Preserving Randomness for Adaptive Algorithms

William M. Hoza'!

Department of Computer Science, University of Texas at Austin, Austin, TX, USA
whoza@utexas.edu
https://orcid.org/0000-0001-5162-9181

Adam R. Klivans

Department of Computer Science, University of Texas at Austin, Austin, TX, USA
klivans@cs.utexas.edu

—— Abstract

Suppose Est is a randomized estimation algorithm that uses n random bits and outputs values
in R?. We show how to execute Est on k adaptively chosen inputs using only n + O(klog(d + 1))
random bits instead of the trivial nk (at the cost of mild increases in the error and failure
probability). Our algorithm combines a variant of the INW pseudorandom generator [12] with a
new scheme for shifting and rounding the outputs of Est. We prove that modifying the outputs
of Est is necessary in this setting, and furthermore, our algorithm’s randomness complexity is
near-optimal in the case d < O(1). As an application, we give a randomness-efficient version of
the Goldreich-Levin algorithm; our algorithm finds all Fourier coefficients with absolute value at
least @ of a function F : {0,1}" — {—1,1} using O(nlogn) - poly(1/6) queries to F and O(n)
random bits (independent of #), improving previous work by Bshouty et al. [3].

2012 ACM Subject Classification Theory of computation — Pseudorandomness and derandom-
ization

Keywords and phrases pseudorandomness, adaptivity, estimation
Digital Object Identifier 10.4230/LIPIcs. APPROX-RANDOM.2018.43
Related Version [10], https://arxiv.org/abs/1611.00783

Acknowledgements We thank David Zuckerman for observations about block decision trees. We
thank an anonymous reviewer for pointing out Impagliazzo and Zuckerman’s previous work on
this subject [13, 11].

1 Introduction

Let Est be a randomized algorithm that estimates some quantity u(C) € R? when given
input C. The canonical example is the case when C is a Boolean circuit, d = 1, u(C) def
Pr,[C(z) = 1], and Est estimates u(C) by evaluating C' at several randomly chosen points.
Suppose that Est uses n random bits, and Pr[||Est(C) — u(C)|lec > €] < 6.

Furthermore, suppose we want to use Est as a subroutine, executing it on inputs
C1,Cs,...,Cy, where each C; is chosen adaptively based on the previous outputs of Est. The
naive implementation uses nk random bits and fails with probability at most kd.

In this work, we show how to generically improve the randomness complexity of any
algorithm with this structure, without increasing the number of executions of Est, at the

! Supported by the NSF GRFP under Grant DGE-1610403 and by a Harrington Fellowship from the
University of Texas at Austin.

© William M. Hoza and Adam R. Klivans;
37 licensed under Creative Commons License CC-BY
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques

(APPROX/RANDOM 2018).
Editors: Eric Blais, Klaus Jansen, José D. P. Rolim, and David Steurer; Article No. 43; pp. 43:1-43:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:whoza@utexas.edu
https://orcid.org/0000-0001-5162-9181
mailto:klivans@cs.utexas.edu
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.43
https://arxiv.org/abs/1611.00783
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

43:2

Preserving Randomness for Adaptive Algorithms

expense of mild increases in the error and failure probability. Our algorithm efficiently finds
Y1,..., Y, € R with ||Y; — u(Ci)||eo < O(ed) for every 4, our algorithm has failure probability
ké + ~ for any v > 0, and our algorithm uses a total of n + O(klog(d + 1) + (log k) log(1/7))
random bits.

1.1 The randomness steward model

We model the situation described above by imagining two interacting agents: the owner
(who plays the role of the outer algorithm) chooses the inputs Ci, ..., Cy, while the steward
(who replaces the direct execution of Est) provides the output vectors Yy, ..., Y; € R% The
reader might find it useful to think of the steward as a trusted “cloud computing” service. To
justify the names, imagine that the owner gives the steward “stewardship” over her random
bits. The steward’s job is to “spend” as little randomness as possible without sacrificing too
much accuracy.

To describe the model more rigorously, say that a function f : {0,1}" — R? is (e,)-
concentrated at p € R? if Prycgo 13 [||f(X) — ptlloc > €] < 6. In each round 4, the chosen

input C; defines a concentrated function f;(X) def Est(C;, X), so it is equivalent to imagine
that the owner picks an arbitrary concentrated function. In the following definition, &’ is the
error of the steward, and ¢’ is its failure probability.

» Definition 1. An (¢/,0")-steward for k adaptively chosen (g,d)-concentrated functions
fisooos fe : {0,1}" — R? is a randomized algorithm S that interacts with an owner O
according to the following protocol.

1. Fori=1to k:

a. O chooses f; : {0,1}" — R? that is (&, §)-concentrated at some point y; € R? and gives
it to S.
b. S chooses Y; € R? and gives it to O.

Write O +» S (“the interaction of O with S”) to denote the above interaction. The requirement
on S is that for all O,

Prlmax [|Y; — il > € in O < S] < §'. (1)
The probability is taken over the internal randomness of S and O.

From an information-theoretic perspective, stewards as defined above are not particularly
interesting, because S could exhaustively examine all outputs of f; to deterministically
compute a point Y; where f; is concentrated. But we would like to avoid executing Est more
than k£ times in total, so we will restrict attention to one-query stewards:

» Definition 2. A one-query steward is a steward that only accesses each f; by querying it
at a single point X; € {0,1}"™. (The point X; is not seen by the owner.)
1.2 Our results

1.2.1 Main result: A one-query steward with good parameters

Our main result is the explicit construction of a one-query steward that simultaneously
achieves low error, low failure probability, and low randomness complexity:

W. M. Hoza and A. R. Klivans

e’ & Randomness complexity Reference

€ ké nk Naive

O(ed) ké + ~ n+ O(klog(d+ 1) + (log k) log(1/~)) | Theorem 3 (main)
O(e) kd + n 4+ O(kd + (log k) log(1/7)) Full version [10]
O(ed) kd 4+~ n + klog(d + 2) + 2log(1/v) + O(1) Full version [10]*
O(ed) 20(klog(d+1)) . 5 | p Full version [10]
O(e) 20(kd) . § n Full version [10]
O(gkd/7y) | k6 +~ n+ O(klogk + klogd + klog(1/v)) Based on [21]
O(e) ko + k27" O(n® + kd) Based on [13]
Any Any <0.2 n+ Q(k) — log(6’/8) (lower bound) Full version [10]

¢ Computationally inefficient.

Figure 1 Upper and lower bounds for one-query stewards. Recall that €, are the concentration
parameters of f1,..., fi (i.e. the error and failure probability of the estimation algorithm Est); &', '
are the error and failure probability of the steward S; n is the number of input bits to each f; (i.e.
the number of random coins used by Est); k is the number of rounds of adaptivity; d is the dimension
of the output of each f; (i.e. the dimension of the output of Est). Everywhere it appears, v denotes
an arbitrary positive number.

» Theorem 3. For anyn,k,d € N and anye,d,v > 0, there exists a one-query (O(ed), ko+-)-
steward for k adaptively chosen (g,8)-concentrated functions fi,. .., fr : {0,1}" — R? with
randomness complexity

n+ O(klog(d + 1) + (log k) log(1/7)). (2)
The total running time of the steward is poly(n, k,d,log(1/¢),log(1/7)).

We also give several variant stewards that achieve tradeoffs in parameters. (See Figure 1.)

1.2.2 Application: Acceptance probabilities of Boolean circuits

A natural application of Theorem 3 is a time- and randomness-efficient algorithm for
estimating the acceptance probabilities of many adaptively chosen Boolean circuits.

» Corollary 4. There exists a randomized algorithm with the following properties. Initially,
the algorithm is given parameters n,k € N and £,§ > 0. Then, in round i (1 <i < k), the
algorithm is given a Boolean circuit C; on n input bits and outputs a number Y; € [0,1].
Here, C; may be chosen adversarially based on Y1, ...,Y;_1. With probability 1 — 9§, every Y;

is u(C;) £ e, where p(Cy) “rpy, [Ci(x) = 1]. The total running time of the algorithm is

k
o) (bg“bg(l/f” : Zsize@-)) +poly(n, k, 1/¢,1og(1/9)),)

2
9
i=1

and the total number of random bits used by the algorithm is n + O(k + (log k) - log(1/9)).

Corollary 4 should be compared to the case when C1, ..., Cy are chosen nonadaptively, for
which the randomness complexity can be improved to n + O(log k + log(1/4)) by applying
the Goldreich-Wigderson randomness-efficient sampler for Boolean functions [9] and reusing
randomness. The proof of Corollary 4 works by combining the GW sampler with our steward.
We also give similar algorithms for simulating an oracle for promise-BPP or APP.

43:3

APPROX/RANDOM 2018

43:4

Preserving Randomness for Adaptive Algorithms

1.2.3 Application: The Goldreich-Levin algorithm

For our main application, we give a randomness-efficient version of the Goldreich-Levin
algorithm [8] (otherwise known as the Kushilevitz-Mansour algorithm [14]) for finding
noticeably large Fourier coefficients. Given oracle access to F : {0,1}" — {1, 1}, for any
6 > 0, we show how to efficiently find a list containing all U with |ﬁ (U)| > 6. (Alternatively,
thinking of F' as an exponentially long bitstring F € {-1, 1}2n, our algorithm finds all
Hadamard codewords that agree with F' in a (3§ + 6)-fraction of positions.) Our algorithm
makes O(nlog(n/d)) - poly(1/6) queries to F, uses O(n + (logn)log(1/§)) random bits, and
has failure probability 6. The number of random bits does not depend on 6. To achieve such
a low randomness complexity, we first improve the randomness efficiency of each estimate
in the Goldreich-Levin algorithm using the GW sampler. Then, we reduce the number of
rounds of adaptivity by a factor of log(1/8) by making many estimates within each round.
Interestingly, we apply our steward with d = poly(1/6), unlike the proof of Corollary 4 where
we choose d = 1. (Recall that d is the number of real values estimated in each round.)

1.2.4 Randomness complexity lower bound

We prove a randomness complexity lower bound of n 4+ Q(k) — log(6’/9) for any one-query
steward. In the case d < O(1), this comes close to matching our upper bounds. For example,
to achieve ¢’ < O(kd), this lower bound says that n + (k) random bits are needed; our
main steward (Theorem 3) achieves ¢’ < O(g),d" < O(kd) using n + O(k + (log k) log(1/6))
random bits. At the other extreme, if we want a one-query steward that uses only n random
bits, this lower bound says that the failure probability will be ¢’ > exp(Q(k)) - §; one of our
variant stewards uses n random bits to achieve ¢/ < O(e) and ¢’ < exp(O(k)) - 0.

1.3 Techniques
1.3.1 Block decision trees

A key component in the proof of our main result (Theorem 3) is a pseudorandom generator
(PRG) for a new model that we call the block decision tree model. Informally, a block decision
tree is a decision tree that reads its input from left to right, n bits at a time:

» Definition 5. For a finite alphabet X, a (k,n,X) block decision tree is a rooted tree
T = (V, E) of height k in which every node v at depth < k has exactly |X| children (labeled
with the symbols in) and has an associated function v : {0,1}" — X. We identify T with a
function T': ({0, 1}")S*F — V defined recursively: T'(the empty string) = the root node, and
if T(Xq,...,X;—1) =wv, then T(Xq,...,X;) is the child of v labeled v(X;).

The standard nonconstructive argument shows that there exists a 7-PRG for block
decision trees with seed length n + klog |X| 4+ 21log(1/v) + O(1). (See Appendix A.1 for the
definition of a PRG in this setting.) We construct an explicit PRG with a nearly matching
seed length:

» Theorem 6. For cvery n,k € N, every finite alphabet 32, and every v > 0, there exists a
v-PRG Gen : {0,1}* — {0,1}"* for (k,n,X) block decision trees with seed length

s <n+ O(klog |Z| + (log k) log(1/7)). (4)
The PRG can be computed in poly(n, k,log ||, log(1/7)) time.

We prove Theorem 6 by modifying the INW generator for space-bounded computation [12].

W. M. Hoza and A. R. Klivans

1.3.2 Shifting and rounding
1.3.2.1 PRGs alone are not enough

Interestingly, to design good stewards, the standard technique of replacing truly random bits
with pseudorandom bits is not sufficient. That is, define a pseudorandom generation steward
to be a steward that simply queries each f; at a pseudorandomly chosen point X; and returns
Y; = fi(X;). In the full version of this paper [10], we show that any pseudorandom generation
steward must use at least Q(nk) random bits, assuming 6’ < 1/2 and § > 2-"/2+1,

1.3.2.2 Deliberately introducing error

To circumvent this Q(nk) lower bound, our steward is forced to modify the outputs of
fi,..., fr. In each round, our main steward queries f; at a pseudorandom point X;, chooses
a nearby value Y; &~ f;(X;), and returns this modified value Y; to the owner O. The motivation
for this idea is that by deliberately introducing a small amount of error, we reduce the
amount of information about X; that is leaked by Y;. This way, we can recycle some of the
randomness of X; for future rounds.

To be more specific, for a steward S, let S(X) denote S using randomness X. Our main

steward is of the form S(X) ef So(Gen(X)). Here, Gen is our PRG for block decision trees,

and Sy is a randomness-inefficient one-query steward. In each round, Sy queries f; at a fresh
random point X; € {0,1}", but Sy computes the return value Y; by carefully shifting and
rounding each coordinate of f;(X;). This deterministic shifting and rounding procedure and
its analysis are our main technical contributions.

1.3.2.3 Relation to block decision trees

To explain why this works, observe that when any steward and owner interact, it is natural to
model the owner’s behavior by a decision tree that branches at each node based on the value
Y; provided by the steward. The branching factor of this decision tree is a simple measure
of the amount of information leaked. If Sy simply returned f;(X;) without any shifting or
rounding, the branching factor for O <+ Sy would be 2™. Three ideas dramatically reduce
this branching factor.
The first idea is to round. Suppose that So rounded each coordinate of f;(X;) to the
nearest multiple of 2¢ (with no shifting). Then the branching factor would be reduced
to 2¢ + 62". The 62" term corresponds to the outputs of f; that are far from its
concentration point ;. The 2¢ term corresponds to outputs f;(X;) that are close to j;
if each coordinate of u; is approximately equidistant from two multiples of 2¢, then the
corresponding coordinate of f;(X;) could be rounded to either of those two values.
The second idea is to shift each coordinate of f;(X;) before rounding. In particular,
So finds a single value A; such that after adding A; - 2¢ to each coordinate of f;(X;),
every coordinate is e-far from every rounding boundary. Then, Sy rounds the shifted

coordinates to obtain Y;. This procedure reduces the branching factor down to d+ 1+ §2".

To understand why, think of A; as a compressed representation of Y;. Assuming f;(X;) is
close to p;, given unlimited computation time, O could recover Y; from A; by computing
the true vector p;, shifting it according to A;, and rounding. Hence, each node of the
tree just needs to have one child for each possible A; value (along with the §2™ children
for the case that f;(X;) is far from u;).

The third idea is to relax the requirement that the tree perfectly computes O <+ Sg. In
particular, for every owner O, we construct a block decision tree Tp that merely certifies

43:5

APPROX/RANDOM 2018

43:6

Preserving Randomness for Adaptive Algorithms

correctness of O <+ Sg. That is, for any Xi,..., Xk, if the node To (X1, ..., Xk) indicates

“success”, then the error max; ||Y; — piloo in O <> So(X7, ..., Xj) is small. On the other
hand, if To(X7,...,Xy) does not indicate success, then “all bets are off”: the error
max; ||Y; — pifloo in O <> So(X71,. .., Xk) may be small or large. Our certification tree

has the additional property that

Pr [To(Xu,...,X}) indicates success] > 1 — kd. (5)
X150, X
This relaxation allows us to reduce the branching factor down to just d 4+ 2, because for
each node, the 2" children corresponding to outputs of f; that are far from u; can all be
merged into a single “failure” node.

Putting everything together, to save random bits, we don’t need to try to fool O < Sg.
Instead, it suffices for Gen to fool the certification tree Tg. The small branching factor of Tg
allows Gen to have a correspondingly small seed length.

1.4 Why can’t we just reuse the random bits?

Notwithstanding our lower bounds, the reader might be tempted to think that randomness
stewards are trivial: why not just pick X € {0,1}" uniformly at random once and reuse it
in every round? For the purpose of discussion, let us generalize, and suppose we are trying
to execute an n-coin algorithm A (not necessarily an estimation algorithm) on k inputs
Cy,...,Cp. If C4,...,Cy are chosen non-adaptively (i.e. all in advance), then we really can
use the same X for each execution. By the union bound, the probability that A(C;, X) fails
for any 7 is at most k9.

That argument breaks down in the adaptive case, because Cs is chosen based on A(C1, X),
and hence Cy may be stochastically dependent on X, so A(Cq, X) is not guaranteed to have
a low failure probability. For example, if X is encoded in the output A(Cy, X), then an
adversarially chosen Co could guarantee that A(Co, X) fails.

Even if (4, ..., C} are chosen adaptively, randomness can be safely reused in an important
special case: Suppose A is a BPP algorithm. Then we can let 61, 62, ey ék be the inputs
that would be chosen if A never failed. Then each 6’1 really is independent of X, so by the
union bound, with probability 1 — k¢, A(@-, X) does not fail for any . But if A(@-, X) does
not fail for any ¢, then by induction, C; = éz for every i. So the overall failure probability is
once again at most kd.

More generally, randomness can be safely reused if A is pseudodeterministic, i.e. for each
input, there is a unique correct output that A gives with probability 1 — 4.2 (Pseudode-
terministic algorithms were introduced by Gat and Goldwasser [7].) A BPP algorithm is
trivially pseudodeterministic.

In the standard Goldreich-Levin algorithm, randomness is used to estimate »;,;, F (U)?
for certain collections of subsets U. The algorithm’s behavior depends on how the estimate
compares to 62/2. This process is not pseudodeterministic, because if the true value
Y veu 13(U)2 is very close to 62/2, the estimate falls on each side of #%/2 with noticeable
probability.

2 These two conditions (inputs are chosen non-adaptively, A is pseudodeterministic) are both special cases
of the following condition under which the randomness X may be safely reused: for every 1 <1i < k, C}; is
a pseudodeterministic function of (Co, C1,...,Ci—1), where Cp is a random variable that is independent
of X.

W. M. Hoza and A. R. Klivans

1.5 Related work
1.5.1 Adaptive data analysis

The notion of a randomness steward is inspired by the closely related adaptive data analysis
problem, introduced by Dwork et al. [6]. In the simplest version of this problem, there is an
unknown distribution D over {0,1}" and a data analyst who wishes to estimate the mean
values (with respect to D) of k adaptively chosen functions fi,..., fi : {0,1}" — [0,1] using
as few samples from D as possible. In this setting, these samples are held by a mechanism
and are not directly accessible by the data analyst. In round ¢, the data analyst gives f; to the
mechanism, and the mechanism responds with an estimate of E,p[fi(z)]. The mechanism
constructs the estimate so as to leak as little information as possible about the sample, so
that the same sample points can be safely reused for future estimates.

The data analyst and mechanism in the adaptive data analysis setting are analogous
to the owner O and steward S in our setting, respectively. In each case, the idea is that
the mechanism or steward can intentionally introduce a small amount of error into each
estimate to hide information and thereby facilitate future estimates. Note, however, that in
the adaptive data analysis problem, there is just one unknown distribution D and we are
concerned with sample complexity, whereas in the randomness stewardship problem, we can
think of each concentrated function f; as defining a new distribution over R? and we are
concerned with randomness complexity.

1.5.2 The Saks-Zhou algorithm

Another highly relevant construction is the algorithm of Saks and Zhou [21] for simulating
randomized log-space algorithms in deterministic space O(logg/ 2n). The key component in
this algorithm can be reinterpreted as a one-query randomness steward. This “Saks-Zhou
steward” works by randomly perturbing and rounding the output of each f;, and then reusing
the same random query point X in each round. The perturbation and rounding are somewhat
similar to our construction, but note that we shift the outputs of each f; deterministically,
whereas the Saks-Zhou steward uses random perturbations. The analysis of the Saks-Zhou
steward is substantially different than the analysis of our steward. (See the full version of
this paper [10] for the description and analysis of the Saks-Zhou steward.)

Our steward achieves better parameters than the Saks-Zhou steward (see Figure 1). In
particular, to achieve failure probability kd + v, the error ¢’ of the Saks-Zhou steward is
O(ekd/v) — the error grows linearly with &, the number of rounds of adaptivity, as well
as with 1/4. This implies, for example, that if we tried to use the Saks-Zhou steward to
estimate the acceptance probabilities of k adaptively chosen Boolean circuits to within +¢
with failure probability § in a randomness-efficient way, we would need to evaluate each
circuit on © (k26272 log(k/4)) inputs. In contrast, because of our steward’s low error, the
algorithm of Corollary 4 evaluates each circuit on just O(e~2log(k/é)) inputs — an exponential
improvement in both &k and 1/§. Furthermore, our steward has better randomness complexity
than the Saks-Zhou steward.

1.5.3 Pseudorandom generators for adaptive algorithms

Impagliazzo and Zuckerman [13, 11] were the first to consider the problem of saving random
bits when executing a randomized algorithm A on many adaptively chosen inputs. Instead of
assuming that A is an estimation algorithm, Impagliazzo and Zuckerman’s result assumes a
known bound on the Shannon entropy of the output distribution of A (e.g., the number of
bits output by A). They constructed a pseudorandom generator for this setting; for k > nS,
the seed length is approximately the sum of the entropy bounds for all the executions of A.

43:7

APPROX/RANDOM 2018

43:8

Preserving Randomness for Adaptive Algorithms

In contrast, we make no assumptions about the entropy of Est(C). Since Est(C) is a
vector of arbitrary-precision real numbers, the entropy could be as large as n, the number of
random bits used by Est. And indeed, the lower bound described in Section 1.3.2.1 implies
that the approach of Impagliazzo and Zuckerman fails in our setting.

One might protest that the entropy of Est(C') can be reduced by simple rounding. In the
full version of this paper [10], we construct and analyze a steward that straightforwardly
rounds each output and then uses the Impagliazzo-Zuckerman generator in a black-box way.
Our main steward achieves much better randomness complexity and failure probability than
this “Impagliazzo-Zuckerman steward” (see Figure 1). The improvements come from our
more powerful PRG and the fact that we shift before rounding.

1.5.4 Decision trees and branching programs

In the most common decision tree model, the branching factor || is just 2, and each node
reads an arbitrary bit of the input. In the more general parity decision tree model, each
node computes the parity of some subset of the input bits. Kushilevitz and Mansour showed
[14] that the Fourier ¢; norm of any Boolean function computed by a parity decision tree
is at most 2%, the number of leaves in the tree. It follows immediately that any small-bias
generator [17] fools parity decision trees with asymptotically optimal seed length.

Decision trees in which each node computes a more complicated function have also been
studied previously. Bellare [2] introduced the universal decision tree model, in which each
node computes an arbitrary Boolean function of the input bits. He gave a bound on the ¢,
norm of any Boolean function computed by a universal decision tree in terms of the £; norms
of the functions at each node. Unfortunately, his bound does not immediately imply any
nontrivial PRGs for block decision trees.

A block decision tree can be thought of as a kind of space-bounded computation. Indeed,
a block decision tree is a specific kind of ordered branching program of width |$|* and length
k that reads n bits at a time. Hence, we could directly apply a PRG for ordered branching
programs, such as the INW generator [12]. For these parameters, the INW generator has seed
length of n + O(klog klog |X| + log klog(1/7)). This seed length can be slightly improved by
instead using Armoni’s generator [1], but even that slightly improved seed length is larger
than the seed length of the generator we construct.

1.5.5 Finding noticeably large Fourier coefficients

Our randomness-efficient version of the Goldreich-Levin algorithm should be compared to
the results of Bshouty et al. [3], who gave several algorithms for finding noticeably large
Fourier coefficients, all closely related to one another and based on an algorithm of Levin
[15].
Bshouty et al. gave one algorithm [3, Figure 4] that makes O(gz log(5)) queries and uses
O(nlog(%)log(55)) random bits. Our algorithm has better randomness complexity, but
worse query complexity.
Bshouty et al. gave another algorithm [3, Figure 5] that makes only O(n/6?) queries and
uses just O(log(n/0) - log(1/6)) random bits, but it merely outputs a list such that with
probability 1/2, some U in the list satisfies |[F(U)| > 0, assuming such a U exists.
We also remark that there is a deterministic version of the Goldreich-Levin algorithm
for functions with bounded ¢; norm; this follows easily from the work of Kushilevitz and
Mansour [14] (see also [19, Section 6.4]). In contrast, our algorithm works for all functions
F:{0,1}" —» {-1,1}.

W. M. Hoza and A. R. Klivans

1. For i =1 to k:
a. O chooses f; : {0,1}" — R? and gives it to So.
b. Sy picks fresh randomness X; € {0,1}"™ and queries to obtain W; o fi(Xy).
c. Sg computes Y; by shifting and rounding W; according to the algorithm in Sec-
tion 2.1.
d. Sg gives Y; to O.

Figure 2 Outline of O <> So.

1.6 Outline of this paper

In Section 2, we describe the shifting and rounding steward Sy and prove that it admits
certification trees with a small branching factor. In Section 3, we explain how to combine
Sp with our PRG to prove our main result (Theorem 3). In Section 4, we explain our
randomness-efficient Goldreich-Levin algorithm. In Appendix A, we construct and analyze
our PRG for block decision trees. In Appendix B, we give the proof of Corollary 4. In
Appendix C, we explain our simulation of an oracle for promise-BPP, and in Appendix D,
we suggest directions for further research. All other details can be found in the full version
of this paper [10].

2 The shifting and rounding steward S,

As a building block for our main steward constructions, we first construct our randomness-
inefficient one-query steward Sg. Recall that any one-query steward makes two choices in
each round: the input X; to f; and the estimate ¥; € R?. The steward Sy focuses on the
second choice: each X is chosen uniformly at random, but Sy carefully shifts and rounds the
output f;(X;). (See Figure 2.)

2.1 The shifting and rounding algorithm

We now describe the algorithm by which Sy computes Y; € R? from W; def fi(X;). Fix
n,k,d € N and €,0 > 0. Let [d] denote the set {1,2,...,d}. Partition R into half-open
intervals of length (d+1)-2¢. Let Z denote the set of these intervals. For w € R, let Round(w)
denote the midpoint of the interval in Z containing w. Given W; € R%:

1. Find A; € [d + 1] such that for every j € [d], there is some I € Z such that

(Wi + (2A; — e, Wy; + (2A; + 1)e] C 1. (6)

(We will show that such a A; exists.)
2. For every j € [d], set Y;; = Round(W;; + 2A;¢).
We must show that this algorithm is well-defined:

» Lemma 7. For any W € RY, there exists A € [d + 1] such that for every j € [d], there is
a single interval in T that entirely contains [W; + (2A — 1)e, W; + (2A + 1)e].

Proof. Consider picking A € [d + 1] uniformly at random. For each j, the probability that
two distinct intervals in Z intersect [W; 4+ (2A — 1)e, W; 4+ (2A 4 1)¢] is precisely 1/(d + 1) by
our choice of the length of the intervals. The union bound over d different j values completes
the proof. <

43:9

APPROX/RANDOM 2018

43:10

Preserving Randomness for Adaptive Algorithms

2.2 Analysis: Certification trees

As outlined in Section 1.3.2, the key lemma says that for any owner O, there exists a block
decision tree Ty with a small branching factor that certifies correctness of O <+ Sp:

» Lemma 8. Assume § < 1/2. Let ¥ = [d+ 1] U{L}. For any deterministic owner O, there

exists a (k,n,X) block decision tree To with the following properties.

1. For any internal node v, Prxcfo13»[v(X) = 1] < 4.

2. Fiz X1,..., X, € {0,1}™, and suppose that the path from the oot to To(X1, ..., Xg) does
not include any L nodes. Then max; [|Y; — pilloo < O(ed) in O < So(X1,..., Xk).

Notice that Lemma 8 does not assert that To computes the transcript of O <> Sg. In
fact, for the analysis, we will define another steward S, and Tp will compute a sequence of
values that arise in O > S{;. This new steward S{, will be computationally inefficient; it will
compress and decompress the output of S (with some chance of failure) before giving it to
0, as we suggested in Section 1.3.2.

Proof of Lemma 8. For an (e, §)-concentrated function f, define u(f) to be vector in R? at
which f is concentrated.® For a vector Y € R, say that a value A € [d + 1] is f-compatible
with Y if ¥; = Round(u(f); + 2A¢) for every j € [d]. Just for the analysis, let Sf, be the
following (many-query) steward:
1. Fori=1 to k:
a. Give f; to Sy, allowing it to make its one query and choose its output vector Y; € R%.
b. Query f; at every point in its domain, thereby learning the entire function.
c. Compute

P =

A {the smallest A € [d + 1] f;-compatible with Y; if any such A exists)

1L otherwise.

d. Output Y; = ()A’“, . ,}Afid), where for each j € [d],
- Round(u(f); + 2Ae) if A; # L
Yij = ’ . (8)
0 otherwise.
We are now ready to formally define To as a function. Because S{(Xq, ..., X)) looks at X;
only in round %, we can sensibly speak of the first ¢ rounds of O <+ Sy(X1,...,X;) even for

i < k. This allows us to define To(X7,...,X;) to be the node v in Tp such that the path
from the root to v is described by the values 31, cee ﬁl that arise in O <> S{(X1, ..., X;).

Now, we must show that this function 7o can be realized as a block decision tree, i.e.
that each internal node v can be assigned a transition function v : {0,1}" — X that is
compatible with the definition of Tp as a function. Indeed, observe that 31, cee Ai,l fully
determine the state of O after the first ¢ — 1 rounds of O « Sj(X7i,...,X;) and hence
determine the function f;. Furthermore, Sy is “memoryless”, i.e. Y; is fully determined by
fi and X;. Thus, ﬁi is fully determined by 31, cee ﬁi,l and X;. So there is a function
Q: (317 ey ﬁi,l, X;) — ﬁi, and if the path from the root to v is described by 31, ceey ﬁi,h
we can set v(X;) def @(31, . 81‘—1, X;).

3 To handle non-uniqueness, let u(f) be the smallest such vector under the lexicographic order. This
exists, because {0, 1}" is finite, so the set of points where f is concentrated is a compact subset of R

W. M. Hoza and A. R. Klivans

2.2.0.1 Analysis of Tp

By the definition of Ty as a function, to prove Item 1 in the lemma statement, we must show
that in each round of O « S, Pr[ﬁi = 1] < 4. Indeed, by concentration, with probability
1—4, for every j, |Wi; — p(fi);] < e. In this case, by the construction of Sg, W;; +2A;e and
w(fi); + 2Ae are in the same interval in Z for every j € [d]. Therefore, in this case, there is
at least one A value that is f;-compatible with Y;, namely the value A; used by Sg.

Finally, to prove Item 2 in the lemma statement, suppose the path from the root node
to To(X7q,. .., X) does not include any L nodes. Then in O <> Sy(X7, ..., X}), for every i,
A; # L. This implies that every Y;; is of the form Round(p(f;); +2£ie) for some A; € [d+1].
Therefore, |Y;; — p(fi);] < 3(d+1)e, since 20e < 2(d + 1)e and rounding introduces at most
(d + 1)e additional error.

Of course, so far the analysis has treated S, not Sg. But the crucial point is, for every
i, since AZ # 1, we can be sure that Y; = l?z Therefore, the values f1,..., fx, Y1,..., Y in
O < Si(X1,...,Xk) are ezactly the same as they are in O <> So(X1,...,Xy)! Therefore,
in O > So(X1,...,Xy), for every i, ||Y: — p(fi)|loo < (3d + 3)e. Finally, since § < 1/2, if
i is any point where f; is (e, d)-concentrated, ||u(fi) — philloo < 2e. Therefore, for every i,
1Y — ptilloo < 3(d+ 1)+ 2e = (3d + 5)e. <

Notice that in O + S{(X1,...,Xk), if 31 = 1 for some i, then the interaction might
diverge from O « So(Xi,...,Xk), in which case To(Xy,...,X%) does not encode the
transcript of O <> So(X1, ..., Xk) in any way.

3 Proof of main result (Theorem 3)

Without loss of generality, assume 6 < 1/2. (If § > 1/2, then either k = 1 or k§ > 1; in
either case, the result is trivial.) Let So be the steward of Section 2, let X be the alphabet of

Lemma 8, and let Gen be the v-PRG for (k,n,X) block decision trees of Theorem 6. The

steward is S(X) % So(Gen(X)).

Consider any owner O. We may assume without loss of generality that O is deterministic,
because a randomized owner is just a distribution over deterministic owners. By Item 1 of
Lemma 8 and the union bound,

Pr[some node in the path from the root to To(Upg) is labeled 1] < ké. (9)

Therefore, when To reads Gen(Uy) instead of Uy, the probability is at most ké + . By
Item 2 of Lemma 8, this proves the correctness of S. The randomness complexity of S is just
the seed length of Gen, which is indeed n + O(klog |X| + (log k) log(1/7)) = n + O(klog(d +
1) + (log k) log(1/7)). The total runtime of S is clearly poly(n, k, d,log(1/¢),log(1/7)).* <

4 Application: the Goldreich-Levin algorithm

» Theorem 9 (Randomness-efficient Goldreich-Levin algorithm). There is a randomized al-
gorithm that, given oracle access to F : {0,1}" — {—1,1} and given input parameters 6,6 > 0,
outputs a list L of subsets of [n] such that with probability 1 — 0,

1. every U satisfying |Z3(U)| >0 isin L, and

4 We assume here that our computational model allows the necessary arithmetic and rounding of Section 2.1
to be performed efficiently, even if the owner chooses an f; that outputs vectors whose coordinates are
very large numbers.

43:11

APPROX/RANDOM 2018

43:12

Preserving Randomness for Adaptive Algorithms

2. every U € L satisfies |F(U)| > 6/2.
The number of queries made by the algorithm is O (Wg(l/ﬁ log (%)), the number of

random bits used by the algorithm is O(n+ (logn)log(1/8)), and the runtime of the algorithm
is poly(n,1/0,1og(1/9)).

For comparison, using standard techniques, the Goldreich-Levin algorithm can be imple-
mented in a straightforward way to use O(7 log(5)) queries and O(n? + nlog(4)) random
bits. So our algorithm significantly improves the randomness complexity at the expense of
substantially increasing the exponent of 1/6 in the query complexity.

Toward proving Theorem 9, for a string z € {0,1}=", define

Uz)={UCn]:Vj<|z|,j e U < z; =1} (10)

(That is, we think of = € {0,1}* as specifying U N [¢] in the natural way.) Define W, [F| =
veu() F(U)2. One of the key facts used in the standard Goldreich-Levin algorithm is that
W, [F] can be estimated using few queries to F'; here, we use the GW sampler to improve
the randomness efficiency of that estimation.

» Lemma 10. There is a randomized algorithm that, given oracle access to F' and inputs
x € {0,1}=", ¢,6 > 0, estimates W, [F] to within +e with failure probability 6. The number
of queries is O(log(1/8)/e?), the number of random bits is O(n + log(1/6)), and the runtime
is poly(n, 1/e,log(1/0)).

Proof. Let ¢ = |z|. As shown in the proof of [19, Proposition 3.40],

WolFl= E [F(y,2) F¥,2) Xa(y) X2 (y')], (11)
v,y €{0,1}
ze{0,1}"~¢

where x;(y) o Hj:szl(—l)yi. Let C :{0,1}"* — {0,1} be the function

1 1

Cly,y', 2) = 5 T3 Fly.2) F(y',2) x2(y) - x=(¥), (12)

so that W, [F] =2E, v ,[C(y,y’, z)]—1. We can estimate the expectation of C' to within +¢/2
with failure probability § using the GW sampler [9, Theorem 6.5], which implies an estimate
of W,[F] to within +¢. The number of queries made by the GW sampler is O(log(1/6)/&?),
and each query to C can be evaluated by making 2 queries to F'. The randomness complexity
of the GW sampler is n + £ + O(log(1/0)), which is O(n + log(1/9)). <

The standard Goldreich-Levin algorithm proceeds by finding, for £ = 1 to n, the set of
all z with |z| = ¢ such that W,[F] 2 6%. In each round, the algorithm estimates W, [F] for
all strings = formed by appending a single bit to a string z’ that was previously found to
satisfy W,/ [F] 2 62. This adaptive structure is exactly suited for saving random bits using a
steward. To further drive down the randomness complexity, we reduce the number of rounds
of adaptivity by appending log(1/0) bits at a time instead of 1 bit.

Proof of Theorem 9. Algorithm:

1. Let u = [log(1/0)], let k = [n/u], and let d = [2% - 4/6?].

2. Let S be a (6?/4,0)-steward for k adaptively chosen (g,d/(2n))-concentrated functions
fisooo fr 2 {0,1}™ — R4, where e > Q(62/d) and m will become clear later.

3. Set Lo := {empty string}.

4. For i =1 to k:

W. M. Hoza and A.R. Klivans 43:13

a. If |[L;_1| > d/2%, abort and output “fail”.

b. Observe that every string in L; 1 has length £ = u(i — 1) < n. Let z1,...,z; be the
set of all strings obtained from strings in L;_; by appending min{u,n — £} bits, so
t < 2 L] < d.

c. Define f; : {0,1}" — R’ by letting f;(X); be the estimate of W, [F] to within
+e provided by the algorithm of Lemma 10 with failure probability §/(2dn) using
randomness X. Observe that by the union bound, f; is (g,/(2n))-concentrated at
(Wa, [F, ..., Wy, [F]).

d. By giving f; to S, obtain estimates p1, ..., ps for Wy, [F],..., Wy, [F].

e. Set L; := {z; : p; > 6%/2}.

5. Output L &f User, U(@).

(So m is the number of random bits used by the algorithm of Lemma 10.) With probability
1 — 4, all of the responses of S are accurate, i.e. every p; value is within +62/4 of the
corresponding W, [F] value. Assume from now on that this has happened.

By the definition of L;, every x in every L; satisfies W, [F] > 6% /4. By Parseval’s theorem
(see, e.g., [19, Section 1.4]), this implies that |L;| < 4/6% < d/2% for every i. Therefore, the
algorithm does not abort. Let ¢; be the length of all the strings in L;, so ¢; = ui for i < k
and ¢, = n. Suppose F(U)? > 62. By induction on i, the unique string z € {0,1}% with
U € U(x) is placed in L;, because the estimate of W, [F] is at least 302 /4 > 6% /2. This shows
that U € L. Conversely, if U ends up in L, then the estimate of F (U)? in iteration i = n was
at least 62/2, so F(U)? > 62/4. This completes the proof of correctness of the algorithm.

Now, observe that the total number of queries to F is at most kd times the O(log(nd/§)/e?)
queries that the algorithm of Lemma 10 makes, i.e. the total number of queries to F is

o (5 2) =0 (g = (59))-

The randomness complexity of the algorithm is just the randomness complexity of S. We will
use the steward of Theorem 3 with v = /2, so the randomness complexity is m + O(k log(d +
1) + (log k) log(1/6)). Since m < O(n + log(n/(86))), the total randomness complexity is

n
@) (n + Toa(1/8) log(1/0) + (logn)log(1/6) + 10g(1/9)> = O(n+(logn)log(1/6)+log(1/6)).
To get rid of the log(1/6) term as claimed in the theorem statement, just notice that we can
assume without loss of generality that § > 27"*! because any nonzero Fourier coefficient
of a {—1,1}-valued function has absolute value at least 2="*1. The total runtime of the
algorithm is clearly poly(n,1/6,log(1/4)). |

—— References

1 R. Armoni. On the derandomization of space-bounded computations. In Randomization
and Approzimation Techniques in Computer Science, pages 47-59. Springer, 1998.

2 M. Bellare. A technique for upper bounding the spectral norm with applications to learning.
In Proceedings of the 5th Annual Workshop on Computational Learning Theory, pages 62—
70. ACM, 1992.

3 N. H. Bshouty, J. C. Jackson, and C. Tamon. More efficient PAC-learning of DNF with
membership queries under the uniform distribution. Journal of Computer and System
Sciences, 68(1):205-234, 2004.

APPROX/RANDOM 2018

43:14

Preserving Randomness for Adaptive Algorithms

4

10

11

12

13

14

15

16

17

18

19

20

21

22

H. Buhrman and L. Fortnow. One-sided versus two-sided error in probabilistic computation.
In Annual Symposium on Theoretical Aspects of Computer Science, pages 100-109. Springer,
1999.

Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. SIAM journal on computing, 38(1):97-139, 2008.
C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. L. Roth. Preserving
statistical validity in adaptive data analysis. In Proceedings of the 47th Annual Symposium
on Theory of Computing, STOC ’15, pages 117-126. ACM, 2015.

E. Gat and S. Goldwasser. Probabilistic search algorithms with unique answers and
their cryptographic applications. In FElectronic Colloquium on Computational Complexity
(ECCC), volume 18, page 136, 2011.

O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In Pro-
ceedings of the 21st Annual ACM Symposium on Theory of Computing, STOC ’89, pages
25-32. ACM, 1989.

O. Goldreich and A. Wigderson. Tiny families of functions with random properties: A
quality-size trade-off for hashing. Random Structures & Algorithms, 11(4):315-343, 1997.
doi:10.1002/(SICI)1098-2418(199712)11:4<315::AID-RSA3>3.0.C0;2-1.

W. M. Hoza and A. R. Klivans. Preserving randomness for adaptive algorithms. arXiv
preprint arXiv:1611.00783, 2016.

R. Impagliazzo. Pseudo-random generators for cryptography and for randomized algorithms.
PhD thesis, University of California, Berkeley, 1992. URL: http://cseweb.ucsd.edu/
users/russell/format.ps.

R. Impagliazzo, N. Nisan, and A. Wigderson. Pseudorandomness for network algorithms.
In Proceedings of the 26th Annual Symposium on Theory of Computing, STOC ’94, pages
356-364. ACM, 1994.

R. Impagliazzo and D. Zuckerman. How to recycle random bits. In Proceedings of the 30th
Annual Symposium on Foundations of Computer Science, FOCS '89, pages 248-253. IEEE,
1989.

E. Kushilevitz and Y. Mansour. Learning decision trees using the Fourier spectrum. STAM
Journal on Computing, 22(6):1331-1348, 1993.

L. A. Levin. Randomness and nondeterminism. Journal of Symbolic Logic, 58(3):1102-1103,
1993.

P. Moser. Relative to p promise-bpp equals app. In Electronic Colloguium on Computational
Complezity (ECCC) Report TRO1, volume 68, 2001.

J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and applica-
tions. SIAM journal on computing, 22(4):838-856, 1993.

N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of Computer and
System Sciences, 52(1):43-52, 1996.

R. O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

R. Raz and O. Reingold. On recycling the randomness of states in space bounded computa-
tion. In Proceedings of the 31st Annual ACM Symposium on Theory of Computing, STOC
’99, pages 159-168. ACM, 1999. doi:10.1145/301250.301294.

M. Saks and S. Zhou. BPySPACE(S) C DSPACE(S%/?). Journal of Computer and
System Sciences, 58(2):376-403, 1999.

S. P. Vadhan. Pseudorandomness, volume 56. Now, 2012.

http://dx.doi.org/10.1002/(SICI)1098-2418(199712)11:4<315::AID-RSA3>3.0.CO;2-1
http://cseweb.ucsd.edu/users/russell/format.ps
http://cseweb.ucsd.edu/users/russell/format.ps
http://dx.doi.org/10.1145/301250.301294

W. M. Hoza and A. R. Klivans

A Pseudorandomness for block decision trees

In this section, we prove Theorem 6. Recall that our goal is to modify the internal parameters
of the INW generator, thereby constructing a v-PRG for (k, n,) block decision trees with
seed length n + O(klog|X| + (log k)log(1/7v). The construction and analysis mimic the
standard treatment of the INW generator, and the reader who is familiar with the INW
generator is encouraged to skip to Section A.4 to just see the new parameters. In words, the
only new feature is that we use extractors for a geometrically growing entropy deficit at each
level of the recursion to match the geometrically growing width of the block decision tree.

A.1 Formal definition of a PRG

Let U,, denote the uniform distribution on {0,1}". For two probability distributions p, u'
on the same measurable space, write p ~, ¢’ to indicate that p and g’ have total variation
distance at most ~.

» Definition 11. We say that Gen : {0,1}* — {0,1}"* is a v-PRG for (k,n, %) block decision
trees if for every such tree T', T'(Gen(Usy)) ~~ T (Unk)-

A.2 Concatenating PRGs for block decision trees

Toward proving Theorem 6, for a (k,n,X) block decision tree T = (V, E) and a node v € V|
let T, denote the subtree rooted at v, and observe that we can think of T, as a (k’,n,X) block
decision tree, where k' = k — depth(v). This simple observation — after a block decision tree
has been computing for a while, the remaining computation is just another block decision
tree — implies that pseudorandom generators for block decision trees can be concatenated
with mild error accumulation. This fact and its easy proof are perfectly analogous to the
situation with ordered branching programs. We record the details below.

» Lemma 12. Suppose Gen; : {0,1}** — {0,1}"¥1 s a v1-PRG for (k1,n,) block decision
trees and Geng : {0,1}%2 — {0,1}"*2 4s a v2-PRG for (ka,n,) block decision trees. Let
Gen(z,y) = (Geny(x), Gena(y)). Then Gen is a (y1+72)-PRG for (k1+ka,n,X) block decision
trees.

Proof. Fix a (k1 + k2, n,X) block decision tree T'. For a node u at depth k; and a leaf node
v, define

p(u) = Pr[T(Un,) = u] p(v | u) = Pr[Tu(Unk,) = v]
P(u) = Pr[T(Geny (Us,)) = u] P(v | u) = Pr[T,(Geny(Us,)) = v].

To prove correctness of Gen, recall that ¢, distance is twice total variation distance. The ¢,
distance between T'(Gen(Us, +s,)) and T'(Up(k, +£,)) 18 precisely >, [p(u)p(v | u) —p(u)p(v |
u)|. By the triangle inequality, this is bounded by

> (v 1) - v|u|+2|p Bv | w) — Blu)p(o | u)]
—Zp p(v] w) - v|u|+2|p W)l | u)
S) Yl) v|u|+z|p

By the correctness of Gen; and Gens, this is bounded by (D, p(u) - 272)4+271 = 2(114+72). <«

43:15

APPROX/RANDOM 2018

43:16

Preserving Randomness for Adaptive Algorithms

A.3 Recycling randomness

We find it most enlightening to think of the INW generator in terms of extractors, as
suggested by Raz and Reingold [20] and in the spirit of the Nisan-Zuckerman generator
[18]. The analysis is particularly clean if we work with average-case extractors, a concept
introduced by Dodis et al. [5].

» Definition 13. For discrete random variables X,V the average-case conditional min-
entropy of X given V is

Hoo(X | V) = —log, (vgv [2*Hoc<X‘V:“>D , (13)

where H, is (standard) min-entropy.

Intuitively, H oo (X | V) measures the amount of randomness in X from the perspective of
someone who knows V. The output of an average-case extractor is required to look uniform
even from the perspective of someone who knows V', as long as its first input is sampled from
a distribution that has high min-entropy conditioned on V:

» Definition 14. We say that Ext : {0,1}* x {0,1}% — {0,1}™ is an average-case (s —t, 3)-
extractor if for every X distributed on {0,1}* and every discrete random variable V' such
that Hoo(X | V) > s —t, if we let Y ~ Uy be independent of (X, V) and let Z ~ U, be
independent of V', then (V,Ext(X,Y)) ~5 (V, Z).

Average-case extractors are the perfect tools for recycling randomness in space-bounded
computation. We record the details for block decision trees below.

» Lemma 15 (Randomness recycling lemma for block decision trees). Suppose Gen : {0,1}* —
{0,1}"% s a v-PRG for (k,n,%) block decision trees and Ext : {0,1}* x {0,1}¢ — {0,1}* s
an average-case (s — klog|X|, B)-extractor. Define

Gen'(x,y) = (Gen(z), Gen(Ext(z,y))). (14)
Then Gen' is a (2 + 8)-PRG for (2k,n,) block decision trees.

Proof. Let T be a (2k,n,X) block decision tree. Let X ~ Uy and let V' = T(Gen(X)).
By [5, Lemma 2.2b], the fact that V' can be described using klog|X| bits implies that
H.(X | V) > s — klog|Z|. Therefore, by the average-case extractor condition, if we let
Y ~ Uy be independent of X and Z ~ Uy be independent of V| then

(V,Ext(X,Y)) ~5 (V, Z). (15)

Applying a (deterministic) function can only make the distributions closer. Apply the
function (v, z) — T, (Gen(z)):

T(Gen'(X,Y)) ~5 T(Gen(X), Gen(Z)). (16)

By Lemma 12, the right-hand side is (27y)-close to T'(Usyk). The triangle inequality completes
the proof. <

To actually construct a generator, we will need to instantiate this randomness recycling
lemma with an explicit average-case extractor:

» Lemma 16. For cvery s,t € N and every 8 > 0, there exists an average-case (s —t, 3)-
extractor Ext : {0,1}* x {0,1}¢ — {0,1}* with seed length d < O(t +log(1/8)) computable in
time poly(s,log(1/5)).

W. M. Hoza and A. R. Klivans

Proof sketch. It is standard (and can be proven using expanders, see, e.g., [22]) that there
exists an ordinary (s —t —log(2/3), B/2)-extractor Ext : {0,1}* x {0,1}¢ — {0, 1}* with seed
length d < O(t 4 log(1//)) computable in time poly(s,log(1/3)). By the same argument as
that used to prove [5, Lemma 2.3], Ext is automatically an average-case (s—t, 3)-extractor. <

A.4 The recursive construction

Proof of Theorem 6. Define 3 = ~/2M°¢kl. For i > 0, define s; € N, d; € N, G; : {0,1}* —
{0,1}™2" and Ext; : {0,1}% x {0,1}% — {0,1}% through mutual recursion as follows. Start
with sp = n and Go(x) = z. Having already defined s; and G;, let Ext; be the average-case
(si —2%log |X|, B)-extractor of Lemma 16, and let d; be its seed length. Then let s;41 = s;+d;,
and let

Git1(z,y) = (Gi(2), Gi(Exti(,y))). (17)

We show by induction on i that G; is a (8- (28 — 1))-PRG for (2¢,n,) block decision trees.
In the base case i = 0, this is trivial. For the inductive step, apply Lemma 15, and note
that 23(2° — 1) + 8 = B(2i*t — 1). This completes the induction. Therefore, we can let
Gen = Giog k), since B - (2M°8*1 — 1) < +. The seed length s[iog] of Gen is

[log k] [log k1]
n+ Z di<n+0 Z (2'log|X| + log k + log(1/7))
i=0 i=0

<n+ O(klog|Z| + (log k) log(1/7)).

The time needed to compute Gen(z) is just the time needed for O(k) applications of Ext; for
various ¢ < O(log k), which is poly(n, k, log|X]|,log(1/7)). <

B Acceptance probabilities of Boolean circuits

In this section, we prove Corollary 4. To begin, we recall the definition of a sampler, which we
used already in Section 4. A (g, d)-sampler for Boolean functions on n bits is a randomized

oracle algorithm Samp such that for any Boolean function C : {0,1}" — {0,1}, if we let

w(C) € 27" C(x), then

Pr[|Samp® — u(C)| > €] <& (18)

Proof of Corollary 4. Let ¢ be the constant under the O(-) of the error ¢’ in the steward of
Theorem 3. When given parameters n, k, &, d, let Samp be the Boolean (¢/c,d/(2k))-sampler
by Goldreich and Wigderson [9], and say it uses m coins. Let S be the (g, d)-steward of
Theorem 3 for k adaptively chosen (g/c, §/(2k))-concentrated functions fi, ..., fr : {0,1}™ —
R. (So v = §/2.) When given circuit C;, define f;(X) = Samp®i(X), i.e. the output of
Sampci with randomness X. Give f; to S, and output the value Y; that it returns.

Proof of correctness: The definition of a sampler implies that each f; is (¢/c,d/(2k))-
concentrated at p(C;). Furthermore, each f; is defined purely in terms of C;, which is chosen
based only on Y7,...,Y;_1. Therefore, the steward guarantee implies that with probability
1 -4, every Y; is within +e of u(Cj;).

Randomness complexity analysis: The number of bits m used by the sampler is n +
O(log(k/d)). Therefore, the number of bits used by the steward is

n + O(log(k/8)) + O(k + (log k) log(1/8)) = n + O(k + (log k) log(1/4)). (19)

43:17

APPROX/RANDOM 2018

43:18

Preserving Randomness for Adaptive Algorithms

Runtime analysis: The runtime of the steward is

pOIY<m7 k, log(l//y)) = poly(n, k, log(l/é)) (20)

The runtime of the sampler is poly(n,1/e,logk,log(1/6)). The time required to evaluate
each query of the sampler in round ¢ is O(size(C;)) (assuming we work with a suitable
computational model and a suitable encoding of Boolean circuits.) The number of queries
that the sampler makes in each round is O(log(k/d)/e?). Therefore, the total runtime of this
algorithm is

k
0 <1gk+1g<1/6> | zsizew») + poly(n, k,1/2, 10g(1/5)). ey

g2 ;
=1

C Simulating an oracle for promise-BPP

Recall that promise-BPP is the class of promise problems that can be decided in probabilistic
polynomial time with bounded failure probability. When an algorithm is given oracle access
to a promise problem, it is allowed to make queries that violate the promise, and several
models have been considered for dealing with such queries. Following Moser [16], we
will stipulate that the oracle may respond in any arbitrary way to such queries. (See,
e.g., [4] for two other models.) From these definitions, it is easy to show, for example,
that BPPPromiseBPP _ Bpp 1 this section, using our steward, we give a time- and

randomness-efficient simulation of any algorithm with an oracle for promise-BPP.

» Theorem 17. Suppose a search problem I1 can be solved by a deterministic promise-BPP-
oracle algorithm that runs in time T and makes k queries, and suppose that (regardless of
previous oracle responses) each query of this algorithm can be decided by a randomized
algorithm that runs in time T', uses n coins, and has failure probability 1/3. Then for any ¢,
IT can be solved by a randomized (non-oracle) algorithm that runs in time

T+ O(T" - klog(k/d)) + poly(n, k,log(1/4)),
has randomness complexity

n+ O(k + (logk)log(1/9)),
and has failure probability §.

(Recall that search problems generalize decision problems and function problems. In
reality, the theorem generalizes to just about any kind of “problem”, but we restrict ourselves
to search problems for concreteness.) The theorem can easily be extended to randomized
oracle algorithms by considering the problem of executing the randomized oracle algorithm
using a given randomness string.

Note that Theorem 17 would be trivial if it involved a BPP oracle instead of a
promise-BPP oracle. Indeed, in the BPP case, the randomness can be reduced to just
n + O(log k + log(1/0)). This is because a BPP algorithm is pseudodeterministic, so the
randomness can be safely reused from one query to the next as discussed in Section 1.4. A
promise-BPP algorithm is not pseudodeterministic in general — it is only guaranteed to be
pseudodeterministic on inputs that satisfy the promise.

W. M. Hoza and A. R. Klivans

Proof sketch of Theorem 17. Let B be the algorithm of Corollary 4 with ¢ = 1/10 and the
desired failure probability 6. When the oracle algorithm makes query 7, define f;(X) to be
the value outputted by the promise-BPP algorithm on that query string using randomness
X. Give B the “circuit” f;. (The algorithm B treats the circuits as black boxes, so we don’t
need to bother implementing f; as a literal Boolean circuit; the important thing is that f;(X)
can be evaluated in time 7”.) When B outputs a value Y;, give the oracle algorithm the
response 0if ¥V; < 1/2 and 1if ¥; > 1/2. <

D Directions for further research

The problem of randomness stewardship is fundamental, and the main open problem left by
this work is to construct optimal stewards. The following are examples of concrete questions
along these lines.
Does every one-query steward with failure probability ¢’ < O(kd) have randomness
complexity n + Q(klog(d + 1))? (Is the randomness complexity of our main steward
near-optimal?)
Does there exist a one-query (O(g), kd + 0.1)-steward with randomness complexity n +
O(klog(d +1))? (Can the error of our main steward be improved?)
We explained in this work how the steward model captures some older derandomization
constructions, and we gave new applications of stewards. We hope that future researchers
find more connections and applications.

43:19

APPROX/RANDOM 2018

	Introduction
	The randomness steward model
	Our results
	Main result: A one-query steward with good parameters
	Application: Acceptance probabilities of Boolean circuits
	Application: The Goldreich-Levin algorithm
	Randomness complexity lower bound

	Techniques
	Block decision trees
	Shifting and rounding

	Why can't we just reuse the random bits?
	Related work
	Adaptive data analysis
	The Saks-Zhou algorithm
	Pseudorandom generators for adaptive algorithms
	Decision trees and branching programs
	Finding noticeably large Fourier coefficients

	Outline of this paper

	The shifting and rounding steward S_0
	The shifting and rounding algorithm
	Analysis: Certification trees

	Proof of main result (Theorem 3)
	Application: the Goldreich-Levin algorithm
	Pseudorandomness for block decision trees
	Formal definition of a PRG
	Concatenating PRGs for block decision trees
	Recycling randomness
	The recursive construction

	Acceptance probabilities of Boolean circuits
	Simulating an oracle for promise-BPP
	Directions for further research

