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Abstract
We study the generalized assignment problem with time-sensitive item groups (χ-AGAP). It
has central applications in advertisement placement on the Internet, and in virtual network
embedding in Cloud data centers. We are given a set of items, partitioned into n groups, and a set
of T identical bins (or, time-slots). Each group 1 ≤ j ≤ n has a time-window χj = [rj , dj ] ⊆ [T ]
in which it can be packed. Each item i in group j has a size si > 0 and a non-negative utility uit
when packed into bin t ∈ χj . A bin can accommodate at most one item from each group and the
total size of the items in a bin cannot exceed its capacity. The goal is to find a feasible packing
of a subset of the items in the bins such that the total utility from groups that are completely
packed is maximized. Our main result is an Ω(1)-approximation algorithm for χ-AGAP. Our
approximation technique relies on a non-trivial rounding of a configuration LP, which can be
adapted to other common scenarios of resource allocation in Cloud data centers.
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1 Introduction

In the classic generalized assignment problem (GAP), we are given a set of N items and T
bins, [T ] = {1, 2, . . . , T}. Each item i ∈ [N ] has a size si > 0 and a non-negative utility uit
when packed into a bin t ∈ [T ].1 The goal is to feasibly pack in the bins a subset of the items
of maximum total utility. GAP has been widely studied, with applications ranging from
manufacturing systems to regional planning (see, e.g., [3, 10]). In discrete optimization, GAP
is well-known as a special case of the separable assignment problem and, more generally, of
submodular maximization (see, e.g., [27, 15, 5, 6]). We consider an all-or-nothing variant of

1 While item sizes may also depend on the bins, we focus here on the uniform case arising in our
applications.
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24:2 Generalized Assignment of Time-Sensitive Item Groups

GAP, whose central applications include targeted advertising and virtual network embedding
in Cloud data centers.

In all-or-nothing generalized assignment with time windows (χ-AGAP) we are given a
set of T identical bins (or time-slots) and a set I of N items partitioned into n disjoint
groups J . Each group j ∈ J consists of a subset of items Ij ⊆ I and has a time-window
χj = [rj , dj ] ⊆ [T ] in which it can be packed. An item i ∈ [N ] which belongs to group j
has a size si > 0 and a non-negative utility uit when packed into bin t ∈ χj . Each bin can
accommodate at most one item from each group and the total size of the items in a bin
cannot exceed its capacity. The goal is to find a feasible packing of a subset of the items in
the bins such that the total utility from groups that are completely packed is maximized.

As a primary motivation for our study, consider the management of an advertising
campaign (i.e., a series of advertisements sharing a single theme) targeted at specific audience.
Given such a large set of campaigns that can potentially be delivered to the media audience,
a service provider attempts to fully deliver a subset of campaigns that maximizes the total
revenue [26, 17, 21]. Each campaign is associated with a time-window (certain days/weeks, or
hours in a given day) during which all of its ads need to be delivered. To increase the number
of viewers exposed to an ad campaign, any continuous posting of ads (e.g., commercial
break on TV) may contain a single ad from this campaign. Each ad has a given length (=
size), which remains the same, regardless of the time slot in which it is posted, and possibly
different revenues when placed in different breaks. The revenue from an ad campaign is the
sum of the individual revenues of its ads, that is gained only if all of the campaign ads were
assigned to breaks. Hence, a campaign scheduling instance can be cast as an instance of
χ-AGAP.

Our problem has a central application also in virtual network embedding (VNE) in Cloud
data centers, where a collection of virtual networks is mapped to a substrate software defined
network (SDN) [28, 23, 20]. In the initial step of the VNE process, the nodes of each virtual
network are mapped to nodes in the physical network. Each virtual network can be viewed
as a request that is fulfilled only if all of its demands can be satisfied; else, the request
is dropped. A common approach is to assign the nodes belonging to a single request to
different substrate nodes and interconnect them by physical paths in the substrate network
corresponding to the virtual links [9, 24]. Each node of a virtual network is associated with
a resource demand (= size) and a revenue from assigning the node to a given physical node
(= bin). The goal is to maximize the revenue gained from the VNE process. This yields an
instance of χ-AGAP, where all groups (= virtual networks) share the same time window.

1.1 Related Work
Given an algorithm A, let A(I), OPT (I) denote the utility of the solution output by A and
by an optimal solution for a problem instance I, respectively. For ρ ∈ (0, 1], we say that A is
a ρ-approximation algorithm if, for any instance I, A(I)

OPT (I) ≥ ρ.
Recall that the special case of χ-AGAP where all groups consist of a single item and have

the same time window [T ] yields an instance of GAP, where each item takes a single size
over all bins. GAP is known to be APX-hard already in this case, even if there are only two
possible item sizes, each item can take two possible profits, and all bin capacities are identical
[7]. Fleischer et al. [15] obtained a (1 − e−1)-approximation for GAP, as a special case of
the separable assignment problem. The best known ratio is 1− e−1 + ε for some absolute
constant ε > 0 [14].

Adany et al. [1] considered all-or-nothing GAP (AGAP), the special case of χ-AGAP
where χj = [T ] for all j ∈ J . They presented an Ω(1)-approximation algorithm for general
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instances, and a (1/3− ε)-approximation for the special case where the utility of an item
is identical across the bins, called the group packing (GP) problem. They also showed that
unless NP = ZPP , GP cannot be approximated within a polynomial in the minimum size
of a group, if we allow forbidden bins for the items. This implies that a polynomial time
constant approximation for χ-AGAP with arbitrary forbidden bins is unlikely to exist. Indeed,
our results rely strongly on the structural properties of the interval graph corresponding to
the time windows which define the set of allowed bins for each group.

The Ad placement problem, introduced by Adler et al. [2], is the special case of χ-AGAP
where all items in group j ∈ J are identical, and each item has the same utility across the
bins; also, all groups j share the same time window χj = [T ]. Freund and Naor [16] presented
a (1/3− ε)-approximation for the problem. Ad placement has also been widely studied under
different objectives (see, e.g., [12, 16, 13, 19, 18] and the comprehensive survey in [22]).
In [25], we present approximation algorithms for more general scenarios of Ad placement,
where groups may have different time windows, or ads are associated with multiple resource
demands.

A related problem is group packing of items into multiple knapsacks (GMKP), introduced
in [8]. In this generalization of multiple knapsack groups of items need to be placed in a set
of bins. As in χ-AGAP, a revenue is gained for a group only if all of its items are packed.
However, GMKP differs from χ-AGAP in several ways: (i) two items from the same group can
be placed in the same bin. (ii) the utility of each item is the same across the bins, and (iii)
all groups share the same time window, [T ]. The paper [8] presents approximation algorithms
for GMKP, assuming that the total size of the items in group j satisfies

∑
i∈Ij si ≤ δT , for

varying values of δ ∈ (0, 1).
Our problem relates also to the hypermatching assignment problem (HAP) introduced

in [11]. The input is a set of clients and a set of bundles of items. Each client has a budget;
each bundle has a price and a profit depending on the client to which the bundle is assigned.
Clients wish to buy one or more disjoint bundles of items . The goal is to maximize the total
profit, while respecting client budgets. We can view the bundles as groups, and the clients as
time slots, but then the remaining constraints are fairly different.

1.2 Contributions and Techniques
Our main results are constant factor approximation algorithms for χ-AGAP. Let χj = [rj , dj ]
denote the time window for processing group j ∈ J , and let |χj | = dj − rj + 1 be the length
of this interval. Throughout the paper, we assume that the time windows are large enough,
namely, there is a constant λ ∈ (0, 1), such that |Ij | ≤ λ|χj | for any group of items j. Such
an assumption is quite reasonable in scenarios arising in our applications. We call λ the
slackness parameter of the instance.

In Section 3, we present an Ω(1)-approximation algorithm for laminar instances of
χ-AGAP,2 assuming that λ < 1

5 . We then extend the algorithm (in Section 4) to obtain
an Ω(1)-approximation for general χ-AGAP instances, assuming that λ < 1

20 . Thus, a
main contribution of this paper is a general framework for obtaining a constant factor
approximation based on the slackness of a given instance.

Techniques. Adany et al. [1] obtained a constant factor approximation algorithm for the
special case where χj = [T ] = {1, 2, . . . , T}, for all j ∈ J , assuming λ < 1

2 . We note that

2 See the formal definition in Section 2.
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24:4 Generalized Assignment of Time-Sensitive Item Groups

even this special case is non-trivial and was solved via a novel reduction to maximizing a
submodular function subject to a matroid constraint (over an exponential size universe of
elements). An attempt to apply the same technique to the more general problem fails, due
to the polynomially many knapsack constraints (representing the time windows for the n
groups).

Thus, we apply a different approximation technique, which relies on a non-trivial rounding
of the (fractional) solution for a configuration LP that guarantees a partial packing of a
subset of groups.3 This packing satisfies certain conditions, while still having a total utility
that is within a constant factor from the optimal. Subsequently, using an elaborate evicting
and repacking phase that exploits the structural properties of the instance, we obtain a
feasible packing of all items in these groups.

We use our algorithm for laminar instances as a building block for solving general instances,
via a transformation of a general instance to laminar. While the transformation is simple,
applying the algorithm to the resulting laminar instance requires new ideas, as we must take
into consideration the potential utility of each item when packed in its original time window
(see Section 4). For the analysis we prove a general Repacking Theorem (see Section 3) stating
the conditions required for obtaining a feasible solution from a partial packing of a given set
of groups. This general theorem may be of independent interest in solving all-or-nothing
variants of packing problems on interval graphs.

2 Preliminaries

We start with some definitions and notation. An instance of χ-AGAP consists of a set of
identical (unit-sized) bins and a set of items I; each item i ∈ I has a size si > 0 and utility
uit when packed into bin t ∈ [T ]. The items are partitioned into n disjoint groups J . Each
group j ∈ J contains a subset of items Ij ⊆ I which can be packed in the time window
χj = [rj , dj ] ⊆ T .

A feasible packing of the subset J ′ ⊆ J is an assignment of |Ij | bins to every group j ∈ J ′
such that the total size of items packed in any bin t ∈ [T ] is at most 1. Formally, p : I ′ → [T ]
is a feasible packing of the items in I ′ =

⋃
j∈J′ Ij into bins if

1. For any Ij ⊆ I ′, |
⋃
i∈Ij p(i)| = |Ij |, i.e., the items in Ij are assigned to distinct bins.

2. For all i ∈ Ij ⊆ I ′, p(i) ∈ χj ,
3. For all t ∈ [T ],

∑
{i∈I′|p(i)=t} si ≤ 1.

The total utility of the packing p is given by Up =
∑
j∈J′

∑
i∈Ij uip(i). We say that λ ∈ (0, 1)

is the slackness parameter of a given instance if |Ij | ≤ λ|χj | for all j ∈ J . Also, let
aj =

∑
i∈Ij si denote the total size of items in group j ∈ J .

Finally, a set of intervals is laminar if for any two intervals χ1 and χ2, exactly one of the
following holds: χ1 ⊆ χ2, χ2 ⊂ χ1 or χ1 ∩ χ2 = ∅.

3 Approximation Algorithm for Laminar Instances

We first consider the case where L = {χj : j ∈ J} forms a laminar family of intervals.

3 Our rounding technique bears some similarities to the randomized rounding with alterations approach
of [4].
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Overview. Our algorithm proceeds in two phases. In the first phase, we find a subset of
groups J ′ and items I ′ ⊆

⋃
j∈J′ Ij from these groups, along with a packing p : I ′ → [T ]

satisfying the following properties:
(1) For some constant α ∈ (0, 1), for all χ ∈ L:

∑
j∈J′:χj⊆χ aj ≤ α|χ|. That is, the total size

of chosen groups with time windows contained in χ is at most α|χ|.
(2) For any bin t ∈ [T ], the total size of items packed into t is at most 1, i.e.,

∑
i∈I′:p(i)=t si ≤

1.
(3) Let OPT be the total profit of an optimal solution. Then, for some constant β ∈ (0, 1),∑

i∈I′ uip(i) ≥ βOPT.
We note that, in this phase, some of the items in J ′ may not be packed into bins. The
algorithm then moves to an evict and repack phase. Starting with a partial solution obtained
from the first phase, we empty some of the bins. The eviction is performed in such a way
that, for any interval χ ∈ L, at least a constant fraction of bins in χ are empty. This eviction
step, which results in a constant factor loss in the approximation ratio, will facilitate the
repacking of all items in the groups J ′.

Phase 1. We start by solving a linear programming (LP) relaxation of our problem.
Configuration LP. For any group j ∈ J , a valid configuration M is an assignment of the
items in group j into |Ij | bins in χj . We can view a configuration for group j as a mapping
M : Ij → χj , where M(i) indicates the bin to which i ∈ Ij is assigned. For a given group
j ∈ J , let Cj be the set of all such valid configurations containing the items of group j. For a
given bin t ∈ [T ], denote by Ct the set of valid configurations M in which there exists i ∈ I
such thatM(i) = t. Define C =

⋃
j∈J Cj =

⋃
t∈[T ] Ct. Let xM denote the indicator variable for

choosing a configuration M . Throughout the discussion, each configuration M is (implicitly)
associated with the assignment of the items of specific group 1 ≤ j ≤ n. The utility of a
configuration M ∈ Cj is given by uM =

∑
i∈Ij uiM(i). Finally, for a given configuration, M ,

i = M−1(t) if i is assigned in M to bin t. The configuration LP can be stated as follows.

Maximize

∑
M∈C

uMxM :
∑
M∈Ct

xMsM−1(t) ≤ 1 (∀t ∈ [T ]),
∑
M∈Cj

xM ≤ 1 (∀j ∈ J), xM ≥ 0


The first constraint ensures that the total size of items packed into a bin does not violate
its capacity, and the second constraint implies that we choose at most one configuration for
each group j. Note that the LP has exponentially many variables, and therefore we solve it
using a dual separation oracle. The dual of the configuration LP is:

Minimize

∑
t∈[T ]

yt +
∑
j∈J

zj : zj +
∑

t∈χj :M∈Ct

ytsM−1(t) ≥ uM (∀j ∈ J, M ∈ Cj), yt, zj ≥ 0


The dual program has exponentially many constraints. However, as shown below, it

admits a separation oracle; thus, using the ellipsoid algorithm, it can be solved in polynomial
time. Consider a dual solution (yt : t ∈ [T ], zj : j ∈ J). For each group j ∈ J , we construct
a complete bipartite graph Hj = (Ij , χj , Ej), where Ej = {(i, t) : i ∈ Ij , t ∈ χj}. For each
item i ∈ Ij and bin t ∈ χj we set w(i, t) = uit − ytsi. Now, to test if there is a violating
constraint corresponding to a configuration M for group j, we compute a maximum weight
matching in Hj , denoted by M∗j , in which every item i ∈ Ij is matched.4 Clearly, if there

4 Since the edge weights in Hj may be negative, this can be done by a standard shift of edge weights,
namely, setting w′(i, j) = w(i, j) + |Ij |W , where W = max(i,j)∈Ej w(i, j), and solving maximum weight
matching w.r.t. w′.

APPROX/RANDOM 2018



24:6 Generalized Assignment of Time-Sensitive Item Groups

is a violating constraint corresponding to j, then the total weight for M∗j has to satisfy∑
(i,t)∈M∗

j
w(i, j) > zj .

Rounding Algorithm. Let π1, π2 ∈ (0, 1) be some constants (to be determined). We first
solve the configuration LP to obtain an optimal fractional solution (x∗M : M ∈ C). Let
Xj =

∑
M∈Cj x

∗
M . For each interval χ ∈ L, we associate a knapsack capacity of π2|χ|. We

construct an ordering of groups satisfying the following property. If j and ` are two groups
such that χj ⊆ χ`, then j appears before ` in O. In other words, we process groups in a
bottom up fashion with respect to L.

While considering a group j, we check if the knapsack capacity corresponding to χj
has been violated. Formally, let J ′ denote the set of groups chosen before j; then, if∑
j′∈J′:χj′⊆χj

aj′ ≤ π2|χj |, we add j to J ′ with probability π1
∑
M∈Cj x

∗
M = π1Xj ; otherwise

we discard j. Note that, to simplify the performance analysis, the knapsack constraint is
checked before j is added, therefore the knapsack capacity may be slightly violated.

Let I ′ ⊆ ∪j∈J′Ij be the set of items in the groups of J ′ that have been packed so far, and
suppose that j has been chosen, i.e., j ∈ J ′. Now, we choose exactly one configuration for j
with probability x∗M

Xj
. Denote the chosen configuration by Mj . For each (i, t) ∈Mj , we now

examine the total size of items packed in bin t. If
∑
i′∈I′:p(i′)=t si′ ≤ 1 then we pack item i

into bin t, i.e., p(i) = t. Note that this may result in violation of the capacity constraints
in some bins. Thus, after processing all groups, we examine bins with violated capacities.
Denote by St the set of currently packed items in such a bin t, and let it denote the last
item packed into t. Before adding it, the capacity constraint was not violated; thus, St \ {it}
can be feasibly packed into t. We evict it from t if the combined profit of all the items in
St \ {it} is higher than that of it; otherwise, we evict all items except it from bin t. The
pseudocode for the above rounding scheme is given in Algorithm 1.

Denote the mean (or expected value) of a random variable X by E[X], and the probability
that an event E occurs by P(E). Note that Algorithm 1 is randomized; therefore, J ′, I ′ and
p (and any function involving them) are random variables. The next lemma states some
properties of the packing obtained in Phase 1.

I Lemma 1. For suitable constants 0 < π1 < π2 < 1 and λ ∈ (0, 1), assuming that for any
group j ∈ J , |Ij | ≤ λ|χj |, the following hold for Algorithm 1:
(i) The expected utility of the items in I ′ is at least a constant fraction of the optimal LP

value, i.e.,

E

[∑
i∈I′

uip(i)

]
≥ π1

2

(
1−

(
π1

π2
+ π1

))[∑
M∈C

uMx
∗
M

]
. (1)

(ii) For any interval χ ∈ L, the total size of groups chosen in χ is at most a constant
fraction of |χ| i.e.,∑

j∈J′:χj⊆χ
aj ≤ (π2 + λ)|χ|. (2)

(iii) For any bin t ∈ T , the total size of items packed into t is within its capacity, i.e.,∑
i∈I′:p(i)=t

si ≤ 1. (3)

Note that properties (ii) and (iii) hold unconditionally (i.e., with probability 1).
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Algorithm 1 Rounding the configuration LP solution.
Input: Laminar χ-AGAP instance: (I, J, T,L)
Output: J ′ ⊆ J , I ′ ⊆

⋃
j∈J′ Ij and p : I ′ → [T ]

1: Initialize J ′ ← ∅ and I ′ ← ∅. Solve the configuration LP and obtain an optimal fractional
solution (x∗M : M ∈ C)

2: Let O be an ordering of groups J as follows: for any j, ` ∈ J , if χj ⊆ χ` then j appears
before ` in O.

3: for all j in the ordered list O do
4: Let Xj =

∑
M∈Cj x

∗
M .

5: If
∑
j′∈J′:χj′⊆χj

aj′ ≤ π2|χj | set J ′ ← J ′ ∪ {j} with probability π1Xj .
6: if j ∈ J ′ then
7: Let C+

j denote the configurations M ∈ Cj such that x∗M > 0.
8: Choose exactly one configuration, Mj ∈ C+

j with probability x∗M
Xj

for configuration
M .

9: For all (i, t) ∈Mj , if
∑
i′∈I′:p(i′)=t si′ ≤ 1, set I ′ ← I ′ ∪ {i} and p(i) = t.

10: end if
11: end for
12: for all t ∈ [T ] do
13: if

∑
i′∈I′:p(i′)=t si′ > 1 then . handle violated bins

14: Let i be the last item with p(i) = t. If uit ≥
∑
i′ 6=i:p(i′)=t ui′t: set p(i′) = ∅ and

I ′ ← I ′ \ {i′} ∀i′ 6= i; otherwise, set p(i) = ∅ and I ′ ← I ′ \ {i}.
15: end if
16: end for

Proof. We start by lower bounding the expected utility obtained by using Algorithm 1 before
eviction in Step 12.
(i) For any t ∈ [T ], let Ut =

∑
M∈C x

∗
M

∑
i∈I:(i,t)∈M uit denote the contribution of bin t to the

optimal fractional solution value. It follows that
∑
t∈[T ] Ut =

∑
M∈C x

∗
MuM . Fix t ∈ [T ] and

i ∈ I, and let j be the group containing item i. Let Ci→t denote the set of all configurations
M with M(i) = t. Let iter(j) be the iteration at which j is processed in Algorithm 1 (Step 3).
We denote by Ei→t the event “item i is assigned to bin t”, i.e., p(i) = t. To show (1), it
suffices to lower bound

E

 ∑
i∈I′:p(i)=t

uit

 =
∑
i∈I′

uitP(Ei→t),

for each t ∈ [T ]. To this end, we define the following events:
(E1) At the beginning of iter(j),

∑
j′∈J′:χj′⊆χj

aj′ ≤ π2|χj |.
(E2) Group j is added to J ′.
(E3) At the beginning of iter(j),

∑
i′∈I′:p(i′)=t si′ ≤ 1.

We start by upper bounding the values P(E1) and P(E3). Since the probability of choosing
a group j′ is at most π1Xj′ , using linearity of expectation, we have

E

 ∑
j′∈J′:χj′⊆χj

aj′

 ≤ ∑
j′∈J:χj′⊆χj

P(j′ ∈ J ′)aj′ ≤
∑

j′∈J:χj′⊆χj

π1Xj′aj′ ≤ π1|χj |. (4)

The last inequality follows from the constraints of the linear program, i.e., the total fractional
size of groups packed into interval χj is at most |χj |. Combining (4) with Markov’s inequality,

APPROX/RANDOM 2018



24:8 Generalized Assignment of Time-Sensitive Item Groups

it follows that

P(E1) = P

 ∑
j′∈J′:χj′⊆χj

aj′ > π2|χj |

 ≤ π1

π2
. (5)

Similarly, we have E
[∑

i′∈I′:p(i′)=t si′
]
≤
∑
M :(i′,t)∈M π1x

∗
M ≤ π1; thus, by Markov’s

inequality,

P(E3) = P

 ∑
i′∈I′:p(i′)=t

si′ > 1

 ≤ π1. (6)

We have the following conditional probability inequalities:

P(E2|E1) = π1Xj (7)

P(Ei→t|E1 ∩E2 ∩E3) =
∑
M∈Ci→t x

∗
M

Xj
(8)

Using (5) and (6),

P(E1 ∩E3) = 1− P(E1 ∪E3) ≥ 1− (P(E1) + P(E3)) ≥ 1− (π1

π2
+ π1) (9)

Now, we compute the probability of Ei→t as follows:

P(Ei→t) = P(Ei→t|E1 ∩E2 ∩E3)P(E1 ∩E2 ∩E3)
= P(Ei→t|E1 ∩E2 ∩E3)P(E2|E1 ∩E3)P(E1 ∩E3)
= P(Ei→t|E1 ∩E2 ∩E3)P(E2|E1)P(E1 ∩E3)

The last equality follows from the fact that P(E2|E1 ∩ E3) = P(E2|E1). To see this, we
note that by virtue of our algorithm E2 and E3 are conditionally independent events, given
E1. Thus P(E2|E1 ∩ E3) = P(E2 ∩ E3|E1)/P(E3|E1) = P(E2|E1). By the algorithm,
P(E2|E1) = π1Xj . Thus, using (8) and (9), we have

P(Ei→t) ≥ π1Xj

(∑
M∈Ci→t x

∗
M

Xj

)(
1−

(
π1

π2
+ π1

))
= π1

( ∑
M∈Ci→t

x∗M

)(
1−

(
π1

π2
+ π1

))

Thus, the expected utility for bin t is given by

E

 ∑
i∈I′:p(i)=t

uit

 ≥ π1
∑

i∈I′:p(i)=t

uit

( ∑
M∈Ci→t

x∗M

)(
1−

(
π1

π2
+ π1

))

= π1

(
1−

(
π1

π2
+ π1

))∑
M∈C

∑
i∈I:M(i)=t

uitx
∗
M


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Algorithm 2 Eviction Procedure.
Input: Packing p : I ′ → [T ], a parameter π3 ∈ (0, 1)
Output: Set of evicted bins E and a packing p′ : I ′′ → [T ] \ E
1: Mark each interval χ ∈ L as unprocessed. Initialize the set of evicted bins: E ← ∅, and

let I ′′ = I ′.
2: while ∃ a minimal unprocessed interval χ do
3: if |E ∩ χ| < d(1− π3)|χ|e then
4: Sort the bins χ \ E in ascending order of the total profit of items packed in them.
5: Let Eχ denote the first τ = d(1− π3)|χ|e − |E ∩ χ| bins in the above order.
6: for all bins t ∈ Eχ do
7: Evict the items in bin t, i.e., delete them from I ′′. Set E ← E ∪ {t}.
8: end for
9: Mark χ as processed.
10: end if
11: end while
12: Set p′(i) = p(i), for all i ∈ I ′′
13: return E and p′

Finally, by the linearity of expectation,

E

[∑
i∈I′

uip(i)

]
=
∑
t∈[T ]

E

 ∑
i∈I′:p(i)=t

uit


≥
∑
t∈[T ]

π1

(
1−

(
π1

π2
+ π1

))∑
M∈C

∑
i∈I:M(i)=t

uitx
∗
M


= π1

(
1−

(
π1

π2
+ π1

))[∑
M∈C

uMx
∗
M

]

Now, for each bin t, let it be the last item, and St the set of all items packed into t. If the
capacity of t has been violated, we note that each of the sets St \ it and {it} can be feasibly
packed into t. We evict either it or St \ it, whichever is less profitable and thereby lose an
additional factor of 1

2 in the worst case.
The proofs of parts (ii) and (iii) are deferred to the Appendix. J

Phase 2. We now show that for suitable values of the parameters 0 < π1 < π2 < 1, we can
obtain a packing of all the items in J ′, such that the total profit is an Ω(1) fraction of the
optimum. This yields a constant approximation for laminar χ-AGAP. Let π3 ∈ [2λ, 1) (to be
determined).
We first evict the items from some “low” profit bins, such that for any interval χ ∈ L, there
are at least (1− π3)|χ| empty bins. (Recall that each interval χ can be viewed as a set of |χ|
unit-sized bins.) Furthermore, the profit of items packed into bins that are not evicted is at
least an Ω(1) fraction of the optimal solution value. Subsequently, we use the empty bins to
repack all the unpacked items in the groups J ′.
Eviction. Our eviction scheme is formally described in Algorithm 2. Bins are emptied while
processing intervals in a bottom-up fashion, i.e., before an interval χ ∈ L is processed, every
sub-interval χ′ ∈ L where χ′ ⊂ χ is processed. Thus, in the main loop of the algorithm,
we consider an unprocessed interval χ of minimum length in any given iteration (Step 2
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24:10 Generalized Assignment of Time-Sensitive Item Groups

Algorithm 3 Packing an item i ∈ Îj .
1: If there exists a gray bin in avail(j) goto Step 2; otherwise, pick any white bin t in

avail(j) and pack i into t. Color t gray and exit. If no such white bin exists, report fail.
2: Let t be a gray bin in avail(j), and St the set of items packed into t. If

∑
i′∈St si′+si ≤ 1,

then pack i into t and exit; otherwise, goto Step 3.
3: Pick a white bin t′ in avail(j) and pack i into t′. Color t and t′ as black and pair up
t↔ t′. If no such white bin exists, report fail.

of Algorithm 2). Denote the current set of all evicted bins by E. We check if the total
number of evicted bins contained in χ satisfies |χ ∩ E| ≥ d(1− π3)|χ|e. If not, we sort the
bins t ∈ χ \E in non-decreasing order of the total utility of items packed into them, given by
Ut =

∑
{i∈I′:p(i)=t} uit. We evict the first τ = d(1− π3)|χ|e − |χ ∩ E| bins from χ \ E.

The following lemma shows that at the end of this procedure we are left with at least a
constant fraction of the original utility. We give the proof in the Appendix.

I Lemma 2. Given a packing p : I ′ → [T ] of items I ′ ⊆ I, let p′ : I ′′ → [T ] \ E be the
packing obtained by applying Algorithm 2. Then,∑

i∈I′′
uip′(i) ≥

π3

2
∑
i∈I′

uip(i).

Repacking. We now show that for any λ ∈ (0, 1
5 ) and suitable values of 0 < π1 < π2 < 1, and

π3 ∈ [2λ, 1), we can always pack the items in J ′ into the empty bins obtained from the above
eviction process. We prove a slightly more general result.

I Theorem 3 (Repacking Theorem). In a laminar instance of χ-AGAP, let Ĵ be a set of
groups and T̂ ⊆ [T ] a subset of bins. Suppose that for parameters {α, β, γ} ∈ (0, 1) the
following conditions are satisfied:
(a) For any j ∈ Ĵ , |Îj | ≤ γ|χj |
(b) For any χ ∈ L, there are at least α|χ| bins in T̂ ∩ χ
(c) For any χ ∈ L,

∑
j∈Ĵ:χj⊆χ aj ≤ β|χ|.

Then we can feasibly pack all the items Ĵ into T̂ if γ + 2β ≤ α.

Proof. Let S = ∪j∈Ĵ Îj be the set of all items in the groups Ĵ . In the course of our algorithm,
we label bins with one of the possible three colors: white, gray and black. Our algorithm
works in a bottom-up fashion and marks an interval χ done when it has successfully packed
all the groups j ∈ Ĵ such that χj ⊆ χ. Initially all the bins are marked white. A bin t is
marked gray when we pack an item into t, and black when we decide to add no more items
to this bin. Consider an interval χ that has not been marked done, but every interval χ′ ⊂ χ
is marked done. Let j be a group with χj = χ that has not been packed completely. Pick an
unpacked item i ∈ Ij . Let avail(j) ⊆ χ ∩ T̂ be the set of bins that are not packed with items
in group j. Algorithm 3 describes the formal procedure to pack item i.

We show that Algorithm 3 never reports fail and therefore feasibly packs all the items in
S. Assume towards contradiction that the algorithm reports fail while packing an item i.
Define a bin t ∈ χ∩ T̂ as bad if t is colored gray or some other item i′ ∈ Îj has been packed in
t. We first show that the following invariant holds, as long as no item in a group j+ such that
χ ⊂ χj+ has been packed: the number of bad bins while processing group j is at most γ|χ|.
Assuming that the claim holds for each child interval of χ, namely, {χ1, χ2 . . . , χs}, before
any group with time window χ is processed, we have the number of bad bins = number of
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gray bins is at most
∑
l∈[s] γ|χl| ≤ γ|χ|. Now, consider the iteration where we pack some

item i ∈ Îj into a bin t. If t is a gray bin, then the number of bad bins cannot increase. On
the other hand, suppose t was white before packing i. If there are no gray bins in χ, then the
number of bad bins is at most |Îj | ≤ γ|χ|. Suppose there exist some gray bins, and consider
those bins t′ such that group j has no item packed into bin t′. If there are no such bins, then
again the number of bad bins is at most |Îj | ≤ γ|χ|. Otherwise, we must have considered
one such gray bin t′ and failed to pack i into it. By the virtue of the algorithm, we must
have colored both t and t′ black. Thus, the number of bad bins would not increase, and
our claim holds. Now, since we pair the black bins t↔ t′ only if

∑
i∈St si +

∑
i′∈S′t

si′ > 1,
the total number of black bins < 2β|χ|. Hence, the total number of bins that are black or
bad < (γ + 2β)|χ|. Setting α ≥ (γ + 2β), there should be at least one bin t∗ that is neither
black nor bad. But in this case, we could have packed i into t∗ − a contradiction to the
assumption the algorithm reports a fail. J

Putting it all together, we obtain the following main result.

I Theorem 4. For any slackness parameter λ ∈ (0, 1
5 ), there exists a polynomial time

Ω(1)-approximation algorithm for laminar χ-AGAP.

Proof. Suppose we are given a laminar instance I = (I, J, T,L) of χ-AGAP with optimal
profit OPT . We apply Lemma 1 to obtain a subset of groups J ′ and a partial packing p of
a subset of items in J ′, denoted by I ′, such that
1. For any χ ∈ L,

∑
j∈J′:χj⊆χ aj ≤ (π2 + λ)|χ|

2. E
[∑

i∈I′ uip(i)
]
≥ π1

2

(
1−

(
π1
π2

+ π1

))
OPT .

Further, such a packing respects the capacity constraints and also ensures that no two items
of the same group are packed in the same bin. Choosing π3 ≥ 2λ, we apply Algorithm 2
to compute a set of evicted bins E such that |E ∩ χ| ≥ d(1 − π3)|χ|e, for any χ ∈ L. By
Lemma 2 and property 2. above, the new packing p′ : I ′′ → [T ] \ E satisfies

E

[∑
i∈I′′

uip′(i)

]
≥ π3

2 E

[∑
i∈I′

uip(i)

]
≥ π1π3

4

(
1−

(
π1

π2
+ π1

))
OPT.

Let Îj = Ij \I ′′ be the unpacked items in group j, for all j ∈ J ′, and let Ĵ = ∪j∈J′ Îj . Also,
we can write π3 = 2λ+ π′3, for π′3 ≥ 0. We show below that, for any λ ∈ (0, 1

5 ), there exist
positive constants π1, π2 and non-negative constant π′3, such that (a) λ+ 2(π2 + λ) ≤ 1− π3
and (b) π1

π2
+ π1 < 1. With λ ∈ (0, 1

5 ), we can select a positive constant value for π2 and a
non-negative value π′3, such that 5λ ≤ 1 − π′3 − 2π2 (this is possible since 1 − 5λ > 0). It
follows that 5λ ≤ 1 − (π3 − 2λ) − 2π2, and (a) is satisfied. Now, setting π1 <

1
1+1/π2

, we
ensure that (b) holds. To complete the proof, we show that the above implies that (i) all of
the items in Ĵ can be packed into the empty bins in E, and (ii) the total expected utility
is a constant fraction of the optimum. To show (i), we apply Theorem 3, setting T̂ = E,
α = 1 − π3, β = π2 + λ and γ = λ. Then, from (a) we have that γ + 2β ≤ α. Thus, all
of the conditions of Theorem 3 hold and we can pack all the items Ĵ . Now, (ii) follows
from the fact that π1π3

4

(
1−

(
π1
π2

+ π1

))
is a positive constant. Thus, we obtain a constant

approximation for any λ ∈ (0, 1
5 ). J

4 The General Case

In this section we extend our approach for laminar instances to the general case. As a first
step, we transform the instance to a family of laminar intervals. Consider a general χ-AGAP
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24:12 Generalized Assignment of Time-Sensitive Item Groups

Algorithm 4 Transformation of a general family of intervals into a Laminar family.
Input: Job set J and W = {χj : j ∈ J}
Output: Laminar family of intervals L and a mapping L :W → L
1: Construct a binary tree with the interval [T ] as the root. Each node in the tree corresponds

to an interval χ = [l, r] ⊆ [T ].
2: If r− l > 1, then the node [l, r] has two children corresponding to intervals [l, b l+r2 c] and

[b l+r2 c+ 1, r]. We define L as the union of intervals corresponding to the nodes in the
tree.

3: For each χ ∈ W, let χ′ be the largest interval in L contained in χ, breaking ties by
picking the rightmost interval, then L(χ) = χ′.

instance. Let W denote the set of all time-windows for groups in J , i.e., W = {χj : j ∈ J}.
We now construct a laminar family of intervals L and a mapping L :W → L. Recall that
T = maxj∈J dj .

I Construction 5. The construction is formally described in Algorithm 4.

It is natural to consider transforming a general instance to a laminar instance, using
Algorithm 4, and then applying the LP rounding procedure (of Section 3) to the laminar
instance. However, this can lead to a solution that is far from the optimal. Indeed, as item
utilities depend on the bins, the configurations for the general instance can differ significantly
from those of the laminar instance. Specifically, it may be the case that for some group j ∈ J ,
item i ∈ Ij has high utility when packed in a bin t ∈ χj , but t /∈ L(χj). We overcome this
issue by defining the configurations on the original intervals W, while setting the knapsack
constraints (in Step. 5 of Algorithm 1) on the intervals L.

We give the details of the algorithm in the Appendix.
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A Some Proofs

Proof of Lemma 1 (parts (ii) and (iii)):

(ii) We show (2) using induction on the intervals χ.
Base Step. Let χ be an interval containing no other interval in L, i.e., there is no χ′ ∈ L
such that χ′ ⊂ χ. Let j be the last group with time window χj = χ, in the ordering O, that
is successfully added to J ′; if there is no such group, we are done. Consider the iteration
(in Algorithm 1, Step 3.) in which j was considered. In this iteration, we must have that∑

j′∈J′:χj′⊆χ
aj′ ≤ π2|χ| − otherwise, j should have been discarded. Thus, upon adding j to

J ′, we have∑
j′∈J′:χj′⊆χ

aj′ ≤ π2|χ|+ aj ≤ π2|χ|+ λ|χj | = (π2 + λ)|χ|.

The second inequality holds since aj =
∑
i∈Ij si ≤ |Ij | ≤ λ|Xj |.

Inductive Step. Let χ be an interval with child intervals χ1, χ2, . . . , χs such that the claim
holds for each χk, k ∈ [s]. First, suppose there is no group j ∈ J ′ with χj = χ. In this case,
we have∑

j′∈J′:χj′⊆χ
aj′ =

∑
k∈[s]

∑
j′∈J′:χj′⊆χk

aj′ ≤
∑
k∈[s]

(π2 + λ)|χk| ≤ (π2 + λ)|χ|.

Now, consider the case where there is a group j ∈ J ′ with χj = χ and w.l.o.g. let j be the
last such group. As in the base case, in the iteration where j was added to J ′, we have∑
j′∈J′:χj′⊆χ

aj′ ≤ π2|χ|. Thus, after adding j to J ′, we have
∑
j′∈J′:χj′⊆χ

aj′ ≤ (π2 + λ)|χ|.
(iii) As shown in part (i) of the proof, for any bin t, we either keep the last item it, or the
rest of the items, St \ it, and both respect the capacity constraint corresponding to t. J

Proof of Lemma 2:

Let Ut =
∑
i∈I′:p(i)=t uit denote the total utility of items in I ′ packed into t under the

packing p. Using induction, we show that: in the iteration where an interval χ is marked
processed, the total utility of items packed, under p′, into χ is at least

∑
t∈χ

π3
2 Ut. We

note that this claim may not hold for χ in subsequent iterations, when we process a
parent interval χ+ ⊃ χ. However, at the end of all iterations, this claim would ensure
that under p′ we are left with at least a constant fraction of the total profit under p, i.e.,∑
t∈[T ]

∑
i∈I′′:p′(i)=t uit ≥

∑
t∈[T ]

π3
2 Ut.

Base Case. Let χ ∈ L be a leaf interval i.e., there is no χ′ ∈ L such that χ′ ⊂ χ. Note that
we process χ before any of its parent intervals χ+ ⊃ χ. When χ is marked as processed, we
would have evicted at most d(1− π3)|χ|e least profitable bins. Further,

d(1− π3)|χ|e ≤ (1− π3)|χ|+ 1 ≤ (1− π3)|χ|+ π3

2λ
≤ (1− π3)|χ|+ π3

2 |χ| = (1− π3

2 )|χ|. (10)

The second inequality follows from the choice of π3 ≥ 2λ. For the last inequality, we note
that there exists a group j ∈ J with χj = χ and therefore 1 ≤ Ij ≤ λ|χ|. Thus, in this case,
at least π3

2 |χ| of the most profitable bins are not evicted, and the claim holds.
Inductive Step. Suppose χ is a non-leaf interval with children χl, l ∈ [s]. We consider the
iteration in which χ was marked processed. First, we observe that, at this iteration, the total
number of bins that are not evicted in χ is at least π3

2 |χ|. To see this, consider the following
two cases:
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(i) If some bins are evicted in the iteration where χ is being processed (Step 3. of
Algorithm 2), then the number of evicted bins in χ is exactly d(1−π3)|χ|e ≤ (1− π3

2 )|χ|
(by Equation (10).

(ii) If no new bin is evicted in the iteration then, by the algorithm and Equation (10),
the total number of evicted bins in χ is bounded by

∑
l∈[s]d(1− π3)|χl|e ≤

∑
l∈[s](1−

π3
2 )|χl| ≤ (1− π3

2 )|χ|.
We use a charging argument to prove our original claim, i.e.,∑

t∈χ

∑
{i∈I′′:p′(i)=t}

uit ≥
π3

2
∑
t∈χ

Ut.

Every bin (evicted or otherwise) t ∈ χ is charged to a bin t′ ∈ χ \E that is not evicted, such
that
1. the total profit of items packed in t′ is greater than those packed in t, i.e., Ut′ ≥ Ut.
2. no bin t′ is charged with more than 2

π3
bins.

This would clearly imply that the total utility of non-evicted bins is at least π3
2 fraction of∑

t∈χ Ut. The charging is again done in a bottom-up fashion. For a leaf interval: a non-
evicted bin is charged to itself; evicted bins are arbitrarily distributed among the non-evicted
bins in such a way that no bin is charged with more than 2

π3
bins. This is possible because

there are at least π3
2 |χ| bins that are not evicted.

Suppose that all the bins in each child interval, χl : l ∈ [s], of χ has been charged. When
considering χ, some new bins may be evicted. Consider any newly evicted bin t that in
turn might have been charged with a certain subset of evicted bins. We observe that all the
bins in χ that are not evicted must have profit at least as much as t and are therefore more
profitable than the evicted bins charged to t. Thus, we can arbitrarily assign these evicted
bins (bins charged to t, including itself) to the non-evicted bins, as long as the number of
bins charged to any bin is at most 2

π3
. This is possible because we have at most (1− π3

2 )|χ|
evicted bins in χ at this iteration (i.e., when χ was marked processed). The claim follows by
induction.

B Approximating General χ-AGAP instances

We describe below the extension of our algorithm for laminar instances to handle general
χ-AGAP instances.

Phase 1. The LP remains the same. Note that the configurations are defined on the set of
intervals W

Maximize

∑
M∈C

uMxM :
∑
M∈Ct

xMsM−1(t) ≤ 1 (∀t ∈ [T ]),
∑
M∈Cj

xM ≤ 1 (∀j ∈ J), xM ≥ 0


Rounding Algorithm. As in the laminar case, fix suitable constants π1, π2 ∈ (0, 1) and
solve the configuration LP to obtain an optimal fractional solution (x∗M : M ∈ C). Now,
using Algorithm 4, transform W into a family of laminar intervals L and obtain a mapping
L :W → L of intervals in W to those in L. Next, we associate each interval χ ∈ L with a
knapsack capacity of π2|χ|. Further, the ordering of groups O is based on L (and L). That
is, if j and ` are two groups such that L(χj) ⊆ L(χ`), then j appears before ` in O.

While considering group j, we check if the knapsack capacity corresponding to L(χj)
has been violated. Formally, let J ′ be the set of groups chosen before j; then, we check if
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Algorithm 5 Rounding the configuration LP.
Input: A χ-AGAP instance: (I, J, T,W)
Output: J ′ ⊆ J , I ′ ⊆

⋃
j∈J′ Ij and p : I ′ → [T ]

1: Initialize J ′ ← ∅ and I ′ ← ∅.
2: Solve the configuration LP and obtain an optimal fractional solution (x∗M : M ∈ C)
3: Compute an ordering O of groups in J as follows: for any j, ` ∈ J , if L(χj) ⊆ L(χ`) then
j appears before j′ in O

4: for all j in accordance with the ordering O do
5: Let Xj =

∑
M∈Cj x

∗
M .

6:
∑
j′∈J′:L(χj′ )⊆L(χj) aj′ ≤ π2|L(χj)|, set J ′ ← J ′ ∪ {j} with probability π1Xj .

7: If j ∈ J ′, let C+
j denote the configurations M ∈ Cj such that x∗M > 0.

8: Choose exactly one configuration, Mj ∈ C+
j with probability x∗M

Xj
for configuration M .

9: For all (i, t) ∈Mj , if
∑
i′∈I′:p(i′)=t si′ ≤ 1, set I ′ ← I ′ ∪ {i} and p(i) = t.

10: end for
11: for all t ∈ [T ] do
12: if

∑
i′∈I′:p(i′)=t si′ > 1 then . handle violated bins

13: Let i be the last item with p(i) = t. If uit ≥
∑
i′:p(i′)=t ui′t: set p(i′) = ∅ and

I ′ ← I ′ \ {i′} ∀i′ 6= i; Otherwise, set p(i) = ∅ and I ′ ← I ′ \ {i}.
14: end if
15: end for

∑
j′∈J′:L(χj′ )⊆L(χj) aj′ ≤ π2|L(χj)|. If this constraint holds, we add j into J ′ with probability

π1
∑
M∈Cj x

∗
M = π1Xj , where Xj =

∑
M∈Cj x

∗
M ; otherwise, we discard j. If j has been

selected, i.e., j ∈ J ′, then choosing a configuration and then picking a subset of items in
Ij that can be packed is exactly the same as in the laminar case. Our rounding scheme is
formally described in Algorithm 5.

The proof of the following lemma is similar to the proof of Lemma 1 (details omitted).

I Lemma 6. For suitable constants π1, π2, λ, assuming that for any group j ∈ J , |Ij | ≤ λ|χj |,
the following hold for Algorithm 5:
(i) The expected utility of the items in I ′ is at least a constant fraction of the optimal LP

value, i.e.,

E

[∑
i∈I′

uip(i)

]
≥ π1

2

(
1−

(
4π1

π2
+ π1

))[∑
M∈C

uMx
∗
M

]

(ii) For any interval χ ∈ L, the total size of groups chosen in χ is at most a constant
fraction of |χ|, i.e.,∑

j∈J′:L(χj)⊆χ

aj ≤ (π2 + 4λ)|χ|

(iii) For any bin t ∈ T , the total size of items packed into t is within its capacity, i.e.,∑
i∈I′:p(i)=t

si ≤ 1

Phase 2. We now apply the eviction and repacking phase on the transformed instance, i.e.,
considering the time windows χ ∈ L. We summarize in the next theorem.

We use in the analysis the next result (due to [25]). We include a proof for completeness.
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I Lemma 7. In Algorithm 4, the following properties hold:
1. For any j ∈ J , |χj | ≤ 4|L(χj)|
2. For χ ∈ L, let χ̃ = {t ∈ χj : j ∈ J, L(χj) = χ}, i.e., the union of all time-windows in W

that are mapped to χ. Then, |χ̃| ≤ 4|χ|.

Proof. To prove the first property, it suffices to show that χj cannot completely contain
3 consecutive intervals in L that are at the same level as L(χj). Indeed, this would imply
that χj cannot intersect more than 4 consecutive intervals, and therefore |χj | ≤ 4|L(χj)|.
Now, suppose χj contains at least 3 such consecutive intervals. Then, by the virtue of our
algorithm, L(χj) is the rightmost interval. Let χ̂ be the parent of L(χj). Two cases arise:
Case 1: L(χj) is a left child of χ̂. Consider the two other consecutive intervals at the same

level as L(χj) that are contained in χj . Observe that these two intervals are siblings;
therefore, their parent (which is also in L) is also contained in χj . This is a contradiction
to the assumption that L(χj) is the largest interval in L contained in χj .

Case 2: L(χj) is a right child of χ̂. We observe that the sibling of L(χj) must also be
contained in χj , implying that χ̂ is contained in χj , a contradiction.

We now prove the second property. For any χ = [s, d] ∈ L, let χl = [sl, dl] ∈ W
(resp. χr = [sr, dr]) be the leftmost (resp. rightmost) interval in W such that L(χl) = χ

(resp. L(χr) = χ); then, χ̃ = [sl, dr]. Consider the intervals χ1 = [sl, s] and χ2 = [d, dr]. As
argued above, χl cannot contain 3 consecutive intervals in L at the same level as χ Thus,
|χ1| < 2|χ|.

Also, |χ2| < |χ|; otherwise, there is an interval to the right of χ of the same size that
can be mapped to χr. Thus, |χ1|+ |χ2| < 3|χ|. Now, the claim follows by observing that
|χ̃| = |χ1|+ |χ|+ |χ2| ≤ 4|χ|. J

I Theorem 8. For any slackness parameter λ ∈ (0, 1
20 ), there exists a polynomial time

Ω(1)-approximation algorithm for general χ-AGAP instances.

Proof. Suppose that the given instance I = (I, J, T,W) has an optimal profit OPT . We
apply Lemma 6 to obtain a subset of groups J ′ and a partial packing p of a subset of items
in J ′, denoted by I ′, such that:
1. For any χ ∈ L,

∑
j∈J′:L(χj)⊆L(χ) aj ≤ (π2 + 4λ)|χ|

2. E
[∑

i∈I′ uip(i)
]
≥ π1

2

(
1−

(
4π1
π2

+ π1

))
OPT .

Further, such a packing respects the capacity constraints and also ensures that no two items of
the same group are packed in the same bin. Choosing a suitable π3 ≥ 8λ, we apply Algorithm 2
on the intervals L to compute a set of evicted bins E such that |E ∩ χ| ≥ (1 − π3)|χ|, for
any χ ∈ L. By Lemma 2 and property 2. above, the new packing p′ : I ′′ → [T ] \E satisfies

E

[∑
i∈I′′

uip′(i)

]
≥ π3

2 E

[∑
i∈I′

uip(i)

]
≥ π1π3

4

(
1−

(
4π1

π2
+ π1

))
OPT.

Let Îj = Ij \ I ′′ be the unassigned items in group j, for all j ∈ J ′, and let Ĵ = ∪j∈J′ Îj . Also,
π3 = 8λ+π′3, for some π′3 ≥ 0. We show below that, for any λ ∈ (0, 1

20 ), there exist constants
π1, π2, π

′
3, such that (a) 4λ+ 2(π2 + 4λ) ≤ 1− π3 and (b) 4π1

π2
+ π1 < 1. Let λ ∈ (0, 1

20 ), and
select π2, π

′
3, such that 20λ ≤ 1 − π′3 − 2π2. Then, 12λ + 2(π2 + 4λ) ≤ 1 − π3, and (a) is

satisfied. Now, setting π1 <
1

1+ 4
π2

, we have that (b) holds. To complete the proof, we show

that the above implies that (i) all of the items in Ĵ can be packed into the empty bins in
E, and (ii) the total expected utility is a constant fraction of the optimum. To show (i),

APPROX/RANDOM 2018
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we apply Theorem 3, setting T̂ = E, α = 1 − π3, β = π2 + 4λ and γ = 4λ. Then, from
(a) we have that γ + 2β ≤ α. Also, we note that, by Lemma 7, for all j ∈ Ĵ such that
χ = L(χj), it holds that |Îj | ≤ |Ij | ≤ λ|χj | ≤ 4λ|L(χj)| = γ|χ| Thus, all of the conditions of
Theorem 3 hold. Now, (ii) follows from (b). Hence, we obtain a constant approximation for
any λ ∈ (0, 1

20 ). J
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