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Abstract
We provide a finite set of axioms for identity-free Kleene lattices, which we prove sound and
complete for the equational theory of their relational models. Our proof builds on the complete-
ness theorem for Kleene algebra, and on a novel automata construction that makes it possible to
extract axiomatic proofs using a Kleene-like algorithm.
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1 Introduction

Relation algebra is an efficient tool to reason about imperative programs. In this approach,
the bigstep semantics of a program P is a binary relation [P ] between memory states [20,
21, 6, 16, 1]. This relation is built from the elementary relations corresponding to the
atomic instructions of P , which are combined using standard operations on relations, for
instance composition and transitive closure, that respectively encode sequential composition
of programs, and iteration (while loops). Abstracting over the concrete behaviour of atomic
instructions, one can compare two programs P,Q by checking whether the expressions [P ]
and [Q] are equivalent in the model of binary relations, which we write as Rel |= [P ] = [Q].

To enable such an approach, one should obtain two properties: decidability of the
predicate Rel |= e = f , given two expressions e and f as input, and axiomatisability of
this relation. Decidability makes it possible to automate the verification process, thus
alleviating the burden for the end-user [17, 14, 9, 25, 28]. Axiomatisation offers a better way
of understanding the equational theory of relations and provides a certificate for programs
verification. Indeed, an axiomatic proof of e = f can be seen as a certificate, which can
be exchanged, proofread, and combined in a modular way. Axiomatisations also make it
possible to solve hard instances manually, when the existing decision procedures have high
complexity and/or when considered instances are large [22, 17, 7].
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18:2 Completeness for Identity-free Kleene Lattices

Depending on the class of programs under consideration, several sets of operations
on relations can be considered. In this paper we focus on the following set of operations:
composition (·), transitive closure (_+), union (+), intersection (∩) and the empty relation (0).
The expressions generated by this signature are called KL−-expressions. An example of an
inequality in the corresponding theory is Rel |= (a ∩ c) · (b ∩ d) ≤ (a · b)+ ∩ (c · d): when
a, b, c, d are interpreted as arbitrary binary relations, we have (a∩ c) · (b∩d) ⊆ (a · b)+∩ (c ·d).
The operations of composition, union and transitive closure arise naturally when defining the
bigstep semantics of sequential programs. In contrast, intersection, which is the operation of
interest in the present paper, is not a standard operation on programs. This operation is
however useful when it comes to specifications: it allows one to express local conjunctions
of specifications. For instance, a specification of the shape (a ∩ b)+ expresses the fact that
execution traces must consist of sequences of smaller traces satisfying both a and b.

The operations of KL− contain those of identity-free regular expressions, whose equational
theory inherits the good properties of Kleene algebra (KA).We summarise them below.

First recall that each regular expression e can be associated with a set of words L(e) called
its language. Valid inequations between regular expressions inequalities can be characterised
by language inclusions [29]:

Rel |= e ≤ f iff L(e) ⊆ L(f) (1)

Second, we have the celebrated equivalence between regular expressions and non-deterministic
finite automata (NFA) via a Kleene theorem: for every regular expression e, there is an NFA
such that L(e) is the language of A, and conversely. Decidability follows (in fact, PSpace-
completeness). Lastly, although every purely equational axiomatisation of this theory must
be infinite [30], Kozen has proved that Conway’s finite quasi-equational axiomatisation [12]
is sound and complete [19]. (There is also an independent proof of this result by Boffa [8],
based on the extensive work of Krob [26].)

Those three results nicely restrict to identity-free Kleene algebra (KA−), which form a
proper fragment of Kleene algebra [23]. It suffices to consider languages of non-empty words:
Equation (1) remains, Kleene’s theorem still holds, and we have the following characterisation,
where we write KA− ` e ≤ f when e ≤ f is derivable from the axioms of KA−:

L(e) ⊆ L(f) iff KA− ` e ≤ f (2)

There are counterparts to the first two points for KL−-expressions. Each KL−-expression
e can be associated with a set of graphs G(e) called its graph language, and valid inequations
of KL−-expressions can be characterised through these languages of graphs. A subtlety here
is that we have to consider graphs modulo homomorphisms; writing CG for the closure of a
set of graphs G under graph homomorphisms, we have [10]:

Rel |= e ≤ f iff CG(e) ⊆ CG(f) (3)

KL−-expressions are equivalent to a model of automata over graphs called Petri automata [10].
As for KA−-expressions, a Kleene-like theorem holds [11]: for every KL−-expression e, there is
a Petri automaton whose language is G(e), and conversely. Decidability (in fact, ExpSpace-
completeness) of the equational theory follows [10, 11].

What is missing to this picture is an axiomatisation of the corresponding equational theory.
In the present paper, we provide such an axiomatisation, which we call KL−, and which
comprises the axioms for identity-free Kleene algebra (KA−) and the axioms of distributive
lattices for {+,∩}. Completeness of this axiomatisation is the difficult result we prove here:

CG (e) ⊆ CG (f) entails KL− ` e ≤ f (4)
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We proceed in two main steps. First we show that G (e) ⊆ G (f) entails KL− ` e ≤ f ,
using a technique inspired from [24], this is what we call completeness for strict language
inclusion.The second step is much more involved. There we exploit the Kleene theorem for
Petri automata [11]: starting from expressions e, f such that CG (e) ⊆ CG (f), we build two
Petri automata A ,B respectively recognising G (e) and G (f). Then we design a product
construction to synchronise A and B, and a Kleene-like algorithm to extract from this
construction two expressions e′, f ′ such that G (e) = G (e′), KL− ` e′ ≤ f ′, and G (f ′) ⊆ G (f).
This synchronised Kleene theorem suffices to conclude using the first step.

To our knowledge, this is the first completeness result for a theory involving Kleene
iteration and intersection. Identity-free Kleene lattices were studied in depth by Andréka,
Mikulás and Németi [2]; they have in particular shown that over this syntax, the equational
theories generated by binary relations and formal languages coincide. But axiomatisability
remained opened. The restriction to the identity-free fragment is important for several
reasons. First of all, it makes it possible to rely on the technique used in [10] to compare
Petri automata, which does not scale in the presence of identity. Second, this is the fragment
for which the Kleene theorem for Petri automata is proved the most naturally [11]. Third,
‘strange’ laws appear in the presence of 1 [3], e.g., 1 ∩ (b · a) ≤ a · (1 ∩ (b · a)) · b, and
axiomatisability is still open even in the finitary case where Kleene iteration is absent – see
the erratum about [3].

Proofs of completeness for other extensions of Kleene algebra include Kleene algebra with
tests (KAT) [20], nominal Kleene algebra [24], and Concurrent Kleene algebra [27, 18]. The
latter extension is the closest to our work since the parallel operator of concurrent Kleene
algebra shares some properties of the intersection operation considered in the present work
(e.g., it is commutative and it satisfies a weak interchange law with sequential composition).

The paper is organised as follows. In Sect. 2, we recall KL−-expressions, their graph
language and the corresponding model of Petri automata. In Sect. 3 we give our axiomatisation
and state the completeness result. Then we show it following the proof scheme presented
earlier: in Sect. 4 we show completeness for strict language inclusions, we recall in Sect. 5
the Kleene theorem of KL− expressions, on which we build to show our synchronised Kleene
theorem in Sect. 6.

2 Expressions, graph languages and Petri automata

2.1 Expressions and their relational semantics

We let a, b . . . range over the letters of a fixed alphabet X. We consider the following syntax
of KL−-expressions, which we simply call expressions if there is no ambiguity:

e, f ::= e · f | e+ f | e ∩ f | e+ | 0 | a (a ∈ X)

We denote their set by ExpX and we often write ef for e · f . When we remove intersection
(∩) from the syntax of KL−-expressions we get KA−-expressions, which are the identity-free
regular expressions.

If σ : X → P(S × S) is an interpretation of the letters into some space of relations, we
write σ̂ for the unique homomorphism extending σ into a function from ExpX to P(S × S).
An inequation between two expressions e and f is valid, written Rel |= e ≤ f , if for every
such interpretation σ we have σ̂(e) ⊆ σ̂(f).

CONCUR 2018
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Figure 1 Operations on graphs.
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Figure 2 Graphs associated with some terms.

2.2 Terms, graphs, and homomorphisms
We let u, v . . . range over expressions built using only letters, ∩ and ·, which we call terms.
(Terms thus form a subset of expressions: they are those expressions not using 0, + and _+.)
We will use 2-pointed labelled directed graphs, simply called graphs in the sequel. Those are
tuples 〈V,E, s, t, l, ι, o〉 with V (resp. E) a finite set of vertices (resp. edges), s, t : E → V the
source and target functions, l : E → X the labelling function, and ι, o ∈ V two distinguished
vertices, respectively called input and output.

As depicted in Fig. 1, graphs can be composed in series or in parallel, and a letter can be
seen as a graph with a single edge labelled by that letter. One can thus recursively associate
to every term u a graph G (u) called the graph of u. Two examples are given in Fig. 2; graphs
of terms are series-parallel [31].

I Definition 1 (Graph homomorphism). A homomorphism from G = 〈V,E, s, t, l, ι, o〉 to
G′ = 〈V ′, E′, s′, t′, l′, ι′, o′〉 is a pair h = 〈f, g〉 of functions f : V → V ′ and g : E → E′ that
respect the various components: s′ ◦ g = f ◦ s, t′ ◦ g = f ◦ t, l = l′ ◦ g, ι′ = f(ι), and o′ = f(o).

We write G′ CG if there exists a graph homomorphism from G to G′.

Such a homomorphism is depicted in Fig. 3. A pleasant way to think about graph ho-
momorphisms is the following: we have G C H if G is obtained from H by merging (or
identifying) some nodes, and by adding some extra nodes and edges. For instance, the graph
G in Fig. 3 is obtained from H by merging the nodes 1, 2 and by adding an edge between
the input and the output labelled by d.

The starting point of the present work is the following characterisation:

I Theorem 2 ([5, Thm. 1], [15, p. 208]). For all terms u, v, Rel |= u ≤ v iff G (u) C G (v).

2.3 Graph language of an expression
To generalise the previous characterisation to KL−-expressions, one interprets expressions by
sets (languages) of graphs: graphs play the role of words for KA-expressions.

I Definition 3 (Term and graph languages of expressions). The term language of an expression
e, written JeK, is the set of terms defined recursively as follows:

Je · fK , {u · v | u ∈ JeK and v ∈ JfK} J0K , ∅
Je ∩ fK , {u ∩ v | u ∈ JeK and v ∈ JfK} JaK , {a}
Je+ fK , JeK ∪ JfK

q
e+y

,
⋃
n>0 {u1 · · · · · un | ∀i, ui ∈ JeK}

The graph language of e is the set of graphs G(e) , {G(u) | u ∈ JeK}.
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Figure 3 A graph homomorphism.
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Figure 4 A Petri automaton.
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Figure 5 Run of a Petri automaton.
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Figure 6 Graph of a run.

Note that for every term u, JuK = {u}, so that the graph language of u thus contains just the
graph of u. This justifies the overloaded notation G (u). Given a set S of graphs, we write
CS for its downward closure w.r.t. C: CS , {G | GCG′, G′ ∈ S}. We obtain:

I Theorem 4 ([10, Thm. 6]). For all expressions e, f , Rel |= e ≤ f iff CG (e) ⊆ CG (f).

2.4 Petri automata
We recall the notion of Petri automata [10, 11], an automata model that recognises precisely
the graph languages of our expressions.

I Definition 5 (Petri Automaton). A Petri automaton (PA) over the alphabet X is a tuple
A = 〈P, T , ι〉 where:

P is a finite set of places,
T ⊆ P (P )× P (X × P ) is a set of transitions,
ι ∈ P is the initial place of the automaton.

For each transition t = 〈◃t, t▹〉 ∈ T , ◃t is assumed to be non-empty; ◃t ⊆ P is the input of t;
and t▹ ⊆ X × P is the output of t. We write π2 (t▹) , {p | ∃a, 〈a, p〉 ∈ t▹} for the set of the
output places of t. Transitions with empty outputs are called final.

A PA is depicted in Fig. 4: places are represented by circles and transitions by squares.
Let us now recall the operational semantics of PA. Fix a PA A = 〈P, T , ι〉 for the

remainder of this section. A state of this automaton is a set of places. In a given state S ⊆ P ,
a transition t = 〈◃t, t▹〉 is enabled if ◃t ⊆ S. In that case, we may fire t, leading to a new
state S′ = (S \ ◃t) ∪ π2 (t▹). We write S t→A S′ in this case.

I Definition 6 (Run of a PA). A run is a sequence 〈S1, t1, S2, . . . , tn−1, Sn〉, where Si are
states, ti are transitions such that Si

ti→A Si+1 for every i ∈ [1, n− 1], S1 = {ι} and Sn = ∅.

A run of the PA from Fig. 4 is depicted in Fig. 5; this run gives rise to a graph, depicted in
Fig. 6; see [11, Def. 3] for a formal definition in the general case.

I Definition 7 (Graph language of a PA). The graph language of a PA A , written G (A ),
consists of the graphs of its runs.

CONCUR 2018
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e ∩ (f ∩ g) = (e ∩ f) ∩ g e ∩ f = f ∩ e e ∩ e = e

e ∩ (f + g) = (e ∩ f) + (e ∩ g) e ∩ (e+ f) = e e+ (e ∩ f) = e

e+ (f + g) = (e+ f) + g e+ f = f + e e+ e = e

e·(f ·g) = (e·f)·g e·(f+g) = e·f+e·g (e+f)·g = e·g+f ·g e+0 = e e·0 = 0 = 0·e

e+ e·e+ = e+ = e+ e+·e e·f + f = f ⇒ e+·f + f = f f ·e+ f = f ⇒ f ·e+ + f = f

Figure 7 KL−: the first three lines correspond to distributive lattices, the last three to KA−.

PA are assumed to be safe (in standard Petri net terminology, places contain at most one
token at any time – whence the definition of states as sets rather than multisets) and to
accept only series-parallel graphs. These two conditions are decidable [11]. Here we moreover
assume that all PA have the same set of places P .

PA and KL−-expressions denote the same class of graph languages:

I Theorem 8 (Kleene theorem [11, Thm. 18]).
(i) For every expression e, there is a Petri automaton A such that G (e) = G (A ).
(ii) Conversely, for every Petri automaton A , there is an expression e such that G (e) =
G (A ).

3 Axiomatisation and structure of completeness proof

Let us introduce now our axiomatisation.

I Definition 9. The axioms of KL− are the union of
the axioms of identity-free Kleene algebra (KA−) [23], and
the axioms of a distributive lattice for {+,∩}.

It is easy to check that those axioms are valid for binary relations, whence soundness of KL−:

I Theorem 10 (Soundness). If KL− ` e ≤ f then Rel |= e ≤ f .

The rest the paper is devoted the converse implication, which thanks to Thm. 4 amounts to:

I Theorem 11 (Completeness). If CG(e) ⊆ CG(f) then KL− ` e ≤ f .

The following very weak form of Thm. 11 is easy to obtain from the results in the literature:

I Proposition 1. For all terms u, v, G (u) C G (v) entails KL− ` u ≤ v.

Proof. Follows from Thm. 4, completeness of semilattice-ordered semigroups [4] for relational
models, and the fact the the axioms of KL− entail those of semilattice-ordered semigroups. J

As explained in the introduction, our first step consists in proving KL− completeness w.r.t.
strict graph language inclusions, i.e., not modulo homomorphisms:

I Theorem 12 (Completeness for strict language inclusions). If G(e) ⊆ G(f) then KL− ` e ≤ f .

The proof is given in Sect. 4. Our second step is to get the following theorem (Sect. 6):
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I Theorem 13 (Synchronised Kleene Theorem). If A ,B are PA such that CG(A ) ⊆ CG(B),
then there are expressions e, f such that:

G (A ) = G (e) , KL− ` e ≤ f , and G (f) ⊆ G (B) .

The key observation for the proof is that the state-removal procedure used to transform a
PA into a KL− expression is highly non-deterministic. When considering two PA at a time,
one can use this flexibility in order to synchronise the computation of the two expressions, so
that they become easier to compare axiomatically. The concrete proof is quite technical and
requires us to first recall many concepts from the proof [11] of Thm. 8(ii) (Sect. 5); it heavily
relies on both Thm. 12 and Prop. 1.

Completeness of KL− follows using Thm. 8(i) and Thm. 12 as explained in the introduction.

4 Completeness for strict language inclusion

Recall that the graph language of an expression e, G(e), is defined as the set of graphs of the
term language of e, JeK. We first prove that KL− is complete for term language inclusions:

I Proposition 2. If JeK ⊆ JfK then KL− ` e ≤ f .

Proof. We follow a technique similar to the one recently used in [24]. We consider the
maximal KA−-subexpressions, and we compute the atoms of the Boolean algebra of word
languages generated by those expressions. By KA− completeness [19, 23], we get KA− (and
thus KL−) proofs that those are equal to appropriate sums of atoms. We distribute the
surrounding intersections over those sums and replace the resulting intersections of atoms by
fresh letters. This allows us to proceed recursively (on the intersection-depth of the terms),
using substitutivity to recover a KL− proof of the starting inequality. J

The difference between the term language and the graph language is that intersection
is interpreted as an associative and commutative operation in the latter. We bury this
difference by defining a ‘saturation’ function s on KL−-expressions such that for all e,

(†) KL− ` s(e) = e, and (‡) Js(e)K = {u | G(u) ∈ G(e)} .

Intuitively, this function uses distributivity and idempotency of sum to replace all intersections
appearing in the expression by the sum of all their equivalent presentations modulo associativ-
ity and commutativity. For instance, s(a∩ (b∩c)) is a sum of twelve terms (six choices for the
ordering times two choices for the parenthesing). Technically, one should be careful to expand
the expression first by maximally distributing sums, in order to make all potential n-ary
intersections apparent. For instance, ((a∩ b) + d)∩ c expands to ((a∩ b)∩ c) + (d∩ c) so that
its saturation is a sum of twelve plus two terms. For the same reason, all iterations should be
unfolded once: we unfold and expand (a ∩ b)+ ∩ c into ((a ∩ b) ∩ c) + ((a ∩ b) · (a ∩ b)+ ∩ c)
before saturating it. We finally obtain Thm. 12 using (‡), Prop. 2, and (†):

G(e) ⊆ G(f) ⇒ Js(e)K ⊆ Js(f)K ⇒ KL− ` s(e) ≤ s(f) ⇒ KL− ` e ≤ f

5 Kleene theorem for Petri automata

To prove the synchronised Kleene theorem (Thm. 13), we cannot use the Kleene theorem for
PA (Thm. 8) as a black box: we use in a fine way the algorithm underlying the proof of the
second item. We thus explain how it works [11] in details.

CONCUR 2018
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σ τ

B

ρ
A C

σ ρ
A ·B∗ · C7→ σ ρ

A

B

σ ρ
A ∪B7→

Figure 8 Rewriting rules for state-removal procedure.

Recall that to transform an NFA A to a regular expression e, one rewrites it using the
rules of Fig. 8 until one reaches an automaton where there is a unique transition from the
initial state to the final one, labelled by an expression e. While doing so, one goes through
generalised NFA, whose transitions are labelled by regular expressions instead of letters.

We use the same technique for PA: we start by converting the PA into a NFA over a
richer alphabet, which we call a Template Automaton (TA), then we reduce this automaton
using the rules of Fig. 8 until we get a single transition labelled by the desired expression.

To get some intuitions about the way we convert a PA into an NFA, consider the run in
Fig. 5 and its graph in Fig. 6. One can decompose the run and the graph as follows:

{A} {B,C,D} {B,C,D} {E,D} ∅

b

c

d

A

B

C

D

b

c

D D

B

C

B

C

a

D D

B

C
EE

D

The graph can thus be seen as a word over an alphabet of ‘boxes’, and the run as a path in an
NFA whose states are sets of places of the PA. The letters of the alphabet, the above boxes,
can be seen as ‘slices of graphs’; they arise naturally from the transitions of the starting PA
(Fig. 4 in this example).

5.1 Template automata
In order to make everything work, we need to refine both this notion of states and this notion
of boxes to define template automata:

states (sets of places) are refined into types. We let σ, τ range over types. A type is a
tree whose leaves are labelled by places. When we forget the tree structure of a type τ ,
we get a a state τ . See [11, Def. 10] for a formal definition of types, which is not needed
here. We call singleton types those types whose associated state is a singleton.
letters will be templates: finite sets of boxes like depicted above but with edges labelled
with arbitrary KL−-expressions; we define those formally below.

Given a directed acyclic graph (DAG) G, we write minG (resp. maxG) for the set of its
sources (resp. sinks). A DAG is non-trivial when it contains at least one edge.

I Definition 14 (Boxes). Let σ, τ be types. A box from σ to τ is a triple
〈−→
p , G,←−p

〉
where

G is a non-trivial DAG with edges labelled in ExpX , −→p is a map from σ, the input ports, to
the vertices of G, and ←−p is a bijective map from τ , the output ports, to maxG, and where
an additional condition relative to types holds [11, Def. 11]. (This condition can be kept
abstract here.) A basic box is a box labelled with letters rather than arbitrary expressions.
A 1-1 box is a box between singleton types.

We let α, β range over boxes and we write β : σ → τ when β is a box from σ to τ .
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Figure 9 Two boxes and their composition.
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Figure 10 An atomic box.

We represent boxes graphically as in Fig. 9. Inside the rectangle is the DAG, with the
input ports on the left-hand side and the output ports on the right-hand side. The maps −→p
and ←−p are represented by the arrows going from the ports to vertices inside the rectangle.
Note that unlike ←−p , the map −→p may reach inner nodes of the DAG. 1-1 boxes are those with
exactly one input port and one output port.

Boxes compose like in a category: if α : σ → τ and β : τ → ρ then we get a box
α · β : σ → ρ by putting the graph of α to the left of the graph of β, and for every port
p ∈ τ , we identify the node ←−p1 (p) with the node −→p2 (p). For instance the third box in Fig. 9
is obtained by composing the first two.

The key property enforced by the condition on types (kept abstract here) is the following:

I Lemma 15. A 1-1 box is just a series-parallel 2-pointed graph labelled in ExpX .

Accordingly, one can extract a KL−-expression from any 1-1 box β, which we write e (β) and
call its expression.

I Definition 16 (Templates). A template Γ : σ → τ is a finite set of boxes from σ to τ . A
1-1 template is a template of 1-1 boxes. The expression of a 1-1 template, written e (Γ), is
the sum of the expressions of its boxes.

Templates can be composed like boxes, by computing all pairwise box compositions.

I Definition 17 (Box language of a template). A basic box is generated by a box β if it can
be obtained by replacing each edge x e−−→ y of its DAG by a graph G′ ∈ G (e) with input
vertex x and output vertex y. The box language of a template Γ, written B(Γ), is the set of
basic boxes generated by its boxes.

As expected, the box language of a template Γ : σ → τ only contains boxes from σ to τ .
Thanks to Lem. 15, when Γ is a 1-1 template, its box language can actually be seen as a set
of graphs, and we have:

I Proposition 3. For every 1-1 template Γ, we have B(Γ) = G (e (Γ)).

We can finally define template automata:

I Definition 18 (Template automaton (TA)). A template automaton is an NFA whose states
are types, whose alphabet is the set of templates, whose transitions are of the form 〈σ,Γ, τ〉
where Γ : σ → τ , and with a single initial state and a single accepting state which are
singleton types. A basic TA is a TA whose all transitions are labelled by basic boxes.

By definition, a word accepted by a TA is a sequence of templates that can be composed
into a single 1-1 template Γ, and thus gives rise to a set of graphs B(Γ). The graph language
of a TA E , written G (E ), is the union of all those sets of graphs.

An important result of [11] is that we can translate every PA into a TA:
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I Proposition 4. For every PA A , there exists a basic TA E such that G (A ) = G (E ).

TA were defined so that they can be reduced using the state-removal procedure from Fig. 8.
Templates can be composed sequentially and are closed under unions, so that now we only
miss an operation _∗ on templates to implement the first rule. Since we work in an identity-
free (and thus star-free) setting, it suffices to define a strict iteration operation _+; and to
rely on the following shorthands ∆ · Γ∗ = ∆ ∪∆ · Γ+ and Γ∗ ·∆ = ∆ ∪ Γ+ ·∆.

Such an operation is provided in [11]:

I Proposition 5. There exists a function _+ on templates such that if the TA obtained from
a PA A through Prop. 4 reduces to a TA E by the rules in Fig. 8, then G (A ) = G (E ). 1

One finally obtains the Kleene theorem for PA by reducing the TA until it consists of a single
transition labelled by a 1-1 template Γ: at this point, e (Γ) is the desired KL−-expression.

5.2 Computing the iteration of a template
We need to know how the above template iteration can be defined to obtain our synchronised
Kleene theorem, so that we explain it in this section. This section is required only to
understand how we define a synchronised iteration operation in Sect. 6.

First notice that templates on which we need to compute _+ are of type σ → σ. We first
define this operation for a restricted class of templates, which we call atomic.

I Definition 19 (Atomic boxes and templates, Support). A box β =
〈−→
p , G,←−p

〉
: σ → σ is

atomic if its graph has a single non-trivial connected component C, and if for every vertex v
outside C, there is a unique port p ∈ σ such that −→p (p) =←−p (p) = v. An atomic template is
a template composed of atomic boxes.

The support of a box β : σ → σ is the set supp (β) ,
{
p
∣∣ −→p (p) 6=←−p (p)

}
. The support

of a template is the union of the supports of its boxes.

The following property of atomic boxes, makes it possible to compute their iteration:

I Lemma 20 ([11, Lem. 7.18]). The non-trivial connected component of an atomic box
β : σ → σ always contains a vertex c, s.t. for every port p mapped inside that component, all
paths from −→p (p) to a maximal vertex visit c. We call such a vertex a bowtie for β.

Notice that the bowtie of a box is not unique. For instance, the atomic box in Fig. 10
contains two bowties: the blue and the red nodes.
We compute the iteration of an atomic box as follows. First choose a bowtie for this box,
then split it at the level of this node into the product α = β · γ. The box γ · β is 1-1, we can
thus extract from it a term e (γ · β). We set α+ to be the template consisting of α and the
box obtained from α by replacing the bowtie by an edge labelled e (γ · β)+. For the sake of
conciseness, we denote this two-box template as on the right below, with an edge labelled
with a starred expression.

α = β γ α+ = β γ
e (γ · β)∗

1 This statement is not simpler because, unfortunately, there is no function _+ on templates such that
B(Γ+) = B(Γ)+).
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Data: Atomic template Γ
Result: A template Γ+ s.t.

B(Γ+) = B(Γ)+

if Γ = ∅ then
Return ∅

else
Write Γ = ∆ ∪ {α} ∪ Σ such that
supp (∆) ⊆ supp (α) and
supp (Σ) ∩ supp (α) = ∅;
Choose a bowtie for α;
Split α into β · γ at the level of this
bowtie;
Return
(∆+·Σ∗)∪(∆∗·Σ+)∪(∆∗·δ·∆∗·Σ∗),
where δ is the two-box template
depicted on the right.

end

β γ
e (γ ·∆∗ · β)∗

Figure 11 Iteration of an atomic template.

It is not difficult to see that B(α+) = B(α)+. Depending on the bowtie we have chosen, the
box α+ will be different. This is why we will write α+

./ to say that the bowtie ./ has been
selected for the computation of the iteration.

Now we need to generalise this construction to compute the iteration of an atomic
template. For this, we need the following property, saying that the supports of atomic boxes
of the same type are either disjoint or comparable:

I Lemma 21. For all atomic boxes β, γ : σ → σ, we have either 1) supp (β) ⊆ supp (γ), or
2) supp (γ) ⊆ supp (β), or 3) supp (β) ∩ supp (γ) = ∅.

We can compute the iteration of an atomic template by the algorithm in Fig. 11; intuitively,
atomic boxes with disjoint support can be iterated in any order: they cannot interfere; in
contrast, atomic boxes with small support must be computed before atomic boxes with
strictly larger support: the iteration of the latter depends on that of the former. (Also
note that since supp (∆) ⊆ supp (α) we have also supp (∆+) ⊆ supp (α) thus the template
γ ·∆∗ · β is 1-1 and it gives rise to an expression e (γ ·∆∗ · β).)

We finally compute the iteration of an arbitrary template Γ : σ → σ as follows: from each
connected component of the graph of each box in Γ stems an atomic box; let At(Γ) be the
set of all these atomic boxes; we set Γ+ = At(Γ)+.

The overall algorithm contains two sources of non-determinism. First, one can partially
choose in which order to process the atomic boxes. This is reflected by the choice of the box α,
which we will call the pivot. For instance if Γ = {α1, α2, β} such that supp (α1) = supp (α2)
and supp (β) ∩ supp (α1) = ∅, then we can choose either α1 or α2 as the pivot, and the
computation will respectively start with the computation of α+

2 or that of α+
1 , yielding two

distinct expressions. (In contrast, choices about boxes with disjoint support do not change
the final result.) Second, every box of the template is eventually processed, and one must
thus choose a bowtie for all of them. We write Γ+

./,≤ to make explicit the choice of the
bowties and the computation order.
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6 Synchronised Kleene theorem for PA

We can now prove Thm. 13. To synchronise the computation of two expressions e, f for two
PA A ,B respectively, we construct a synchronised product automaton E ×F between a TA
E for A and a TA F for B.

The states of this automaton are triples 〈σ, η, τ〉 where σ and τ are types, i.e., states
from the TA E and F , and η : τ → σ is a function used to enforce coherence conditions.
Its transitions have the form 〈〈σ, η, τ〉 , 〈Γ,∆〉 , 〈σ′, η′, τ ′〉〉 where 〈σ,Γ, σ′〉 is a transition of
E , 〈τ,∆, τ ′〉 is a transition of F , and Γ and ∆ satisfy a certain condition which we call
refinement, written Γ ≤ ∆.

The overall strategy is as follows. We reduce E ×F using the rules of Fig. 8, where the
operations · and ∪ are computed pairwise. The operation _∗ is also computed pairwise,
but in a careful way, exploiting the non-determinism of this operation to ensure that we
maintain the refinement relation. We eventually get a single transition labelled by a pair of
1-1 templates Γ and ∆ such that B(Γ) = G (A ), B(∆) = G (B), and Γ ≤ ∆. To conclude, it
suffices to deduce KL− ` e (Γ) ≤ e (∆) from the latter property. To sum-up, what we need
to do now is:

Refinement: define the refinement relation ≤ on templates;
Initialisation: define E ×F so that refinement holds;
Stability: show that the refinement relation is maintained during the rewriting process;
Finalisation: show that refinement between 1-1 templates entails KL− provability.

6.1 Refinement relation
We first generalise graph homomorphisms to templates; this involves dealing with multiple
ports, with finite sets, and with edge labels which are now arbitrary KL−-expressions. For
the latter, we do not require strict equality but KL−-derivable inequalities.

I Definition 22 (Box and template homomorphisms). Let σ, τ, σ′, τ ′ be four types with two
functions η : σ → τ and η′ : σ′ → τ ′. Let β =

〈−→
p β , 〈Vβ , Eβ , sβ , tβ , lβ〉 ,←−p β

〉
be a box

of type τ → τ ′ and let α =
〈−→
p α, 〈Vα, Eα, sα, tα, lα〉 ,←−p α

〉
be a box of type σ → σ′. A

homomorphism from α to β is a pair 〈f, g〉 of functions f : Vα → Vβ and g : Eα → Eβ s.t.:
sβ ◦ g = f ◦ sα, tβ ◦ g = f ◦ tα,
∀e ∈ Eα, KL− ` lβ ◦ g(e) ≤ lα(e),
If {v} ⊆ Vα is a trivial connected component, so is f(v).
−→
p β ◦ η = f ◦ −→p α and ←−p β ◦ η′ = f ◦←−p α. (We call this condition (η, η′)-compatibility.)

We write β Cη,η′ α when there exists such a homomorphism. For two templates Γ : τ → τ ′

and ∆ : σ → σ′, we write Γ Cη,η′ ∆ if for all β ∈ Γ, there exists α ∈ ∆ such that β Cη,η′ α.

We abbreviate Γ Cη,η′ ∆ as Γ C ∆ when Γ,∆ are 1-1 templates, or when σ = τ , σ′ = τ ′ and
η, η′ are the identity function id. A box homomorphism is depicted in Fig. 12.

The above relation on templates is not enough for our needs; we have to extend it so that
it is preserved during the rewriting process. We first write Γ v ∆ when B(Γ) ⊆ B(∆), for
two templates Γ,∆ of the same type. Refinement is defined as follows:

I Definition 23 (Refinement). We call refinement the relation on templates defined by
≤η,η′ , Cη,η′ · (Cid,id ∪ v)∗, where _∗ is reflexive transitive closure.

The following proposition shows that refinement implies provability of the expressions
extracted from 1-1 templates. This gives us the finalisation step.
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β :

`

a+

d

b

c

p p

q r

α :

p p

q r

(a ∪ b)+

(a ∪ c)+

c+

b

Figure 12 A box homomorphism.

α1 α2α =

f

β+
./′ =

β1 β2
e∗

α1 α2α+
./ =

f∗

β = β1 β2

Figure 13 Bowtie compatible boxes.

α =

f

β =

γ =

Figure 14 Case of bowtie incompatible boxes.

I Proposition 6. If ∆,Γ are 1-1 templates such that ∆ ≤ Γ, then KL− ` e (∆) ≤ e (Γ).

Proof. When ∆ ⊆ Γ, it follows from Prop. 3 and Thm. 12; when ∆ C Γ, it follows from
Prop. 1. We conclude by transitivity. J

6.2 Synchronised product automaton (initialisation)
I Definition 24 (2-Template automata (2-TA)). A 2-template automaton is an NFA whose
states are tuples of the form 〈τ, η, σ〉 where τ, σ are types and η : σ → τ , whose alphabet is
the set of pairs of templates, whose transitions are of the form 〈〈σ, η, τ〉 , 〈Γ,∆〉 , 〈σ′, η′, τ ′〉〉
where Γ : σ → σ′, ∆ : τ → τ ′, and Γ ≤η,η′ ∆, and with a single initial state and a single
accepting state which consist of singleton types.

If T is a 2-TA, we denote by π1(T ) (resp. π2(T )) the automaton obtained by projecting the
alphabet, the states and the transitions of T on the first (resp. last) component. Note that
π1(T ) and π2(T ) are TA.

I Definition 25 (Synchronised product of TA). Let E ,F be two TA. The synchronised product
of E and F , written E ×F is the 2-TA where 〈〈τ, η, σ〉 , 〈Γ,∆〉 , 〈τ ′, η′, σ′〉〉 is a transition of
E ×F iff 〈τ,Γ, τ ′〉 is a transition of E , 〈σ,∆, σ′〉 is a transition of F and Γ ≤η,η′ ∆. (And
with initial and accepting states defined from those of of E and F .)

Note that we enforce refinement in the definition of this product, so that π1(E ×F ) is
a sub-automaton of E and π2(E ×F ) is a sub-automaton of F . Thus G (π1(E ×F )) ⊆
G (E ) and G (π2(E ×F )) ⊆ G (F ). When E ,F are TA coming from PA A ,B such that
CG (A ) ⊆ CG (B), we can use the results from [11] about simulations to strengthen the first
inclusion into an equality:

I Theorem 26. Let A ,B be two PA, E ,F be basic TA such that G (A ) = L(E ) and
G (B) = L(F ) (given by Prop. 4). If CG (A1) ⊆ CG (A2) then:
G (π1(E ×F )) = G (A );
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G (π2(E ×F )) ⊆ G (B).

Proof. The second point follows from the observation above. The first one comes from the sim-
ulation result ([11, Prop. 9.10]) for PA. Indeed, if CG (A ) ⊆ CG (B), then there is a simulation
([11, Def. 9.2]) between A and B. This implies that for every run 〈τ1,Γ1, τ2, . . . ,Γn−1, τn〉 of
E , there is a run 〈σ1,∆1, σ2, . . . ,∆n−1, σn〉 of F and a set of mapping ηi : σi → τi, i ∈ [1, n]
such that Γi Cηi,ηi+1 ∆i for every i ∈ [1, n− 1]. J

6.3 Maintaining refinement during reductions
Let us finally show that refinement is stable by composition, union, and iteration.

I Theorem 27 (Stability of refinement by · and ∪).
If Γ1 ≤η,η′ Γ2 and ∆1 ≤η′,η” ∆2 then Γ1 ·∆1 ≤η,η” Γ2 ·∆2.
If Γ1 ≤η,η′ Γ2 and ∆1 ≤η,η′ ∆2 then Γ1 ∪∆1 ≤η,η′ Γ2 ∪∆2.

Proof. To show the first property it suffices to show the following results:

If Γ1 Cη,η′ Γ2 and ∆1 Cη′,η′′ Γ2 then Γ1 ·∆1 Cη′,η′′ Γ2 ·∆2. (L1)

If Γ1 v Γ2 and ∆1 v ∆2 then Γ1 ·∆1 v Γ2 ·∆2. (L2)

If Γ1 C Γ2 and ∆1 v ∆2 then Γ1 ·∆1 (C· v)∗ Γ2 ∪∆2. (L3)

To show (L1), consider a box α1 ∈ Γ1 and β1 ∈ ∆1. By hypothesis, there is a box α2 ∈ Γ2
and an (η, η′)-compatible homomorphism h = 〈f, g〉 from α2 to α1 and a box β2 ∈ ∆2 and
an (η′, η′′)-compatible homomorphism h′ = 〈f ′, g′〉 from β2 to β1. Let h′′ = 〈f ′′, g′′〉, where
f ′′ equals f in dom (f) and f ′ in dom (f ′), and g′′ equals g in dom (g) and g′ in dom (g′).
Using (η, η′)-compatibility of h and (η′, η′′)-compatibility of h′, it is easy to show that h′′ is
an (η, η′′)-compatible homomorphism from α2 · β2 to α1 · β1, which concludes the proof of
(L1). (L2) follows easily from the definition of v. For (L3), note that ∆1 C ∆1 (we choose
the identity homomorphism), thus by (L1), we have that Γ1 ·∆1 C Γ2 ·∆1. By (L2), we have
that Γ2 ·∆1 v Γ2 ·∆2, which concludes the proof.

To show the first property, we proceed by induction on the length of the sequences
justifying that Γ1 ≤η,η′ Γ2 and ∆1 ≤η′,η” ∆2, using (L1), (L2) and (L3) for the base cases.

To show the second property, we follow the same proof schema, showing results similar
to (L1)− (L3) where · is replaced by ∪. J

I Remark. Thm. 27 justifies our definition of ≤η,η′ . Indeed, a more permissive definition
would seem natural, but the first property of Thm 27 would fail. For instance, if Γ1 v Γ2
and ∆1 Cη,η′ ∆2, we do not have in general that Γ1 ·∆1 ≤η,η′ Γ2 ·∆2.

The main theorem of this section is Thm 28, stating that the refinement relation is stable
under iteration. As its proof is very technical, we give only a proof sketch here, and leave
the technical details to [13, App. B].

I Theorem 28 (Stability of refinement by _+). If Γ ≤η,η ∆ then there are bowtie choices
./, ./′ and computation orders �,�′, for Γ and ∆ respectively, such that: Γ+

./,� ≤η,η ∆+
./′,�′ .

Proof sketch. To prove Thm. 28, it is enough to show the following properties.
If Γ v ∆ then, for every bowtie choices ./, ./′, and every computation orders �,�′ for Γ
and ∆ respectively, we have that Γ+

./,� v ∆+
./′,�′ .

If Γ Cη,η ∆ then there are two bowtie choices ./, ./′ and two computation orders �,�′,
for Γ and ∆ respectively, such that Γ+

./,� ≤η,η ∆+
./′,�′ .
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The first property follows from B(Γ+
./,�) = B(Γ)+ for every bowtie choice ./ and order �.

For the sake of clarity, we give here the proof of the second proposition in the case where
Γ and ∆ are singletons of atomic boxes {α} and {β} respectively. The general case is treated
in [13, App. B]. Let ./, ./′ be bowtie choices for α and β respectively, and let h = 〈f, g〉 be a
homomorphism from β to α.

Let us first treat the case where f−1(./) = {./′} (we say that α, β are bowtie compatible).
This is illustrated by the boxes α, β of Fig. 13, where the bowties are the red nodes. If we
decompose α and β at the level of their bowties, we get α = α1 · α2 and β = β1 · β2, where
α2 · α1 and β2 · β1 are 1-1 boxes. We write e = e (α2 · α1) and f = e (β2 · β1). The boxes α+

./

and β+
./′ are depicted in Fig. 13. Let us show that there is a homomorphism from β+

./′ to α+
./.

The homomorphism h induces a homomorphism h1 from β1 to α1 and a homomorphism h2
from β2 to α2 ([13, App. B, Lem. 42]). Combining h1 and h1, we get almost a homomorphism
from β+

./′ to α+
./ (See Fig. 13), we need only to show that KL− ` e ≤ f . But this follows from

Prop. 6: indeed, we can combine h1 and h2 to get a homomorphism from β2 · β1 to α2 · α1.
We have thus that α+

./ Cη,η β
+
./′ ((η, η)-compatibility is easy).

Let us now treat the case where N := f−1(./) is not necessarily {./′} (N is illustrated
by the red node of β in Fig. 14). Let γ be the box obtained from β by merging the nodes
N (see Fig. 14). There are two bowtie choices for γ: a bowtie ./b inherited from β (blue in
Fig. 14) and a bowtie ./r coming from the nodes of N (red in Fig. 14).

Let h′ be the homomorphism from β to γ that maps each node (and each edge) to itself,
except for the nodes of N which are mapped to ./r. If we consider the bowtie ./b for γ, then
β and γ are bowtie compatible w.r.t. to h′, thus γ+

./b
C β+

./′ using the previous case.
Let h′′ be the homomorphism from γ to α, which is exactly h except that it maps the

node ./r to the bowtie ./ of α. If we consider the bowtie ./r for γ, then γ and α are bowtie
compatible w.r.t. h′′, thus α+

./ Cη,η γ
+
./r

using the previous case again.
Notice finally that γ+

./r
v γ+

./b
. To sum up, we have: α+

./ Cη,η γ
+
./r
v γ+

./b
C β+

./′ . J

The last case in this proof explains the need to work with refinement (≤) rather than just
homomorphisms (C): when starting from templates that are related by homomorphism and
iterating them, the templates we obtain are not necessarily related by a single homomorphism,
only by a sequence of homomorphisms and inclusions.

7 Future work

We have proven that KL− axioms are sound and complete w.r.t. the relational models of
identity-free Kleene lattices, and thus also w.r.t. their language theoretic models, by the
results from [2].

Whether one can obtain a finite axiomatisation in presence of identity remains open.
This question is important since handling the identity relation is the very first step towards
handling tests, which are crucial in order to model the control flow of sequential programs
precisely (e.g., as in Kleene algebra with tests [20]).

An intermediate problem, which is still open to the best of our knowledge, consists in
finding an axiomatisation for the fragment with composition, intersection and identity (not
including transitive closure) [3, see errata available online].
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