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—— Abstract

Focusing and selection are techniques that shrink the proof search space for respectively sequent
calculi and resolution. To bring out a link between them, we generalize them both: we introduce

a sequent calculus where each occurrence of an atom can have a positive or a negative polarity;
and a resolution method where each literal, whatever its sign, can be selected in input clauses. We
prove the equivalence between cut-free proofs in this sequent calculus and derivations of the empty
clause in that resolution method. Such a generalization is not semi-complete in general, which
allows us to consider complete instances that correspond to theories of any logical strength. We
present three complete instances: first, our framework allows us to show that ordinary focusing
corresponds to hyperresolution and semantic resolution; the second instance is deduction modulo
theory; and a new setting, not captured by any existing framework, extends deduction modulo
theory with rewriting rules having several left-hand sides, which restricts even more the proof
search space.
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1 Introduction

In addition to clever implementation techniques and data structures, a key point that
explains the success of state-of-the-art automated theorem provers is the use of calculi that
dramatically reduce proof search space. In the last decades, the independent developments
of two families of techniques can be highlighted. First, in the kind of methods based on
resolution, proof search space can be shrunk using ordering and selection techniques. The
intuition is to restrict the application of the resolution rule to only some literals in a clause.
If equality is considered, this leads to the superposition calculus [2] which is the base calculus
of the currently most efficient automated provers for first-order classical logic. Second, in
sequent calculi, Andreoli [1] introduced a technique called focusing to reduce non-determinism
in the application of sequent-calculus rules. It works by first applying all invertible rules
(those whose conclusion is logically equivalent to their premises) and second by chaining
the application of non-invertible rules. Originally developed for linear logic, focusing has
been extended to intuitionistic and classical first-order logic [26]. Focusing is mostly used
in fields where sequent calculi, and related inverse and tableaux methods, are the most
accurate proving method. For instance, there exists tools for first-order linear logic [12], for
intuitionistic logic [27] and for modal logic [28]. Focusing is also the key ingredient in Miller’s
ProofCert project aiming at building a universal framework for proof certification [15].
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Linking Focusing and Resolution with Selection

Despite their apparent lack of relation, we show in this paper that selection in refinements
of the resolution calculus and focusing in sequent calculus are in fact strongly related, so
that ordinary focusing in classical first-order logic corresponds actually to hyperresolution,
where all negative literals are selected in a clause and are resolved at once. This connection
is obtained by relaxing both techniques: concerning resolution, we allow any literal of the
input clauses to be selected, whatever its sign; for the focusing part, we allow polarization
not only of connectives, but also of all occurrences of literals. The main theorem of this
paper, Theorem 3, shows that the sets of clauses whose insatisfiability can be proved by the
resolution method with arbitrary input selection are exactly the sequents that have a cut-free
proof in the generalized focusing setting.

This generalization allows us to cover a wider spectrum of proof systems. In particular,
this permits to consider systems that search for proofs modulo some theory. Indeed, in real
world applications, proof obligations are often verified within one or several theories. This
explains the interest in and the success of Satisfiability Modulo Theory tools in recent years.
Embedding a theory in our framework amounts to giving an axiomatic presentation of it
where some literals are selected.

By relaxing the conditions for selecting literals, our framework is not always refutationaly
complete. However, this should not be considered as a drawback, but as an essential point
to be able to represent efficiently all kinds of theories. Indeed, let us consider a proof search
method P(7) parameterized by a theory T. Ideally, P(7) should be as efficient as a generic
proof search method if it is fed with a formula that is not related to the theory 7. In
particular, if it tries to refute the true formula T, it should terminate, and with the answer
“NO?”. Let us say that P(7) is relatively consistent if it is the case. As we pointed out with
Dowek [8], we cannot have a generic proof of the completeness of a relatively consistent
method P(7) that would work for all 7. Indeed, such a proof would imply the consistency
of the theory T, and, according to Gddel, this cannot be performed in T itself. So either the
completeness of the proof system is proved once and for all, but it cannot represent theories
that are logically at least as strong as that proof of completeness; or it is not complete in
general but it can be proved to be complete for particular theories of some arbitrary logical
strength. What is interesting therefore is to give proofs of completeness of P(7") for particular
theories 7.

Therefore, we give three instances of our framework, where we can have proofs of
completeness. First, as stated above, we link ordinary focusing with hyperresolution, and,
in the ground case, with semantic resolution. Second, we show that Deduction Modulo
Theory [20] is also a particular instance of this framework, knowing that there exists numerous
proof techniques to prove the completeness of Deduction Modulo a particular theory, for
instance [24, 21, 18, 7]. Third, we show how completeness in our framework can be reduced
to completeness of several instances of Deduction Modulo Theory. To give an intuition about
this last part, and to illustrate how much the proof search space can be constrained without
losing completeness, let us consider for example the theory defining the powerset:

VX, VY, (X eP(Y)) & (VZ, (Z€X)= (Z€Y))

This theory can be put in clausal normal form, using d as a Skolem symbol, and we select

(by underlining them) some literals in these clauses!:

1 We use the associative-commutative-idempotent symbol Y in clauses to distinguish it from the symbol
V that is used in formulas.
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“XePY)Yy=ZeXYZeY (1)
XePY)vdX,Y)eX (2)
XePY)y—-d(X,Y)eY (3)

Using focusing in general, and in our framework in particular, the decomposition of connectives
is so restricted that, given an axiom, a proof derivation decomposing this axiom would
necessarily have certain shapes. Thus, the axiom can be replaced by new inference rules,
called synthetic rules, that are used instead of the derivation of those shapes. See end of
Section 2, page 6, for more details. In our framework, this would lead to the following three
synthetic rules, that can be used in place of the axioms (the explanation how these rules are
obtained is given in Section 5.3):

W AueP),t €ut €vr - A, —u € Pv),d(u,v) € ur
Aju€ePw),t€ur A~y e P(v)w
(3=

A, € P(v),d(u,v) € v
The only proof of transitivity of the membership in the powerset is then
(3)+

a € P(b),b € P(c),ma € Plc),d(a,c) € a,d(a,c) € b,d(a,c) € cr
M+

a € P(b),be P(c),na e Plc),d(a,c) € a,d(a,c) € br

AN~

e a € P(b),b € P(c),~a € P(c),d(a,c) € ar

()

a € P(b),be P(c),w -

A=

acPOAbEPONTa Pl -

" SA.3B.3C. A€ P(B)ABeP(C)A-AeP(C)

where the active formulas in a sequent are underwaved, and double lines indicate potentially
several applications of an inference rule.

On the resolution side, clauses (1) to (3) lead to the following ground derived rules (see
also Section 5.3):
) uePl)YC teuy D 5 -u € Pw)YC
(1) tevyCYD @) d(u,v) euy C

—u € Pv) YC d(u,v) €vY D

3) CcyD
Once again, there is only one proof of transitivity, i.e. starting from the set of clauses
{a € P(b);b e P(c);~a € Plc)}:

-a € P(e)
(1) a € P(b) @) d(a,c) € a
1) beP(c) d(a,c) €b
3) —-a € P(c) - d(a,c) € ¢

and we cannot even infer other clauses than those. We let the reader compare with what
happens if we used clauses (1) to (3) in resolution, even using the ordered resolution with
selection refinement.
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Linking Focusing and Resolution with Selection

Related work. Chaudhuri et al. [13] show that hyperresolution for Horn clauses can be
explained as an instance of a sequent calculus for intuitionistic linear logic with focusing
where atoms are given a negative polarity.

Farooque et al. [23] developed a sequent calculus, based on focusing, that is able to
simulate DPLL(T), the most common calculus used in SMT provers. The main difference
with our framework is that in [23], the theory is considered as a black box which is called as
an oracle. Here, the theory is considered as a first-class citizen.

Within the ProofCert project, resolution proofs can be checked by a kernel built upon
a sequent calculus with focusing [15]. Based on this, the tool Checkers [14] is able to
verify proofs coming from automated theorem provers based on resolution such as E-prover.
Different from here, they translate resolution derivations using cuts to get smaller proofs.

Hermant [25] proves the correspondance between the cut-free fragment of a sequent
calculus and a resolution method, in the setting of Deduction Modulo Theory. Since
Deduction Modulo Theory is subsumed by our framework, Theorem 3 is a generalization of
Hermant’s work. Proving it is simpler in our setting because focusing restrains the shape of
possible sequent calculus proofs, whereas Hermant had to prove technical lemmas to give
proofs a canonical shape.

Notations and conventions. We use standard definitions for terms, predicates, formulas
(with connectives L, T,—, A,V and quantifiers V, 3), sequents and substitutions. A literal
is an atom or its negation. A clause is a set of literals. We will identify a literal with the
unit clause containing it. Unless stated otherwise, letters P,Q, R, P, P;,... denote atoms,
L,K,L' Ly,... denote literals, A, B, A’, A1,... denote formulas, C,D,C’,C1,... denote
clauses, I', A denote set of clauses or set of formulas (depending on the context). A+ denotes
the negation normal form of —A.

2 Focusing with Polarized Occurrences of Atoms

Focusing was introduced by Andreoli [1] to restrict the non-determinism in some sequent
calculus for linear logic. It relies on the alternation of two phases: During the asynchronous
phase (sequents with 1), all invertible rules are applied on the formulas of the sequent. Recall
that a rule is said invertible if its conclusion implies the conjunction of its premises. During
the synchronous phase (sequents with |}), a particular formula is selected — the focus is on
it — and all possible non-invertible rules are successively applied on it. This idea has been
extended to intuitionistic and classical first-order logic [26]. In these, connectives may have
invertible and non-invertible versions of their sequent calculus rules. Therefore, one considers
in that case two versions of a connective, one called positive when the right introduction
rule is non-invertible, and one called negative when it is invertible. Some connectives, i.e.
3 in classical logic, only have a positive version, and dually, others, such as V in classical
logic, only have a negative version. Given a usual formula, one can decide which version of
a connective one wants to use at a particular occurrence, which is called a polarization of
the formula.? Note that the polarity of a connective does not affect its semantics, it only
alters the shape of the sequent calculus proofs. Similarly, one can decide the polarity of
each literal. If a literal with negative polarity L is focused on in a branch, then this branch

2 Let us note that this notion of polarity is a standard denomination when dealing with focusing, and should
not be confused with the more usual but unrelated notion defined by the parity of the negation-depth
of a position in a formula.
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Asynchronous phase: e T,L, L+ 13- Fﬂi,ﬂﬂi’i: x not free in T', A

v LA A 'ftABw i A A B+ o 'tAw
'fA AVt B A AAT B THA T

v, — Fll{t/iﬂ}Al— bl ——

Synch hase: b 1L A G S el

yncaronous phase Lt L v T vz, A 'y L+

e | Aw 'l B+ . | Aw . ' B+
Fr'VAv- Bw FyAA Bw FyAA Bw

F Al Aw Rel 't Aw S LAY A

ocusir,AﬂF eeaseirlifh_ tore 7FﬂA,A|—

A negative A positive A negative or literal

Figure 1 The sequent calculus LKF=.

must necessarily be closed, with L in the same context. (See rule v+ in Figure 1.) In the
ordinary presentation of focusing, this polarity is chosen globally for all occurrences of each
atom, and the polarity of =P is defined as the inverse of that of P. In our setting, the polarity
is attached to the position of the literal in the formula. In particular, if a substitution is
applied to the formula, the polarities of the resulting literals do not change. The polarity
of a formula is defined as the polarity of its top connective. Besides, note that to switch
the polarity of a formula, e.g. to impose a change of phase, one can prefix it by so-called
delays: 0~ A is negative whatever the polarity of A. Delays can be defined for instance by
0~ A =Vx. A where x is not free in A, so we do not need them in the syntax and the rules.

Liang and Miller [26] introduce the sequent calculus LKF, and prove it to be complete
for classical first-order logic. In Figure 1, we present the calculus LKF*, which is almost the
same with the following differences:

All formulas are put on the left-hand side of the sequent, instead of the right-hand side.

Therefore, one does not try to prove a disjunction of formulas, but one tries to refute a
conjunction of formulas. This is the same thanks to the dual nature of classical first-order
logic, and this helps to be closer to the resolution derivations. Note that, consequently,
the focus is on negative formulas, and invertible rules are applied on positive formulas.
The polarity of atoms is not chosen globally, but each occurrence of a literal can have a
positive or a negative polarity. In particular, we can have two literals L and L+ which
are both negative, or both positive. We denote by L the fact that the literal L has a
negative polarity. To be able to close branches on which we have two positive opposed
literals, we add a rule .

We denote by T' ff A F (with T or A, possibly empty, containing polarized formulas)
the fact that there exists a proof of the sequent I' 9 A + in LKF', that is, a derivation
starting from this sequent and whose branches are all closed (by %+, *+ or y1+). Thanks
to focusing, such a proof has the following shape :

Since one starts in an asynchronous (1) phase, invertible rules are successively applied to

the positive formulas of A, until one obtains negative formulas or literals that are put on

the left of {} using Store.

When no formula appears on the right of 1}, then either the branch is closed by +; or

the focus is put on a negative formula using Focus.

In the latter case, one is now in synchronous ({}) phase where non-invertible rules are

9:5
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successively applied to the formula upon which the focus is, until either the branch is

closed using ¥+ or §L+; or one obtains a positive formula and the synchronous phase

ends using Release.

In the latter case, one starts again in the asynchronous phase.

Focusing therefore strongly constraints the shape of possible proofs, and therefore reduces
the proof search space. The ++ in particular imposes to close branches immediately when
the focus is on a negative literal, and thus rules out many derivations.

Note that proofs can be closed when the polarities of an atom and its negation are both
positive (rule +), or when one is positive and the other negative (rule %), but not when
they are both negative. Therefore, this restricts how formulas that contains literals with
negative polarities can interact one with the others, and this is the main point of LKF* to
reduce the proof search space.

Restricting proof search using focusing leads to what are called synthetic rules (see for
instance [13, pp.148-150] where they are called derived rules). The idea is to replace some
formula A in the context of the sequent by new inference rules. Instead of proving the sequent
A, A+ in LKF+, one proves A + in (LKFL+ the synthetic rules obtained from A). Indeed,
a proof focusing on A can only have certain shapes, and thus instead of having A in the
context, it can be replaced by new rules synthesizing those shapes. For instance, the formula
PV~ (QAT R) in a context ' can only lead to the following derivations when the focus is
put on it:

S Q1+ A
T Q- ST U Re
Release W E.— - Yok 29
’E'_i YA+ — r and Ve F‘U/PF F‘U’Q/\_EF
o r})Pw Fr'LQA" Rr ryPv-(QA R+
TPV (QA R+ Focus T e
Focus
'+

In the left derivation, P+ must be in I' to be able to close the left branch, so I' is
in fact of the form P v~ (Q AT R),A,Pt. In the right one, I' must be of the form
PV~ (Q AT R),A, PY,R*. Instead of searching for a proof with PV~ (Q AT R) in the
context, the following two synthetic rules can therefore be used:

AaPLaQﬂF Syn2
APt

Synl A,PL,RJ‘ 'ﬂF

Provability is the same because each application of a synthetic rule can be replaced by
applying Focus on PV~ (Q A* R) and following the derivation leading the synthetic rule, and
vice versa. This is used for instance in provers based on the inverse method and focusing [27].

The sequent calculus LKF+ is not complete in general. One of the simplest examples
of incompleteness is the sequent PV~ Q,=P V™ @Q,—Q f+ which has no proof although
Pv@Q,-PVQ,Q is not satisfiable.

3 Resolution with Input Selection

Two approaches can be used to reduce the proof search space of the resolution calculus: first,
one can restrict on which pairs of clauses the resolution rule can be applied; this leads for
instance to the set-of-support strategy [32], in which clauses are split into two sets, called the
theory and the set of support; at least one of the clauses involved in a resolution step must
be in the set of support. Second, one can restrict which literals in the clauses can be resolved
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. LYC L'ty D . LYL'YC
Factoring —————
Resolution +(CY D) g (LY O)
S(LYC)=10 S(LYL'YC)=10
S(L'tyD)=0 o is the most general unifier of L =" L/
o is the most general unifier of L =7 L/
KiY..YK,yC KityDy ... K\t Y D,

Resolution with Selection ——

SKiY...YK,YC)={Ky;...; Ky}

S(K[tYD;)=0

o is the mgu of the simultaneous unification problem K; =’ K{,..., K, =’ K/,

o(CYD1Y...Y Dy,)

Figure 2 Resolution with Input Selection.

upon; those literals are said to be selected in the clause. Resolution with free selection is
complete for Horn clauses, but incomplete in general. Selecting a subset of the negative
literals (if no literal is selected, then any literal of the clause can be used in resolution) is
however complete, and combining this with an ordering restriction on clauses with no selected
literals leads to Ordered Resolution with Selection, which was introduced by Bachmair and
Ganzinger [2] (see also [3]) as a complete refinement of resolution.

Resolution with Input Selection combines these two approaches. It is parameterized by a
selection function S that associate to each input clause a subset of its literals. If the selection
function selects at least one literal, only those can be used in Resolution. Otherwise, any
of them can be used. Note that for generated clauses, we impose that S(C') = ). We also
allow to have the same input clause several times with different selections. (That is, we
actually work with couples composed of a clause and its selected literals.) The inference
rules of Resolution with Input Selection are presented in Fig. 2. Literals that are selected in
a clause are underlined. We will see that they indeed correspond to the literals that have a
negative polarization in LKF*. As usual, variables are renamed in the clauses to avoid that
premises of the inference rules share variables. We have two flavors of the resolution rule:
the usual binary resolution, that is applied on two premises that do not select any literal;
and Resolution with Selection that is applied on a clause in which n literals are selected and
n clauses is which no literal is selected. Consequently, clauses with a non-empty selection
cannot be resolved one with the others. By considering them as the theory part, and the
clauses with an empty selection as the set of support, it is easy to see that Resolution with
Input Selection is a generalization of the set-of-support strategy. Notwithstanding, note
that neither Resolution with Input Selection is a generalization of Ordered Resolution with
Selection nor the converse.

» Definition 1 (Resolution derivation). We write I' ~ C'if C' can be derived from some clauses
in T using the inference rules Resolution with Selection, Resolution, or Factoring presented in
Figure 2. We write I ~* C' if

CeTlorif

there exists D such that I' ~» D and I', D ~* C.
As usual in resolution methods, the goal is to produce the empty clause OJ starting from a
set of clauses I' to show, since all rules are sound, that I' is unsatisfiable. Here again, the
calculus is not complete in general: from the set of clauses P Y Q, =P Y @, =@, no inference
rule can be applied: to apply Resolution with Selection, we would need a clause where P, or
=P, is not selected, and Resolution needs two clauses without selection.

9:7
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4 LKF' is a Conservative Extension of Resolution with Input
Selection

To link LKF* with Resolution with Input Selection, we need to indicate how clauses are
related to polarized formulas.

» Definition 2. Given a clause C =L; Y---Y L, Y K; Y ... Y K,;, whose free variables are
Z1,...,2; and such that S(C) = {Li;...; L.}, we define the associated formula "C7 =
Var,...,x. LyvT VT Ly, VT 8T (K VT v K, ). TCT s said to be in clausal form.
By extension, "I'" is the set of the formulas associated to the clauses of the set I'.

The main theorem of this article relates LKF+ with Resolution with Input Selection:
» Theorem 3. Let T" be a set of clauses. We have "T' 7 b 4ff T' ~>* [O.

The proof can be found in the long version of the paper (https://hal.inria.fr/
hal-01670476). To prove the right-to-left direction, we prove that all inference rules of
Resolution with Input Selection are admissible in LKF*, in the sense that if I' ~ C then
LKF+ proofs of "T'7,"C7 f~ can be turned into proofs of "I'7 f4—. Note that they are
admissible, but they are not derivable. In particular, the size of the proof in LKF* can
be much larger than the resolution derivation, as expected in a cut-free sequent calculus.
Using cuts would lead to a closer correspondence between resolution derivations and sequent-
calculus proofs, as in [15]. However, we chose to stay in the cut-free fragment to prove that,
even in the incomplete case, resolution coincides with cut-free proofs, as in [25].

5 Complete Instances

5.1 Ordinary Focusing and Semantic Hyperresolution

As said earlier, in standard LKF, not all occurrences of literals can have an arbitrary polarity.
Instead, each atom P is given globally a polarity, and P has the opposite polarity.

Let us first look at the simple case where atoms are given a positive polarity. We recall
the completeness proof of LKF:

» Theorem 4 (Corollary of [26, Theorem 17]). If the literals with a positive polarity are
ezactly the atoms, LKF* is (sound and) complete.

If we look at the corresponding resolution calculus, Resolution with Selection for this particular
instance becomes:

-PiY...Y=PB,YC P/YDy ... P,YD,

Rw.S. o(CYD1Y...YD,)

where C and D; for all i contain only positive literals, and ¢ is the most general unifier of
P, ="P|,...,P, =" P. Note that the clause ¢(C Y D; Y ...Y D,,) contains only positive
literals, so no literal would be selected in it even if it was an input clause. Besides, Resolution
cannot be applied, since there exists no clause =P Y C with S(=P Y C) = {.

This corresponding resolution calculus is therefore exactly hyperresolution of [29]: premises
of an inference contains all only positive literals, except one clause whose all negative literals
are resolved at once. Theorem 3 therefore links ordinary focusing with hyperresolution.
Consequently, Theorem 4 implies the completeness of hyperresolution.

Chaudhuri et al. [13, Theorem 16] prove a similar result by establishing a correspondence
between hyperresolution derivations and proofs in a focused sequent calculus for intuitionistic
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linear logic, but only considering Horn clauses. In their setting, choosing a negative polarity
for atoms leads to SLD resolution, which is the reasoning mechanism of Prolog.

Let us now look at the general case, where atoms are given an arbitrary polarity. Let
us stick to the ground case. We first recall a refinement of resolution called Semantic
hyperresolution [31][11, Sect. 1.3.5.3]. Let I be an arbitrary Herbrand interpretation, i.e.
a model whose domain is the set of terms interpreted as themselves. Note that I is not
assumed to be a model of the input set of clauses (which is fortunate, since one is trying
to show that it is unsatisfiable). Given a clause C, the idea of semantic hyperresolution is
to resolve all literals of C' that are valid in I at once, with clauses whose literals are all not
valid in . This gives the rule:

KiY...YK,YC KytyD, ... K,*vD,

SHR CYDyY...YD,

where for all i, I = K; (and thus I [~ K;), I = C and I [~ D;. Note that I
CYDyY...YD,.

Semantic hyperresolution for a Herbrand interpretation I can be seen as an instance of
Resolution with Input Selection by using the following polarization of atoms: a literal L
has a negative polarity iff I = L. In that case, SHR corresponds exactly to Resolution with
Selection, and Resolution cannot be applied since we cannot have clauses P Y C and =P Y D
where both P and —P are not valid in I.

This particular instance of polarization is in fact the ordinary version of focusing. Indeed,
once a global polarity is assigned to each atom, the set of literals whose polarity is negative
defines an Herbrand interpretation, and we saw reciprocally how to design a global polarization
from the Herbrand interpretation. Theorem 3 therefore links ordinary focusing in the ground
case with semantic hyperresolution. They are both complete, thanks to this theorem:

» Theorem 5 (Corollary of [26, Theorem 17]). Given a global polarization of atoms, where
the polarity of P* is the opposite of that of P, LKF* is (sound and) complete.

5.2 Deduction Modulo Theory

Deduction Modulo Theory [20] is a framework that consists in applying the inference rules of
an existing proof system modulo some congruence over formulas. This congruence represents
the theory, and it is in general defined by means of rewriting rules. To be expressive enough,
these rules are defined not only at the term level, but also for formulas. To get simpler
presentations of theories, we distinguish between rewrite rules that can be applied at positive
and at negative positions by giving them a polarity>, where by negative position we mean
under an odd number of =. We therefore have positive rules P — A and negative rules
P —~ A where P is an atom and A an arbitrary formula whose free variables appears in
P. Given a rule P —7T A, the rewrite relation B, = B> is defined as usual by saying that
there exists a position p and a substitution ¢ such that the subformula of B; at position
p is 0P and Bs equals B; where the subformula at position p is replaced by cA. — is
defined similarly. In Polarized Sequent Calculus Modulo theory [17], the inference rules of

the sequent calculus are applied modulo such a polarized rewriting system, as in for instance
I'— A A I'- B,A

'-CA

in e C A A g - Note that the implicit semantics of a negative

3 This polarity must not be confused with the other notions of polarity mentioned in the paper.
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:71_ e '+ I — IAv I',B+
IL,L* v T T+ [l T AVBEe
R I''A,B+ S INAv froo in I IV, A {t/z}Ar
[LA\NB+ T T, 3z Ay GRotireein s [,Vz. A
. T,PAv - ., I,-PA v N
T P P—A e, Pha

Figure 3 The sequent calculus PUSC*.

rule P —~ A is therefore Va. (P = A), whereas the semantics of P =% A is Vz. (A = P),
where T are the free variables of P.

With Kirchner [9], we proved the equivalence of Polarized Sequent Calculus Modulo
theory to a sequent calculus where polarized rewriting rules are applied only on literals, using
explicit rules. This calculus, Polarized Unfolding Sequent Calculus, is almost the calculus
PUSC presented in Figure 3. The only difference is that all formulas are put on the left
of the sequent in PUSC'. We denote by I' % the fact that I' — can be proved in PUSC*
using the polarized rewriting system R. Note that the rule for the universal quantifier v+
as well as the unfolding rules +—+ and +*+ contain an implicit contraction rule, as in the
sequent calculus G4 of Kleene, in order to ensure that all rules of PUSC™ are invertible.

We can translate polarized rewriting rules as formulas with selection, and see PUSC™ as
an instance of LKFL. We first consider how to translate formulas of the right-hand side of
polarized rewriting rules. We polarize them by choosing positive connectives for V and A
and, to unchain the introduction of the universal quantifier, we introduce delays. (Let us
recall that a delay d* allows to force a formula to be positive, and it can be encoded using
an existantial quantifier.) This gives the translation:

[L|=L  when Lis T, L or a literal |A A B| =|A| AT |B|
|[AV B|=|A| v |B] |Fz. Al = Jz. |A] [Vz. Al = Vz. §T|A|
» Definition 6. Given a negative rewriting rule P —~ A where the free variables of P are
T1,...,Tp, its translation as a formula with selection is [P —~ A] =Vz1...2,. 2PV~ 6T A|
Given a positive rewriting rule P —T A where the free variables of P are x1,...,x,, its
translation as a formula with selection is [P —1 A] = Vz;. ...Vz,. PV~ 6t|AL].

The translation [R] of a polarized rewriting system R is the multiset of the translation
of its rules.

» Definition 7. Let Ny,..., N, be a multiset of formulas whose top connective is V or L or
that are literals, and let P, ..., P, be a multiset of non-literal formulas whose top connective
is neither V nor L, then the translation of the PUSC' sequent Ni,..., N, Pi,..., Py, +
modulo the rewriting system R is the LKF+ sequent [R[, | N1, ..., |Nu| 0 [Pi]s- -, | P+
» Theorem 8. With the same assumptions as previous definition, N1,...,Nyp, P1,..., Py Fr
in PUSC* iff [R], N1|,...,|Nu| f |Pil, ..., |Pn| F in LKF*:.

The proof can be found in the long version of the paper.

Let us now consider the subcase where the rewriting rules are clausal, according to the
terminology of [19], e.g. they are of the form P —~ C or P —* =C for some formula C
in clausal normal form. In that case, the resolution method based on Deduction Modulo
Theory [20] can be refined into what is called Polarized Resolution Modulo theory [19], whose
rules are given in Fig. 4. (A refinement of) Polarized Resolution Modulo theory is actually
implemented in the automated theorem prover iProverModulo [5].
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PyC -QYD . LYKy(C
i a Factoring =—————= 0 = mgu(L, K
Resolution #(C¥ D) g (LY C) gu( )
PYC - ~QYD
- - a D + v T a +
Ext. Narr. (D C) ,Q — Ext. Narr. #(CY D) , P—=7-C

* 0 =mgu(P,Q)

Figure 4 Inference rules of Polarized Resolution Modulo theory.

By noting that the translation of the rule @ =~ D is |[Q —~ D] = Va1. ... Va,. 2Q V™
61| D| whereas "=Q Y D7 =Vz;. ...Va,. =QV~ §~|D|, we can relate the rule Q —~ D with
the clause with selection =@ Y D, which is called a one-way clause by Dowek [19]. Indeed,
the change of phase is alv@s needed in that particular case, so that the delays are in fact
useless. Ext. Narr.” can therefore be seen as an instance of the Resolution with Selection rule:

-QYD  PYC

. . . — — P’ .
Resolution with Selection o(DY ) o =mgu(P,Q)

Similarly, P —1 —C is related to P Y C.
Consequently, since PUSC™ corresponds to LKF, and Resolution with Input Selection
corresponds to Polarized Resolution Modulo theory, Theorem 3 leads to a new and more

generic proof of the correspondence between PUSC* and Polarized Resolution Modulo theory.

Deduction Modulo Theory is not always complete. This is the case only if the cut rule
is admissible in Polarized Sequent Calculus Modulo theory. It holds for some particular
theories, e.g. Simple Type Theory [20] and arithmetic [22]. There are more or less powerful
techniques that ensures this property [24, 21, 18, 7]. We even proved that any consistent
first-order theory can be presented by a rewriting system admitting the cut rule [6]. As
presented with Dowek [8] and discussed in the introduction, the fact that completeness is not
proved once for all, but needs to be proved for each particular theory, is essential. Indeed, if
a theory is presented entirely by rewriting rules, completeness implies the consistency of the
theory, since no rule can be applied on the empty set of clauses. Consequently, the proof of
the completeness cannot be easier than the proof of consistency of the theory, and, according
to Godel, cannot be proven in the theory itself.

5.3 Beyond Deduction Modulo Theory

We now consider the general case where several literals are selected in a clause, and show how
proving completeness in LKF+ can be reduced to proving completeness of several systems in
Deduction Modulo Theory.

» Example 9. Let us recall the set of clauses from the Introduction:

X ePY)Y-ZeXYZeY (1) XePMW)ydX,Y)eX (2)

X ePY)Y-d(X,Y)eY (3)

Note that this example is not covered by Ordered Resolution with Selection, at least
not if a simplification ordering is used, because we cannot have X € P(Y) = 6(X,Y) € X
since with § = {X — P(Z);Y — Z} their instances are ordered in the wrong direction:
P(Z)eP(Z)<6(P(Z),Z) € P(Z).

The synthetic rules of the example from the Introduction correspond to the derivations
when one of the clauses is focused. For instance, if we consider the clause (1), in a context
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9:12 Linking Focusing and Resolution with Selection

I" containing this clause, a proof putting the focus on "(1)™ necessarily is of the following

shape:
itevr
~ ~ R5|t°re Thtcvr
. ') —ueP)r YT teur clease Tytevr
I =
F-ueP)V ateuV tevr
A
FrIvVXY Z - XePY)vV =ZeXV ZeY+r
Focus

'+

where ¢, u, v are arbitrary terms, and where, to be able to close the left and middle branches,
u € P(v) and ¢ € u must belong to I'. So T is in fact of the form

VXY Z - XePY)VvtaZeXVTZeY,AuecP),tecu for some A, and the axiom
VXY Z -X eP(Y)Vt =Z € X VT ZeY can be replaced by the synthetic rule:

AuePv),t€ut€vfr
Ayu€Pv),t €utfr

The computation of the other synthetic rules is left as an exercise for the reader.
The resolution rules given in the Introduction corresponds to the ground instances of
Resolution with Selection with our three input clauses.

The question that remains is how we can prove the completeness of such a selection. We can
in fact consider only subselections.

» Definition 10 (Singleton subselection). Given a selection function S, the selection function
S is a singleton subselection of S if

S1(C) C 8(C) for all C

if S(C) # 0 then card(S;(C)) =1

» Example 11. A singleton subselection of Example 9 can be
“XePY)Y-ZeXyZecY XeP)YdX,Y)eX XePY)Yy-dX,Y)eY

» Theorem 12. Resolution with input selection S is complete iff for all singleton subselections
S1 of S, Resolution with input selection Sy is complete.

The proof can be found in the long version of the paper.

Since singleton subselections can be linked with rewriting systems in Deduction Modulo
Theory according to last subsection, we can reduce the problem of completeness in our
framework to several problems of completeness in Deduction Modulo Theory.

Conclusion and Further Work

We generalized focusing and resolution with selection, proved that they correspond, and
showed how known calculi are instances of this framework, namely ordinary focusing, hyper-
resolution and Deduction Modulo Theory. In the long version of the paper, other frameworks,
such as Superdeduction [4] or Schroeder-Heister’s Definitional reflection [30], are also consid-
ered. Furthermore, we presented how to reduce completeness of this framework to several
completeness proofs in Deduction Modulo Theory. We can therefore reuse the various tech-
niques for proving completeness in Deduction Modulo Theory [24, 21, 18, 7] in our framework.
As Deduction Modulo Theory already gives significant results in industrial applications when
the theory is a variant of set theory (more precisely, set theory of the B method) [10], we
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can expect our framework to lead to even better outcomes. The notable results presented
here raise the following new areas of investigations.

First, we need to study how to apply selection also in the generated clauses. This should
allow us to cover the cases of Ordered Resolution with Selection and of Semantic Resolution
in the first-order case. Dually, in the sequent calculus part, this would correspond to the
possibility to dynamically add selection in formulas of subderivations. This could probably
be linked with the work of Deplagne [16] where rewrite rules corresponding to induction
hypotheses are dynamically added in the rewriting system of a sequent calculus for Deduction
Modulo Theory. Note that we already have one direction, namely from Resolution with Input
Selection to LKF+, since the proof for this direction (see the long version) does not assume
anything on the generated clauses; except, for Factoring, that it selects only instances of
literals that were already selected. The converse direction would require a meta-theorem of
completeness, since obviously it is not complete for all possible dynamic choices of selection.

Since focusing is defined not only for classical first-order logic but also for linear, intu-
itionistic, modal logics, the work in this paper could serve as a starting point to study how
to get automated proof search methods for these logics with a selection mechanism.

Another worthwhile point is how equality should be handled in our framework. In partic-
ular, it would be interesting to see how paramodulation calculi, in particular superposition,
can be embedded into a sequent calculus.

Finally, it would be worth investigating whether completeness proofs based on model
construction, such as semantic completeness proofs of tableaux (related to sequent calculus),
and completeness proof of superposition [2], can be linked in our framework.
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