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Abstract
Elementary net system feasibility is the problem to decide for a given automaton A if there is a
certain boolean Petri net with a state graph isomorphic to A. This is equivalent to the conjunction
of the state separation property (SSP) and the event state separation property (ESSP). Since
feasibility, SSP and ESSP are known to be NP-complete in general, there was hope that the
restriction of graph parameters for A can lead to tractable and practically relevant subclasses. In
this paper, we analyze event manifoldness, the amount of occurrences that an event can have in
A, and state degree, the number of allowed successors and predecessors of states in A, as natural
input restrictions. Recently, it has been shown that all three decision problems, feasibility, SSP
and ESSP, remain NP-complete for linear A where every event occurs at most three times. Here,
we show that these problems remain hard even if every event occurs at most twice. Nevertheless,
this has to be paid by relaxing the restriction on state degree, allowing every state to have two
successor and two predecessor states. As we also show that SSP becomes tractable for linear A
where every event occurs at most twice the only open cases left are ESSP and feasibilty for the
same input restriction.
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1 Introduction

In this paper we investigate the complexity of synthesizing elementary net systems (ENS),
which are the most fundamental type of Petri nets [12]. ENSs are a powerful language
for describing processes in digital hardware and provide lots of methods for specification,
verification and synthesis of particularly asynchronous or self-timed circuits [5][15]. Moreover,
equipped with basic concepts like choice and causality, ENSs are the formal foundation of
business process modeling languages, as for instance the Business Process Modeling Notation
(BPMN) [9], Event Driven Process Chains (EPC) [6] or activity diagrams in the UML
standard [7]. Especially because of their simpleness ENSs are useful for the specifications of
workflow management systems like milano [1].
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16:2 Narrowing down the Hardness Barrier of Synthesizing Elementary Net Systems

ENS synthesis for a given automaton A, called transition system (TS) in this context,
means to find a Petri net N with a state graph isomorphic to A. More precisely, N has to
be a directed graph on place nodes P and transition nodes T linked by flow arcs F such
that, starting from the given initial marking M0 ⊆ P , the net can transform its current
marking M ⊆ P into M ′ ⊆ P by a transition t ∈ T , if (p, t) ∈ F for all deallocated places
p ∈M \M ′ and (t, q) ∈ F for all occupied places q ∈M ′ \M . The reachable markings of
N are required to exactly cover A’s states S while the transitions T embody A’s events E.
Every t-transition from M to M ′ has to correspond to an A-arc s e s′ from the state s of
M to the state s′ of M ′ and labeled by the event e standing for t.

To assess the complexity of ENS synthesis, this paper analysis the corresponding decision
problem, called feasibility. For a given TS A, feasibility asks if there is an ENS N with a
state graph isomorphic to A. As not every TS can be synthesized into an ENS, feasibility is
a problem worth studying. Usually, it is approached by the state separation property (SPP)
and the event state separation property (ESSP) as, according to [3], A is feasible if and only
if it satisfies both properties.

This does not mean that the SSP and the ESSP are not of interest when considered
alone. Synthesizing TSs A having only the ESSP leads to Petri nets implementing all event
sequences of A by their transitions but with less states [3]. Being able to efficiently decide the
SSP, on the other hand, could serve as a quick-fail preprocessing mechanism for synthesis.

Hiraishi [8] shows that both, SSP and ESSP, are NP-complete. Feasibility is NP-complete
[2], too. Nevertheless, considerable efforts have been made to find practically relevant
tractable cases. For example, feasibility becomes tractable for Flip-Flop nets, a superclass of
ENSs [13]. Workflow net models as defined in [1] are a subclass of ENS that allow polynomial
time feasibility, too.

Rather than generalizing or restricting the set of nets, this paper restricts the problem
input to learn about synthesis complexity. We propose the following two natural and
fundamental parameters of TSs that, when controlled, should have a resounding positive
impact on synthesis complexity:
State degree of a TS A is the maximum amount g of incoming and, respectively, outgoing

edges at the states of A. The decision problems where input is restricted to so called
g-grade TSs are referred to as g-grade SSP, g-grade ESSP, and g-grade feasibility. If g = 1
and A is not a cycle we use the term linear.

Event manifoldness of a TS A is the maximum amount k of edges in A that can be labeled
with the same event. Accordingly, we speak about k-fold TSs and the problems k-SSP,
k-ESSP, and k-feasibility.

Benchmarks of the digital hardware design community show that practical TSs often have
limited state-degree [4]. If restricted event manifoldness is practical relevant has not been
evaluated, yet, but it is a straight forward TS parameter.

In [14], we already show that even simultaneous and extreme restrictions of event
manifoldness and state degree do not help reducing complexity. In fact, SSP, ESSP, and
feasibility remain NP-complete for linear 3-fold input TSs. In this paper, we draw a more
precise picture of the problems’ hardness. All three of them remain NP-complete for g-grade
k-fold TSs if g ≥ 2 and k ≥ 2.

On the other hand, 1-SSP, 1-ESSP, and 1-feasibility, that is, when events occur only once,
are trivially tractable for every state degree. As this paper also shows that linear 2-SSP can
be solved in polynomial time the only remaining open questions concern linear 2-ESSP and
linear 2-feasibility. Figure 1 shows an overview of our findings.

This paper is organized as follows: For a start, the following two sections introduce
preliminary notions used throughout the paper. In Section 4, we introduce our main result,
a polynomial time reduction of cubic monotone one-in-three 3-SAT to 2-grade 2-ESSP. Our
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Figure 1 Overview of our results regarding the complexity of the SSP, the ESSP, and feasibility
depending on the parameters state degree g and event manifoldness k. Considering the parameters
individually, we have already determined the exact borderline between tractable and intractable
cases.

reduction makes sure that the produced TS instances always have the SSP. In this way, ESSP
and feasibility become the same problem with respect to the generated instances and, hence,
we simultaneously show the NP-completeness of g-grade k-ESSP and g-grade k-feasibility for
all g ≥ 2 and k ≥ 2.

That g-grade k-SSP is also hard to solve for g, k ≥ 2 is provided in Section 5. Although
usually perceived differently, we thereby imply that SSP is not easier than ESSP for TSs
with limited state degree and event manifoldness.

Because of space limitations, some technical proofs have been omitted. For a complete
presentation of all technical details, we refer to our technical report [11].

2 Preliminaries

This paper deals with (deterministic) transition systems (TS) A = (S,E, δ, s0) which are
determined by finite disjoint sets S of states and E of events, a partial transition function
δ : S×E → S, and an initial state s0 ∈ S. Usually, we think of A as an edge-labeled directed
graph with node set S where every triple δ(s, e) = s′ is interpreted as an e-labeled edge
s e s′. For readability, we say that an event e occurs at state s if δ(s, e) = s′ for some
state s′ and abbreviate this with s e . Moreover, TSs are required to be simple, that
is, there are no multi-edges s e s′ and s e′ s′, loop-free, which rules out instant state
recurrence like s e s, reachable, where every state can be reached from s0 by a directed
path, and reduced, which means free of unused events in E.

Key concept of this paper are g-grade TSs A where both, the predecessor set {s′ | ∃e ∈
E : δ(s′, e) = s} and the successor set {s′ | ∃e ∈ E : δ(s, e) = s′}, contain at most g elements
for every state s ∈ S. We use linear for 1-grade TSs that are not a cycle. Moreover, A is
called k-fold if the set {(s, s′) | δ(s, e) = s′} of e-connected states contains at most k pairs
for every event e ∈ E.

Fundamental to the following notions are regions of TSs. A set R ⊆ S is called a region of
A if it permits a so-called signature sig : E → {−1, 0, 1}. This means, all edges s e s′ have
to satisfy R(s′) = sig(e) +R(s), where, by a little abuse of notation, R(s) = 1 if s ∈ R and
otherwise R(s) = 0 for all s ∈ S. It is easy to see that every region R has a unique signature
which is therefor called the signature sigR of R. We say that an event e enters region R,
respectively exits or obeys R, if sigR(e) = 1, respectively sigR(e) = −1 or sigR(e) = 0.

CONCUR 2018
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Based on the previous definition, two states s, s′ ∈ S are separable in A if R(s) 6= R(s′)
for some region R of A. Moreover, an event e ∈ E is inhibitable at state s ∈ S if there is a
region R of A with either R(s) = 0 and sigR(e) = −1 or R(s) = 1 and sigR(e) = 1. Using
this, a TS A has the state separation property (SSP), if all states of A are pairwise separable
and it has the event state separation property (ESSP) if all events e of A are inhibitable at
all states s where s e is not fulfilled. Then, A is feasible if and only if it has the SSP and
the ESSP.

To study feasibility, ESSP and SSP for restricted TSs we define the g-grade (k-fold)
problem for all naturals g (k) where the input is restricted to g-grade (k-fold) TSs. Notice
that the set of g-grade k-fold TSs is a subclass of g′-grade k′-fold TSs in case k ≤ k′ and
g ≤ g′. Hence, hardness results propagate up the problem hierarchy and efficient algorithms
are legitimate for all lower classes.

As we approach feasibility by SSP and ESSP, which are defined on top of TSs, we omit a
formal definition of ENSs and rather refer to, e.g., [3].

3 Unions, Transition System Containers

For our NP-completeness proofs this section introduces unions, a gadget concept to modularize
our arguments. In a union, individual TSs are grouped together and treated as if being part
of one TS. Moreover, we develop a joining operation to merge union parts and preserve their
(E)SSP and feasibility.

Formally, if A0 = (S0, E0, δ0, s
0
0), . . . , Am = (Sm, Em, δm, sm0 ) are TSs with pairwise

disjoint states then we say that U(A0, . . . , Am) is their union. By S(U) we denote the
entirety of all states in A0, . . . , Am and E(U) is the aggregation of all events. The joint
transition function ∆U =

⋃m
i=0 δi of U is defined as

∆U (s, e) =
{
δi(s, e), if s ∈ Si and e ∈ Ei,
undefined, else

for all s ∈ S(U) and all e ∈ E(U). If every event in E(U) occurs at most k times in U , not
necessarily as part of the same TS, we say that U is k-fold.

For simplicity, we build unions recursively: Firstly, every TS A is identified with the
union containing only A, that is, A = U(A). Next, if U1 = U(A1

0, . . . , A
1
m1

), . . . , Un =
(An0 , . . . , Anmn

) are unions then U(U1, . . . , Un) is the union U(A1
0, . . . , A

1
m1
, . . . , An0 , . . . , A

n
mn

)
that flattens out the parent unions by cumulating all their TSs.

As we want to combine independent TSs A0, . . . , Am in a union U = U(A1, . . . , Am) and
treat U as one TS, we need to lift regions, the SSP and the ESSP to U : We say that R ⊆ S(U)
is a region of U if it permits a signature sigR : E → {−1, 0, 1}. Hence, for all i ∈ {0, . . . ,m}
the subset Ri = R ∩ Si, coming from the states Si of Ai, has to be a region of Ai with
signature sigRi

(e) = sigR(e) for all e ∈ Ei. Then, U has the SSP if for all states s, s′ ∈ S(U)
coming from the same TS Ai there is a region R of U with R(s) 6= R(s′). Moreover, U has
the ESSP if for all events e ∈ E(U) and all states s ∈ S(U) with ¬(s e ) there is a region
R of U such that R(s) = 0 and sigR(e) = −1 or R(s) = 1 and sigR(e) = 1. Naturally, U is
called feasible if it has both, the SSP and the ESSP.

To merge a union U = U(A0, . . . , Am) back into a single TS, we define the joining A(U)
as follows: If s0

0, . . . , s
m
0 are the initial states of U ’s TSs then A(U) = (S(U) ∪ Q,E(U) ∪

Y ∪ Z, δ, q0) is a TS with additional connector states Q = {q0, . . . , qm} and fresh events
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Y = {y0, . . . , ym}, Z = {z0, . . . , zm−1} joining the loose elements of U by

δ(s, e) =


∆U (s, e), if s ∈ S(U) and e ∈ E(U),
si0, if s = qi and e = yi

qi+1, if s = qi and e = zi.

Notice that A(U) preserves k-foldness and, if every initial state si0 has at most one predecessor
in Ai, it preserves g-gradeness for g ≥ 2. The following lemma certifies the validity of joining
(most) unions:

I Lemma 1. Let U = U(A0, . . . , Am) be a union of TSs A0, . . . , Am which fulfill for every
event e that there is at least one state s with ¬(s e ). Then U has the (E)SSP, respectively
is feasible, if and only if the joining A(U) has the (E)SSP, respectively is feasible.

Proof. If : Projecting a region separating s and s′, respectively inhibiting e at s, in A(U) to
the component TSs yields a region separating s and s′, respectively inhibiting e at s in U .
Hence, the (E)SSP of A(U) trivially implies the (E)SSP of U .

Only if : A region R of U separating s and s′, respectively inhibiting e at s, can be
completed to become an equivalent region of A(U) by setting

R(qi) = 0, sigR(zj) = 0, and sigR(yi) = R(si0)

for all i, j ∈ {0, . . . ,m}, j < m.
Notice that R, defined as above, also inhibits e at all connector states. Hence, to inhibit

an event e ∈ E(U) at all connector states of A(U), we choose any U -region Re that inhibits
e at any state s ∈ S(U). As we require that every e ∈ E(U) has s ∈ S(U) with ¬(s e ),
the ESSP of U implies the existence of Re. Thus, in A(U) every event of U can be inhibited
at all required states.

For the (E)SSP of A(U) it is subsequently sufficient to analyze (event) state separation
concerning the connector states (events). By the uniqueness of the connector events Y ∪ Z,
it is easy to see that each connector state qi on its own defines a region Ri = {qi} of A(U)
that inhibits yi, zi and separates qi in A(U). J

4 The Hardness of the ESSP and Feasibility for 2-grade 2-fold
Transition Systems

This section presents our main result and answers the question if restricting the event
manifoldness to k = 2 helps reducing the complexity of synthesizing ENS:

I Theorem 2. Deciding the ESSP or feasibility is NP-complete on g-grade k-fold transition
systems for all g ≥ 2 and all k ≥ 2.

The rest of this section is devoted to the proof of this theorem.
That the g-grade k-fold versions of the ESSP and feasibility are contained in NP is

clearly not a proof obligation here, as this already follows from the NP-completeness of the
unrestricted problems [2][8].

For the proof of completeness in NP, we basically reduce cubic monotone one-in-three
3-SAT, which is NP-complete [10], to 2-grade 2-ESSP in polynomial time. Therefore, we
start the reduction from a cubic monotone boolean CNF expression ϕ = {C0, . . . , Cm−1}, a
set of negation-free 3-clauses where every variable occurs in exactly three clauses. The result
is a union Uϕ of gadget TSs that has the ESSP if and only if ϕ has a one-in-three model
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16:6 Narrowing down the Hardness Barrier of Synthesizing Elementary Net Systems

M , that is, a subset of ϕ’s variables V (ϕ) with |M ∩ Ci| = 1 for all i ∈ {0, . . . ,m− 1}. This
means that M exactly covers all clauses of ϕ. For example, the expression

ϕ0 =
{
{x0, x1, x2}, {x0, x1, x4}, {x0, x2, x3}, {x1, x4, x5}, {x2, x3, x5}, {x3, x4, x5}

}
has six clauses over the variables V (ϕ0) = {x0, . . . , x5} which are satisfied by the one-in-three
model M0 = {x0, x5}. Unfortunately, we cannot use the expression ϕ0 as a running example
since the union Uϕ0 resulting from our construction would already have 1500 states. Thus,
its presentation as a whole would go far beyond the scope of this paper.

The construction of Uϕ makes sure that even in the joining Aϕ = A(Uϕ) every event is
used at most twice and has at most two predecessors and two successors. By design, the
ESSP of Uϕ implies the SSP, too. This makes ESSP and feasibility the same problem, even
for Aϕ as stated in Lemma 1. Consequently, our proof provides the NP-hardness for both
problems on 2-grade 2-fold TSs.

In the following, we start with the details of constructing Uϕ. The union consists of
several functional components. Firstly, it installs a TS H, called the head, which initializes
the connection between the satisfiability problem and the ESSP. It introduces the key event
k that is supposed to be inhibitable at a certain key state if and only if ϕ has a one-in-three
model. In order to achieve this behavior, Uϕ adds a so-called translator Ti for every clause
Ci. For a key region, one that inhibits k at the key state, the purpose of Ti is to implement
one-in-three behavior for Ci. More precisely, Ti applies events to represent the three variables
of Ci and assures that exactly one of them has a positive signature while the other two
have to obey. This means for a key region that every gadget T0, . . . , Tm−1 has exactly one
entering variable event which exactly translates into a one-in-three model for ϕ. Reversely,
every one-in-three model tells us how we can define a key region by choosing exactly one
entering variable in every translator.

The main problem so far is to get along with the restriction of using every event only
twice. We solve this problem by adding more TSs to Uϕ that, for a key region, generate
helper and replacement events with predefined signatures, leaving, entering, or obeying. To
create a better picture of our method, the following introduces the details of all applied
gadget TSs. See Figure 2 to also visualize the technical details of the description.

Head. H is a TS having two responsibilities. Firstly, it introduces the key event k and the
key state h0,8. We add the name affix key to regions Rkey of Uϕ that inhibit k at h0,8, or
more precisely, where sigRkey

(k) = −1 and h0,8 6∈ Rkey. Secondly, H cooperates with the
subsequent duplicator gadgets to prepare sufficient amounts of events with negative signature.
The reason is that our reduction has to get along with applying k just twice. To duplicate the
negative signature of k to other events, the so-called key copies, H works with a production
line of 14m submodules Hj , each cooperating with a duplicator Dj to initialize one key copy.
More precisely, for a key region, Hj prepares three events for Dj , two so-called vice events
v2j , v2j+1, which have a positive signature (that is, vice with respect to the signature of k)
and one obeying wire event w2j . In return, the duplicator provides two key copies k3j , k3j+1
and one obeying accordance event aj . In Hj+1 these three result events are used for the
synchronization of the next vice and wire events. The main result of Dj , however, is k3j+2,
one of the 14m key copies that are free to be applied in the other reduction gadgets.

See Figure 2 (a) for a definition of H together with an illustration of H’s part of a key
region, RH . Observe that there are reachability events r0, . . . , r14m−2 which have the only
purpose to make every state of H reachable from initial h0,0. Moreover, for RH , every module
Hj receives key copies k3j−3, k3j−2 and accordance event aj−1 from Dj−1. Thanks to aj−1,
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the state hj,8 behaves according to the key event h0,8 and is excluded from RH . Because
of exiting k3j−3 the state hj,1 is out of RH , too. This imprints a zero signature on the zero
events z2j , z2j+1. Exiting k3j−2 puts hj,4 into RH and excludes hj,5 which, together with
z2j , z2j+1, makes v2j , v2j+1 entering and w2j , w2j+1 obeying.

Duplicators. Dj are TSs that, for a key region, generate three key copies k3j , k3j+1, k3j+2
and one obeying accordance event aj using the vice events v2j , v2j+1 with positive signature
and the obeying wire event w2j . Figure 2 (b) defines Dj and demonstrates the duplicator
fraction RDj of a key region. The entering vice events force dj,2, dj,4 into RDj and exclude
dj,1, dj,3. The obeying wire event signals the condition of dj,4 to dj,0 putting it into RDj . By
design, k3j , k3j+1, k3j+2 are exiting and aj becomes obeying. As H consumes only k3j , k3j+1
and aj , we keep the remaining duplicate k3j+2 of k. Creating 14m duplicators in total, we
get 14m free key copies.

Barters. Bq are TSs that, for a key region, barter key copies kq1 , kq2 for one obeying
so-called consistency event cq. The indices q1 = 18m + 6q + 1 and q2 = q1 + 3 select two
of the last 4 · 2m items from the list of free key copies. The use of consistency events is
to synchronize three events xαi , x

β
i , x

γ
i for every variable xi. The reason is that we cannot

represent the three occurrences of xi in the expression ϕ by an event that can only be used
twice. Consequently, we require three generated events of consistent signature to represent
xi. Figure 2 (c) introduces Bq and shows a respective key region part RBq . As both key
copies are leaving, bq,0, bq,2 are in RBi and cq is obeying. Altogether, we add 4m barters
that consume 8m key copies to generate 4m consistency events.

Variable manifolders. Xi are TSs synchronizing three events for every variable xi ∈ V (ϕ).
If Cα, Cβ , Cγ are the three clauses containing xi then Xi provides the events xαi , x

β
i , x

γ
i .

For a key region, they are supposed to have the same signature in order to treat them
as manifestations of the same event representing xi. The definition of Xi as well as an
illustration of a possible key region fragment RXi are given in Figure 2 (d). To create the
event equivalence, Xi applies four consistency events, c4i, c4i+1, c4i+2, c4i+3. Their obedience
condemns the two state groups xi,0, xi,1, xi,2 and xi,3, xi,4, xi,5 to a consistent behavior with
respect to RXi , that is, either all states of a group are part of the region or none of them.
This brings xαi , x

β
i , x

γ
i into synchronicity.

Translators. Ti are unions Ti = U(Ti,0, Ti,1, Ti,2) of three TSs, each. For a key region,
Ti implements Ci = {xa, xb, xc} by allowing a positive signature for exactly one variable
representation, either xa, xb or xc. Figure 2 (e-g) define the three TSs and introduces a
possible key region fragment that assigns a positive signature to event xib representing xb.
Apparently, Ti,1 parenthesizes an event for xb and the proxy event pi with two key copies
while Ti,2 does the same for the locum event x̃ib and pi. For a key region, all key copies exit
and the proxy event behaves equally in both TSs. This aligns the signature of xib and x̃ib and
makes it non-negative. Furthermore, Ti,0 is a key copy delimited sequence of events that, for
a key region, prevents a negative signature for xia, xic. As the limiting key copies are exiting
and as none of xia, x̃ib, xic can be exiting, exactly one of the events xia, xib, xic has to enter.

Altogether, this construction results in the union Uϕ = U(Uϕ1 , U
ϕ
2 ) with

Uϕ1 = U(H,D0, . . . , D14m−1),
Uϕ2 = U(B0, . . . , B4m−1, X0, . . . , Xm−1, T0, . . . , Tm−1).
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g) ti,2,0 ti,2,1 ti,2,2 ti,2,3 ti,2,4
k18i+8 x̃ib pi k18i+17

h)

h′0,0 h′0,1

...
...

h′j,0 h′j,1

...
...

h′n,0 h′n,1

k2

k3j+2

k3n+2

a0

aj−1

aj

an−1

a0

aj−1

aj

an−1

Figure 2 a-g) The gadgets of Uϕ with their respective fractions of a key region. The red marked
states are included in the key region and the unmarked are excluded. a) The head H with submodules
H0, . . . , Hn where n = 14m− 1. b) Dj , one of the 14m duplicators that provide the 14m key copies.
c) Bq, one out of 4m barters trading 8m key copies for 4m consistency events. Here, q1 = 6q+18m+1
and q2 = q1 + 3. d) The variable manifolder Xi using four consistency events to synchronize three
variable events for xi. Together, the m variable manifolders consume all 4m available consistency
events. e-g) The translator Ti consisting of Ti,0 (e), Ti,1 (f), and Ti,2 (g). Using six key copies, Ti

implements the clause Ci. All m translators together consume the remaining 6m key copies. h) The
head H ′ of the union Uϕ

SSP from Section 5. The red marked states describe the key region RH′ and
the gray marked states provide a region of H ′ that separates the states h′

j,0, h′
j,1 from the remaining

states of H ′.

The reason for separating Uϕ into two sub unions Uϕ1 and Uϕ2 is that we want to reuse Uϕ2
in Section 5. Here, our last construction step is to join the TSs of Uϕ in order to obtain
the combined TS Aϕ = A(Uϕ). Check Figure 2 to see that the initial states of the gadgets,
that is, h0,0, dj,0, bq,0, xi,0, ti,0,0, ti,1,0, and ti,2,0, have at most one predecessor state each.
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Hence, the definition of joining guarantees that Aϕ does not exceed the state degree of two.
Moreover, as every event of Uϕ occurs at most twice and Aϕ just introduces additional
unique events, Aϕ is a 2-grade 2-fold TS.

Before we can show that Aϕ has the ESSP if and only if ϕ has a one-in-three model, we
need the next two lemmas to formalize the properties of key regions in Uϕ:

I Lemma 3. If R is a region of Uϕ1 inhibiting k at h0,8, that is, where, without loss of
generality, sigR(k) = −1 and h0,8 6∈ R then
1. for all j ∈ {0, . . . , 14m − 1} the region contains hj,0, hj,4 and excludes hj,1, hj,2, hj,3,

hj,5, hj,6, hj,7, hj,8,
2. for all j ∈ {0, . . . , 14m− 1} the region contains dj,0, dj,2, dj,4 and excludes dj,1, dj,3,
3. all key copies exit, that is, for all j ∈ {0, . . . , 14m− 1) the events k3j, k3j+1, k3j+2 have

negative signature.

Proof. Consider the individual gadget regions RH and RDj demonstrated in Figure 2 (a)
and (b). We show that, combined, they define the only region R of Uϕ1 that inhibits k
at h0,8 with sigR(k) = −1 and h0,8 6∈ R. For this purpose, we use induction over j and
simultaneously show that R fulfills (1-3):

For a start, let j = 0. We show that sigR(k) = −1 and R(h0,8) = 0 force R to
coincide with RH with respect to the part H0 of H and with RD0 . The requirement
sigR(k) = −1 immediately brings R(h0,0) = R(h0,4) = 1 and R(h0,1) = R(h0,5) = 0. Then,
R(h0,1) = 0 implies that sigR(z0), sigR(z1) ∈ {0, 1}. The second premise R(h0,8) = 0 yields
sigR(z0), sigR(z1) ∈ {−1, 0}, which consequently results in sigR(z0) = sigR(z1) = 0. This
implies R(h0,2) = R(h0,3) = 0 and R(h0,6) = R(h0,7) = 0 making v0, v1 entering and w0, w1
obeying. The entering signature of v0, v1 makes R include d0,2, d0,4 and exclude d0,1, d0,3.
As R(d0,4) = 1 and w0 obeys, we get R(d0,0) = 1. By R(dj,0) = R(dj,4) = 1 and R(dj,1) = 0
we obtain that k1, k2 exit. By R(dj,1) = R(dj,3) = 0 and R(dj,2) = 1 we have that k0 exits
and a0 obeys.

Now assume that R coincides with RDi and RH on the parts Hi for all i less than j.
Moreover, suppose that (1-3) hold for all indices less j. As R(hj−1,8) = 0 and sigR(aj−1) = 0,
we have R(hj,8) = 0. Furthermore, we get the exiting k3(j−1), k3(j−1)+1. Hence, we basically
have the same situation as in H0 and D0. Consequently, a similar argumentation as for the
induction start yields that R contains exactly the states hj,0, hj,4 of Hj and dj,0, dj,2, dj,4
of Dj . This makes the vice events v2j , v2j+1 enter and the wire events w2j , w2j+1 obey.
Moreover, Dj lets the key copies k3j , k3j+1, k3j+2 have a negative signature and aj obey. J

I Lemma 4. If R is a region of Uϕ2 having an exiting signature for all key copies, that is,
sigR(k3j+2) = −1 for all j ∈ {0, . . . , 14m− 1}, then
1. for all q ∈ {0, . . . , 4m− 1} the region R contains bq,0, bq,2 and excludes bq,1, bq,3 and has

sigR(cq) = 0,
2. for all i ∈ {0, . . . ,m− 1} variable xi, which occurs in clauses Cα, Cβ, Cγ , is represented

by events xαi , x
β
i , x

γ
i having the same signature

sigR(xαi ) = sigR(xβi ) = sigR(xγi ), and

3. for all i ∈ {0, . . . ,m − 1} clause Ci = {xa, xb, xc} is realized in translator Ti making
exactly one of the events xia, xib, xic enter while the other two obey.

Proof. Statement (1) means that R coincides with RBq for every barter Bq. As the key
copies kq1 and kq2 are assumed to exit for q1 = 18m + 6q + 1 and q2 = q1 + 3, this
statement trivially follows. First and foremost, this implies that all consistency events cq, q ∈
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{0, . . . , 4m−1} have an obeying signature. In statement (2), this obedience immediately fixes
the states xi,0, xi,1, xi,2 of variable manifolder Xi to behave consistently, that is, R(xi,0) =
R(xi,1) = R(xi,2). Analogously, we derive R(xi,3) = R(xi,4) = R(xi,5). This implicates
R(xi,3)−R(xi,0) = R(xi,4)−R(xi,1) = R(xi,5)−R(xi,2). Consequently, the variable events
xαi , x

β
i , x

γ
i have the same signature for all i ∈ {0, . . . ,m− 1}.

Finally, statement (3) for the translator Ti can be seen as follows: For any region
R′ of a linear TS it is a simple observation that

∑j2−1
j=j1

sigR(ej) = R(sj2) − R(sj1) for

any subsequence sj1
ej1 . . .

ej2−1 sj2 within the TS. As the TSs of Ti are linear, we
get from R(ti,1,3) − R(ti,1,1) = 1 and R(ti,2,3) − R(ti,2,1) = 1 that sigR(xib) + sigR(pi) =
sigR(x̃ib) + sigR(pi) = 1. That means, sigR(xib) = sigR(x̃ib) = 1− sigR(pi) which implies that
xib has a non-negative signature. As R(ti,0,1) = 0 and R(ti,0,4) = 1, we have non-negative
signature of xia, xic, too. That sigR(xia) + sigR(x̃ib) + sigR(xic) = 1 implies that exactly one of
these events has a positive signature. J

Lemma 3 and Lemma 4 state that the structure of a key region defines a model of ϕ.
That is why we can say that the existence of key region for Uϕ implies the one-in-three
satisfiability of ϕ:

I Lemma 5. If there is a key region of Uϕ then ϕ has a one-in-three model.

Proof. Let Rkey be a key region of Uϕ, that is, sigRkey
(k) = −1 and Rkey(h0,8) = 0. First of

all, Lemma 3 implies that sigRkey
(k3j+2) = −1 for all j ∈ {0, . . . , 14m−1}. As a consequence,

we obtain from Lemma 4 for all variables xi and their three occurrences in clauses Cα, Cβ , Cγ
that

sigRkey
(xαi ) = sigRkey

(xβi ) = sigRkey
(xγi ).

Moreover, Lemma 4 means for every clause Ci = {xa, xb, xc} that exactly one of the events
xia, x

i
b, x

i
c has a positive signature while the other two obey. Hence, if we add a variable xi

to a set M if and only if the corresponding events have positive signature, then we clearly
obtain for all clauses Ci that |M ∩ Ci| = 1. This makes M a one-in-three model. J

The other way around, the required equivalence obliges us to derive a key region from
any one-in-three model. We argue that working our way backwards through the construction
ends up in a region that inhibits k at the key state.

I Lemma 6. If ϕ has a one-in-three model then there is a key region of Uϕ.

Proof. Let M ⊆ V (ϕ) be a one-in-three model of ϕ. We progressively build a region R by
following the requirements of every individual gadget.

Firstly, for every variable xi occurring in Cα, Cβ , Cγ we take care that sigR(xαi ) =
sigR(xβi ) = sigR(xγi ) = M(xi) where M(xi) = 1 if xi ∈ M and M(xi) = 0, otherwise. To
this end, we let xi,3, xi,4, xi,5 ∈ RXi . Moreover, we set xi,0, xi,1, xi,2 ∈ RXi if and only if xi is
not inM . This makes the consistency events c4i, c4i+1, c4i+2, c4i+3 obey. As different variable
manifolders do not share events, the regions RX0 , . . . , RXm−1 are pairwise compatible.

For every clause Ci = {xa, xb, xc} the model M selects exactly one variable. By the
M -conform construction of RXa , RXb , RXc we get that exactly one of the events xia, xib, xic
enters and the others obey. Making the key copies of Ti exit, generates a sub region RTi .
That Ti and Tj share events only for i = j makes RT0 , . . . , RTm−1 pairwise compatible. As
the variable events are selected in compliance with the variable manifolders and as translators
and manifolders do not share further events, their sub regions are also compatible.
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By the obeying consistency events, we can define a sub region RBq for every q ∈
{0, . . . , 4m− 1}. This also makes the used key copies exiting. As different barters have no
event in common, share only consistency events with variable manifolders and no events at
all with translators, the regions are all compatible.

Head and duplicators just share key copies with translators and barters. As all key copies
are exiting and as the provided sub regions meet the conditions of Lemma 3, we can use this
lemma as a construction manual for the sub regions RH , RD0 , . . . , RD14m−1 . Altogether, we
get that the set R formed by

RH ∪RD0 ∪ · · · ∪RD14m−1 ∪RB0 ∪ · · · ∪RB4m−1 ∪RX0 ∪ · · · ∪RXm−1 ∪RT0 ∪ · · · ∪RTm−1

is a region of Uϕ inhibiting k at h0,8. J

At this point, the previous lemmas have established that ϕ has a one-in-three model M
if and only if there is a key region for Uϕ. Although this is basically the foundation of the
proof for Theorem 2, it just delivers the only-if direction for the NP-completeness of 2-grade
2-fold ESSP by now: If Aϕ has the ESSP then Lemma 1 lifts the ESSP to Uϕ. By definition,
there also has to be a region that inhibits k at h0,8, a key region. Then Lemma 5 implies the
existence of the one-in-three model M for ϕ.

Reversely, having M , Lemma 6 only inhibits k at the key state. For the remaining events
e and states s of Uϕ with ¬(s e ), we still have to show that e is inhibitable at s:

I Lemma 7. If ϕ has a one-in-three model then e ∈ E(Uϕ) is inhibitable at s ∈ S(Uϕ) for
every event e and state s of Uϕ that fulfill ¬(s e ).

Lemma 6 already shows the essential part of Lemma 7. But the proof for the remaining
non-key event state combinations is very technical and does not lead to further insights.
Therefore and for space limitations, we only go into one example here and refer to our
technical report [11] for a full analysis:

I Lemma 8. If ϕ has a one-in-three model then the key event k is inhibitable at all states
s ∈ S(Uϕ) that fulfill ¬(s k ).

Proof. Every relevant state s is subsequently provided with a region that inhibits k at s.
For brevity however, we omit to repeat the key-region here, which already inhibits k at many
states. To define the other regions, we just specify the signature of non-obeying events, as
the majority of events are obedient. To this end, we present every required region as one
entry in the following listing:

states exit enter affected TSs
remaining states
of H except h1,0

a0, k, k0, r1 v1, w1, z0 H, D0

h1,0 a1, k, k1, k2, k3,
k8, r0, r2, w4, w5

a2, k4, k5, k6, r1,
v1, w1, z0, z2, z3

H, D0, D1, D2, T0,0, T0,1, T0,2

S(Uϕ) \ S(H) k z0, z1 H

The first column states lists the states s where k is inhibited by the respective region.
The exit and enter columns provide the exiting, respectively entering, events of that region.
To easily find the TSs that contain at least one of these non-obeying events, one can use the
affected TSs column in the listing.
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Notice that the first two lines of the listing show that k is inhibitable at all states of H.
The third line presents a region of Uϕ where k exits and all non-obeying events occur in H.
Therefore, this region inhibits k at all remaining states of Uϕ. J

The rest of the proof for Lemma 7 works just the same as demonstrated by Lemma 8.
This leads to the if direction for the NP-completeness of 2-grade 2-fold ESSP: If ϕ has a
one-in-three model M then Lemma 7 tells us that Uϕ has the ESSP. Using Lemma 1, we can
bring the ESSP down to Aϕ, too. Altogether, we may now state that ϕ has a one-in-three
model if and only if Aϕ has the ESSP. As our construction is easily done in polynomial time,
we have shown the NP-completeness of 2-grade 2-fold ESSP and by that, half of Theorem 2.

To complete the theorem’s proof, it remains to establish that ϕ has a one-in-three model
M if and only if Aϕ is feasible. However, this is fairly easy reusing the work we have already
done. In fact, the first direction is already there: If Aϕ is feasible then it also has the ESSP,
which we know implies the existence of M . Reversely, if M exists, then it is sufficient to
show that, beside the already established ESSP, Aϕ has the SSP, too:

I Lemma 9. If ϕ has a one-in-three model then Uϕ has the SSP.

Proof. If s, s′ are two states that do not belong to the same TS of Uϕ then they are separable
by definition. Hence, let s, s′ be two distinct states of one TS A ∈ Uϕ. If there is an event e
that occurs at s, that is, s e , but not s′, that is, ¬(s′ e ) then s, s′ are separable. The
reason for this comes from Lemma 7, which states that e is inhibitable at s′ by a region R of
Uϕ. This means, that, without loss of generality, R(s′) = 0 and sigR(e) = −1, which implies
R(s) = 1.

Using this condition, we get the separability for all state pairs s, s′ that are in one of
our TSs except for H as follows: As Figure 2 shows, every event of A 6= H occurs only once
within A and (ii) there is only one state of A without a successor. Hence, without loss of
generality, there is an event e that occurs at s but not at s′.

Figure 2 also demonstrates that all the events {v2j , v2j+1, w2j , w2j+1 | 0 ≤ j < 14m}
and {aj , k3j , k3j+1, rj | 0 ≤ j < 14m − 1} occur only once in H and that h14m−1,8 is the
only state of H without a successor. Consequently, if s, s′ ∈ S(H) and s is neither in
{hj,1, hj,6, hj,7 | 0 ≤ j < 14m} nor in {h0,4, h14m−1,8} then the above condition makes s and
s′ separable, too. Moreover, notice that k is the only event occurring at h0,4 and that no
event occurs at h14m−1,8 at all. Hence, our argument works to separate these two states
from all states in S(H), too.

As seen in Figure 2, z2j and z2j+1 occur only within the part Hj of H. Applying the
above condition again, we get for all 0 ≤ j < 14m that s ∈ {hj,1, hj,6, hj,7 is separable from
s′ ∈ S(H) \ {hj,0, . . . , hj,8}.

It remains to show that the states {hj,1, hj,6, hj,7} are pairwise separable for all j ∈
{0, . . . , 14m− 1}. Notice that z2j occurs at hj,1 and hj,6 but not at hj,7. Hence, using the
region inhibiting z2j at hj,7 coming from the above argumentation, separates both, hj,1 and
hj,6 from hj,7. Similarly, z2j+1 occurs at hj,7 but not at hj,6 which leads to their separability,
too. J

As a last step, we can use Lemma 1 again, to bring the SSP of Uϕ down to Aϕ, too. This
finally proves Theorem 2.

5 The Hardness of SSP for 2-grade 2-fold Transition Systems

This section completes our complexity analysis for the synthesis of TSs having event mani-
foldness less than three:
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I Theorem 10. Deciding the SSP is NP-complete on g-grade k-fold transition systems for
all g ≥ 2 and all k ≥ 2.

Proof. We reuse most of the reduction from Section 4 and create yet another union UϕSSP =
U(H ′, Uϕ2 ) by simply replacing Uϕ1 with the new head TS H ′ shown in Figure 2 (h). We
prove that ϕ has a one-in-three model if and only if the two key states h′0,0, h′1,0 are separable
by a key region R′key if and only if UϕSSP has the SSP.

If UϕSSP has the SSP then there is a key region R′key where, without loss of generality,
R′key(h′0,0) = 1 and R′key(h′0,1) = 0. This implies sigR′

key
(k2) = −1. Using this as a

start, induction over j infers from R′key(h′j,0) = 1 and R′key(h′j,1) = 0 that aj is obeying
and that R′key(h′j+1,0) = 1, R′key(h′j+1,1) = 0 and that sigR′

key
(k3j+2) = −1. Hence, on

H ′ the key region is just RH′ from Figure 2 (h). By Lemma 4, the exiting key copies
k3j+2, j ∈ {0, . . . , 14m − 1} imply that every variable xi ∈ V (ϕ) is represented by three
synchronized variable events and for every clause Cj = xa, xb, xc exactly one of xja, x

j
b, x

j
c

enters. Hence, taking just the variables of entering events, gets ϕ a one-in-three model.
Reversely, if ϕ has a one-in-three model, Lemma 6 provides a key region Rkey for Uϕ.

As all key copies exit, we can easily transform Rkey into a key region R′key for UϕSSP by
making the accordance event aj obeying and defining R′key(h′j,0) = 1, R′key(h′j,1) = 0 for all
j ∈ {0, . . . , 14m− 1} as well as removing the region’s definition on states of S(Uϕ1 ). To argue
the SSP of UϕSSP consider for all i ∈ {0, . . . ,m− 1} and all j ∈ {1, 2} the region Ri,j , where
all events obey but sigRi,j

(pi) = −1. This regions separates every state in {ti,j,0, . . . , ti,j,2}
from every state in {ti,j,3, ti,j,4}. Analogously, let Ri be the region where just sigRi

(x̃ib) = −1.
This region separates states of {ti,0,0, . . . , ti,0,2} from states {ti,0,3, . . . , ti,0,5} as well as states
of {ti,2,0, ti,2,1} from {ti,2,2, . . . , ti,2,4}. It is easy to see that the remaining state pairs of
S(Uϕ2 ) are either separated by the key region or by a region where all events obey except for
one variable event or one consistency event. Finally, as no accordance event of H ′ occurs in
Uϕ2 , taking the key region and for all j ∈ {0, . . . , 14m− 1} the region {h′j,0, h′j,1} solves the
remaining separation problems in H ′.

Using Lemma 1, it is again possible to transfer the SSP from UϕSSP to its joined TS
AϕSSP = A(UϕSSP) and back. As the polynomial time construction of AϕSSP is obvious just as
its state degree and event manifoldness of two, the proof is complete. J

6 The Tractability of SSP for Linear 2-fold Transition Systems

This section shows that 2-fold SSP becomes tractable if we turn to linear TSs:

I Theorem 11. Deciding the SSP can be done in polynomial time on linear 2-fold transition
systems.

To pove this theorem, we provide the following SSP-equivalent property for linear 2-fold TSs:
If A = s0

e1 . . . et st is a linear TS then Aij = si
ei+1 . . .

ej sj is called a subsequence
of A for all 0 ≤ i < j ≤ t and Aij is exactly 2-fold if every contained event occurs exactly
twice within Aij .

I Lemma 12. A linear 2-fold TS A has the SSP if and only if Aij is not an exactly 2-fold
subsequence for any 0 ≤ i < j ≤ t.

Proof. We reuse the simple observation that every region R of a linear TS A fulfills for
all 0 ≤ i < j ≤ t that

∑j
k=i sigR(ek) = R(sj) − R(si) . Hence, if A has an exactly 2-fold

subsequence Aij then every region R makes R(sj)−R(si) even, that is, R(sj) = R(si). This
means, the two states are not separated by any region of A.
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Reversely, assume A is free of exactly 2-fold subsequences and let 0 ≤ i < j ≤ t. To see
that si, sj are separable, consider the three sequences A0

i , A
i
j , A

j
t . If Aij contains an event

that is unique in A then si, sj are clearly separable. Otherwise, we select emin from the
events of Aij with first occurrence in A0

i such that the index i′ of si′ emin is minimized.
That is, we select the event emin from Aij with leftmost first occurrence. If there is an event
e in Ai′i that is unique in A or has its first occurrence in A0

i′ or its second occurrence in Ajt
then a region R separating si, sj is defined by sigR(e) = −sigR(emin) = 1 while other events
obey. If e does not exist, every event of Ai′i occurs twice in Ai′j . In that case, we select emax
from the events of Aij with second occurrence in Ajt such that the index j′ of sj′ emax is
maximized. That is, we select the event emax from Aij with rightmost second occurrence. If
there is an event e in Ajj′ that is unique in A or has its first occurrence in A0

i or its second
occurrence in Aj

′

t then a region R separating si, sj is defined by sigR(e) = −sigR(emax) = 1
while other events obey. If e does not exist, every event of Ajj′ occurs twice in Aij′ .

But now, every event in Aij has a second occurrence in Ai′j′ by the choice of emin and
emax. Moreover, we have seen that every event in Ai′i and every event in Ajj′ has its second
occurrence in Ai′j′ . Hence, A has the exactly 2-fold subsequence Ai′j′ , a contradiction. J

For a proof of Theorem 11 it is now sufficient to understand that checking the linear 2-fold
TS A for exactly 2-fold subsequences can be done by a straight forward algorithm in O(t3)
time.

Moreover, the proof of Theorem 11 motivates an algorithm to efficiently compute sep-
arating regions of linear 2-fold TSs A. This algorithm uses a function f(k) that, given an
index k ∈ {0, . . . , t− 1}, returns the index of the second occurrence of event ek+1 that occurs
at sk or −1 if no second occurrence exists. Hence, for two states si and sj we use only
O(t) calls to f to parse the sequence Aij for the indices i′ and j′ and to search the event e
within Ai′i , respectively A

j
j′ . If e is not found, the algorithm denies the separability of si and

sj and otherwise, it returns the separating region given in the proof. The function f can
be preprocessed as an array in at most O(t log t) time (depending on the representation of
events). After the preprocessing, the algorithm runs in linear time O(t).

7 Conclusion

With the present work on the SSP, the ESSP, and feasibility we consolidate the fact that ENS
synthesis is a surprisingly difficult problem. While intractability has been known before when
event manifoldness and state degree are limited to small constants, we show that even a tighter
restriction of event manifoldness to k = 2 has no positive effect on the complexity. Bringing
down intractability that close to trivial inputs, makes most considerations of restricting
the TS graph structure futile and hampers other promising parameters. Consequently, our
results rule out many straight forward approaches from fixed parameter tractability, too.
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