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Abstract
The paper extends Bayesian networks (BNs) by a mechanism for dynamic changes to the prob-
ability distributions represented by BNs. One application scenario is the process of knowledge
acquisition of an observer interacting with a system. In particular, the paper considers con-
dition/event nets where the observer’s knowledge about the current marking is a probability
distribution over markings. The observer can interact with the net to deduce information about
the marking by requesting certain transitions to fire and observing their success or failure.

Aiming for an efficient implementation of dynamic changes to probability distributions of BNs,
we consider a modular form of networks that form the arrows of a free PROP with a commutative
comonoid structure, also known as term graphs. The algebraic structure of such PROPs supplies
us with a compositional semantics that functorially maps BNs to their underlying probability
distribution and, in particular, it provides a convenient means to describe structural updates of
networks.
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1 Introduction

Representing uncertain knowledge by probability distributions is the core idea of Bayesian
learning. We model the potential of an agent – the observer – interacting with a concurrent
system with hidden or uncertain state to gain knowledge through “experimenting” with
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27:2 Updating Probabilistic Knowledge on Condition/Event Nets using Bayesian Networks

Figure 1 Example: Social network account with location privacy.

the system, focussing on the problem of keeping track of knowledge updates correctly and
efficiently. Knowledge about states is represented by a probability distribution. Our system
models are condition/even nets where states or possible worlds are markings and transitions
describe which updates are allowed.

In order to clarify our intentions we consider an application scenario from social media:
preventing inadvertent disclosure, the concern of location privacy [8]. Consider the example
of a social network account, modelled as a condition/event net, allowing a user to update
and share their location (see Figure 1). We consider two users. User 1 does not allow location
updates to be posted to the social network, they are only recorded on their device. In the net
this is represented by places A1 and B1 modelling the user at corresponding locations, and
transitions GotoA1 and GotoB1 for moving between them. We assume that only User 1 can fire
or observe these transitions. User 2 has a similar structure for locations and movements, but
allows the network to track their location. The user can decide to make their location public
or hide it by firing transition publish2 or hide2. Any observer can attempt to fire ChkA2; RetA2
or ChkB2; RetB2 to query the current location of User 2. If public2 is marked, this will allow
the observer to infer the correct location. Otherwise the observer is left uncertain as to
why the query fails, i.e. due to the wrong location being tested or the lack of permission,
unless they test both locations. While our net captures the totality of possible behaviours,
we identify different observers, the two users, the social network, and an unrelated observer.
For each of these we define which transitions they can access. We then focus on one observer
and only allow transitions they are authorised for. In our example, if we want to analyse the
unrelated observer, we fix the users’ locations and privacy choices before it is the observer’s
turn to query the system.

The observer may have prior knowledge about the dependencies between the locations of
Users 1 and 2, for example due to photos with location information published by User 2,
in which both users may be identifiable. The prior knowledge is represented in the initial
probability distribution, updated according to the observations.

We also draw inspiration from probabilistic databases [28, 1] where the values of attributes
or the presence of records are only known probabilistically. However, an update to the database
might make it necessary to revise the probabilities. Think for instance of a database where
the gender of a person (male or female) is unknown and we assume with probability 1/2 that
they are male. Now a record is entered, stating that the person has married a male. Does it
now become more probable that the person is female?

Despite its simplicity, our system model based on condition/event nets allows us to
capture databases: the content of a database can be represented as a (hyper-)graph (where
each record is a (hyper-)edge). If the nodes of the graph are fixed, updates can be represented
by the transitions of a net, where each potential record is represented by a place.
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Given a net, the observer does not know the initial marking, but has a prior belief, given
by a probability distribution over markings. The observer can try to fire transitions and
observe whether the firing is successful or fails. Then the probability distribution is updated
accordingly. While the update mechanism is rather straightforward, the problem lies in the
huge number of potential states: we have 2n markings if n is the number of places.

To mitigate this state space explosion, we propose to represent the observer’s knowledge
using Bayesian networks (BNs) [22, 24], i.e., graphical models that record conditional
dependencies of random variables in a compact form. However, we encounter a new problem
as updating the observer’s knowledge becomes non-trivial. To do this correctly and efficiently,
we develop a compositional approach to BNs based on symmetric monoidal theories and
PROPs [20]. In particular, we consider modular Bayesian networks as arrows of a freely
generated PROP and (sub-)stochastic matrices as another PROP with a functor from the
former to the latter. In this way, we make Bayesian networks compositional and we obtain
a graphical formalism [27] that we use to modify Bayesian networks: in particular, we can
replace entire subgraphs of Bayesian networks by equivalent ones, i.e., graphs that evaluate
to the same matrix. The compositional approach allows us to specify complex updates in
Bayesian networks by a sequence of simpler updates using a small number of primitives.

We furthermore describe an implementation and report promising runtime results.
The proofs of all results can be found in the full version of this paper [3].

2 Knowledge Update in Condition/Event Nets

We will formalise knowledge updates by means of an extension of Petri nets with probabilistic
knowledge on markings. The starting point are condition/event nets [26].

I Definition 1 (Condition/event net). A condition/event net (CN) N = (S, T, •(), ()•,m0) is
a five-tuple consisting of a finite set of places S, a finite set of transitions T with pre-conditions
•() : T → P(S), post-conditions ()• : T → P(S), and m0 ⊆ S an initial marking. A marking
is any subset of places m ⊆ S. We assume that for any t ∈ T , •t ∩ t• = ∅.

A transition t can fire for a marking m ⊆ S, denoted m ⇒t, if •t ⊆ m and t• ∩m = ∅.
Then marking m is transformed into m′ = (m \ •t) ∪ t•, written m⇒t m′. We write m⇒t

to indicate that there exists some m′ with m⇒t m′.
We will use two different notations to indicate that a transition cannot fire, the first

referring to the fact that the pre-condition is not sufficiently marked, the second stating that
there are tokens in the post-condition: m 6⇒t

pre whenever •t 6⊆ m and m 6⇒t
post whenever

t• ∩m 6= ∅. We denote the set of all markings byM = P(S).

For simplicity we assume that S = {1, . . . , n} for n ∈ N. Then, a marking m can be
characterized by a boolean vector m : S → {0, 1}, i.e., M ∼= {0, 1}S . Using the vector
notation we write m(A) = {1} for A ⊆ S if all places in A are marked in m.

To capture the probabilistic observer we augment CNs by a probability distribution over
markings modelling uncertainty about the hidden initial or current marking.

I Definition 2 (Condition/Event net with Uncertainty). A Condition/Event Net with Un-
certainty (CNU) is a six-tuple N = (S, T, •(), ()•,m0, p) where (S, T, •(), ()•,m0) is a net
as in Definition 1. Additionally, p is a function p :M→ [0, 1] with

∑
m∈M p(m) = 1 that

assigns a probability mass to each possible marking. This gives rise to a probability space
(M,P(M),P) with P : P(M)→ [0, 1] defined by P

(
{m1, . . . ,mk}

)
=
∑k

i=1 p(mi).
We assume that p(m0) > 0, i.e. the initial marking is possible according to p.

CONCUR 2018



27:4 Updating Probabilistic Knowledge on Condition/Event Nets using Bayesian Networks

We model the knowledge gained by observers when firing transitions and observing their
outcomes. Firing t ∈ T can either result in success (all places of •t are marked and no place
in t• is marked) or in failure (at least one place of •t is empty or one place in t• is marked).
Thus, there are two kinds of failure, the absence of tokens in the pre-condition or the presence
of tokens in the post-condition. If a transition fails for both reasons, the observer will learn
only one of them. To model the knowledge gained we define the following operations on
distributions.

I Definition 3 (Operations on CNUs). Given a CNU N = (S, T, •(), ()•,m0, p) the following
operations update the mass function p and as a result the probability distribution P.

To assert that certain places A ⊆ S all contain a token (b = 1) or that none contains a
token (b = 0) we define the operation assert

assA,b(p)(m) = p(m)∑
m′∈M:m′(A)={b} p(m′)

, if m(A) = {b} and 0, otherwise.

To state that at least one place of a set A ⊆ S does (resp. does not) contain a token we
define operation negative assert

nasA,b(p)(m) = p(m)∑
m′∈M:m′(A)6={b} p(m′)

, if m(A) 6= {b} and 0, otherwise.

Modifying a set of places A ⊆ S such that all places contain a token (b = 1) or none
contains a token (b = 0) requires the following operation

setA,b(p)(m) =
∑

m′:m′|S\A=m|S\A

p(m′), if m(A) = {b} and 0, otherwise. (1)

A successful firing of a transition t leads to an assert (ass) and set of the pre-conditions
•t and the post-conditions t•. A failed firing translates to a negative assert (nas) of the
pre- or post-condition and nothing is set. Thus we define for a transition t ∈ T

successt(p) = sett•,1(set•t,0(asst•,0(ass•t,1(p)))), failpre
t (p) = nas•t,1(p),

failpost
t (p) = nast•,0(p).

Operations ass,nas are partial, defined whenever the sum in the denominator of their first
clause is greater than 0. That means, the observer only fires transitions whose pre- and
postconditions have a probability greater than zero, i.e., where according to their knowledge
about the state it is possible that these transitions are enabled. By Definition 1 the initial
marking is possible, and this property is maintained as markings and distributions are
updated. If this assumption is not satisfied, the operations in Definition 3 are undefined.

The ass and nas operations result from conditioning the input distribution on (not) having
tokens at A (compare Proposition 4). Also, set and ass for A = {s1, . . . , sk} ⊆ S can be
performed iteratively, i.e., setA,b = set{sk},b◦· · ·◦set{s1},b and assA,b = ass{sk},b◦· · ·◦ass{s1},b.
For a single place s we have ass{s},b = nas{s},1−b.

Figure 2 gives an example for a Petri net with uncertainty and explains how the observer
can update their knowledge by interacting with the net. We can now show that our operations
correctly update the probability assumptions according to the observations of the net.

I Proposition 4. Let N = (S, T, •(), ()•,m0, p) be a CNU where P is the corresponding
probability distribution. For given t ∈ T and m ∈ M let M[⇒t] = {m′ ∈ M | m′ ⇒t},
M[⇒t m] = {m′ ∈ M | m′ ⇒t m}, M[ 6⇒t

pre] = {m′ ∈ M | m′ 6⇒t
pre} and M[ 6⇒t

post] =
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S1

S2 S3t1

t2

t3

t4

– places – successt4 failpre
t1

S1 S2 S3 init as{S2},1 as{S3},0 set{S2},0 set{S3},1 nas{S1},1

1 1 1 1/12 1/6 0 0 0 0
1 1 0 1/6 1/3 1/2 0 0 0
1 0 1 1/8 0 0 0 1/2 0
1 0 0 1/8 0 0 1/2 0 0
0 1 1 1/12 1/6 0 0 0 0
0 1 0 1/6 1/3 1/2 0 0 0
0 0 1 1/8 0 0 0 1/2 1
0 0 0 1/8 0 0 1/2 0 0

Figure 2 Example of operations on a net with uncertainty. We set m0 = {S2} and assume the
observer first fires t4 (and succeeds) and then tries to fire t1 (and fails). Columns in the table
represent updated distributions on the markings after each operation (ordered from left to right). For
this example, in the end the observer knows that the final configuration is {S3} with probability 1.

{m′ ∈ M | m′ 6⇒t
post}. Then, provided that M[⇒t], M[ 6⇒t

pre] respectively M[ 6⇒t
post] are

non-empty, it holds for m ∈M that

successt(p)(m) = P(M[⇒t m] | M[⇒t]), failpre
t (p)(m) = P({m} | M[ 6⇒t

pre]),
failpost

t (p)(m) = P({m} | M[ 6⇒t
post]).

We shall refer to the the joint distribution (over all places) by P. Note that it is unfeasible
to explicitly store it if the number of places is large. To mitigate this problem we use a
Bayesian network with a random variable for each place, recording dependencies between
the presence of tokens in different places. If such dependencies are local, the BN is often
moderate in size and thus provides a compact symbolic representation. However, updating
the joint distribution of BNs is non-trivial. To address this problem, we propose a propagation
procedure based on a term-based, modular representation of BNs.

3 Modular Bayesian Networks and Sub-Stochastic Matrices

Bayesian networks (BNs) are a graphical formalism to reason about probability distributions.
They are visualized as directed, acyclic graphs with nodes random variables and edges
dependencies between them. This is sufficient for static BNs whose most common operation is
the inference of (marginalized or conditional) distributions of the underlying joint distribution.

For a rewriting calculus on dynamic BNs, we consider a modular representation of
networks that do not only encode a single probability vector, but a matrix, with several input
and output ports. The first aim is compositionality: larger nets can be composed from smaller
ones via sequential and parallel composition, which correspond to matrix multiplication and
Kronecker product of the encoded matrices. This means, we can implement the operations of
Section 2 in a modular way.

PROPs with Commutative Comonoid Structure

We now describe the underlying compositional structure of (modular) BNs and (sub-)
stochastic matrices, which facilitates a compositional computation of the underlying probabil-
ity distribution of (modular) BNs. The mathematical structure are PROPs [20] (see also [13,
Chapter 5.2]), i.e., strict symmetric monoidal categories (C,⊗, 0, σ) whose objects are (in
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f ; f ′f ; f ′m k
= ffm n f ′f ′n k f1 ⊗ f2f1 ⊗ f2

m1 +m2 n1 + n2
=

f1f1
m1 n1

f2f2
m2 n2

Figure 3 String diagrammatic composition (resp. tensor) of two arrows f : m → n, f ′ : n → k

(resp. f1 : m1 → n1, f2 : m2 → n2) of a PROP (C,⊗, 0, σ).

Table 1 Axioms for CC-structured PROPs and definition of operators of higher arity.

(t1; t3)⊗ (t2; t4) = (t1 ⊗ t2); (t3 ⊗ t4) (t1; t2); t3 = t1; (t2; t3)
idn; t = t = t; idm (t1 ⊗ t2)⊗ t3 = t1 ⊗ (t2 ⊗ t3) id0 ⊗ t = t = t⊗ id0

σ;σ = id2 (t⊗ idm);σn,m = σm,n; (idn ⊗ t) ∇; (∇⊗ id1) = ∇; (id1 ⊗∇)
∇ = ∇;σ ∇; (id1 ⊗>) = id1

id1 = id idn+1 = idn ⊗ id1

σn,0 = σ0,n = idn σn+1,1 = (id⊗ σn,1); (σ ⊗ idn)
σn,m+1 = (σn,m ⊗ id1); (idm ⊗ σn,1)

∇1 = ∇ ∇n+1 = (∇n ⊗∇); (idn ⊗ σn,1 ⊗ id)
>1 = > >n+1 = >n ⊗>

bijection with) the natural numbers, with monoidal product ⊗ as (essentially) addition, with
unit 0. The compositional structure of PROPs can be intuitively represented using string
diagrams with wires and boxes (see Figure 3). Symmetries σ serve for the reordering of wires.

A paradigmatic example is the PROP of 2n-dimensional Euclidean spaces and linear
maps, equipped with the tensor product: the tensor product of 2n- and 2m-dimensional
spaces is 2n+m-dimensional, composition of linear maps amounts to matrix multiplication,
and the tensor product is also known as Kronecker product (as detailed below). We refer to
the natural numbers of the domain and codomain of arrows in a PROP as their type; thus, a
linear map from 2n- to 2m-dimensional Euclidean space has type n→ m.

We shall have the additional structure on symmetric monoidal categories that was dubbed
graph substitution in work on term graphs [7], which amounts to a commutative comonoid
structure on PROPs.

I Definition 5 (PROPs with commutative comonoid structure). A CC-structured PROP is a
tuple (C,⊗, 0, σ,∇,>) where (C,⊗, 0, σ) is a PROP and the last two components are arrows
∇ : 1→ 2 and > : 1→ 0, which are subject to equations (2) (cf. Figure 4).

∇; (∇⊗ id1) = ∇; (id1 ⊗∇), ∇ = ∇;σ, ∇; (id1 ⊗>) = id1. (2)

To give another, more direct definition, the arrows of a freely generated CC-structured
PROP can be represented as terms over some set of generators g ∈ G and constants id : 1→ 1,
σ : 2 → 2, ∇ : 1 → 2, > : 1 → 0, combined with the operators sequential composition (;)
and tensor (⊗) and quotiented by the axioms in Table 1 (see [30]). This table also lists
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(CoUnit)(CoComm)(CoAssoc)CoMul

CoUnit

Figure 4 Comultiplication and counit arrows and the equations of commutative comonoids.

the definition of operators of higher arity. We often refer to the comultiplication ∆ and
its counit > as duplicator and terminator, resp. (cf. Figure 4). Intuitively, adding the
commutative comonoid structure amounts to the possibility to have several or no connections
to each one of the output port of gates and input ports. In other words, outputs can be
shared.

(Sub-)Stochastic Matrices

We now consider (sub-)stochastic matrices as an instance of a CC-structured PROP. A
matrix of type n→ m is a matrix P of dimension 2m × 2n with entries taken from the closed
interval [0, 1] ⊆ R. We restrict attention to sub-stochastic matrices, i.e., column sums will be
at most 1; if we require equality, we obtain stochastic matrices.

11
10
01
00


11
· ·

10
·
01
·
00

· · · ·
· · · ·
· · · ·


We index matrices over {0, 1}m×{0, 1}n, i.e., for x ∈ {0, 1}m,

y ∈ {0, 1}n the corresponding entry is denoted by P (x | y). We
use this notation to evoke the idea of conditional probability
(the probability that the first index is equal to x, whenever the
second index is equal to y.) When we write P as a matrix, the
rows/columns are ordered according to a descending sequence of
binary numbers (1 . . . 1 first, 0 . . . 0 last).

Sequential composition is matrix multiplication, i.e., given P : n → m, Q : m → ` we
define P ;Q = Q · P : n→ `, which is a 2` × 2n-matrix. The tensor is given by the Kronecker
product, i.e., given P : n1 → m1, Q : n2 → m2 we define P ⊗ Q : n1 + n2 → m1 + m2 as
(P ⊗Q)(x1x2 | y1y2) = P (x1 | y1) ·Q(x2 | y2) where xi ∈ {0, 1}ni , yi ∈ {0, 1}mi .

The constants are defined as follows:

id0 = (1) id =
(

1 0
0 1

)
∇ =


1 0
0 0
0 0
0 1

 σ =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 > =
(
1 1

)

I Proposition 6 ([12]). (Sub-)stochastic matrices form a CC-structured PROP.

Causality Graphs

We next introduce causality graphs, a variant of term graphs [7], to provide a modular
representation of Bayesian networks. Nodes play the role of gates of string diagrams; the main
difference to port graphs [13, Chapter 5] is the branching structure at output ports, which
corresponds to (freely) added commutative comonoid structure. We fix a set of generators G
(a.k.a. signature), elements of which can be thought of as blueprints of gates of a certain type;
all generators g ∈ G will be of type n→ 1, which means that each node can be identified
with its single output port while it has a certain number of input ports.
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I Definition 7 (Causality Graph (CG)). A causality graph (CG) of type n → m is a tuple
B = (V, `, s, out) where

V is a set of nodes,
` : V → G is a labelling function that assigns a generator `(v) ∈ G to each node v ∈ V ,
s : V →W ∗B where WB = V ∪ {i1, . . . , in} is the source function that assigns a sequence
of wires s(v) to each node v ∈ V such that |s(v)| = n if `(v) : n→ 1,
out : {o1, . . . , om} →WB is the output function that assigns each output port to a wire.

Moreover, the corresponding directed graph (defined by s) has to be acyclic.

By {i1, . . . , in} we denote the set of input ports and by {o1, . . . , om} the set of output
ports. By pred and succ we denote the direct predecessors and successors of a node, i.e.
pred(v0) = {v ∈ V | v ∈ s(v0)} and succ(v0) = {v ∈ V | v0 ∈ s(v)}, respectively. By
pred∗(v0) we denote the set of indirect predecessors, using transitive closure. Furthermore
path(v, w) denotes the set of all nodes which lie on paths from v to w.

A wire originates from a single input port or node and each node can feed into several
successor nodes and/or output ports. Note that input and output are not symmetric in the
context of causality graphs. This is a consequence of the absence of a monoid structure.

We equip CGs with operations of composition and tensor product, identities, and a
commutative comonoid structure. We require that the node sets of Bayesian nets B1, B2 are
disjoint.1

Composition. Whenever m1 = n2, we define B1;B2 := B = (V, `, s, out) : n1 → m2 with
V = V1 ] V2, ` = `1 ] `2, s = s1 ] c ◦ s2, out = c ◦ out2 where c : WB2 → WB is defined
as follows and extended to sequences: c(w) = w if w ∈ V2 and c(w) = out1(oj) if w = ij .

Tensor. Disjoint union is parallel composition, i.e., B1 ⊗B2 := B = (V, `, s, out) : n1 + n2 →
m1 + m2 with V = V1 ] V2, ` = `1 ] `2, s = s1 ] d ◦ s2, where d : WB2 → WB and
out : {o1, . . . , om1+m2} →WB are defined as follows: d(w) = w if w ∈ V2 and d(w) = in1+j

if w = ij . Furthermore out(oj) = out1(oj) if 1 ≤ j ≤ m1 and out(oj) = out2(oj−m1) if
m1 < j ≤ m1 +m2.

Operators. Finally the constants and generators are as follows:2
id0 = (∅, [ ], [ ], [ ]) : 0→ 0 id = (∅, [ ], [ ], [o1 7→ i1]) : 1→ 1 > = (∅, [ ], [ ], [ ]) : 1→ 0
σ = (∅, [ ], [ ], [o1 7→ i2, o2 7→ i1]) : 2→ 2 ∇ = (∅, [ ], [ ], [o1 7→ i1, o2 7→ i1]) : 1→ 2

Bg = ({v}, [v 7→ g], [v 7→ i1 . . . in], [o1 7→ v]) : n→ 1, whenever g ∈ G with type g : n→ 1

Finally, all these operations lift to isomorphism classes of CGs.

I Proposition 8 ([7]). CGs quotiented by isomorphism form the freely generated CC-
structured PROP over the set of generators G, where two causality graphs Bi = (Vi, `i, si, outi) :
n → m, i ∈ {1, 2}, are isomorphic if there is a bijective mapping ϕ : V1 → V2 such that
`1(v) = `2(ϕ(v)) and ϕ(s1(v)) = s2(v) hold for all v ∈ V1 and ϕ(out1(oi)) = out2(oi) holds
for all i ∈ {1, . . . ,m}.3

In the following, we often decompose a CG into a subgraph and its “context”.

I Lemma 9 (Decompositionality of CGs). Let B = (V, `, s, out) : n → m be a causality
graph. Let V ′ ⊆ V be a subset of nodes closed with respect to paths, i.e. for all v, w ∈
V ′ : path(v, w) ⊆ V ′. Then there exist k ∈ N and (Bi, ei) with Bi = (Vi, li, si, outi) for
i = 1, . . . , 3 such that V2 = V ′, B = B1; (idk ⊗B2);B3 and out2(oi) ∈ V ′ for all i.

1 The case of non-disjoint sets can be handled by a suitable choice of coproducts.
2 A function f : A→ B, where A = {a1, . . . , ak} is finite, is denoted by f = [a1 7→ f(a1), . . . , ak 7→ f(ak)].
We denote a function with empty domain by [ ].

3 We apply ϕ to a sequence of wires, by applying ϕ pointwise and assuming that ϕ(ij) = ij for 1 ≤ j ≤ n.
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Figure 5 The initial distribution of the CNU from Figure 2 as an MBN.

Thus, given a set of nodes in a BN that contains all nodes on paths between them, we have
the induced subnet of the node set and a suitable “context” such that the whole net can be
seen as the result of substition of the subnet into the “context”.

Modular Bayesian Networks

We will now equip the nodes of causality graphs with matrices, assigning an interpretation
to each generator. This fully determines the corresponding matrix of the BN. Note that
Bayesian networks as PROPs have earlier been studied in [12, 16, 17].

I Definition 10 (Modular Bayesian network (MBN)). A modular Bayesian network (MBN)
is a tuple (B, e) where B = (V, `, s, out) is a causality graph and e an evaluation function
that assigns to every generator g ∈ G with g : n→ 1 a 2n × 2-matrix e(g). An MBN (B, e) is
called an ordinary Bayesian network (OBN) whenever B has no inputs (i.e. B : 0→ m), out
is a bijection, and every node is associated with a stochastic matrix.

In an OBN every node V corresponds to a random variable and it represents a probability
distribution on {0, 1}m. OBNs are exactly the Bayesian networks considered in [14].

I Example 11. Figure 5 gives an example of a BN where 1/2 =
(

1/2
1/2

)
andMS3 =

(
1/3 1/2
2/3 1/2

)
.

It encodes exactly the probability distribution from Figure 2. Its term representation is
(g1 ⊗ (g2;∇)); (id2 ⊗ g3) where e(g1) = e(g2) = 1/2 and e(g3) = MS3 .

I Definition 12 (MBN semantics). Let (B, e) be an MBN where the network B = (V, `, s, out)
is of type n→ m. The MBN semantics is the matrix Me(B) with(

Me(B)
)

(x1 . . . xm | y1 . . . yn) =
∑

b : WB→{0,1}
b(ij)=yj ,b(out(oi))=xi

∏
v∈V

e
(
`(v)

)(
b(v)

∣∣∣ b(s(v))
)

with x1, . . . , xm, y1, . . . , ym ∈ {0, 1} where b is applied pointwise to sequences.

Intuitively the function b assigns boolean values to wires, in a way that is consistent with
the input/output values (x1 . . . xm, y1 . . . yn). For each such assignment, the corresponding
entries in the matrices `(v) are multiplied. Finally, we sum over all possible assignments.
I Remark. The semantics Me(B) is compositional. It is the canonical (i.e., free) extension
of the evaluation map from single nodes to the causality graph of an MBN (B, e). Here,
we rely on two different findings from the literature, namely, the CC-PROP structure of
(sub-)stochastic matrices [12] and the characterization of term graphs as the free symmetric
monoidal category with graph substition [7]. The formal details can be found in [3].

4 Updating Bayesian Networks

We have introduced MBNs as a compact and compositional representation of distributions
on markings of a CNU. Coming back to the scenario of knowledge update, we now describe
how success and failure of operations requested by the observer affect the MBN. We will first
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Figure 6 String diagrams of the updated distributions after setA,1, assA,1, nasA,1 operations were
applied to an initial distribution P .

describe how the operations can be formulated as matrix operations that tell us which nodes
have to be added to the MBN. We shall see that updated MBNs are in general not OBNs,
which makes it harder to interpret and retrieve the encoded distribution. However, we shall
show that MBNs can efficiently be reduced to OBNs.

Notation. In this section we will use the following notation: first, we will use variants
idn,∇n, σn,m,>n of the operators/matrices id,∇, σ,>, which have a higher arity (see the
definitions in Table 1). Furthermore, we will write

∏k
i=1 Pi for P1 · . . . · Pk and

⊗k
i=1 Pi for

P1 ⊗ · · · ⊗ Pk. By 0 : 1→ 1 we denote the 2× 2 zero matrix and set 0k =
⊗k

i=1 0. We also

introduce 1b as a notation for the matrix
(

1
0

)
if b = 1 (respectively

(
0
1

)
if b = 0).

With diag(a1, . . . , an) we denote a square matrix with entries a1, . . . , an ∈ [0, 1] on
the diagonal and zero elsewhere. In particular, we will need the sub-stochastic matrices
Fk,b : k → k where Fk,0 = diag( 1, . . . , 1︸ ︷︷ ︸

2k−1 times

, 0) and Fk,1 = diag(0, 1, . . . , 1︸ ︷︷ ︸
2k−1 times

).

Given a bit-vector x ∈ {0, 1}n, we will write x[i] respectively x[i...j] to denote the i-th
entry respectively the sub-sequence from position i to position j. If A ⊆ {1, . . . , n} we define
x[A] = {x[i] | i ∈ A}.

CNU Operations on MBNs

In this section we characterize the operations of Definition 3 as stochastic matrices that can
be multiplied with the distribution to perform the update. We describe them as compositions
of smaller matrices that can easily be interpreted as changes to an MBN. In the following
lemmas, P : 0→ m is always a stochastic matrix representing the distribution of markings of
a CNU. Furthermore, A ⊆ S is a set of places and w.l.o.g. we assume that A = {1, . . . , k} for
some k ≤ m (as otherwise we can use permutations that preceed and follow the operations
and switch wires as needed).

Starting with the setA,b operation (1) recall that it is defined in a way so that the marginal
distributions of non-affected places S\A stay the same while the marginals of every single
place in A report b ∈ {0, 1} with probability one. The following lemma shows how the matrix
for a set operation can be constructed (see Figure 6).

I Lemma 13. It holds that setA,b(P ) =
(⊗m

i=1 T
set
A,b(i)

)
· P where T set

A,b(i) is 1b · > if i ∈ A,
and id otherwise. Moreover,

⊗m
i=1 T

set
A,b(i) is stochastic.

Next, we deal with the ass operation. Applying it to a distribution P is simply a
conditioning of P on non-emptiness of all places A. Intuitively, this means that we keep only
entries of P for which the condition is satisfied and set all other entries to zero. However, in
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order to keep the updated P a probability distribution, we have to renormalize, which already
shows that modelling this operation introduces sub-stochastic matrices to the computation.
In the next lemma normalization involves the costly computation of a marginal P|A (the
probability that all places in A are set to b), however omitting the normalization factor will
give us a sub-stochastic matrix and we will later show how such sub-stochastic matrices can
be removed, in many cases avoiding the full costs of a marginal computation.

I Lemma 14. It holds that assA,b(P ) = 1
P|A

(⊗m
i=1 T

ass
A,b(i)

)
·P with P|A = (

⊗m
i=1QA(i)) ·P

where T ass
A,b(i) is F1,1−b if i ∈ A, and id otherwise. We require that P|A 6= 0. Furthermore

Qass
A,b(i) =

(
1 0

)
if i ∈ A and > otherwise.

In contrast to set and ass, the nas operation couples all involved places in A. Asserting
that at least one place has no token means that once the observer learns that e.g. one
particular place definitely has a token it affects all the other ones. Thus for updating the
distribution we have to pass the wires of places A through another matrix that removes the
possibility of all places containing a token and renormalizes.

I Lemma 15. The following characterization holds: nasA,1(P ) = 1
P c
|A

(Fk,1 ⊗ idm−k) ·P with
P c
|A = 1− P|A (P|A is defined as in Lemma 14). We require that P c

|A 6= 0.

An analogous result holds for nasA,0 by using Fk,0.
The previous lemmas determine how to update an MBN (B, e) to incorporate the changes

to the encoded distribution stemming from the operations on the CNU. We denote the
updated MBN by (B′, e′) with B′ = (V ′, `′, s′, out′).

For the setA,b operation Lemma 13 shows that we have to add a new node vs and a new

generator gs for each s ∈ A. We set `(vs) = gs and e′(gs) = 1b ·> =
(

1 1
0 0

)
, s′(vs) = out(os)

and out′(os) = vs. Similarly, this holds for the ass operation with the only difference that

the associated matrix for each vs is
(

1 0
0 0

)
(cf. Figure 6).

For the nasA,b operation Lemma 15 defines a usually larger matrix Fk,b : k → k that
intuitively couples the random variables for all places in A. We cannot simply add a node to
the MBN which evaluates to Fk,b since nodes in the MBN always have to be of type n→ 1.
However, one can show (see Lemma 18) that for each Fk,b-matrix, there exists an MBN
(B′, e′) such that Me′(B′). This can then be appended to (B, e) which has the same affect as
appending a single node with the Fk,b-matrix.

Simplifying MBNs to OBNs

The characterisations of operations above ensure that updated MBNs correctly evaluate
to the updated probability distributions. However, rather than OBNs we obtain MBNs
where the complexity of updates is hidden in newly added nodes. Evaluating such MBNs
is computationally more expensive because of the additional nodes. Below we show how to
simplify the MBN, minimising the number of nodes either after each update or (in a lazy
mode) after several updates.

As a first step we provide a lemma that will feature in all following simplifications. It
states that every matrix can be expressed by the composition of two matrices.

I Lemma 16 (Decomposition of matrices). Given a matrix P of type n → m and a set of
k < m outputs – without loss of generality we pick {m − k + 1, . . . ,m} – there exist two
matrices P` : n→ m− k and Pa : n+m− k → k such that

(idm−k ⊗ Pa) · ((∇m−k · P`)⊗ idn) · ∇n = P,

CONCUR 2018



27:12 Updating Probabilistic Knowledge on Condition/Event Nets using Bayesian Networks

P...

...
n m ...

...

...

...

...

...

...
n

m-k

k

P

P

=

Figure 7 Schematic string diagram depiction of the decomposition of matrices.

which is visualized in Figure 7. Moreover, the matrices can be chosen so that Pa is stochastic
and P` sub-stochastic. If P is stochastic P` can be chosen to be stochastic as well.

We can now deduce the known special case of arc reversal in OBN, stated e.g. in [4].

I Corollary 17 (Arc reversal in OBNs). Let (B, e) be an OBN with B = (V, `, s, out) and two
nodes u, y ∈ V , where u is a direct predecessor of y, i.e. u ∈ pred(y). Then there exists an
OBN (B′, e′) with B′ = (V, `′, s′, out), evaluating to the same probability distribution, where
`′(v) = `(v), s′(v) = s(v) if v 6= u and v 6= y and y ∈ pred(u). Thus the dependency between
u and v is reversed.

Arc reversal comes with a price: as can be seen in the proof, if u is associated with a
matrix Pu : n→ 1 and y with a matrix Py : m+ 1→ 1, then we have to create new matrices
P ′u : m+ n+ 1→ 1 and P ′y : m+ n→ 1, causing new dependencies and increasing the size of
the matrix. Hence arc reversal should be used sparingly.

After arc reversal a node might have duplicated inputs, which can be resolved by multi-
plying the corresponding matrix with ∇, thus reducing the dimension.

Next, we can use Lemma 16 to show that every matrix can be represented as an MBN.
This MBN can always be built in a “minimal” way in that only m nodes are needed to
represent a n→ m matrix.

I Lemma 18. Let M : n→ m be a (sub-stochastic) matrix. Then there exists an MBN (B, e)
with B = (V, l, s, out) such that M = Me(B), |V | = m and out is a bijection. Moreover, if M
is stochastic we can guarantee that e(l(v)) is stochastic for all v ∈ V . If M is sub-stochastic
we can guarantee that vfront – the first node in a topological ordering of all nodes V ′ – is the
only node where e(l(v)) is sub-stochastic, all other nodes have stochastic matrices.

I Corollary 19. Let (B, e) be an MBN without inputs and assume that Me(B) is stochastic.
Then there exists an OBN (B′, e′) such that Me(B) = Me′(B′).

Proof. The result follows trivially from the assumptions because for a stochastic MBN
without input ports Me(B) is simply a column vector holding a probability distribution.
It is well known that every probability distribution can be represented by some (ordinary)
Bayesian net. Alternatively the result follows directly from Lemma 18. J

We just argued that every MBN can be simplified so that it does not contain any
unnecessary nodes and at most one sub-stochastic matrix. However, while Lemma 18 shows
that these simplifications are always possible it is not helpful in practice: in fact in the proof
we take the full matrix represented by an MBN and then split it into (coupled) single nodes.
Since we chose to use MBNs in order not to deal with large distribution vectors in the first
place, this approach is not practical. Instead, in the following we will describe methods which
allow us to simplify an MBN without computing the matrix first.
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Figure 8 Equalities on sub-stochastic matrices. Note that (F2) holds only if P is stochastic and
for (F4) and (F5) we have to assume k > 1.

First note that MBNs stemming from CNU operations can contain substructures that
can locally be replaced by simpler ones. They are depicted in Figure 8.

I Lemma 20. The equalities of Figure 8 hold for (sub-)stochastic matrices.

As a result, it makes sense to first eliminate all of these substructures. Then there are two
issues left to obtain an OBN. First, there are nodes that lost their direct connection with an
output port (since output ports were terminated in a set operation or since we added an
Fk,b-matrix). Those have to be merged with other nodes. Second, there are sub-stochastic
matrices that have to be eliminated as well. The following lemma states that a node not
connected to output ports can be merged with its direct successor nodes. This can introduce
new dependencies between these successor nodes, but we remove one node from the network.

I Lemma 21. lem Let B = (V, `, s, out) be a causality graph, e an evaluation function such
that (B, e) is an MBN. Assume that a node v0 ∈ V is not connected to an output port, i.e. for
all i ∈ {1, . . . ,m} : v0 6= out(oi), and e(`(v0)) is stochastic. Then there exists an MBN (B′, e′)
with B′ = (V \{v0}, `′, s′, out) such that Me(B) = Me′(B′). Moreover, e′ ◦ `′|V̄ = e ◦ `|V̄ and
s′|V̄ = s|V̄ where V̄ = V \({v0} ∪ succ(v0)).

The conditions on `′ and s′ mean that the update on B is local as it does not affect the
whole network. Only the direct successors of v0 are affected.

Finally, we have to get rid of sub-stochastic matrices inside the MBN, which have been
introduced by the ass and nas operations (we assume that we did not normalize yet). The
idea is to exchange nodes labelled with sub-stochastic matrices with the predecessor nodes
and move them to the front (as in Lemma 18). Once there, normalization is straightforward
by normalizing the vectors associated to these nodes.

I Lemma 22. Let B = (V, `, s, out) be a causality graph without input ports, i.e. of type
0→ m, e an evaluation function such that (B, e) is an MBN. Furthermore we require that
there is a one-to-one correspondence between output ports and nodes, i.e., out is a bijection.

Assume that V ′ ⊆ V is the set of all nodes equipped with sub-stochastic matrices, i.e. e(`(v))
is sub-stochastic for all v ∈ V ′. Then there exists an OBN (B′, e′) with B′ = (V, `′, s′, out)
such that Me(B) = Me′(B′) · pB where pB = >m ·Me(B) ≤ 1 is the probability mass of B.
Moreover, e′ ◦ `′|V̄ = e ◦ `|V̄ and s′|V̄ = s|V̄ where V̄ = V \(V ′ ∪ pred∗(V ′)).

Note that 1
pB

(whenever pB 6= 0) is the normalization factor that can be obtained by
terminating all input ports of B. We do not have to compute pB explicitly, but it can be
derived from the probabilities of the nodes which have been moved to the front (see proof).
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(F3)Lemma 22 (co-unit)

Figure 9 Exemplary update process for the successt4 operation of our running CNU example.

Here 1/2 =
(

1/2
1/2

)
and MS3 =

(
1/3 1/2
2/3 1/2

)
.

I Corollary 23. Let B = (V, `, s, out) be a causality graph without input ports, i.e. of type
0→ m, e an evaluation function such that (B, e) is an OBN. Let P = Me(B).

Then we can construct OBNs representing setA,b(P ), assA,b(P ),nasA,b(P ), where
the set operation modifies only {out(oi) | i ∈ A} and their direct successors and
the ass and nas operations modify only {out(oi) | i ∈ A} and their predecessors.

The operations are costly whenever a node has many predecessors or direct successors. In
a certain way this is unavoidable because our operations are related to the computation of
marginals, which is NP-hard [6]. However, if the Bayesian network has a comparatively “flat”
structure, we expect that the efficiency is rather high in the average case, as supported by
our runtime results below. Applying the nas operation will introduce dependencies for the
random variables corresponding to the pre- and post-conditions of a transition, however this
effect is localized if we consider particular classes of Petri nets, such as free-choice nets [9].

I Example 24. Figure 9 shows an update process, following a lazy evaluation strategy, for a
Bayesian net representing the probability distribution from Figure 2.

5 Implementation

In order to quantitatively assess the performance of MBNs we developed a prototypical C++
implementation of the concepts in this paper, allowing to read, write, simplify, generate, and
visualize MBNs as well as perform operations on CNUs that update an underlying MBN.
The implementation is open-source and freely available on GitHub.4

As a first means of obtaining runtime results we randomly generated CNs with a range of
different parameters: e.g. number of places, number of places in a precondition of a transition,
places in the initial marking etc. We then successively picked transitions at random to fire
and performed the necessary operations to update the MBN and simplify it to an OBN.

We chose to guarantee a success rate of transition firing of around 1/3. We argue that
given the fact that we model an observer with prior knowledge it is realistic to assume
a certain rate of successful transitions. A very low sucess rate leads to an accumulation

4 https://github.com/bencabrera/bayesian_nets_program

https://github.com/bencabrera/bayesian_nets_program
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Figure 10 Averaged runtimes for performing 100 CNU operations using joint distributions or
MBNs.

of successive Fk,b matrices which can only be eliminated using the costly operations on
substochastic matrices (see proof of Lemma 22). One could implement effective simplification
strategies merging successive Fk,b matrices – since composing 0,1 diagonal matrices yields
again 0,1 diagonal matrices. However, this is out of scope of this publication.

The plot on the left of Figure 10 shows a comparison between run times when performing
CNU operations directly on the joint distribution versus our MBN implementation. One can
clearly observe the exponential increase when using the joint distribution while the MBN
implementation in this setup stays relatively constant. The plot on the right of Figure 10
hints towards an increase in complexity when CNs – and thus MBNs – are more coupled.
When increasing the maximum number of places in the precondition of a transition we
observe an increase in run times. The number of outliers with a dramatic increase in run
times seem to rise as well.

6 Conclusion

Related work. A concept similar to our nets with uncertainty has been proposed in [18], but
without any mechanism for efficiently representing and updating the probability distribution.
There are also links to Hidden Markov Models [25] for inferring probabilistic knowledge on
hidden states by observing a model.

Bayesian networks were introduced by Pearl in [22] to graphically represent random
variables and their dependencies. Our work has some similarities to his probabilistic calculus
of actions (do-calculus) [23] which supports the empirical measurement of interventions.
However, while Pearl’s causal networks model describe true causal relationships, in our case
Bayesian networks are just compact symbolic representations of huge probability distributions.
There is also a notion of dynamic Bayesian networks [21], where a random variable has a
separate instance for each time slice. We instead keep only one instance of every random
variable, but update the BN itself. There is substantial work on updating Bayesian networks
(for instance [15]) with the orthogonal aim of learning BNs from training data.

PROPs have been introduced in [20], foundations for term-based proofs have been studied
in [19] and their graphical language has been developed in [27, 5]. Bayesian networks as
PROPs have already been studied in [12] under the name of causal theories, as well as
in [17, 16] in order to give a predicate/state transformer semantics to Bayesian networks.
However, these papers do not explicitly represent the underlying graph structure and in
particular they do not consider updates of Bayesian networks.

We use the results from [7] in order to show that our causality graphs are in fact term
graphs, which are freely generated gs-monoidal categories, which in turn are CC-structured
PROPs. Although this result is intuitive, it is non-trivial to show: given two terms with
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isomorphic underlying graphs, each can be reduced to a normal form which can be converted
into each other using the axioms of a CC-structured PROP. Similar results are given in
[11, 2] for PROPs with multiplication and unit, in addition to comultiplication and counit.

Future work. We would like to investigate further operations on probability distributions,
however it is unclear whether every operation can be efficiently implemented. For instance
linear combinations of probability distributions seem difficult to handle.

Van der Aalst [29] showed that all reachable markings in certain free-choice nets can
be inferred from their enabled transitions. An unrestricted observer may therefore be in a
very strong position. Privacy research often considers statistical queries, such as how many
records with certain properties exist in the database [10, 8]. To model such weaker queries we
require labelled nets where instead of transitions we observe their labels. To implement this
in BNs requires a disjunction of the enabledness conditions of all transitions with the same
label. Furthermore we are interested in scenarios where certain transitions are unobservable.
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