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—— Abstract

An error-correcting code C C F™ is called (g, €)-strong locally testable code (LTC) if there exists
a tester that makes at most ¢ queries to the input word. This tester accepts all codewords
with probability 1 and rejects all non-codewords = ¢ C' with probability at least € - §(x, C),
where §(x, C) denotes the relative Hamming distance between the word z and the code C. The
parameter ¢ is called the query complexity and the parameter € is called soundness.

Goldreich and Sudan (J.ACM 2006) asked about the existence of strong LTCs with constant
query complexity, constant relative distance, constant soundness and inverse polylogarithmic rate.
They also asked about the explicit constructions of these codes.

Strong LTCs with the required range of parameters were obtained recently in the works of
Viderman (CCC 2013, FOCS 2013) based on the papers of Meir (SICOMP 2009) and Dinur
(J.ACM 2007). However, the construction of these codes was probabilistic.

In this work we show that codes presented in the works of Dinur (JLACM 2007) and Ben-
Sasson and Sudan (SICOMP 2005) provide the explicit construction of strong LTCs with the
above range of parameters. Previously, such codes were proven to be weak LTCs. Using the
results of Viderman (CCC 2013, FOCS 2013) we prove that such codes are, in fact, strong LTCs.
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1 Introduction

Probabilistically Checkable Proof (PCP) systems [2, 3, 21] (a.k.a. Holographic Proofs [4]) are
proof systems that allow efficient probabilistic verification of a claim by reading few symbols
of the proof. The celebrated PCP theorem [2, 3] is one of the main breakthrough results
in complexity theory. This theorem asserts that for every language in NP there exists a
polynomial-time PCP verifier that queries the polynomial length proof in a constant number
of locations. The verifier is guaranteed to always accept valid proofs of true statements, and
to accept any claimed proof of false assertions with low probability. The theorem has found
many applications in theoretical computer science, especially in establishing lower bounds
for approximation algorithms [6, 5, 21, 29].

Informally, most of the PCP constructions were achieved using error-correcting codes,
possessing nice properties. Let us first give some auxiliary definitions regarding error-
correcting codes.
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A code over a finite alphabet ¥ is a subset C C X". A linear code over a finite field F
is a linear subspace C C F™. In this case, n is the blocklength of the code C, denoted by
blocklength(C). The dimension of a linear code C, denoted by dim(C), is its dimension as a
vector space and is equal to logp, |C]. The dimension of a non-linear code C over the alphabet

¥ is defined to be dim(C) = logy,| [C|. The rate of a code C, denoted by rate(C), is defined to
be dim(C) _ dim(C)

blocklength(C) n

We define the distance between two words =,y € F™ to be A(z,y) = {4 | x; # v;}| and the

relative distance to be §(z,y) = A@Y)  The distance of C is defined by A(C) = min A(z,y
n #yeC
TFYE

and its relative distance is defined by §(C) = %. The Hamming weight of a word = € F"

is denoted by |z| and defined to be |z| = |{i € [n] | z; # 0}|. We note that if C is linear then

A(C) = rg\i?o} {le|}. One is typically interested in codes whose distance is linear to the
ce

blocklength of C, i.e., Q(n).
For x € F™ and C C F™, let §(z,C) = mig {6(x,y)} denote the relative distance of z from
ye

the code C. If §(z,C) > p, we say that x is p-far from C and otherwise z is p-close to C.

Given a field F, we say that there exists an explicit construction of a family of linear
codes {Cy, € F"}, .+ if there exists an algorithm that on infinitely many inputs n € N*
outputs the generating matrix of C,,.

1.1 Locally Testable Codes

Most of the PCP constructions (e.g., [7, 11, 18, 27]) are tightly related to a special kind of
error-correcting codes possessing some testability properties. These codes are called locally
testable.

In other words, locally testable codes (LTCs) are error correcting codes that have a tester,
which is a randomized algorithm with oracle access to the received word x. The tester reads
a sublinear amount of information from x and based on this “local view” decides if x € C
or not. It should accept codewords with probability one, and reject words that are far (in
Hamming distance) from the code with noticeable probability. Such codes are of interest in
computer science due to their numerous connections to probabilistically checkable proofs
(PCPs) and property testing (see the surveys [39, 24] for more information). LTCs were
implicit already in [4] (cf. [24, Sec. 2.4]) and they were explicitly studied by Goldreich and
Sudan [27] (see also [22, 38]).

By now several different constructions of LTCs are known including codes based on
low-degree polynomials over finite fields and affine-invariant codes [1, 2, 16, 9, 8, 15, 28, 31,
33, 30, 37|, constructions based on PCPs of proximity/assignment testers [7, 19, 18]!, sparse
random linear codes [14, 32, 35] and tensor products of codes [10, 12, 13, 20, 36, 41, 34].

Basically, there are two kinds of LTCs: weak and strong. A code C is said to be (g, €, p)-
weak LTC if there exists a randomized algorithm 7', called tester, that makes at most ¢
queries to the input word w. If w € C then T accepts w with probability 1, but if w is p-far
from C the tester T rejects w with probability at least €. Let us notice that the tester is not
required to reject when 0 < §(w,C) < p. This is the reason why such codes are called weak
LTCs.

In contrast to weak LTCs, the testers for strong LTCs are required to reject all non-
codewords with corresponding probability. More formally, a code C is called (g, €)-strong

L As was pointed out in [27], not all PCP constructions are known to yield LTCs, but some of them (e.g.,
PCPs of proximity/assignment testers) can be adapted to yield LTCs.
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LTC if there exists a tester T' that makes at most ¢ queries to the input word w. If w € C
then T accepts w with probability 1, but if w ¢ C then T rejects w with probability at least
€ - d(w,C). The parameter ¢ is called the query complexity and the parameter € is called
soundness.

Informally, we say that a code C is a weak LTC if it has a linear distance and there exist
constants ¢,e > 0 and p < §(C)/3 such that C is a (g, ¢, p)-weak LTC. ? Similarly, we say
that a code C is a strong LTC if it has a linear distance and there exist constants ¢,e > 0
such that C is a (g, €)-strong LTC.

LTCs were explicitly studied in the work of Goldreich and Sudan [27], who presented
probabilistic construction of strong LTCs. These LTCs achieve constant query complexity,

constant soundness and rate ———=————, where n denotes the blocklength.

exp(O(vlogn))

Later, other constructions of LTCs [11, 18, 36] succeeded to obtain the rate ————
polylog(n)
together with constant query complexity and soundness, however these codes were weak

LTCs. It can be verified that every strong LTC is also a weak LTC, but some weak LTCs are
not strong LTCs [43]. So, strong LTCs are strictly stronger objects than weak LTCs. As was
pointed out by Goldreich [23], strong LTCs correspond to proximity oblivious testers [26]
whereas weak LTCs are even weaker than ordinary testers, i.e., the testers for weak LTCs are
supposed to work only for a fixed value of the proximity parameter. In the journal version
of [27], the authors pointed out that all known LTCs that achieve inverse polylogarithmic
rate are weak LTCs, and asked about the existence of strong LTCs with polylogarithmic rate
and, in particular, about the explicit construction of such codes [27, Section 6].

The previous papers of the author [43, 42] showed a probabilistic construction of binary
linear 3-query strong LTCs with inverse polylogarithmic rate, constant soundness and constant
relative distance. In this paper (Section 1.4), we show the explicit construction of linear
strong LTCs with constant query complexity, constant soundness, polylogarithmic rate and
constant relative distance over a fixed field, therefore resolving a question raised by Goldreich
and Sudan [27].3 We would like to stress that the codes we refer to were, in fact, only a
special case of PCPs and PCPs of proximity constructed in [11, 18]. Therefore, this work
discovers strong local testability properties in the objects tightly related to the short PCPs
and so, might be useful for the future PCPs related applications.

As was mentioned previously, we prove that the codes of [11, 18] yield explicit strong
LTCs. To do that we want to reuse the arguments of [43, 42] to prove that the codes of
[11, 18] are explicit strong LTCs. These codes (as well as codes of [36, 43, 42]) involve two
kind of symbols: code symbols and proof symbols (called also core symbols and non-core
symbols, respectively, in [43]). + However, the codes of [11] have good distance only on the
code symbols with no guarantee on the proof symbols, while the arguments used in [43]
require both good distance on the code coordinates and on the proof coordinates. Therefore,
our main technical ingredient in this work is observing that the results of [43] can be reproved
with only requirement of good distance on the code coordinates.

The parameter p is required to be less than §(C)/2 to avoid trivial solutions like claiming that every
perfect code C is a (0,1, (C)/2)-weak LTC. Recall that a code C C F" is called perfect if there are no
words in F" that are (§(C)/2)-far from C. So, in this case one could say that no queries are needed and
all (6(C)/2)-far words are rejected with probability 1 vacuously.

A suggestion to show such explicit construction was raised in personal discussion with Or Meir, and
later was asked in [42].

The concepts like ’code’ and 'proof’ coordinates appear in PCP related literature, but might appear
under different names (statement and proof) and with slightly different meaning as well.
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The rest of the paper is organized as follows. We provide the necessary definitions in
Section 1.2 and state our main result (Theorem 4) in Section 1.4. The main ideas and
the overview of the proof of Theorem 4 are given in Section 2. The proof of Theorem 4 is
postponed to Section A.

1.2 Preliminaries

Let [n] be the set {1,...,n}. For w € F", let supp(w) = {i € [n] | w; # 0} and |w| =
| supp(w)|. For u = (uy,ug,...,uy), v = (v1,02,...,0,) € F” let (u,v) denote the bilinear

function from F" x F™ to F defined by (u,v) = Z u;v;. The dual code is defined by C*+ =
i=1
{ueF" |VceC: (u,c)=0}. Similarly, we define Cz, = {u e C* | [u| <t}. For w € F»
and S = {j1,J2,---,jm} C [n] we let w|s = (wj,, wj,, ..., wj,,), where j1 < jo < ... < jm,
be the restriction of w to the subset S. Similarly, we let C|s = {c|s | ¢ € C} denote the
projection of the code C onto S. We define C|_s = C|,,)\ s, i.e., projection of the code C to all
coordinates besides S. For ACNandbeNwelet A+b=b+A={a+b|ac A}. Fora
code C we let coord(C) to be a coordinate set of the code, e.g., if C C F™ then coord(C) = [n].
For the distribution D over the subsets of [n] we let D(I) to denote the probability that
a subset I C [n] is selected by D and supp(D) = {I C [n] | D(I) > 0}. For i € [n] we let
Np(i) = {I € supp(D) | i € I}.
Now we define testers and LTCs (see [27, 43] for the justification of this definition).

» Definition 1 (LTCs and Testers). A g-query tester for a code C C F" is a distribution D
over subsets I C [n] such that |I| < q. A g-query tester D is a (g, ¢, p)-weak tester if for all
w e F", 6(w,C) > p we have IPIY‘J[w|1 ¢ C|1] > €. A g-query tester D is a (g, €)-strong tester

if for all w € F™ we have IPIZ‘)[w|1 ¢ Clr] > € 6(w,C).
A code C CF™ is a (q, €, p)-weak LTC if it has a (g, €, p)-weak tester. A code C C F" is a
(g,€)-strong LTC if it has a (g, €)-strong tester.

» Remark. Although the tester in Definition 1 does not output accept or reject, the way a
standard tester does, it can be converted to output accept, reject as follows. Whenever the
task is to test whether w € C and a subset I C [n] is selected by the tester, the tester can
output accept if w|; € C|; and otherwise output reject. In this manner, the tester always
accepts the codewords of C.

It is not hard to see that every strong LTC is a weak LTC, but not vice versa [43,
Proposition B.1].

The support of the tester D¢ for the code C C F™ is denoted by supp(Dc¢) and defined
to be supp(D¢) = {I C [n] | De(I) > 0}. We say that D¢ is uniform over its support if for
each I1, I, € supp(D¢) we have Do(I1) = De(I2). The test neighbors of the coordinate
i € [n] are defined by Np_ (i) = {I C [n] | Dc(I) > 0,7 € I}.

1.2.1 Tensor Product of Codes

The definitions appearing here are standard in the literature on tensor-based LTCs (e.g.,
[10, 36, 43, 20, 41, 12]). For z € F™ and y € F"2 we let # ® y denote the tensor product
of z and y (i.e., the matrix M with entries M (i,j) = z, - y; where (¢,7) € [n2] X [n1]). Let
R CF™ and C C F™ be linear codes. We define the tensor product code R ® C to be the
linear space spanned by words r ® ¢ € F"2*™ for r € R and ¢ € C. Some known facts
regarding the tensor products (see e.g., [20]):
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The code R ® C consists of all ny X n; matrices over F whose rows belong to R and

columns belong to C,

dim(R @ C) = dim(R) - dim(C),

rate(R ® C) = rate(R) - rate(C) and

J(R®C)=46(R)-(C).
We let C®! = C and C®™ = C®(m=1) & C for m > 1. Note by this definition, C®2’ = C and
2" =®2" 7 9% for t > 0. We also notice that for a code C C F” and m > 1 it holds
that rate(C®™) = (rate(C))™, §(C®™) = (6(C))™ and the blocklength of C®™ is n™. We
notice that if coord(C) = [n] then the coordinate set of C ® C is coord(C ® C) = [n] X [n].

1.3 Robust Testing

In this section we define some properties of codes that are sufficient for robust testing. We
start this section by defining the notion of robustness (Definition 3) as was introduced in
[10] following [7]. To do that we provide the definition of local distance (Definition 2), which
will be used in Definition 3 and later in our proofs. In this section we use n to denote the
blocklength of the code C, i.e., n = |coord(C)|. Without loss of generality we assume that
coord(C) = [n].

» Definition 2 (Local distance). Let C C F™ be a code and w|; be the view on the coordinate
set I C [n] obtained from the word w € F™. The local distance of w from C with respect to
I'is A(wl|r,C|r) = minc € C{A(w|r, c|r)} and similarly the relative local distance of w from
C with respect to I is §(wl|r, C|r) = mineec {d(wlr, c|1)}-

Informally, we say that a tester is robust if for every word that is far from the code,
the tester view is far on average from any consistent view. This notion was defined for
LTCs following an analogous definition for PCPs [7, 18]. We are ready to provide a general
definition of robustness.

» Definition 3 (Robustness). Given a tester (i.e., a distribution) D for the code C' C F™, we
let
P(w) = E [6(w|r,C|1)] be the expected relative local distance of input w.
I~D

We say that the tester D has robustness p”(C) on the code C if for every w € F™ it holds
that p?(w) > pP(C) - d(w,C). Let {C,},, be a family of codes where C,, is of blocklength
n and D,, is a tester for C,,. A family of codes {C},}, is robustly testable with respect to
testers {D,, },, if there exists a constant o > 0 such that for all n we have pP(C,,) > a.

1.4 Main Result

In this paper we show the explicit construction of strong LTCs over a fixed field with a
range of parameters asked by Goldreich and Sudan [27]. Although the requested range of
parameters was achieved for the probabilistic construction of strong LTCs [43, 42], explicit
strong LTCs with this range of parameters was not obtained.

» Theorem 4 (Main Theorem). There exist constants q,d, e,y > 0 and a constant size field
F such that for infinitely many n € NT we have an explicit construction of a linear code
C CF", where
C is a (g,€)-strong LTC,
0(C) > v and rate(C) >

log? n *
The proof of Theorem 4 is given in Section A. Before we are going over the proof let us
present the overview and the main ideas of this proof in Section 2.
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2 Overview of the Proof

Roughly speaking, to prove Theorem 4 we apply the arguments of [43, 42] to the construction
of [18] (which was obtained by applying the gap amplification procedure on the codes of [11]).
However, it is impossible to use the observations of [43, 42] as is since there are considerable
differences between the construction of [11] and the construction of [43, 42] (based on [36]).

The first obstacle is that the codes of [11] were obtained from iterative polynomial
constructions, while the codes appeared in [43, 42] (based on [36]) are tensor products of
general error correcting codes. This issue is resolved since the construction of [11] can be
viewed as a kind of tensoring over a large field (see [36, Section 7.2]). It is worth to mention
that while [43, 36] used iterative 3-wise tensor products for the code construction, [11] can
be viewed as iterative 2-wise tensor products (see Section A.2). In general, codes composed
as 2-wise tensor products might be not testable [17, 40, 25], however, there are still ways to
use such kind of code products to obtain locally testable codes, e.g., [20, 12, 13, 36].

The second difficulty is that both kind of constructions have the 'code’ coordinates and
'proof’ coordinates. While there is no distance guarantee on the proof coordinates in [11],
the constant relative distance on these coordinates is required in the works of [43, 42]. More
formally, consider a code C' C F™ from [11] and assume that [n] is partitioned to code
coordinates set s; and proof coordinates set so, i.e., s1 U sy = [n], s1 Ns2 = . So, while
nothing could be guaranteed regarding §(C|s, ), to use the arguments of [43, 42] we need to
know that §(C|s,) is constant, or in words, C|,, has constant relative distance.

In [43] there was suggested a way to slightly modify the construction of [36] to ensure
the good distance on the proof coordinates. However, it would be much more problematic
to modify a part of coordinates in the construction of [11] since it has very concrete and
non-flexible polynomial-based structure. Therefore, the main technical ingredient in our
work is the modification of the arguments of [43, 42] to avoid ’good distance’ requirement
from the proof coordinates. We succeed to prove that it was redundant requirement and
only a good distance on the code coordinates is sufficient.

So far, the proof (presented in Section A) is starting from presenting central concepts
which play crucial role in the proof. After these concepts are presented, the rest of the proof
is done in 3 stages. The first stage (Section A.2) argues that a construction of [11] can
be viewed as iterative tensoring with some “smart” projection procedure, where in every
iteration a tensoring is done only over the code coordinates and a part of the symbols are
moved from the code coordinates part to the proof coordinates part.

The second stage (Section A.3) is to recall the arguments of [43] to argue that codes
of [11] are COLTCs (Definition 7). This stage reproves one of the technical ingredients of
[43] without “good” distance requirement from the proof coordinates, and in particular,
Corollary 16 shows that the codes of [11] are COLTCs (and hence strong LTCs) even though
no distance is guaranteed on the proof coordinates.

Finally, in Section A.4 we recall the arguments of [42] to argue that when the gap
amplification procedure of [18] is applied to the codes of [11] it yields strong LTCs. In
words, this section recalls a relaxed LTC (rLTC) concept (Definition 17) from [42], and the
observation that strong LTCs are also relaxed LTCs with the corresponding range parameters.
Theorem 19 and its Corollary 20 claim that the gap amplification of Dinur [18] can be
applied to the codes of [11], proven to be COLTCs in Corollary 16 (and thus are strong
LTCs and rLTCs), and yields rLTCs with the constant first soundness parameter and inverse
poly-log second soundness parameter. Corollary 21 implies that such rLTCs can be explicitly
converted to the required strong LTCs with constant soundness.
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The fact that the codes construction of [11] and the gap amplification procedure are

deterministic, yields explicit strong LTCs.
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A Proof of Theorem 4

In this section we present the proof of Theorem 4 which contains three parts. Let us first
present in Section A.1 the central concepts from [43] which play the important part in this
work as well.

A.1 Preliminary notations: Core Oriented LTCs and Core Oriented
Robustness

» Definition 5 (A core of the code). Let C' C F" be a linear code. A core of the code C,
denoted by A(C), is a nonempty subset of [n] such that dim(C) = dim(C|4(c)), i.e., any
assignment to the entries of A(C) uniquely determines the entries of [n]\ A(C). In particular,
for any ¢ € C there is no ¢’ € C such that C|A(C) = C/|A(C) and C|[n]\A(C) #+ C/|[n]\A(C)~
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We say that A(C') is a y-core of the code C'if A(C) is a core of C, §(C|a(cy) = % >
.

Clearly, there might be many options for A(C), and in this case we fix only one
such option. If A(C) = [n] then for any w,w’ € F"* we let o(w|ppacc), W' |[mpace)) =
§(wlmpaceys Clinpace)) = 0

We let residue(C) = [n] \ A(C) to be the non-core coordinates of C.

Usually, in the locally testable codes the distance is measured exactly as in the general
error-correcting codes, i.e., with respect to the entire blocklength. However, when we consider
a specific subset of coordinates, called the core of the code, we need to define a new concept
of distance (used in [43]).

» Definition 6 (Core oriented distance). Assume C' C F™ is a linear code and A(C) is its
core. We define a core oriented distance between two words w,w’ € F™ to be

Sa(c)(w,w') = max {§(w, w'), §(w| acy, v ac))}
and a core oriented distance between the word w € F™ and the code C to be
dac)(w,C) = géig((sA(C) (w, ).

We note that for every code C C F" with a core A(C) and w € F™ it holds that
dacy(w,C) > 0(w,C). In particular, if w is d-close to C' with respect to the core oriented
distance then w is d-close to C' with respect to the “standard” distance d(w, C).

An important building block in the proof is a new kind of local testable code defined in
[43].

» Definition 7 (Core Oriented LTC (COLTC)). Let C' C F™ be a linear code and let D be a
distribution over subsets I C [n] such that |I| < ¢. A D is a (g,€)-COLTC tester if, given
that A(C) is a core of C, for all w € F™ we have

IEE[,LU'I §é C|I] 2 € - (5A(C)(’LU,C).

A code C' C F" is called a (g,€)-COLTC if it has a (g, €)-COLTC tester.

Let C be a linear code and A(C) be its core. If C is a (g, €)-COLTC (with respect to the
tester D¢) then C' is a (g, €)-strong LTC. To see this let w € F™ and note that

Pr [w]; € C|1] > €- 040y (w,c) > €-0(w,C).
I~De

A.1.1 Core Oriented Robust Testing of COLTCs

Now we present one of the central concepts in [43] called “core robustness”. Before that recall
the more standard notion of robust testing (Definition 3) used e.g., in [10, 20, 12, 36].

In contrast to robust testing, in a core oriented robust testing (Definition 8) we pay a
special attention on the core of the code and consider a core oriented distance rather than a
standard distance as in Definition 3.

» Definition 8 (Core robustness). Assume that D is a tester (i.e., a distribution) for the linear
code C' C F™ with a core A(C'). Assume that for every subset I C [n] such that D(I) > 0 it
holds that C|; is a linear code with a core A(C|r). We let

/)E(C)(w) [6acc)(wlr, Clr)]

= E
I~D
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be the expected core oriented relative local distance of input w. We say that the tester D
for the code C has core robustness pg(c)(C) if for every w € F™ it holds that pg(c)(w) >

Pg(c)(c) : 5A(C)(w7 C)~
It turns out that a combination of “core robustness” with COLTCs is highly useful.

» Claim 9 (Claim 7.2 in [43]). Let C be a (q,€)-COLTC and let D¢ be its tester. Let

C C Foord©) be g linear code with a core A(C’) and let D¢ be its tester. Assume that

A

pi(%)(é’) > « and for every local view I C coord(C') such that Dg(I) > 0 it holds that
C’|I =C. Then C is a (¢, €)-COLTC.

A.1.2 Star Products

Now we provide a definition of star products from [43]. These products of codes are very
similar to ones used in [36, Section 4], although there exist minor differences. We notice
that in this work we are interested mainly in such products of second power (and will not
consider m-wise products for m > 3 as in [43]).

Informally, 2-star product of C' € F" is defined by taking tensor product on its core
coordinates A(C) and appending its non-core parts (residues) [n]\ A(C) to every row/column
of such tensor product. This tensor product becomes a core of the obtained start product,
and all appended residues are the residue of the star product.

» Definition 10 (Star Products - C*2). . Let C C F™ be a linear code with a y-core A(C),
where v > 0 is a constant.

We let C*2 to be a linear code over F such that its core and residue will be defined as
follows.

we let the core coordinates A(C*?) = A(C) x A(C), and the projection of the code on
the core coordinates is C*?| 4(c+2) = C|a(c) @ Cla(c)- The residue of C*? (residue(C*?)) is
defined by the residue of every codeword ¢ € C*? as follows:

view every such codeword | 4(cs2y € C*?| a(c+2) as a matrix of size |A(C)] x [A(C)|. Its
residue(c) is defined by appending for every row r of c|4(c+2) attach residue residue(r) such
that both parts together is a codeword in C, i.e., (r,residue(r)) € C. Since A(C) is a core,
the residue(r) is defined uniquely given 7.

The blocklength of C*2 is [A(C)|> +2- A(C) - (n — A(C)).

Now, let us define formally the tester for the star product.

» Definition 11 (Tester for Star Product). Let D¢ be a tester for a linear code C' € F™ with
core A(C). Then, a tester for C*2, denoted by D¢z, is defined by:
pick random r € {0,1}
if 7 = 0 pick random row of A(C*?) and its residue.
else pick random column of A(C*?) and its residue.

Notice that for every local view I C coord(C*?) such that Dgw«2(I) > 0 it holds that
C*2|; = C. Le., a local view of such a tester on any codeword of C*? is always a codeword

of C.

The rest of the proof is organized as follows. A first part of the proof (Section A.2) argues
that codes of [11] can be viewed as tensoring over sufficiently large field, together with the
explicit projection step. The purpose of this part is to define the required abstraction over
the codes of [11] needed for our work.
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A second part is presented in Section A.3, where it is explained that the codes of Ben-
Sasson and Sudan [11] are COLTCs, however, their parameters range is not sufficiently nice.
Here we use the fact that their construction can be viewed as a repetitive tensoring as was
explained in Section A.2.

Finally, Section A.4 recalls the notion of a relaxed LTC and some related results [42].
It shows that a work of Dinur [18] can be used to improve that soundness of the relaxed
LTCs. It turns out that this improvement is sufficient to change the codes of [11] to relaxed
LTCs with good enough parameters (which is what we need by Corollary 21). Since the gap
amplification technique is explicit, it yields explicit construction of relaxed LTCs. Corollary
21 proves that relaxed LTCs with sufficiently nice parameters can be converted to strong
LTCs with constant soundness. That proves Theorem 4.

A.2 Abstraction over the codes of [11]
Let us recall an auxiliary procedure that will be used in the code constructions.

» Definition 12 (Projection of core symbols). Given a linear code C' C F" with a code A(C),
the projection(C) C F" is a linear code with a new core A’ = A’(C) C A(C), i.e., some core
symbols moved to the non-core part.

The abstraction assumed in this Section described in [36, Section 7.2]. For the sake of
completeness we give the required details in this section.

Let 0,7 > 0 be constants and F be sufficiently large field. °

The explicit construction of [11] can be viewed in the following way. It started from an
error-correcting code of constant size blocklength C; C F™ such that A(Cy) = [n1], and for
i=2...loglogn the following holds.

T, = C}?,, i.e., tensoring is done over the core coordinates and residue coordinates are

just appended to every row/column code.

Ci+1 = projection(T;), where a constant fraction of the code coordinates are moved from

the “core” part (A(T;)) to the “residue” part (residue(T;)). Notice that projection is the

explicitly defined procedure.

A(Ciy1) is a y-core of Cjy1, and in particular, §(C; a(projection(Cy))) = V-

It is known that rate(Ci| a(projection(Cy)))) = 0

It is known that rate(C;;1) > § - rate(C;)

It was proved in [11] that if w € F" and w|a(c,) ¢ Cila(c,) it holds that the local view
of the tester D¢, is far from the corresponding code, and this distance is proportional to

S(wlaceyy, Cilae,))-

» Claim 13 ([11]). Let i be the number of iteration in the code construction of [11]. Let
C; CF™ be the [11] code from i iteration and A(C;) its y-core for a constant v > 0. There
exists a constant €, depending only on v such that for every M € FIACHIXIACO] the random
row/column of M is € - 6(M, Ci|ac,) ® Cilacc,)) close to Ci|acy)-

In the classical PCPP structure [11], i.e., the distance is measured only between the core
coordinates, and proof (non-core) coordinates help only to test, without being involved into

5 The codes of [11] are constructed over fields of size linear in a blocklength of the code. The folklore
statement says it is not hard to explicitly convert such strong LTCs to be over a constant size field with
similar parameters.
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the distance calculations. In our scenario (strong locally testable codes) we need to take the
proof coordinates into consideration as well.
It is not hard to verify that the above codes construction has the following properties.

» Claim 14. Let C' C F™ be the code from the above construction and D¢ be its tester. Then,
D¢ is uniform over supp(D¢), and
for each i € [n] we have |[Np,(i)| < O(polylog(n)).

The proof is omitted due to the space limitations.

A.3 The codes of [11] are COLTCs — Main Technical ingredient

Now we reprove Theorem 15 ([43]) showing that the star products are robustly testable with
respect to “core robustness” (see Definition 8). Then one can conclude that if C' is a g-query
COLTC, then C*? is a g-query COLTC.

We are ready to prove that the star product of codes has the core robustness.

» Theorem 15 (Star Products has core robustness). Let C' be a linear code with a ~y-core
A(C). Assume that D is the star product tester for the code C**. Let €, be a constant from
Claim 13. Then,
€y Y
10 °

The proof of Theorem 15 is omitted due to the space limitation.

We are ready to claim that the codes of [11] are COLTCs with constant query complexity
and inverse poly-log soundness. The proof of the corollary is omitted.

PRy (C2) =

» Corollary 16 (The codes of [11] are COLTCs). Let C' C F™ be obtained from the construction
in Section A.2 after O(loglogn) iterations. Then, C is a ( )-COLTC and as a
-strong LTC. Moreover, by Claim 14 we have

1
4> polylogn
consequence a (g, m)
D¢ is uniform over supp(D¢), and
for each i € [n] we have |[Np,(i)| < O(polylog(n)).

A.4 Relaxed LTCs and the Gap Amplification

First, we recall a notion of relaxed LTCs (rLTCs) Definition 17 from [42]. Intuitively, relaxed
LTCs have two kind of coordinates: those with good testability and those which worse (but
non-trivial) testability (see Definition 17). Then, we state Theorem 19 and its Corollary 20
saying that the gap amplification of [18] when applied on the codes of [11] yields rLTCs with
constant first soundness parameter and inverse poly-log second soundness parameter.

Finally, we recall Corollary 21 from [42] saying that such relaxed LTCs can be easily
converted to strong LTCs with constant soundness. Hence Theorem 4 follows.

» Definition 17 (Relaxed LTC). A g-query tester D is a (g, €1, €2)-rLTC tester for a linear code
C C F™ with a core A(C), if for every w € F™ there exists ¢ € C such that IP%[wh ¢ Cl1] >

max {61 “0(wlacey, claey), €2 - 5(w\_A(C),c|_A(C))}. A code C C F™ with a core A(C) is a
(g,€1,€2)-rLTC if it has a (g, €1, €2)-rLTC tester.

The parameter q is called the query complexity, €; is called the first soundness parameter
and €5 is called the second soundness parameter.

Intuitively, think that €; is a constant, but € is sub-constant.
The following simple observation [42] says that any strong LTC is also a relaxed LTC
with similar parameters.
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» Observation 18 (Strong LTCs are relaxed). If C C F™ is a (g, €)-strong LTC then it is also
a (q,€,1)-rLTC with regards to the code A(C) = [n].

The observation follows immediately from the definition of relaxed LTCs (Definition 17).

In [42] it was explained that the gap amplification of Dinur can be applied to strong
LTCs with inverse poly-log soundness, which can be considered as relaxed LTCs (Observation
18). In this case, the gap amplification preserves it to be an rLTC where first soundness
parameter increased by a constant, while the second parameter decreased by a constant.
In particular, the arguments of Section 4 and Section 5 in [42] can be summarized to the
following theorem describing the affect of the gap amplification technique when applied to
the codes from Section A.2.

» Theorem 19 (Stated in [42], Section 5). Let ¢ >= 2 be a constant. Assume C CF" is a
(q, m)-stmng LTC and D¢ its tester such that it holds that
rate(C) = m and 6(C) > Q(1)

Dc is uniform over supp(D¢) and for each i € [n] we have |[Np (i)] < O(logn).

Then the following holds.

For constant ¢ > 2,¢ > 0, a fived field F and infinitely many n € NT we have explicit
construction for a linear code C' C F™ with a core A(C") such that C' is a (q,€

rLTC, 6(C'| 4cry) = Q1) and rate(C’) =

1 ) -
> polylog(n)
1
polylog(n) *

Since Corollary 16 satisfies the assumption of Theorem 19, we conclude the following
corollaries.

» Corollary 20. For constant ¢ > 2,¢ > 0, a fized field F and infinitely many n € N*
we have explicit construction for a linear code C C F™ with a core A(C) such that C is a
(g, €, m)—rLTC, 5(Claey) = 1) and rate(C) = m.

» Corollary 21. Assume that for constants q > 2,¢ > 0, field F and infinitely many
n € N* we have a linear code C' C F" with a core A(C) such that C is a (q,e, m)—
rLTC, 6(Clawcy) = Q1) and rate(C) = m. Then, there exists C' C F™ such that
n <n' <n-polylog(n), C’" is a (q,€/6)-strong LTC, §(C") = Q(1) and rate(C") =

1
. . polylog(n') *
Moreover, C' is constructed explicitly from C.

Theorem 4 follows from Corollary 20 and Corollary 21.
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