Narayanan 21:9

Suppose we have found some point a such that the ball of radius Kr around a, denoted
BK(a), contains B. We look at the w-weighted centroid of all points ai ∈ BK(a), which
clearly takes O(nd) time to calculate. If we let aS1 = a[n] ∩B, then wS1 ≥ αw so the sum of
the w-weights of points in BK(a)\B is at most w(1− α). Then, the distance between the
weighted centroid of all ai ∈ BK(a) and q is at most

1
wS1 +

∑
ai∈BK (a)\B wi

∑
ai∈B

||q − ai||wi +
∑

ai∈BK(a)\B

||q − ai||wi



≤ 1
wS1 +

∑
ai∈BK (a)\B wi

rwS1 + (2K − 1)r
∑

ai∈BK (a)\B

wi


since ||q − a|| ≤ (K − 1)r and ||a− ai|| ≤ Kr for any ai ∈ BK(a)\B. But since wS1 ≥ αw

and
∑
ai∈BK(a)\B wi ≤ (1− α)w, this is at most

αr+(2K−1)(1−α)r = (2K−1−2Kα+2α)r = (2K−1−K−2Kε+1+2ε)r = (K−2(K−1)ε)r.

However, since K ≥ 2+ 1
ε , 2(K−1)ε ≥ Kε+1, so this is at most (K−Kε−1)r. Therefore, the

weighted centroid of all these points is at most (K −Kε− 1)r, so the ball of radius K(1− ε)r
around the weighted centroid contains B. This gives us a slightly better range. We can repeat
this process starting with K = 3C + 4 until we get K ≤ C, assuming that C = 2 + 1

ε = 4α
2α−1 .

As 3C + 4 ≤ 5C, this process needs to be repeated at most (log 5)/(log 1
1−ε ) = O(ε−1) times.

With the exception of the recursion on q1, ..., qm with weights v1, ..., vm, everything else
takes O(nd) time, but we have to repeat the centroid algorithm multiple times, where
the number of repetitions depends on α. Therefore, the total running time is T (n) =
Oα(nd) + T (n/2), which means T (n) = Oα(nd), as desired. J

3 Normed Vector Space Algorithms: α > 0

While we were unable to solve the normed vector space 1-center clustering with out-
liers problem for all α > 0 in Oα(nd) time, we were able to find a solution running in
Oα,k(nd log(k) n) = Oα,k(nd log ... log(n)) time. We first show an nd polylog n time solution
and explain how this can be used to solve the problem in Oα,k(nd log(k) n) time.

The following result is useful for both the normed vector space and arbitrary metric space
versions, primarily for 0 < α ≤ 1

2 . It is important for making sure that if we found a ball of
radius Cr containing αw weight or αn points, even if there are multiple disjoint balls with
this property, we can find a few balls of radius Cr, of which any ball of radius r containing
at least αw weight or αn points is near one of the radius Cr balls.

I Lemma 3. Suppose we are in some space where computing distances between two points
can be done in O(d) time. Suppose that for some fixed α,C and for any β ≥ α, we can solve
the weighted problem with fraction β and approximation constant C in time O(ndf(n)) (with
the runtime constant independent of β). Then, for any β ≥ α, we can find at most β−1 points
p1, ..., p` in O(ndf(n)bβ−1c) time such that the ball of radius Cr around each pi contains at
least βw weight and any ball of radius r containing at least βw total weight intersects at least
one of the balls of radius Cr.

The proof of lemma 3 is not too difficult and is left in Appendix B.

APPROX/RANDOM 2018



21:10 Deterministic O(1)-Approximation Algorithms to 1-Center Clustering with Outliers

I Lemma 4. For any 0 < α < 1, let C = 2 + 2
α and assume we are dealing with the weighted

problem in a normed vector space (with w > 0), where distances and vector addition/scalar
multiplication are calculable in O(d) time. Suppose there exists a ball B of radius r such that
B and the ball B2C+3 concentric with B but of radius (2C + 3)r satisfies

∑
ai∈B

wi ≥

 ∑
ai∈B2C+3\B

wi

+ αw.

Then, we will be able to find a set of at most 1
α points z1, ..., z` in Oα(nd(logn)bα−1c) time

such that the ball BC(zi) of radius Cr around each zi contains at least αw total weight, and
at least one of the balls BC(zi) intersects the ball B.

Also, if there does not exist such a ball B, the algorithm will still succeed and satisfy the
conditions (where the condition of B intersecting at least one of BC(zi) is true by default).

Proof. Our proof inducts on bα−1c. We show an O(nd logn)-time algorithm for α > 1
2 and

given an O(nd(logn)k−1)-time algorithm for all α′ > 1
k , we show an O(nd(logn)k)-time

algorithm for all α > 1
k+1 . This means that the big O time constant may depend on bα−1c.

Assume n is a power of 2, as we can add extra points of weight 0. Next, split up the
points a1, ..., an into two groups a[n/2] and a[n/2+1::n]. Note that B clearly still holds the
same property for either the first half or second half of points, i.e. either∑

ai∈B
1≤i≤n/2

wi ≥ αw[n/2] +
∑

ai∈B2C+3\B
1≤i≤n/2

wi or
∑
ai∈B

n/2+1≤i≤n

wi ≥ αw[n/2+1::n] +
∑

ai∈B2C+3\B
n/2+1≤i≤n

wi.

The algorithm first recursively runs on the two halves a[n/2] and a[n/2+1::n] to get points
x1, ..., xr and y1, ..., ys such that r, s ≤ 1

α and there exists some point z ∈ {x1, ..., xr, y1, ..., ys}
such that the ball of radius Cr around z intersects B. Therefore, BC+2(z), the ball of radius
(C + 2)r around z, contains B but is contained in B2C+3.

Suppose we could successfully guess such a point z. Then, the weight of points in
a[n] ∩ BC+2(z) is βw for some β ≥ α, and so the weight of points in a[n] ∩ B is at least
β+α

2 w since BC+2(z) ⊂ B2C+3. We can easily determine the set of points in a[n] ∩BC+2(z)
in O(nd) time, and thus compute β. Now, among the points in a[n] ∩ BC+2(z), at least
β+α
2β ≥

1+α
2 of the weight is contained in some ball of radius r, which means by Theorem 2,

we can in Oα(nd) time find a ball of radius

4
(
β+α
2β

)
2
(
β+α
2β

)
− 1
· r = 2(β + α)

β + α− β
· r =

(
2 + 2β

α

)
r ≤ Cr

containing at least β+α
2β · βw ≥ αw weight.

If α > 1
2 , this means we have found a ball of radius Cr with at least αw total weight. It

must also intersect B, because otherwise the total weight of all the points would be at least
2αw > w. Therefore, we can recursively run the algorithm on the two halves, and then in
O(nd) time guess at most 2 possibilities for z to find a ball of radius Cr. Therefore, this
algorithm takes T (n) = 2T (n/2) +O(nd)⇒ T (n) = O(nd logn) time.

Suppose 1
k+1 < α ≤ 1

k . Then, in Oα(nd) time, we can try each z ∈ {x1, ..., ys} to get
some ball of radius Cr centered around z1 = z that contains at least αw weight. If we find
no such ball, then no such B exists, so we return nothing. Else, we find some ball around
z1. In case the ball does not intersect B, we compute the total weight of points in BC(z1),



S. Narayanan 21:11

the ball of radius Cr around z1. Define γ so that the weight of points in BC(z1) equals γw,
so clearly γ ≥ α. Therefore, if BC(z1) does not intersect B, then if we remove these points,
we have a subset {a′1, ..., a′m} of the original points with total weight w′ = (1− γ)w, which
means that for the new set of points, B satisfies

∑
a′

i
∈B

w′i =
∑
ai∈B

wi ≥

 ∑
ai∈B2C+3\B

wi

+ αw ≥

 ∑
a′

i
∈B2C+3\B

w′i

+ α

1− γw
′.

Thus, by our induction hypothesis, in Oα/(1−γ)(nd(logn)b(1−γ)/αc) =
Oα(nd(logn)bα−1c−1) time, we can find a set of at most 1−γ

α ≤ 1
α − 1 points z2, ..., z`

such that the balls of radius Cr around each zi contains at least α
1−γw

′ = αw weight in the
new set of points (and thus in the old set of points), and at least one of the balls of radius
Cr around some zi (possibly z1) intersects B.

Since we first recursively perform the algorithm on the two halves, the total runtime
is T (n) = 2 · T (n/2) + Oα(nd(logn)bα−1c−1) by our inductive hypothesis, so T (n) =
Oα(nd(logn)bα−1c). J

We use the previous result to find an O(nd polylog n) time solution.

I Lemma 5. For any 0 < α < 1, one can solve the weighted Euclidean problem with fraction
α and some approximation constant C = Oα(1) in Oα(nd(logn)b2α−1c) time.

Proof. Suppose B is a ball of radius r around p with αw points and let S ⊂ N ∪ {0} be
the set of nonnegative integers s such that there is a ball of radius

( 8
α + 7

)s · r around p
containing at least ( 3

2 )s · αw total weight. Because of B, 0 ∈ S. Since α > 0, there clearly
exists a maximal s ∈ S which is at most log(α−1)

log(3/2) . For this maximal s, there is a ball B′ of
radius R =

( 8
α + 7

)s · r around p containing at least α′w weight, where α′ = ( 3
2 )sα, but the

ball of radius
( 8
α + 7

)
R around p contains at most 3

2α
′w total weight. Therefore, if β = α

2 ,

if we let C = 2 + 2
β , the ball (B′)2C+3 of radius (2C + 3)R =

( 8
α + 7

)
R around p satisfies

∑
ai∈B′

wi ≥

 ∑
ai∈(B′)2C+3\B′

wi

+ βw.

Therefore, if we knew s, plugging β into the algorithm of Lemma 4 gives us, in
Oα(nd(lognb2α−1c)) time, at most 2α−1 points such that the ball of radius

( 4
α + 2

)
·
( 8
α + 7

)s
around at least one of them intersects B′, and thus the ball of radius

( 4
α + 4

)
·
( 8
α + 7

)s
around that point has at least αw weight. We can try it for all s between 0 and log(α−1)

log(3/2) and
verify each point (verification takes Oα(nd) time) to get at least one ball containing αw or
more weight, which gives the desired result. J

We now can go to Oα,k(nd log(k)(n)) time using the following lemma.

I Lemma 6. Fix some α,C and suppose we are in some space (Euclidean, general metric,
or something else) where distances can be computed in O(d) time. Suppose that for any
fraction β ≥ α and approximation constant C there exists an algorithm that solves the
weighted problem in time O(ndf(n)). Then, for any nondecreasing function g(n) such that
1 ≤ g(n) ≤ n, there is an algorithm that runs in O

(
ndf(g(n)) + ndf(n)

g(n)

)
with fraction

α′ =
√

2α and approximation constant C ′ = C2 + 2C + 2.

APPROX/RANDOM 2018



21:12 Deterministic O(1)-Approximation Algorithms to 1-Center Clustering with Outliers

Proof. We use a similar divide and conquer approach to Lemma 4. Partition [n] into buckets
D1, ..., Dm, each of size Θ(g(n)), which gives us a partition of points aD1 , ..., aDm

. If B is a
ball of radius r containing at least α′w total weight, then let vi be the total weight of all
points in aDi ∩B. If S ⊂ [m] is the set of all i such that vi > α′

2 wDi , then

α′w ≤
∑
aj∈B

wj =
∑
i∈[m]

∑
j∈Di

aj∈B

wj ≤
∑
i∈S

wDi + α′

2
∑
i 6∈S

wDi ≤
α′w

2 +
∑
i∈S

wDi ,

and thus α′

2 w ≤
∑
i∈S wDi .

For each 1 ≤ i ≤ m, by Lemma 3, since α′ ≥ α, there is an O(ndf(g(n)))-time algorithm
which returns for each i ∈ [m] at most α′−1 points pi,1, ..., pi,`i such that if i ∈ S, the ball of
radius Cr around at least one of the points intersects B. Therefore, for every i ∈ S, some
pi,j is at most (C + 1)r from the center of B. Now, we can compute wD1 , ..., wDm in O(n)
time and assign each pi,j weight wDi

. Then, the total weight of all pi,j is at most α′−1w.
However, for an individual i ∈ S, the total weight of the points pi,j for all 1 ≤ j ≤ `i in
the ball of radius (C + 1)r around B is at least wDi since at least one pi,j is in the ball.
Therefore, the total weight of all points pi,j in the ball of radius (C+ 1)r around B is at least∑

i∈S wDi ≥ α′

2 w, which is at least α′2

2 times the total weight of all the pi,j ’s. Therefore, by
Lemma 3, applying the algorithm for α = α′2

2 on the pi,j ’s with the new radius (C + 1)r
gives a set of at most α−1 points q1, ..., q` such that the ball of radius C(C + 1)r around
at least one of the qi’s intersects the ball of radius (C + 1)r around the center of B. This
algorithm takes O(α−1mdf(m)) = O(nd f(n)

g(n) ) time, as α is fixed. Therefore, the ball of radius
(C2 + 2C+ 2)r = C ′r around at least one of the qi’s contains B, so we verify for each qi if the
ball of radius (C2 + 2C + 2)r contains at least αw total weight, which takes O(nd) time. J

I Theorem 7. For α ≤ 1
2 , the 1-center clustering with outliers problem can be solved in

Oα(nd log(k)(n)) time in any normed vector space for some constant C = Oα(1).

Proof. Letting f = g in Lemma 6 tells us there is an O(ndf(f(n))-time algorithm with
fraction

√
2α and approximation constant C2+2C+2 given an O(ndf(n))-time algorithm with

fraction α and approximation constant C. Repeating this k times gives us an Ok(ndf (2k)(n))-
time algorithm with fraction 2·(α/2)2−k and approximation constant OC,k(1). Therefore, since
we have an algorithm running in Oα(ndf(n)) with f(n) = (logn)b2α−1c with approximation
constant Oα(1) and fraction α, we have an algorithm that runs in Oα,k(ndf (2k)(n)) =
Oα,k(nd log(2k−1) n) time, with fraction 2 · (α/2)2−k and approximation constant Oα,k(1).
Letting β = 2 · (α/2)2−k

, then α = (β/2)2k

/2, which means for any 0 < β < 1, there is an
Oβ,k(nd log(2k−1)(n)) time solution with approximation constant Oβ,k(1) and fraction β. J

4 Metric Space Upper Bounds

The idea for proving that there is an Oα,C(n1+1/C)-time algorithm with fraction α and
approximation constant 2C uses induction on bα−1c and C. The base case proofs of α > 1

2
and C = 1 are quite similar to the induction step, so we leave their proofs in Appendix B.

I Theorem 8. For any α > 0, say we are trying to solve weighted 1-center clustering with
outliers in a general metric space, where r is unknown. For all C ∈ N, we can find a set
of points p1, ..., p` and corresponding radii s1, ..., s`, where ` ≤ bα−1c, such that the ball of
radius si around pi contains at least αw of the weight in O((2

(bα−1c+C
C

)
−bα−1c− 1)n1+1/C)

time, assuming n = mC for some integer m. Moreover, any ball of radius r containing at
least αw weight intersects at least one ball of radius si around some pi, for some si ≤ 2Cr.



S. Narayanan 21:13

Proof. We induct on bα−1c and C. The base cases bα−1c = 1 and C = 1 are done
in Appendix B. Suppose the theorem holds for all α′ > 1

z and we are looking at some
1
z+1 < α ≤ 1

z . Also, suppose we have an algorithm for α and C − 1.
Split the points into blocks D1, ..., Dm each of size mC−1. For each block Di, by our

inductive hypothesis we can return points pi,1, ..., pi,`i and radii ri1 , ..., ri,`i ∈ aDi where
`i ≤ z for all i, subject to some conditions. First, the ball Bi,k of radius ri,k around pi,k has
at least αwDi weight. Second, if there is a ball of radius r that contains at least αwDi weight
when intersected with aDi

, then the ball must intersect Bi,k for some k where pi,k ≤ 2(C−1)r.
Moreover, by our induction hypothesis we can determine these points in time((

2
(
z + C − 1
C − 1

)
− z − 1

)( n
m

)1+1/(C−1)
·m
)

= O

((
2
(
z + C − 1
C − 1

)
− z − 1

)
n1+1/C

)
.

If B is a ball of radius r containing at least αw total weight, then there exists some
1 ≤ j ≤ m such that wDj > 0 and the total weight of aDj ∩B is at least αwDj . Therefore,
Bj,k intersects B for some rj,k ≤ 2(C − 1)r, so the ball of radius 2Cr around pj,k for some
j, k when intersected with a[n] contains at least αw total weight. We can check all the
pj,k and since weighted median can be solved in O(n) time, we can find some pj,k with
the smallest radius sj,k (not necessarily the same as rj,k) containing at least αw weight in
O(mz · n) = O(zn1+1/C). We know that sj,k ≤ 2Cr, and we can set p1 = pj,k and s1 = sj,k.

Now, remove every point in the ball of radius s1 around p1 by changing their weights to 0.
If the total weight of removed points is βw where β ≥ α, the total weight is now (1− β)w. If
there is still some ball of radius r that contains at least αw weight now, then it contains at least
α

1−β >
1
z−1 of the total weight now. Therefore, we can use induction on z with α′ = α

1−β . This
gives us at most z points p1, ..., p` and radii s1, ..., s`, where the first point p1 is our original
pj,k and the next `− 1 points and radii are found in O

((
2
(
z−1+C
C

)
− (z − 1)− 1

)
n1+1/C

)
time. Moreover, any ball B of radius r either intersects the ball of radius s1 around p1,

where s1 ≤ 2Cr, or by the induction hypothesis on bα−1c intersects some si around pi for
some 2 ≤ i ≤ ` with si ≤ 2Cr, since B would have at least α

1−β of the remaining weight if it
doesn’t intersect the ball of radius s1 around p1.

Therefore, the total time is

O

((
2
(
z + C − 1
C − 1

)
− z − 1

)
n1+1/C +

(
2
(
z − 1 + C

C

)
− z
)
n1+1/C + zn1+1/C

)

= O

((
2
(
z + C

C

)
− z − 1

)
n1+1/C

)
.

J

I Remark. C does not have to be a constant independent of n, since the O factor is
independent of z and C. For example, m = 2, C = dlgne, the theorem still holds.

As we can add points of 0 weight until we get a perfect power of C, we have the following.

I Corollary 9. In any metric space, we can find a ball of radius 2Cr with at least αn points
in Oα,C(n1+1/C) time, given that there exists a ball of radius r with at least αn points.

APPROX/RANDOM 2018



21:14 Deterministic O(1)-Approximation Algorithms to 1-Center Clustering with Outliers

References

1 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

2 Robert S. Boyer and J. Strother Moore. MJRTY—A Fast Majority Vote Algorithm. In
Automated Reasoning: Essays in Honor of Woody Bledsoe, pages 105–117. Springer Neth-
erlands, 1991.

3 Deeparnab Chakrabarty, Prachi Goyal, and Ravishankar Krishnaswamy. The Non-Uniform
k-Center Problem. In 43rd International Colloquium on Automata, Languages, and Pro-
gramming, volume 55 of ICALP ’16, pages 67:1–67:15, 2016.

4 Ching-Lueh Chang. Deterministic sublinear-time approximations for metric 1- median
selection. Information Processing Letters, 113:288–292, 2013.

5 Ching-Lueh Chang. A lower bound for metric 1-median selection. Journal of Computer
and System Sciences, 84, 2014.

6 Ching-Lueh Chang. A deterministic sublinear-time nonadaptive algorithm for metric 1-
median selection. Theoretical Computer Science, 602:149–157, 2015.

7 Ching-Lueh Chang. Metric 1-median selection: Query complexity vs. approximation ratio.
Transactions on Computation Theory, 9:20:1–20:23, 2018.

8 Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Algorithms for
facility location problems with outliers. In SODA ’01, pages 642–651, 2001.

9 Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from untrusted data. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, pages 47–60, 2017.

10 Hui Han Chin, Aleksander Madry, Gary L. Miller, and Richard Peng. Runtime guarantees
for regression problems. In ITCS, pages 269–282, 2013.

11 Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the streaming
model. In Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing,
STOC ’09, pages 205–214, 2009.

12 Michael B. Cohen, Yin Tat Lee, Gary Miller, Jakub Pachocki, and Aaron Sidford. Geomet-
ric median in nearly linear time. In Proceedings of the Forty-eighth Annual ACM Symposium
on Theory of Computing, STOC ’16, pages 9–21, 2016.

13 I. Diakonikolas, G. Kamath, D. Kane, J. Li, A. Moitra, and A. Stewart. Robust estimators
in high dimensions without the computational intractability. In Proceedings of the 57th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2016, 2016.

14 Peter J. Huber and Elvezio Ronchetti. Robust Statistics. Wiley, 2009.
15 R. M. McCutchen and S. Khuller. Streaming algorithms for k-center clustering with outliers

and with anonymity. In APPROX-RANDOM, pages 165–178, 2008.
16 Nimrod Megiddo. The weighted euclidean 1-center problem. Mathematics of Operations

Research, 8(4):498–504, 1983.
17 J. Misra and David Gries. Finding repeated elements. Science of Computer Programming,

2:143–152, 1982.
18 Hamid Zarrabi-Zadeh and Asish Mukhopadhyay. Streaming 1-center with outliers in high

dimensions. In Proceedings of the 21st Annual Canadian Conference on Computational
Geometry, CCCG ’09, pages 83–86, 2009.



S. Narayanan 21:15

A Metric Space Lower Bounds

The following lemma is useful for showing the intuitive fact that higher values α make the
problem easier. The lemma also shows that the weighted and unweighted problems are almost
equivalent. As a result, it isn’t too important whether we are dealing with the weighted
or unweighted problem for our bounds. In conjunction with Lemma 3, it establishes that
given an algorithm solving the 1-center clustering with outliers problem for some α, we can
efficiently find a few disjoint balls of radius O(r) such that any ball of radius r containing at
least αw weight or αn points is near one of the radius Cr balls. We require this for a similar
reason as we needed it for the normed vector space upper bounds for α > 1

2 .

I Lemma 10. Suppose we are in some space (Euclidean, general metric, or something else)
where computing distances between two points can be done in O(d) time. Suppose that for
some fixed α,C, we can solve the unweighted problem with fraction α and approximation
constant C in time O(ndf(n)). Then, for any β > α, we can solve the weighted problem with
fraction β and approximation constant C + 2 in time O((β − α)−2α−2 logα−1ndf(n)) .

Proof. Suppose that the points are a1, ..., an and the weights are w1, ..., wn. Let w be the
average of the weights, i.e. w

n . Now, for ε = β − α, define wi as εwbwi

εw c, i.e. wi rounded
down to the nearest multiple of εw. Then, w1 + ...+wn ≤ w1 + ...+wn, but if there exists a
ball B of radius r such that∑

ai∈B
wi ≥ β

n∑
i=1

wi = βw,

then∑
ai∈B

wi ≥
∑
ai∈B

(wi − εw) ≥ βw − ε · n · w = αw ⇒
∑
ai∈B

wi ≥ α
n∑
i=1

wi.

However, note that
n∑
i=1

wi ≤
n∑
i=1

wi = nw = (εw)1
ε
· n,

which means if we consider the unweighted problem with each point ai repeated wi

εw times, we
have at most 1

ε ·n points, of which at least an α fraction of them are in the ball B. Therefore,
we use the algorithm that solves the unweighted problem in time O(nε df(nε )) = O(ε−2ndf(n))
time to find some ball of radius Cr around some point p which contains at least an α fraction
of these points.

Note that this ball we found by solving the unweighted problem, which we denote by BC ,
has at least α of the new w-weight, which means

∑
ai∈BC

wi ≥
∑

ai∈BC

wi ≥ α
n∑
i=1

wi ≥ α(w − n · εw) = α(1− ε)w.

Next, we check if BC+2 contains at least βw total weight. If so we are done, and if not we
remove all points inside BC . Since BC+2 doesn’t contain βw weight, it doesn’t contain B
and thus BC and B are disjoint. If BC contains α′w ≥ α(1 − ε)w weight, then the set of
remaining points has (1 − α′)w weight, so to find a ball of radius (C + 2)r with βw total
weight, we have to solve the weighted problem for the new set and fraction β

1−α′ . Since

APPROX/RANDOM 2018



21:16 Deterministic O(1)-Approximation Algorithms to 1-Center Clustering with Outliers

β
1−α′ ≥

β
1−α(1−ε) >

β
1−α2 , to solve the problem for β, it suffices to solve the problem for β

1−α′ .

We repeat this process with a larger value of β each time, and as β multiplies by at least
(1− α2)−1 each time, we need at most O(α−2 logα−1) times to reduce it to solving for some
β ≥ 1, by which time the problem has become trivial.

The process each time takes O((β′ − α)−2ndf(n)) = O((β − α)−2ndf(n) time for each
iteration, where β′ is the fraction at the current iteration. This gives us the desired
runtime. J

We next note a corollary of Theorem 8 that is actually useful for proving lower bounds.
This is because it helps us reduce from the Geometric 1-Median approximation problem.

I Lemma 11. Given a1, ..., an in a general metric space and some 0 < α < 1, we can return
at most bα−1c points p1, ..., p` with radii r1, ..., r` in O(n(dlogne)bα−1c) time such that if
there is a ball B of radius r covering more than αn points, then for some i, ri ≤ 2dlgner
and the ball of radius pi around ri intersects B.

Proof. The proof follows from Theorem 8. Assume n is a power of 2 by adding some extra
points of weight 0. Then, let C = lgn. Since n1/ lgn = 2 and

(bα−1c+lgn
lgn

)
≤ (lgn)bα−1c,(bα−1c+lgn

lgn
)
· n · n1/ lgn = O(ndlgnebα−1c). Therefore, we can directly apply Theorem 8. J

I Lemma 12. Fix some 0 < α < 1 and C. Suppose in O(nf(n)) time, there is an
algorithm to find at most bα−1c points p1, ..., p` such that each ball BC(pi) of radius Cr
around pi has weight at least αw, and any ball of radius r around pi with weight at least αw
intersects some BC(pi). Then, there is a C+1

1−α + 1 + ε-approximation to geometric 1-median
in O(ε−1nf(n) log logn+ ndlognebα−1c) time.

Proof. Suppose p is the (or a) geometric median for a1, ..., an. Let r be the smallest radius
of a ball centered at p that contains more than αn points, and let B be this ball. Then,

n∑
i=1

ρ(p, ai) ≥ (1− α)nr.

We show this means there is an Oε(nf(n) log log logn + ndlognebα−1c)-time algorithm
which returns a ball of radius between r and (C + ε(1 − α))r containing at least α of the
points a1, ..., an. To see why, first in O(n logn) time, we can determine a value s such that
r ≤ s ≤ 2dlgner, so s

2dlgne ≤ r ≤ s. For any
s

2dlgne ≤ r
′ ≤ s, in O(nf(n)) time, according to

our assumption, we can either show that there is no ball of radius r′ containing at least αn
points, or there is a ball of radius Cr′ containing at least αn points.

Now, let t = s
2dlgne and let a = d log(2dlgne)

log(1+ε(1−α)/C)e, so a = O(ε−1 log logn) as α,C are
fixed. Then, if we consider the real numbers t, t(1 + ε(1−α)

C ), t(1 + ε(1−α)
C )2, ..., t(1 + ε(1−α)

C )a,
we know that t(1 + ε(1−α)

C )b−1 ≤ r ≤ t(1 + ε(1−α)
C )b for some 1 ≤ b ≤ a.

Suppose we knew this value of b. Then, we can find at most bα−1c points pb,1, ..., pb,` in
O(nf(n)) time such that the ball of radius

Ct

(
1 + ε(1− α)

C

)b
≤ Cr

(
1 + ε(1− α)

C

)
= Cr + ε(1− α)r

around some pb,j intersects B, i.e. ρ(p, pb,j) ≤ (C + 1)r + ε(1− α)r for some pb,j .
Therefore, by the Triangle inequality,
n∑
i=1

ρ(pb,j , ai) ≤ n(C + 1 + ε(1− α))r +
n∑
i=1

ρ(p, ai),



S. Narayanan 21:17

which means∑n
i=1 ρ(q, ai)∑n
i=1 ρ(p, ai)

≤ 1 + n(C + 1 + ε(1− α))r
(1− α)nr = C + 1

1− α + 1 + ε.

Therefore, we can first compute t in O(ndlognebα−1c) time, and for each b run the
algorithm to get some point pb (or perhaps no such point) such that for some b and some j ≤
bα−1c, pb,j is a C+1

1−α 1 + ε-approximation to geometric median. Since computing
∑
i ρ(pb,j , ai)

takes O(n) time and we need to find the smallest of these, overall we can find all possible
pb,j in O(α−1 · (ε−1 log logn)nf(n)) and compute the best pb,j in O(α−1(ε−1 log logn)n), for
an overall runtime of

O
(
ε−1nf(n) log logn+ ndlognebα

−1c
)

where we are dropping the α−1 terms since α is fixed. J

Using the previous results, we can finally prove a strong lower bound on the General
metric space 1-center clustering with outliers problem.

I Theorem 13. For all fixed K,α, there does not exist a ((2K−3)(1−α)−1) - approximation
to the unweighted 1-center clustering with outliers problem in O(n1+1/K) time.

Proof. We first use Lemmas 10, 3, and 12. Set ε = 1
2 and C = (2K − 3)(1 − α) − 1.

Suppose there is an algorithm for the unweighted problem for any arbitrary metric space
with fraction α and approximation constant C that runs in O(n1+1/K) time. Then, for any
α′ > α, there is an Oα′(n1+1/K)-time algorithm that gets us to the conditions of Lemma 12
with fraction α′ and constant C + 2, by Lemmas 10 and 3. Then, there is a

(
C+1
1−α′ + 3

2

)
-

approximation to geometric 1-median in Oα′(n1+1/K log logn+ ndlognebα−1c) time, which
is clearly an Oα′(n1+1/(K−0.5))-time algorithm. If we choose α′ so that C+1

1−α′ = C+1
1−α + 1

2 ,

then α′ only depends on α,C, so there is a
(
C+1
1−α + 2

)
-approximation to geometric 1-median

in O(n1+1/(K−0.5)) time.
Now, we directly apply the main result of [7]. The main result of [7] states that for any

fixed constant K ′, there is no (2dK ′e−1)-approximation to geometric 1-median in O(n1+1/K′)
time - in fact, there is no such approximation even using O(n1+1/K′) queries to distance,
and we are assuming distance queries take O(1) time. Then, letting K ′ = K − 1

2 , there
is no (2K − 1)-approximation to geometric median in O(n1+1/(K−0.5)) time, and thus no(
C+1
1−α + 2

)
-approximation to geometric 1-median in O(n1+1/(K−0.5)) time. Therefore, there

cannot be a C approximation to the unweighted 1-center clustering with outliers problem in
time O(n1+1/K). J

B Omitted Proofs

First, we prove Lemma 3 from Section 3.

Proof of Lemma 3. We induct on bα−1c. For α > 1
2 and some β ≥ α, we can in O(ndf(n))

time output p such that the ball of radius Cr around p contains at least βw total weight.
But then since β > 1

2 , the second condition is true by default, so we are done. Also, if there
is no ball of radius r containing αw weight, our algorithm may output some point, but in
O(nd) time we can verify and either output a ball of radius Cr containing αw weight, or
output nothing.

APPROX/RANDOM 2018



21:18 Deterministic O(1)-Approximation Algorithms to 1-Center Clustering with Outliers

Suppose α > 1
z+1 and we know it is true for all α′ > 1

z . In Oα(ndf(n)) time, we can find
BC(p1), a ball of radius Cr around some p1 containing at least βw total weight for some
β ≥ α. Again, if no such ball of radius r exists, we will either get nothing, in which case we
end the program, or may happen to get a point p1 such that BC(p1) contains αw weight.
Assuming we got a point in O(nd) time we can remove all points in BC(p1) by just checking
all points’ distances from p1. Then, the remaining weight is (1− β′)w for some β′ ≥ β, and
β′ can be calculated in O(nd) time.

If there exists a ball B of radius r that doesn’t intersect BC(p1), none of the points in B
were removed, which means it has at least β

1−β′ of the remaining weight. Let BC(pi) be the
ball of radius Cr around pi. We apply the induction hypothesis with fraction β

1−β′ >
1
z . It

tells us in O(ndf(n)(z − 1)) time we can find at most z − 1 points p2, ..., p` such that every
ball of radius r containing at least αw weight either intersects BC(p1) or it still contains at
least β

1−β′ of the remaining weight, which means it intersects BC(pi) for some 2 ≤ i ≤ `.
If there does not exist a ball of radius r containing at least αw weight not intersecting

BC(p1), we will either output no points after p1, or we may still output some points p2, ..., p`
such that BC(pi) contains at least β

1−β′ of the remaining weight, or αw total weight. But
since every ball of radius r containing at least αw weight intersects BC(p1), we are done. J

Next, we prove the base cases of bα−1c = 1 and C = 1 for Theorem 8.

I Theorem 14. For α > 1
2 , suppose we are trying to solve the weighted 1-center clustering

problem in a general metric space, but now assuming r is unknown. Then, for any positive
integer C, we can find a point p such that the ball of radius 2Cr around p contains at least
αw of the weight in O(Cn1+1/C) time, assuming n = mC for some integer m. As an obvious
consequence, every ball of radius r containing at least αw of the weight must intersect the
ball of radius 2Cr around p.

Proof. For C = 1, we compute for each ai the quantities ρ(ai, a1), ..., ρ(ai, an) and let ri be
the smallest real number such that the ball of radius ri around ai contains at least αw total
weight. This can be computed for each i in O(n) time using standard algorithms for weighted
median, and thus takes a total of O(n2) time for all i. Then, if some ri equals min(r1, ..., rn),
the ball of radius ri around ai contains at least αw total weight, and ri ≤ 2r since otherwise,
there is a ball of radius r around some p in the metric space containing at least αw total
weight, which means the ball of radius 2r around around some pj in that radius r ball must
contain at least αw total weight, so ri ≤ 2r. This proves our claim for C = 1.

Assume there is an algorithm that works for C− 1. Then, split the n points into m blocks
D1, ..., Dm of size mC−1. For each block Di, we can return pi ∈ aDi such that if there is a
ball of radius r that when intersected with aDi

contains at least αwDi
weight, then the ball

of radius 2(C − 1)r around pi intersected with aDi
contains at least αwDi

weight. Moreover,
we can determine p1, ..., pm in O((C − 1)(n/m)1+1/(C−1) ·m) = O((C − 1)n1+1/C) time.

If B is a ball of radius r containing at least α of the total weight, then there exists some
1 ≤ k ≤ m such that wDk

> 0 and the total weight of aDk
∩B is at least αwDk

. Since the
ball of radius (2C − 2)r around pk contains at least αwDk

weight when intersected with aDk
,

and since α > 1
2 , the ball of radius (2C − 2)r around pk must intersect B. Therefore, the ball

of radius 2Cr around pk contains B and thus contains at least αw weight when intersected
with a[n].

This means after we get our points p1, ..., pm, the ball of radius 2Cr around at least one
of the pi’s must have at least αw total weight. We determine r1, ..., rm where ri is the radius
of the smallest ball around pi containing at least αw of the original weight, which can be
done in O(n) time for each i since weighted median can be solved in O(n) time. Doing



S. Narayanan 21:19

this for each pi takes O(nm) = O(n1+1/C) time, and if ri = min(r1, ..., rm) for some i, then
clearly ri ≤ 2Cr. Therefore, this takes O((C − 1)n1+1/C) +O(n1+1/C) = O(Cn1+1/C) time
total, so our induction step is complete. J

I Lemma 15. For any α > 0, say we are trying to solve weighted 1-center clustering with
outliers in a general metric space, with r unknown. In O(α−1n2) time we can find ` ≤ bα−1c
points p1, ..., p` with corresponding radii s1, ..., s` such that the ball of radius si around pi
contains at least αw weight. Moreover, any ball of radius r containing at least αw weight
will intersect at least one ball of radius si around pi where si ≤ 2r.

Proof. Define y = αw. Like in Theorem 14, we find for each a1, ..., an values r1, ..., rn such
that ri is the smallest radius around ai of a ball containing at least αw total weight, and
these can all be done in O(n2) time. Let p1 be the point ai with smallest corresponding ri,
and let s1 be the corresponding ri. Clearly, ri ≤ 2r and the total weight of the points in
the ball of radius ri around p1 is at least y. Remove all the points in this ball. Repeat this
procedure (for the same y, not α times the new total weight) until we have p1, ..., p` and the
remaining points have weight less than y. This procedure clearly takes O(α−1n2) time.

Suppose some ball B contains at least αw weight but does not intersect a ball of radius
si around ri for any i such that si ≤ 2r. Then, suppose j is the largest integer such that
si ≤ 2r for all i ≤ j. Either j = ` or sj+1 > 2r. If j = `, then the remaining points have
weight less than y, which makes no sense since B has weight at least y and does not intersect
any of the balls we created. If sj+1 > 2r, we would have picked a different ball. This is
because if ak ∈ B, the ball of radius 2r around ak contains at least αw weight, so we would
have picked ak as our point pj+1 instead. Thus, we are done. J

APPROX/RANDOM 2018


	Introduction
	Main results
	Motivation and Relation to Previous Work
	Notation
	Proof Ideas

	Normed Vector Space Algorithms: alpha > 1/2
	Normed Vector Space Algorithms: alpha > 0
	Metric Space Upper Bounds
	Metric Space Lower Bounds
	Omitted Proofs

