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Abstract
Probabilistic bisimilarity, due to Segala and Lynch, is an equivalence relation that captures which
states of a probabilistic automaton behave exactly the same. Deng, Chothia, Palamidessi and
Pang proposed a robust quantitative generalization of probabilistic bisimilarity. Their probabil-
istic bisimilarity distances of states of a probabilistic automaton capture the similarity of their
behaviour. The smaller the distance, the more alike the states behave. In particular, states are
probabilistic bisimilar if and only if their distance is zero.

Although the complexity of computing probabilistic bisimilarity distances for probabilistic
automata has already been studied and shown to be in NP ∩ coNP and PPAD, we are not
aware of any practical algorithm to compute those distances. In this paper we provide several
key results towards algorithms to compute probabilistic bisimilarity distances for probabilistic
automata. In particular, we present a polynomial time algorithm that decides distance one.
Furthermore, we give an alternative characterization of the probabilistic bisimilarity distances as
a basis for a policy iteration algorithm.
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1 Introduction

Behavioural equivalences, such as bisimilarity, are one of the cornerstones of concurrency
theory. Recall that a behavioural equivalence ∼ ⊆ S × S, where S is the set of states of the
model, satisfies

s ∼ s
if s ∼ t then t ∼ s
if s ∼ t and t ∼ u then s ∼ u

for all s, t, u ∈ S. If s ∼ t then states s and t behave the same.
As first observed by Giacalone, Jou and Smolka [17], behavioural equivalences are not

robust for models that contain quantitative information such as probabilities and time. This
lack of robustness is caused by the discrepancy between the discrete nature of behavioural
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9:2 Probabilistic Bisimilarity Distance One

equivalence and the continuous nature of the quantitative information on the which the beha-
vioural equivalence relies. In particular, even small changes to the quantitative information
may cause behaviourally equivalent states become inequivalent or vice versa.

Giacalone et al. proposed behavioural pseudometrics as a robust quantitative generalization
of behavioural equivalences. A behavioural pseudometric d : S × S → [0, 1] satisfies

d(s, t) = 0 if and only if s ∼ t
d(s, t) = d(t, s)
d(s, u) ≤ d(s, t) + d(t, u)

for all s, t, u ∈ S. The distance d(s, t) measures the similarity of the behaviour of states s
and t. The smaller this distance, the more alike the states behave. Distance zero captures
that states are behaviourally equivalent.

In this paper, we focus on probabilistic automata. This model was first studied by Segala
in [27]. It captures both nondeterminism (and, hence, concurrency) and probabilities. Let us
consider a simple example.
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The states of a probabilistic automaton are labelled. These labels provide a partition of the
states so that states satisfying the same basic properties of interest are in the same partition.
In the above example, the labels are represented by colours. Each state has one or more
probabilistic transitions. For example, the state t has a single probabilistic transition that
takes state t to itself with probability one. State f has two probabilistic transitions. The
one takes state f to state h with probability one. The other represents a fair coin toss, that
is, it transitions to state h with probability 1

2 and to state t with probability 1
2 . Also state b

has two transitions, one of which represents a biased coin toss.
Segala and Lynch [28] introduced probabilistic bisimilarity. This behavioural equivalence

for probabilistic automata generalises the one introduced by Larsen and Skou [25]. The
latter is applicable to models without nondeterminism, known as labelled Markov chains.
States s and t of a probabilistic automaton are probabilistic bisimilar if for each outgoing
probabilistic transition of state s there exists a matching outgoing probabilistic transition
of state t, and vice versa. Two probabilistic transitions match if they both transition to
each probabilistic bisimilarity equivalence class with the exact same probability. States f
and b in the above example are not probabilistic bisimilar. Although the transition from
state f to state h can be matched by the transition from state b to state h, the probabilistic
transitions representing a fair and biased coin toss do not match since the probabilities are
slightly different.

Deng, Chothia, Palamidessi and Pang [12] introduced a behavioural pseudometric for
probabilistic automata that generalises probabilistic bisimilarity. The Hausdorff metric [18]
and the Kantorovich metric [22] are key ingredients of this pseudometric. The former is used
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to capture nondeterminism. This idea dates back to the work of De Bakker and Zucker [4].
The latter was first used by Van Breugel and Worrell [7] to capture probabilistic behaviour.
On the one hand, the behaviours of the states h and t of the above example are very different
since their labels are different. As a result, their probabilistic bisimilarity distance is one.
On the other hand, the behaviours of the states f and b are very similar, which is reflected
by the fact that these states have probabilistic bisimilarity distance 1

100 .
Tracol, Desharnais and Zhioua [34] also introduced a behavioural pseudometric for

probabilistic automata. Their probabilistic bisimilarity distances generalise probabilistic
bisimilarity as well, but are different from the ones introduced by Deng et al. An example
showing the difference can be found in [34, Example 5]. To compute their probabilistic
bisimilarity distances, they developed an iterative algorithm. In each iteration, a maximum
flow problem needs to be solved. The resulting algorithm is polynomial time.

The complexity of computing the probabilistic bisimilarity distances for probabilistic
automata a la Deng et al. was first studied by Fu [15]. He showed that these probabilistic
bisimilarity distances are rational. Furthermore, he proved that the problem of deciding
whether the distance of two states is smaller than a given rational is in NP ∩ coNP. The
proof can be adapted to show that the decision problem is in UP ∩ coUP [16]. Recall that
UP contains those problems in NP with a unique accepting computation. Van Breugel and
Worrell [8] have shown that the problem of computing the probabilistic bisimilarity distances
is in PPAD, which is short for polynomial parity argument in a directed graph.

For the behavioural pseudometric of Deng et al., states are probabilistic bisimilar if and
only if they have distance zero. Since probabilistic bisimilarity can be decided in polynomial
time, as shown by Baier [2], distance zero can be decided in polynomial time as well. In
Section 5 we present a polynomial time algorithm that decides distance one.

As we have already shown in [32] in the context of labelled Markov chains, being able to
decide distance zero and distance one in polynomial time has significant impact on computing
probabilistic bisimilarity distances. For example, we can determine in polynomial time how
many, if any, distances are non-trivial, that is, greater than zero and smaller than one. The
technical details in this paper are considerably more involved than those in [32].

Deng et al. define their pseudometric as a least fixed point. In Section 4 we present an
alternative characterization of the probabilistic bisimilarity distances. This characterization is
similar to the one presented for labelled Markov chains by Chen, Van Breugel and Worrell [9].
The latter characterization provided the foundation for the policy iteration algorithm to
compute the probabilistic bisimilarity distances for labelled Markov chains by Bacci, Bacci,
Larsen and Mardare [1] (see also [31]). Our alternative characterization plays a key role in
the correctness proof of our algorithm.

2 Order and Distances

In this section, we provide some definitions and results from the literature about orders and
distances that we will use in the remainder of this paper. For more details we refer the reader
to, for example, [11] and [3]. Given a set S, we denote the set of functions from S × S to
[0, 1] by [0, 1]S×S . As in the work of Desharnais et al. [13], we endow the set [0, 1]S×S with
the following natural order.

I Definition 1. The relation v ⊆ [0, 1]S×S × [0, 1]S×S is defined by

d v e if d(s, t) ≤ e(s, t) for all s, t ∈ S.

I Proposition 2. 〈[0, 1]S×S ,v〉 is a complete lattice.

CONCUR 2018



9:4 Probabilistic Bisimilarity Distance One

Proof. See, for example, [13, Lemma 3.2]. J

Let 〈X,≤〉 be an ordered set. Let f : X → X. Following [11, Definition 8.14], we define
the following three notions:

x ∈ X is a fixed point of f if f(x) = x,
x ∈ X is a pre-fixed point of f if f(x) ≤ x, and
x ∈ X is a post-fixed point of f if x ≤ f(x).

A function f : X → X is monotone if for all x, y ∈ X, x ≤ y implies f(x) ≤ f(y). The
following result is known as the Knaster-Tarski fixed point theorem [24, 33].

I Theorem 3. Let X be a complete lattice and let f : X → X be a monotone function.
(a) f has a greatest fixed point.
(b) The greatest fixed point of f is the greatest post-fixed point of f .
(c) f has a least fixed point.
(d) The least fixed point of f is the least pre-fixed point of f .

Proof. See, for example, [11, Theorem 2.35] and [11, Theorem 8.20]. J

We denote the greatest and least fixed point of a function f by νf and µf , respectively.
Given a set X, we denote the set of subsets of X by 2X . The correctness of our iterative
algorithm to decide distance one relies on the following theorem.

I Theorem 4. Let X be a finite set and let Φ : 2X → 2X be a monotone function.
(a) µΦ = Φn(∅) for some n ∈ N.
(b) νΦ = Φn(X) for some n ∈ N.
(c) If Y ⊆ µΦ then µΦ = Φn(Y ) for some n ∈ N.

Proof. See, for example, [10, Lemma 8]. J

The set [0, 1]S×S also carries the following natural metric.

I Definition 5. The function ‖ · − · ‖ : [0, 1]S×S × [0, 1]S×S → [0, 1] is defined by

‖d− e‖ = sup
s,t∈S

|d(s, t)− e(s, t)|.

I Proposition 6. 〈[0, 1]S×S , ‖ · − · ‖〉 is a nonempty complete metric space.

Proof. See, for example, [3, Section 1.1.2]. J

Let 〈X, d〉 be a metric space and c ∈ (0, 1]. A function f : X → X is c-Lipschitz if for
all x, y ∈ X, d(f(x), f(y)) ≤ c d(x, y). A 1-Lipschitz function is also called nonexpansive. A
function is contractive if it is c-Lipschitz for some c ∈ (0, 1). The following result is known as
Banach’s fixed point theorem [5].

I Theorem 7. Let X be a nonempty complete metric space and f : X → X a contractive
function. Then f has a unique fixed point.

Proof. See, for example, [3, Theorem 1.34]. J

The Hausdorff metric [18] is defined as follows.

I Definition 8. The function H : [0, 1]X×X → [0, 1]2X×2X is defined by

H(d)(M,N) = max
{

max
µ∈M

min
ν∈N

d(µ, ν),max
ν∈N

min
µ∈M

d(µ, ν)
}
.
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Given a nonempty finite set X, we denote the set of probability distributions on X by
Distr(X). For µ ∈ Distr(X), we define its support by support(µ) = {x ∈ X | µ(x)> 0 }.

I Definition 9. Let µ, ν ∈ Distr(X). The set Ω(µ, ν) of couplings of µ and ν is defined by

Ω(µ, ν) =

ω ∈ Distr(X ×X)

∣∣∣∣∣ ∑
x∈X

ω(x, y) = µ(y) and
∑
y∈X

ω(x, y) = ν(x)

 .

In general, the set Ω(µ, ν) is infinite. The set of vertices of the convex polytope Ω(µ, ν)
is denoted by V (Ω(µ, ν)). The latter set is finite (see, for example, [23, page 259]). This fact
will be crucial in the proof of Lemma 20. The Kantorovich metric [22] is defined as follows.

I Definition 10. The function K : [0, 1]X×X → [0, 1]Distr(X)×Distr(X) is defined by

K(d)(µ, ν) = min
ω∈V (Ω(µ,ν))

∑
u,v∈S

ω(u, v) d(u, v).

The Hausdorff metric and the Kantorovich metric are key ingredients of the definition of
the probabilistic bisimilarity distances, as we will see in the next section.

3 Probabilistic Automata

Also in this section, we recall some definitions and results from the literature. In particular,
we introduce the model of interest, probabilistic automata, its best known behavioural
equivalence, probabilistic bisimilarity, and its quantitative generalization. Probabilistic
automata were first studied in the context of concurrency by Segala [27].

I Definition 11. A probabilistic automaton is a tuple 〈S,L,→, `〉 consisting of
a nonempty finite set S of states,
a nonempty finite set L of labels,
a finitely branching transition relation → ⊆ S ×Distr(S), and
a labelling function ` : S → L.

Instead of (s, µ) ∈ →, we write s→ µ. A transition relation is finitely branching if for
all s ∈ S, the set {µ ∈ Distr(S) | s→ µ } is nonempty and finite. For the remainder of this
paper we fix a probabilistic automaton 〈S,L,→, `〉.

In order to define probabilistic bisimilarity, we first show how a relation on states can be
lifted to a relation on distributions over states. This notion of lifting is due to Jonsson and
Larsen [21].

I Definition 12. The lifting of a relation R ⊆ S×S is the relation R↑ ⊆ Distr(S)×Distr(S)
defined by (µ, ν) ∈ R↑ if there exists ω ∈ V (Ω(µ, ν)) such that support(ω) ⊆ R.

Probabilistic bisimilarity, a notion due to Segala and Lynch [28], is introduced next.
States are probabilistic bisimilar if they have the same label and each probabilistic transition
of the one state can be matched by a probabilistic transition of the other state, and vice versa.
Two probabilistic transitions match if they transition with exactly the same probability to
states that behave exactly the same.

I Definition 13. An equivalence relation R ⊆ S × S is a probabilistic bisimulation if for all
s, t ∈ S, if (s, t) ∈ R then

`(s) = `(t),

CONCUR 2018



9:6 Probabilistic Bisimilarity Distance One

for all s→ µ there exists t→ ν such that (µ, ν) ∈ R↑ and
for all t→ ν there exists s→ µ such that (ν, µ) ∈ R↑.

Probabilistic bisimilarity, denoted ∼, is the largest probabilistic bisimulation.

For a proof that a largest probabilistic bisimulation exists, we refer the reader to, for
example, [6, Proposition 4.3]. Relying on exact matching is the cause for a lack of robustness.
To address this shortcoming, we define a quantitative generalization of probabilistic bisimil-
arity, the probabilistic bisimilarity distances, as the least fixed point of the function ∆1. To
prove an alternative characterization of the probabilistic bisimilarity distances in the next
section, we also introduce a family of discounted versions of ∆1, namely ∆c with c ∈ (0, 1).

I Definition 14. Let c ∈ (0, 1]. The function ∆c : [0, 1]S×S → [0, 1]S×S is defined by

∆c(d)(s, t) =
{

1 if `(s) 6= `(t)
c H(K(d))({µ | s→ µ }, { ν | t→ ν }) otherwise.

I Proposition 15. For all c ∈ (0, 1], the function ∆c is monotone.

Proof. See [12, Lemma 2.10]. J

Since 〈[0, 1]S×S ,v〉 is a complete lattice according to Proposition 2 and ∆c is a monotone
function by Proposition 15, we can conclude from Theorem 3(c) that ∆c has a least fixed
point µ∆c. The fact that the probabilistic bisimilarity distances µ∆1 provide a quantitative
generalization of probabilistic bisimilarity is captured by the following theorem due to Deng
et al. [12].

I Theorem 16. For all s, t ∈ S, µ∆1(s, t) = 0 if and only if s ∼ t.

Proof. See [12, Corollary 2.14]. J

4 An Alternative Characterization

In the previous section, we defined the probabilistic bisimilarity distances as a least fixed
point. Next, we present an alternative characterization. This generalizes the characterization
of probabilistic bisimilarity distances for labelled Markov chains due to Chen et al. [9,
Theorem 8]. First, we partition the set of state pairs as follows.

S2
0 = { (s, t) ∈ S × S | s ∼ t }
S2

1 = { (s, t) ∈ S × S | `(s) 6= `(t) }
S2

? = (S × S) \ (S2
0 ∪ S2

1)

Note that, due to Theorem 16 the state pairs in S2
0 have distance zero. From Definition 14

we can infer that the state pairs in S2
1 have distance one. The state pairs in S2

? cannot have
distance zero, again due to Theorem 16, but can have any distance in the interval (0, 1],
including distance one.

The characterization can be viewed as a two player game, a max player and a min player,
similar to the one presented in [8]. The game can be considered a quantitative generalization
of the game that characterizes bisimilarity (see [30]). In this turn based game, starting in
a pair of states (s, t), the max player chooses a probabilistic transition from either s or t.
Subsequently, the min player chooses a probabilistic transition from the other state and also
chooses a coupling. For example, if the max player picks s → µ and the min player picks
t → ν, then the min player also has to choose ω ∈ V (Ω(µ, ν)). This will be formalized in
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Definition 17. Recall that such a coupling ω is a probability distribution on S × S. From a
coupling ω the game moves to state pair (u, v) with probability ω(u, v).

Consider, for example, the following probabilistic automaton.

s t

u vv

1 1

1
2

1
2

1 1

Note that the states s and u are probabilistic bisimilar. The corresponding game graph can
be depicted as follows.

s, t

s, u s, v

1
2

1
2

1

Since the game will be used to characterize the probabilistic bisimilarity distances, the state
pairs for which we can easily determine their distance have no outgoing edges in the game
graph. In particular, state pairs with different labels, which have distance one, and state
pairs that are probabilistic bisimilar, which have distance zero, have no outgoing edges.

The objective of the max player is to maximize the expectation of reaching a state pair
with different labels. The min player tries to minimize this expectation. In the above example,
the max player tries to reach the state pair (s, v), whereas the min player tries to avoid that
from happening. The policies, also known as strategies, for the max and min player are
introduced next.

I Definition 17. The set A of max policies is defined by

A =

 A ∈ (S2
? → (S ×Distr(S)))

∀(s, t) ∈ S2
? :

(∃ν ∈ Distr(S) : A(s, t) = (s, ν) ∧ t→ ν)∨
(∃µ ∈ Distr(S) : A(s, t) = (t, µ) ∧ s→ µ)

 .

The set I of min policies is defined by

I =
{

I ∈ ((S ×Distr(S))→ Distr(S × S)) ∀(s, ν) ∈ S ×Distr(S) : ∃µ ∈ Distr(S) :
I(s, ν) ∈ V (Ω(µ, ν)) ∧ s→ µ

}
.

Given a policy A for the max player and a policy I for the min player, we define the value
function as the least fixed point of the function ΓA,I1 . This least fixed point captures the
expectation of reaching a state pair with different labels if both players use the given policies.
We also introduce a family of discounted versions of ΓA,I1 , namely ΓA,Ic with c ∈ (0, 1), that
we will use later in this section.

CONCUR 2018



9:8 Probabilistic Bisimilarity Distance One

I Definition 18. Let A ∈ A, I ∈ I and c ∈ (0, 1]. The function ΓA,Ic : [0, 1]S×S → [0, 1]S×S
is defined by

ΓA,Ic (d)(s, t) =


0 if (s, t) ∈ S2

0
1 if (s, t) ∈ S2

1
c
∑
u,v∈S

I(A(s, t))(u, v) d(u, v) otherwise.

I Proposition 19. For all A ∈ A, I ∈ I and c ∈ (0, 1], the function ΓA,Ic is monotone and
c-Lipschitz.

From Theorem 3(c) we can conclude that ΓA,Ic has a least fixed point, which we denote
by µΓA,Ic . In the remainder of this section we will show that there exist an optimal max
policy A∗ and an optimal min policy I∗ such that the corresponding value function captures
the probabilistic bisimilarity distances. In the above game graph, the red edge represents
the optimal max policy and the blue edges represent the optimal min policy. The proof of
µ∆1 = µΓA

∗,I∗

1 consists of two parts. First, we prove that there exists an optimal min policy.

I Lemma 20. ∃I ∈ I : ∀A ∈ A : µΓA,I1 v µ∆1.

Proof. Towards the construction of I∗ ∈ I, let s ∈ S and ν ∈ Distr(S). Since we restrict
our attention to finitely branching probabilistic automata,

µs,ν = argmin
s→µ

K(µ∆1)(µ, ν) (1)

exists. Because the set V (Ω(µs,ν , ν)) is nonempty and finite, we can define

I∗(s, ν) = argmin
ω∈V (Ω(µs,ν ,ν))

∑
u,v∈S

ω(u, v) µ∆1(u, v). (2)

By construction I∗ ∈ I.
Let A ∈ A. Since µΓA,I

∗

1 is the least pre-fixed point of ΓA,I
∗

1 according to Theorem 3(d),
to conclude that µΓA,I

∗

1 v µ∆1 it suffices to show that µ∆1 is a pre-fixed point of ΓA,I
∗

1 ,
that is, ΓA,I

∗

1 (µ∆1) v µ∆1. Let s, t ∈ S. We distinguish three cases.
If (s, t) ∈ S2

0 , then

ΓA,I
∗

1 (µ∆1)(s, t) = 0
= µ∆1(s, t) [Theorem 16]

If (s, t) ∈ S2
1 , then

ΓA,I
∗

1 (µ∆1)(s, t) = 1
= ∆1(µ∆1)(s, t)
= µ∆1(s, t).

Otherwise, (s, t) ∈ S2
? . Without any loss of generality, we assume that A(s, t) = (s, ν)
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with t→ ν. Then

ΓA,I
∗

1 (µ∆1)(s, t) =
∑
u,v∈S

I∗(A(s, t))(u, v) µ∆1(u, v)

=
∑
u,v∈S

I∗(s, ν)(u, v) µ∆1(u, v) [A(s, t) = (s, ν)]

= min
ω∈V (Ω(µs,ν ,ν))

∑
u,v∈S

ω(u, v) µ∆1(u, v) [(2)]

= K(µ∆1)(µs,ν , ν)
= min

s→µ
K(µ∆1)(µ, ν) [(1)]

≤ max
t→ν

min
s→µ

K(µ∆1)(µ, ν)

≤ H(K(µ∆1))({µ | s→ µ }, { ν | t→ ν })
= ∆1(µ∆1)(s, t)
= µ∆1(s, t). J

In the remainder of this paper, we denote the optimal min policy constructed in the
above proof by I∗. It remains to prove that there exists an optimal max policy. The proof of
this second part turns out to be more involved than the proof of the first part contained in
above lemma. The proof has the following three major components.

For all A ∈ A and I ∈ I, the value function µΓA,I1 is the limit of the discounted value
functions µΓA,Ic . This result is inspired by [14, Theorem 4.4.1].
Similarly, the probabilistic bisimilarity distances captured by µ∆1 are the limit of their
discounted counterparts represented by µ∆c.
There exists an optimal max policy in the discounted setting.

Combining the above three components, we arrive at an optimal max policy. The first two
components are formalized next.

I Proposition 21. For all A ∈ A and I ∈ I, limc↑1 µΓA,Ic = µΓA,I1 and limc↑1 µ∆c = µ∆1.

The major component of the proof consists of showing that there exists an optimal max
policy in the discounted setting.

I Proposition 22. For all c ∈ (0, 1), ∃A ∈ A : ∀I ∈ I : µ∆c v µΓA,Ic .

Proof. Let c ∈ (0, 1). Let s, t ∈ S. If

max
s→µ

min
t→ν

K(µ∆c)(µ, ν) ≥ max
t→ν

min
s→µ

K(µ∆c)(µ, ν) (3)

then we define A∗c(s, t) by

A∗c(s, t) =
(
t, argmax

s→µ
min
t→ν

K(µ∆c)(µ, ν)
)
.

Because the probabilistic automaton is finitely branching, the above exists. Otherwise, we
define A∗c(s, t) by

A∗c(s, t) =
(
s, argmax

t→ν
min
s→µ

K(µ∆c)(µ, ν)
)
.

By construction, A∗c ∈ A.

CONCUR 2018



9:10 Probabilistic Bisimilarity Distance One

Let I ∈ I. Since 〈[0, 1]S×S , ‖ · − · ‖〉 is a nonempty complete metric space according
to Proposition 6 and the function ΓA

∗
c ,I

c is contractive by Proposition 19, we can conclude
from Theorem 7 that ΓA

∗
c ,I

c has a unique fixed point. Therefore, µΓA
∗
c ,I

c is not only the least
fixed point but also the greatest fixed point of ΓA

∗
c ,I

c . According to Theorem 3(b), µΓA
∗
c ,I

c is
the greatest post-fixed point of ΓA

∗
c ,I

c . Hence, to conclude that µ∆c v µΓA
∗
c ,I

c it suffices to
show that µ∆c is a post-fixed point of ΓA

∗
c ,I

c , that is, µ∆c v ΓA
∗
c ,I

c (µ∆c). Let s, t ∈ S. We
distinguish three cases.

If (s, t) ∈ S2
0 , then

µ∆c(s, t) ≤ µ∆1(s, t)
= 0 [Theorem 16]

= ΓA
∗
c ,I

c (µ∆c)(s, t).

If (s, t) ∈ S2
1 , then

µ∆c(s, t) = ∆c(µ∆c)(s, t)
= 1

= ΓA
∗
c ,I

c (µ∆c)(s, t).

Otherwise, (s, t) ∈ S2
? . Without loss of any generality, assume that A∗c(s, t) = (t, µ). This

assumption implies that (3) and

∆1(µ∆c)(s, t) = min
t→ν

K(µ∆c)(µ, ν). (4)

Hence,

µ∆c(s, t) = ∆c(µ∆c)(s, t)
= c∆1(µ∆c)(s, t)
= c min

t→ν
K(µ∆c)(µ, ν) [(4)]

≤ c
∑
u,v∈S

I(A∗c(s, t))(u, v) µ∆c(u, v)

= cΓA
∗
c ,I

1 (µ∆c)(s, t)

= ΓA
∗
c ,I

c (µ∆c)(s, t). J

Combining the above three components, we obtain the second part of the proof.

I Lemma 23. ∃A ∈ A : ∀I ∈ I : µ∆1 v µΓA,I1 .

Proof. According to Proposition 22,

∀n ∈ N : ∃An ∈ A : ∀I ∈ I : µ∆ n
n+1
v µΓAn,In

n+1
. (5)

Since the set A is finite, the sequence (An)n∈N has a subsequence (Aσ(n))n∈N that is constant,
that is, there exists A∗ ∈ A such that for all n ∈ N, Aσ(n) = A∗. From Proposition 21 we
can conclude that

lim
n∈N

µ∆ σ(n)
σ(n)+1

= µ∆1 and lim
n∈N

µΓA,Iσ(n)
σ(n)+1

= µΓA,I1 .

From (5) we can deduce that ∀I ∈ I : µ∆1 v µΓA
∗,I

1 . J
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In the remainder of this paper, we denote the optimal max policy that satisfies Lemma 23
by A∗. Combining Lemma 20 and 23, we arrive at the following alternative characterization
of the probabilistic bisimilarity distances.

I Theorem 24. µ∆1 = µΓA
∗,I∗

1 .

5 Deciding Distance One

In this section, we present an algorithm to compute the set D1 of state pairs that have
distance one, that is

D1 = { (s, t) ∈ S × S | µ∆1(s, t) = 1 }.

The key ingredient of our algorithm is the following function.

I Definition 25. The function Λ : 2S×S × 2S×S → 2S×S is defined by

Λ(X,Y ) = S2
1 ∪

(s, t) ∈ S2
?

∣∣∣∣∣∣∣∣
∃s→ µ : ∀t→ ν : ∀ω ∈ V (Ω(µ, ν)) :

support(ω) ⊆ X ∧ support(ω) ∩ Y 6= ∅∨
∃t→ ν : ∀s→ µ : ∀ω ∈ V (Ω(µ, ν)) :

support(ω) ⊆ X ∧ support(ω) ∩ Y 6= ∅

 .

The set Λ(X,Y ) contains all state pairs with different labels and those state pairs for
which there exists a move by the max player so that every subsequent move of the min
player always ends up in X and with some positive probability in Y . The function Λ has the
following monotonicity properties.

I Proposition 26. For all X, Y , Z ⊆ S × S with X ⊆ Y ,
(a) Λ(Z,X) ⊆ Λ(Z, Y ).
(b) µZ.Λ(X,Z) ⊆ µZ.Λ(Y,Z).

Since 〈2S×S ,⊆〉 is a complete lattice and for each X ⊆ S × S the function λY.Λ(X,Y )
is monotone, the least fixed point µY.Λ(X,Y ) exists according to Theorem 3(c). The set
µY.Λ(X,Y ) contains all state pairs (s, t) for which there exists a max policy such that for
all min policies, (s, t) can reach a state pair with different labels and all state pairs reachable
from (s, t) are element of X.

Since the function λX.µY.Λ(X,Y ) is monotone as well, we can conclude from The-
orem 3(a) that the greatest fixed point νX.µY.Λ(X,Y ) exists. The set νX.µY.Λ(X,Y )
contains all state pairs (s, t) for which there exists a max policy such that for all min policies,
all state pairs reachable from (s, t) can reach a state pair with different labels. In the next
section, we will prove that νX.µY.Λ(X,Y ) captures the set D1. According to Theorem 4(a)
and (b), these greatest and least fixed points can be obtained iteratively as follows.

1 Xc = S × S
2 do
3 Yc = ∅
4 do
5 Yp = Yc

6 Yc = Λ(Xc, Yp)
7 while Yp 6= Yc

8 Xp = Xc

9 Xc = Yc

10 while Xp 6= Xc

CONCUR 2018
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The inner loop (line 3–7) computes the least fixed point µY.Λ(Xc, Y ). The outer loop
(line 1–10) computes the greatest fixed point νX.µY.Λ(X,Y ), which equals D1 as we will
prove in the next section. Due to the monotonicity of Λ we can conclude that both the
inner and outer loop terminate after at most |S|2 iterations. To conclude that the above
algorithm is polynomial time, it remains to show that Λ(Xc, Yp) in line 6 can be computed
in polynomial time.

I Proposition 27. For all µ, ν ∈ Distr(S) and X ⊆ S × S,

∀ω ∈ V (Ω(µ, ν)) : support(ω) ⊆ X if and only if K(d)(µ, ν) = 1

and

∀ω ∈ V (Ω(µ, ν)) : support(ω) ∩ X 6= ∅ if and only if K(d)(µ, ν)> 0

where

d(s, t) =
{

1 if (s, t) ∈ X
0 otherwise.

Computing K(d)(µ, ν) boils down to solving a minimum cost network flow problem,
where d captures the cost. This problem can be solved in polynomial time using, for example,
Orlin’s network simplex algorithm [26]. Hence, Λ(Xc, Yp) can be computed in polynomial
time.

6 Correctness Proof

To conclude that the algorithm presented in the previous section is correct, it remains to
show that νX.µY.Λ(X,Y ) equals D1. We start by providing an iterative characterization of
νX.µY.Λ(X,Y ).

I Definition 28. For each i ∈ N, the set Xi ⊆ S × S is defined by

Xi =
{
S × S if i = 0
µY.Λ(Xi−1, Y ) otherwise.

For each i, j ∈ N, the set Y ji ⊆ S × S is defined by

Y ji =
{
D1 if j = 0
Λ(Xi, Y

j−1
i ) otherwise.

The above definition differs from the iterative algorithm presented in the previous section
in that Y 0

i = D1 whereas the algorithm starts its iteration towards the least fixed point
from ∅.

I Proposition 29.
(a) Xm = νX.µY.Λ(X,Y ) for some m ∈ N.
(b) Y nm = µY.Λ(Xm, Y ) for some n ∈ N.
(c) Xm = Y nm.

Proof sketch. Part (a) follows from Theorem 4(b) and Proposition 26(b). Part (b) can be
proved as follows. First, we observe that

D1 ⊆ µY.Λ(Xm, Y ) = Xm (6)

by part (a). The desired result follows from the latter fact and Theorem 4(c) and Proposi-
tion 26(a). Part (c) follows from part (a) and (b). J



Q. Tang and F. van Breugel 9:13

From part (a) of the above proposition and (6) we can conclude that it suffices to prove
Xm ⊆ D1.

I Definition 30. For each 0 ≤ i < n, the set Zi ⊆ S × S is defined by

Zi = Y i+1
m \ Y im.

Zn−1

Z0

Z1

...

Xm
D1

S2
1S2

0

I Proposition 31.
(a) For all 0 ≤ i < n, Zi ⊆ S2

? .
(b) For all 0 ≤ i < j < n, Zi ∩ Zj = ∅.
(c)

⋃
0≤i<n Zi = Xm \D1.

(d) For all 0 ≤ i ≤ n, Y im = D1 ∪
⋃

0≤j<i Zj .

According to Proposition 31(b) and (c), the sets Z0, . . . , Zn−1 form a partition of Xm\D1.

I Proposition 32. For all 0 ≤ i < n and (s, t) ∈ Zi,

∃s→ µ : ∀t→ ν : ∀ω ∈ V (Ω(µ, ν)) : support(ω) ⊆ Xm ∧ support(ω) ∩ Y im 6= ∅∨ (7)
∃t→ ν : ∀s→ µ : ∀ω ∈ V (Ω(ν, µ)) : support(ω) ⊆ Xm ∧ support(ω) ∩ Y im 6= ∅ (8)

Based on the above proposition, we construct a max policy A′.

I Definition 33. The function A′ : S2
? → (S ×Distr(S)) is defined by

A′(s, t) =


(t, µ) if (s, t) ∈ Zi and (7)
(s, ν) if (s, t) ∈ Zi and (8)
A∗(s, t) if (s, t) ∈ S2

? \ (Xm \D1).

Given the max policy A′ and an arbitrary min policy I, from Proposition 31(d) and 32
we can conclude that each state pair in Zi can reach a state pair in D1 or Zj with j < i.
Consequently, each state pair in Zi can reach a state pair in D1. Given the max policy A′
and the optimal min policy I∗, we define the function Ψ as follows.

I Definition 34. The function Ψ : [0, 1]S×S → [0, 1]S×S is defined by

Ψ(d)(s, t) =
{

ΓA
′,I∗

1 (d)(s, t) if (s, t) ∈ Xm

0 otherwise

I Proposition 35. The function Ψ is monotone.

Since 〈[0, 1]S×S ,v〉 is a complete lattice and Ψ is monotone, Ψ has a greatest fixed
point νΨ and a least fixed point µΨ by Theorem 3(a) and (c). Next, we will show that Ψ
has a unique fixed point.

CONCUR 2018
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I Proposition 36. Ψ has a unique fixed point.

Proof sketch. It is sufficient to prove that µΨ = νΨ. Let

m = max{νΨ(s, t)− µΨ(s, t) | (s, t) ∈ S × S }
M ={ (s, t) ∈ S × S | νΨ(s, t)− µΨ(s, t) = m }

We can show that m = 0 and, hence, we can conclude that µΨ = νΨ. J

From the fact that Ψ has a unique fixed point and the alternative characterization of the
probabilistic bisimilarity distances presented in the previous section, we can infer the main
result of this section.

I Theorem 37. D1 = νX.µY.Λ(X,Y ).

Proof sketch. We can show that the function d ∈ S × S → [0, 1] defined by

d(s, t) =
{

1 if (s, t) ∈ Xm

0 otherwise

is a fixed point of Ψ. Let (s, t) ∈ Xm. Then

µ∆1(s, t) ≥ µΓA
′,I∗

1 (s, t) [Lemma 20]
= µΨ(s, t) [(s, t) ∈ Xm]
= d(s, t) [d is a fixed point of Ψ and Proposition 36]
= 1 [(s, t) ∈ Xm]

Hence, (s, t) ∈ D1. Therefore, Xm ⊆ D1. According to (6), D1 ⊆ Xm. Thus, Xm = D1.
Proposition 29(a) completes the proof. J

7 Conclusion

Chen et al. [9] have provided an alternative characterization of the probabilistic bisimilarity
distances for labelled Markov chains. This characterization forms the basis for the algorithm
to compute the probabilistic bisimilarity distances for labelled Markov chains by Bacci et al.
[1]. Their algorithm is similar to Howard’s policy iteration algorithm [20]. In this paper we
have presented an alternative characterization of the probabilistic bisimilarity distances for
probabilistic automata. In future work, we plan to use this characterization as the foundation
for an algorithm to compute the probabilistic bisimilarity distances for probabilistic automata
based on the policy iteration algorithm due to Hoffman and Karp [19].

As shown by Baier [2], probabilistic bisimilarity distance zero for probabilistic automata
can be decided in polynomial time. In this paper we have shown that distance one can also
be decided in polynomial time. As a consequence, we can determine in polynomial time
how many, if any, distances are non-trivial, that is, greater than zero and smaller than one.
As we have already shown in [32] in the context of labelled Markov chains, being able to
decide distance zero and distance one in polynomial time has significant impact on computing
probabilistic bisimilarity distances for labelled Markov chains. The algorithm by Bacci et
al. [1], that does not decide distance one before computing the non-trivial distances using
policy iteration, can compute distances for labelled Markov chains up to 150 states. For one
such labelled Markov chain, their algorithm takes more than 49 hours. Our algorithm that
we present in [32] decides distance zero and distance one before using policy iteration to
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compute the non-trivial distances. Our algorithm takes 13 milliseconds instead of 49 hours.
Furthermore, our algorithm can compute distances for labelled Markov chains with more
than 10,000 states in less than 50 minutes.

Consider the following probabilistic automaton.

s1 · · · sn t1 · · · tn

s t

1
n

1
n

1
n

1
n

1 1 1 1

This probabilistic automaton induces the following game graph.

s, t

· · ·

n! vertices

If µ and ν are both the uniform distribution on n elements, then the vertices of Ω(µ, ν) can
be viewed as permutations (see, for example, [29, Theorem 8.4]). As a result, from the state
pair (s, t) after one move by the max player and one move by the min player, n! vertices
can be reached. Hence, we may encounter an exponential blow-up when we transform a
probabilistic automaton into a game. As a consequence, it is not immediately obvious which
results from game theory can be transferred to our setting. We leave this for future research.

To prove Lemma 23, which provides the second part of the proof of the alternative
characterization of the probabilistic bisimilarity distances, we rely on the discounted functions
∆c and ΓA

∗
c ,I

c for c ∈ (0, 1). In particular, in the proof of Proposition 22 we use the fact
that ΓA

∗
c ,I

c has a unique fixed point. If we were able to prove that ΓA
∗,I

1 has a unique fixed
point, then we would be able to give a proof of Lemma 23 that does not rely on discounted
functions. We also leave that for future research.
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