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Abstract
We study property testing in the distributed model and extend its setting from testing with one-
sided error to testing with two-sided error. In particular, we develop a two-sided error property
tester for general graphs with round complexity O(log(n)/(εΦ2)) in the CONGEST model, which
accepts graphs with conductance Φ and rejects graphs that are ε-far from having conductance at
least Φ2/1000 with constant probability. Our main insight is that one can start poly(n) random
walks from a few random vertices without violating the congestion and unite the results to obtain
a consistent answer from all vertices. For connected graphs, this is even possible when the number
of vertices is unknown. We also obtain a matching Ω(logn) lower bound for the LOCAL and
CONGEST models by an indistinguishability argument. Although the power of vertex labels
that arises from two-sided error might seem to be much stronger than in the sequential query
model, we can show that this is not the case.
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1 Introduction

Property testing algorithms derive approximate decisions by probing a sublinear part of
the input only. A tester for a graph property P is a randomized algorithm that, with high
constant probability, accepts graphs that have the property P and rejects graphs that are
ε-far from having the property P, that is, at least an ε-fraction of the edges have to be
modified to make the graph have the property P. Two-sided error testers may err on all
graphs, while one-sided error testers have to present a witness when rejecting a graph. See
[12, 13, 14] for introductions and surveys.
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Testing graph properties in the classic, sequential computing model has been studied
quite extensively. Property testing in the distributed CONGEST model was first studied by
Brakerski and Patt-Shamir [1] and later more thoroughly by Censor-Hillel et al. [2]. In this
model, each vertex of the graph is equipped with a processor that has a unique identifier of
size O(logn) (alternatively, one may define the model such that vertices pick their identifier
randomly) and it knows only its neighboring vertices. The vertices of the graph communicate
with each other in synchronized rounds such that in each round only communication of length
O(logn) is allowed on every edge. Finally, every vertex casts a vote and a decision rule is
applied on all votes to derive the answer of the tester. The complexity measure is the amount
of rounds required to test the property. Edge congestion and round complexity strictly limit
the amount of information on the whole graph that a single vertex can gather. In [2], it is
shown that many one-sided error testers for dense graphs carry over from the sequential to
the distributed setting. Furthermore, tight logarithmic bounds for testing bipartiteness and
cycle-freeness in bounded degree graphs are proved. In [8, 11], subgraph-freeness is studied
for subgraphs on at most five vertices, trees and cliques.

1.1 Our Results
We extend the study of distributed property testing to testers with two-sided error. In
particular, we present a two-sided error distributed testing algorithm in the CONGEST
model for conductance.

I Theorem 1. Testing whether a graph G = (V,E) has conductance at least Φ or is ε-far
from having conductance at least Φ2/1000 with two-sided error has complexity O(log(|V |+
|E|)/(εΦ2)) in the CONGEST model.

In contrast to previous one-sided error testers, our tester can be implemented such that
all vertices accept or all vertices reject (see also the discussion of decision rules in Section 5).
Furthermore, we prove that the size of the input graph is not required to be known a priori to
perform the test if it is connected. On the other hand, there exists no tester for disconnected
graphs if no prior knowledge of the graph is assumed at all. Since communication between two
connected components is not allowed, we cannot distinguish a graph G with high conductance
from a graph G′ that is composed of two isolated copies of G.

In the setting of property testing, we aim for an efficient method to check whether the
input has the desired property or is at least close to it. For example, we might run the tester
for conductance once in a while on a peer-to-peer network to check whether the topology has
changed significantly such that efficient communication is no longer possible. Therefore, we
think of Φ as a parameter with no or only weak dependence on n.

We complement this result by showing that any distributed tester with this gap requires
Ω(log(n+m)) rounds of communication regardless of the final decision rule.

I Theorem 2. Let ε, d > 0 be constants, and let Φ, c be constants that depend on d. Testing
whether a d-regular graph G = (V,E) has conductance at least Φ or is ε-far from having
conductance at least cΦ2 requires Ω(log(|V |+ |E|)) rounds of communication in the LOCAL
and CONGEST models.

1.2 Related Work
In the classic, sequential setting of property testing, the problem of testing conductance in
bounded degree graphs was first studied in [6, 15]. Kale and Seshadhri [16] and Nachmias
and Shapira [22] give Õ(Φ−2√n)-query two-sided error testers that accept graphs that have
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conductance at least Φ and reject graphs that are ε-far from having conductance at least
Ω(Φ2). An algorithm for testing the cluster structure of graphs has been given in [5]. Testing
conductance in unbounded degree graphs in the stronger rotation map model with query
complexity roughly Õ(Φ−2√m) was studied in [17], and testing conductance properties
restricted to small sets has been studied in [18]. However, the optimal query complexity for
testing conductance in general graphs of unbounded degree is still open.

In the CONGEST model, random walks have been analyzed by Censor-Hillel et al. [2] to
design a tester for bipartiteness. The idea there is to perform a constant number of random
walks from every vertex and to test if two such walks intersect in a cycle of odd length. It is
crucial to bound the number of random walks that traverse an edge in one step. In contrast,
we can perform polynomially many random walks from a constant number of vertices in the
graph and we can afford that all walks traverse the same edge simultaneously.

Distributed random walks have also been studied in [7] and [21]. In particular, [21]
show that one can approximate the mixing time τv of a vertex v in O(τv logn) rounds
by running poly(n) random walks v and comparing their endpoint distribution to the
stationary distribution. The graph’s mixing time τ = maxv τv relates to the conduct-
ance by c1Φ2/ logn ≤ 1/τ ≤ c2Φ. A straightforward approach based on [21] leads to an
O(n log2(n)/Φ2) round algorithm for approximating Φ with a multiplicative gap of Θ(Φ/ logn).
In comparison, our tester’s gap does not depend on n and its complexity is only logarithmic
in n. One reason is that if the graph is far from having conductance Ω(Φ2), there exist many
vertices with large mixing times compared to the case that the graph has conductance Φ
(see the proof of Theorem 1 for details). This is not necessarily the case if the graph is not
ε-far from having conductance Ω(Φ2).

1.3 Overview
The classic tester [16] for bounded degree graphs exploits that random walks converge rapidly
to the uniform distribution in graphs with high conductance and they mix slowly for at
least a small fraction of start vertices in graphs that are ε-far from having high conductance.
This boils down to approximating the collision probability of random walks for a few start
vertices. However, in general graphs the stationary distribution is not uniform, and collisions
at vertices with high degree are more important than at vertices with low degree.

In the distributed model, one has to take care of edge congestion, too. Simulating ω(1)
random walks while keeping them distinguishable is very costly. A key observation is that for
approximating the discrepancy, it is sufficient to maintain only some statistics of the random
walks, which reduces the congestion significantly: one has to transfer only the number of
random walks that pass through an edge for each of a constant number of start vertices.

For the lower bound, we construct two distributions on graphs of high and low conductance
respectively such that the vertices’ neighborhoods of radius Ω(logn) are isomorphic. The
idea is that within only O(logn) rounds, all vertices receive the same information up to
isomorphism and therefore cannot distinguish between the two distributions. However, since
the tester is allowed to have two-sided error and it only needs to distinguish graphs that have
the property from graphs that are far, it is plausible that it can glean information about the
two distributions from the vertex labels of the subgraphs it has seen. For example, certain sets
of labeled subgraphs might be present in (many of) the graphs with high conductance that
are absent in (many of) the graphs with low conductance. Lower bounds for sequential testers
usually argue that with high probability, one can assume that all probes are independent.
Since the local views of the vertices in the distributed model always have a large overlap, we
base our argument on a reduction and a random labeling argument instead.

MFCS 2018
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2 Preliminaries

Let G = (V,E) be a graph and let S, T ⊆ V, S ∩ T = ∅ be sets of vertices. We denote |V |
and |E| by n and m respectively for the graph G at hand. Let d(v) be the degree of vertex
v ∈ V . We write S̄ for the set V \S. The set of vertices in S̄ that are adjacent to some
u ∈ S is denoted by Γ(S). The volume of S is the sum of degrees of vertices in S, that is,
vol(S) :=

∑
v∈S d(v). The cut between S and T is denoted by E(S, T ) = E ∩ (S × T ). For a

set S ⊆ V such that vol(S) ≤ vol(S̄), the conductance of S is cond(S) = |E(S, S̄)|/vol(S).
The conductance of G is defined as Φ(G) = minS⊂V,vol(S)≤vol(S̄) cond(S).

2.1 Distributed Computing
In the distributed computational model, a computation network G = (V,E) with a processor
associated to each vertex v ∈ V is given. Each processor v has access to numbered commu-
nication channels to its neighbors in G. Additionally, it may have some specific input I(v).
The computation operates in synchronized rounds that are divided into three phases. In
each round, each processor may do some local computation first, then it may send a message
to each of its neighbors, and finally it receives the messages sent from its neighbors.

I Definition 3 (Distributed Computational Model, DCM). Let G = (V,E) be a graph and
pG = (pv)v∈V with pv : [d(v)] → Γ(v) be a bijective function, that is, an adjacency list
representation of G. Let I : V → {0, 1}∗ be a mapping from the set of vertices to bit strings.
An instance of the distributed computational model on G, pG and I, DCM(G, pG, I), is defined
as follows. Each vertex v ∈ V is a processor that has communication access to its neighbors
pv(1), . . . , pv(d(v)) by ports numbered 1, . . . , d(v). The model operates in synchronized rounds,
where each round r consists of three phases: (i) Each vertex performs local computation,
(ii) each vertex v sends a message to its neighbor pv(i), denoted sr(v, i), for all i ∈ d(v),
(iii) each vertex u receives a message from its neighbor pu(j), for all j ∈ d(u). The distributed
computational model DCM is the set of all instances DCM(G, pG, I).

The LOCAL model is the subset of the DCM such that for each vertex v ∈ V , the input
I(v) is only n and a numerical vertex identifier from [nc] for some universal constant c. The
CONGEST model is the subset of the LOCAL model such that the size of each message
sr(v, i) is restricted to c logn bits.

A distributed network decision algorithm DNDA(A, O) is an algorithm A that is deployed
to the vertices of a DCM to decide a property of an instance of the model. In particular, the
output of A is a single bit, and the final decision is obtained by applying a function O(·) to
the union of all vertices’ answers.

I Definition 4 (Distributed Network Decision Algorithm). Let A be an algorithm that takes
a bit string as input and outputs a single bit, and let O : {0, 1}∗ → {0, 1} be a func-
tion. When the distributed network decision algorithm DNDA(A, O) is run on an instance
DCM(G, pG, I), a copy of A is deployed to every vertex v with input I(v) and run in parallel
as described in Definition 3. We refer to the copy of A deployed to v by Av. When every
vertex vi has terminated its computation with output bit bvi

, the decision of DNDA(A, O) is
O(bv1bv2 · · · bvn

).

2.2 Distributed property testing
A distributed property testing algorithm is a distributed algorithm as defined in Definition 4
that accepts graphs that have a property, and rejects graphs that are ε-far from the property.
We say that a graph G with n vertices and m edges is ε-far from a property P if at least εm
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edges of G have to be modified to make the new graph have the property P . A one-sided error
distributed ε-tester accepts all graphs with property P, whereas it rejects, with probability
at least 2/3, all graphs that are ε-far from the property. In this paper, we give a two-sided
(error) property tester that is also allowed to err, with probability at most 1/3, when the
graph has the property.

I Definition 5 (Two-sided tester). A two-sided (error) distributed ε-tester for a property P is
a DNDA(A, O), where O(bv1bv2 · · · bvn) = 1 iff bvi = 1 for all vi ∈ V such that the following
conditions hold: (i) if G has the property P, then, with probability at least 2/3, bvi

= 1 for
all vi ∈ V , (ii) if G is ε-far from P, then, with probability at least 2/3, there exists a vi ∈ V
such that bvi

= 0.

The guarantees given by our tester are actually a bit stronger in the sense that the tester
can be modified such that either bv = 0 or bv = 1 for all v ∈ V simultaneously.

3 Testing Using Random Walks

In this section we will present the distributed algorithm for testing whether a graph has
conductance at least Φ or is ε-far from having conductance at least Φ2/1000. The core idea
of the algorithm is to perform random walks from a small set of vertices and test whether
these walks converge to the stationary distribution rapidly, which is the case for graphs with
high conductance. It is based on the ideas of Kale and Seshadhri [16] and Goldreich and
Ron[15].

Before we describe the algorithm, we give a few useful definitions and lemmas. A lazy
random walk on a graph G = (V,E) on n vertices is a random walk on the graph, where
at each vertex v the walk chooses to stay at v with probability 1/2 and chooses a neighbor
u with probability 1/(2d(v)). The walk matrix W = [wuv]u,v∈[n] is defined by wuv := 1/2
if u = v, wuv := 1/(2d(v)) if u 6= v, (u, v) ∈ E and wuv := 0 otherwise. Notice that for
irregular graphs, W is not symmetric. To analyze these random walks, one can draw on the
normalized walk matrix, which is a symmetric matrix similar to W . The normalized walk
matrix N of G is D−1/2WD1/2, where D is the diagonal matrix with D(u, u) := d(u).

Since N is a real symmetric matrix, it has real eigenvalues. Let 1 = µ1, . . . , µn ≥ 0 be its
eigenvalues, and let { ~fi}i∈[n] be its orthonormal eigenbasis. We have ~f1 =

√
~π, where ~π is the

random walk’s stationary distribution. In particular, it is well known that ~πv = d(v)/(2m).
For more details on spectral graph theory, refer to [4].

It is well known that graphs with high conductance have small diameter.

I Lemma 6 ([3, cf. Theorem 2]). Let G = (V,E) be a graph with conductance Φ. The
diameter of G is at most (3/Φ) ln(m).

Sinclair [24] proved that there is a tight connection between the conductance and the
mixing time of random walks. In particular, the L2 distance of any starting distribution ~π′

to ~π after Φ−2 logn steps is O(1/n).

I Lemma 7 ([24, cf. Theorem 2.5]). Let G = (V,E) be a graph with conductance Φ. For any
starting distribution ~π′, it holds that ‖W ` ~π′ − ~π‖2 ≤

(
1− Φ2/2

)`.
3.1 Algorithm
We discuss the algorithm from a global point of view instead of describing an algorithm A
for a single vertex to provide a better explanation of the interactions between vertices.

MFCS 2018
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Lemma 6 implies that if the graph has high conductance, then it has diameter O(logn/Φ),
which we want to use as an assumption in the algorithm later. To test the diameter, we
perform a BFS of depth O(logn/Φ) of the graph starting from an arbitrary vertex. Initially,
every vertex chooses itself as root of the BFS and announces itself as root to all its neighbors.
To break the symmetry between the vertices, a vertex accepts every vertex with a lower
identifier than its current root as new root and forwards its messages. If the diameter
is O(logn/Φ), a unique root has been chosen after O(logn/Φ) rounds and every vertex
knows its parent and its children in the BFS tree. Otherwise, at least one of the remaining
candidates will reject. Algorithm 3 gives a formal description of the BFS.

From now on, assume that the diameter is O(logn/Φ). Using the previously computed
BFS tree, we can compute the number of edges in the graph by summing up vertex degrees
from the leaves to the root and transmitting this number to all vertices afterwards. Algorithm 4
describes the procedure in detail.

The key technical lemma from [16] for bounded degree graphs states that if a graph
is ε-far from having conductance Ω(Φ2), then there exists a Ω(ε)-fraction of weak vertices
such that random walks starting from these vertices converge only slowly to the stationary
distribution. Therefore, a sample S ⊂ V of size O(1) will likely contain a weak vertex
(technically, we sample each vertex v independently into S with probability Θ(d(v)/εm). By
Markov’s inequality, we may reject if S is much larger than its expected size.). We extend
this lemma to unbounded degree graphs. Then, we perform N = n100 random walks of
length ` = 40/Φ2 · logn = O(logn/Φ2) starting from each of the vertices in S to approximate
the rate of convergence.

The crucial point here is that in each round of the algorithm, we do not send the full trace
of every random walk. Instead, for every origin v ∈ S, every vertex u ∈ V only transmits
the total number of random walks that are leaving it through an edge (u,w) to its neighbor
w ∈ Γ(u). Since the size of S is constant, we require O(logn) bits per edge to communicate
this. On the other hand, this information is sufficient because we are only interested in
the distribution of endpoints of the lazy random walks for every v ∈ S. Algorithm 2 gives
a formal description of this procedure. Finally, the estimated distribution of endpoints is
used to approximate the distance to the stationary distribution for each v ∈ S. The whole
algorithm is summarized in Algorithm 1.

First, we show that either the estimates Ŵ `
v,u of Algorithm 2 are good or the algorithm

rejects in line 14 because G has low conductance.

I Lemma 8. Consider Algorithm 2. For every v, u ∈ V , it holds with probability at least
1 − m−10 that (i) |Ŵ `

v,u − W `(v, u)| ≤ m−20 and, conditioned on the previous, (ii) if
Ŵ `
v,u < m−2 then G has conductance less than Φ.

Proof. We have E[Ŵ `
v,u] = W `(v, u). By Hoeffding’s inequality, it holds that

Pr[|Ŵ `
v,u − E[Ŵ `

v,u]| ≥ m−10] ≤ 2 exp
(
− N

3m40

)
≤ m−10 . (1)

Condition on |Ŵ `
v,u−E[Ŵ `

v,u]| < m−20, which happens with probability at least 1−1/m10.
If Ŵ `

v,u < m−2, then

W `(v, u) = E[Ŵ `
v,u] < Ŵ `

v,u +m−20 = m−2 +m−10 < 2m−2 .

Let π′ = 1v. We bound ‖W ` ~π′ − ~π‖2 from below.

‖W ` ~π′ − ~π‖2 ≥ |W `(v, u)− d(u)/2m| ≥ −(2m−2 − 1/(2m)) ≥ 1/(4m) .

By the contrapositive of Lemma 7, G has conductance less than Φ. J
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Algorithm 1 Conductance tester.
1: procedure TestConductance(G = (V,E), n, Φ)
2: BFS(G, 6/Φ lnn) . construct BFS of depth 6/Φ logn, Algorithm 3
3: if BFS visited less than n vertices then reject
4: m← AggegrateSum(G, 12/Φ lnn, f) . f(v) := d(v)/2, Algorithm 4
5: let every vertex v ∈ V do
6: with probability min{1, 104d(v)/2εm}, mark v
7: S ← marked v, r ← root of BFS tree
8: if |S| > 105/ε then reject
9: RandomWalk(G, S, 40/Φ2 · logn, n100) . compute local sv,u, Algorithm 2

10: for all v ∈ S do sv ← AggegrateSum(G, 12/Φ lnn, f) . f(u) := sv,u, Alg. 4
11: let every vertex v ∈ V do
12: if sv ≤ m−15 for all v ∈ S then accept
13: else reject

Algorithm 2 Perform random walks.
1: procedure RandomWalk(G,S,`,N)
2: let every vertex v ∈ S do
3: sample u1, · · · , uN independently according to W ~ev

4: for all w ∈ Γ(v) do send (v, v, |{i | w = ui}|) to w
5: for ` rounds, let every vertex x do
6: receive (u1, x

′
1, k1), (u2, x

′
2, k2), . . .

7: for all v ∈ S do
8: sample u1, · · · , unv

independently according to W ~ex, where nv =
∑
ui=v ki

9: for all w ∈ Γ(v) do send (v, x, |{i | w = ui}|) to w
10: let every vertex u ∈ V do
11: receive (u1, x

′
1, k1), (u2, x

′
2, k2), . . .

12: for all v ∈ S do
13: Ŵ `

v,u ←
∑
vi=v ni/N

14: if Ŵ `
v,u ≤ 2m−2 then reject

15: sv,u ← (Ŵ `
v,u −

d(v)
2m )2

Algorithm 3 Construct BFS tree.
1: procedure BFS(G, D)
2: let every vertex v do
3: Tv ← (v, ·) . set root to itself, parent to empty
4: minid← v

5: send (v, v) to every neighbor u ∈ Γ(v)
6: for D rounds, let every vertex w do
7: Rv ← {(v′, u′) received | u′ ∈ Γ(w)}
8: (v, u)← arg min(v′,u′)∈Rv

v′

9: if Tw = (·) or v′ < minid then
10: Tw ← (v, u) . set root to v, parent to u
11: send (v, w) to all neighbors 6= u

MFCS 2018
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Algorithm 4 Aggregate sum of vertex values and propagate it to all vertices.
Require: ∀v : v has local information f(v)
Ensure: ∀v : v has information

∑
u∈V f(u)

1: procedure AggregateSum(G, D, f : V → R)
2: for D rounds, let every vertex v do
3: if v received partial sums su from all its children u in BFS tree then
4: sv ← f(v) +

∑
u su

5: send sv to parent in BFS tree
6: let vertex root r of BFS tree do
7: send total sum s =

∑
v f(v) to all children

8: for D rounds, let every vertex v do
9: if v received total sum s from its parent then

10: send sv to all children in BFS tree
11: return sv . consider sv to be the output of the algorithm

Furthermore, Lemma 8 implies that the estimates sv in Algorithm 1 (see line 10) are also
good if Algorithm 2 has not rejected before.

I Lemma 9. Consider Algorithm 1. With probability at least 1 −m−8 it holds for every
v ∈ S in line 10 that

∣∣‖W `(v, ·)− ~π‖22 − sv
∣∣ ≤ 3m−19.

Proof. Let v ∈ S. We have the following equality for the discrepancy of the distribution of
the random walks’ endpoints that start at v and the stationary distribution:

‖W `(v, ·)− ~π‖22 =
∑
u∈V

(
W `(v, u)− d(u)

2m

)2
. (2)

By Lemma 8, we know that for every u ∈ V we have |Ŵ `
u,v − W `(v, u)| ≤ m−20with

probability 1− 1/m9. Then, by the triangle inequality, |(W `(v, u)− d(u)
2m )2 − sv,u| ≤ 3m−20.

Combining this with Eq. (2), a union bound over all u ∈ V implies that with probability
at least 1− n ·m−10 ≥ 1−m−9, we have that

∣∣‖W `(v, ·)− ~π‖22 −
∑
u∈V sv,u

∣∣ ≤ 3m−19. A
union bound over all v ∈ S gives that with probability at least 1 − |S|/m−9 ≥ 1 −m−8,∣∣‖W `(v, ·)− ~π‖22 −

∑
u∈V sv,u

∣∣ ≤ 3m−19 for every v ∈ S. J

3.2 Completeness and Soundness
The proof of completeness is a straightforward application of the results from the previous
section.

I Lemma 10 (Completeness). Let G(V,E) be a graph with conductance at least Φ. Then,
with probability at least 2/3, each vertex in G returns accept when it runs Algorithm 1.

Proof. The probability that the algorithm rejects in Line 8 of Algorithm 1 is at most 1/10,
and we assume, for the remainder of the proof, that this event did not occur. If G has
conductance at least Φ, then from Lemma 7 we know that ‖W `(·, v)− ~π‖22 ≤

(
1− Φ2/2

)2` ≤
exp(−Φ2`/2) ≤ m−20 for every vertex v. Lemma 9 implies that with probability at least
9/10, it holds that

∣∣‖W `(·, v)− ~π‖22 − sv
∣∣ ≤ 3m−19. Conditioning on this event, every vertex

accepts in line 12 of Algorithm 1. J

To complete the analysis of the tester, we show that whenever the graph is ε-far from
having conductance Ω(Φ2), the tester rejects with probability at least 2/3. To this end, we
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actually show that if the volume of weak vertices is small, then the graph can be converted to
another graph G′ by modifying at most εm edges such that the conductance is Ω(Φ2). The
idea of the analysis is due to Kale and Seshadhri [16], who analyzed a classic property tester
for testing expansion in graphs with vertex degrees bounded by a constant. We deviate from
their analysis where it becomes necessary to take care of arbitrary vertex degrees.

Let a vertex v ∈ V be called weak if ‖W `(v, ·) − ~π‖2 > 6m−15. The following lemma
states that if there exists a set of vertices S with small conductance, then there exists a set
of weak vertices T whose volume is at least a constant fraction of the volume of S.

I Lemma 11. Let S ⊂ V be such that vol(S) ≤ vol(S̄) and cond(S) ≤ δ. Then, for any
` ∈ N and any 0 < θ ≤ 1/10, there exists a set T ⊆ S such that vol(T ) ≥ θvol(S) and for
every v ∈ T , it holds that ‖W `(v, ·)− ~π‖22 > 1

80m7 (1− 4δ)2`.

The proof can be found in the arXiv version [10]. We can use Lemma 11 to separate weak
vertices from the remaining graph.

I Lemma 12. Let G = (V,E) be a graph. If the volume of weak vertices in G is at
most (1/100)εm, then there is a partition of V into P ∪ P̄ such that vol(P ) ≤ εm/10 and
Φ(G[P̄ ]) ≥ Φ2/256.

Proof. We partition the graph recursively into two sets (P, P̄ ). At the beginning, P0 = ∅
and P̄0 = V . As long as there is a cut (Ci, C̄i) in P̄i−1 in step i with vol(Ci) ≤ vol(C̄i)
and E(Ci, C̄i)/vol(Ci) ≤ Φ2/256, we set Pi = Pi−1 ∪ Ci and P̄i = V \Pi. We continue this
until we don’t find such a cut or the condition vol(Pi+1) ≤ vol(P̄i+1) would be violated.
The number of edges going across the cut (P, P̄ ) is at most

∑
i |E(Ci, C̄i)|. Therefore,

|E(P, P̄ )| ≤ Φ2

256
∑
i vol(Ci) ≤ Φ2

256vol(P ).
Now, assume that vol(P ) > (1/10)εm. Lemma 11 implies that there exists P ′ ⊆ P

such that vol(P ′) ≥ 1
10vol(P ) > εm/100 (where θ = 1/10) and for all v ∈ P ′ we have

‖W `(v, ·) − ~π‖2 > 1
80m7 (1 − 4Φ2/256)2` > 1

80m10 . This means that P ′ contains only weak
vertices and has volume at least εm/100, which contradicts our assumption that the volume
of weak vertices in G is at most εm/100. Therefore, vol(P ) ≤ εm/10 when the partitioning
terminates. Hence Φ(G[P̄ ]) ≥ Φ2/256. J

Finally, the following lemma states that few edge modifications in a graph with separated
weak vertices are sufficient to make it a graph with high conductance.

I Lemma 13 ([18, Lemma 9]). Let G = (V,E) be a graph. If there exists a set P ⊆ V

such that vol(P ) ≤ εm/10 and the subgraph G[V \P ] is a Φ′-expander, then there exists an
algorithm that modifies at most εm edges to get a Φ′/3-expander G′ = (V,E′).

Combining the results on the separation of weak vertices and patching the graph (Lem-
mas 11 to 13) and approximating the endpoint distribution (Lemmas 8 and 9), we prove the
soundness of the algorithm.

I Lemma 14 (Soundness). Let G(V,E) be a graph. If G is ε-far from having conductance
at least Φ2/768, then, with probability at least 2/3, each vertex in G returns reject when it
runs Algorithm 1.

Proof. First we note that if the volume of weak vertices is less than εm/100, then by
Lemmas 12 and 13, the graph is ε-close to having conductance at least Φ2/768. Therefore,
the volume of weak vertices is at least εm/100. Each vertex v is contained in S with
probability Θ(d(v)/εm). Hence, the expected number of weak vertices that are present in
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the sample S is at least 100. Therefore, with probability at least 9/10, at least one weak
vertex is sampled in S.

If W `(v, u) < m−2 for some v ∈ S, u ∈ V , then with probability at least 9/10, Ŵ `
v,u <

2m−2 by Lemma 8. In this case, the algorithm will reject in line 14 of Algorithm 2. If
W `(v, u) ≥ m−2 for all v ∈ S, u ∈ V , then with probability at least 9/10, it holds that∣∣‖W `(v, ·)− ~π‖2 − sv

∣∣ ≤ 3m−19 for every v ∈ S by Lemma 9. Since at least one vertex v ∈ S
is weak, that is, ‖W `(v, ·)−~π‖2 > 6m−15, the algorithm rejects in line 13 of Algorithm 1. J

3.3 Unknown Size of the Graph
We describe how to get rid of the assumption that the size n of the graph G is known to the
tester if G is connected. Note that without any prior knowledge of G, no distributed tester
can distinguish between a graph with conductance Φ and two distinct copies of it (the latter
is ε-far from being a graph with conductance Φc for ε < Φc/2, c ≥ 1).

First, we describe a slightly simpler version of the final algorithm. In the setting of the
simpler algorithm, we mark a single vertex that will initiate the test and will also give the
final answer of the tester. We call this vertex the maintainer (of the graph). The algorithm
can be easily adapted to the CONGEST model.

Let v ∈ V be a fixed vertex. The algorithm either makes n available at all vertices and
runs Algorithm 1 afterwards or v rejects because G does not have conductance Φ. If G has
conductance Φ, the algorithm never rejects.

We start with an initial set S = {v} that is grown in two phases. In the first phase, we
extend S to S ∪ Γ(S) as long as cond(S) ≥ Φ. In particular, v starts a BFS and in every
round, the vertices in the last level report their degree and the number of neighbors outside
of S to their parents. Similar to Algorithm 1, these are aggregated and sent to v along the
edges of the BFS tree. If cond(S) < Φ for the first time, the algorithm proceeds to the
second phase. It continues the BFS for − log(vol(S))/ log(1− Φ) rounds and stops. If any
vertex in the graph notices a neighbor that is not in S after these rounds, then S 6= V and
the algorithm rejects. Otherwise, we have obtained the value of n = |S| that can be sent to
all vertices, and we continue by executing Algorithm 1.

I Lemma 15. Let G = (V,E) be a graph and Φ ∈ [0, 1]. There is an algorithm that computes
n if G has conductance at least Φ. Otherwise, it either computes n or rejects. The round
complexity is O(logm/ log(1− Φ)).

Proof. It is easy to see that if the algorithm explores the whole graph, it computes n correctly,
and else it rejects. Without loss of generality, let G have conductance Φ. Let Si be the set S
after i rounds and let S̄i = V \Si. We denote the last round of the first (second) phase by k
(`).

In the first phase, we have that vol(Si) ≥ (1 + Φ) · vol(Si−1) for every round i and by
induction, k ≤ log vol(Sk)/ log(1+Φ) ≤ logm/ log(1+Φ). We also have that vol(Sk) ≥ m/2 ≥
vol(S̄k) because G has conductance Φ. In the second phase, we have that vol(S̄i) ≤ (1−Φ) ·
vol(S̄i−1) for every round i. By induction, `−k ≥ − logm/ log(1−Φ) ≥ log vol(S̄k)−1/ log(1−
Φ) implies that that vol(S̄`) = 0. Therefore, the algorithm has explored the whole graph.
Clearly, ` ∈ O(logm/ log(1− Φ)). J

To transform the algorithm into a tester in the CONGEST model, we start with each
vertex being a maintainer initially. In every round every vertex chooses the vertex with the
smallest id it has ever received a message from to be the maintainer and it forwards only this
vertex’ messages (the latter maintains the congestion bound). At the end of the algorithm, if
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G has conductance Φ, then there is only one maintainer (the vertex with the smallest id)
and the algorithm continues by executing Algorithm 1. Otherwise, there might be multiple
vertices that are still maintainers. However, none of these vertices has explored the whole
graph, so all of them send a broadcast message to reject.

4 Lower Bound

In this section, we prove a lower bound of Ω(log(n+m)) on the round complexity for testing
the conductance of a graph in the LOCAL model regardless of how the final decision of the
tester is derived from the single votes of the vertices.

For any v ∈ V , the k-disc of v, denoted by disck(G, v), is defined as the subgraph that
is induced by the vertices that are at distance at most k to v without the edges between
vertices at distance exactly k, and it is rooted at v. We refer to the isomorphism type of
disck(G, v), that is, the set of all rooted graphs isomorphic to disck(G, v), by disc∗k(G, v). Let
girth(G) denote the length of the shortest cycle in G. We need the following two lemmas to
obtain the distribution over graphs to prove the lower bound.

I Lemma 16 ([20]; cf. [23, Section 16.8.3]). For every n′ ∈ N and every d′ ∈ N there
exists a d-regular graph G of size n such that G has conductance Φ(G) = 1/

√
2d and girth

2 logn/ log d, and n ≥ n′, d ≥ d′.

The second lemma states that we can sparsify an arbitrary cut E(V1, V2) in a d-regular
graph with girth 3k without changing disc∗k(G, v) for any v ∈ V . In particular, it states
that we can remove two edges in the cut and add them somewhere else, or the cut has size
poly(dk) only. It is obtained as a special case by observing that we can assume L = 1 and
λ = 0 in [9, Lemma 8].

I Lemma 17 ([9, Lemma 8]). Let G = (V,E) be a d-regular graph with girth(G) ≥ 3k
for k ≥ 2 and let V1 ∪̇ V2 = V be a partitioning of V . Then either there exists a graph
H = (V, F ) such that (i) girth(H) ≥ 3k, (ii) |F ∩ (V1 × V2)| ≤ |E ∩ (V1 × V2)| − 2, and
(iii) disc∗k(H,w) = disc∗k(G,w)∀w ∈ V (that is, H is d-regular), or E(V1, V2) ≤ 6d3k.

To prove the lower bound, we use an auxiliary model we call the ISO-LOCAL model. In
this model, the input I(·) is empty but an additional oracle provides every vertex v with
the ability to construct disc∗r(G, v) in round r if it knows disc∗r−1(G, ui) of its neighbors
u1, . . . , ud(v). It should be noted that the ISO-LOCAL model is not a DCM due to the
additional oracle.

I Definition 18 (ISO-LOCAL model). Let DCM(G, pG, I) be a DCM instance such that I(·)
maps the whole domain to the empty string. In addition to sending and receiving messages, in
every round r every vertex v is provided access to a function er,v : (N∪ {?})r × (N∪ {?})r →
{0, 1} during the local computation phase. The value of er,v((i1, . . . , ir′), (j1, . . . , jr′′)) is 1
iff p′v(i1, . . . , ir′) = p′v(j1, . . . , jr′′), where

p′v(i1, . . . , ir) :=
{
v if ir = ?

pp′v(?,i1,...,ir−1)(ir) otherwise .

The instance DCM(G, pG, I) equipped with such an oracle is called ISO-LOCAL.

In other words, p′v(·) takes a path of length at most r that starts at v and that is defined by
a sequence of port numbers as input. Then, it maps the path to its endpoint in V . Finally,
er,v(·) tells whether two such paths end at the same vertex.
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The ISO-LOCAL model is a graph where the nodes are not labeled by any strings. To
argue the lower bound, we need to prove the existence of graphs that have same local
neighborhoods such that one is a good expander and the other is far from having good
conductance. Now it is possible that the algorithm can glean information about the different
graphs based on the vertex labels even if the local neighborhoods are identical. Without
ISO-LOCAL, we would need to argue that a randomized algorithm cannot deduce information
from the vertex labels in the LOCAL model directly. This would be easy if for every good
expander G we use, there is a bad expander H with exactly the same set of (labeled) k-discs.
However, this is not the case as it would imply that G and H are isomorphic. The ISO-
LOCAL model formalizes the intuition that, still, isomorphic k-discs should be sufficient to
establish the lower bound even for randomized algorithms.

It is a basic observation that a distributed algorithm can only depend on information
that has reached it until the moment it performs the computation in question.

I Lemma 19 (folklore; cf. [19, Section 2]). Let DNDA(A, O) be a DNDA. After r rounds,
the state of Av may depend only on d(v), I(v), the state of Au at time r − dist(v, u) for
vertices u with dist(v, u) < r and the random coins of A.

4.1 Proof of the Lower Bound
Let G = (V,E) be an expander graph obtained from applying Lemma 16 and let k = Θ(logn).
Observe that if a graph is d-regular and it has girth 3k, then all its k-discs are pairwise
isomorphic. In particular, all k-discs are full d-ary trees of depth k.

We will prove that a distributed algorithm DNDA(A, O) with round complexity r in the
ISO-LOCAL model decides based on the set of views disc∗r(G, v) that the different instances
of A have (see Lemma 20). Using Lemma 17, it will be easy to come up with a graph H that
is a bad expander but whose k-discs are isomorphic to the ones of G. This implies a lower
bound of k = Θ(logn) for testing conductance in the ISO-LOCAL model (see Proposition 21).
Finally, we prove that a lower bound on the round complexity of a tester in the ISO-LOCAL
model implies the same bound in the LOCAL model. Actually, we prove the contrapositive:
a tester in the LOCAL model implies a tester in the ISO-LOCAL model (see Proposition 22).

I Lemma 20. Let DNDA(A, O) be a deterministic DNDA in the ISO-LOCAL model. The
output of Av depends only on disc∗r(G, v) and the port numbering (pv)v∈V .

Proof. Instead of analyzing DNDA(A, O), we analyze a canonical algorithm DNDA(B, O)
that simulates DNDA(A, O) depending only on disc∗r(G, v). Employing B, we prove the
following statement by induction: After the local computation phase of round r, the state of
Av depends only on disc∗r(G, v).

The first local computation phase of Av can only depend on the port numbering and I(v)
(the empty string). Therefore, Bv can simulate the execution of the first round of Av.

Let the current round be r > 1. Algorithm Bv maintains a rooted graph Hv that resembles
disc∗r(G, v). The adjacency lists of Hv are ordered according to (pv)v∈V . Let Hv(r) be the
value of Hv after the computation phase of round r. In the send phase, vertex v sends Hv(r)
to each of its neighbors. In the receive phase, vertex v receives graphs Hu1(r), . . . ,Hud(v)(r)
from its neighbors u1, . . . , ud(v). In the subsequent computation phase of round r + 1, vertex
v extends Hv(r) = disc∗r(G, v) to disc∗r+1(G, v) = Hv(r + 1) by querying er,v on all pairs of
vertices of V (Hv(r)) ∪ V (Hu1(r)) ∪ . . . ∪ V (Hud(v)(r)) to identity vertices and patching the
different views together.

Note that Hv(r + 1) also provides the isomorphism type of disc∗r−dist(v,u)(G, u) for every
vertex u at distance at most r from v. Since the adjacency lists of Hv are ordered according
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to the port numbering, it is also possible to reconstruct er−dist(v,u),u(·). By the induction
hypothesis, Bv can now simulate round r − dist(v, u) of Au for every such u. By Lemma 19,
this is enough to simulate the local computation phase of round r of Au. J

We show that there is no tester for conductance in the ISO-LOCAL model.

I Proposition 21. Let G = (V,E) be d-regular graph on n vertices, and let Φ = 1/
√

2d be a
constant. Any algorithm for testing if G has conductance at least Φ or is ε-far from having
conductance at least cΦ2 (for constants c and ε) in the ISO-LOCAL model that succeeds with
probability 2/3 requires Ω(logn) rounds of communication.

Proof. Let G = (V,E) be a d-regular graph provided by Lemma 16 and choose k =
1
3 logd

(
cΦ2−ε

6 dn
)
. Without loss of generality assume that n is even, and let S ⊂ V be a set of

size n/2. Apply Lemma 17 (with V1 = S and V2 = V \S) repeatedly toG until |E(S, V \S)| ≤
6d3k holds. LetH = (V,E′) be the resulting graph. We have that |E′(S, V \S)| ≤ (cΦ2−ε)dn,
and vol(S) = nd/2. Therefore, H is ε-far from having conductance cΦ2. Let DG (DH) be
the uniform distribution over all ISO-LOCAL models DCM(G, pG, I) (DCM(H, pH , I)) such
that pG (pH) ranges over all possible mappings, that is, port numberings.

We use Yao’s principle to prove the lower bound. Let DNDA(A, O) be a tester for
conductance that has round complexity smaller than k in the ISO-LOCAL model. Since G
is d-regular and girth(G) ≥ 3k, disc∗k(G, v) is a full d-ary tree of depth k for every v ∈ V .
For any pair u, v ∈ V , we have that disc∗k(G, u) is equal to disc∗k(H, v) by Lemma 17. Since
the port numberings of two vertices are independent of each other, (pv)v∈V is a valid port
numbering for G ∈ DG iff it is valid for H ∈ DH . By Lemma 20, DNDA(A, O) cannot
distinguish between G and H. J

To complete the proof of the lower bound, we show that each vertex in the graph in the
ISO-LOCAL model can choose an id randomly.

I Proposition 22. Let DNDA(A, O) be a randomized tester in the LOCAL model that
succeeds with probability p. Then, there is a randomized tester DNDA(B, O) in the ISO-
LOCAL model that succeeds with probability at least p − o(1), and has the same round
complexity.

Proof. We make a simple modification to A to obtain B: In the first local computation
phase, Bv draws a random number idv uniformly from {1, . . . , n3} and feeds it into Av as
I(v). Then, Av is executed as normal. For u, v ∈ V , the probability that idu and idv are
equal is 1/n3. Applying a union bound, with probability 1− o(1), it holds that idu 6= idv for
every u, v ∈ V . We then run algorithm A on this new instance and output the result. J

5 Open Problems

In the case of one-sided distributed testers, it is natural to define the decision rule O(·)
of a distributed tester such that all vertices have to accept or at least one vertex has to
reject. This is because in the case of rejection, the tester is required to observe a witness.
However, for two-sided testers no such requirement exists. Requiring that all vertices either
accept or reject simultaneously seems to be quite strong. For example, if all should vertices
accept or at least one vertex should reject, one may overcome the lack of communication
between connected components and test, e. g., whether a graph has more than two connected
components with two-sided error. On the other hand, it might not always be possible to
obtain a lower bound that is independent of the decision rule as in Theorem 2. To this end,
it would be interesting to compare the power of different rules.
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