Optimal Deterministic Extractors for Generalized
Santha-Vazirani Sources

Salman Beigi
Institute for Research in Fundamental Sciences, Tehran, Iran

Andrej Bogdanov
Chinese University of Hong Kong

Omid Etesami
Institute for Research in Fundamental Sciences, Tehran, Iran

Siyao Guo
Northeastern University, Boston, USA

—— Abstract

Let F be a finite alphabet and D be a finite set of distributions over F. A Generalized Santha-
Vazirani (GSV) source of type (F, D), introduced by Beigi, Etesami and Gohari (ICALP 2015,
SICOMP 2017), is a random sequence (Fy,...,F,) in F", where F; is a sample from some

distribution d € D whose choice may depend on Fi, ..., F;_;.

We show that all GSV source types (F, D) fall into one of three categories: (1) non-extractable;
(2) extractable with error n=®(); (3) extractable with error 2~

We provide essentially randomness-optimal extraction algorithms for extractable sources. Our
algorithm for category (2) sources extracts one bit with error € from n = poly(1/¢) samples in
time linear in n. Our algorithm for category (3) sources extracts m bits with error ¢ from
n = O(m + log 1/¢) samples in time min{O(m2™ - n), n®(FD}.

We also give algorithms for classifying a GSV source type (F,D): Membership in category (1)
can be decided in NP, while membership in category (3) is polynomial-time decidable.
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1 Introduction

A randomness extractor is an algorithm that converts a weak source of randomness into
almost uniform independent random bits. One of the first classes of distributions that were
considered in the context of randomness extraction are Santha-Vazirani (SV) sources [16],
also called unpredictable-bit sources. An SV source is a sequence of random bits such that
every bit in the sequence has entropy bounded away from zero, even when conditioned on
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any possible sequence of previous bits. As already pointed out in [16], deterministic (seedless)
extraction of even a single almost unbiased bit from SV sources is impossible, although these
sources have entropy that grows linearly with their length.!

The motivating application for randomness extraction is the simulation of randomized
algorithms when only a weak random source is available. For stand-alone algorithms seeded
extractors are sufficient to accomplish this simulation. The simulation runs the extractor
over all possible seeds and observes the resulting outcomes of the algorithm. In distributed
and cryptographic settings, however, multiple executions may be infeasible. In contrast,
deterministic extractors of sufficiently high quality are adequate for all these applications.

Even for stand-alone algorithms, simulation using a seeded extractor incurs costs in
running time and statistical error. A seed of length ¢ entails 2¢ executions of the algorithm
and can at best guarantee a statistical error of 27¢/2 [15]. In cryptographic settings, errors
are typically inverse-polynomial in the complexity of the adversary, so a simulation of this
type may be infeasible. Dodis et al. [9] prove that many cryptographic tasks including
encryption, zero-knowledge, secret-sharing, and two-party computation are impossible from
arbitrary high-entropy sources including SV sources.

1.1 Generalized Santha-Vazirani sources

In this work we consider deterministic extraction for a natural generalization of Santha-
Vazirani sources which was introduced by Beigi, Etesami, and Gohari [2, 3]. A generalized
Santha-Vazirani (GSV) source is specified by a pair (F, D), where F is a finite set of faces
and D is a finite set of dice, each of which is a probability distribution on F. (We will assume
that each face is assigned positive probability by at least one die.) A distribution (F1,..., F,),
where the F;s are F-valued correlated random variables, is admissible by the source if it is
generated by the following type of strategy: For each 1 < i < n, a die d € D is chosen as a
function of Fy,..., F;_1 and Fj is sampled according to the distribution d. The adversary’s
choice of the die d may be probabilistic as well (without changing the extractability from the
source family).

The case |F| = 2 recovers the definition of SV sources: The dice are two-sided coins, one
biased towards heads and the other one towards tails. In this special case the condition
|D| = 2 can be imposed without loss of generality by convexity.

» Definition 1. We call a GSV source (F,D) extractable with error ¢ from n samples if
there exists a function Ext: F™ — {—1,1} such that for every distribution (F1,...,F,) in
the source, |E[Ext(Fy, ..., F,)]| < e. We call a source extractable if for every error € > 0
there exists a sample size n for which the source is extractable with these parameters.

The work [3] showed that randomness extraction from a GSV source is possible assuming
the following condition:

» Definition 2. A GSV source (F, D) satisfies the Nonzero Kernel Positive Variance (NK™)
condition if there exists a function ¢ : F — [—1, 1] such that E4[t)(F)] = 0 and Varg[t)(F)] > 0
for every die d € D.

Here, E; and Vary denote expectation and variance with respect to the distribution of
die d. On the other hand, they showed that extractability from such sources necessitates the
following Nonzero Kernel (NK) condition:

There exists a nonzero ¢: F — [—1, 1] such that E4[¢)(F)] = 0 for every die d € D.

1 With respect to seeded extraction, a constant seed length is sufficient for all SV sources [17].
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In particular, when all faces of all dice have positive probability (an assumption called
“nondegeneracy” in [3]), the (NK™) and (NK) conditions coincide, providing a characterization
of extractability for this class of sources. Their extractor requires ©(1/®) samples to achieve
erTor €.

There are, however, simple examples of GSV sources ((E1) and (E2) below) that satisfy
(NK) but not (NK¥). The work [3] does not address the extractability of such sources.

The existence of extractors for GSV sources does not appear to easily follow from counting
arguments, as is the case of other types of sources for which extraction is known to be possible
in principle and the focus is on efficient constructions, such as affine sources [6, 12], polynomial
sources [11, 10] and independent blocks [5, 7].

1.2 Qur Contributions

Our first contribution is a complete characterization of extractability from GSV sources. To
motivate our result, we first observe that the (NK) condition is, in general, insufficient for
extractability. Consider, for instance the two-diced, three-faced GSV source described by
the distributions (i.e., probability mass functions) d; = (0,0,1) and d» = (3, %,0). This
source satisfies (NK) with the witness ¢ = (—1,1,0), but is clearly not extractable as the
distribution in which d; is repeatedly tossed contains no entropy.

The following GSV source is a slightly more interesting example:
dlz(%,%,0,0) d2:(0307%7%) d3:(0,07%7é)' (E]')

This source also satisfies the (NK) condition (with ¢ = (—1,1,0,0)). However, it is not
extractable because it contains a “hidden” SV source (over two faces): If die d; is discarded
and the first two faces are removed, dice ds and ds now fail the (NK) condition.

These two examples suggest the following method for coming up with non-extractable
GSV sources: Start with any source that fails (NK), extend the dice with more faces of zero
probability, and add any number of dice that assign positive probability to the new faces. To
describe such sources, we introduce the following natural strengthening of (NK):

» Definition 3. A GSV source (F,D) satisfies the Hereditary Nonzero Kernel (HNK)
condition if for every subset D’ C D there exists a nonzero function ¢ : ' — [—1, 1] such
that E4[¢(F)] = 0 for all d € D', where F' = F'(D’) is the set of faces to which at least one
die in D’ assigns nonzero probability.

Clearly (HNK) is a necessary condition for extractability, because if (F, D) fails (HNK)
then (F/,D’) fails (NK). Our first theorem shows that (HNK) is also sufficient. Moreover, it
gives a universal upper bound on the number of samples:

» Theorem 4. The following conditions are equivalent for a GSV source (F,D):

1. (F,D) satisfies HNK.

2. (F,D) is extractable.

3. For every e, (F, D) is extractable with error € from n = poly(1/e) samples in time linear
nn.

In the course of proving Theorem 4 we introduce the analytic Mean Variance Ratio
(MVR) condition that turns out to be equivalent to HNK (Proposition 12). We show that a
quantitative variant of the MVR condition determines the best-possible quality of extraction,
up to a quadratic gap, even for GSV sources that are not extractable to within arbitrary
small error (Propositions 7 and 10).
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The work [3] proved statement 3 of Theorem 4 for the subclass of NK* sources. Theorem 5
shows that NK™T are in fact extractable from a logarithmic number of samples, and they are
the only sources for which this degree of efficiency is possible.

» Theorem 5. The following conditions are equivalent for a GSV source (F,D):

1. (F,D) satisfies NK*.

2. For every e, (F,D) is extractable with error e from o(1/2) samples.

3. For every ¢ and m, (F,D) is extractable with error* € and output length m from n =
O(log(1/€) +m) samples in time min{O(m2™ -n),n?(FD},

The sample complexity of the extractor in part 3 of Theorem 5 is optimal up to the
leading constant: Q(m) samples are necessary by entropy considerations, and Q(1/¢e) samples
are necessary for non-trivial sources® by granularity considerations.

Condition NK™ is strictly stronger than condition HNK. For example, the source

; )- (E2)
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satisfies HNK but not NK™.

Taken together, Theorems 4 and 5 completely classify non-trivial GSV sources into three
categories: (1) non-extractable, (2) extractable with error n=®() and (3) extractable with
error 2~ where n is the number of samples. This rules out the existence of GSV sources
of other error rates like 1/logn or 27V,

Moreover, sources can be classified algorithmically: Condition HNK can be decided by a
coNP algorithm, while NK™ is polynomial-time decidable (see Proposition 18).

Figure 1 indicates the relations between the different conditions for extractability of GSV
sources uncovered in this work. The left and right columns describe equivalent formulations
of randomness-efficient and general extractability, respectively. The middle column contains
the different types of GSV sources in increasing generality from top to bottom. The HNK
condition is shown equivalent to all formulations of general extractability, while the NK™
condition [3] is shown equivalent to randomness-efficient extractability.

1.3 Proof Techniques

Feasibility of extraction. The extractor of [3] outputs the sign of Zr = ¢(Fy)+-- -+ (Fr)
at the earliest time T' when |Z7| exceeds some pre-specified threshold M. Here, ¢ is the
witness for condition (NKT), which ensures that E[¢)(F)] is always zero and Var[y)(F)] is
always positive. Therefore (Z;) is a martingale with growing variance, and the analysis of [3]
shows that the process terminates by time n = O(1/&3) except with probability £/2 when M
is chosen as ©(1/¢e). Moreover, Zr must take value in the range (—(M +1), —M|U[M, M +1),
so by the optional stopping time theorem, the bias of Zr is €/2 when M = ©(1/¢).

In case only the weaker (HNK) condition holds, Var[i)(F')] could be zero for some dice
and the value of Z; may remain constant throughout the process. On the other hand, (HNK)
provides not one but many witnesses 1, one for every subset of the dice. Proposition 12
shows how all these witnesses can be combined into a single ¢: F — [—1, 1] that has positive
variance with respect to all the dice, but may have nonzero expectation. By a careful

2 The error of an extractor that outputs multiple bits is the statistical (total variation) distance between
its output distribution and the uniform distribution.

3 The exception consists of GSV sources that admit an event of probability exactly half after throwing
only one die, for which errorless extraction is possible.
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Figure 1 A map of our results. Straight arrows are implications (the dashed ones are immediate)
and lighter struck-out arrows are separations given by Examples (E1) and (E2). EXT(e, n) postulates
extractability with error € from n samples. Lightly and darkly shaded boxes represent equivalent
conditions for extractability and randomness-efficient extractability, respectively. Definitions 2, 3, 6,
and 14 specify the NK*, HNK, MVR, and MVD conditions, respectively.

implementation of this strategy, it is ensured that the ratio |Eq[¢(F)]|/Varq[¢(F)] can be
made smaller than any pre-specified € > 0. This is our Mean Variance Ratio (MVR) condition.
Moreover, Varg[é¢(F)] can be lower bounded by ¢ for some constant C that depends only
on the GSV source.

To prove Theorem 4 we apply the extractor of [3] to the function ¢. As ¢ may be
biased with respect to some dice, (Z;) may no longer be a martingale, rendering the optional
stopping time theorem inapplicable. In Proposition 7 we demonstrate that the conclusion
of the [3] analysis still applies in our context. Intuitively, the (MVR) condition should
imply that the variance of Z; grows, and does so at a faster rate than the magnitude of
its expectation. Therefore the stopping time should still be finite, and the component of
extraction error incurred by |[E[Z7]| should be small. Owing to dependencies between the
various steps, a rigorous implementation of these ideas requires substantial care.

Quality and quantity of extracted bits. For GSV sources that satisfy (NK™) the extractor
of [3] inherently requires 2(1/¢) samples: On the one hand, to ensure termination with
high probability the boundary threshold M can be at most n, but on the other hand Zp
may fall anywhere in the range (—(M + 1), — M| U [M, M + 1), thereby incurring an error of
e =Q(1/M).* To improve the sample complexity, our bit extractor in Theorem 5 applies the
update rule

L1 = Zy +

Y(F)
S (1-12))

and outputs the sign of Z,, for n = O(log1/e). Under (NK™) the sequence (Z;) is still a

martingale, but now the range of Z; is restricted to the open interval (—1,1). On average,

the deviation of the step size Z;41 — Z; conditioned on Z; is smaller the closer Z; is to one

4 A tempting alternative is to simply output the sign of Z,, after looking at some predetermined number
of samples. However, this “extractor” incurs error §2(1) for any non-trivial GSV source.
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of the boundary points {—1,1}. We show that the logarithm of 1/(1 — |Z;|) grows by a
constant on average in every step and apply Azuma’s inequality to conclude that Z,, is within
2=52(") of 1 or —1 with probability 1 — 2~2("). This ensures the bias of the output is inverse
exponential in the number of samples.

We give some informal intuition about the fast convergence of the martingale. Since
its range is bounded to [—1,1] and it is “unstable" at any point far from the boundaries,
by Doob’s theorem it must converge to either —1 or 1. The extractor’s decision about its
output should not be influenced heavily by the last few symbols of the source. Otherwise,
the extractor can be biased by an adversarial choice of distribution. (In particular, a random
function is typically a poor extractor since the last bits have very high influence.) A “sufficient
statistic” for the extractor’s future strategy at any point is the bias of its output given the
symbols read so far. This probability is not a well-defined quantity since the source is selected
adversarially. The (NK™) condition enables a rigorous (and optimal) implementation of this
strategy.

To extract multiple bits, the state Z; of the above process is extended to encode a
probability distribution over {0,1}"™. Initially Z is the uniform distribution. The distance
measure 1 — |Z,| is replaced by a carefully chosen quantity D, € R*" which ensures that Z,
is a probability distribution that rapidly concentrates on a single entry in {0, 1}, which
is the output of the extractor. Since (Z;) is a multi-dimensional martingale, the output
must be statistically close to uniform. The straightforward method of keeping track of the
corresponding 2 martingales requires exponential space, but we show a way to maintain a
succinct representation of them.

Lower bounds. Beigi, Etesami, and Gohari [3] proved that if a source fails the (NK)
condition, then it is not extractable. There are two proofs of this fact in [3], an analytic
one (in Section 2.2) and a combinatorial one (in Appendix B). Here we refine the ideas of
the analytic proof. In Proposition 10 we prove a quantitatively precise refinement of this
statement: As we shall show, the (NK) condition fails if for all ¢ there exists a die d for
which [Eq[¢(F)]|/Varg[(F)] = Q(1). Now if [E4[¢p(F)]|/Varg[t)(F)] > €, then the extraction
error must be at least Q(g). We conclude that extractability implies the (MVR) condition,
which together with a compactness argument (see Proposition 12) gives (HNK), proving the
“only if” direction of Theorem 4.

We prove the “only if” direction of Theorem 5 in Section B. We introduce the mean-
variance divergence (MVD) condition, which postulates that |Eq[¢(F)]| < e(Varg[¢(F)] — §)
for all dice. In Proposition 16 we show that if MVD fails then extraction with error € requires
Q(1/6) samples. In Proposition 15 we use linear-algebraic duality to show that if (NK™) fails
then so does (MVD) with § = O(g?), thereby completing the proof of Theorem 5.

1.4 Other related work

The question of extractability from GSV sources has found applications in tampering attacks
in cryptography [14, 13] and in publicly verifiable randomness via cryptocurrencies [4].

The GSV sources also capture the block sources of [8]. The latter (¢, b)-sources correspond
to the special case of F = {0,1} and D containing all flat distributions over F having
min-entropy at least b. Thus our theorems refine the impossibility of deterministic extraction
from block sources.
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2 A characterization of extractable GSV sources

In this Section we prove Theorem 4. The following analytic condition plays a central role in
the proof:

» Definition 6. A GSV source (F,D) satisfies the Mean-Variance Ratio condition with
parameter € > 0 (MVR(e)) if there exists a function ¢ : F — [—1, 1] such that for every die
d € D of a GSV source (F, D),

|[Eal[t:(F)]| < eVarg[y(F)]. (MVR)

Proposition 7 in Section 2.1 shows that if a GSV source satisfies MVR/(¢) then it is
extractable with error O(y/€) from poly(1/¢) samples. On the other hand, Proposition 10 in
Section 2.2 shows that any GSV source that is extractable with error less than /10 (from
any number of samples) satisfies MVR(g). Thus the smallest ¢ for which MVR(e) holds
measures the best-possible quality of extraction of a GSV source to within a square.

In the case when MVR/(e) holds for all € > 0, the source is extractable. Proposition 12
shows that if this is the case then HNK must hold. HNK, in turn, implies a slightly stronger
form of “MVR(¢) for all €”. Together with Proposition 7 this establishes the extractability

of HNK sources from ¢~¢ samples, where C' is a constant that depends only on the source.

2.1 Feasibility of extraction

» Proposition 7. If GSV source (F,D) satisfies MVR(e), then it is extractable from n
samples with error at most 3v/ +4/evn + O(g), where v is the minimum of Vary[(F)] over
alld € D.

The extractor outputs the sign of ¢(Fy) + --- + ¢ (Fr) if T < n, where F; is the i-th
output of the GSV source sequence, and T is the first time when the magnitude of this
expression exceeds the value M = 1/4/e. The output can be arbitrary if T > n.

The sequence X; = ¥(F}) is a special case of an (g, v)-approzimate martingale, namely a
sequence (X;), |X¢| < 1 such that

[E[X: | X<i]| < e- Var[X; | X< and Var[X; | X<¢] >0

for all t and Xy = (X1,...,Xt—1). The key result is the following lemma which bounds the
deviation time of an approximate martingale and its bias at the deviation time.

» Lemma 8. Let Z; = X1+ -+ + X; and T be the first time when |Zr| > M for an (g,v)-
approzimate martingale (X;). Then [E[Z7]| < e(M + 1) and Pr[T > t] < 2(M + 1)%/ut,
assuming € < 1/8(M + 1).

Proof of Lemma 8. We modify the sequence so that X; = 0 for all ¢t > T". The variables of
interest T" and Z7 do not change, while the approximate martingale assumptions imply

[E[X: | X<t]| <e-Var[X: | X<t and Var[X; | X<, T > t] > v.

The advantage of this modification is that |Z;| is now upper bounded by M + 1 for all ¢. The
upper bounds on Pr[T > t] and |E[Zr]| will both follow from this variance lower bound:

» Claim 9. For all t, Var[Z,] > 3 3! E[Var[X,| X ,]].

30:7
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Proof. By the law of total variance, for every t,
Var[Z;] = Var [E[Z;| X ;]| + E[Var[Z;| X o]].
Furthermore,
Var[E[Z| X «;]] = Var[Z,_1 + E[X;| X ]
= Var[Z;_1] + Var[E[X;|X ]| + 2Cov(Z;—1, E[X;| X 4]).
We can lower bound the covariances by
Cov(Zi-1, E[X¢|X<i]) = E[(Z4-1 — E[Zi1]) - E[Xi]| X o] ]

—E[|Zi1 — E[Z1]| - [E[X] X<i][]
—E[(2M +2) - éVar[X;| X o] |

(AVARAY,

1
Z _ZE[VBT[Xt‘X<t]:| y

where the penultimate inequality follows from the boundedness of Z;_; and the last one
follows from the assumption ¢ < 1/8(M + 1).
Combining the above (in)equalities and using the nonnegativity of Var[E[X;|X <],

1
Var[Z,] > E[Var[Z;| X ]| + Var[Z,_1] — iE[Var[Xt|X<t]]
1
= Var[Z;_1] + iE[Var[Xt|X<t]].
The claim now follows by induction on t. |

We can now upper bound |E[Z7]| by the maximum of E[Z;] over all ¢, which is at most
t t
E[Z]] <> E[[EX| X)) <D EleVar[X;|X ]| < 2eVar[Z] < 26(M +1)°. (1)
i=1 i=1

The second inequality follows from the approximate martingale assumption. The third one
follows from Claim 9. The fourth one follows from the boundedness of Z;.

It remains to upper bound Pr[T > t]. By Claim 9, the law of conditional expectations,
and the approximate martingale assumption,

Var[Z;] > Z E [Var[X;| X ]|

t
% > Pr[T > i] - E[Var[X;|X o] | T > i]
=1

t
1
> §;Pr[T> t]-v
t
=0 pT > 1.
2
The desired lower bound follows from the boundedness of Z;. |

Proof of Proposition 7. Let X; = ¢(F;), Z; = X1 +---+ X; and T be the first time when
|Zr| > M. Conditioned on T' < n, the output Ext of the extractor is identically distributed
to sign(Zr). Therefore by the law of conditional expectations,

|E[Ext] — E[sign(Zr)]| = |[E[Ext | T > n] —E[Zp | T > n]| - Pr[T > n] <2Pr[T > nl.
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By the boundedness of the X;s,
|Zp — M - sign(Zr)| < 1.
By the triangle inequality and Lemma 8,

|[E[Ext]| < |E[sign(Z7)]| + 2 Pr[T > n]

E|Z 1
§%+2Pr[T>n}

e(M +1)2 1 4(M +1)2
LEMADT 1AM AL
M M un
assuming € < 1/8(M + 1). When M = 1/4/¢ the assumption is satisfied for every ¢ < 1/4
and the desired bound follows. When & > 1/4 the claimed bias is larger than one and there

is nothing to prove. |

2.2 Impossibility of extraction

» Proposition 10. Let ¢ be a sufficiently small constant. Assume MVR(e) fails for a source
(F,D). Then (F,D) is not extractable with error better than £/10 from any number of
samples.

Proof of Proposition 10. Assuming MVR(e) fails we prove the following claim:

» Claim 11. For every n, every extractor Ext: F* — {0,1}, and every 0 < o« < 1, if
Ea_[Ext] > a for every strategy A_, then there exists a strategy Ay for which E 4, [Ext] >
a+(e/(1+¢)) all —a).

To derive the theorem from the claim, assume that E[Ext] > a = 1/2 — /10 with respect
to every strategy. By Claim 11 there must then exist a strategy for which

1 ¢ e 1-¢2/100
E[Ext] > = — — :
Btz 5 10 T 17 1
which is at least 1/2 4+ ¢/10. <

Beigi, Etesami, and Gohari prove Claim 11 under the stronger assumption that NK
fails. Their analysis proves the lower bound E 4, [Ext] > o 4 ¢ f(«) for a more general class
of functions f [3, Lemma 10]. The form that we choose is convenient for balancing the
simultaneous requirements on mean and variance.

Proof of Claim 11. We prove the claim by induction on n. When n = 0 the claim holds by
checking the cases Ext = 0 and Ext = 1. We now assume it holds for n — 1 and prove it for
n. Fix A_ to be the strategy that minimizes E,_[Ext], that is at least . Let d_ be the
choice of the first die in this strategy. Then

a<Eq [ar],

where a; is the conditional expectation of Ext given the first outcome being f, under strategy
A_.

We now describe the strategy A;. By MVR(¢e) applied to the function ¢(f) = ay — a,
there exists a die d4 such that

Eq, [ap — o] > eVarg, [ap]. (2)

30:9
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The adversary A tosses this die first. She then plays the strategy that maximizes E 4, [Ext]
conditioned on the outcome of the first die. By our inductive assumption, the conditional
expectation of Ext when A, is played, given the first outcome is f, must be at least
ay~+ (e/(14¢)) - ap(l — ay) so that
€

Ea, [Ext] > Eq, {ozp + s arp(l-— ozp)}.
We can write

Ea, |or + (1-ap)| = (a+ ——-a(l - a))

@ — —ap)| —la+— a(l —«
e IV F 1+e¢

€ € €
- (1 —)E PN P -
( + 1+e/) % lor = of 1+¢ arg, [ar] 1+¢

(Ed+ [CKF]2 — a2). (3)
For the last term we have the upper bound
Ed+[ap]2 —a? = Ed+[ap + a] 'Ed+[ap — a] < 2Ed+[ap — a],

since all the as are between zero and one, and the second term is non-negative because
Eq [ar] > Eq_[ar] > a by the minimality of d_. We can therefore lower bound the left
hand size of (3) by

€ €
(1 - 1—_~_€)I[<3{1+ [ap —a] — 17_’_6\/%,1+ [ar].
By (2) this must be non-negative. It follows that E 4, [Ext] is at least o+ (¢/(1+¢))a(1 — ),
concluding the inductive step. <

2.3 Proof of Theorem 4

» Proposition 12. The following conditions are equivalent for a GSV source (F,D):

1. Foralle > 0, (F,D) satisfies MVR(e): There exists a 1 : F — [—1,1] such that for all
dice d, |Eq[¢(F)]| < eVarg[v(F)).

2. There exists a constant C' such that for sufficiently small € > 0, there exists a 1 : F —
[—1,1] such that for all dice d, |Eq[)(F)]| < eVarg[1)(F)] and Varg[s)(F)] > £°.

3. (F,D) satisfies HNK.

Proof. We will show that 1 implies 3 and 3 implies 2. This will establish equivalence as 2 is
a stronger condition than 1.

1 implies 3: Assume that (F, D) satisfies MVR(g). This condition is hereditary, namely if it
holds for (F, D) then it holds for all (F’,D’) in the assumption of HNK. So in proving 3, we
may and will assume, without loss of generality, that (F',D’) = (F,D). We will moreover
assume (by scaling and flipping sign if necessary) that ¢ attains the value 1.

Now consider an infinite decreasing sequence (gy) that converges to zero. By assumption,
for every k there exists a )y, such that |Eq[vr(F)]| < erVarg[vy(F)]. By the pigeonhole
principle there must exist a face f for which the set of indices K = {k: ¢y (f) = 1} is
infinite. By compactness of [—1,1]” there must exist an infinite subset K’ C K for which
the subsequence ¢y, over k € K’ converges to a limit ¢. Then % is nonzero as ¥ (f) must
equal one. On the other hand, for every ¢ > 0 there exists a sufficiently large & € K’ such
that for every die d,

[Ea[(F)]| < [Ea[tr]| + & < eVara[pn(F)] +¢,

so Eg4[¢(F)] must equal zero for every d.
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3 implies 2: The proof is by strong induction on the number of dice |D| with C = 3-2/PI -3,
In the base case |D| = 1, all faces must be assigned nonzero probability by the unique die d.

Take any witness ¢ for HNK. Then E4[¢)(F)] = 0, but ¢ must take nonzero value on at least

one of the faces, so Varg[t)(F)] > 0. Condition 2 is then satisfied for sufficiently small € > 0.

For the inductive step, take any v that is a witness for HNK with respect to the whole
source (F, D). Let D’ be the subset of dice d such that Varg[¢)(F)] = 0 and v be the minimum
of Vary[t)(F)] over d ¢ D'. Then D’ is a proper subset of D (otherwise, there is a face that is
assigned no probability by any die). If D’ is empty, condition 2 follows by the same argument
as in the base case. If not, then by the inductive hypothesis we can choose ¢': F' — [—1,1]
such that

[Eale! (F)]] < (ve/8) - Vara[(F)] and  Vargl(F)] > (ve?/8)>2" '3, (@)

We will show that the function ¢ = 1) + (ve/8) - ¢’ satisfies the conclusion of condition 2.
Here, 1)/ is naturally extended as a function on F by assigning zero on all inputs in F \ F'.
The proof is by cases.

If d € D, then E4[¢p(F)] = (ve/8)Eq[t' (F)], while Vary[¢(F)] = (ve/8)2Varg[y'(F)].
From these two equalities and (4) it follows that E4[¢(F)] < eVarg[¢(F)]. On the other
hand, Varg[¢(F)] > (ve/8)? - (1182/8)3'2|D,"3 > 32713 for sufficiently small e.

If d ¢ D', then |[Eq[p(F)]| < (ve/8)|Eq[¢)'(F)]| < ve/8, while

Varg[y)(F)] > Varg[y)' (F)] — 2|Cova[)(F), (ve/8) - ¢ (F)]]
= Var[i)/ (F)] — = - |Cova[th(F), ¢/ (F))|

4

ve

> Varg[¢)' (F)] — o)
v
> o
-2

where the last inequality follows from our definition of v. In particular, Varg[¢(F)] > 327138
for sufficiently small . On the other hand, [E4[¢(F)]| < ve/8 < (¢/4) - Varg[)(F)], as
desired. <

Proof of Theorem 4. If (F, D) satisfies HNK, then it also satisfies condition 2 of Proposi-
tion 12. By Proposition 7, (F, D) is extractable with error O(y/2) + n/e“*!. The forward
direction follows by setting n = ¢“+15,

For the reverse direction, if (F, D) fails to satisfy HNK, by Proposition 12, then it also
fails to satisfy MVR(e) for some € > 0. So by Proposition 10 it is not extractable. |

Alternatively, the reverse direction of Theorem 4 can be derived from Theorem 6 of [3]
because if (F, D) fails (NHK) then it contains some (F’,D’") which fails (NK).

3 Randomness-efficient extraction

In this Section we outline the proof of Theorem 5. The implication 1 — 3 in Theorem 5 is
given by the following Proposition:

» Proposition 13. For every ¢ > 0 and m, every GSV source that satisfies (NK') is
extractable with error e and output length m from O((log(1/e) + m)/v?) samples in time
min{O(m2™ - n),n°WFDY where v is the minimum of Varg[(F)] over all d € D.

30:11
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The case m = 1 is proved in Appendix A. The full proof is given in [1].

Implication 3 — 2 in Theorem 5 holds trivially. The remaining implication 2 — 1
follows readily from Propositions 15 and 16 below. These refer to an analytic condition
that characterizes randomness-efficient extractability called the mean-variance divergence
(MVD) condition, which can be viewed as the suitable analogue of the MVR condition from
Section 2.

» Definition 14. A GSV source (F, D) satisfies the Mean-Variance Divergence condition
MVD(e, d) if there exists a function ¢ : F — [—1, 1] such that for every die d € D,

[Eql(F)]| < e(Varg[(F)] - 6). (MVD)

» Proposition 15. If (F, D) fails (NK" ) then there exists a constant C' such that for every
e >0, (F,D) fails MVD(e, Ce?).

» Proposition 16. If (F,D) fails MVD(e, §) then every extractor with error /20 for (F, D)
requires 1/80 samples, assuming € > 0 is sufficiently small.

The proofs are given in Appendix B.

4 Open Questions

In this work, we completely classify GSV sources in terms of their extractability and give
optimal deterministic extractors for GSV sources. We point out the following questions for
further investigation:
Let ¢ be the smallest constant for which there exists a non-NK™ source that is extractable
from O(1/£¢) samples. Example E2 gives the upper bound ¢ < 7.° Theorem 5 shows that
¢ > 2. What is the value of ¢?
The number of required samples in Theorem 4 is of the form 5*0(2“:'), where | D] is the
number of dice (see the proof of Proposition 12). Is this exponential dependence in |D|
necessary?
The multi-bit extractor in Theorem 5 runs in time min(nm2™,n®(FD). Can the depend-
ence on the number of faces be improved, possibly by applying known seeded extraction
algorithms?
Proposition 7 states that sources satisfying condition MVR (&) admit extraction with error
O(y/e), while by Proposition 10 extraction error () is necessary. Can this quadratic
gap be narrowed?
It would be interesting to investigate extensions to infinite faces and/or dice.
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A  An optimal bit extractor: Proof of Proposition 13 for m =1

Define random variables Zy, ..., Z, by Zo =0 and Z; = Z;_1 + (¢(F1)/2) - (1 — | Z¢—1|) where
F; (1 <t < n) is the t-th output of the GSV source. The extractor outputs the sign of Z,,.

Under (NK™) the sequence (Z;) is still a martingale so that the expectation of Z,, is 0.
But now the range of Z; is restricted to the open interval (—1,1). To prove that the sign of
Z,, has small bias, we begin by showing that the logarithm of 1/D;, on average, grows by a
constant in every step where D; = 1 — |Z;| is the distance between Z; and its sign. Then
we will use to argue the expectation of D, is exponentially small. This fact together with
E[Z,] = 0 allows us to conclude that the sign of Z,, is exponentially close to being unbiased.

» Claim 17. E[ln(1/D;) — In(1/Ds_,) | Dy] > v/24.
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Proof. Using the identity || = sign(z) - 2, we upper bound D; by

Dt =1- |Zt| S 1-— SigH(thl) . Zt

=1 sign(Z) (Zo + P D) = (1 sz - YY) )
Therefore,
E[ln Dlt; D<t} = (1 ~sign(Zi_1) - @) ‘ D<t]
> E|sign(Zi—1) - w(f O é(sign(zt_l) : “’(f ”)2 D«}
=E|sign(Z;_1) - w(2Ft) ‘ Dy,... 7Dt—1] + %E {(11)(2}72))2 D<t:|

>0+ wv/24.

The inequalities follow from the positivity of the (D;)s, the identity —In(1 — x) > = + 22 /6,
the boundedness of 1, and the NK™ assumption, respectively. <

Let X; =1In(1/D;) — (vt/24). By Claim 17, E[X;|D«;] > X;_1 so that the sequence (X%)
is a sub-martingale with respect to (D). By (5) and the triangle inequality

| Xt — Xio1]| < |InDy/Dyq| 4+ v/24 < max{|ln1/2|,In3/2|} + v/24 =In2 +v/24
By Azuma’s inequality,

PI‘[Dn > e—vn/48] — PI‘[Xn < —’U’I’L/48} < e—(vn/48)2/2n(1n2+v/24)2 — 2—9(1)271).
Finally by the triangle inequality and the law of conditional expectations,

[Elsign(Z,)]| < E[Dy] + [E[Z,]| < 27""/* + Pr[D,, > e™""/4¥] 4 [E[Z,]| = 272",

B A lower bound on the quality of extraction

The kernel of GSV source (F, D), denoted by Ker D, is the set of all ¢: F — R such that
Eq[1a(F)] = 0 for all dice d € D.

» Proposition 18. A GSV source (F, D) satisfies (NKT ) if and only if for every die d € D
there exists a function Vg € Ker D that is not constant on the support of d.

Proof of Proposition 18. The forward direction follows by setting all 14 to equal the witness
¢ for the (NK™) condition. For the reverse direction, let 1 = Y ;. Natbq where Ny are
independent random variables, each uniformly distributed over some finite set N’ C R of
size more than |D|. By linearity, ¢ is in Ker D. Moreover, for each die d and each possible
choice of the values Ny for d’ # d, the sum Y Ngt4 can be constant on the support of d
for at most one choice of Ny (for if two such choices existed then 14 itself must be constant
on the support of d). Therefore, 9 is constant on d with probability at most 1/|A]. Since
IN| > |D|, the existence of an (NKT) witness 1 follows from the union bound. <

» Claim 19. If (NK™) fails for GSV source (F,D) then there exists a die d € D such that
for every pair of faces f*, f. in the support of d there exists a function B: D — R such that
for all functions ¥: F — R,

G = o(f) = D B(d) - Ea[p(F)]. (6)

d'eD
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Proof. If f* = f,. the conclusion holds with 8 = 0. Otherwise, let C4 denote the linear space
of functions that are constant on the support of die d. By Proposition 18, if (NK™) fails

then there exists a die d for which all functions 1) € Ker D also belong to Cy, i.e., Ker D C Cy.

Then C; C (Ker D)1, where L indicates the dual subspace. The space (Ker D)= is the span
of the probability mass functions pmf,; of all the dice. Therefore every ¢ € C; can be written
as a linear combination

6= 5(d) - pmf,.

deD

Then for every ¢: F — R,

Yoo -w(f)= Y Bd)-pmfy(f)-w(f) =D Ad) - Ea[e:(F)).

fer deD,feF deD

The claim follows by specializing ¢ to the function that takes value 1 on f*, —1 on f,, and 0
elsewhere. This function is dual to Cy. <

Proof of Proposition 15. Assume (F,D) fails (NK+). Let d be the die stipulated by
Claim 19 and C be the maximum of (3", cp|8(d")|)? over all pairs of faces f*, f. in the
support of d.

Towards a contradiction suppose that (F,D) satisfies MVD(e,d). Then the witness
P: F — [=1,1] for MVD(e, §) must satisfy the conditions Varg[¢)(F)] > 6 and [Eqx[¢(F)]| <
eVarg [¢(F)] for all dice d’ € D. Let f* and f. be faces in the support of d that maximize
and minimize the value of v, respectively. By Claim 19, relation (6) holds for some § that
may depend on f* and f, but not on . Then

Vo < NVarg[y(F)] < o(f*) —o(f.) = D B(d) - Ba[(F)]

d'€eD
< Y 1B@)] - B [p(F)]] < Y 1B(d)] - eVara [)(F)] < Ve,
d’eD d’eD
where the last inequality follows from the definition of C' and the boundedness of ). Therefore
MVD(e, d) fails for § = Ce2. <

Proof of Proposition 16. The proof is a direct extension of the proof of Proposition 10. The
main technical tool is the following claim:

» Claim 20. For every extractor Ext: F™ — {0,1}, and every 0 < a <1, if E4_[Ext] > «
for every strateqy A_, then there exists a strateqy A4 for which

13
EA+[EXt] > o+ T

. (a(1 —a) —én).

The proof of Claim 20 is a notationally intensive direct extension of the proof of Claim 11.

We omit the details.
By Claim 20 it follows that for every € > 0, if no strategy A_ has error less than
a =1/2 — /20 against Ext then there exists a strategy A, with

1 e 5 1—¢2/400 1
> : _ -
Ea [Bxt] 25— o5+ 172 ( 4 8)’
which is at least 1/2 4 €/20 for sufficiently small e. <
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