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Abstract
In this work we study the testability of a family of graph partition properties that generalizes a
family previously studied by Goldreich, Goldwasser, and Ron (Journal of the ACM, 1998 ). While
the family studied by Goldreich, Goldwasser, and Ron includes a variety of natural properties,
such as k-colorability and containing a large cut, it does not include other properties of interest,
such as split graphs, and more generally (p, q)-colorable graphs. The generalization we consider
allows us to impose constraints on the edge-densities within and between parts (relative to the
sizes of the parts). We denote the family studied in this work by GPP.

We first show that all properties in GPP have a testing algorithm whose query complexity is
polynomial in 1/ε, where ε is the given proximity parameter (and there is no dependence on the
size of the graph). As the testing algorithm has two-sided error, we next address the question
of which properties in GPP can be tested with one-sided error and query complexity polynomial
in 1/ε. We answer this question by establishing a characterization result. Namely, we define a
subfamily GPP0,1 of GPP and show that a property P ∈ GPP is testable by a one-sided error
algorithm that has query complexity poly(1/ε) if and only if P ∈ GPP0,1.
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1 Introduction

In graph property testing, the goal is to decide whether a graph satisfies a prespecified
property P or is far from satisfying P . To this end, the testing algorithm is given query
access to the adjacency matrix of the input graph so that the algorithm can check whether
there is an edge between any given pair of vertices.2 A graph G over n vertices is said to be
ε-far from satisfying P if it is necessary to add or delete more than εn2 edges in order to
turn G into a graph satisfying P . A tester for a graph property P is a randomized algorithm,
which given query access to the graph, distinguishes with high constant probability between
the case where G satisfies P and the case where G is ε-far from satisfying P . The tester
should make the distinction between the two cases by observing a very small portion of the
input graph. In other words, the tester must have sublinear query complexity.

We focus on properties that can be tested with no dependence on n. In particular, the
query complexity of the testers we consider depends only on the proximity parameter ε,

1 This research was partially supported by the Israel Science Foundation grant No. 671/13.
2 Here we refer to what is known as the Dense Graph Model or the Adjacency Matrix Model [12].
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53:2 On the Testability of Graph Partition Properties

and the decisions of the testers do not depend on n as well. We call such graph properties
input-size oblivious testable. Alon et al. [3] presented a complete characterization of input-
size oblivious testable graph properties. Independently, Borgs et al.[9] obtained an analytic
characterization of such properties through the theory of graph limits. However, while the
query complexity of the tester emerging from the characterization of Alon et al. does not
depend on the graph size, it could be super-polynomial in 1

ε . For example, the property
of being triangle-free is input-size oblivious testable, but the query complexity of the best
known tester for triangle-freeness is a tower function of 1

ε [10]. Further, there exists a
super-polynomial lower bound on the query complexity of testing triangle-freeness [1, 6].
Naturally, we strive to design testers with query complexity that is polynomial in 1

ε .
In this paper we consider a family of graph partition properties. This family of properties,

which will be defined shortly, generalizes a family of graph partition properties that was
introduced by Goldreich, Goldwasser, and Ron [12]. Examples of properties covered by their
framework include bipartiteness, k-colorability, and the property of having a cut of at least
βn2 edges for some β ∈ [0, 1]. Their framework, while fairly general, lacks an ingredient that
is necessary for specifying many natural graph partition properties such as split graphs (or
more generally (p, q)-colorable graphs), probe complete graphs, and bisplit graphs.3

Given a graph G = (V,E), a partition (V1, ..., Vk) of V , and a pair of parts Vi, Vj (possibly
i = j) we denote by eG (Vi, Vj) the number of edges in G between the part Vi and part Vj
(if i = j, then the notation refers to the number of edges within the part). Following the
definitions in [12], the notation eG (Vi, Vj) counts each edge twice (both (u, v) and (v, u))
and when i = j we also allow self-loops. That is, eG (Vi, Vj) counts the number of ones in
the adjacency matrix representing the graph G. Also, we denote by eG (Vi, Vj) the number
of nonedges between the two parts.

Each property in the family of Graph Partition Properties considered in this work, is
defined by an integer parameter k and O(k2) additional parameters in [0, 1]. Informally, a
graph has the property if its vertices can be partitioned into k subsets such that the sizes
of the subsets and the number of edges between pairs of subsets and within the subsets
obey the constraints defined by the parameters of the property. Formally, a Graph Partition
Property P is parameterized by an integer k denoting the number of parts and by the
following parameters in the interval [0, 1]:
1. Bounds on each part’s size: for each 1 ≤ i ≤ k we have ρLi , ρUi s.t. part Vi must satisfy

ρLi n ≤ |Vi| ≤ ρUi n.
2. Absolute bounds on the number of edges within each part: for each 1 ≤ i ≤ k we have

ρLii, ρ
U
ii s.t. part Vi must satisfy ρLiin2 ≤ eG (Vi, Vi) ≤ ρUiin2.

3. Absolute bounds on the number of edges between each pair of parts: for each pair
1 ≤ i, j ≤ k we have ρLij , ρUij s.t. the pair of parts Vi, Vj must satisfy ρLijn2 ≤ eG (Vi, Vj) ≤
ρUijn

2.
4. Relative bounds on the number of edges within each part: for each 1 ≤ i ≤ k we have

αLii, α
U
ii s.t. part Vi must satisfy αLii |Vi|

2 ≤ eG (Vi, Vi) ≤ αUii |Vi|
2.

5. Relative bounds on the number of edges between each pair of parts: for each pair
1 ≤ i, j ≤ k we have αLij , αUij s.t. the pair of parts Vi, Vj must satisfy 2αLij |Vi| · |Vj | ≤
eG (Vi, Vj) ≤ 2αUij |Vi| · |Vj |.

3 A graph is a split graph if it can be partitioned into an independent set and a clique. A graph is
(p, q)-colorable if it can be partitioned into p cliques and q independent sets. A graph is probe-complete if
it can be partitioned into an independent set and a clique such that every vertex in the independent set
is adjacent to every vertex in the clique. A graph is bisplit if it can be partitioned into an independent
set and a bi-clique.
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The original graph partition framework that was introduced in [12] includes only Items 1–3.
The absence of relative edge bounds makes the original framework weaker than the general
framework we consider in this paper. In particular, using the original framework, one cannot
express the notion of parts being cliques or the notion of a pair of parts being fully connected
to each other. More generally, our framework enhances the expressive power of the original
framework by adding the notion of edge densities,4 a notion that does not exist in the original
framework. We denote the class of graph partition properties (as defined above) by GPP.
We denote the class of graph partition properties that have no relative bounds on the number
of edges (the one introduced in [12]) by GPPNR (NR stands for Non-Relative).

We say that a graph property is poly
( 1
ε

)
-testable if it is input-size oblivious testable and

the tester’s query complexity is polynomial in 1
ε . All the properties in the class GPPNR are

poly
( 1
ε

)
-testable [12]. In this work, we first show how to use the algorithm presented in [12]

as a subroutine to devise a tester for all the partition properties covered by our generalized
framework, thus obtaining the following theorem:

I Theorem 1. Every property P ∈ GPP is poly
( 1
ε

)
-testable.

While the query complexity of the tester implied by 1 is a polynomial function of 1
ε as

desired, it has the disadvantage of having two-sided error (just like the algorithm described
in [12]). A tester has one-sided error if, whenever a graph G satisfies P , the tester determines
this with probability 1. Clearly, a one-sided error tester is preferable to a two-sided error
tester because a one-sided error tester is capable of providing a witness demonstrating that
the property is not satisfied by the input graph. Combining the two desired features of
polynomial dependence on 1

ε and having one-sided error leads to the definition of easily
testable graph properties (as defined in e.g. [7, 4, 11]).

I Definition 2. A graph property P is easily-testable if P is poly
( 1
ε

)
-testable and the tester

has one-sided error.

An example of an easily testable graph partition property is the property of being k-colorable
[12, 5]. In this paper we address the question of characterizing the easily testable graph
partition properties. We show that every graph partition property belonging to a restricted
subset of GPP , which we denote by GPP0,1 (and formally define below), is easily testable, and
every graph partition property P /∈ GPP0,1 is not easily testable. That is, while Theorem 1
implies that every graph partition property P is poly

( 1
ε

)
-testable, only those properties in

GPP0,1 are poly
( 1
ε

)
-testable with one-sided error. An analogous result was established for

the class GPPNR by Goldreich and Trevisan [13]. However, as the class GPP is more general,
the class GPP0,1 contains properties that are not covered by the class GPPNR. We build on
some techniques used in [13] to establish our characterization, but our characterization does
not result from [13] and we rely on different ideas to arrive at it.

The class GPP0,1 is a subclass of GPP for which the following holds. For every property
P ∈ GPP0,1, there are no absolute bounds on the number of edges between or within parts. If
P has a constraint on the edge density between a pair of parts, or within a part, the constraint
must be either that the edge density is exactly 0 or that the edge density is exactly 1. In
addition, P does not constrain the sizes of the parts. Formally, P is parameterized by an
integer k denoting the number of parts and by a function dP : [k]× [k]→ {0, 1,⊥} denoting
the relative edge density that P imposes on parts i and j:

4 From now on, when using the term edge density, we refer to the fraction of edges between the parts (or
within the part) relative to the number of vertex pairs between the parts (or within the part).

APPROX/RANDOM 2018
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Figure 1 Inclusion relations among the graph partition properties.

dP (i, j) =


1 if every vertex in part i should be connected to every vertex of part j
0 if there are no edges between part i and part j
⊥ if any number of edges between part i and j is allowed

Possibly, i = j in which case it is the edge density within a single part. That is, if dP (i, i)
is 0 or 1 then P forces part i to be an independent set or a clique respectively. It is clear
from the definition that there are graph partition properties P ∈ GPP0,1 that are not part
of the class GPPNR (split graphs for instance).

The main result of our paper is a characterization of the easily testable graph partition
properties.

I Theorem 3. A graph property P ∈ GPP is easily testable if and only if P ∈ GPP0,1.

Recall that a property is easily testable if it is testable by a one-sided error input-size
oblivious tester whose query complexity is polynomial in 1

ε . If we remove the requirement
that the dependence on 1

ε is polynomial, then the property is said to be strongly testable.
Alon and Shapira [8] define the notion of a property being semi-hereditary (which is a certain
relaxation of being hereditary), and show that a graph property P is strongly testable if
and only if P is semi-hereditary. Since the properties in GPP0,1 are clearly hereditary, and
therefore semi-hereditary, the condition of Alon and Shapira implies that they are strongly
testable. However, this is not enough to prove the “if” part of Theorem 3, because being
strongly testable does not mean that the tester’s query complexity is poly

( 1
ε

)
. Therefore, to

prove the “if” direction we give a poly
( 1
ε

)
one-sided error testing algorithm for the property.

As for the “only if” direction, we could use [8] to get that if a property P in GPP is easily
testable (and hence strongly testable), then it is semi-hereditary. We would then need to
prove that if P ∈ GPP is semi-hereditary, then P ∈ GPP0,1. Establishing this claim would
be essentially the same as our direct proof that if a property P in GPP is easily testable,
then P ∈ GPP0,1, and would be based on the same proof ingredients.

We next give a brief summary of each of our results.

1.1 A Two-Sided Error Tester for properties in GPP
In order to prove the existence of a (two-sided error) poly

( 1
ε

)
-testing algorithm for GPP

we show how to reduce the problem of testing properties in GPP to testing properties in
GPPNR. Recall that the difference between properties in GPP and properties in GPPNR is
that the former include edge density constraints (that are relative to the sizes of the parts),
while the latter include only absolute constraints on the sizes of the parts and the number of
edges between/within them. We next give the high-level idea of the reduction.
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Given a property P ∈ GPP , we define a collection of properties in GPPNR, by discretizing
P and replacing the edge-density constraints with absolute constraints on the number of
edges. We then run the testing algorithm of [12], denoted A, on G and each property in
the constructed collection, with distance parameter ε

2 . If A accepts for at least one of these
properties, then we accept, and otherwise we reject. The definition of the collection is such
that if G satisfies P , then G satisfies at least one of the properties in the collection, so that
our algorithm accepts with high constant probability. In order to show that if G is ε-far
from P , then G is ε

2 -far from every property in the collection, we prove the contrapositive
statement. That is, if for at least one of the properties P ′ in the collection, G is ε

2 -close to P
′,

then G is ε
2 -close to P . While the first part of the analysis (regarding G that satisfies P ) is

fairly immediate, the second part (regarding G that is ε
2 -far from P ) requires a more subtle

analysis. Essentially, we need to show how to “fix” G (remove/add edges), so as to obtain a
graph that satisfies P . This requires showing the existence of a partition (V1, . . . , Vk) that
obeys all the constraints defined by P , while closeness to P ′ only ensures the existence of a
partition (V ′1 , . . . , V ′k) that “almost” satisfies P ′.

1.2 A One-Sided Error Tester for Properties in GPP0,1

The tester is very simple. It samples Θ
(
k log(k)
ε2

)
vertices, checks whether or not the induced

subgraph satisfies P and answers accordingly.5 Since all the graph partition properties in
GPP0,1 are hereditary, it clearly holds that if a graph G satisfies P , then every induced
subgraph of G also does. Hence, if G ∈ P , the suggested tester accepts with a probability
of 1.

The heart of the proof is in showing that if G is ε-far from satisfying P , where P ∈ GPP0,1,
then with high constant probability, the subgraph induced by the sample does not satisfy
P . In other words, we would like to show that with high constant probability over the
choice of the sample S, every partition (S1, . . . , Sk) of the sample violates at least one of
the constraints defined by the property P . That is, there is a pair (u, v), where u ∈ Si and
v ∈ Sj such that either (u, v) ∈ E while dP (i, j) = 0, or (u, v) /∈ E while dP (i, j) = 1. Such
a partition is said to be invalid. In order to prove this claim we extend the analysis of Alon
and Krivelevich [5] for testing k-colorability. We next give a high-level description of the
analysis.

Given the sample S, we construct a k-ary tree. Each node in the tree corresponds to a
partial partition of the sample. That is, a partition of a subset of the sample. In particular,
each internal node corresponds to a valid partition (where the root corresponds to a trivial
partition of the empty set). If an internal node corresponds to a partition (S′1, . . . , S′k) of a
subset S′ of the sample, then its children correspond to all partitions of S′ ∪ {u} that extend
the partition (S′1, . . . , S′k) for some sample point u ∈ S \ S′. That is, partitions of the form
(S′1, . . . , S′i−1, S

′
i ∪ {u}, S′i+1, . . . , S

′
k). Observe that if we obtain a tree for which all leaves

correspond to invalid partitions (i.e., that violates some constraint of P ), then there is no
valid partition of S.

Consider a node x in the tree, corresponding to a partition (S′1, . . . , S′k) of S′ ⊂ S. For
each vertex v /∈ S′, let 0 ≤ ax(v) ≤ k be the number of parts in the partition to which u can
be added so that the resulting partition is valid, and let ax be the sum of ax(v) taken over all
v /∈ S′. Observe that for the root of the tree, r (which corresponds to S′ = ∅), ar = k ·n, and

5 If the tested graph partition property is NP -hard to decide, then the running time is super-polynomial
in the sample size, which is unavoidable assuming P 6= NP .

APPROX/RANDOM 2018
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if y is a child of x, then ay ≤ ax. If the partition corresponding to y is invalid, then ay = 0.
We show that with high constant probability over the choice of the sample, we can construct
a tree for which the following holds. For every path in the tree, the value of ax decreases in
a relatively significant manner when comparing each node to its children. This allows us to
show that we can obtain a tree in which all partitions corresponding to the leaves are invalid.

1.3 Easily Testable Graph Partition Properties Must be in GPP0,1

Our proof that if a property P ∈ GPP is easily testable, then P must be in GPP0,1 is the
most technically involved part of this work. The proof consists of several steps, and we
next give a high-level outline of these steps. We note that the proof uses the fact that easy
testability implies strong testability. That is, we rely on the existence of a one-sided error
tester for the property that is oblivious of the size of the graph, but we do not rely on the
tester having complexity poly

( 1
ε

)
.

Recall that properties in GPP0,1 are defined by the following types of constraints over
graph partitions. First, for each part, either the edge density within the part is unconstrained,
or it is constrained in an extreme manner. The latter means that no edges are allowed
within the part, or that there must be all possible edges. We say in such a case that the
part is homogeneous. Similarly, for each pair of parts, either there is no constraint on the
edge density between the parts, or it is extreme (no edges, or all edges). Here too we say
in the latter case that the pair is homogeneous. Finally, as opposed to GPP, there are no
constraints on the sizes of the parts. Observe that the trivial property, that is, the property
that contains all graphs, belongs to GPP0,1 (since it can be defined by a single part with no
edge-density constraints).

In what follows, for a property P ∈ GPP and a graph G = (V,E) satisfying P , a partition
(V1, . . . , Vk) of V is said to be a witness partition with respect to P , if in G, (V1, . . . , Vk)
satisfies the constraints imposed by P . We say in such a case that the pair (G, (V1, . . . , Vk))
satisfies P . We first prove that if P is easily testable, then either it is trivial, or for every
graph G satisfying P and witness partition (V1, . . . , Vk), all parts are homogeneous. This is
established by showing that if there exists a graph G in P with a witness partition that has
some non-homogeneous part, then the premise that P is easily testable implies that P is
trivial. The proof uses a type of “multiplying” operation on the graph G. Once we have only
homogeneous parts, we can also establish the homogeneity of pairs (among those that are
constrained in terms of edge-density). At this point it remains to show that there can be no
size constraints on the parts.

To this end we prove a dichotomy claim. Let P ′ be the same property as P except that
there are no size constraints. The claim is that either P = P ′ or P ′ is in a certain sense far
from P . We then show that the second case cannot hold if P is easily testable. In order to
prove the dichotomy claim, we define a certain mathematical program, that, roughly speaking,
is related to modifications of graph-partition pairs that satisfy P ′ to graph-partition pairs
that satisfy P (by “fixing” the size constraints). In particular, the existence of a feasible
solution corresponds to P = P ′. On the other hand, if there is no feasible solution, then we
show that P ′ is far from P . This proof involves a probabilistic construction of a graph that
satisfies P but is sufficiently far from satisfying P ′.
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1.4 Related Work
Easily testable graph properties

Besides the class of graph partition properties, there are several results characterizing the set
of easily testable graph properties among other classes. Alon [1] proved that the property of
being H-free is easily testable if and only if H is bipartite. Alon and Shapira [7] proved that
for any graph H besides P2, P3, P4, C4 and their complements, the property of being induced
H-free is not easily testable. It was also shown in [7, 4] that induced H-freeness is easily-
testable for P2, P3, P4 and their complements, and the case of C4 (and its complement) is the
only one that remains open. In addition, the graph properties perfectness and comparability
were shown to be not easily testable [4]. Gishboliner and Shapira [11] recently made significant
progress by providing sufficient and necessary conditions for guaranteeing that a hereditary
graph property is easily testable, implying all the positive and negative results mentioned
above. It is worth noting, however, that their criteria do not apply to many properties in
GPP0,1 (for example, (p, q)-colorability), that are shown to be easily testable in our work.

Testing properties in GPPNR with one sided error

As mentioned previously, Goldreich and Trevisan [13] studied the one-sided error testability
of GPPNR. They showed that every strongly testable property in GPPNR belongs to a
class of properties that generalizes k-colorability. Each property P in this class is defined
by a set of pairs AP = {(i, j) |0 ≤ i, j ≤ k}, where the property P is the set of k-colorable
graphs with the additional constraint that if (i, j) ∈ AP , then there are no edges between
the vertices with color i and the vertices with color j. In addition, the property of being a
clique and the property containing all graphs are both stongly testable graph properties in
GPPNR.

We build on [13]’s technique of multiplying a graph-partition pair to derive the fact that
all the easily testable properties in GPP only have homogeneous constraints on the edge
density within and between parts. The idea of finding assignments to variables corresponding
to moving vertices between parts also appears in [13], but they did not have to optimize over
a mathematical program, and the assignments they defined could be used straightforwardly
to establish the equivalence between a property and its relaxation. One of the main ideas
used in [13] to derive the characterization was showing that strongly testable properties
in GPPNR are closed under removal of edges (except for the property of being a clique),
and they rely on this fact heavily when deriving the implication regarding the assignments
they define and when performing the multiplication. We could not use this idea as it does
not hold in our case, because the existence of relative edge bounds in GPP enables easily
testable properties to have lower bounds on the number of edges between or within parts.
This is basically the main reason why the set of easily testable properties in GPP has a
richer structure than in GPPNR. This is why we had to use notions that do not appear in
their analysis such as weak and strong violations of assignments and rely on the probabilistic
method to establish our result.

Organization
In Section 2 we expand on the result regarding the “only if” direction of Theorem 3, that all
the easily testable properties in GPP are in GPP0,1. All the details regarding the other two
results can be found in the accompanying full version of the paper, as well as the proofs of
all claims stated in Section 2.

APPROX/RANDOM 2018



53:8 On the Testability of Graph Partition Properties

2 Easily Testable Graph Partition Properties Must be in GPP0,1

As stated in Theorem 3, a property P ∈ GPP is easily testable if and only if P ∈ GPP0,1. In
this section we provide the proof structure and some of the proof details for the claim that if
a graph partition property is easily testable, then P ∈ GPP0,1. We first define the concept
of a t-multiplier, which is used several times throughout the proof. In what follows, given
a graph G = (V,E) and a set of vertices U ⊆ V we denote by G [U ] the subgraph induced
by U .

2.1 t-Multipliers
I Definition 4. Let G = (V,E) be a graph over n vertices and let (V1, ..., Vk) be a partition
of V . For an integer t we say that a graph-partition pair (G′, (V ′1 , ..., V ′k)) is a t-multiplier
of (G, (V1, ..., Vk)), if the following holds (where G′ = (V ′, E′)).
Vertices: |V ′| = t · n.
Partition: For each 1 ≤ i ≤ k, |V ′i | = t · |Vi|.
Within Edges: Suppose G [Vi] has αii |Vi|2 edges. Then G′ [V ′i ] has αiit2 |Vi|2 edges.
Between Edges: Suppose G has 2αij |Vi| · |Vj | edges between Vi and Vj . Then G′ has
2αij · t2 |Vi| · |Vj | edges between V ′i and V ′j .

Recall that given a graph G = (V,E) and a partition (V1, ..., Vk) of V that satisfies the
constraints imposed by property P in GPP , we say that (V1, ..., Vk) is a witness partition to
the fact that G satisfies P . In short, we say that the graph-partition pair (G, (V1, ..., Vk))
satisfies P . The next claim trivially holds.

I Claim 5. If (G, (V1, ..., Vk)) is a graph-partition pair satisfying P and (G′, (V ′1 , ..., V ′k)) is
a t-multiplier of (G, (V1, ..., Vk)), then the pair (G′, (V ′1 , ..., V ′k)) also satisfies P .

2.2 Easily Testable Graph Partition Properties are Homogeneous
Let P be a graph partition property. We note that even if there are no explicit bounds on a
part’s size or on the edge density within a part or between a pair of parts, such constraints
may be implicitly induced by the combination of other constraints. This leads to the following
definition.

IDefinition 6. Given a pair of integers (i, j) ∈ [k]×[k], we say that P has no constraints on
the edge density between the parts (i, j) if for every graph-partition pair (G, (V1, ..., Vk))
satisfying P , any graph G′, obtained from G by performing arbitrary vertex-pair modifications
between Vi and Vj in G, satisfies P and (V1, ..., Vk) serves as a witness partition. Otherwise,
we say that P constrains the edge density between parts (i, j). For the special case
where i = j we say that P constrains the edge density within part i.

We say that a graph is homogeneous if it is either an independent set or a clique. We can
classify the properties in GPP into two sets, corresponding to the following complementary
two cases.
Case (a): There exists a graph-partition pair (G, (V1, ..., Vk)) satisfying P and an integer

1 ≤ i ≤ k such that G[Vi] is non-homogeneous.
Case (b): For every graph-partition pair (G, (V1, ..., Vk)) that satisfies P it holds that G[Vi]

is homogeneous for every 1 ≤ i ≤ k.
We note that Case (b) can be shown to imply a stronger statement. If Case (b) holds, then
not only every part is homogeneous, but rather the following holds: For each 1 ≤ i ≤ k,
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either for every graph-partition pair (G, (V1, ..., Vk)) satisfying the property, G [Vi] is an
independent set, or for every graph-partition pair (G, (V1, ..., Vk)) satisfying the property,
G [Vi] is a clique. We next establish the following implication of Case (a).

I Claim 7. Let P be an easily testable graph partition property for which Case (a) holds.
Then for every proximity parameter ε, every graph is ε-close to satisfying P .

Proof. Since Case (a) holds, there exists a graph-partition pair (G, (V1, ..., Vk)) satisfying
P and an integer 1 ≤ i ≤ k such that G[Vi] is non-homogeneous. Suppose by way of
contradiction that there exists a one-sided error tester for P that is input-size oblivious.
Denote the tester by T . By [2, 13], we can assume without loss of generality that the
algorithm T makes its decision based on an inspection of the subgraph induced by a random
sample of sε vertices chosen independently and uniformly at random, where sε is a function
of ε and is independent of n.

By Claim 5, for every (G′, (V ′1 , ..., V ′k)) that is an sε-multiplier of (G, (V1, ..., Vk)), we have
that G′ satisfies P (with the witness partition (V ′1 , ..., V ′k)). Therefore, T must accept each
such G′ with probability 1. We next show that for every graph H over at most sε vertices,
there exists at least one such graph G′ for which G′[V ′i ] contains H as an induced subgraph.
The claim will then follow since the tester must accept given any induced subgraph that it
observes, implying that it accepts all graphs with probability 1.

Let |Vi| = ni and let v1
i , . . . , v

sεni
i denote the vertices in V ′i . Observe that since G [Vi] has

at least one edge and at least one non-edge, for every (G′, (V ′1 , ..., V ′k)) that is an sε-multiplier
of (G, (V1, ..., Vk)), it holds that G′ [V ′i ] has m′i ≥ s2

ε edges and (t · ni)2 −m′i ≥ s2
ε non-edges.

Let H be some fixed graph over s ≤ sε vertices with mH edges (and s2 −mH non-edges).
Since mH ≤ s2

ε ≤ m′i and s2 −mH ≤ s2
ε ≤ (t · ni)2 −m′i, the definition of an sε-multiplier

allows to let the subgraph of G′[V ′i ] induced by the vertices v1
i , . . . , v

s
i be H.

That is, the tester T accepts every graph with probability 1, and hence, for every ε, every
graph is ε-close to satisfying P . J

We emphasize that Claim 7 holds for every graph and not only for sufficiently large graphs. It
follows that if P is an easily testable graph partition property that satisfies Case (a) then P
is in fact the trivial graph partition property that contains all graphs. This property clearly
belongs to GPP0,1. Hence, from now on we can assume that Case (b) holds. In other words,
we consider properties P ∈ GPP for which every graph satisfying P can only be validly
partitioned in such a way that every part of the partition is homogeneous. That is, if G is a
graph satisfying P and (V1, ..., Vk) is a witness partition, then for every pair (i, j) ∈ [k]× [k],
the subgraph G [Vi ∪ Vj ] is either a split graph, or a bipartite graph or a cobipartite graph.
We can use this fact together with an application of an appropriate multiplier to establish
the following claim.

I Claim 8. Let P be an easily testable property in GPP. If there exists a graph-partition
pair (G, (V1, ..., Vk)) that satisfies P such that the edge density between a pair of parts is
neither 0 nor 1, then P has no constraints on the edge density between the two parts.

In this subsection we showed that if a graph partition property P is easily testable and
P constrains the edge density within a particular part, then the part must be homogeneous.
(To be precise, P either forces the part to be an independent set or it forces it to be a
clique.) Similarly, if P constrains the edge density between a pair of parts then it either
forces the edge density within the pair to be 0 or it forces it to be 1. We call such properties
homogeneous graph partition properties. That is, a homogeneous graph partition property is
defined similarly to a property in GPP0,1 except that unlike GPP0,1, a homogeneous graph
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partition property possibly has size constraints on the parts. In the next subsection we show
that if such a property is easily testable, then it has no size constraints.

2.3 No Constraints on the Sizes of Parts
Suppose P is a homogeneous property in GPP that possibly has size constraints in its
specification and is easily testable. We show that if this is the case, then there exists an
equivalent formulation of P that has no size constraints. Namely, we show that the simple
relaxation of P whose specification contains the same homogeneity constraints as those
specified by P but excludes its size constraints, is equivalent to P (under the assumption
that P is easily testable). From now on, given a graph partition property P , we denote the
relaxation of P (obtained by deleting the size constraints) by P ′.

In order to obtain the above we prove a dichotomy of properties. In particular, we show
that every homogeneous graph partition property P falls into one of two disjoint categories.

I Claim 9 (The Dichotomy of Properties). Every homogeneous property P in the class GPP
satisfies one of the following:
1. P = P ′.
2. There exists ε > 0 such that for every n0 there exists a graph G′ ∈ P ′ of size n > n0

where G′ is ε-far from P .
The implication of the dichotomy of properties is that a homogeneous graph partition property
P with size constraints cannot be close to its relaxation P ′. Either P is equivalent to P ′
or P is far from P ′ (for an appropriate distance measure). We claim that if the latter case
holds then P is not easily-testable. Namely,

I Claim 10. Suppose there exists ε > 0 such that for every n0 there exists a graph G′ ∈ P ′
of size n > n0 where G′ is ε-far from P . Then P is not easily testable.

Combining Claim 10 with the dichotomy of properties (Claim 9) establishes the following: If
a graph partition property P enforces size constraints, then P is not easily testable. It still
remains to prove that the dichotomy of properties indeed holds. In order to do so, we first
define the notions of a size vector and of a property’s set of assignments. Then we show the
existence of another dichotomy, the trivial dichotomy, which, as we state below, implies the
dichotomy of properties.

I Definition 11. Given a homogeneous property P in GPP we define a set of variables
X = {xij | (i, j) ∈ [k]× [k]}. For a size vector ~ρ, we say that an assignment ϕ : X → [0, 1] is
sizewise valid if: ∀i′ ∈ [k] :

∑k
i=1 ϕ (xi′i) = ρi′ and ∀i ∈ [k] : ρLi ≤

∑k
i′=1 ϕ (xi′i) ≤ ρUi .

We interpret an assignment ϕ as a transformation from a size vector ~ρ that violates the
size constraints of P to a size vector that satisfies the size constraints. In particular, we
interpret ϕ (xij) as the fraction of vertices (relative to n) that should be transferred from
part i to part j (or stay in part i if i = j) in order to satisfy the size constraints imposed
by P . Applying the transformation induced by a sizewise valid assignment ϕ to a graph G′
that satisfies P ′ clearly results in a graph G that satisfies the size constraints imposed by P .
However, the assignment being sizewise valid does not necessarily induce a transformation
resulting in a graph that satisfies the edge density constraints. This leads to the notion of a
violation defined next.

I Definition 12. Given a homogeneous property P in GPP and an assignment ϕ we say
that a pair of variables {xi′i, xj′j} constitutes a violation in the assignment ϕ with respect
to P if ϕ (xi′i) 6= 0, ϕ (xj′j) 6= 0, dP (i, j) 6= ⊥, dP (i′, j′) 6= dP (i, j). If dP (i′, j′) = ⊥, then
we say that the violation is weak. Otherwise, we say the violation is strong.



Y. Nakar and D. Ron 53:11

The situation stated in the above definition is considered to be a violation of the edge density
constraints because it can be interpreted as vertices being transferred to a pair of parts
whose edge density differs from that of the pair of parts those vertices originated from.
Given a violation {xi′i, xj′j} we define the violation’s size as min {ϕ(xi′i), ϕ(xj′j)}. We call
a violation of size at least δ a δ-violation.

The following claim describes the trivial dichotomy.

I Proposition 13 (The Trivial Dichotomy). Let P be a homogeneous graph partition property.
Exactly one of the following holds:
1’. For every size vector ~ρ there exists a sizewise valid assignment ϕ which is free of violations

with respect to P .
2’. There exists a size vector ~ρ for which every sizewise valid assignment ϕ contains a

violation with respect to P .

2.3.1 The Trivial Dichotomy Implies The Dichotomy of Properties
The trivial dichotomy (Proposition 13) trivially holds as the second case is the complement
of the first. In order to prove that the trivial dichotomy implies the dichotomy of properties
(Claim 9) we have to prove that Case 1’ in the trivial dichotomy implies Case 1 in the
dichotomy of properties and that Case 2’ in the trivial dichotomy implies Case 2 in the
dichotomy of properties. We next give the high-level idea for the proof that Case 2’ implies
Case 2.

Let ~ρ be a size vector for which every assignment ϕ that is sizewise valid contains a
violation. We define a set of decision variables: Y = {yi′i|1 ≤ i ≤ k, 1 ≤ i′ ≤ k}.

I Definition 14. We say that a pair of decision variables yi′i, yj′j ∈ Y are in potential
conflict if dP (i, j) 6= ⊥ and dP (i′, j′) 6= dP (i, j).

That is, yi′i is in potential conflict with yj′j if the pair {xi′i, xj′j} constitutes a violation
with respect to P in an assignment ϕ where ϕ (xi′i) > 0 and ϕ (xj′j) > 0.

We define a mathematical program on the set of decision variables Y . The objective of
the program is to minimize the function max(yi′i,yj′j)∈Y {min {yi′i, yj′j}}.

The feasible region is defined by the following system of linear constraints:

∀i′ ∈ [k] :
k∑
i=1

yi′i = ρi′

∀i ∈ [k] : ρLi ≤
k∑

i′=1
yi′i ≤ ρUi

∀ (i′, i) ∈ [k] : 0 ≤ yi′i ≤ 1

There is a one-to-one correspondence between feasible solutions to the program and
sizewise valid assignments. Moreover, the correspondence between assignments and feasible
solutions has the property that an assignment is free of violations if and only if the objective
function attains a value of 0 for the corresponding feasible solution. It is shown in the
full version that there exists a feasible solution (and a corresponding assignment ϕ) that
minimizes max(yi′i,yj′j)∈Y {min {yi′i, yj′j}}. Denote by δ the value of the objective function
under that solution. Since we have assumed that every sizewise valid assignment ϕ contains
a violation, there is no feasible solution attaining an objective function value of 0. In other
words, δ > 0. Therefore, every sizewise valid assignment contains a violation of size at least δ.
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Let ε = 1
16δ

2. We show that for every n0 there exists a graph of size n > n0 that is ε-far
from P . Here we show this for the case where there are only weak δ-violations. We construct
a random graph G′ = (V ′, E′) of size n and prove that with positive probability G′ is ε-far
from every n-size graph G satisfying P . Let V ′ = {1, ..., n} be the set of vertices of the
graph G′. We arbitrarily partition V [G′] into k disjoint sets U1, ..., Uk in such a way that
the number of vertices in Ui is ρin. Let E′ be defined as follows: For each pair of vertices
u ∈ Ui, v ∈ Uj : If dP (i, j) = 0 we do not connect u and v. If dP (i, j) = 1 we do connect u
and v. If dP (i, j) = ⊥ we connect u and v with probability 1

2 .
For each 1 ≤ i ≤ k where dP (i, i) = ⊥ we define the event Ei as follows: For every set

A ⊆ Ui of size |A| ≥ δn it holds that eG′ (A,A) ≥ εn2 and eG′ (A,A) ≥ εn2.
For each pair (i, j) ∈ [k]× [k] where dP (i, j) = ⊥ we define the event Eij as follows: For

every pair of disjoint sets (A,B) ⊆ Ui×Uj s.t. A ⊆ Ui, B ⊆ Uj where |A| ≥ δn and |B| ≥ δn
it holds that eG′ (A,B) ≥ εn2 and eG′ (A,B) ≥ εn2..

Note that the event Ei is not the same as event Eii. We denote by E the conjunction of
all the events defined above. A detailed probabilistic analysis establishes the following claim.

I Claim 15. Pr [E ] > 0 .

Claim 15 implies the existence of a graphG∗ for which E holds and the pair (G∗, (V1, ..., Vk))
satisfies P ′. We next show that G∗ is ε-far from every n-vertex graph G satisfying P . Let
(G, (V1, ..., Vk)) be any graph-partition pair satisfying P where G is a graph over n vertices.
We define the assignment ϕ as ϕ (xi′i) = |Ui′∩Vi|

n . Since the assignment ϕ can be shown
to be sizewise valid, it contains a δ-violation {xi′i, xj′j}. Suppose the violation is weak.
That is, dP (i′, j′) = ⊥ and dP (i, j) 6= ⊥. The fact that ϕ (xi′i) ≥ δ and ϕ (xj′j) ≥ δ

implies that |Ui′ ∩ Vi| ≥ δn and |Uj′ ∩ Vj | ≥ δn. The event Ei′j′ holds and so do Ei′ and Ej′ .
Hence, eG∗ (Vi, Vj) ≥ εn2 and eG∗ (Vi, Vj) ≥ εn2. However, since dP (i, j) 6= ⊥, the number
of vertex-pair modifications required in order to obtain G from G∗ is at least εn2. In other
words, the graph G∗ is ε-far from every graph G that satisfies P .

It follows that easily-testable homogeneous graph partition properties cannot have size
constraints, and if they do, then these size constraints are in fact redundant. In conclusion,
if a graph partition property P is easily-testable then it is both homogeneous and it has no
size constraints. That is, P ∈ GPP0,1.
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