
A Coalgebraic Take on Regular and ω-Regular
Behaviour for Systems with Internal Moves
Tomasz Brengos
Faculty of Mathematics and Information Science, Warsaw University of Technology,
ul. Koszykowa 75, 00-662 Warszawa, Poland
t.brengos@mini.pw.edu.pl

Abstract
We present a general coalgebraic setting in which we define finite and infinite behaviour with
Büchi acceptance condition for systems with internal moves. Since systems with internal moves
are defined here as coalgebras for a monad, in the first part of the paper we present a construction
of a monad suitable for modelling (in)finite behaviour. The second part of the paper focuses on
presenting the concepts of a (coalgebraic) automaton and its (ω-) behaviour. We end the paper
with coalgebraic Kleene-type theorems for (ω-) regular input. We discuss the setting in the
context of non-deterministic (tree) automata and Segala automata.

2012 ACM Subject Classification Theory of computation Models of computation

Keywords and phrases coalgebras, regular languages, omega regular languages, automata, Büchi
automata, silent moves, internal moves, monads, saturation

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.25

Acknowledgements I want to thank Marco Peressotti for his continuous support and feedback.
I am grateful to the anonymous referees for valuable comments and remarks.

1 Introduction

Automata theory is one of the core branches of theoretical computer science and formal
language theory. One of the most fundamental state-based structures considered in the
literature is a non-deterministic automaton and its relation with languages. Non-deterministic
automata with a finite state-space are known to accept regular languages, characterized as
subsets of words over a fixed finite alphabet that can be obtained from the languages consisting
of words of length less than or equal to one via a finite number of applications of three types
of operations: union, concatenation and the Kleene star operation [22]. This result is known

R ::= ∅ | a, a ∈ Σε | R+R | R ·R | R∗

Figure 1 Reg. exp. grammar.

under the name of Kleene theorem for regular lan-
guages and readily generalizes to other types of
finite input (see e.g. [31]).

On the other hand, non-deterministic automata have a natural infinite semantics which is
given in terms of infinite input satisfying the so-called Büchi acceptance condition (or BAC
in short). The condition takes into account the terminal states of the automaton and requires
them to be visited infinitely often. It is a common practise to use the term Büchi automata
in order to refer to automata whenever their infinite semantics is taken into consideration.

input type Kleene theorem where

ω-words
⋃n

i=1 Ri · Lω
i Ri, Li =

regular lang.

ω-trees T0 · [T1 . . . Tn]ω Ti =
regular tree lang.

Figure 2 Kleene thm. for ω-regular input.

Although the standard type of infinite input of a
Büchi automaton is the set of infinite words over
a given alphabet, other types (e.g. trees) are also
commonly studied [31]. The class of languages of
infinite words accepted by Büchi automata can
also be characterized akin to the characterization

© Tomasz Brengos;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 25; pp. 25:1–25:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:t.brengos@mini.pw.edu.pl
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 A Coalgebraic Take on (ω)-Regular Behaviour for Systems with Internal Moves

of regular languages. This result is known under the name of Kleene theorem for ω-regular
languages and its variants hold for many input types (see e.g. [17,31]). Roughly speaking, any
language recognized by a Büchi automaton can be represented in terms of regular languages
and the infinite iteration operator (−)ω. This begs the question of a unifying framework these
systems can be put in and reasoned about on a more abstract level so that the analogues of
Kleene theorems for (ω-)regular input are derived. The recent developments in the theory of
coalgebra [11, 32, 35, 36] show that the coalgebraic framework may turn out to be suitable to
achieve this goal.

A coalgebra X → FX is an abstract (categorical) representation of a single step of
computation of a given process [18, 32]. The coalgebraic setting has already proved itself
useful in modelling finite behaviour via least fixpoints (e.g. [8, 21,35]) and infinite behaviour
via greatest fixpoints of suitable mappings [12, 24]. The infinite behaviour with BAC can be
modelled by a combination of the two [30,36].

Our paper plans to revisit the coalgebraic framework of (in)finite behaviour from the
perspective of systems with internal moves. A unifying theory of systems with internal
steps has been part of the focus of the coalgebraic community in recent years [6–10, 35]
and was mainly motivated by the research in finite behaviour of such systems. Intuitively,
these systems have a special computation branch that is silent. This special branch, usually
denoted by the letter τ or ε, is allowed to take several steps and in some sense remain
neutral to the structure of a process. These systems arise in a natural manner in many
branches of theoretical computer science, among which are process calculi [29] (labelled
transition systems with τ -moves and their weak bisimulation) or automata theory (automata
with ε-moves), to name only two. The approach from [8, 9] suggests that these systems
should be defined as coalgebras whose type is a monad. This treatment allows for an
elegant modelling of weak behavioural equivalences [9,10] among which we find Milner’s weak
bisimulation [29]. Each coalgebra α : X → TX becomes an endomorphism α : X → X in
the Kleisli category for the monad T and Milner’s weak bisimulation on a labelled transition

s0 s1 s2
0

ε

0 + 1

1

1

s0 s1 s2
0

ε

(0 + 1)1∗

11∗

ε 1∗

Figure 3 LTS with ε-moves and its satura-
tion.

system α is defined to be a strong bisimulation
on its saturation α∗ which is the smallest LTS
over the same state space satisfying α ≤ α∗,
id ≤ α∗ and α∗ · α∗ ≤ α∗ (where the compos-
ition and the order are given in the Kleisli
category for the LTS monad) [8]. Hence, in-
tuitively, α∗ is the reflexive and transitive closure of α and is formally defined as the least
fixpoint α∗ = µx.(id ∨ x · α). Since a reflexive and transitive closure is understood as an
accumulation of a finite number of compositions of the structure with itself, the concept
of coalgebraic saturation is intrinsically related to finite behaviour of systems. A similar
treatment of infinite behaviour (and/or their combination) in the context of systems with
internal moves has not been considered so far.

The aim of the paper. We plan to:
1. revisit non-deterministic (Büchi) automata and their behaviour in the coalgebraic context

of systems with internal moves,
2. provide a type monad suitable for modelling (in)finite behaviour of general systems,
3. present a setting for defining (in)finite behaviour for abstract automata with silent moves,
4. state coalgebraic Kleene theorems for (ω-)regular behaviour.
The first point in the list is achieved by describing non-deterministic (Büchi) automata and
their finite and infinite behaviour in terms of different coalgebraic (categorical) fixpoint

T. Brengos 25:3

constructions calculated in the Kleisli category for a suitable monad. Section 3 serves as a
motivation for the framework presented later in Section 4 and Section 5.

Originally [20,35], coalgebras with internal moves were considered as systems X → TFεX

for a monad T and an endofunctor F , where Fε , F + Id. The functor TFε could be
embedded into the monad TF ∗, where F ∗ is the free monad over F [8]. The monad TF ∗ is
enough to model systems with internal moves and their finite behaviour [6, 8, 9]. However, it
will prove itself useless in the context of infinite behaviour. Hence, by revisiting and tweaking
the construction of TF ∗ from [8], Section 4 gives a general description of the monad TF∞,
the type functor TFε embeds into, which is used in the remaining part of the paper to model
the combination of finite and infinite behaviour. Point (3) in the above list is achieved
by using two fixpoint operators: the saturation operator (−)∗ and a new operator (−)ω
calculated in (a full subcategory of) the Kleisli category for a monad which admits infinite
behaviour. The combination of (−)∗ and (−)ω allows us to define infinite behaviour with
BAC. Since we are mainly interested in finite state systems, all our results are presented in
the context of the full subcategory of the Kleisli category whose objects are sets {1, . . . , n}
for n = 0, 1, . . ., a.k.a. the Lawvere theory associated with the given monad. Kleene-type
theorems of (4) are a direct consequence of the definition of finite and infinite behaviour with
BAC using (−)∗ and (−)ω.

2 Basic notions

In this paper we assume the reader is familiar with basic category theory concepts like
functor, (sub)monad, adjunction, Kleisli category, lifting of a functor to Kleisli category
via distributive law, (initial) F -algebra, (final) F -coalgebra. For a thorough introduction
to category theory the reader is referred to [28]. See also e.g. [7–9] for an extensive list of
notions needed here.

Non-deterministic (Büchi) automata and their behaviour. Classically, a nondeterministic
automaton, or simply automaton, is a tuple Q = (Q,Σ, δ, q0,F), where Q is a finite set of
states, Σ finite set called alphabet, δ : Q× Σ → P(Q) a transition function and F ⊆ Q set
of accepting states. We write q1

a→ q2 if q2 ∈ δ(q1, a). There are two standard types of
semantics of automata: finite and infinite. The finite semantics, also known as the language
of finite words of Q, is defined as the set of all finite words a1 . . . an ∈ Σ∗ for which there
is a sequence of transitions q0

a1→ q1
a2→ q2 . . . qn−1

an→ qn which ends in an accepting state
qn ∈ F [22]. The infinite semantics, also known as the ω-language of Q, is the set of infinite
words a1a2 . . . ∈ Σω for which there is a run r = q0

a1→ q1
a2→ q2

a3→ q3 . . . for which the set
of indices {i | qi ∈ F} is infinite, or in other words, the run r visits the set of final states F
infinitely often. Often in the literature, in order to emphasize that the infinite semantics
is taken into consideration the automata are referred to as Büchi automata [31]. In our
work we will consider (Büchi) automata without the initial state specified and define the
(ω-)language in an automaton for any given state.

There are several other variants of input for non-deterministic Büchi automata known
in the literature [17, 31]. Here, we mention non-deterministic (Büchi) tree automaton, i.e.
a tuple (Q,Σ, δ,F), where δ : Q × Σ → P(Q × Q) and the rest is as before. The infinite
semantics of this machine is the set of infinite binary trees with labels in Σ for which there is
a run whose every branch visits F infinitely often [17,31].

CONCUR 2018

25:4 A Coalgebraic Take on (ω)-Regular Behaviour for Systems with Internal Moves

Coalgebras with internal moves and their type monads. As mentioned before coalgebras
with internal moves were first introduced in the context of coalgebraic trace semantics as
coalgebras of the type TFε for a monad T and an endofunctor F on C [20, 35]. If we take
F = Σ× Id then we have TFε = T (Σ× Id+ Id) ∼= T (Σε × Id), where Σε , Σ + {ε}. In [8]
we showed that given some mild assumptions on T and F we may embed the functor TFε
into the monad TF ∗, where F ∗ is the free monad over F . In particular, if we apply this
construction to T = P and F = Σ× Id we obtain the monad P(Σ∗ × Id) from Example 2.1
below. This construction is also revisited in this paper in Section 4. The trick of modelling
the invisible steps via a monadic structure allows us not to specify the internal moves
explicitly. Instead of considering TFε-coalgebras we consider T ′-coalgebras for a monad T ′
on an arbitrary category.

The strategy of finding a suitable monad (for modelling the behaviour taken into con-
sideration) will also be applied in this paper. Unfortunately, from the point of view of the
infinite behaviour of coalgebras, considering systems of the type TF ∗ is not sufficient (see
Section 3 for a discussion). Hence, in Section 4 we show how to obtain monads suitable for
modelling infinite behaviour. Below, we list basic examples of monads considered in this
paper. This list will be extended in sections to come.

I Example 2.1. The powerset endofunctor P : Set → Set carries a monadic structure for
which the category Kl(P) consists of sets as objects and maps f : X → PY and g : Y → PZ
with the composition g · f : X → PZ defined as follows g · f(x) = {z ∈ Z | z ∈

⋃
g(f(x))}.

The identity morphisms id : X → PX are given for any x ∈ X by id(x) = {x}. Now,
for a set Σ the functor P(Σ∗ × Id) carries a monadic structure whose composition in the
Kleisli category is given as follows [8]. For f : X → P(Σ∗ × Y) and g : Y → P(Σ∗ × Z) we
have g · f(x) = {(σ1σ2, z) | x

σ1→f y
σ2→g z for some y ∈ Y }. The identity morphisms in this

category are id : X → P(Σ∗ ×X) given by id(x) = {(ε, x)}. Finally, let Σω be the set of
all infinite sequences of elements from Σ. The functor P(Σ∗ × Id+ Σω) carries a monadic
structure whose Kleisli composition is the following. For f : X → P(Σ∗ × Y + Σω) and
g : Y → P(Σ∗ × Z + Σω) the map g · f : X → P(Σ∗ × Z + Σω) is:

x
σ→g·f z ⇐⇒ ∃y s.t. x σ1→f y and y σ2→g z, where σ = σ1σ2 ∈ Σ∗,

x ↓g·f v ⇐⇒ x ↓f v or x σ→f y, y ↓g v′ and v = σv′ ∈ Σω.

In the above we write x σ→f y whenever (σ, y) ∈ f(x) and x ↓f v if v ∈ f(x) for σ ∈ Σ∗,
v ∈ Σω. The identity morphisms in this category are the same as in the Kleisli category for
the monad P(Σ∗ × Id). The monadic structure of P(Σ∗ × Id+ Σω) arises as a consequence
of a general construction of monads modelling (in)finite behaviour described in detail in
Section 4.

I Example 2.2. The subconvex distributions functor CM used to model Segala systems
[33, 34] is defined as follows [16]. For any set X define MX to be the carrier of the free
module for the semiring [0,∞) over X and put CMX = {U ⊆MX | U = U and U 6= ∅},
where for U ⊆ MX we have U , {

∑n
i=1 ri · ui | ui ∈ U, ri ∈ [0,∞) &

∑
i ri ≤ 1}. For any

map f : X → Y put CM(f) : CMX → CMY ;U 7→ Mf(U). See also [8, 25] for a slightly
different definition of CM and a more thorough discussion of this treatment. The functor
can be equipped with a monadic structure which results in the Kleisli composition defined
by: g · f(x) =

⋃
φ∈f(x)

∑
y∈suppφ{φ(y) · ψ | ψ ∈ g(y)} ∈ CMZ for x ∈ X, f : X → CMY and

g : Y → CMZ [16].

T. Brengos 25:5

Lawvere theories and categorical order enrichment. The primary interest of the theory
of automata and formal languages focuses on automata over a finite state space. Hence,
since we are interested in systems with internal moves (i.e. maps X → TX for a monad
T), without any loss of generality we may focus our attention on coalgebras of the form
[n]→ T [n], where [n] , {1, . . . , n} with n = 0, 1, . . . for a Set-monad T . These morphisms
are endomorphisms in a full subcategory of the Kleisli category for T known under the name
of Lawvere theory. That is why we choose the setting of this paper to be Lawvere theories.
Because we are interested in the coalgebraic essence of a Lawvere theory, we adopt the
definition which is dual to the classical notion [27].

Formally, a Lawvere theory, or simply theory, is a category whose objects are natural
numbers n ≥ 0 such that each n is an n-fold coproduct of 1. For any element i ∈ [n] let
in : 1 → n denote the i-th coproduct injection and [f1, . . . , fk] : n1 + . . . + nk → n the

nk

n1

. . . n

fk

f1
cotuple of the family {fl : nl → n}l depicted in the diagram on the right. The
coprojection ni → n1+. . .+nk into the i-th component of the coproduct will be
denoted by inni

n1+...+nk
. Any morphism k → n of the form [i1n, . . . , ikn] : k → n

for ij ∈ [n] is called base morphism or base map. Finally, let ! : n → 1 be
defined by ! , [11, 11, . . . , 11]. We say that a theory T′ is a subtheory of T if there is a faithful
functor T′ → T which maps any object n onto itself. Any monad T on Set induces a theory
T associated with it by restricting the Kleisli category Kl(T) to objects [n] for any n ≥ 0.
Conversely, for any theory T there is a Set based monad the theory is associated with (see
e.g. [23] for details).

In order to establish the definition of the fixpoint operators (−)∗ and (−)ω we require
the Lawvere theory under consideration to be suitably order enriched. A category is said to
be order enriched, or simply ordered, if each hom-set is a poset with the order preserved by
the composition. It is ∨-ordered if all hom-posets admit arbitrary finite suprema. Note that,

f ∨ g = f ∨ g
given such suprema exist, the composition in C does not
have to distribute over them in general. We call such
category left distributive (or LD in short) if h · (f ∨g) = h ·f ∨h ·g. In this paper we will come
across many left distributive categories that do not necessarily satisfy right distributivity.
Still, however, all the examples taken into consideration satisfy a weaker form of right
distributivity. To be precise, we say that a theory is right distributive w.r.t. base morphisms
(or bRD in short) provided that (f ∨ g) · j = f · j ∨ g · j for any f, g and any base morphism
j. We say that an order enriched category is ω-Cpo-enriched if any ascending ω-chain
f1 ≤ f2 ≤ . . . of morphisms admits a supremum

∨
i fi which is preserved by the morphism

composition. Finally, in an ordered category with finite coproducts we say that cotupling
preserves order if [f1, f2] ≤ [g1, g2] ⇐⇒ f1 ≤ g1 and f2 ≤ g2 for any fi, gi with suitable
domains and codomains.

I Example 2.3. The primary interest of the next section of this paper lies in the theories
LTS and LTSω which are defined to be the theories that arise from the Kleisli categories of the
monads P(Σ∗ × Id) and P(Σ∗ × Id + Σω) respectively. Both theories are order-enriched
with the hom-set ordering given by f ≤ g ⇐⇒ f(i) ⊆ g(i) for any i ∈ [n]. It is easy to see
that the hom-posets of LTS and LTSω are complete lattices, both theories are ω-Cpo-enriched
and satisfy LD and bRD. Moreover, cotupling [−,−] in LTS and LTSω preserves order.

3 Non-deterministic (Büchi) automata, coalgebraically

The purpose of this section is to give motivations for the development of the abstract theory
done in the remainder of the paper. Here, we will focus on finite non-deterministic (Büchi)
automata and their (in)finite behaviour from the perspective of the theories LTS and LTSω.

CONCUR 2018

25:6 A Coalgebraic Take on (ω)-Regular Behaviour for Systems with Internal Moves

Without any loss of generality we may only consider automata over the state space [n]
for some natural number n. Any non-deterministic automaton with ε-moves ([n],Σε, δ,F)
may be modelled as a P(Σε × Id+ 1)−coalgebra [n]→ P(Σε × [n] + 1) [32]. However, as it
has been already noted in [36], from the point of view of infinite behaviour with BAC it is
more useful to extract the information about the final states of the automaton and do not
encode it into the transition map as above. Instead, we consider the given automaton as a
pair (α,F) where α : [n]→ P(Σε × [n]) is defined by α(i) = {(a, j) | j ∈ δ(a, i)} and consider
the map:

fF : [n]→ P(Σε × [n]); i 7→
{
{(ε, i)} if i ∈ F,

∅ otherwise.

The purpose of fF is to encode the set of accepting states with an endomorphism in the
same Kleisli category in which the transition α is an endomorphism. Now, we have all the
necessary ingredients to revisit finite and infinite behaviour (with BAC) of non-deterministic
automata from the perspective of the theory LTSω.

Finite behaviour. Consider α∗ : n→ n to be an endomorphism in LTS (or LTSω) given by
α∗ = µx.(id ∨ x · α) =

∨
n∈ω α

n, where the order is as in Example 2.3. We have [8]:

α∗(i) = {(σ, j) | i σ=⇒ j},

where σ=⇒ , (ε→)∗◦ a1→ ◦(ε→)∗ ◦ . . . (ε→)∗◦ an→ (ε→)∗ for σ = a1 . . . an, ai ∈ Σ and ε=⇒ , (ε→)∗.
Now, let us recall the definition of ! in any theory T. In particular, when T = LTS, LTSω

the map ! : [n] → P(Σε × [1]) satisfies !(i) = {(ε, 1)}. Finally, consider the morphism
! · fF · α∗ : n→ 1 in LTS (or LTSω)) which is explicitly given by:

! · fF · α∗(i) = {(σ, 1) | σ ∈ Σ∗ such that i σ=⇒ j and j ∈ F}.

Since P(Σ∗ × [1]) ∼= P(Σ∗), the set ! · fF · α∗(i) represents the set of all finite words accepted
by the state i in the automaton ([n],Σε, δ,F).

Infinite behaviour with BAC. Note that both theories LTS and LTSω are complete and,
hence (by Tarski-Knaster theorem), come equipped with an operator which assigns to any
endomorphism β : n → n the morphism βω : n → 0 defined as the greatest fixpoint of
λx.x · β. For α the map αω : [n] → P(Σ∗ × ∅) = {∅} is unique in LTS with αω(i) = ∅.
However, if we compute αω in LTSω the result will be different. Indeed, we have the following.

I Theorem 3.1. Let β : [n]→ P(Σ∗ × [n]) be a transition map with no silent moves. Then
βω : [n]→ P(Σ∗ ×∅ + Σω) = P(Σω) in LTSω is given by:

βω(i) = {σ1σ2 . . . ∈ Σω | i σ1→ i1
σ2→ i2 . . . for some ik ∈ [n] and σk ∈ Σ∗ \ {ε}}.

Hence, if we, for now, assume that α : [n]→ P(Σε × [n]) has no silent transitions then
by the above theorem: αω(i) = {a1a2 . . . ∈ Σω | i a1→ i1

a2→ i2 . . . for some ik ∈ [n]}. We will
use the operation (−)ω in LTSω to extract the information about the ω-language of (α,F).
However, we need one last ingredient. Let us define α+ , α∗ · α and note

α+(i) = {(σ, j) | i a1→ i1 . . .
ak→ ik in α and σ = a1 . . . ak for k ≥ 1}.

Finally, consider the morphism (fF · α+)ω : n → 0 in LTSω. In order to see the explicit
formula for (fF ·α+)ω let us first note that the endomorphism fF ·α+ : [n]→ P(Σ∗× [n]) has

T. Brengos 25:7

s0 s1 s2
0

0 + 1

1

1

s0 s1 s2
0

(0 + 1)1∗

11∗

11∗

s0 s1 s2

(0 + 1)1∗

11∗

11∗

Figure 4 A non-deterministic automaton (α,F) and the maps α+ and fF · α+.

no silent moves and fF ·α+(i) = {(σ, j) | i σ→ j in α+ and j ∈ F}. Therefore, by Theorem 3.1,
the map (fF · α+)ω : [n]→ P(Σω) satisfies:

(fF · α+)ω(i) = the ω-language of i in the Büchi automaton represented by (α,F).

This property suggests a general approach towards modelling (ω-)behaviours of abstract
(coalgebraic) automata that we will develop in the sections to come.
I Remark. Note that throughout this paragraph we assumed the map α to have no ε-
transitions. It may not be instantly clear why. It turns out that ε moves are problematic for
the infinite behaviour operator (−)ω defined as above. Indeed, in order to see this consider
two finite languages A,B ⊆ {a, b}∗ defined by A = {ε, ab} and B = {ab}. These languages
can be viewed as endomorphisms α, β : 1 → 1 in LTSω given by α, β : [1] → P(Σ∗ × [1]),
where α(1) , {(ε, 1), (ab, 1)} and β(1) , {(ab, 1)}. Note that α has a silent loop, β has
no silent transitions and both maps α∗, β∗ : 1 → 1 satisfy α∗(1) = {((ab)n, 1) | n ≥ 0} =
β∗(1). However, αω 6= βω in LTSω. Indeed, by Theorem 3.1, βω(1) = {ababababab . . .}
but αω(1) = P({a, b}ω) is the set of all infinite words over {a, b}. The latter holds, since
id ≤ α in LTSω and the greatest fixpoint of λx.x · α is the greatest morphism > : 1 → 0
in the given theory as > = > · id ≤ > · α ≤ >. The identity αω = P({a, b}ω) seems to be
unintuitive considering the fact that in many classical works on Büchi automata (e.g. [31])
Aω = Bω = {abababab . . .}. These papers use a slightly incompatible definition of the
language operator (−)ω : P(Σ∗) → P(Σω) which explicitly removes ε from the argument
set. Since it would be difficult to devise such an operator on a more abstract categorical
level, we decide to keep with νx.x · β as the definition of βω and bear in mind this minor
incompatibility with the classical work.

Why systems with internal moves? In the light of the above remark the reader may get
the (wrong) impression that putting systems with internal moves into the context of infinite
behaviour with BAC may seem rather ad hoc. To add to this, the need for categorical
modelling of infinite behaviour for systems with silent steps is not sufficiently justified by
the classical literature on the topic, where such systems rarely occur in practice (conf. [31]).
However, as mentioned before, since putting systems with internal steps into the context
is, in fact, extending the given setting to the setting of coalgebras X → TX whose type
T is a monad, the main profit from this approach is the access to a simple and powerful
language of the Kleisli category for the monad T . It allows us to abstract away from several
“unnecessary” details and focus on the core properties. Hopefully, this paper demonstrates
that the access to the language justifies the extension of the setting, as it makes it possible
to formulate new results and provide their simple proofs which, in our opinion, would be
tedious without such extension.

Büchi automata with non-standard input and beyond. As mentioned in Section 2, there
are variants of non-deterministic (Büchi) automata that accept other types of input (e.g.
binary trees). In general, given a functor F : Set→ Set we define a non-deterministic (Büchi)

CONCUR 2018

25:8 A Coalgebraic Take on (ω)-Regular Behaviour for Systems with Internal Moves

F -automaton as a pair (α,F), where α : [n]→ PF [n] (or α : [n]→ PFε[n]- to model systems
with internal moves) and F ⊆ [n]. A natural question that arises is the following: are we
able to build a setting in which we can reason about the (in)finite behaviour of systems for
arbitrary non-deterministic Büchi F -automata (or even more generally, for systems of the
type TF (or TFε) for a monad T)? If so, then is it possible to generalize the Kleene theorem
for (ω−)regular languages stated in the introduction to a coalgebraic level? We will answer
these questions positively in the next sections.

4 Monads for (in)finite behaviour

Let C be a category which admits binary coproducts. We denote the coproduct operator by
+ and the coprojection into the first and the second component of a coproduct by inl and inr
respectively. Moreover, let F : C→ C be a functor.

The purpose of this section is to present a monad the functor TFε embeds into that will
prove itself sufficient to model the combination of finite and infinite behaviour (akin to the
monad P(Σ∗ × Id+ Σω) for the functor P(Σε × Id)). At first we list basic facts needed in
the remainder of this section. In Subsection 4.2 we revisit the construction of the monad
TF ∗ from [8]. Here, however, we show how it can be obtained by composing a different pair
of adjunctions. Finally, we give a description of the definition of TF∞ suitable for modelling
(in)finite behaviour. In what follows, in this section we assume:

(T, µ, η) is a monad on C and F : C→ C lifts to Kl(T) via a dist. law λ : FT =⇒ TF ,
there is an initial F (−) + X-algebra for any object X and a terminal F -coalgebra
ζ : Fω → FFω.

4.1 Preliminaries
Existence of the initial F (−) + X-algebra iX : FF ∗X + X → F ∗X (i.e. iX ◦ inl is the
free F -algebra over X) for any object X yields an adjoint situation C � Alg(F), where
the left adjoint is the free algebra functor which assigns to any object X the free algebra
iX ◦ inl : FF ∗X → F ∗X over it. The right adjoint is the forgetful functor which assigns
to any F -algebra its carrier and is the identity on morphisms. This adjunction yields the
monad F ∗ : C→ C which assigns to any object X the carrier of the free F -algebra over X.

I Example 4.1. For any set Σ and X the initial Σ×Id+X-algebra is given by the morphism
iX : Σ× Σ∗ ×X +X → Σ∗ ×X, where iX(a, (σ, x)) = (aσ, x) and iX(x) = (ε, x).

Now we recall basic definitions and properties of Bloom F -algebras [1] which will be used to
introduce monads for infinite behaviour in the next subsection. A pair (a : FA→ A, (−)†) is
called Bloom F -algebra provided that for any F -coalgebra e : X → FX the map e† : X → A

satisfies:
X A

FX FA

e a

e†

F e†

and
X Y

FX FY

e f

h

F h

implies
X Y

A

e† f†

h

By a homomorphism between Bloom algebras (a : FA→ A, (−)†) and (b : FB → B, (−)‡)
we mean a map h : A → B which is an F -algebra homomorphism from a to b and which
additionally preserves the solution, i.e. e† ◦ h = e‡. The category of Bloom algebras and
homomorphisms between them is denoted by AlgB(F). We assume that Alg(F) has binary
coproducts which are denoted by ⊕. We have the following theorem.

T. Brengos 25:9

I Theorem 4.2. [1] The pair (ζ−1 : FFω → Fω, [[−]]), where [[−]] assigns to e : X → FX

the unique coalgebra homomorphism [[e]] : X → Fω between e and ζ, is an initial object in
AlgB(F). Moreover, iX ◦ inl⊕ ζ−1 is the free Bloom algebra over X.

I Remark. Let F∞ : C → C be defined as the composition of the left and right adjoints
C� AlgB(F) respectively, where the left adjoint is the free Bloom algebra functor and the
right adjoint is the forgetful functor. The functor F∞ carries a monadic structure which
extends F ∗. Indeed, by Th. 4.2, the monad F ∗ is a submonad of F∞ (via the transformation
induced by the coprojection into the first component of iX ◦ inl ⊕ ζ−1 in Alg(F)). The
construction of the free Bloom algebra from the above theorem indicates that F∞ is a natural
extension of F ∗ encompassing infinite behaviours of the final F -coalgebra. By abusing
the notation slightly, we can write F∞ = F ∗ ⊕ Fω. The functor Fε is a subfunctor of
F ∗ [8, Lemma 4.12] and hence, by the above, also of F∞. In the following sections this will
let us turn any coalgebra X → TFX or X → TFεX into a system X → TF∞X and, by
doing so, allow us to model their (in)finite behaviour.

I Example 4.3. The terminal Σ×Id-coalgebra is ζ : Σω → Σ×Σω; a1a2 . . . 7→ (a1, a2a3 . . .).
The coproduct of a : Σ × A → A and b : Σ × B → B in Alg(F) is a ⊕ b : Σ × (A + B) →
A+B; (σ, x) 7→ if x ∈ A then a(σ, x) else b(σ, x). Hence, the free Bloom algebra over X is:
Σ× (Σ∗×X + Σω)→ Σ∗×X + Σω, where (a, (σ, x)) 7→ (aσ, x) and (a, a1a2 . . .) 7→ aa1a2

Let (a : FA → A, (−)†) be a Bloom algebra, b : FB → B an F -algebra and h : A → B

a homomorphism between F -algebras a and b. Then there is a unigue assignment (−)‡ which
turns (b : FB → B, (−)‡) into a Bloom algebra and h into a Bloom algebra homomorphism
and it is defined as follows [1]: for e : X → FX the map e‡ : X → B is e‡ , h ◦ e†.

4.2 Lifting monads to algebras

X A

FX FA

B

FB

e‡

e ae†

Fe†
h

b
Fh

Fe‡

Take an F -algebra a : FA→ A and define T̄ (a) , FTA
λA→ TFA

Ta→
TA. If h : A→ B is a homomorphism of algebras a and b : FB → B

we put T̄ (h) = T (h). T̄ : Alg(F) → Alg(F) is a functor for which
the morphism ηA : A → TA is an F -algebra homomorphism from
a : FA → A to T̄ (a) : FTA → TA. Moreover, µA : T 2A → TA is a homomorphism from
T̄ 2(a) to T̄ (a) (see [4] for details). A direct consequence of this construction is the following.

I Theorem 4.4. [4] The triple (T̄ , µ̄, η̄), where for a : FA→ A we put µ̄a : T̄ 2(a)→ T̄ (a);
µ̄a = µA and η̄a : a→ T̄ (a); η̄a = ηA is a monad on Alg(F).

The above theorem together with the assumption of existence of an arbitrary free F -algebra

C Alg(F) Kl(T̄)⊥ ⊥

Figure 5

in Alg(F) leads to a pair of adjoint situations in Fig. 5. Since
the composition of adjoint situations is an adjoint situation
this yields a monadic structure on the functor TF ∗ : C→ C.

I Example 4.5. An example of this phenomenon is given by the monad P(Σ∗ × Id) from
Example 2.1 where in the above we set T = P and F = Σ× Id. This monad has already
been described e.g. in [8], but it arose as a consequence of the composition of a different pair
of adjunctions.

Monads on Bloom algebras. Above we gave a recipe for a general construction of a
monadic structure on the functor TF ∗. As witnessed in [6, 8], this monad is suitable to
model coalgebras and their weak bisimulations and weak finite trace semantics (i.e. their

CONCUR 2018

25:10 A Coalgebraic Take on (ω)-Regular Behaviour for Systems with Internal Moves

finite behaviour). Our primary interest is in modelling infinite behaviour and this monad will
prove itself insufficient. The purpose of this subsection is to show how to tweak the middle
category from Fig. 5 so that the monad obtained from the composition of two adjunctions is
suitable to our needs.

Let (a : FA → A, (−)†) be a Bloom algebra and define T̄B((a : FA → A, (−)†)) ,
(T̄ (a) : FTA→ TA, (−)‡), where for any e : X → FX the map e‡ is given by ηA ◦ e†. Since
ηA : A → TA is a homomorphism between a : FA → A and T̄ (a) : FTA → TA the pair
(T̄ (a), (−)‡) is a Bloom algebra. For a pair of Bloom algebras (a : FA → A, (−)†) and
(b : FB → B, (−)‡) and a Bloom algebra homomorphism h : A → B between them put
T̄B(h) = T (h). This defines a functor T̄B : AlgB(F)→ AlgB(F). Analogously to the previous
subsection we have the following direct consequence of the construction.

I Theorem 4.6. The triple (T̄B , µ̄B , η̄B) is a monad on AlgB(F), where for any Bloom algebra
(a : FA→ A, (−)†) the (a, (−)†)-components of the transformations µ̄B and η̄B are µ̄B(a,(−)†) :
T̄ 2
B(a, (−)†) → T̄B(a, (−)†); µ̄B(a,(−)†) = µA and η̄B(a,(−)†) : (a, (−)†) → T̄B(a, (−)†) with
η̄B(a,(−)†) = ηA.

Hence, we have the following two adjoint situations: C AlgB(F) Kl(T̄B)⊥ ⊥ . These
adjunctions impose a monadic structure on TF∞ : C → C. The monad P(Σ∗ × Id + Σω)
from Example 2.1 arises from the composition of the above adjoint situations (see also
Example 4.3). It is important to note that since any Set-based monad T is strong, the functor
Σ× Id : Set→ Set always lifts to a functor on the Kleisli category for T . If we additionally
assume T is a commutative monad then this is, in fact, true for any polynomial functor
F : Set→ Set [21], i.e. a functor defined by the grammar F , Σ ∈ Set | Id | F × F |

∑
F .

I Example 4.7. Let F = Σ× Id2. Then F∞ = TΣ(−) is a functor which assigns to any set
X the set of complete binary trees (i.e. every node has either two children or no children)
with inner nodes taking values in Σ and finitely many leaves, all taken from X [1]. This yields
a monadic structure on PF∞ = PTΣ, where the Kleisli composition for f : X → PTΣY and
g : Y → PTΣZ is g · f : X → PTΣZ with g · f(x) being a set of trees obtained from trees
in f(x) ⊆ TΣY by replacing any occurence of the leaf y ∈ Y with a tree from g(y) ⊆ TΣZ.
Let TTSω denote the theory associated with PTΣ. It is a simple exercise to prove that this
category is order enriched with the order f ≤ g defined by f(i) ⊆ g(i) for any i ∈ [n] being
complete, and that it is LD, ω-Cpo-enriched, and bRD.

I Example 4.8. For T = CM and F = Σ × Id we get the monad CM(Σ∗ × Id + Σω).
The composition · for f : X → CM(Σ∗ × Y + Σω) and g : Y → CM(Σ∗ × Z + Σω)
in its Kleisli category is as follows. If

∑n
i=1 ri · (σi, yi) +

∑n+k
i=n+1 ri · vi−n ∈ f(x) and∑nj

i=1 r
j
i · (σ

j
i , z

j
i) +

∑nj+kj

i=nj+1 r
j
i · v

j
i−nj

∈ g(yj) for j = 1, . . . , n, where σi, σji ∈ Σ∗ and
vi, v

j
i ∈ Σω, then the expression

n∑
i=1

(
ni∑
l=1

ri · ril · (σiσil , zli) +
ni+ki∑
l=ni+1

ri · ril · σivil−ni

)
+

n+k∑
i=n+1

ri · vi−n

is a member of the set g · f(x). The theory associated to this monad will be denoted by
SGLω. It is order enriched with f ≤ g whenever f(i) ⊆ g(i) for any i. For an arbitrary family
of morphisms fi their supremum

∨
i fi exists and is given by

∨
i fi(j) =

⋃
i fi(j). Hence, the

theory is complete with the infima
∧
i fi(j) =

⋂
i fi(j). It is also LD, ω-Cpo-enriched, and

bRD (the proof of this statement is analogous to the proof that the Kleisli categories for
CM or CM(Σ∗ × Id) have these properties [8, 9, 16] and, hence, is omitted).

T. Brengos 25:11

5 Abstract (Büchi) automata and their behaviour

The purpose of this section is to generalize the concepts from Section 3 to an arbitrary theory
with a suitable ordering. We start with the definition of an automaton for a theory T.

I Definition 5.1. A T-automaton or simply automaton is a pair (α,F), where α : n→ n is
an arbitrary endomorphism called transition morphism and F ⊆ [n].

In order to define finite and infinite behaviour of (α,F) we require the theory to satisfy more
assumptions. An order enriched theory T is called complete saturation theory (or CST in
short) provided that:
i hom-posets are complete lattices,
ii it is ω-Cpo-enriched, LD & bRD
iii bottom maps 0 satisfy f · 0 = 0 for any f ,
iv cotupling preserves the order.
From now on in this section we assume that T is a complete saturation theory. Note that
the definition of a T-automaton was stated in a more general framework. However, the finite
and infinite behaviour of (α,F) will be only considered for complete saturation theories.

I Remark. The assumption about completeness of the order, although a strong assumption,
will guarantee existence of two types of fixpoints, namely (−)∗ and (−)ω. The former fixpoint
operator was thoroughly studied in [7–10] in the context of coalgebraic weak bisimulation.
Although it can be defined in an arbitrary completely ordered category, it requires left
distributivity to be expressive enough [9] and ω-Cpo-enrichment to be calculated in terms of
countable joins. Right distributivity w.r.t. the base morphisms is a technical assumption
that is crucial in the proofs of theorems to come. This is a weak assumption as already
discussed in [9, Lemma 3.25]. The bottom maps 0 provide us with a natural annihilator
thanks to which given a set F ⊆ [n] we can encode it as an endomorphism fF : n→ n defined
as the cotuple of in’s and 01

n’s depending on whether the given coordinate is a member of F
or not. Finally, the last assumption guarantees that the order plays well with the coproduct.

For any endomorphism α : n→ n in T define α∗, α+ : n→ n and αω : n→ 0 by:

α∗ , µx.(id ∨ x · α), α+ , α∗ · α and αω , νx.x · α.

In a complete saturation theory we have α∗ =
∨
n<ω(id∨α)n [8] and αω =

∧
κ∈Ord(λx.x·α)κ>,

where > : n → 0 is the greatest element of T(n, 0) and (λx.x · α)κ is defined by the
transfinite induction by (λx.x · α)κ+1 = (λx.x · α)(λx.x · α)κ for a successor ordinal κ + 1
and (λx.x · α)κ =

∧
λ<κ(λx.x · α)λ for a limit ordinal κ.

I Theorem 5.2. For any α, β : n→ n we have:
1. id∗ = id, id ≤ α∗ and α∗ · α∗ = α∗,
2. (α · β)ω = (β · α)ω · β,
3. (αn)ω = αω for any n > 0,
4. αω = (α+)ω.

I Definition 5.3. Finite behaviour (ω-behaviour) ||(α,F)|| : n→ 1 (resp. ||(α,F)||ω : n→ 0)
of an automaton (α,F) is defined by:

||(α,F)|| ,! · fF · α∗ and ||(α,F)||ω , (fF · α+)ω.

Finite (ω-)behaviour of a state in : 1→ n of (α,F) is ||(α,F)|| · in (resp. ||(α,F)||ω · in).

CONCUR 2018

25:12 A Coalgebraic Take on (ω)-Regular Behaviour for Systems with Internal Moves

I Example 5.4. The theories LTSω, TTSω and SGLω are complete saturation theories. As
we have already seen in Section 3, the finite and ω-behaviour of LTSω-automata coincides
with the classical notions. The same can be easily proven to be true for TTSω (see e.g. [31]
for classical definitions in the theory of tree automata). According to our knowledge, Segala
automata or, in other words, SGLω-automata, have not been considered in the computer
science literature so far. See Subsection 5.1 for a discussion on these systems in the context
of expressivity in language theory.

I Remark. So far in the coalgebraic literature, finite behaviour of systems was introduced in
terms of the finite trace [6,26,35]. In the order enriched setting for systems with internal moves
for which the type functor encodes accepting states, finite trace is given by α† = µx.x · α [7].
However, from the point of our setting, the terminal states are not part of the transition. In
this case we can consider the exception monad Id+ 1 on any theory T, denote its associated
theory by T̂, and encode any T-automaton (α,F) as a T̂-endomorphism α̂ : n → n (or
equivalently T-morphism α̂ : n→ n+ 1) defined by α̂ = innn+1 · α ∨ f̂F, where f̂F : n→ n+ 1
is a morphism in T given by f̂F(i) = if i ∈ F then n+ 1 else 0. It is a simple exercise to
prove that, given the assumptions of this section, α̂† = ||(α,F)||. Therefore, our definition of
finite behaviour via (−)∗ coincides with the trace definition in an ordered category [6].

Kleene theorems. The prominent role in the theory of non-deterministic automata is
played by regular languages. Using the nomenclature of Section 3 these languages are
given by ! · f · α∗ · in : 1 → 1 for an LTSω automaton (α,F) in which we have α : [n] →
P(Σε × [n]). The set of regular languages, denoted by Reg(1, 1), is known to be closed under
the language composition, finite union and Kleene star operation. These three operations
are exactly the composition, finite joins and the saturation of morphisms 1 → 1 in the
theory LTSω. Moreover, Reg(1, 1) is the smallest set of languages containing the empty
language, single letter languages and being closed under the three operations. This classical
result is known under the name of Kleene theorem for regular languages [22]. A similar
theorem can be proven for automata that accept non-sequential data types, e.g. trees [17,31].

+t =

− 1
1 2

+
−

+[t1, t2] · t =

− t1
t1 t2

+
−

+[t2, t1] · t =

− t2
t2 t1

+
−

Figure 6 Tree composition with inner
nodes in {+,−} and variables in {1, 2}.

However for tree automata the result is slightly
more involved as the set Reg(1, 1) of regular
tree languages is closed under a more complex
type of composition, namely the composition of
regular tree languages with multiple variables.
To be more precise, if Reg(1, p) denotes the set
of regular tree languages whose leaves may end
in variables from {1, . . . , p}, then the morphism
[r1, . . . , rp] · r is a member of Reg(1, 1) for any r ∈ Reg(1, p) and ri ∈ Reg(1, 1). These
observations are generalized to the coalgebraic level below. As a direct consequence of this
treatment we get a characterization of ω-regular behaviours.

Let T = (T, µ, η) be a monad on Set and F a Set-endofunctor satisfying the assumptions
of Section 4. This allows us to consider the monad TF∞ and the theory TTF∞ associated
with it. We say that a map α : m→ n in TTF∞ is a (T, Fε)-map if α : [m]→ TFε[n] in Set
(it is a well defined notion as Fε is a subfunctor of F∞). Note that by the definition of F∞
the family of (T, Fε)-maps contains all base maps of TTF∞ and is closed under cotupling and
the composition with base morphisms (it follows by the definition of the monadic structure
of F∞, TF∞ and Remark in Subsection 4.1). TTF∞-automata whose transition maps are
(T, Fε)-maps will be referred to as (T, Fε)-automata. In this paragraph we assume that TTF∞
is a CST and:

T. Brengos 25:13

(T, Fε)-maps are closed under taking arbitrary suprema (hence, also contain 0’s),
0 · α = 0 for any (T, Fε)-map α.

As a direct consequence of these assumptions and since id is a base morphism we get that
0 · α∗ = α∗ · 0 = 0 for any (T, Fε)-map α which is a TTF∞ -endomorphism. We define the set
of regular morphisms m→ p by:

Reg(m, p) ,{j′ · fF · α∗ · j | (α : n→ n,F) is a (T, Fε)-aut. and
j : m→ n, j′ : n→ p are base maps}.

The set of regular morphisms Reg(1, p) will be often referred to as the set of regular trees
with variables in p. Note that Reg(1, 1) is exactly the set of finite behaviours of states in
(T, Fε)-automata. A regular morphism r ∈ Reg(m, p) is said to be in normal form (NF) if it
is given by r = [0np , idp] · [α, in

p
n+p]∗ · inmn+p for a (T, Fε)-map α : n→ n+ p and m ≤ n. The

following lemma states that all regular morphisms can be given in their normal forms and
that they can be obtained from regular trees via cotupling.

I Lemma 5.5. The following equality is true: Reg(m, p) = {[r1, . . . , rm] | ri ∈ Reg(1, p)} =
{[0np , idp] · [α, in

p
n+p]∗ · inmn+p | α : n→ n+ p is a (T, Fε)-map and m ≤ n}.

The next results (Lem. 5.6 and Th. 5.7) show, in particular, that regular morphisms with
suitable domains and codomains are closed under composition, finite joins and saturation
operation. The constructions used in the proofs of the results below are simple generalization
of classical constructions of non-deterministic automata with ε-moves used in proving that
concatenation/finite union/Kleene star of regular languages is regular (see e.g. [22]). Hence,
in our opinion, it can be considered a computer science folklore which presents itself very
aesthetically in terms of the string diagram calculus. Note that for classical regular languages
it was enough to consider the case where the normal form [0, idp] · [α, inp]∗ · inm of the
expressions satisfied m = p = 1 (i.e. one initial and one final state). These constructions can
be summarized by the following three diagrams.

r1 · r2

∨

r1 ∨ r2

∨

r∗

∨

I Lemma 5.6. The identity maps in TTF∞ are regular morphisms. Moreover, regular
morphisms are closed under the composition from TTF∞ .

Let Reg(T, F) be the category whose objects are the same as the objects of TTF∞ and whose
hom-sets are Reg(m,n) with the composition taken from TTF∞ . By the above lemmas this
definition is proper and, moreover, Reg(T, F) is a theory. It is order enriched with the order
from TTF∞ . Moreover, the following statement holds.

I Theorem 5.7 (Kleene thm. for regular behaviour). Reg(T, F) is an ordered theory which:
(a) contains all (T, Fε)-maps,
(b) admits finite suprema and each hom-set contains the bottom element,
(c) endomorphisms are closed under (−)∗.
If Rat(T, F) is the smallest subtheory of TTF∞ satisfying (a)-(c) then Rat(T, F) = Reg(T, F).

CONCUR 2018

25:14 A Coalgebraic Take on (ω)-Regular Behaviour for Systems with Internal Moves

Finally, put ωRat(T, F) , {[r1, . . . , rm]ω · r | r ∈ Rat(1,m), ri ∈ Rat(1,m) for m < ω} and

ωReg(T, F) , {||(α,F)||ω ·im : 1→ 0 | (α,F) is TTF∞ -aut. with (T, Fε)-map α : m→ m}.

I Theorem 5.8 (Kleene thm. for ω-regular behaviour). We have ωRat(T, F) = ωReg(T, F).

5.1 Behaviours v. languages
The purpose of this subsection is to define languages for TTF∞ -automata. Unlike behaviours,
languages are simply subsets of F∞1. As we will see below there is a natural way to introduce
such languages for abstract automata. The theory presented in this subsection is motivated
by (ω-)languages of probabilistic (ω-)automata [3] defined using a construction akin to the
one presented below. However, since fully probabilistic automata are not considered in our
paper (see the summary section for details), we will focus our attention on SGLω-automata
and the languages they generate. We will show that the classes of (ω-)regular languages of
these machines coincide with the class of (ω-)regular languages in the classical sense.

Let T be a functor on Set and consider the transformation τ : T =⇒ P whose
X-component is defined by τX(t) =

⋂
{Y ⊆ X | t ∈ TY }. If T preserves preimages and

infinite intersections then the transformation is natural [19]. Here, we assume it is the case.

I Example 5.9. For T = CM the transformation τ is given by:

τX(U) =
⋃
{{x1, . . . , xn} | r1 · x1 + . . .+ rn · xn ∈ U for ri > 0} for U ∈ CMX.

It is a simple exercise to prove that τ : CM =⇒ P is a natural transformation.

Let T and F and P and F satisfy the assumptions of Section 4. Then the transformation
τ : T =⇒ P imposes an assignment τF∞ between theories TTF∞ and TPF∞ given
by: τF∞(n) , n and τF∞(f : m → TF∞m) , τF∞n ◦ f . Assume that both TTF∞ and
TPF∞ are complete saturation theories. Given a TTF∞-automaton (α : n → n,F) and
i ∈ [n], we define its language (resp. ω-language) by L(α,F, i) , τF∞(||(α,F)|| · in) and
Lω(α,F, i) , τF∞(||(α,F)||ω · in). Now, the sets of regular and ω-regular languages for TTF∞
are LReg(T, F) , {(L(α,F, i) | α is a (T, Fε)-map} and

ωLReg(T, F) , {Lω(α,F, i) | α is a (T, Fε)-map}.

I Theorem 5.10. If τF∞ : TTF∞ → TPF∞ is a functor which preserves cotupling, preserves
0’s, finite suprema and suprema of ω-chains then LReg(T, F) ⊆ Reg(P, F)(1, 1). Moreover,
if τF∞(βω) = τF∞(β)ω for any TTF∞-endomorphism β of the form fF ·α+ for a (T, Fε)-map
α then ωLReg(T, F) ⊆ ωReg(P, F).

I Example 5.11. The assignment SGLω → LTSω induced by the natural transformation
from Example 5.9 satisfies the assumptions of the first part of Th. 5.10. Additionally, it
preserves the assumptions of the second part of this statement, and, hence, from the point
of view of regular and ω-regular languages Segala automata are equally expressive as the
non-deterministic (Büchi) automata.

6 Summary, future and related work

The purpose of this paper was to develop a coalgebraic (categorical) framework to reason
about abstract automata and their finite and infinite behaviours satisfying BAC. We achieved
this goal by constructing a monad suitable to handle the types of behaviours we were

T. Brengos 25:15

interested in and defining them in the right setting. A natural and direct consequence of this
treatment was Theorem 5.7 and Theorem 5.8, i.e. the coalgebraic characterization of regular
and ω-regular behaviour. These two results are the main reason why the primary interest of
this paper is the Set-based finite structures. Note that several definitions and properties of
Section 5 generalize to systems whose type monad is over a different category than Set (in
this case an automaton should be simply defined as a pair of endomorphisms in the given
Kleisli category).

Seemingly, the main restrictions of this framework are hidden behind the assumptions in
the definition of a complete saturation theory. However, many of these axioms can be relaxed.
For instance, in case of lack of left distributivity we may use a construction from our previous
work [9] which embeds suitably ordered categories into left distributive ones. Secondly, the
assumption about completeness of the order may be replaced with the assumption about
existence of (−)∗ and (−)ω satisfying the desired properties (note that the theory Reg defined
in Section 5 is not necessarily complete, yet finite joins, (−)∗ and (−)ω are well defined).

Future work. We plan that the next step from here will be to put fully probabilistic automata
into our framework, as this type of machines and their ω-languages play a significant role
in infinite language theory [2]. Probabilistic systems have been successfully put into the
saturation and weak bisimulation framework by embedding the category these systems are
described in, into a category which admits left distributivity [9].

Given our natural characterization of coalgebraic ω-regular languages we ask if it is
possible to characterize it in an algebraic way in terms of a preimage of a subset of a finite
algebraic structure. Especially, considering the fact that by Th. 5.2 the pair of hom-sets
(T(n, n),T(n, 0)) equipped with suitable operations resembles a Wilke algebra used in the
algebraic characterization of these languages (see e.g. [31] for details).

Related work. The first coalgebraic take on ω-languages was presented in [11], where authors
put deterministic Muller automata with Muller acceptance condition into the framework.
Our work is related to a more recent paper [36], where Urabe et al. give a coalgebraic
framework for modelling behaviour with Büchi acceptance condition for (T, F)-systems. The
main ingredient of their work is a solution to a system of equations which uses least and
greatest fixpoints. This is done akin to Park’s [30] classical characterization of ω-languages
via a system of equations. In our paper we also use least and greatest fixpoints, however,
the operators we consider are the two natural types of operators (−)∗ = µx.id ∨ x · (−) and
(−)ω = νx.x · (−) which generalize the language operators (−)∗ and (−)ω known from the
classical theory of regular and ω-regular languages. By calculating everything in the Kleisli
category for the given monad and by using the aforementioned operators we simplify the
language considerably. This allows us to state and prove Kleene-type theorems for (ω-)regular
input which was not achieved in [36] and (in our opinion) would be difficult to obtain in that
setting. To summarize, the major differences between our work and [36] are the following:

we use the setting of systems with internal moves (i.e. coalgebras over a monad) to
discuss infinite behaviour with BAC,
the infinite behaviour with BAC is calculated in terms of a simple expression which uses
(−)∗ and (−)ω in the Kleisli category,
we provide the definition of a finite behaviour of a system (using (−)∗) and build a bridge
between regular and ω-regular behaviours on a coalgebraic level in terms of the Kleene
theorem.

CONCUR 2018

25:16 A Coalgebraic Take on (ω)-Regular Behaviour for Systems with Internal Moves

Abstract finite automata have already been considered in the computer science literature
in the context of Lawvere iteration theories with analogues of Kleene theorems stated and
proven (see e.g. [5, 13–15]). Some of these results seem to be presented in a more general
setting than ours, using a slightly different language than ours (conf. Theorem 5.7 and
e.g. [5, Theorem 1.4]). We decided to state Theorem 5.7 the way we did, in order to
make a direct generalization of the classical Kleene theorem for regular input and to give a
coalgebraic interpretation which is missing in [5,13–15]. We should also mention that the
infinite behaviour with BAC was defined in loc. cit. only for a very specific type of theories
(i.e. the matricial theories over an algebra with an infinite iteration operator), which do not
encompass e.g. non-deterministic Büchi tree automata and their infinite tree languages.

References
1 Jirí Adámek, Mahdieh Haddadi, and Stefan Milius. Corecursive algebras, corecursive

monads and bloom monads. Logical Methods in Computer Science, 10(3), 2014. doi:
10.2168/LMCS-10(3:19)2014.

2 Christel Baier and Marcus Grosser. Recognizing omega-regular languages with probabilistic
automata. In Proceedings of the 20th Annual IEEE Symposium on Logic in Computer
Science, LICS ’05, pages 137–146, Washington, DC, USA, 2005. IEEE Computer Society.
doi:10.1109/LICS.2005.41.

3 Christel Baier, Marcus Grösser, and Nathalie Bertrand. Probabilistic omega-automata. J.
ACM, 59(1):1:1–1:52, 2012. doi:10.1145/2108242.2108243.

4 Jon Beck. Distributive laws. In B. Eckmann, editor, Seminar on Triples and Categorical
Homology Theory, pages 119–140, Berlin, Heidelberg, 1969. Springer Berlin Heidelberg.

5 Stephen Bloom and Zoltán Ésik. Iteration Theories. The Equational Logic of Iterative
Processes. Monographs in Theoretical Computer Science. Springer, 1993.

6 Filippo Bonchi, Stefan Milius, Alexandra Silva, and Fabio Zanasi. Killing epsilons with a
dagger: A coalgebraic study of systems with algebraic label structure. Theoretical Computer
Science, 604:102–126, 2015. doi:10.1016/j.tcs.2015.03.024.

7 Tomasz Brengos. On coalgebras with internal moves. In Marcello M. Bonsangue, editor,
Proc. CMCS, Lecture Notes in Computer Science, pages 75–97. Springer, 2014. doi:10.
1007/978-3-662-44124-4_5.

8 Tomasz Brengos. Weak bisimulation for coalgebras over order enriched monads. Logical
Methods in Computer Science, 11(2):1–44, 2015. doi:10.2168/LMCS-11(2:14)2015.

9 Tomasz Brengos, Marino Miculan, and Marco Peressotti. Behavioural equivalences for coal-
gebras with unobservable moves. Journal of Logical and Algebraic Methods in Programming,
84(6):826–852, 2015. doi:10.1016/j.jlamp.2015.09.002.

10 Tomasz Brengos and Marco Peressotti. A Uniform Framework for Timed Automata. In
Josée Desharnais and Radha Jagadeesan, editors, 27th International Conference on Con-
currency Theory (CONCUR 2016), volume 59 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 26:1–26:15, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.CONCUR.2016.26.

11 Vincenzo Ciancia and Yde Venema. Stream automata are coalgebras. In Proc. CMCS,
volume 7399 of Lecture Notes in Computer Science, pages 90–108, 2012. doi:10.1007/
978-3-642-32784-1_6.

12 Corina Cîrstea. Generic infinite traces and path-based coalgebraic temporal logics. Electr.
Notes Theor. Comput. Sci., 264(2):83–103, 2010. doi:10.1016/j.entcs.2010.07.015.

13 Zoltán Ésik and Tamás Hajgató. Iteration grove theories with applications. In Proc. Al-
gebraic Informatics, volume 5725 of Lecture Notes in Computer Science, pages 227–249.
Springer, 2009. doi:10.1007/978-3-642-03564-7_15.

http://dx.doi.org/10.2168/LMCS-10(3:19)2014
http://dx.doi.org/10.2168/LMCS-10(3:19)2014
http://dx.doi.org/10.1109/LICS.2005.41
http://dx.doi.org/10.1145/2108242.2108243
http://dx.doi.org/10.1016/j.tcs.2015.03.024
http://dx.doi.org/10.1007/978-3-662-44124-4_5
http://dx.doi.org/10.1007/978-3-662-44124-4_5
http://dx.doi.org/10.2168/LMCS-11(2:14)2015
http://dx.doi.org/10.1016/j.jlamp.2015.09.002
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.26
http://dx.doi.org/10.1007/978-3-642-32784-1_6
http://dx.doi.org/10.1007/978-3-642-32784-1_6
http://dx.doi.org/10.1016/j.entcs.2010.07.015
http://dx.doi.org/10.1007/978-3-642-03564-7_15

T. Brengos 25:17

14 Zoltán Ésik and Werner Kuich. A Unifying Kleene Theorem for Weighted Finite Auto-
mata, pages 76–89. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. doi:10.1007/
978-3-642-19391-0_6.

15 Zoltán Ésik and Werner Kuich. Modern automata theory, 2013. URL: http://www.dmg.
tuwien.ac.at/kuich/.

16 Sergey Goncharov and Dirk Pattinson. Coalgebraic weak bisimulation from recursive equa-
tions over monads. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Kout-
soupias, editors, Proc. ICALP, volume 8573 of Lecture Notes in Computer Science, pages
196–207. Springer, 2014. doi:10.1007/978-3-662-43951-7_17.

17 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata Logics, and Infinite
Games: A Guide to Current Research, page 392. Springer-Verlag New York, Inc., New York,
NY, USA, 2002.

18 H. Peter Gumm. Elements of the general theory of coalgebras. LUATCS 99, Rand Afrikaans
University, 1999.

19 H. Peter Gumm. From t-coalgebras to filter structures and transition systems. In José Luiz
Fiadeiro, Neil Harman, Markus Roggenbach, and Jan Rutten, editors, Algebra and Coal-
gebra in Computer Science, pages 194–212, Berlin, Heidelberg, 2005. Springer Berlin Heidel-
berg. doi:doi.org/10.1007/11548133_13.

20 Ichiro Hasuo. Generic forward and backward simulations. In Prof. CONCUR, volume 4137
of Lecture Notes in Computer Science, pages 406–420, 2006. doi:10.1007/11817949_27.

21 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace semantics via coinduction.
Logical Methods in Computer Science, 3(4), 2007. doi:10.2168/LMCS-3(4:11)2007.

22 John E. Hopcroft, Rajeev Motwani, Rotwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages and Computability. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2nd edition, 2000.

23 Martin Hyland and John Power. The category theoretic understanding of universal algebra:
Lawvere theories and monads. Electronic Notes in Theoretical Computer Science, 172:437–
458, 2007. doi:10.1016/j.entcs.2007.02.019.

24 Bart Jacobs. Trace semantics for coalgebras. Electr. Notes Theor. Comput. Sci., 106:167–
184, 2004. doi:/doi.org/10.1016/j.entcs.2004.02.031.

25 Bart Jacobs. Coalgebraic trace semantics for combined possibilistic and probabilistic sys-
tems. In Proc. CMCS, Electronic Notes in Theoretical Computer Science, pages 131–152,
2008. doi:10.1016/j.entcs.2008.05.023.

26 Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace semantics via determinization. In
Proc. CMCS, volume 7399 of Lecture Notes in Computer Science, pages 109–129, 2012.
doi:10.1007/978-3-642-32784-1_7.

27 F. W. Lawvere. Functorial semantics of algebraic theories. Proc. Nat. Acad. Sci. U.S.A.,
50:869–872, 1963. doi:10.1073/pnas.50.5.869.

28 Saunders Mac Lane. Categories for the Working Mathematician, volume 5 ofGraduate Texts
in Mathematics. Springer-Verlang New York, 1978. doi:10.1007/978-1-4757-4721-8.

29 Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.
30 David Park. Concurrency and automata on infinite sequences. In Peter Deussen, editor,

Theoretical Computer Science, pages 167–183, Berlin, Heidelberg, 1981. Springer Berlin
Heidelberg.

31 Jean-Eric Pin and Dominique Perrin. Infinite Words: Automata, Semigroups, Logic and
Games, page 538. Elsevier, 2004.

32 Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer
Science, 249(1):3–80, 2000. doi:10.1016/S0304-3975(00)00056-6.

33 Roberto Segala. Modeling and Verification of Randomized Distributed Real-Time Systems.
PhD thesis, Massachusetts Institute of Technology, 1995.

CONCUR 2018

http://dx.doi.org/10.1007/978-3-642-19391-0_6
http://dx.doi.org/10.1007/978-3-642-19391-0_6
http://www.dmg.tuwien.ac.at/kuich/
http://www.dmg.tuwien.ac.at/kuich/
http://dx.doi.org/10.1007/978-3-662-43951-7_17
http://dx.doi.org/doi.org/10.1007/11548133_13
http://dx.doi.org/10.1007/11817949_27
http://dx.doi.org/10.2168/LMCS-3(4:11)2007
http://dx.doi.org/10.1016/j.entcs.2007.02.019
http://dx.doi.org//doi.org/10.1016/j.entcs.2004.02.031
http://dx.doi.org/10.1016/j.entcs.2008.05.023
http://dx.doi.org/10.1007/978-3-642-32784-1_7
http://dx.doi.org/10.1073/pnas.50.5.869
http://dx.doi.org/10.1007/978-1-4757-4721-8
http://dx.doi.org/10.1016/S0304-3975(00)00056-6

25:18 A Coalgebraic Take on (ω)-Regular Behaviour for Systems with Internal Moves

34 Roberto Segala and Nancy Lynch. Probabilistic simulations for probabilistic processes. In
Proc. CONCUR, volume 836 of Lecture Notes in Computer Science, pages 481–496, 1994.
doi:10.1007/978-3-540-48654-1_35.

35 Alexandra Silva and Bram Westerbaan. A coalgebraic view of ε-transitions. In Reiko Heckel
and Stefan Milius, editors, Proc. CALCO, volume 8089 of Lecture Notes in Computer
Science, pages 267–281. Springer, 2013. doi:10.1007/978-3-642-40206-7_20.

36 Natsuki Urabe, Shunsuke Shimizu, and Ichiro Hasuo. Coalgebraic Trace Semantics for
Buechi and Parity Automata. In Josée Desharnais and Radha Jagadeesan, editors, 27th
International Conference on Concurrency Theory (CONCUR 2016), volume 59 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 24:1–24:15, Dagstuhl, Germany,
2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CONCUR.
2016.24.

http://dx.doi.org/10.1007/978-3-540-48654-1_35
http://dx.doi.org/10.1007/978-3-642-40206-7_20
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.24
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.24

	Introduction
	Basic notions
	Non-deterministic (Büchi) automata, coalgebraically
	Monads for (in)finite behaviour
	Preliminaries
	Lifting monads to algebras

	Abstract (Büchi) automata and their behaviour
	Behaviours v. languages

	Summary, future and related work

