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Abstract
The Swendsen-Wang dynamics is a popular algorithm for sampling from the Gibbs distribution
for the ferromagnetic Ising model on a graph G = (V,E). The dynamics is a “global” Markov
chain which is conjectured to converge to equilibrium in O(|V |1/4) steps for any graph G at any
(inverse) temperature β. It was recently proved by Guo and Jerrum (2017) that the Swendsen-
Wang dynamics has polynomial mixing time on any graph at all temperatures, yet there are few
results providing o(|V |) upper bounds on its convergence time.

We prove fast convergence of the Swendsen-Wang dynamics on general graphs in the tree
uniqueness region of the ferromagnetic Ising model. In particular, when β < βc(d) where βc(d)
denotes the uniqueness/non-uniqueness threshold on infinite d-regular trees, we prove that the
relaxation time (i.e., the inverse spectral gap) of the Swendsen-Wang dynamics is Θ(1) on any
graph of maximum degree d ≥ 3. Our proof utilizes a version of the Swendsen-Wang dynamics
which only updates isolated vertices. We establish that this variant of the Swendsen-Wang
dynamics has mixing time O(log |V |) and relaxation time Θ(1) on any graph of maximum degree
d for all β < βc(d). We believe that this Markov chain may be of independent interest, as it is
a monotone Swendsen-Wang type chain. As part of our proofs, we provide modest extensions of
the technology of Mossel and Sly (2013) for analyzing mixing times and of the censoring result
of Peres and Winkler (2013). Both of these results are for the Glauber dynamics, and we extend
them here to general monotone Markov chains. This class of dynamics includes for example the
heat-bath block dynamics, for which we obtain new tight mixing time bounds.
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1 Introduction

For spin systems, sampling from the associated Gibbs distribution is a key computational
task with a variety of applications, notably including inference/learning [19] and approximate
counting [28, 48]. In the study of spin systems, a model of prominent interest is the Ising
model. This is a classical model in statistical physics, which was introduced in the 1920’s to
study the ferromagnet and its physical phase transition [25, 31]. More recently, the Ising
model has found numerous applications in theoretical computer science, computer vision,
social network analysis, game theory, biology, discrete probability and many other fields
[7, 17, 12, 13, 37].

An instance of the (ferromagnetic) Ising model is given by an undirected graph G = (V,E)
on n = |V | vertices and an (inverse) temperature β > 0. A configuration σ ∈ {+,−}V
assigns a spin value (+ or −) to each vertex v ∈ V . The probability of a configuration σ is
proportional to

w(σ) = exp
(
β

∑
{v,w}∈E

σ(v)σ(w)
)
, (1)

where σ(v) is the spin of v. The associated Gibbs distribution µ = µG,β is given by
µ(σ) = w(σ)/Z, where the normalizing factor Z is known as the partition function. Since
β > 0 the system is ferromagnetic as neighboring vertices prefer to align their spins.

For general graphs Jerrum and Sinclair [26] presented an FPRAS for the partition function
(which yields an efficient sampler); however, its running time is a large polynomial in n.
Hence, there is significant interest in obtaining tight bounds on the convergence rate of
Markov chains for the Ising model, namely, Markov chains on the space of Ising configurations
{+,−}V that converge to Gibbs distribution µ. A standard notion for measuring the speed of
convergence to stationarity is the mixing time, which is defined as the number of steps until
the Markov chain is close to its stationary distribution in total variation distance, starting
from the worst possible initial configuration.

A simple, popular Markov chain for sampling from the Gibbs distribution is the Glauber
dynamics, commonly referred to as the Gibbs sampler in some communities. This dynamics
works by updating a randomly chosen vertex in each step in a reversible fashion. Significant
progress has been made in understanding the mixing properties of the Glauber dynamics and
its connections to the spatial mixing (i.e., decay of correlation) properties of the underlying
spin system. In general, in the high-temperature region (small β) correlations typically decay
exponentially fast, and one expects the Glauber dynamics to converge quickly to stationarity.
For example, for the special case of the integer lattice Z2, in the high-temperature region it
is well known that the Glauber dynamics has mixing time Θ(n logn) [35, 6, 10]. For general
graphs, Mossel and Sly [38] proved that the Glauber dynamics mixes in O(n logn) steps on
any graph of maximum degree d in the tree uniqueness region. Tree uniqueness is defined as
follows: let Th denote a (finite) complete tree of height h (by complete we mean all internal
vertices have degree d). Fix the leaves to be all + spins, consider the resulting conditional
Gibbs distribution on the internal vertices, and let p+

h denote the probability the root is
assigned spin + in this conditional distribution; similarly, let p−h denote the corresponding
marginal probability with the leaves fixed to spin −. When β < βc(d), where βc(d) is such
that

(d− 1) tanh βc(d) = 1, (2)

then p+
∞ = p−∞ and we say tree uniqueness holds since there is a unique Gibbs measure on

the infinite d-regular tree [41]. In the same setting, building upon the approach of Weitz [52]
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for the hard-core model, Li, Lu and Yin [33] provide an FPTAS for the partition function,
but the running time is a large polynomial in n.

In practice, it is appealing to utilize non-local (or global) chains which possibly update
Ω(n) vertices in a step; these chains are more popular due to their presumed speed-up and
for their ability to be naturally parallelized [30].

A notable example for the ferromagnetic Ising model is the Swendsen-Wang (SW) dynamics
[49] which utilizes the random-cluster representation to derive an elegant Markov chain in
which every vertex can change its spin in every step. The SW dynamics works in the following
manner. From the current spin configuration σt ∈ {+,−}V :
1. Consider the set of agreeing edges E(σt) = {(v, w) ∈ E : σt(v) = σt(w)};
2. Independently for each edge e ∈ E(σt), “percolate” by deleting e with probability

exp(−2β) and keeping e with probability 1− exp(−2β); this yields Ft ⊆ E(σt);
3. For each connected component C in the subgraph (V, Ft), choose a spin sC uniformly at

random from {+,−}, and then assign spin sC to all vertices in C, yielding σt+1 ∈ {+,−}V .
The proof that the stationary distribution of the SW dynamics is the Gibbs distribution
is non-trivial; see [11] for an elegant proof. The SW dynamics is also well-defined for the
ferromagnetic Potts model, a natural generalization of the Ising model that allows vertices to
be assigned q different spins.

The SW dynamics for the Ising model is quite appealing as it is conjectured to mix
quickly at all temperatures.

Its behavior for the Potts model (which corresponds to q > 2 spins) is more subtle,
as there are multiple examples of classes of graphs where the SW dynamics is torpidly
mixing; i.e., mixing time is exponential in the number of vertices of the graph; see, e.g.,
[20, 15, 3, 18, 4, 5].

Despite the popularity [51, 42, 43] and rich mathematical structure [21] of the SW
dynamics there are few results with tight bounds on its speed of convergence to equilibrium.
In fact, there are few results proving the SW dynamics is faster than the Glauber dynamics
(or the edge dynamics analog in the random-cluster representation). Most results derive as a
consequence of analyses of these local dynamics. Recently, Guo and Jerrum [22] established
that the mixing time of the SW dynamics on any graph and at any temperature is O(|V |10).

This bound, however, is far from the conjectured universal upper bound of O(|V |1/4) [39],
and once again their result derives from a bound on a local chain (the edge dynamics in the
random-cluster representation).

In the special case of the mean-field Ising model, which corresponds to the underlying
graph G being the complete graph on n vertices, Long, Nachmias, Ning and Peres [34]
provided a tight analysis of the mixing time of the SW dynamics. They prove that the
mixing time of the mean-field SW dynamics is Θ(|V |1/4); this is expected to be the worst
case and thus yields the aforementioned conjecture [39].

Another relevant case for which the speed of convergence is known is the two-dimensional
integer lattice Z2 (more precisely, finite subsections of it). Blanca, Caputo, Sinclair and
Vigoda [1] recently established that the relaxation time of the SW dynamics is Θ(1) in
the high-temperature region. The relaxation time measures the speed of convergence to
µ when the initial configuration is reasonably close to this distribution (a so-called “warm
start”) [27, 29]. More formally, the relaxation time is equal to the inverse spectral gap of the
transition matrix of the chain and is another well-studied notion of rate of convergence [32].
This result [1] applied a well-established proof approach [35, 10] which utilizes that Z2 is an
amenable graph. Our goal in this paper is to establish results for general graphs of bounded
degree.

APPROX/RANDOM 2018



32:4 Swendsen-Wang Dynamics for General Graphs in the Tree Uniqueness Region

Our inspiration is the result of Mossel and Sly [38] who proved O(n logn) mixing time of
the Glauber dynamics for every graph of maximum degree d. When β < βc(d), in addition
to uniqueness on the infinite d-regular tree, the ferromagnetic Ising model is also known to
exhibit several key spatial mixing properties. For instance, Mossel and Sly [38] showed that
when β < βc(d) a rather strong form of spatial mixing holds on graphs of maximum degree d;
see Definition 9 and Lemma 10 in Section 3. Using this, together with the censoring result
of Peres and Winkler [40] for the Glauber dynamics, they establish optimal bounds for the
mixing and relaxation times of the Glauber dynamics. At a high-level, the censoring result
[40] says that extra updates by the Markov chain do not slow it down, and hence one can
ignore transitions outside a local region of interest in the analysis of mixing times.

A Markov chain is monotone if it preserves the natural partial order on states; see
Section 2 for a detailed definition. We generalize the proof approach of Mossel and Sly to
apply to general (non-local) monotone Markov chains. This allows us to analyze a monotone
variant of the SW dynamics, and a direct comparison of these two chains yields a new bound
for the relaxation time of the SW dynamics.

I Theorem 1. Let G be an arbitrary n-vertex graph of maximum degree d. If β < βc(d),
then the relaxation time of the Swendsen-Wang dynamics is Θ(1).

This tight bound for the relaxation time is a substantial improvement over the best previously
known O(n) bound which follows from Ullrich’s comparison theorem [50] combined with
Mossel and Sly’s result [38] for the Glauber dynamics. We note that in Theorem 1, d is
assumed to be a constant independent of n and thus the result holds for arbitrary graphs of
bounded degree. We also mention that while spatial mixing properties are known to imply
optimal mixing of local dynamics, only recently the effects of these properties on the rate of
convergence of non-local dynamics have started to be investigated [1]. In general, spatial
mixing properties have proved to have a number of powerful algorithmic applications in the
design of efficient approximation algorithms for the partition function using the associated
self-avoiding walk trees (see, e.g., [52, 45, 33, 16, 44, 46, 47]).

There are three key components in our proof approach. First, we generalize the re-
cursive/inductive argument of Mossel and Sly [38] from the Glauber dynamics to general
(non-local) monotone dynamics. Since this approach relies crucially on the censoring result
of Peres and Winkler [40] which only applies to the Glauber dynamics, we also need to
establish a modest extension of the censoring result. For this, we use the framework of Fill
and Kahn [14]. Finally, we require a monotone Markov chain that can be analyzed with
these new tools and which is naturally comparable to the SW dynamics. To this end we
utilize the Isolated-vertex dynamics which was previously used in [1].

The Isolated-vertex dynamics operates in the same manner as the SW dynamics, except
in step 3 only components of size 1 choose a new random spin (other components keep the
same spin as in σt). We prove that the Isolated-vertex dynamics is monotone. Combining
these new tools we obtain the following result.

I Theorem 2. Let G be an arbitrary n-vertex graph of maximum degree d. If β < βc(d),
then the mixing time of the Isolated-vertex dynamics is O(logn), and its relaxation time is
Θ(1).

Our result for censoring may be of independent interest, as it applies to a fairly general class
of non-local monotone Markov chains. Indeed, combined with our generalization of Mossel
and Sly’s results [38], it gives a general method for analyzing monotone Markov chains.

As the first application of this technology, we are able to establish tight bounds for the
mixing and relaxation times of the block dynamics. Let {B1, ..., Br} be a collection of sets
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(or blocks) such that Bi ⊆ V and V = ∪iBi. The heat-bath block dynamics with blocks
{B1, ..., Br} is a Markov chain that in each step picks a block Bi uniformly at random
and updates the configuration in Bi with a new configuration distributed according to the
conditional measure in Bi given the configuration in V \Bi.

I Theorem 3. Let G be an arbitrary n-vertex graph of maximum degree d and let {B1, . . . , Br}
be an arbitrary collection of blocks such that V = ∪ri=1Bi. If β < βc(d), then the mixing time
of the block dynamics with blocks {B1, . . . , Br} is O(r logn), and its relaxation time is O(r).

We observe that there are no restrictions on the geometry of the blocks Bi in the theorem
other than V = ∪iBi. These optimal bounds were only known before for certain specific
collections of blocks.

As a second application of our technology, we consider another monotone variant of the
SW dynamics, which we call the Monotone SW dynamics. This chain proceeds exactly like
the SW dynamics, except that in step 3 each connected component C is assigned a new
random spin only with probability 1/2|C|−1 and is not updated otherwise. We derive the
following bounds.

I Theorem 4. Let G be an arbitrary n-vertex graph of maximum degree d. If β < βc(d),
then the mixing time of the Monotone SW dynamics is O(logn), and its relaxation time is
Θ(1).

The remainder of the paper is structured as follows. Section 2 contains some basic definitions
and facts used throughout the paper. In Section 3 we study the Isolated-vertex dynamics
and establish Theorem 2. Theorem 1 for the SW dynamics will follow as an easy corollary
of these results. In Section 3 we also state our generalization of Mossel and Sly’s approach
[38] for non-local dynamics (Theorem 11) and our censoring result (Theorem 7). The proofs
of these theorems are included in Appendix A and B, respectively. Finally, the proofs of
Theorems 3 and 4 are provided in the full version [2].

2 Background

In this section we provide a number of standard definitions that we will refer to in our proofs.
For more details see the book [32].

Ferromagnetic Ising model. Given a graph G = (V,E) and a real number β > 0, the
ferromagnetic Ising model on G consists of the probability distribution over ΩG = {+,−}V
given by

µG,β
(
σ
)

= 1
Z(G, β) exp

[
β
∑
{u,v}∈E

σ(u)σ(v)
]
, (3)

where σ ∈ ΩG and

Z(G, β) =
∑

σ∈ΩG

exp
[
β
∑
{u,v}∈E

σ(u)σ(v)
]

is called the partition function.

Mixing and relaxation times. Let P be the transition matrix of an ergodic (i.e., irreducible
and aperiodic) Markov chain over ΩG with stationary distribution µ = µG,β . Let P t(X0, ·)
denote the distribution of the chain after t steps starting from X0 ∈ ΩG, and let

Tmix(P, ε) = max
X0∈Ω

min
{
t ≥ 0 : ‖P t(X0, ·)− µ(·)‖tv ≤ ε

}
.

APPROX/RANDOM 2018
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The mixing time of P is defined as Tmix(P ) = Tmix(P, 1/4).
If P is reversible with respect to (w.r.t.) µ, the spectrum of P is real. Let 1 = λ1 >

λ2 ≥ ... ≥ λ|Ω| ≥ −1 denote its eigenvalues. The absolute spectral gap of P is defined by
λ(P ) = 1− λ∗, where λ∗ = max{|λ2|, |λ|Ω||}. Trel(P ) = λ(P )−1 is called the relaxation time
of P , and is another well-studied notion of rate of convergence to µ [27, 29].

Couplings and grand couplings. A (one step) coupling of a Markov chainM over ΩG spe-
cifies, for every pair of states (Xt, Yt) ∈ ΩG×ΩG, a probability distribution over (Xt+1, Yt+1)
such that the processes {Xt} and {Yt}, viewed in isolation, are faithful copies ofM, and if
Xt = Yt then Xt+1 = Yt+1. Let {Xσ

t }t≥0 denote an instance ofM started from σ ∈ ΩG. A
grand coupling ofM is a simultaneous coupling of {Xσ

t }t≥0 for all σ ∈ ΩG.

Monotonicity. For two configurations σ, τ ∈ ΩG, we say σ ≥ τ if σ(v) ≥ τ(v) for all v ∈ V
(assuming “+”> “−”). This induces a partial order on ΩG. The ferromagnetic Ising model
is monotone w.r.t. this partial order, since for every B ⊆ V and every pair of configurations
τ1, τ2 on B such that τ1 ≥ τ2 we have µ(· | τ1) � µ(· | τ2), where � denotes stochastic
domination. (For two distributions ν1, ν2 on ΩG, we say that ν1 stochastically dominates
ν2 if for any increasing function f ∈ R|ΩG| we have

∑
σ∈ΩG

ν1(σ)f(σ) ≥
∑
σ∈ΩG

ν2(σ)f(σ),
where a vector or function f ∈ R|ΩG| is increasing if f(σ) ≥ f(τ) for all σ ≥ τ .)

Suppose M is an ergodic Markov chain over ΩG with stationary distribution µ and
transition matrix P . A coupling of two instances {Xt}, {Yt} ofM is a monotone coupling if
Xt+1 ≥ Yt+1 whenever Xt ≥ Yt. We say thatM is a monotone Markov chain and P is a
monotone transition matrix ifM has a monotone grand coupling.

Comparison inequalities. The Dirichlet form of a Markov chain with transition matrix P
reversible w.r.t. µ is defined for any f, g ∈ R|ΩG| as

EP (f, g) = 〈f, (I − P )g〉µ = 1
2
∑

σ,τ∈ΩG

µ(σ)P (σ, τ)(f(σ)− f(τ))(g(σ)− g(τ)),

where 〈f, g〉µ =
∑
σ∈ΩG

µ(σ)f(σ)g(σ) for all f, g ∈ R|ΩG|.
If P and Q are the transition matrices of two monotone Markov chains reversible w.r.t. µ,

we say that P ≤ Q if 〈Pf, g〉µ ≤ 〈Qf, g〉µ for every increasing and positive f, g ∈ R|ΩG|. Note
that P ≤ Q is equivalent to EP (f, g) ≥ EQ(f, g) for every increasing and positive f, g ∈ R|ΩG|.

3 Isolated-vertex dynamics

In this section we consider a variant of the SW dynamics known as the Isolated-vertex
dynamics which was first introduced in [1]. We shall use this dynamics to introduce a
general framework for analyzing monotone Markov chains for the Ising model and to derive
our bounds for the SW dynamics. Specifically, we will prove Theorems 1 and 2 from the
introduction.

Throughout the section, let G = (V,E) be an arbitrary n-vertex graph of maximum
degree d, µ = µG,β and Ω = ΩG. Given an Ising model configuration σt ∈ Ω, one step of the
Isolated-vertex dynamics is given by:
1. Consider the set of agreeing edges E(σt) = {(v, w) ∈ E : σt(v) = σt(w)};
2. Independently for each edge e ∈ E(σt), delete e with probability exp(−2β) and keep e

with probability 1− exp(−2β); this yields Ft ⊆ E(σt);
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3. For each isolated vertex v in the subgraph (V, Ft) (i.e., those vertices with no incident
edges in Ft), choose a spin uniformly at random from {+,−} and assign it to v to obtain
σt+1; all other (non-isolated) vertices keep the same spin as in σt.

We use IV to denote the transition matrix of this chain. The reversibility of IV with
respect to µ was established in [1]. Observe also that in step 3, only isolated vertices are
updated with new random spins, whereas in the SW dynamics all connected components are
assigned new random spins. It is thus intuitive that the SW dynamics converges faster to
stationarity than the Isolated-vertex dynamics. This intuition was partially captured in [1],
where it was proved that

Trel(SW) ≤ Trel(IV). (4)

The Isolated-vertex dynamics exhibits various properties that vastly simplify its analysis.
These properties allow us to deduce, for example, strong bounds for both its relaxation
and mixing times. Specifically, we show (see Theorem 2) that when β < βc(d), Tmix(IV) =
O(logn) and Trel(IV) = Θ(1); see also (2) for the definition of βc(d). Theorem 1 from the
introduction then follows from (4).

A comparison inequality like (4) but for mixing times is not known, so Theorem 2 does
not yield a O(logn) bound for the mixing time of the SW dynamics as one might hope.
Direct comparison inequalities for mixing times are rare, since almost all known techniques
involve the comparison of Dirichlet forms, and there are inherent penalties in using such
inequalities to derive mixing times bounds.

The first key property of the Isolated-vertex dynamics is that, unlike the SW dynamics,
this Markov chain is monotone. Monotonicity is known to play a key role in relating spatial
mixing (i.e., decay of correlation) properties to fast convergence of the Glauber dynamics.
For instance, for spin systems in lattice graphs, sophisticated functional analytic techniques
are required to establish the equivalence between a spatial mixing property known as strong
spatial mixing and optimal mixing of the Glauber dynamics [35, 36, 37]. For monotone spin
systems such as the Ising model a simpler combinatorial argument yields the same sharp
result [10]. This combinatorial argument is in fact more robust, since it can be used to analyze
a larger class of Markov chains, including for example the systematic scan dynamics [1].

I Lemma 5. For all graphs G and all β > 0, the Isolated-vertex dynamics for the Ising
model is monotone.

The proof of Lemma 5 is given in Section 3.1. The second key property of the Isolated-vertex
dynamics concerns whether moves (or partial moves) of the dynamics could be censored from
the evolution of the chain without possibly speeding up its convergence. Censoring of Markov
chains is a well-studied notion [40, 14, 24] that has found important applications [38, 8, 9].

We say that a stochastic |Ω| × |Ω| matrix Q acts on a set A ⊆ V if for all σ, σ′ ∈ Ω:

Q(σ, σ′) 6= 0 iff σ(V \A) = σ′(V \A).

Also recall that P ≤ PA if 〈Pf, g〉µ ≤ 〈PAf, g〉µ for any pair of increasing positive functions
f, g ∈ R|Ω|.

I Definition 6. Let G be an arbitrary graph and let β > 0. Consider an ergodic and
monotone Markov chain for the Ising model on G, reversible w.r.t. µ = µG,β with transition
matrix P . Let {PA}A⊆V be a collection of monotone stochastic matrices reversible w.r.t. µ
with the property that PA acts on A for every A ⊆ V . We say that {PA}A⊆V is a censoring
for P if P ≤ PA for all A ⊆ V .

APPROX/RANDOM 2018
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As an example, consider the heat-bath Glauber dynamics for the Ising model on the graph
G = (V,E). Recall that in this Markov chain a vertex v ∈ V is chosen uniformly at random
(u.a.r.) and a new spin is sampled for v from the conditional distribution at v given the
configuration on V \ v. For every A ⊆ V , we may take PA to be the |Ω| × |Ω| transition
matrix of the censored heat-bath Glauber dynamics that ignores all moves outside of A.
That is, if the randomly chosen vertex v ∈ V is not in A, then the move is ignored; otherwise
the chain proceeds as the standard heat-bath Glauber dynamics.

It is easy to check that PA is monotone and reversible w.r.t. µ. Moreover, it was established
in [40, 14] that P ≤ PA for every A ⊆ V , and thus the collection {PA}A⊆V is a censoring
for the heat-bath Glauber dynamics. This particular censoring has been used to analyze
the speed of convergence of the Glauber dynamics in various settings (see [38, 40, 8, 9]),
since it can be proved that censored variants of the Glauber dynamics—where moves of P
are replaced by moves of PA—converge more slowly to the stationary distribution [40, 14].
Consequently, it suffices to analyze the speed of convergence of the censored chain, and this
could be much simpler for suitably chosen censoring schemes.

Using the machinery from [40, 14], we can show that given a censoring (as defined in
Definition 6), the strategy just mentioned for Glauber dynamics can be used for general
monotone Markov chains.

I Theorem 7. Let G be an arbitrary graph and let β > 0. Let {Xt} be an ergodic monotone
Markov chain for the Ising model on G, reversible w.r.t. µ = µG,β with transition matrix
P . Let {PA}A⊆V be a censoring for P and let {X̂t} be a censored version of {Xt} that
sequentially applies PA1 , PA2 , PA3 . . . where Ai ⊆ V . If X0, Y0 are both sampled from a
distribution ν over Ω such that ν/µ is increasing, then the following hold:
1. Xt � X̂t for all t ≥ 0;
2. Let P̂ t = PA1 . . . PAt . Then, for all t ≥ 0

‖P t(X0, ·)− µ(·)‖tv ≤ ‖P̂ t(X0, ·)− µ(·)‖tv.

If ν/µ is decreasing, then Xt � X̂t for all t ≥ 0.

The proof of this theorem is provided in Appendix B.
We define next a specific censoring for the Isolated-vertex dynamics. For A ⊆ V , let IVA

be the transition matrix for the Markov chain that given an Ising model configuration σt
generates σt+1 as follows:

1. Consider the set of agreeing edges E(σt) = {(v, w) ∈ E : σt(v) = σt(w)};
2. Independently for each edge e ∈ E(σt), delete e with probability exp(−2β) and keep e

with probability 1− exp(−2β); this yields Ft ⊆ E(σt);
3. For each isolated vertex v of the subgraph (V, Ft) in the subset A, choose a spin uniformly

at random from {+,−} and assign it to v to obtain σt+1; all other vertices keep the same
spin as in σt.

I Lemma 8. The collection of matrices {IVA}A⊆V is a censoring for the Isolated-vertex
dynamics.

The proof of Lemma 8 is provided in Secion 3.2. To establish Theorem 2 we show that a
strong form of spatial mixing, which is known to hold for all β < βc(d) [38], implies the
desired mixing and relaxation times bounds for the Isolated-vertex dynamics. We define this
notion of spatial mixing next.

For v ∈ V and R ∈ N, let B(v,R) = {u ∈ V : dist(u, v) ≤ R} denote the ball of radius R
around v, where dist(·, ·) denotes graph distance. Also, let S(v,R) = B(v,R + 1)\B(v,R)
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be the external boundary of B(v,R). For any A ⊆ V , let ΩA = {+,−}A be the set of all
configurations on A; hence Ω = ΩG = ΩV . For v ∈ V , u ∈ S(v,R) and τ ∈ ΩS(v,R), let τ+

u

(resp., τ−u ) be the configuration obtained from τ by changing the spin of u to + (resp., to −)
and define

au = sup
τ∈ΩS(v,R)

∣∣∣µ (v = + | S(v,R) = τ+
u

)
− µ

(
v = + | S(v,R) = τ−u

) ∣∣∣, (5)

where “v = +” represents the event that the spin of v is + and “S(v,R) = τ+
u ” (resp.,

“S(v,R) = τ−u ”) stands for the event that S(v,R) has configuration τ+
u (resp., τ−u ).

I Definition 9. We say that Aggregate Strong Spatial Mixing (ASSM) holds for R ∈ N, if
for all v ∈ V∑

u∈S(v,R)

au ≤
1
4 .

I Lemma 10 (Lemma 3, [38]). For all graphs G of maximum degree d and all β < βc(d),
there exists an integer R = R(β, d) ∈ N such that ASSM holds for R.

Theorem 2 is then a direct corollary of the following more general theorem. The proof of this
general theorem, which is provided in Appendix A, follows closely the approach in [38] for
the case of the Glauber dynamics, but key additional considerations are required to establish
such result for general (non-local) monotone Markov chains. The main new innovation in
our proof is the use of the more general Theorem 7, instead of the standard censoring result
in [40].

I Theorem 11. Let β > 0 and G be an arbitrary n-vertex graph of maximum degree d where
d is a constant independent of n. Consider an ergodic monotone Markov chain for the Ising
model on G, reversible w.r.t. µ = µG,β with transition matrix P . Suppose {PA}A⊆V is a
censoring for P . If ASSM holds for a constant R > 0, and for any v ∈ V and any starting
configuration σ ∈ Ω

Tmix(PB(v,R)) ≤ T, (6)

then Tmix(P ) = O(T logn) and Trel(P ) = O(T ).

We note that Tmix(PB(v,R)) denotes the mixing time from the worst possible starting con-
figuration, both in B(v,R) and in V \ B(v,R). (Since PB(v,R) only acts in B(v,R), the
configuration in V \B(v,R) remains fixed throughout the evolution of the chain and determ-
ines its stationary distribution.)

We now use Theorem 11 to establish Theorem 2. Theorem 11 is also used to establish
Theorems 3 and 4 from the introduction, concerning the mixing time of the block dynamics
and a monotone variant of the SW dynamics; see the full version of this paper [2].

Proof of Theorem 2. By Lemma 5 the Isolated-vertex dynamics is monotone, and by Lemma
8 the collection {IVA}A⊆V is a censoring for IV. Moreover, Lemma 10 implies that there
exists a constant R such that ASSM holds. Thus, to apply Theorem 11 all that is needed is
a bound for Tmix(IVB(v,R)) for all v ∈ V . For this, we can use a crude coupling argument.
Since |B(v,R)| ≤ dR, the probability that every vertex in B(v,R) becomes isolated is at
least

e−2βd|B(v,R)| ≥ e−2βdR+1
.
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Starting from two arbitrary configurations in B(v,R), if all vertices become isolated in
both configurations, then we can couple them with probability 1. Hence, we can couple
two arbitrary configurations in one step with probability at least exp(−2βdR+1). Thus,
Tmix(IVB(v,R)) = exp(O(βdR+1)) = O(1), and the result then follows from Theorem 11. J

Proof of Theorem 1. Follows from Theorem 2 and the fact that Trel(SW) ≤ Trel(IV), which
was established in Lemma 4.1 from [1]. J

3.1 Monotonicity of the Isolated-vertex dynamics
In this section, we show that the Isolated-vertex dynamics is monotone by constructing a
monotone grand coupling; see Section 2 for the definition of a grand coupling. In particular,
we prove Lemma 5.

Proof of Lemma 5. Let {Xσ
t }t≥0 be an instance of the Isolated-vertex dynamics starting

from σ ∈ Ω; i.e., Xσ
0 = σ. We construct a grand coupling for the Isolated-vertex dynamics as

follows. At time t:
1. For every edge e ∈ E, pick a number rt(e) uniformly at random from [0, 1];
2. For every vertex v ∈ V , choose a uniform random spin st(v) from {+,−};
3. For every σ ∈ Ω:

(i) Obtain Fσt ⊆ E by including the edge e = {u, v} in Fσt iff Xσ
t (u) = Xσ

t (v) and
rt(e) ≤ 1− e−2β ;

(ii) For every v ∈ V , set Xσ
t+1(v) = st(v) if v is an isolated vertex in the subgraph

(V, F σt ); otherwise, set Xσ
t+1(v) = Xσ

t (v).
This is clearly a valid grand coupling for the Isolated-vertex dynamics. We show next that it
is also monotone.

Suppose Xσ
t ≥ Xτ

t . We need to show that Xσ
t+1 ≥ Xτ

t+1 after one step of the grand
coupling. Let v ∈ V . If v is not isolated in either (V, F σt ) or (V, F τt ), then the spin of v
remains unchanged in both Xσ

t+1 and Xτ
t+1, and Xσ

t+1(v) = Xσ
t (v) ≥ Xτ

t (v) = Xτ
t+1(v). On

the other hand, if v is isolated in both (V, F σt ) and (V, F σt ), then the spin of v is set to st(v)
in both instances of the chain; hence, Xσ

t+1(v) = st(v) = Xτ
t+1(v).

Suppose next that v is isolated in (V, F σt ) but not in (V, F τt ). Then, Xσ
t+1(v) = st(v)

and Xτ
t+1(v) = Xτ

t (v). The only possibility that would violate Xσ
t+1(v) ≥ Xτ

t+1(v) is
that Xσ

t+1(v) = −, Xσ
t (v) = + and Xτ

t+1(v) = Xτ
t (v) = +. If this is the case, then

Xσ
t (v) = Xτ

t (v) = +. Moreover, since Xσ
t ≥ Xτ

t , all neighbors of v assigned “+” in Xτ
t are

also “+” in Xσ
t ; thus if v is isolated in (V, F σt ) then v is also isolated in (V, F τt ). This leads

to a contradiction, and so Xσ
t+1(v) ≥ Xτ

t+1(v). The case in which v is isolated in (V, F τt ) but
not in (V, F σt ) follows from an analogous argument. J

We can use the same grand coupling to show that IVA is also monotone for all A ⊆ V . The
only required modification in the construction is that if v ∈ V \A, then the spin of v is not
updated in either copy. This gives the following corollary.

I Corollary 12. IVA is monotone for all A ⊆ V .

3.2 Censoring for the Isolated-vertex dynamics
In this section we show that the collection {IVA}A⊆V is a censoring for IV . Specifically, we
prove Lemma 8.
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Proof of Lemma 8. For all A ⊆ V , we need to establish that IVA is reversible w.r.t.
µ = µG,β , monotone and that IV ≤ IVA. Monotonicity follows from Corollary 12. To
establish the other two facts we use an alternative representation of the matrices IV and
IVA that was already used in [1] and is inspired by the methods in [50].

Let ΩJ = 2E × Ω be the joint configuration space, where configurations consist of a spin
assignment to the vertices together with a subset of the edges of G. The joint Edwards-Sokal
measure ν on ΩJ is given by

ν(F, σ) = 1
Zj
p|F |(1− p)|E\F | 1(F ⊆ E(σ)), (7)

where p = 1 − e−2β , F ⊆ E, σ ∈ Ω, E(σ) = {{u, v} ∈ E : σ(u) = σ(v)}, and Zj is the
partition function [11].

Let T be the |Ω| × |ΩJ| matrix given by:

T (σ, (F, τ)) = 1(σ = τ)1(F ⊆ E(σ))p|F |(1− p)|E(σ)\F |, (8)

where σ ∈ Ω and (F, τ) ∈ ΩJ. The matrix T corresponds to adding each edge {u, v} ∈ E with
σ(u) = σ(v) independently with probability p, as in step 1 of the Isolated-vertex dynamics.
Let L2(ν) and L2(µ) denote the Hilbert spaces (R|ΩJ|, 〈·, ·〉ν) and (R|Ω|, 〈·, ·〉µ) respectively.
The matrix T defines an operator from L2(ν) to L2(µ) via vector-matrix multiplication.
Specifically, for any f ∈ R|ΩJ| and σ ∈ Ω

Tf(σ) =
∑

(F,τ)∈ΩJ

T (σ, (F, τ))f(F, τ).

It is easy to check that the adjoint operator T ∗ : L2(µ)→ L2(ν) of T is given by the |ΩJ|×|Ω|
matrix

T ∗((F, τ), σ) = 1(τ = σ), (9)

with (F, τ) ∈ ΩJ and σ ∈ Ω. Finally, for A ⊆ V , F1, F2 ⊆ E and σ, τ ∈ Ω let

QA((F1, σ), (F2, τ)) = 1(F1 = F2)1(F1 ⊆ E(σ) ∩ E(τ))

1(σ(IcA(F1)) = τ(IcA(F1))) · 2−|IA(F1)|

where IA(F1) is the set of isolated vertices of (V, F1) in A and IcA(F1) = V \ IA(F1), and
similarly for F2. For ease of notation we set Q = QV . It follows straightforwardly from the
definition of these matrices that IV = TQT ∗ and IVA = TQAT

∗ for all A ⊆ V . It is also
easy to verify that Q = Q2 = Q∗, QA = Q2

A = Q∗A and that Q = QAQQA; see [1].
The reversibility of IVA w.r.t. µ follows from the fact that IV∗A = (TQAT ∗)∗ = TQAT

∗ =
IVA. This implies that IVA is self-adjoint and thus reversible w.r.t. µ [32].

To establish that IV ≤ IVA, it is sufficient to show that for every pair of increasing and
positive functions f1, f2 : R|Ω| → R on Ω, we have

〈f1, IVf2〉µ ≤ 〈f1, IVAf2〉µ. (10)

Now,

〈f1, IVAf2〉µ = 〈f1, TQAT
∗f2〉µ = 〈f1, TQ

2
AT
∗f2〉µ = 〈QAT ∗f1, QAT

∗f2〉ν = 〈f̂1, f̂2〉ν ,

where f̂1 = QAT
∗f1 and f̂2 = QAT

∗f2. Similarly,

〈f1, IVf2〉µ = 〈f1, TQAQ
2QAT

∗f2〉µ = 〈QQAT ∗f1, QQAT
∗f2〉ν = 〈Qf̂1, Qf̂2〉ν .

Thus, it is sufficient for us to show that 〈Qf̂1, Qf̂2〉ν ≤ 〈f̂1, f̂2〉ν .
Consider the partial order on ΩJ where (F, σ) ≥ (F ′, σ′) iff F = F ′ and σ ≥ σ′.
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I Claim 13. Suppose f : R|Ω| → R is an increasing positive function. Then, f̂ : R|ΩJ| → R
where f̂ = QAT

∗f is also increasing and positive.

Given ω ∈ ΩJ, let ρω(·) = Q(ω, ·); i.e., ρω is the distribution over ΩJ after applying Q from
ω. We have

Qf̂1(ω) =
∑
ω′∈ΩJ

Q
(
ω, ω′

)
f̂1(ω′) = Eρω

[f̂1].

Similarly, we get Qf̂2(ω) = Eρω
[f̂2].

For a distribution π on a partially ordered set S, we say π is positively correlated if for
any increasing functions f, g ∈ R|S| we have Eπ[fg] ≥ Eπ[f ]Eπ[g]. Since ρω is a product
distribution over the isolated vertices in ω, ρω is positively correlated for any ω ∈ ΩJ by
Harris inequality (see, e.g., Lemma 22.14 in [32]). By Claim 13, f̂1 and f̂2 are increasing.
We then deduce that for any ω ∈ ΩJ:

Qf̂1(ω)Qf̂2(ω) = Eρω
[f̂1]Eρω

[f̂2] ≤ Eρω
[f̂1 f̂2].

Putting all these facts together, we get

〈Qf̂1, Qf̂2〉ν =
∑
ω∈ΩJ

Qf̂1(ω)Qf̂2(ω)ν(ω) ≤
∑
ω∈ΩJ

Eρω
[f̂1 f̂2]ν(ω)

=
∑

ω,ω′∈ΩJ

f̂1(ω′) f̂2(ω′)ρω(ω′)ν(ω) =
∑

ω,ω′∈ΩJ

f̂1(ω′) f̂2(ω′)ρω′(ω)ν(ω′)

= 〈f̂1, f̂2〉ν ,

where the second to last equality follows from the reversibility of Q w.r.t. ν; namely,

ρω(ω′)ν(ω) = Q(ω, ω′)ν(ω) = Q(ω′, ω)ν(ω′) = ρω′(ω)ν(ω′).

This implies that (10) holds for every pair of increasing positive functions, and the theorem
follows. J

We conclude this section with the proof of Claim 13.

Proof of Claim 13. From the definition of T ∗ we get T ∗f(F, σ) = f(σ) for any (F, σ) ∈ ΩJ.
Let (F, σ), (F, τ) ∈ ΩJ be such that σ ≥ τ . Then,

f̂(F, σ) = QAT
∗f(F, σ) =

∑
(F ′,σ′)∈ΩJ

QA
(
(F, σ), (F ′, σ′)

)
f(σ′).

Recall that QA
(
(F, σ), (F ′, σ′)

)
> 0 iff F = F ′ and σ, σ′ differ only in IA(F ), the set of

isolated vertices in A. If this is the case, then

QA
(
(F, σ), (F, σ′)

)
= 1

2|IA(F )| .

For ξ ∈ ΩIA(F ), let σξ denote the configuration obtained from σ by changing the spins of
vertices in IA(F ) to ξ; τξ is defined similarly. (Recall that ΩIA(F ) denotes the set of Ising
configurations on the set IA(F ).) Then, σξ ≥ τξ for any ξ ∈ ΩIA(F ) and

f̂(F, σ) = 1
2|IA(F )|

∑
ξ∈ΩIA(F )

f(σξ) ≥
1

2|IA(F )|

∑
ξ∈ΩIA(F )

f(τξ) = f̂(F, τ).

This shows that f̂ is increasing. J
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A Proof of Theorem 11

In [38], Mossel and Sly show that ASSM (see Definition 9) implies optimal O(n logn) mixing
of the Glauber dynamics on any n-vertex graph of bounded degree [23]. Our proof of Theorem
11 follows the approach in [38]. The key new novelty is the use of Theorem 7.

Proof of Theorem 11. Let {X+
t }, {X−t } be two instances of the chain such that X+

0 is the
“all plus” configuration and X−0 is the “all minus” one. Since the chain is monotone there
exists a monotone grand coupling of {X+

t } and {X−t } such that X+
t ≥ X−t for all t ≥ 0. The

existence of a monotone grand coupling implies that the extremal “all plus” and “all minus”
are the worst possible starting configurations, and thus

Tmix(P, ε) ≤ Tcoup(ε)

where Tcoup(ε) is the minimum t such that Pr[X+
t 6= X−t ] ≤ ε, assuming {X+

t } and {X−t }
are coupled using the monotone coupling. Hence, it is sufficient to find t such that for all
v ∈ V

Pr[X+
t (v) 6= X−t (v)] ≤ ε

n
,

since the result would follow from a union bound over the vertices.
Choose R ∈ N such that ASSM holds; see Lemma 10. Let s ∈ N be arbitrary and fixed.

For each v ∈ V , we define two instances {Y +
t } and {Y −t } of the censored chain that until

time s evolves as the chain P and after time s it evolves according to PB(v,R). By assumption
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PB(v,R) is also monotone, so the evolutions of {Y +
t } and {Y −t } can be coupled as follows: up

to time s, {Y +
t } and {Y −t } are coupled by setting Y +

t = X+
t and Y −t = X−t for all 0 ≤ t ≤ s;

for t > s the monotone coupling for PB(v,R) is used. Then, we have X+
t ≥ X−t and Y +

t ≥ Y −t
for all t ≥ 0.

Since P ≤ PB(v,R) by assumption, and the distribution ν+ (resp., ν−) of X+
0 (resp., X−0 )

is such that ν+/µ (resp., ν−/µ) is trivially increasing (resp., decreasing), Theorem 7 implies
Y +
t � X+

t and X−t � Y −t for all t ≥ 0. Hence,

Y +
t � X+

t � X−t � Y −t .

Thus,

Pr[X+
t (v) 6= X−t (v)] = Pr[X+

t (v) = +]− Pr[X−t (v) = +]
≤ Pr[Y +

t (v) = +]− Pr[Y −t (v) = +]
= Pr[Y +

t (v) 6= Y −t (v)],

where the first and third equations follow from the monotonicity of {X+
t }, {X−t }, {Y +

t } and
{Y −t } and the inequality from the fact that Y +

t � X+
t and Y −t � X−t .

Recall our earlier definitions of B(v,R) as the ball of radius R and S(v,R) as the
external boundary of B(v,R); i.e., B(v,R) = {u ∈ V : dist(u, v) ≤ R} and let S(v,R) =
B(v,R+ 1)\B(v,R). For ease of notation let A = B(v,R+ 1) = B(v,R) ∪ S(v,R) and for
σ+, σ− ∈ ΩA let Fs(σ+, σ−) be the event {X+

s (A) = σ+, X−s (A) = σ−}. Then, for t > s we
have

Pr[Y +
t (v) 6= Y −t (v) | Fs(σ+, σ−)] ≤

∣∣∣Pr[Y +
t (v) = + | Fs(σ+, σ−)]− µ(v = + | τ+)

∣∣∣
+
∣∣∣µ(v = + | τ+)− µ(v = + | τ−)

∣∣∣
+
∣∣∣Pr[Y −t (v) = + | Fs(σ+, σ−)]− µ(v = + | τ−)

∣∣∣,
(11)

where µ = µG,β , τ+ = σ+(S(v,R)) and τ− = σ−(S(v,R)).
Observe that µ(· | τ+) and µ(· | τ−) are the stationary measures of {Y +

t } and {Y −t }
respectively, and recall that by assumption

max
σ∈Ω

Tmix(PB(v,R), σ) ≤ T.

Hence, for t = s+ T log4d8|A|e, we have∣∣∣Pr[Y +
t (v) = + | Fs(σ+, σ−)]− µ(v = + | τ+)

∣∣∣ ≤ 1
8|A| , (12)

and similarly∣∣∣Pr[Y −t (v) = + | Fs(σ+, σ−)]− µ(v = + | τ−)
∣∣∣ ≤ 1

8|A| . (13)

We bound next |µ(v = + | τ+)− µ(v = + | τ−)|. For u ∈ S(v,R), let au be defined as in
(5) and let S(v,R) = {u1, u2, . . . , ul} with l = |S(v,R)|. Let τ0, τ1, . . . , τl be a sequence of
configurations on S(v,R) such that τj(uk) = τ+(uk) for j < k ≤ l and τj(uk) = τ−(uk) for
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1 ≤ k ≤ j. That is, τ0 = τ+, τl = τ− and τj is obtained from τj−1 by changing the spin of
uj from τ+(uj) to τ−(uj). The triangle inequality then implies that∣∣∣µ(v = + | τ+)− µ(v = + | τ−)

∣∣∣ ≤ l∑
j=1

∣∣∣µ(v = + | τj−1)− µ(v = + | τj)
∣∣∣

≤
l∑

j=1
1{τ+(uj) 6= τ−(uj)} · auj

=
∑

u∈S(v,R)

1{σ+(u) 6= σ−(u)} · au. (14)

Hence, plugging (12), (13) and (14) into (11), we get

Pr[Y +
t (v) 6= Y −t (v) | Fs(σ+, σ−)] ≤ 1

4|A| +
∑

u∈S(v,R)

1{σ+(u) 6= σ−(u)} · au.

Now, if X+
s (A) = X−s (A), then Y +

t (A) = Y −t (A) for all t ≥ s. Therefore,

Pr[Y +
t (v) 6= Y −t (v)] =

∑
σ+ 6=σ−∈ΩA

Pr[Y +
t (v) 6= Y −t (v) | Fs(σ+, σ−)] Pr[Fs(σ+, σ−)]

≤ Pr[X+
s (A) 6= X−s (A)]

4|A| +
∑

σ+ 6=σ−∈ΩA

∑
u∈S(v,R)

1{σ+(u) 6= σ−(u)} · au · Pr[Fs(σ+, σ−)]

= Pr[X+
s (A) 6= X−s (A)]

4|A| +
∑

u∈S(v,R)

Pr[X+
s (u) 6= X−s (u)] · au.

By union bound,
Pr[X+

s (A) 6= X−s (A)]
4|A| ≤ 1

4|A|
∑
u∈A

Pr[X+
s (u) 6= X−s (u)] ≤ 1

4 max
u∈V

Pr[X+
s (u) 6= X−s (u)].

Moreover, the ASSM property (see Lemma 10) implies that∑
u∈S(v,R)

Pr[X+
s (u) 6= X−s (u)] · au ≤ max

u∈V
Pr[X+

s (u) 6= X−s (u)]
∑

u∈S(v,R)

au

≤ 1
4 max
u∈V

Pr[X+
s (u) 6= X−s (u)].

Thus, we conclude that for every v ∈ V

Pr[X+
t (v) 6= X−t (v)] ≤ Pr[Y +

t (v) 6= Y −t (v)] ≤ 1
2 max
u∈V

Pr[X+
s (u) 6= X−s (u)]

for t = s+ T log4d8|A|e. Taking the maximum over v

max
v∈V

Pr[X+
t (v) 6= X−t (v)] ≤ 1

2 max
v∈V

Pr[X+
s (v) 6= X−s (v)].

Iteratively, we get that for T̂ = T log4d8|A|e log2dnε e

max
v∈V

Pr[X+
T̂

(v) 6= X−
T̂

(v)] ≤ ε

n
.

This implies that Tmix(P, ε) ≤ T log4d8|A|e log2dnε e, so taking ε = 1/4 it follows that
Tmix(P ) = O(T logn) as desired. Moreover, since for ε > 0

(Trel(P )− 1) log(2ε)−1 ≤ Tmix(P, ε),

taking ε = n−1 yields that Trel(P ) = O(T ); see Theorem 12.5 in [32]. J
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B Proof of Theorem 7

Proof of Theorem 7. By assumption, Xt has distribution νP t while X̂t has distribution
νP̂ t where P̂ t = PA1 . . . PAt

. Since {PA}A⊆V is a censoring for P , we have P ≤ PA for all
A ⊆ V . We show first that this implies P t ≤ P̂ t.

Recall that PAi
may be viewed as an operator from L2(µ) to L2(µ). The reversibility

of PAi w.r.t. µ implies that PAi is self-adjoint; i.e., P ∗Ai
= PAi . Also, since P is monotone,

P kf is increasing for any integer k > 0 and any increasing function f ; see Proposition 22.7
in [32]. Combining these facts, we have that for any pair of increasing positive functions
f, g : R|Ω| → R

〈f, P tg〉µ = 〈f, P (P t−1g)〉µ ≤ 〈f, PA1(P t−1g)〉µ = 〈PA1f, P
t−1g〉µ.

Note also that PA1 is monotone, so PA1f is increasing. Iterating this argument, we obtain

〈f, P tg〉µ ≤ 〈PA1f, P
t−1g〉µ ≤ · · · ≤ 〈PAt

. . . PA1f, g〉µ = 〈f, P̂ tg〉µ.

This shows that P t ≤ P̂ t.
To prove Xt � X̂t, we need to show that for any increasing function g∑
σ∈Ω

νP t(σ)g(σ) ≤
∑
σ∈Ω

νP̂ t(σ)g(σ). (15)

Let h : R|Ω| → R be the function given by h(τ) = ν(τ)/µ(τ) for τ ∈ Ω. Then we have∑
σ∈Ω

νP t(σ)g(σ) =
∑
σ∈Ω

(∑
τ∈Ω

ν(τ)P t(τ, σ)
)
g(σ) =

∑
σ,τ∈Ω

ν(τ)P t(τ, σ)g(σ)

=
∑
σ,τ∈Ω

µ(τ)P t(τ, σ)g(σ)h(τ) = 〈h, P tg〉µ.

Similarly,∑
σ∈Ω

νP̂ t(σ)g(σ) = 〈h, P̂ tg〉µ.

The function h is increasing by assumption, and thus (15) follows immediately from the fact
that P t ≤ P̂ t. This establishes part 1 of the theorem. Part 2 of the theorem follows from
part 1 and Lemma 2.4 in [40]. J
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