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Abstract
Assume that Alice has a binary string x and Bob a binary string y, both strings are of length n.
Their goal is to output 0, if x and y are at least L-close in Hamming distance, and output 1, if x
and y are at least U -far in Hamming distance, where L < U are some integer parameters known
to both parties. If the Hamming distance between x and y lies in the interval (L,U), they are
allowed to output anything. This problem is called the Gap Hamming Distance. In this paper
we study public-coin one-sided error communication complexity of this problem. The error with
probability at most 1/2 is allowed only for pairs at Hamming distance at least U . In this paper
we determine this complexity up to factors logarithmic in L. The protocol we construct for the
upper bound is simultaneous.

2012 ACM Subject Classification Theory of computation → Communication complexity

Keywords and phrases Communication Complexity, Gap Hamming Distance, one-sided error

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.7

1 Communication complexity of GHD

Given two strings x = x1 . . . xn ∈ {0, 1}n, y = y1 . . . yn ∈ {0, 1}n, Hamming distance between
x and y is defined as the number of positions, where x and y differ:

d(x, y) = |{i ∈ {1, . . . , n} |xi 6= yi}| .

Let L < U 6 n be integer numbers. In this paper we consider the following communication
problem GHDL,U , called the Gap Hamming Distance problem:

I Definition 1. Let Alice receive an n-bit string x and Bob an n-bit string y such that either
d(x, y) 6 L, or d(x, y) > U . They have to output 0, if the first inequality holds, and 1, if the
second inequality holds. If the promise is not fulfilled, they may output anything.
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1.1 Prior work
1.1.1 Two-sided error upper bounds
Let R(GHDL,U ) denote randomized two-sided error public coin communication complexity
of GHDL,U . It is known (see [11, 15]) that R(GHDL,U )) = O(L2/(U − L)2) (assuming the
constant error probability less than 1/2).

The paper [9] established the upper bound R(GHDL,U ) = O(L logL) in the case U = L+1,
that is, there is no gap. This bound is much better than O(L2/(U − L)2), which is O(L2) in
this case.

It turns out that the protocols attaining these two upper bounds are simultaneous. That is,
in these protocols Alice and Bob do not communicate at all, but rather send messages to the
third party, Charlie, who then computes the output of the protocol. Charlie doesn’t see inputs
of Alice and Bob but sees public coins. The corresponding model, called simultaneous message
passing (SMP) model, is even more restricted than one-way public-coin communication:
every simultaneous protocol can be converted into one-way protocol without increasing
communication cost.

1.1.2 One-sided error public coin communication protocols
The one-sided error public coin communication complexity will be denoted by R0. The
superscript 0 means that the protocol is allowed to err only for input pairs which are at least
U -far in Hamming distance. Here we assume that the maximal probability of error2 is 1/2
The superscript 1 will mean the opposite: protocols are allowed to err only for input pairs
which are at least L-close in Hamming distance.

Let us first note that for all x, y we have

GHDL,U (x, y) = ¬GHDn−U,n−L(¬x, y).

(Alice flips all bits of her input string.) Thus GHDL,U (x, y) reduces to GHDn−U,n−L and
the other way around. This reduction maps 0-instances to 1-instances and vice verse. This
observation implies that

R1(GHDL,U ) = R0(GHDn−U,n−L).

Thus it suffices to study only one of these quantities and we will stick to R0 (the error is
allowed when the distance is at least U) .

The paper [8] noticed that for all U > L it holds that R0(GHDL,U ) = O(L logn). Once
again, there is a public coin SMP protocol attaining this bound (which is just a simple
modification of the standard protocol for EQUALITY).

1.1.3 GHD and the lower bounds in data streams and property testing
Several works used GHD to obtain lower bounds for streaming algorithms and for property
testing problems. As was discovered in [14] by Woodruff, there is a reduction from GHD to a
number of fundamental data stream problems, including the problem of estimating frequency
moments. More specifically, if there is a Ω(n) lower bound against any r-round two-sided
error communication protocol for GHDn/2−Θ(

√
n), n/2+Θ(

√
n), then there is a Ω(1/(rε2)) lower

bound on the space complexity of any r-pass streaming algorithm estimating the frequency
moments in a data stream within a factor of (1 + ε).

2 By the standard amplification argument we could have any constant between 0 and 1 instead of 1/2.
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In [14] Woodruff proved Ω(n) lower bound against 1-round protocols (see also [10] for
more direct and simple proof). In a subsequent works ([2, 3]) this lower bound was extended
to O(1)-round protocols. Finally, Ω(n) lower bound in the most general setting, when there
is no restriction on the number of rounds at all, was obtained in [6, 13, 12].

As it turns out, lower bounds on the one-sided error version of GHD are also useful.
In [5] Buhrman, Cleve and Wigderson proved that for any constant c < 1 it holds that
R1(GHD0, cn) = Ω(n). Moreover, they showed that Ω(n) lower bound holds also for a weaker
version of GHD0, cn problem, in which Hamming distance between the inputs is either 0 or
exactly cn (provided that cn is an even integer).

Blais, Brody and Matulef in [1] used this result to obtain lower bounds on testing decision
trees and signed majorities with one-sided error.

Further, Brody and Woodruff ([4]) used lower bound on one-sided error GHD from [5]
to obtain lower bounds for streaming algorithms with one-sided approximation, i.e., for
algorithms which either always return an overestimate or always return an underestimate on
the objective function. Their results include lower bounds for the problem of over(under)-
estimating the number of non-zero rows in a matrix and the Earth Mover Distance between
two multisets.

1.2 This work
In this paper we study public-coin one-sided error communication complexity R0 of GHDL,U .
Once again, the error is allowed only for pairs at Hamming distance at least U .

1.2.1 The upper bound
Our main result is a one-sided error public-coin simultaneous protocol for GHDL,U on n-bit
strings with communication complexity O((L2/U) logL). It is constructed in the following 4
steps (description of the protocol in this section is a bit informal, and the precise bounds
can be found below in the paper). Let us stress that steps 1 and 2 are enough to obtain
O((L2/U) logn) solution; the purpose of steps 3 and 4 is to replace O(logn)-factor by
O(logL)-factor. Importance of eliminating dependency on n in the upper bounds was also
acknowledged in previous works ([15, 9]).

Step 1. On this step we construct our main novel protocol, called the Triangle Inequality
Protocol. This protocol communicates O((L2/U) logn) bits (which is a bit more than required,
since logL is replaced by logn) and solves the GHDL,U problem when the ratio U/L is larger
than a certain constant.

The protocol works as follows. It randomly splits x and y in b = O(L2/U) blocks
x1, . . . , xb and y1, . . . , yb. The ith bit xi of x goes in the block xj where j is chosen at
random with uniform probability distribution over {1, . . . , b}, and decisions for different i’s
are independent. Each bit yi of y goes in the block yj with the same index as xi goes in.
This partition is made using the shared random source (so that the parties have the same
partition). Both parties also read random strings r1, . . . , rb from the shared random source
and Alice communicates d(xj , rj) to Charlie for all j = 1, . . . , b. Bob does the same with
d(yj , rj). Thus the communication is b logn = O((L2/U) logn). Charlie outputs 0 if the sum

b∑
j=1
|d(xj , rj)− d(yj , rj)|

MFCS 2018
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is at most L and 1 otherwise. By the triangle inequality each term in this sum is at
most d(xj , yj) and thus the sum is at most d(x, y). Therefore this protocol does not err if
d(x, y) 6 L.

On the other hand, if d(x, y) > U > C ′L for a certain constant C ′, then for any fixed
j the average value of d(xj , yj) is at least 2. From the properties of binomial distributions
it follows that we have d(xj , yj) > d(x, y)/10b with probability at least 1/3. The value
d(xj , rj) − d(yj , rj) is distributed as the distance from the origin in a random walk with
d(xj , yj) steps along a line (each step has length 1 and is directed to the left or to the
right with equal probabilities). From the properties of random walks it follows that for
every j we have |d(xj , rj) − d(yj , rj)| >

√
d(xj , yj) with constant positive probability.

These two facts imply that with constant probability the sum
∑b
j=1 |d(xj , rj)− d(yj , rj)| is

Ω(b
√
d(x, y)/10b) = Ω(

√
bd(x, y)). Recall that b = O(L2/U) and we assume that d(x, y) > U .

If the constant hidden in O-notation is large enough then the lower bound Ω(
√
bd(x, y)) for

the sum
∑b
j=1 |d(xj , rj)− d(yj , rj)| is larger than L.

Step 2. In [8] it was noticed that for all L < U there is one-sided error public-coin
simultaneous protocol for GHDL,U with communication O(L logn). This protocol is just a
modification of the standard protocol for equality and it never errs for inputs at distance at
most L.

Our second protocol runs the Triangle Inequality Protocol if U > C ′L and the protocol
from [8] otherwise. Notice that in the latter case L = O(L2/U), and thus we obtain a
protocol with communication O((L2/U) logn) for all L,U .

Step 3. On this step we use the techniques from [9] to replace the logn factor by a logL
factor. More specifically, we run the protocol from the second step for the strings u, v of
length O(L8) obtained from the original strings x, y by the following transformation. As
in the Triangle Inequality Protocol, we split x, y into b = O(L8) blocks and then replace
each block by the parity of its bits. Obviously, d(u, v) 6 d(x, y). We then show that
d(u, v) = d(x, y) with constant probability provided d(x, y) 6 L4. Therefore this protocol has
constant one-sided error probability for all input pairs with d(x, y) 6 L4. By construction
this protocol communicates O((L2/U) logL) bits.

Step 4. Finally, to handle the case d(x, y) > L4, we consider the following protocol. We
run the protocol from step 3 and then a simplified version of the Triangle Inequality Protocol.
If any of these two protocols output 1, we output 1 and otherwise 0. The simplified version
of the Triangle Inequality Protocol works as follows. Alice and Bob read a random n-bit
string r from the shared random source. They compute distance from their inputs to r.
Observe that due to triangle inequality |d(x, r)−d(y, r)| 6 d(x, y). Hence d(x, y) 6 L implies
|d(x, r) − d(y, r)| 6 L. On the other hand, if d(x, y) > L4, then due to the properties of
random walks with constant positive probability it holds that |d(x, r)− d(y, r)| > L2.

Thus step 4 is reduced to the following communication problem. Alice holds a number
a ∈ {0, 1, . . . , n}, Bob holds a number b ∈ {0, 1, . . . , n} and it is known that either |a− b| 6 L

or |a− b| > L2. The goal is to find out whether the first or the second inequality is true. We
construct a public-coin simultaneous protocol with communication O(logL) which always
outputs 0 when |a − b| 6 L and which with some constant positive probability outputs 1
when |a− b| > L2.

There is a simple SMP protocol communicating O(logL+log logn) bits to solve even a gap-
less (L vs L+ 1) version of this problem. Let p1, . . . , pk be the first k = (4L+ 2) · log2(n+L)
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primes. Parties read a random p ∈ {p1, . . . , pk} from the shared random source. Alice
and Bob communicate a (mod p) and b (mod p) to Charlie. He checks, whether there is
i ∈ [−L,L] such that a+ i (mod p) = b (mod p). If there is such i, he outputs 0, otherwise
1. A straightforward analysis shows that this protocol has an error at most 1/2 only in the
case when |a− b| > L+ 1.

The problem with this protocol is that a and b range from 0 to n. To get rid of O(log logn)
term we do the following. Instead of taking remainders modulo p1, . . . , pk we just hash our
O(n)-size universe into O(L)-size universe simply by taking remainder modulo 4L+ 2. Of
course this may lead to a collision when two number which were far from each other become
L-close. We resolve this issue by considering Z0 + . . .+Za and Z0 + . . .+Zb instead of a and
b, where Z0, . . . , Zn are independent symmetric Bernoulli random variables. It can be shown
that provided |a − b| > L2, the difference Za+1 + . . . + Zb is distributed almost uniformly
modulo 4L+ 2. This guaranties that the collision probability is by a constant bounded away
from 1.

1.2.2 Lower bounds
As it turns out, a very simple argument proves an almost matching Ω(L2/U) lower bound.
We include this argument for completeness.

As we mentioned, provided that U is even and U = (1 − Ω(1))n, the paper [5] proves
Ω(n) lower bound on one-sided error communication complexity R1 of an easier version
of GHD0, U , in which the distance between inputs is either 0 or exactly U . However, we
need a lower bound in the regime when U is very close to n. We observe that a simple
modification of a proof from [5] works as well in such regime when one switches to a harder
problem, in which the distance between inputs can be greater than U . Namely, we show that
R1(GHD0, U ) = Ω((n− U)2/n) for GHD0U on n-bit strings.

As a corollary we obtain the lower bound Ω(L2/U) for one-sided error complexity R0

of GHDL,U (the error is allowed when the distance is at least U). As we explained earlier,
R1 of GHD0,U−L on U -bit strings equals R0 of GHDL,U on U -bit strings. As the former is
Ω((U − (U −L))2/U) we obtain the lower bound Ω(L2/U) for the latter. On the other hand,
the problem GHDL,U on U -bit strings reduces to the problem GHDL,U on n-bit strings (Alice
and Bob append n − U zeros to their strings), hence the one-sided complexity R0 of the
latter is also Ω(L2/U).

1.2.3 The summary
Let us summarize our results.

I Theorem 2. The one-sided error public-coin communication complexity R0 of GHDL,U on
n-bit strings is at most

O

((
L2

U
+ 1
)

log(L+ 2)
)

(The error is allowed only when the distance is at least U .) There is a public-coin simultaneous
protocol attaining this bound.

I Theorem 3. The one-sided error public-coin communication complexity R1 of GHD0,U on
n-bit strings is at least

Ω
(

(n− U)2

n
+ 1
)
.

(The error is allowed only when the distance is 0.)

MFCS 2018
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I Corollary 4. The one-sided error public-coin communication complexity R0 of GHDL,U on
n-bit strings is at least

Ω
(
L2

U
+ 1
)
.

(The error is allowed only when the distance is at least U .)

Thus our results determine the one-sided public-coin communication complexity of
GHDL,U (up to a factor O(logL)) in the case when the parties are allowed to err only for
input pairs at distance at least U . If the parties are allowed to err only for input pairs at
distance at most L, then the one-sided public-coin communication complexity of GHDL,U is
(n− U)2/(n− L) up to a factor of O(log(n− U)).

2 Preliminaries

2.1 Communication Complexity
Let f : X × Y → {0, 1} be a Boolean function.

I Definition 5. A deterministic communication protocol is a rooted binary tree, in which
each non-leaf vertex is associated either with Alice or with Bob and each leaf is labeled by 0
or 1. Each non-leaf vertex v, associated with Alice, is assigned a function fv : X → {0, 1}
and each non-leaf vertex u, associated with Bob, is assigned a function gu : Y → {0, 1}. For
each non-leaf vertex one of its out-going edges is labeled by 0 and other one is labeled by 1.

A computation according to a deterministic protocol runs as follows. Alice is given x ∈ X ,
Bob is given y ∈ Y. They start at the root of tree. If they are in a non-leaf vertex v,
associated with Alice, Alice sends fv(x) to Bob and they move to the son of v by the edge
labeled by fv(x). If they are in a non-leaf vertex, associated with Bob, they act in a similar
same way, however this time it is Bob who sends a bit to Alice. When they reach a leaf, they
output the bit which labels this leaf.

I Definition 6. Communication complexity of a deterministic protocol π, denoted by CC(π),
is defined as the depth of the corresponding binary tree.

Randomized protocols with shared randomness (aka public-coin protocols) can be defined
as follows:

I Definition 7. A public-coin communication protocol is a probability distribution over
deterministic protocols. Communication complexity of a public-coin protocol τ , denoted by
CC(τ), is defined as max

π
CC(π), where π is taken over the deterministic protocols from the

support of τ (recall that τ is a distribution).

Given a public-coin protocol τ , Alice and Bob choose the deterministic protocol to be
executed according to the distribution, defined by τ .

I Definition 8. We say that a public-coin protocol computes a partial function f with error
probability ε, if for every pair of inputs (x, y) in the domain of f with probability at least
1− ε that protocol outputs f(x, y). Randomized communication complexity of f is defined as

Rε(f) = min
π
CC(π),

where minimum is over all protocols that compute f with error probability ε.



E. Klenin and A. Kozachinskiy 7:7

A deterministic simultaneous protocol τ is a triple 〈φ, ψ, θ〉 where

φ : X → {0, 1}c1 , ψ : Y → {0, 1}c2 ,

θ : {0, 1}c1 × {0, 1}c2 → {0, 1}.
The communication cost of τ is c1 + c2. A public-coin simultaneous protocol π is a

probability distribution over deterministic simultaneous protocols. Communication cost of π
is the maximal possible communication cost of τ , where τ is a deterministic simultaneous
protocol taken from the support of π.

Assume that Alice is given x ∈ X and Bob is given y ∈ Y. The output of a public-
coin simultaneous protocol π on (x, y) is a random variable defined as follows. Sample a
deterministic simultaneous protocol τ = 〈φ, ψ, θ〉 according to π. Output θ(φ(x), ψ(y)).

If for i ∈ {0, 1} we require that the protocol never errs on inputs from f−1(i), then the
corresponding notion is called “randomized one-sided error communication complexity” and
is denoted by Riε(f).

The Gap Hamming Distance problem is the problem of computing the following partial
function:

GHDn
L,U (x, y) =


0 d(x, y) 6 L,

1 d(x, y) > U,

undefined L < d(x, y) < U,

forx, y ∈ {0, 1}n.

2.2 Hamming Space
I Definition 9. The function

h(x) = x log2
1
x

+ (1− x) log2
1

1− x
is called the Shannon function.

For any B ⊂ {0, 1}n define diam(B) = max
x,y∈B

d(x, y). Let V2(n, r) denote the size of

Hamming ball of radius r, that is V2(n, r) =
(
n
0
)

+ . . .+
(
n
r

)
.

We will use the following well-known facts about the size of Hamming balls.

I Proposition 10 ([7]). If r 6 n
2 , then V2(n, r) 6 2h(

r
n )n.

I Proposition 11 ([7]). If B ⊂ {0, 1}n, r is natural, diam(B) 6 2r and n > 2r + 1, then

|B| 6 V2(n, r).

Propositions 11, 10 and the fact that h′(1/2) = 0, h′′(1/2) < 0 easily imply the following

I Lemma 12. Assume that r < n/2. Then the cardinality of every set B ⊂ {0, 1}n with
diam(B) 6 2r is at most 2n(1−c(1−(2r/n))2) for some absolute positive constant c.

2.3 Probability Theory
I Definition 13 (Probability distributions). Let B(n, p) denote the binomial distribution with
parameters n ∈ N and p ∈ (0, 1). For every natural n let Sn denote the one-dimensional
random walk with n steps. More specifically, let Sn be equal to

Sn = X1 + . . .+Xn,

where X1, . . . , Xn are independent random variables taking values in {−1, 1}, such that for
each i the following holds: Pr[Xi = 1] = Pr[Xi = −1] = 1

2 .

MFCS 2018
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3 The upper bound

The protocol for Theorem 2 is a combination of three different protocols. The most important
of them solves GHDL,U with one sided error in the case when U/L exceeds some constant. Its
communication length is O((L2/U + 1) logn). We call that protocol the “Triangle Inequality
Protocol”, because it uses the triangle inequality for Hamming distance.

3.1 The Triangle Inequality Protocol
The following Lemma is the standard fact of Probability Theory:

I Lemma 14. There exists a positive constant α > 0 such that for every m it holds that

Pr[Sm >
√
m] > α,

where Sm denotes one-dimensional random walk with m steps, i.e, Sm is equal to the sum of
m independent random variables, each taking the values 1 and −1 with probabilities 1/2.

Everywhere below α stands for the constant from Lemma 14.
Let x, y ∈ {0, 1}n denote Alice’s and Bob’s input strings, respectively. The parties set

b = dCL2/U + 1e, where C = 360/α2. Then they use public coins to sample a function
χ : {1, 2, . . . , n} → {1, 2, . . . , b} uniformly at random. They use χ to divide x and y into b
blocks

x1, . . . , xb, y1, . . . , yb.

The block xj consists of all bits xi of x such that χ(i) = j. Similarly, yj consists of all bits
yi with χ(i) = j. The order in which bits of jth block are arranged is not important, the
parties care only that they use the same order.

Then they use public coins to sample b random strings r1, . . . , rb of the same lengths, as
x1, . . . , xb and y1, . . . , yb. Alice then sends b numbers to Charlie:

d(x1, r1), . . . , d(xb, rb).

In turn, Bob sends

d(y1, r1), . . . , d(yb, rb).

Then Charlie computes the sum

T =
b∑
j=1

∣∣d(xj , rj)− d(yj , rj)
∣∣ .

If T 6 L, Charlie outputs 0. Otherwise he outputs 1.
If d(x, y) 6 L, then the protocol always outputs 0. Indeed, since Hamming distance

satisfies the triangle inequality, we have that

T =
b∑
j=1

∣∣d(xj , rj)− d(yj , rj)
∣∣ 6 b∑

j=1
d(xj , yj) = d(x, y) 6 L.

Thus this protocol has a one-sided error: it can err only if d(x, y) > U . Now we will estimate
the probability of error in the case when d(x, y) > U .
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I Lemma 15. Assume that U > 2b. Then the protocol for the input pair x, y at distance at
least U outputs 1 with some positive constant probability (more specifically, with probability
at least α/6).

Proof. Assume that U,L, x, y satisfy the assumption of the lemma. Fix j = 1, . . . , b. First
we have to understand what is the distribution of the random variable |d(xj , rj)− d(yj , rj)|.
By construction Alice and Bob choose a random function χ that governs the partition of x, y
into blocks. For each i such that xi 6= yi the probability that xi, yi land into the block with
number j is 1/b. Hence the random variable d(xj , yj) has binomial distribution B(d(x, y), 1/b)
with parameters d(x, y) and 1/b, i.e., the probability of the event d(xj , yj) = k equals(

d(x, y)
k

)
(1/b)k(1− 1/b)d(x,y)−k.

The average value of d(xj , yj) is thus equal to d(x, y)/b.
Once xj , yj are determined, Alice and Bob sample rj . The value d(xj , rj)− d(yj , rj) can

be represented as the sum of |xj | = |yj | terms where each term corresponds to a number i
with χ(i) = j. If xi = yi then the term is 0. Otherwise it is either −1 or 1 depending on
whether the respective bit of rj is equal to xi or to yi. Thus for every fixed partition into
blocks the value |d(xj , rj)−d(yj , rj)| is distributed as the distance from origin in the random
walk along the line with d(xj , yj) independent steps where each step is 1 with probability
1/2 and −1 with the same probability.

To finish the proof we will use the following fact about binomial distribution.

I Lemma 16. If X is distributed according to the binomial distribution B(n, p) and pn > 2,
then

Pr
[
X >

pn

10

]
>

1
3 .

Proof of Lemma 16. The expectation and variation of X are given by:

EX = pn, VarX = p(1− p)n 6 pn.

Hence by Chebyshev inequality we get

Pr
[
X 6

pn

10

]
6

VarX(
pn ·

(
1− 1

10
))2 6

100
81
pn

6
100
162 6

2
3 . J

Recall that the random variable d(xj , yj) has binomial distribution B(d(x, y), 1/b) and
we assume that d(x, y)/b > U/b > 2. Hence by Lemma 16 with probability at least 1/3 we
have d(xj , yj) > d(x, y)/10b.

Fix any partition into blocks such that d(xj , yj) > d(x, y)/10b. By Lemma 14 with
probability at least α we have

|d(xj , rj)− d(yj , rj)| >
√
d(xj , yj) >

√
d(x, y)/10b.

We have proved that for every fixed j with probability at least α/3 we have |d(xj , rj)−
d(yj , rj)| >

√
d(x, y)/10b. A simple averaging argument shows that with probability at least

α/6 the fraction of j that satisfy this inequality is bigger than α/6. Indeed, let the random
variable θ denote the fraction of j that satisfy this inequality. Its average is at least α/3. On
the other hand, we can upperbound its average by the sum

Pr[θ > α/6] · 1 + Pr[θ 6 α/6] · (α/6) 6 Pr[θ > α/6] + α/6.

MFCS 2018



7:10 One-Sided Error Communication Complexity of Gap Hamming Distance

Thus with probability α/6 we have

b∑
j=1
|d(xj , rj)− d(yj , rj)| > (α/6)b

√
d(x, y)/10b = (α/6)

√
b · d(x, y)/10.

Recall that b = dCL2/U + 1e, where C = 360/α2, and d(x, y) > U . So the right hand side of
the last displayed inequality is strictly larger than L. J

If the ratio U/L is larger than a certain constant then the protocol solves GHDL,U with
constant one-sided error-probability. One can verify that the assumption U > 2b of Lemma 15
is met for all U > 2CL+ 4.

Recall that the communication length of the protocol is O((L2/U + 1) logn). Now we
need a protocol with the same communication length for L,U such that U 6 2CL + 3.
Notice that in this case the upper bound O((L2/U) logn) for communication boils down to
O(L logn). A protocol with such performance was constructed in [8].

3.2 The protocol of [8]
For the reader’s convenience and to stress that the protocol from [8] has one-sided error we
give here its full description.

Here ⊕ stands for the bit-wise XOR over n-bit vectors and 〈·, ·〉 : {0, 1}n×{0, 1}n → {0, 1}
denotes the inner product over F2:

〈a, b〉 =
n∑
i=1

aibi (mod 2).

Let x, y ∈ {0, 1}n denote Alice’s and Bob’s input strings, respectively. They use public
coins to sample N vectors

R1, . . . , RN ∈ {0, 1}n

independently uniformly at random. Alice sends 〈x,R1〉, . . . , 〈x,RN 〉 to Charlie. Bob does
the same with y. If there is f ∈ {0, 1}n of Hamming weight at most L such that:

〈x⊕ f,R1〉 = 〈y,R1〉, . . . , 〈x⊕ f,RN 〉 = 〈y,RN 〉, (1)

then Charlie outputs 0. Otherwise Charlie outputs 1.
Such protocol costs O(N) bits. If d(x, y) 6 L, then the protocol outputs 0 with probability

1. Indeed, f = x⊕ y (which is of Hamming weight at most L in this case) satisfies (1).
Now assume that d(x, y) > L. Then any f ∈ {0, 1}n of Hamming weight at most L

satisfies (1) only with probability at most 2−N (because x + f 6= y). Hence the error
probability of the protocol is at most V2(n,L) · 2−N in this case. Here V2(n,L) is the size of
Hamming ball of radius L. As V2(n,L) 6 (n+ 1)L, it is enough to take N = O(L logn).

3.3 The simplified version of the Triangle Inequality Protocol
Thus for all L,U we have a public-coin simultaneous protocol with communication length
O((L2/U + 1) logn) to solve GHDL,U with constant one-sided error probability. To replace
logn factor by logL factor we will need the following public-coin simultaneous protocol
with communication length O(logL) to solve GHDL, (4L+2+N0)4 with constant one-sided error
probability. Here N0 is a constant from the following Lemma.
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I Lemma 17. There is a positive integer N0 and a positive real c such that the following
holds. Assume that m and N are positive integers and N > max{N0,m

2}. Consider N
independent random variables Z1, . . . , ZN , where each variable takes the values 0 and 1 with
probabilities 1/2. Then for every i ∈ {0, 1, . . . ,m− 1} it holds that:

Pr[Z1 + . . .+ ZN = i (mod m)] > c

m
.

(The proof of this Lemma will be given in the end of this subsection). Notice that O((L2/U +
1) logL) becomes just O(logL) for U = (4L+ 2 +N0)4.

The protocol. The parties use public coins to sample a vector r ∈ {0, 1}n uniformly at
random. Alice and Bob compute the distance from r to their input strings. If d(x, y) 6 L,
then by Triangle Inequality we have |d(x, r) − d(y, r)| 6 d(x, y) 6 L. On the other hand,
assume that d(x, y) > (4L + 2 + N0)4. From Lemma 14 it follows that in this case with
constant positive probability we have |d(x, r)− d(y, r)| >

√
d(x, y) > (4L+ 2)2 +N2

0 .
Consider the following auxiliary problem. Alice holds a number a ∈ {0, 1, . . . , n}, Bob

holds a number b ∈ {0, 1, . . . n} and it is promised that either |a − b| 6 L or |a − b| >
(4L+ 2)2 +N2

0 . They want to know whether the first or the second inequality is true. As
the previous paragraph shows, if there is a public-coin SMP protocol with communication
length O(logL), which always outputs 0 when |a− b| 6 L and which with constant positive
probability outputs 1 when |a− b| > (4L+ 2)2 +N2

0 , then we are done.
Define m = 4L+ 2. Use public coins to sample n+ 1 independent random variables

Z0, Z1, Z2, . . . , Zn,

where each variable takes the values 0 and 1 with probabilities 1/2.

Alice sends
a∑
i=0

Zi (mod m) to Charlie, Bob sends
b∑
i=0

Zi (mod m) to Charlie. This takes

only O(logm) = O(logL) bits. Let (s, t) be any pair of integers satisfying the following three
conditions:

s ≡
a∑
i=0

Zi (mod m) (2)

t ≡
b∑
i=0

Zi (mod m) (3)

|s− t| = min
{
|s′ − t′| : s′ ≡

a∑
i=0

Zi (mod m), t′ ≡
b∑
i=0

Zi (mod m)
}
. (4)

Obviously, knowing
a∑
i=0

Zi (mod m),
b∑
i=0

Zi (mod m), Charlie is able to find (s, t) satisfying

these tree conditions. He then simply checks whether |s − t| 6 L. If this is the case, he
outputs 0. Otherwise he outputs 1.

Once again, the protocol communicates only O(logL) bits, as required. Further, it is
easy to see that the protocol has one-sided error. Indeed, assume that |a− b| 6 L. Note that

a pair (
a∑
i=0

Zi,
b∑
i=0

Zi) satisfies (2) and (3) . Hence |s− t| 6
∣∣∣∣ a∑
i=0

Zi −
b∑
i=0

Zi

∣∣∣∣ 6 |a− b| 6 L.

Now, let’s consider the case when |a−b| > (4L+2)2+N2
0 . Assume without loss of generality

that a < b. Let E be the event that there is no r ∈ [−L,L] such that Za+1 + . . .+ Zb ≡ r
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(mod m). Let us verify that E implies that |s− t| > L (which means that Charlie outputs
1). Indeed, observe that

t− s ≡
b∑
i=0

Zi −
a∑
i=0

Zi ≡ Za+1 + . . .+ Zb (mod m),

but if |s− t| 6 L, this contradicts E.
It only remains to show that E happens with constant positive probability. This follows

from Lemma 17. Namely, this lemma implies that Pr[E] > c(m−2L−1)
m = c/2. Parameters

are chosen in such a way that restrictions of Lemma 17 are satisfied:

b− a > (4L+ 2)2 +N2
0 > (max{N0, 4L+ 2})2 > max{N0,m

2}.

Proof of Lemma 17. Take N0 to be the first natural satisfying the following condition: there
exists d > 0 such that for all N > N0 and for every k between N/2−

√
N and N/2 +

√
N

the following holds:

Pr[Z1 + . . .+ ZN = k] =
(
N

k

)
2−N >

d√
N
.

The existence of such N0, d is just a standard corollary of the Stirling formula, applied to(
N
k

)
.
Now let us show that for all m > 0, N > m2 and i ∈ {0, 1, . . . ,m− 1} the number of k

between N/2−
√
N and N/2 +

√
N such that k ≡ i (mod m) is at least

√
N
m . The number

of such k is equal to the number of r ∈ Z satisfying:

N/2−
√
N 6 mr + i 6 N/2 +

√
N,

This number is at least⌊
N/2 +

√
N − i

m

⌋
−

⌈
N/2−

√
N − i

m

⌉
+ 1 >

2
√
N

m
− 1.

Provided N > m2, the last expression is at least
√
N
m .

Set c = d and observe that for all m,N such that m > 0 and N > max{N0,m
2} and for

every i ∈ {0, 1, . . . ,m− 1} it holds that

Pr[Z1 + . . .+ ZN ≡ i (mod m)] >
√
N

m
· d√

N
= c

m
.

J

3.4 The final protocol for Theorem 2
The protocol. Step 1. Alice and Bob first run the Simplified Triangle Inequality Protocol
from the previous subsection. If that protocol outputs 1 they output 1 and halt. Otherwise
they proceed to Step 2.

Step 2. They divide x and y into w = 2(4L + 2 + N0)8 blocks randomly (as in the
construction of the Triangle Inequality Protocol). Let

x1, . . . , xw, y1, . . . , yw
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denote the resulting blocks. Let ui be the XOR of all bits from xi and let vi be the XOR of
all bits from yi. Alice privately computes u1, . . . , uw and sets u = u1 . . . uw. Bob privately
computes v1, . . . , vw and sets v = v1 . . . vw.

Recall that we have a protocol (a combination of the Triangle Inequality Protocol and
the protocol of [8]) with communication length O((L2/U + 1) logw) = O((L2/U + 1) logL)
to solve GHDL,U on w-bit strings with constant positive one-sided error probability.

Alice and Bob run this protocol for input pair (u, v) (and not (x, y)). They output the
result of this run.

The communication length of the constructed protocol is O((L2/U + 1) logL). We have
to show that it has one-sided constant error probability.

If d(x, y) 6 L then the run of the Simplified Triangle Inequality Protocol will output 0
with probability 1. Thus they proceed to Step 2. The distance between u and v does not
exceed the distance between x and y and hence is at most L. Thus the run of the second
protocol also outputs 0 with probability 1.

Assume that d(x, y) > U . If d(x, y) > (4L + 2 + N0)4, then the Simplified Triangle
Inequality Protocol outputs 1 with positive constant probability, they output 1 and halt.

Assume that U 6 d(x, y) < (4L + 2 + N0)4. We claim that in this case with constant
positive probability we have d(u, v) = d(x, y). Indeed, consider any two positions in which x
and y differ. Those positions land into the same block with probability 1

w . By union bound,
with probability at least

1− d(x, y)2

w
> 1− (4L+ 2 +N0)8

2(4L+ 2 +N0)8 = 0.5

all the positions in which x and y differ land in different blocks. The latter means that for
all i the blocks xi and yi differ in at most 1 position and hence d(u, v) = d(x, y). Thus
with probability at least 1/2 we have d(u, v) > U and Alice and Bob output 1 with positive
constant probability on the second step.

4 The lower bound

In this section we prove Theorem 3.

Proof of Theorem 3. Let τ be a protocol witnessing R1
1
2
(GHD0, U ). Then the following hold:

for each x ∈ {0, 1}n the protocol τ for input (x, x) outputs 0 with probability at least 1
2 ;

for all x, y ∈ {0, 1}n with d(x, y) > U the protocol τ always outputs 1.

By the standard averaging argument due to von Neumann there is a deterministic protocol
π such that

the communication complexity of π is at most R1
1
2
(GHD0, U );

π outputs 0 for at least half of diagonal input pairs (x, x);
π outputs 1 for all inputs pairs at Hamming distance at least U .

Consider any 0-leaf of π and the corresponding rectangle R = A×B ⊂ {0, 1}n × {0, 1}n.
The number of diagonal pairs from R is equal to |A ∩B|. Diameter of A ∩B must be less
than U . Indeed, if there are x, y ∈ A ∩B such that d(x, y) > U , then π outputs 0 for input
pair (x, y).

It turns out that the largest set of diameter 2r < n is the Hamming ball of radius r and
the diameter of the latter is at most 2n(1−c(1−2r/n)2) for some positive constant c (Lemma 12).
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Let r = bU/2c. For U = n the lower bound in Theorem 3 is constant and thus the
statement is obvious. Therefore we may assume that U < n and hence r < n/2. The
diameter of A ∩B is at most 2r (recall that the diameter of A ∩B is strictly less than U).
By Lemma 12 we have

|A ∩B| 6 2n(1−c(1−2r/n)2) 6 2n(1−c(1−U/n)2).

We have shown that if R is the rectangle corresponding to a 0-leaf of π, then R covers
at most 2n(1−c(1−U/n)2) diagonal pairs. As the total number of diagonal pairs covered by
0-leaves of π is at least 2n−1, the number of 0-leaves in π is at least 2cn(1−U/n)2−1. Thus we
have

R1
1
2
(GHD0, U ) > c · (n− U)2

n
− 1. (5)

Obviously we also have

R1
1
2
(GHD0, U ) > 1. (6)

From inequalities (5) and (6) we can easily deduce that

R1
1
2
(GHD0, U ) > Ω

(
(n− U)2

n
+ 1
)

(for example, we can add these inequalities with appropriate positive weights). J
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