
Give Me Some Slack: Efficient Network
Measurements

Ran Ben Basat
Department of Computer Science, Technion
sran@cs.technion.ac.il

Gil Einziger
Nokia Bell Labs
gil.einziger@nokia.com

Roy Friedman
Department of Computer Science, Technion
roy@cs.technion.ac.il

Abstract
Many networking applications require timely access to recent network measurements, which can
be captured using a sliding window model. Maintaining such measurements is a challenging task
due to the fast line speed and scarcity of fast memory in routers. In this work, we study the impact
of allowing slack in the window size on the asymptotic requirements of sliding window problems.
That is, the algorithm can dynamically adjust the window size betweenW andW (1+τ) where τ is
a small positive parameter. We demonstrate this model’s attractiveness by showing that it enables
efficient algorithms to problems such as Maximum and General-Summing that require Ω(W)
bits even for constant factor approximations in the exact sliding window model. Additionally, for
problems that admit sub-linear approximation algorithms such as Basic-Summing and Count-
Distinct, the slack model enables a further asymptotic improvement.

The main focus of the paper is on the widely studied Basic-Summing problem of computing
the sum of the last W integers from {0, 1 . . . , R} in a stream. While it is known that Ω(W logR)
bits are needed in the exact window model, we show that approximate windows allow an expo-
nential space reduction for constant τ .

Specifically, for τ = Θ(1), we present a space lower bound of Ω(log(RW)) bits. Additionally,
we show an Ω(log (W/ε)) lower bound for RWε additive approximations and a Ω(log (W/ε) +
log logR) bits lower bound for (1 + ε) multiplicative approximations. Our work is the first to
study this problem in the exact and additive approximation settings. For all settings, we provide
memory optimal algorithms that operate in worst case constant time. This strictly improves
on the work of [14] for (1 + ε)-multiplicative approximation that requires O(ε−1 log (RW) log
log (RW)) space and performs updates in O(log (RW)) worst case time. Finally, we show asymp-
totic improvements for the Count-Distinct, General-Summing and Maximum problems.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near
linear time algorithms

Keywords and phrases Streaming, Network Measurements, Statistics, Lower Bounds

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.34

Related Version A full version of the paper is avalable at [5], https://arxiv.org/abs/1703.
01166.

© Ran Ben-Basat, Gil Einziger, and Roy Friedman;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 34; pp. 34:1–34:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sran@cs.technion.ac.il
mailto:gil.einziger@nokia.com
mailto:roy@cs.technion.ac.il
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.34
https://arxiv.org/abs/1703.01166
https://arxiv.org/abs/1703.01166
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

34:2 Give Me Some Slack: Efficient Network Measurements

Figure 1 We need to answer each query with respect to a τ -slack window that must include the
last W items, but may or may not consider a suffix of the previous Wτ elements.

1 Introduction

Network algorithms in diverse areas such as traffic engineering, load balancing and quality
of service [2, 9, 21, 24, 31] rely on timely link measurements. In such applications recent
data is often more relevant than older data, motivating the notions of aging and sliding
window [6, 11, 15, 25, 27]. For example, a sudden decrease in the average packet size on a
link may indicate a SYN attack [26]. Additionally, a load balancer may benefit from knowing
the current utilization of a link to avoid congestion [2].

While conceptually simple, conveying the necessary information to network algorithms
is a difficult challenge due to current memory technology limitations. Specifically, DRAM
memory is abundant but too slow to cope with the line rate while SRAM memory is fast
enough but has a limited capacity [10, 13, 29]. Online decisions are therefore realized through
space efficient data structures [7, 8, 16, 17, 4, 23, 28, 30] that store measurement statistics
in a concise manner. For example, [16, 28] utilize probabilistic counters that only require
O(log logN) bits to approximately represent numbers up to N . Others conserve space using
variable sized counter encoding [17, 23] and monitoring only the frequent elements [6].

Basic-Summing is one of the most basic textbook examples of such approximated sliding
window stream processing problems [14]. In this problem, one is required to keep track of
the sum of the last W elements, when all elements are non-negative integers in the range
{0, 1, . . . , R}. The work in [14] provides a (1+ε)-multiplicative approximation of this problem
using O

(1
ε ·
(
log2W + logR · (logW + log logR)

))
bits. The amortized time complexity is

O(logR
logW) and the worst case is O(logW + logR). In contrast, we previously showed an

RWε-additive approximation with Θ
(1
ε + logWε

)
bits [3].

Sliding window counters (approximated or accurate) require asymptotically more space
than plain stream counters. Such window counters are prohibitively large for networking
devices which already optimize the space consumption of plain counters.

This paper explores the concept of slack, or approximated sliding window, bridging this
gap. Figure 1 illustrates a “window” in this model. Here, each query may select a τ -slack
window whose size is between W (the green elements) and W (1 + τ) (the green plus yellow
elements). The goal is to compute the sum with respect to this chosen window.

Slack windows were also considered in previous works [14, 27] and we call the problem of
maintaining the sum over a slack window Slack Summing. Datar et al. [14] showed that con-
stant slack reduces the required memory from O(1

ε ·
(
log2W + logR · (logW + log logR)

)
)

to O(ε−1 log(RW) log log(RW)). For τ -slack windows they provide a (1 + ε)-multiplicative
approximation using O(ε−1 log(RW)(log log(RW) + log τ−1)) bits.

R. Ben-Basat, G. Einziger, and R. Friedman 34:3

Table 1 Comparison of Basic-Summing algorithms. Our contributions are in bold. All algorithms
process elements in constant time except for the rightmost column where both update in O(log (RW))
time. We present matching lower bounds to all our algorithms.

Exact Sum Additive Error Multiplicative Error
τ = Θ(1) Θ(log (RW)) Θ(log(W/ε)) Θ(log (W/ε) + loglogR) O(ε−1 log(RW) log log(RW)) [14]

Exact Window Θ(W logR) Θ(ε−1 + logW) [3] O(ε−1 log2(RW)) [22] O(ε−1 logRW log (W logR)) [14]

Our Contributions

This paper studies the space and time complexity reductions that can be attained by allowing
slack – an error in the window size. Our results demonstrate exponentially smaller and
asymptotically faster data structures compared to various problems over exact windows. We
start with deriving lower bounds for three variants of the Basic-Summing problem – when
computing an exact sum over a slack window, or when combined with an additive and a
multiplicative error in the sum. We present algorithms that are based on dividing the stream
into Wτ -sized blocks. Our algorithms sum the elements within each block and represent each
block’s sum in a cyclic array of size τ−1. We use multiple compression techniques during
different stages to drive down the space complexity. The resulting algorithms are space
optimal, substantially simpler than previous work, and reduce update time to O(1).

For exact Slack Summing, we present a lower bound of Ω(τ−1 log(RWτ)) bits. For (1+ε)
multiplicative approximations we prove an Ω

(
log(W/ε) + τ−1 (log (τ/ε) + log log (RW))

)
bits bound when τ = Ω

(
1

logRW

)
. We show that Ω(τ−1 log b1 + τ/εc+ log (W/ε)) bits are

required for RWε additive approximations.
Next, we introduce algorithms for the Slack Summing problem, which asymptotically

reduce the required memory compared to the sliding window model. For the exact and
additive error versions of the problem, we provide memory optimal algorithms. In the
multiplicative error setting, we provide an O

(
τ−1 (log ε−1 + log log (RWτ)

)
+ log(RW)

)
space algorithm. This is asymptotically optimal when τ = Ω(log−1W) and R = poly(W).
It also asymptotically improves [14] when τ−1 = o(ε−1 log (RW)). We further provide an
asymptotically optimal solution for constant τ , even when R = Wω(1). All our algorithms
are deterministic and operate in worst case constant time. In contrast, the algorithm of [14]
works in O(logRW) worst case time.

To exemplify our results, consider monitoring the average bandwidth (in bytes per second)
passed through a router in a 24 hours window, i.e., W , 86400 seconds. Assuming we use a
100GbE fiber transceiver, our stream values are bounded by R ≈ 234 bytes. If we are willing
to withstand an error of ε = 2−20 (i.e., about 16KBps), the work of [3] provides an additive
approximation over the sliding window and requires about 120KB. In contrast, using a 10
minutes slack (τ , 1

144), our algorithm for exact Slack Summing requires only 800 bytes,
99% less than approximate summing over exact sliding window. For the same slack size, the
algorithm of [14] requires more space than our exact algorithm even for a large 3% error.
Further, if we also allow the same additive error (ε = 2−20), we provide an algorithm that
requires only 240 bytes - a reduction of more than 99.8% !

Table 1 compares our results for the important case of constant slack with [14]. As
depicted, our exact algorithm is faster and more space efficient than the multiplicative
approximation of [14]. Comparing our multiplicative approximation algorithm to that of [14],
we present exponential space reductions in the dependencies on ε−1 and R, with an asymptotic
reduction in W as well. We also improve the update time from O(log (RW)) to O(1).

MFCS 2018

34:4 Give Me Some Slack: Efficient Network Measurements

Finally, we apply the slack window approach to multiple streaming problems, including
Maximum, General-Summing, Count-Distinct and Standard-Deviation. We show
that, while some of these problems cannot be approximated on an exact window in sub-linear
space (e.g. maximum and general sum), we can easily do so for slack windows. In the count
distinct problem, a constant slack yields an asymptotic space reduction over [11, 19].

2 Preliminaries

For ` ∈ N, we denote [`] , {0, 1, . . . , `}. We consider a stream of data elements x1, x2, . . . , xt,
where at each step a new element xi ∈ [R] is added to S. A W -sized window contains only
the last W elements: xt−W+1 . . . xt. We say that F is a τ -slack W -sized window if there
exists c ∈ [Wτ − 1] such that F = xt−(W+c)+1 . . . xt. For simplicity, we assume that τ−1 and
Wτ are integers. Unless explicitly specified, the base of all logs is 2.

Algorithms for the Slack Summing problem are required to support two operations:
1. Update(xt) Process a new element xt ∈ [R].
2. Output () Return a pair 〈Ŝ, c〉 such that c ∈ N is the slack size and Ŝ is an estimation

of the last W + c elements sum, i.e., S ,
∑t
k=t−(W+c)+1 xk.

We consider three types of algorithms for Slack Summing:
1. Exact algorithms: an algorithm A solves (W, τ)-Exact Summing if its Output

returns 〈Ŝ, c〉 that satisfies 0 ≤ c < Wτ and Ŝ = S.
2. Additive algorithms: we say that A solves (W, τ, ε)-Additive Summing if its Output

function returns 〈Ŝ, c〉 that satisfies 0 ≤ c < Wτ and |S − Ŝ| < RWε.
3. Multiplicative algorithms: A solves (W, τ, ε)-Multiplicative Summing if its Out-

put returns 〈Ŝ, c〉 satisfying 0 ≤ c < Wτ and S
1+ε < Ŝ ≤ S if S > 0, and Ŝ = 0 otherwise.

3 Lower Bounds

In this section, we analyze the space required for solving the Slack Summing problems.
Intuitively, our bounds are derived by constructing a set of inputs that any algorithm must
distinguish to meet the required guarantees. There are two tricks that we frequently use in
these lower bounds. The first is setting the input such that the slack consists only of zeros,
and thus the algorithm must return the desired approximation of the remaining window. The
next is using a “cycle argument” – consider two inputs x and x · y for x, y ∈ {0, 1, . . . , R}∗.
If both lead to the same memory configuration, so do such xyk for any k ∈ N. Thus, if there
is a k such that no single answer approximates x and xyk well, then x and xy had to lead to
separate memory configurations in the first place.

3.1 (W, τ)-Exact Summing
We start by proving lower bounds on the memory required for exact Slack Summing.

I Lemma 1. Any deterministic algorithm A that solves the (W, τ)-Exact Summing problem
must use at least dlog (RW (W + 1)/2 + 1)e ≥

⌊
log
(
RW 2)⌋ bits.

Proof. Consider the following language

LE1 ,
{

0Wτ+iσRW−i−10j | i, j ∈ [W − 1], i ≥ j, σ ∈ ([R] \ {0})
}
∪ {0W+Wτ}.

That is, LE1 contains a word with W +Wτ consecutive zeros and the rest of the words in
LE1 are composed of these components in this order:

R. Ben-Basat, G. Einziger, and R. Friedman 34:5

Wτ + i zeros for some i ∈ [W − 1].
a non zero symbol σ.
W − i− 1 repetitions of the maximal symbol (R).
j zeros for some j ∈ [i].

Our lower bound stems from the observation that every word in LE1 must lead to a
different state. The language size is: |LE1 | = 1 +

∑W−1
i=0 R(i + 1) = 1 + RW (W + 1)/2.

Therefore, the number of required bits is at least: dlog |LE1 |e >
(
log(RW 2)− 1

)
. Further,

this number is an integer and therefore at least
⌊
log(RW 2)

⌋
bits are required.

First, notice that the word composed of W +Wτ zeros requires a unique configuration as
A must return 0 after processing that word. In contrast, it must not return 0 after processing
any other word as there is at least a single R within the last W elements.

Let w1, w2 ∈ LE1 be two different words that are not all-zeros. We need to show that w1
and w2 require different memory configuration.

By definition of LE1 , w1 = 0Wτ+i1σ1R
W−i1−10j1 and w2 = 0Wτ+i2σ2R

W−i2−10j2 . Ob-
serve that the last W elements of w1, w2 are 0i1−j1σ1R

W−i1−10j1 and 0i2−j2σ1R
W−i2−10j2

respectively and that both are preceded with at least Wτ zeros. If i1 6= i2 or σ1 6= σ2, then
σ1 +R · (W − i1 − 1) 6= σ2 +R · (W − i2 − 1) and thus A cannot return the same count for
both, regardless of the slack, as it is all zeros ib both w1 and w2.

Next, assume that i1 = i2 , σ1 = σ2 and that without loss of generality j1 < j2. This
means that both w1 and w2 have the same count.

Since j1 < j2, w1 is a strict prefix of w2, i.e., w2 = w1·0j2−j1 . Assume by contradiction that
after processing w1, w2 A reaches the same memory configuration. Since A is deterministic,
this means that it must reach the same configuration after seeing w1 ·0z(j2−j1) for any integer
z. By choosing z = W (1 + τ), we get that the algorithm reaches this configuration once
again while the entire window consists of zeros. This is a contradiction since σ1, σ2 6= 0, and
the algorithm cannot answer both w1 and w1 · 0z(j2−j1) correctly. J

We now use Lemma 1 to show the following lower bound on (W, τ)-Exact Summing
algorithms:

I Theorem 2. Any deterministic algorithm A that solves the (W, τ)-Exact Summing
problem must use at least max

{⌊
log
(
RW 2)⌋ , ⌈⌈τ−1/2

⌉
log (RWτ + 1)

⌉}
bits.

Proof. Lemma 1 shows a
⌊
log
(
RW 2)⌋ bound. We proceed with showing a lower bound⌈⌈

τ−1/2
⌉

log (RWτ + 1)
⌉
bits. Consider the following languages:

LE2 ,
{

0Wτ+iσRWτ−i−1 | i ∈ [Wτ − 1], σ ∈ [R]
}
,

LE2 ,
{
w1 · w2 · · ·wdτ−1/2e | ∀i : wi ∈ LE2

}
.

Notice that |LE2 | = (RWτ + 1)dτ
−1/2e since each of the words in LE2 has a distinct sum of

literals, and each number in {0, 1, . . . , RWτ} is the sum of a word. We show that each input in
LE2 must be mapped into a distinct memory configuration. Let S1 , w1,1 ·w2,1 · · ·wdτ−1/2e,1,
S2 , w1,2 · w2,2 · · ·wdτ−1/2e,2 be two distinct inputs in LE2 such that ∀i : wi,1, wi,2 ∈ LE2 .
Denote χ , max

{
i ∈
[⌈
τ−1/2

⌉]
| wi,1 6= wi,2

}
– the last place in which S1 differs from S2;

also, denote wχ,1 , 0Wτa,wχ,2 , 0Wτ b. Consider the sequences S∗1 = S1 · 02Wτ(χ−1/2)

and S∗2 = S2 · 02Wτ(χ−1/2). Notice that the last W elements windows for S∗1 , S∗2 are
a · wχ+1,1 · · ·wdτ−1/2e,1 · 02Wτ(χ−1/2) and b · wχ+1,2 · · ·wdτ−1/2e,2 · 02Wτ(χ−1/2) respectively,
and that the preceding Wτ elements of both are all zeros. An illustration of the setting
appears in Figure 2. By our choice of χ, we have that the sum of the last W elements of S∗1

MFCS 2018

34:6 Give Me Some Slack: Efficient Network Measurements

Figure 2 An illustration of the
⌈
τ−1/2

⌉
log (RWτ + 1) lower bound setting. If we assume

that after seeing w1,1 · w2,1 · · ·wdτ−1/2e,1 we reach the same configuration as after processing
w1,2 · w2,2 · · ·wdτ−1/2e,2, then we provide a wrong answer for at least one of S∗1 , S∗2 .

and S∗2 is different, and since the slack is all zeros, no answer is correct on both. Finally,
note that this implies that S1, S2 had to reach different configurations, as otherwise A would
reach the same configuration after processing the additional 2Wτ(χ− 1/2) zeros. J

3.2 (W, τ, ε)-Additive Summing
Next, Theorem 3 shows a lower bound for additive approximations of Slack Summing.

I Theorem 3. For ε < 1/4, any deterministic algorithm A that solves the (W, τ, ε)-Additive
Summing problem requires max

{
log(W/ε)−O(1),

⌈⌈
τ−1/2

⌉
log bτ/2ε+ 1c

⌉}
bits.

Before we prove Thorem 3, we start with a simpler lower bound.

I Lemma 4. Let ε < 1/4. Any deterministic algorithm that solves the (W, τ, ε)-Additive
Summing problem must use at least log(W/ε)−O(1) bits.

Proof. Denote by rep(x) , (x mod R) ·Rbx/Rc a sequence in {σR∗ | σ ∈ [R]} whose sum
is x. Next, consider the following languages:

LA1 , {rep(k · 2RWε) | k ∈ [b1/4εc] \ {0}} ; LA1 , 0W+Wτ ·LA1 · {0q | q ∈ [bW/2c]} .

First, notice that |LA1 | = b1/4εc and that all words in LA1 have length of at most W/2.
This means that |LA1 | = b1/4εc bW/2 + 1c > bW/8εc.

We now show that every word in LA1 must have a dedicated memory configuration, thereby
implying a dlog bW/8εce bits bound. Let w1 = 0W+Wτ ·x1 · 0q1 and w2 = 0W+Wτ ·x2 · 0q2 be
two distinct words in LA1 such that x1, x2 ∈ LA1 and q1, q2 ∈ bW/2c. If x1 6= x2, then their
most recent W elements differ by more than 2RWε and there is no output that is correct for
both. Note that the slack of both w1 and w2 is all zeros. Hence, w1 and w2 require different
memory configurations.

Assume that x1 = x2 and that by contradiction both w1 and w2 reached the same
memory configuration. Since w1 6= w2 and x1 = x2, then q1 6= q2 and without loss of
generality q1 < q2. This implies that w1 is a prefix of w2 so that w2 = w1 · 0q2−q1 . Thus, A
enters the shared configuration after reading w1 and revisits it after reading 0q2−q1 . A is a
deterministic algorithm and therefore it reaches the same configuration also for the following
word: w1 · 0(W+Wτ)(q2−q1). In that word, the last W +Wτ elements are all zeros while the
sum of the last W elements in w1 is at least 2RWε. Hence, there is no return value that is
correct for both w1 and w1 · 0(W+Wτ)(q2−q1). J

We are now ready to prove Theorem 3. The theorem says that for ε < 1/4, any
deterministic algorithm A that solves the (W, τ, ε)-Additive Summing problem requires
max

{
log(W/ε)−O(1),

⌈⌈
τ−1/2

⌉
log bτ/2ε+ 1c

⌉}
bits.

R. Ben-Basat, G. Einziger, and R. Friedman 34:7

Proof. Lemma 4 shows that A must use at least log(W/ε)−O(1) bits. Given x ∈ [RWτ],
we denote by rep(x) , 02Wτ−bx/Rc−1 · (x mod R) · Rbx/Rc a sequence of the following
form:

{
0Wτ+iσRWτ−i−1 | i ∈ [Wτ − 1], σ ∈ [R]

}
whose sum is x. We consider the following

languages:

LA2 , {rep(k · 2RWε) | k ∈ [bτ/2εc]} ; LA2 ,
{
w1 · w2 · · ·wdτ−1/2e | ∀i : wi ∈ LA2

}
.

Our goal is to show that no two words in LA2 have the same memory configuration.
Let S1, S2 ∈ LA2 so that S1 6= S2. Denote S1 , w1,1 · w2,1 · · ·wbτ−1/2c,1 and S2 , w1,2 ·
w2,2 · · ·wbτ−1/2c,2, while ∀i : wi,1, wi,2 ∈ LA2 . We denote χ , max {i | wi,1 6= wi,2} – the last
place in which S1 differs from S2.

Next, consider the following sequences: S∗1 = S1 · 02Wτ(χ−1/2) and S∗2 = S2 · 02Wτ(χ−1/2).
The last W + Wτ elements in S∗1 are wχ,1 · · ·wdτ−1/2e,1 · 02W (χ−1/2)τ and in S∗2 wχ,2 · · ·
wdτ−1/2e,2 · 02W (χ−1/2)τ . Additionally, the Wτ elements slack in both S∗1 and S∗2 are all
zeros. Now, since the sum of wχ,1 and wχ,2 must differ by at least 2RWε, no number can
approximate both with less than RWε error. J

3.3 (W, τ, ε)-Multiplicative Summing
In this section, we show lower bounds for multiplicative approximations of Slack Summing.
We start with Lemma 5, whose proof appears in the full version of this paper [5].

I Lemma 5. For ε < 1/4, any deterministic algorithm A for the (W, τ, ε)-Multiplicative
Summing problem requires at least log(W/ε) + log log (RWε)−O(1) memory bits.

To extend our multiplicative lower bound, we use the following fact:

I Fact 1. For any x 6= 1, y ∈ R, the sequence {ci}∞i=1, defined as cn ,

{
1 n = 1
x · cn−1 + y otherwise

can be represented using a closed form as cn = xn−1 + y · x
n−1
x−1 .

Next, let k ∈ N and ψ, ε ∈ R, such that ψ ≥ 2, ε > 0, k ≥ 1; consider the integer sequence

an,k ,

1 n = 1⌈
(1 + ε)

(
an−1,k +

∑k−1
i=1 ψ

i
)⌉

otherwise.

Using the fact above, we show the following lemma:

I Lemma 6. For every integer n ≥ 1 we have an,k ≤ 4ε−1(1 + ε)n+1ψk−1.

Proof. To apply Fact 1, we define an upper bounding sequence {bi,k}∞i=1 as follows:

bn,k ,

1 n = 1
(1 + ε)

(
bn−1,k +

∑k−1
i=1 ψ

i
)

+ 1 otherwise.

Thus, we can rewrite the n’th element of the sequence as:

bn,k = (1 + ε)n−1 + (1+ε)n−1
(1+ε)−1

(
(1 + ε)

∑k−1
i=1 ψ

i + 1
)
.

We can now use this representation to derive an upper bound of bn,k:

bn,k= (1 + ε)n−1 +
(

(1 + ε)
∑k−1
i=1 ψ

i + 1
)

(1+ε)n−1
(1+ε)−1

≤ (1 + ε)n−1 +
(
(1 + ε)2ψk−1) (1 + ε)n − 1

ε
≤ 4ε−1(1 + ε)n+1ψk−1.

Finally, since an,k ≤ bn,k for any n, k, we conclude that an,k ≤ 4ε−1(1 + ε)n+1ψk−1. J

MFCS 2018

34:8 Give Me Some Slack: Efficient Network Measurements

We now define the integer set Ik as Ik ,
{
an,k | an,k ≤ ψk

}
, and proceed to bound |Ik|.

I Lemma 7. For any k ≥ 1 we have |Ik| ≥ ε−1 ln (ψε/4)− 1.

Proof. Clearly, the cardinality of Ik is the largest n for which an,k ≤ ψk. According to
Lemma 6, we have that an,k ≤ 4ε−1(1 + ε)n+1ψk−1, and thus:

|Ik| = arg max
{
n | 4ε−1(1 + ε)n+1ψk−1 ≤ ψk

}
≥ log1+ε (ψε/4)− 1 = ln (ψε/4)

ln (1 + ε) − 1 ≥ ε−1 ln (ψε/4)− 1. J

We proceed with a stronger lower bound for non-constant τ values.

I Lemma 8. For 1
2 log(RW)−8 ≤ τ ≤ 1, any deterministic algorithm A that solves (W, τ, ε)-

Multiplicative Summing requires at least Ω
(
τ−1 (log (τ/ε) + log log (RW))

)
bits.

Proof. We use rep(x) , (x mod R) ·Rbx/Rc to denote a sequence in {σR∗ | σ ∈ [R]} that
has a sum of x. For an integer set Ik, we denote rep(Ik) , {rep(x) | x ∈ Ik}. We now choose
the value of ψ to be ψ , dτ−1/2e√RW/8; notice that ψ ≥ 2 as required. Next, consider:

LM,2 , 0W · 0Wτ · rep(Idτ−1/2e) · 0Wτ · rep(Idτ−1/2e−1) · · · 0Wτ · rep(I1)
=
{

0W · w1 · w2 · · ·wdτ−1/2e | ∀i : wi ∈
{

0Wτ · rep(x) | x ∈ Idτ−1/2e+1−i
}}

.

That is, every word in the LM,2 language consists of a concatenation of words w1, . . . , wdτ−1/2e,
such that every wi starts with Wτ zeros followed by a string representing an integer in
Idτ−1/2e+1−i, which is defined above. According to Lemma 7 we have that

log(|LM,2|) ≥ log
((
ε−1 ln (ψε/4)− 1

)dτ−1/2e
)

=
⌈
τ−1/2

⌉ (
log ε−1 + log log (ψε)−O(1)

)
= Ω

(
τ−1

(
log ε−1 + log log

(dτ−1/2e√RW/8 · ε)))
= Ω

(
τ−1

(
log ε−1 + log

(
log (RW/8)
dτ−1/2e + log ε

)))
= Ω

(
τ−1 (log (τ/ε) + log log (RW))

)
.

Next, we show that every two words in LM,2 must reach different memory configurations,
thereby implying a Ω

(
log
(
|LM,2|

))
bits lower bound. Let S1 6= S2 ∈ LM,2 such that

S1 = 0W · w1,1 · · ·wdτ−1/2e,1, S2 = 0W · w1,2 · · ·wdτ−1/2e,2, and ∀i ∈
{

1, . . . ,
⌈
τ−1/2

⌉}
j ∈

{1, 2} : wi,j ∈
{

0Wτ · rep(x) | x ∈ Idτ−1/2e+1−i
}
. We next assume by contradiction that S1

and S2 leads A to the same memory configuration. Let χ ∈
{

1, . . . ,
⌈
τ−1/2

⌉}
such that

wχ,1 6= wχ,2. Since A reaches an identical configuration after reading S1, S2, and as it is
deterministic, A must reach the same configuration when processing S1 · 02Wτ(χ−1/2) and
S2 ·02Wτ(χ−1/2). Next, observe that for every k ∈ {1, . . . ,

⌈
τ−1/2

⌉
}, the representation length

of any of its words is bounded by
⌈
ψk/R

⌉
. Thus, the length of a word in{

w1 · w2 · · ·wdτ−1/2e | ∀i : wi ∈
{

0Wτ · rep(x) | x ∈ Idτ−1/2e+1−i
}}

is at most

R. Ben-Basat, G. Einziger, and R. Friedman 34:9

dτ−1/2e∑
k=1

⌈
Wτ + ψk/R

⌉
≤
⌈
τ−1/2

⌉
(Wτ + 1) + 2ψdτ

−1/2e/R

=
⌈
τ−1/2

⌉
(Wτ + 1) + 2W/8 ≤ 3W/4 +

⌈
τ−1/2

⌉
+Wτ ≤ W +Wτ.

Now, since every word wi,j starts with a sequence of Wτ zeros, the slack size chosen by

the algorithm is irrelevant and the sums the algorithm must estimate are
∑dτ−1/2e
i=χ s(wi,1)

and
∑dτ−1/2e
i=χ s(wi,2), where s(wi,j) is simply the sum of the symbols in wi,j . Note that

s(wχ,1) and s(wχ,2) are integers in Idτ−1/2e+1−χ. We assume without loss of generality that
s(wχ,1) < s(wχ,2) (i.e., s(wχ,1) < s(wχ,2) ∈ Idτ−1/2e+1−χ). Finally, it follows that

dτ−1/2e∑
i=χ

s(wi,1) ≤ s(wχ,1) +
dτ−1/2e∑
i=χ+1

max(Idτ−1/2e+1−i) ≤ s(wχ,1) +
χ−1∑
k=1

ψk ≤ s(wχ,2)
1 + ε

,

where the last inequality follows from the definition of Idτ−1/2e+1−χ. Thus, no Ŝ value is
correct for both S1 · 02Wτ(χ−1/2) and S2 · 02Wτ(χ−1/2). J

Finally, we combine Lemma 5 and Lemma 8 to obtain the following lower bound:

I Theorem 9. For ε < 1/4, 1
2 log(RW)−8 ≤ τ ≤ 1, any deterministic algorithm for the

(W, τ, ε)-Multiplicative Summing problem requires at least

Ω
(

log(W/ε) + τ−1 (log (τ/ε) + log log (RW))
)
bits.

4 Upper Bounds

In this section, we introduce solutions for the Slack Summing problems. In general, all our
algorithms have a structure that consists of a subset of the following, where “rounding” has
a different meaning for the exact, additive and multiplicative variants:

Round the arriving item.
Add the item into a counter y and round the counter.
If a Wτ -sized block ends, store it as a compressed representation of y. Sometimes we
propagate the compression error to the following block; otherwise, we zero y.
Use the block values and y to construct an estimation for the sum.

A key idea in our additive and multiplicative algorithms is to introduce rounding errors
but maintain the accountability trail so that they do not snowball and exceed the desired
guarantees. In the additive algorithm, our double rounding technique asymptotically improves
over running 1/τ separate plain stream (insertion only) algorithm instances.

4.1 (W, τ)-Exact Summing
We divide the stream into Wτ -sized blocks and sum the number of arriving elements in each
block with a dlog (RWτ + 1)e bits counter. We maintain the sum of the current block in
a variable called y, c maintains the number of elements within the current block, and i is
the current block number. The variable b is a cyclic buffer of τ−1 blocks. Every Wτ steps,
we assign the value of y to the oldest block (bi) and increment i. Intuitively, we “forget” bi
when its block is no longer part of the window. To satisfy queries in constant time, we also
maintain the sum of all active counters in a dlog (RW (1 + τ) + 1)e-bits variable named B.
Algorithm 1 provides pseudocode for the described algorithm. We now analyze the memory
consumption of Algorithm 1.

MFCS 2018

34:10 Give Me Some Slack: Efficient Network Measurements

Algorithm 1 (W, τ)-Exact Summing Algorithm.
Initialization: y = 0, b = 0̄, B = 0, i = 0, c = 0.

1: function Update(x)
2: y ← y + x

3: c← (c+ 1) mod Wτ

4: if c = 0 then . End of block
5: B ← B − bi + y

6: bi ← y

7: y ← 0
8: i← (i+ 1) mod τ−1

9: function Output
10: return 〈B + y, c〉

I Theorem 10. Algorithm 1 uses (τ−1 + 1) dlog (RWτ + 1)e+ log
(
RW 2)+O(1) bits.

Proof. y takes dlog (RWτ + 1)e bits; B requires dlog (RW + 1)e; i adds
⌈
log τ−1⌉ bits, while

c needs dlogWτe bits. Finally, b is a τ−1-sized array of counters, each allocated with
dlog (RWτ + 1)e bits. Overall, it uses (τ−1 + 1) dlog (RWτ + 1)e+ log

(
RW 2)+ 4 bits. J

We conclude that Algorithm 1 is asymptotically optimal.

I Theorem 11. Let B , max
{⌊

log
(
RW 2)⌋ , ⌈⌈τ−1/2

⌉
log (RWτ + 1)

⌉}
be the (W, τ)-

Exact Summing lower bound of Theorem 2. Algorithm 1 uses at most B(4 + o(1))
memory bits.

Theorem 11 shows that Algorithm 1 is only x4 larger than the lower bound. In the full
version of this paper [5], we show that in some cases we can get considerably closer to the
lower bound.

Finally, in the full version of this paper [5] we show that Algorithm 1 is correct.

4.2 (W, τ, ε)-Additive Summing
We now show that additional memory savings can be obtained by combining slackness with
an additive error. First, we consider the case where τ ≤ 2ε. In [3], we proposed an algorithm
that sums over (exact) W elements window using the optimal Θ(ε−1 + logW) bits, with an
additive error of RWε. Next, notice that if an algorithm solves (W, τ, ε)-Additive Summing,
it also solves (W, τ, τ/2)-Additive Summing; hence, we can apply Theorem 3 to conclude
that it requires Ω(τ−1 + logW) = Ω(ε−1 + logW). Thus, we can run the algorithm from [3]
and remain asymptotically memory optimal with no slack at all!

Henceforth, we assume that τ > 2ε; we present an algorithm for the problem using a
2-stage rounding technique. When a new item arrives, we scale it by R and then round
the results to O(log ε−1) bits. As in Section 4.1, we break the stream into non-overlapping
blocks of size Wτ and compute the sum of each block separately. However, we now sum
the rounded values rather than the exact input, with a O(log Wτ

ε)-bits counter denoted y.
Once the block is completed, we round its sum such that it is represented with O(log τ

ε)
bits. Note that this second rounding is done for the entire block’s sum while we still have
the “exact” sum of rounded fractions. Thus, we propagate the second rounding error to the
following block. An illustration of our algorithm appears in Figure 3. Here, Roundυ(z) refers
to rounding a fractional number z ∈ [0, 1] into the closest number z̃ such that 2υ · z̃ ∈ N.
Algorithm 2 provides pseudo code for the algorithm, which uses the following variables:

R. Ben-Basat, G. Einziger, and R. Friedman 34:11

Figure 3 An illustration of our 2-stage rounding technique. Arriving elements are rounded to(⌈
log ε−1⌉+ 1

)
bits. We then sum the rounded fractions of each block and round the resulting sum

into
⌈
log τ

ε

⌉
bits. The second rounding error is propagated to the next block.

Algorithm 2 (W, τ, ε)-Additive Summing Algorithm.
Initialization: y = 0, b = 0, B = 0, i = 0, c = 0.

1: function Update(x)
2: x′ ← Roundυ1

(
x
R

)
. Round

(
x
R

)
such that x′ · 2υ1 ∈ N

3: y ← y + x′

4: c← (c+ 1) mod Wτ

5: if c = 0 then . End of block
6: B ← B − bi
7: bi ← Roundυ2 (y

Wτ
) . Replace the value for the block that has left the window.

8: B ← B + bi
9: y ← y −Wτ · bi
10: i← (i+ 1) mod τ−1

11: function Output
12: return 〈R · (Wτ ·B + y) , c〉

1. y - a fixed point variable that uses dlogWτe + 1 bits to store its integral part and
additional υ1 ,

⌈
log ε−1⌉+ 1 bits for storing the fractional part.

2. b - a cyclic array that contains τ−1 elements, each of which takes υ2 ,
⌈
log τ

ε

⌉
bits.

3. B - keeps the sum of elements in b and is represented using log
(
τ−1 ⌈log τ

ε

⌉
+ 1
)
bits.

4. i - the index variable used for tracking the oldest block in b.
5. c - a variable that keeps the offset within the Wτ sized block.

We now analyze the memory consumption of Algorithm 2.

I Theorem 12. Algorithm 2 uses τ−1 log
(
τ
ε

)
(1 + o(1)) + 2 log(W/ε) bits.

Proof. y requires log
(
Wτ
ε

)
+O(1) bits; b requires another τ−1 ⌈log

(
τ
ε

)⌉
; B takes additional

log
(
τ−1 ⌈log τ

ε

⌉
+ 1
)
bits; i adds

⌈
log τ−1⌉ bits, while and c is represented with dlogWτe

bits. Overall, the space requirement is τ−1 ⌈log
(
τ
ε

)⌉
(1 + o(1)) + 2 log(W/ε) bits. J

I Corollary 13. Let B , max
{

log(W/ε)−O(1),
⌈⌈
τ−1/2

⌉
log bτ/2ε+ 1c

⌉}
be the (W, τ, ε)-

Additive Summing space lower bound of Theorem 3, then Algorithm 2 uses B·(4 + o(1)) bits.

Finally, Theorem 14 shows that Algorithm 2 is correct. The proof is deferred to the full
version of this paper [5].

I Theorem 14. Algorithm 2 solves the (W, τ, ε)-Additive Summing problem.

MFCS 2018

34:12 Give Me Some Slack: Efficient Network Measurements

Algorithm 3 (W, τ, ε)-Multiplicative Summing Algorithm.
Initialization: y = 0, b = 0̄, B = 0, i = 0, c = 0.

1: function Update(x)
2: y ← y + x

3: c← (c+ 1) mod Wτ

4: if c = 0 then . End of block
5: ρ←

⌊
log(1+ε/2) y

⌋
. If y = 0 we use ρ = −∞ and (1 + ε/2)ρ = 0

6: B ← B −
(
(1 + ε/2)bi

)
↓

+ ((1 + ε/2)ρ)↓
7: bi ← ρ

8: y ← 0
9: i← (i+ 1) mod τ−1

10: function Output
11: return 〈B + y, c〉

4.3 (W, τ, ε)-Multiplicative Summing
In this section, we present Algorithm 3 that provides a (1 + ε) multiplicative approximation
of the Slack Summing problem. Compared to Algorithm 1, we achieve a space reduction
by representing each sum of Wτ elements using O(log log (RWτ) + log ε−1) bits. Specifically,
when a block ends, if its sum was y, we store ρ =

⌊
log(1+ε/2) y

⌋
(we allow a value of

−∞ for ρ if y = 0). To achieve O(1) Output, we also store an approximate window
sum B, which is now a fixed point fractional variable with O(logRW) bits for its integral
part and additional O(log ε−1) bits for storing a fraction. To update B’s value for a new
ρ, we round down the value of (1 + ε)ρ. Specifically, for a real number x, we denote
(x)↓ , bx · kc /k, for k ,

⌈ 4
ε

⌉
. Our pseudo code appears in Algorithm 3. The algorithm

requires O
(
τ−1 (log log (RWτ) + log ε−1) + logRW

)
bits of space and is memory optimal

when R = WO(1) and τ = Ω
(

1
logRW

)
.

The full analysis of Algorithm 3 is deferred to the full version of this paper [5]. Next, we
present an alternative (W, τ, ε)-Multiplicative Summing algorithm that achieves optimal
space consumption for τ = Θ(1), regardless of the value of R.

Improved (W, τ, ε)-Multiplicative Summing for for τ = Θ(1)

Algorithm 4 is more space efficient than Algorithm 3 but has a query time of O(τ−1). For
τ = Θ(1), Algorithm 4 is memory optimal and supports constant time queries even if
R = Wω(1); for this case, Algorithm 3 requires Ω(logR) bits which is sub optimal.

Intuitively, we shave the Ω (logR) bits from the space requirement of Algorithm 3 using
an approximate representation for our y variable and by not keeping the B variable that
allowed O(1) time queries regardless of the value of τ . To avoid using Ω (logR) bits in y,
we use a fixed point representation in which O(log ε−1 + log log (RWτ)) bits are allocated
for its integral part and another O(logWτ) for the fractional part. The goal of y is still
to approximate the sum of the elements within a block, but now we aim for the sum to
be approximately (1 + ε/3)y. Whenever a block ends, we store only the integral part of y
in our cyclic array b to save space. When queried, we compute an estimate for the sum
using all of the values in b, which makes our query procedure take O(log τ−1) time. To use
the fixed point structure of y, we use the operator (·)⇓ that rounds a real number x into
(x)⇓ , bx ·Wτc /Wτ . We denote log(1+ε/3) (0) = −∞, (−∞)⇓ = −∞, b−∞c = −∞ and
(1 + ε/3)−∞ = 0.

R. Ben-Basat, G. Einziger, and R. Friedman 34:13

Algorithm 4 (W, τ, ε)-Multiplicative Summing Algorithm for τ = Θ(1).
Initialization: y = −∞, b = 0̄, i = 0, c = 0.

1: function Update(x)
2: y ←

(
log(1+ε/3) (x+ (1 + ε/3)y)

)
⇓

3: c← (c+ 1) mod Wτ

4: if c = 0 then . End of block
5: bi ← byc
6: y ← −∞
7: i← (i+ 1) mod τ−1

8: function Output
9: return

〈
(1 + ε/3)y +

∑τ−1−1
i=0 (1 + ε/3)bi , c

〉

In the full version of this paper [5], we prove the following theorem:

I Theorem 15. For τ = Θ(1), Algorithm 4 processes elements and answers queries in O(1)
time, uses O(log(W/ε) + log logR) bits, and is asymptotically optimal.

4.4 The Mean of a Slack Window
For some applications there is value in knowing the mean of a slack window. For example, a
load balancer may be interested in the average transmission throughput. In exact windows,
the sum and the mean can be derived from each other as the window size is constant. In
slack windows, the window size changes but our algorithms also return the current slack
offset 0 ≤ c < Wτ . That is, by dividing Ŝ by W + c we get an estimation of the mean
(we assume that stream size is larger than W). Specifically, Algorithm 1 provides the exact
mean; Algorithm 2 approximates it with Rε additive error, while Algorithm 3 yields a (1 + ε)
multiplicative approximation.

5 Other Measurements over Slack Windows

We now explore the benefits of the slack model for other problems.

Maximum. While maintaining the maximum of a sliding window can be useful for ap-
plications such as anomaly detection [26, 21], tracking it over an exact window is often
infeasible. Specifically, any algorithms for a maximum over an (exact) window must use
Ω (W log (R/W)) bits [14]. The following theorem shows that we can get a much more
efficient algorithm for slack windows. The proof appears in the full version of this paper [5]
Observe the the following bounds match for τ values that are not too small (τ = RΩ(1)−1).

I Theorem 16. Tracking the maximum over a slack window deterministically requires
O
(
τ−1 logR

)
and Ω

(
τ−1 logRτ

)
bits.

Standard-Deviation. Building on the ability of our summing algorithms to provide the size
of the slack window that they approximate, we can compute standard deviations over slack
windows. Intuitively, the standard deviation of the window can be expressed as

σ
W

,

√∑
x∈W

(x−m
W

)2∣∣W ∣∣− 1
=

√∑
x∈W

x2 − 2m
W

∑
x∈W

x+W ·m2
W∣∣W ∣∣− 1

=

√∑
x∈W

x2 −W ·m2
W∣∣W ∣∣− 1
,

MFCS 2018

34:14 Give Me Some Slack: Efficient Network Measurements

there W is the slack window and mW is its mean. We can then use two slack summing
instances to track

∑
x∈W x2 and mW = |W |−1∑

x∈W x. This gives us an algorithm that
computes the exact standard deviation over slack windows using O(τ−1 log (RWτ)) space.
Similarly, by using approximate rather than exact summing solutions we can compute
a (1 + ε) multiplicative approximation for the standard deviation using O

(
τ−1(log ε−1 +

log log (RWτ)
)

+ logW
)
bits, or an Rε-additive approximation using O(τ−1 log

(
τ
ε

)
+ logW)

space. We expand on this further in the full version of this paper [5].

General-Summing. General-Summing is similar to Basic-Summing, except that the
integers can be in the range {−R, . . . , R}. That is, we now allow for negative elements as
well. Datar et al. [14] proved that General Sum requires Ω(W) bits, even for R = 1 and
constant factor approximation. In contrast, our exact summing algorithm from section 4.1
trivially generalizes to General-Summing and allows exact solution over slack windows.

Count-Distinct. Estimating the number of distinct elements in a stream is another useful
metric. In networking, the packet header is used to identify different flows, and it is useful
to know how many distinct of them are currently active. A sudden spike in the number of
active flows is often an indication of a threat to the network. It may indicate the propagation
of a worm or virus, port scans that are used to detect vulnerabilities in the system and even
Distributed Denial of Service (DDoS) attacks [12, 18, 20].

Here, we have studied the memory reduction that can be obtained by following a similar
flow to our summing algorithms – we break the stream into Wτ sized blocks and run the
state of the art approximation algorithm on each block separately. Luckily, count distinct
algorithms are mergable [1]. That is, we can merge the summaries for each block to obtain
an estimation of the number of distinct items in the union of the blocks. In the full version
of this paper [5], we show that this approach yields an algorithm with superior space and
query time compared to the state of the art algorithms for counting distinct elements over
sliding windows [11, 19]. Formally, we prove the following theorem.

I Theorem 17. For τ = Θ(1) and any fixed m > 0, there exists an algorithm that uses
O(m) space, performs updates in constant time and answers queries in time O(m), such that
the result approximates a window whose size is in [W,W (1 + τ)]; the resulting estimation
is asymptotically unbiased and has a standard deviation of σ = O(1√

m
). State of the art

approaches for exact windows [11, 19] require O(m log (W/m)) space and O(m log (W/m))
time per query for a similar standard deviation.

6 Discussion

In this work we have explored the slack window model for multiple streaming problems.
We have shown that it enables asymptotic space and time improvements. Particularly,
introducing slack enables logarithmic space exact algorithms for certain problems such as
Maximum and General-Summing. In contract, these problems do not admit sub-linear
space approximations in the exact window model. Even in problems that do have sub-linear
space approximations such as Standard-Deviation and Count-Distinct, adding slack
asymptotically improves the space requirement and allows for constant time updates.

Much of our work has focused on the classic Basic-Summing problem. Based on our
findings, we argue that allowing a slack in the window size is an attractive approximation axis
as it enables greater space reductions compared to an error in the sum. As an example, for a
fixed ε value, computing a (1 + ε)-multiplicative approximation requires Ω(log (RW) logW)

R. Ben-Basat, G. Einziger, and R. Friedman 34:15

space [14]. Conversely, a (1 + τ) multiplicative error in the window size, for a constant τ ,
allows summing using Θ(log (RW)) bits – same as in summing W elements without sliding
windows! Given that for exact windows randomized algorithms have the same asymptotic
complexity as deterministic ones [3, 14], we expect randomization to have limited benefits
for slack windows as well.

References
1 Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff Phillips, Zhewei Wei, and

Ke Yi. Mergeable summaries. In ACM PODS, 2012.
2 Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan Vaidyanathan, Kevin

Chu, Andy Fingerhut, Vinh The Lam, Francis Matus, Rong Pan, Navindra Yadav, and
George Varghese. Conga: Distributed congestion-aware load balancing for datacenters. In
ACM SIGCOMM 2014 Conference, SIGCOMM’14, Chicago, IL, USA, August 17-22, 2014,
ACM SIGCOMM 2014, 2014. doi:10.1145/2619239.2626316.

3 Ran Ben Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Efficient Summing over
Sliding Windows. In SWAT, 2016.

4 Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo Caggiani Luizelli, and Erez Waisbard.
Constant time updates in hierarchical heavy hitters. In ACM SIGCOMM, 2017.

5 R. Ben Basat, G. Einziger, and R. Friedman. Give Me Some Slack: Efficient Network
Measurements. ArXiv e-prints, 2018. arXiv:1703.01166.

6 Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Heavy hitters in streams
and sliding windows. In IEEE INFOCOM, 2016.

7 Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Optimal elephant flow
detection. In IEEE INFOCOM, 2017.

8 Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Randomized admission
policy for efficient top-k and frequency estimation. In IEEE INFOCOM, 2017.

9 Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Microte: Fine grained
traffic engineering for data centers. In ACM CoNEXT, 2011.

10 Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy, Sushil Singh, and George Varghese.
An improved construction for counting bloom filters. In ESA, 2006.

11 Y. Chabchoub and G. Hebrail. Sliding hyperloglog: Estimating cardinality in a data stream
over a sliding window. In 2010 IEEE ICDM Workshops, 2010.

12 Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. In
ACM CSUR, 2007.

13 Min Chen and Shigang Chen. Counter tree: A scalable counter architecture for per-flow
traffic measurement. In IEEE ICNP, 2015.

14 Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream
statistics over sliding windows. SIAM Journal of Computing, 2002.

15 G. Einziger and R. Friedman. TinyLFU: A highly efficient cache admission policy. In PDP
2014, 2014.

16 Gil Einziger, Benny Fellman, and Yaron Kassner. Independent counter estimation buckets.
In IEEE INFOCOM, 2015.

17 Gil Einziger and Roy Friedman. Counting with TinyTable: Every Bit Counts! In ICDCN
2016, 2016.

18 Cristian Estan, George Varghese, and Mike Fisk. Bitmap algorithms for counting active
flows on high speed links. In ACM IMC, 2003.

19 Éric Fusy and Frécéric Giroire. Estimating the number of active flows in a data stream
over a sliding window. In ANALCO, 2007.

MFCS 2018

http://dx.doi.org/10.1145/2619239.2626316
http://arxiv.org/abs/1703.01166

34:16 Give Me Some Slack: Efficient Network Measurements

20 Sumit Ganguly, Minos Garofalakis, Rajeev Rastogi, and Krishan Sabnani. Streaming al-
gorithms for robust, real-time detection of ddos attacks. In 27th IEEE International Con-
ference on Distributed Computing Systems (ICDCS 2007), June 25-29, 2007, Toronto,
Ontario, Canada, ICDCS, 2007.

21 Pedro Garcia-Teodoro, Jesús E. Díaz-Verdejo, Gabriel Maciá-Fernández, and E. Vázquez.
Anomaly-based network intrusion detection: Techniques, systems and challenges. Com-
puters and Security, 2009.

22 Phillip B. Gibbons and Srikanta Tirthapura. Distributed streams algorithms for sliding
windows. In SPAA, 2002.

23 Nan Hua, Bill Lin, Jun (Jim) Xu, and Haiquan (Chuck) Zhao. Brick: A novel exact active
statistics counter architecture. In ACM/IEEE ANCS, 2008.

24 Abdul Kabbani, Mohammad Alizadeh, Masato Yasuda, Rong Pan, and Balaji Prabhakar.
Af-qcn: Approximate fairness with quantized congestion notification for multi-tenanted
data centers. In IEEE HOTI, 2010.

25 Yang Liu, Wenji Chen, and Yong Guan. Near-optimal approximate membership query over
time-decaying windows. In IEEE INFOCOM, 2013.

26 B. Mukherjee, L.T. Heberlein, and K.N. Levitt. Network intrusion detection. Network,
IEEE, 1994.

27 Moni Naor and Eylon Yogev. Sliding bloom filters. In ISAAC. Springer, 2013.
28 Erez Tsidon, Iddo Hanniel, and Isaac Keslassy. Estimators also need shared values to grow

together. In IEEE INFOCOM, 2012.
29 Hao Wang, H. Zhao, Bill Lin, and Jun Xu. Dram-based statistics counter array architecture

with performance guarantee. IEEE/ACM Transactions on Networking, 2012.
30 Li Yang, Wu Hao, Pan Tian, Dai Huichen, Lu Jianyuan, and Liu Bin. Case: Cache-assisted

stretchable estimator for high speed per-flow measurement. In IEEE INFOCOM, 2016.
31 L. Ying, R. Srikant, and X. Kang. The power of slightly more than one sample in random-

ized load balancing. In IEEE INFOCOM, 2015.

	Introduction
	Preliminaries
	Lower Bounds
	(W, tau)-Exact Summing
	(W, tau,epsilon)-Additive Summing
	(W, tau, epsilon)-Multiplicative Summing

	Upper Bounds
	(W, tau)-Exact Summing
	(W, tau,epsilon)-Additive Summing
	(W, tau, epsilon)-Multiplicative Summing
	The Mean of a Slack Window

	Other Measurements over Slack Windows
	Discussion

