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Abstract
The constraint satisfaction problems k-SAT and Quantum k-SAT (k-QSAT) are canonical NP-
complete and QMA1-complete problems (for k ≥ 3), respectively, where QMA1 is a quantum
generalization of NP with one-sided error. Whereas k-SAT has been well-studied for special tract-
able cases, as well as from a parameterized complexity perspective, much less is known in similar
settings for k-QSAT. Here, we study the open problem of computing satisfying assignments to
k-QSAT instances which have a “matching” or “dimer covering”; this is an NP problem whose
decision variant is trivial, but whose search complexity remains open.

Our results fall into three directions, all of which relate to the “matching” setting: (1) We
give a polynomial-time classical algorithm for k-QSAT when all qubits occur in at most two
clauses. (2) We give a parameterized algorithm for k-QSAT instances from a certain non-trivial
class, which allows us to obtain exponential speedups over brute force methods in some cases by
reducing the problem to solving for a single root of a single univariate polynomial. (3) We conduct
a structural graph theoretic study of 3-QSAT interaction graphs which have a “matching”. We
remark that the results of (2), in particular, introduce a number of new tools to the study of
Quantum SAT, including graph theoretic concepts such as transfer filtrations and blow-ups from
algebraic geometry; we hope these prove useful elsewhere.
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1 Introduction

Constraint satisfaction problems (CSPs) are cornerstones of both classical and quantum
complexity theory. Indeed, CSPs such as 3-SAT and MAX-2-SAT are complete for NP [13],
and their analogues Quantum 3-SAT (3-QSAT) and the 2-local Hamiltonian problem are
QMA1- and QMA-complete, respectively [3, 10, 16, 15]. (QMA is Quantum Merlin-Arthur,
a quantum generalization of Merlin-Arthur, and QMA1 is QMA with perfect completeness.)
As such CSPs are intractable in the worst case, approaches such as approximation algorithms,
heuristics, and exact algorithms are employed. In this paper, we focus on the latter technique,
and ask: Which special cases of k-QSAT can be solved efficiently on a classical computer?

Unfortunately, this problem appears to be markedly more difficult than in the classical
setting. For example, classically, if each clause c of a k-SAT instance can be matched with a
unique variable vc, then clearly the k-SAT instance is satisfiable, and finding a solution is
trivial: Set variable vc to satisfy clause c. (Note that the matching can be found efficiently
via, e.g., the Ford-Fulkerson algorithm [11].) In the quantum setting, it has been known [17]
since 2010 that k-QSAT instances with such “matchings” (also called a “dimer covering” in
physics [17]) are also satisfiable, and moreover the satisfying assignment can be represented
succinctly as a tensor product state. Yet, finding the satisfying assignment efficiently has
proven elusive (indeed, the proof of [17] is non-constructive). In other words, we have a
trivial NP decision problem whose analogous search version is not known to be efficiently
solvable (see, e.g., [2] regarding the longstanding open question of decision versus search
complexity for NP problems). This is the starting point of the present work.

Results and techniques. Our results fall under three directions, all of which are related to
k-QSAT with matchings. For this, we first define Quantum k-SAT (k-QSAT) [3] and the
notion of a system of distinct representatives (SDR). For k-QSAT, the input is a two-tuple
Π = ({Πi = |ψi〉〈ψi|}i, α) of rank 1 projectors or clauses Πi ∈ L(C2)⊗k, each acting non-
trivially on a set of k (out of n) qubits, and non-negative real number α > 1/p(n) for some
fixed polynomial p. The output is to decide whether there exists a satisfying assignment
on n qubits |ψ〉 ∈ (C2)⊗n, i.e. to distinguish between the cases Πi|ψ〉 = 0 for all i (YES
case), or whether 〈ψ|

∑
i Πi|ψ〉 ≥ α (NO case). Note that k-QSAT generalizes k-SAT. As

for a system of distinct representatives (SDR) (see, e.g., [12]), given a set system such as a
hypergraph G = (V,E), an SDR is a set of vertices V ′ ⊆ V such that each edge in e ∈ E is
paired with a distinct vertex ve ∈ V ′ such that ve ∈ e. In previous work on QSAT, an SDR
has been referred to as a “dimer covering” [17].

1. Quantum k-SAT with bounded occurrence of variables. Our first result concerns the natural
restriction of limiting the number of times a variable can appear in a clause. For example,
3-SAT with at most 3 occurrences per variable is NP-hard. We complement this as follows.

I Theorem 1. There exists a polynomial time classical algorithm which, given an instance Π
of k-QSAT in which each variable occurs in at most two clauses, outputs a satisfying product
state if Π is satisfiable, and otherwise rejects. Moreover, the algorithm works for clauses
ranging from 1-local to k-local in size.
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To show this, our idea is to “partially reduce” the k-QSAT instance to a 2-QSAT instance.
We then use the transfer matrix techniques of [3, 18, 4] (particularly the notion of chain
reactions from [4]), along with a new notion of “fusing” chain reactions, to deal with the
remaining clauses of locality at least 3 in the instance.

Although this setting seems unrelated to the open question of computing solutions to
k-QSAT instances with SDRs, we show the following. Denote the interaction hypergraph
G = (V,E) of a k-QSAT instance as a k-uniform hypergraph (i.e. all edges have size precisely
k), in which the vertices correspond to qubits, and each clause c acting on a set of k qubits
Sc, is represented by a hyperedge of size k containing the vertices corresponding to Sc.

I Theorem 2. Let G = (V,E) be a hypergraph with all hyperedges of size at least 2, and
such that each vertex has degree at most 2. Then, G has an SDR.

Thus, Theorem 1 resolves the open question of [17] for k-QSAT instances with SDRs in
which (1) each variable occurs in at most two clauses and (2) there are no 1-local clauses.
((2) is necessary, as allowing edges of size 1 easily makes Theorem 2 false in general.)

2. On parameterized complexity for Quantum k-SAT. Our next result, and the main con-
tribution of this paper, gives a parameterized algorithm3 for explicitly computing (product
state) solutions for a non-trivial class of k-QSAT instances. As discussed in Section 3, this
algorithm in some cases provides an exponential speedup over brute force diagonalization.

At the core of the algorithm is a new graph theoretic notion of transfer filtration of type
b for a k-uniform hypergraph G = (V,E), for fixed b > 0. Intuitively, one should think of b
as denoting the size of a set of b qubits which form the hard “foundation”’ of any k-QSAT
instance on G. With the notion of transfer filtration in hand, our framework for attacking
k-QSAT can be sketched at a high level as follows.
1. First, given a k-QSAT instance Π on G with transfer filtration of type b, we “blow-up” Π

to a larger, decoupled instance Π+ (Decoupling Lemma, Lemma 9). The decoupled nature
of Π+ makes it “easier” to solve (Transfer Lemma, Lemma 17), in that any assignment
to the b “foundation” qubits can be extended to a solution to all of Π+. This raises the
question – how does one map the solution of Π+ back to a solution of Π?

2. We next give a set of “qualifier” constraints {hs} (Qualifier Lemma, Lemma 19) acting
on only the b foundation qubits, with the following strong property: If a (product state)
assignment v to the b foundation qubits satisfies the constraints {hs}, then not only can
we extend v via the Transfer Lemma to a full solution for Π+ as in Step 1 above, but we
can also map this extended solution back to one for the original k-QSAT instance Π.

Once the framework above is developed, we show that it applies to the non-trivial family of
k-QSAT instances whose k-uniform hypergraph G = (V,E) has a transfer filtration of type
b = |V | − |E|+ 1. This family includes, e.g., the semi-cycle, tiling of the torus, and “fir tree”
(full version). Our main result (Theorem 23) says the following: For any k-QSAT instance Π
on such a G and whose constraints are generic (see Section 3), computing a (product state)
solution to Π reduces to solving for a root of a single univariate (see Remark 25) polynomial
P – any such root (which always exists if the field K is algebraically closed) can then be
extended back to a full solution for Π.

The key advantage of this approach, and what makes it a parameterized algorithm, is the
following – the degree of P , and hence the runtime of the algorithm, scale exponentially only
in b and a “radius” parameter r of the transfer filtration. Thus, given a transfer filtration

3 Roughly, parameterized complexity characterizes the complexity of computational problems with respect
to specific parameters of interest other than just the input size (e.g. the treewidth of the input graph).

MFCS 2018



38:4 On Efficiently Solvable Cases of Quantum k-SAT

where b and r are at most logarithmic, finding a (product state) solution to k-QSAT reduces
to solving for a single root over C for a single univariate polynomial h1 of polynomial degree,
which can be done in polynomial time [25, 24]. Indeed, in Section 3 we give a non-trivial
family of k-uniform hypergraphs, denoted Crash, for which our algorithm runs in polynomial
time, whereas brute force diagonalization would require exponential time.

Conveniently, even when the foundation b and radius r are superlogarithmic, our algorithm
still gives a constructive proof that all k-QSAT instances satisfying the preconditions of
Theorem 23 have a (product state) solution. In particular, in Corollary 27, we observe that
such hypergraphs must have SDRs, and so we constructively reproduce the result of [17] that
any 3-QSAT instance with an SDR is satisfiable (by a product state) (again, assuming the
additional conditions of Theorem 23 are met).

Finally, although this result stems primarily from tools of projective algebraic geometry
(AG), the presentation herein avoids any explicit mention of AG terminology (with the
exception of defining the term “generic” in Section 3.3) to be accessible to readers without
an AG background. A brief overview of the ideas in AG terms is given in the full version.

3. A study of 3-uniform hypergraphs with SDRs. Our final contribution, which we hope guides
future studies on the topic, is to take steps towards understanding the structure of all 3-QSAT
instances with SDRs, particularly when |E| = |V |. Unfortunately, this seems a difficult task
(if not potentially impossible, see “finite characterization” comments below). We first give
various characterizations involving intersecting families (each pair of edges has non-empty
intersection). We then study linear hypergraphs (each pair of edges intersects in at most
one vertex), which are generally more complex. (For example, the set of edge-intersection
graphs of 3-uniform linear hypergraphs is known not to have a “finite” characterization
in terms of a finite list of forbidden induced subgraphs [19].) We study “extreme cases”
of linear hypergraphs with SDRs, such as the Fano plane and “tiling of the torus”, and
in contrast to these two examples, demonstrate a (somewhat involved) linear hypergraph
we call the iCycle which also satisfies the Helly property (which generalizes the notion
of “triangle-free”). A main conclusion of this study is that even with multiple additional
restrictions in place (e.g. linear, Helly), the set of 3-uniform hypergraphs with SDRs remains
non-trivial. To complement these results, we show how to fairly systematically construct
large linear hypergraphs with |E| = |V | without SDRs. We hope this work highlights the
potential complexity involved in dealing with even the “simple” case of 3-QSAT with SDRs.

Discussion, previous work and open questions. Regarding our parameterized algorithm,
our notions of transfer filtrations and blow-ups apply to any instance of k-QSAT (and
thus also4 k-SAT), including QMA1-complete instances. (For example, every k-uniform
hypergraph has a trivial foundation obtained by iteratively removing vertices until the
resulting set contains no edges. A key question is how small the foundation and radius
of the filtration can be chosen for a given hypergraph, as our algorithm’s runtime scales
exponentially in these parameters.) More precisely, our techniques in Section 3, up to and
including the Qualifier Lemma, apply to arbitrary k-QSAT instances. The main question is
when local solutions to the qualifier constraints (which act only on b out of n qubits) can

4 For the special case of k-SAT, note that it is not a priori clear that having a transfer filtration with a
small foundation suffices to solve the system trivially. This is because the genericity assumption on
constraints, which k-SAT constraints do not satisfy, is required to ensure that any assignment to the
foundation propagates to all bits in the instance. Thus, the brute force approach of iterating through
all 2b assignments to the foundation does not obviously succeed.
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be extended to global solutions to the entire k-QSAT instance. We answer this question
affirmatively for the non-trivial class of k-QSAT instances which satisfy the preconditions
of Theorem 23 (e.g. the semi-cycle, fir tree, crash, and any k-uniform hypergraph with
b = |V |− |E|+1), obtaining polynomial to exponential speedups over brute force in Section 3.

Moving to previous work, Quantum k-SAT was introduced by Bravyi [3], who gave an
efficient (quartic time) algorithm for 2-QSAT, and showed that 4-QSAT is QMA1-complete.
Subsequently, Gosset and Nagaj [10] showed that Quantum 3-SAT is also QMA1-complete,
and independently and concurrently, Arad, Santha, Sundaram, Zhang [1] and de Beaudrap,
Gharibian [4] gave linear time algorithms for 2-QSAT. The original inspiration for this paper
was the work of Laumann, Läuchli, Moessner, Scardicchio and Sondhi [17], which showed
existence of a product state solution for any k-QSAT instance with an SDR. Thus, the decision
version of k-QSAT with SDRs is in NP and trivially efficiently solvable. However, whether
the search version (i.e. compute an explicit satisfying assignment) is also in P remains open.
The question of whether the decision and search complexities of NP problems are the same
is a longstanding open problem in complexity theory; conditional results separating the two
are known (see e.g. Bellare and Goldwasser [2]).

Regarding classical k-SAT, as mentioned above, in contrast to k-QSAT, solutions to k-SAT
instances with an SDR can be trivially computed. As for parameterized complexity, classically
it is a well-established field of study (see, e.g., [5] for an overview). The parameterized
complexity of SAT and #SAT, in particular, has been studied by a number of works, such
as [26, 6, 23, 7, 22, 21, 8], which consider parameterizations including based on tree-width,
modular tree-width, branch-width, clique-width, rank-width, and incidence graphs which
are interval bipartite graphs. Regarding parameterized complexity of Quantum SAT, as far
as we are aware, our work is the first to initiate a “formal” study of the subject; however,
we should be clear that existing works in Quantum Hamiltonian Complexity [20, 9] have
long implicitly used “parameterized” ideas (e.g. in tensor network contraction, the bond
dimension can be viewed as a parameter constraining the complexity of the contraction).

We close with open questions. Which ideas from classical parameterized complexity be
generalized to the quantum setting? We develop a number of tools for studying Quantum
SAT – can these be applied in more general settings, for example beyond the families of
k-QSAT instances considered in Theorem 23? The “parameter” in our results of Section 3
involves the radius of a transfer filtration – whether a transfer filtration (of a fixed type b) of
minimum radius can be computed efficiently, however, is left open for future work. Similarly,
it is not clear that given b ∈ N, the problem of deciding whether a given hypergraph G has a
transfer filtration of type at most b is in P. We conjecture this latter problem is NP-complete.
Finally, the question of whether solutions to arbitrary instances of k-QSAT with SDRs can
be computed efficiently (recall they are guaranteed to exist [17]) remains open.

Organization. Section 2 gives an efficient algorithm for 3-QSAT with bounded occurrence
of variables, and introduces the notion of transfer matrices (which are generalized via
transfer functions in Section 3). Our main result is given in Section 3, and concerns a new
parameterized complexity-type approach for solving k-QSAT. Our structural graph theoretic
study of hypergraphs with SDRs, and any omitted proofs, are deferred to the full version.

Notation and basic definitions. For complex Euclidean space X , L(X ) denotes the set of
linear operators mapping X to itself. For unit vector |ψ〉 ∈ C2, the unique orthogonal unit
vector (up to phase) is denoted |ψ⊥〉, i.e. 〈ψ|ψ⊥〉 = 0.

MFCS 2018



38:6 On Efficiently Solvable Cases of Quantum k-SAT

I Definition 3 (Hypergraph). A hypergraph is a pair G = (V,E) of a set V (vertices), and a
family E (edges) of subsets of V . If each vertex has degree d, we say G is d-regular. When
convenient we use V (G) and E(G) to denote the vertex and edge sets of G, respectively. We
say G is k-uniform if all edges have size k.

I Definition 4 (Cycle, Semicycle, Chain [14]). A k-uniform hypergraph G = (V,E) is a cycle
if there exists a sequence S = (v1, v2, ..., vl) ∈ V l for l ≥ n such that (1) v ∈ S for all v ∈ V ,
(2) for all 1 ≤ i ≤ l, ei = {vi, vi+1, ..., vi+k−1} are distinct edges in E, where indices are
understood modularly. The length of the cycle G is m = l. If instead 1 ≤ i ≤ l − k + 1 and
v1 = vl (v1 6= vl), we obtain a semicycle (chain) of length m = l − k + 1.

2 Quantum SAT with bounded occurrence of variables

Transfer matrices, chain reactions, and cycle matrices. To study 3-QSAT with each
qubit occurring in at most two constraints, we first recall transfer matrix tools from the
study of 2-QSAT [3, 18, 4]. For any rank-1 constraint Πi = |ψ〉〈ψ| ∈ L((C2)⊗k), consider
Schmidt decomposition |ψ〉 = α|a0〉|b0〉 + β|a1〉|b1〉, where |ai〉 ∈ (C2)⊗(k−1) lives in the
Hilbert space of the first k− 1 qubits and |bi〉 ∈ C2 the last qubit. Then, the transfer matrix
Tψ : (C2)⊗k−1 7→ C2 is given by Tψ = β|b0〉〈a1| − α|b1〉〈a0|. In words, given any assignment
|φ〉 to the first k − 1 qubits, if Tψ|φ〉 ∈ C2 is non-zero, then it is the unique assignment to
qubit k (given |φ〉 on qubits 1 to k − 1) which satisfies Πi.

In the special case of k = 2, transfer matrices are particularly useful. Consider first a
2-QSAT interaction graph (which is a 2-uniform hypergraph, or just a graph) G = (V,E)
which is a path, i.e. a sequence of edges e1 = (v1, v2), e2 = (v2, v3), . . . , em = (vm−1, vm) for
distinct vi ∈ V , and where edge ei corresponds to constraint |ψi〉. Then, any assignment
|φ〉 ∈ C2 to qubit 1 induces a chain reaction (CR) in G, meaning qubit 2 is assigned Tψ1 |φ〉,
qubit 3 is assigned Tψ2Tψ1 |φ〉, and so forth. If this CR terminates before all qubits labelled
by V receive an assignment, which occurs if Tψi |φ′〉 = 0 for some i, this means that constraint
i (acting on qubits i and i + 1) is satisfied by the assignment |φ′〉 to qubit i alone, and
no residual constraint is imposed on qubit i + 1. Thus, the graph G is reduced to a path
ei+1, . . . , em. In this case, we say the CR is broken. Note that if G is a path, then it is a
satisfiable 2-QSAT instance with a product state solution.

Finally, consider a 2-QSAT instance whose interaction graph G is a cycle C = (v1, . . . ,

vm+1) with m. Then, a CR induced on vertex v1 with any assignment |ψ〉 ∈ C2 will in
general propagate around the cycle and impose a consistency constraint on v1. Formally,
denote TC = Tψm

· · ·Tψ1 ∈ L(C2) as the cycle matrix of C. Then, if the cycle matrix is not
the zero matrix, it be shown that the satisfying assignments for the cycle are precisely the
eigenvectors of TC . (If TC = 0, any assignment on v1 will only propagate partially around
the cycle, thus decoupling the cycle into two paths.) Thus, if G is a cycle, it has a product
state solution.

Here, when we refer to “solving the path or cycle”, we mean applying the transfer matrix
techniques above to efficiently compute a product state solution to the path or cycle.

k-QSAT with bounded occurence of variables. We now prove Theorem 1.

Proof of Theorem 1. We begin by setting terminology. Let Π be an instance of k-QSAT
with k-uniform interaction graph G = (V,E). For any clause c, let Qc denote the set of qubits
acted on c, i.e. Qc is the edge in G representing c. We say c is stacked if Qc is contained in
another clause Qc′ , i.e. if ∃c′ 6= c such that Qc ⊆ Qc′ . For a qubit v, we use shorthand |v〉 to
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denote the current assignment from C2 to v. For a clause c, |c〉 denotes the bad subspace of
c, i.e. clause c is given by rank-1 projector I − |c〉〈c|. The set of clauses vertex v appears in
is denoted Cv. For any assignment |v〉, let S|v〉 = {〈v|c〉 | c ∈ Cv} ⊆

⋃k−1
i=0 C2i , where recall

c can be a clause on 1, . . . , k qubits, and we assume 〈v| acts as the identity on the qubits
of c which are not v. Thus, S|v〉 is the set of constraints we obtain by taking the clauses in
Cv, and projecting down qubit v in each clause onto assignment |v〉 (i.e. clauses in S|v〉 do
not act on v). Our algorithm will satisfy that the only possible element of C in S|v〉 is 0,
obtained by projecting a constraint |c〉 ∈ C2 onto its orthogonal complement to satisfy it;
thus, assume without loss of generality that S|v〉 ⊆

⋃k−1
i=1 C2i . Finally, two 1-local clauses

|c〉, |c′〉 ∈ C2 conflict if |c〉 and |c′〉 are linearly independent.

Algorithm A. Let Π satisfy the conditions of our claim. We repeatedly “partially reduce”
Π to a 2-QSAT instance, and use the transfer matrix techniques outlined above to solve this
subproblem. Combining this with a new notion of fusing CRs, the technique can be applied
iteratively to reduce k-local constraints to 2-local ones until the entire instance is solved.
Note: If a CR on a path is broken by a transfer matrix Tψ on edge (u, v), i.e. Tψ|u〉 = 0, we
implicitly continue by choosing assignment |0〉 on v to induce a new CR on the path.

1. While there exists a 1-local constraint c acting on some qubit v:
a. If c conflicts with another 1-local clause on v, reject. Else, set |v〉 = |c⊥〉 ∈ C2. Set5

Cv = S|v〉, and remove v from Π.
2. While there exists a qubit v appearing only in clauses of size at least k′ ≥ 3:

a. Set |v〉 = |0〉 and Cv = S|v〉. Remove v from Π.
3. While there exists a 2-local clause:

a. If there exists a stacked 2-local clause c, i.e. c′ 6= c such that Qc ⊆ Qc′ :
i. If Qc = Qc′ , remove the qubits c acts on, and set their values to satisfy c and c′.
ii. Else, Qc ⊂ Qc′ . Thus, c′ is k′-local for 3 ≤ k′ ≤ k. Set the values of the qubits in

Qc so as to satisfy c. This collapses c′ to a (k′ − 2)-local constraint on Qc′ \Qc.
A. If k′ − 2 = 1, then c′ has been collapsed to a 1-local constraint on some vertex

v ∈ Qc′ \Qc, creating a path rooted at v. Set v so as to satisfy c′, and use a CR
to solve the resulting path until either the path ends, or a k′′-local constraint is
hit for 3 ≤ k′′ ≤ k′. In the latter case (Figure 1, Left), the k′′-local constraint is
reduced to a (k′′ − 1)-local constraint and we return to the beginning of Step 3.

b. Else, pick an arbitrary 2-local clause c acting on variables v1 and v2. Then, v1 (v2) is
the start of a path h1 (h2) (e.g., Figure 1, Middle).
i. If the path forms a cycle from v1 to v2, use the cycle matrix to solve the cycle.

Remove the corresponding qubits and clauses from Π.
ii. Else, set v1 and v2 so as to satisfy c. Solve the resulting paths h1 (h2) until a

k′-local (k′′-local) constraint l1 (l2) is hit for 3 ≤ k′ ≤ k (3 ≤ k′′ ≤ k). If both l1
and l2 are found:
A. If l1 = l2 (i.e. k′ = k′′) and k′ − 2 = 1, then fuse the paths h1 and h2 into a

new path beginning at the qubit in l1 which is not in h1 or h2 (Figure 1, Right).
Iteratively solve the resulting path until a k′-local constraint is hit for 3 ≤ k′ ≤ k.

4. If any qubits are unassigned, set their values to |0〉.

In the full version, we prove correctness, run algorithm A on a sample input, and discuss
its general applicability to an entire family of non-trivial 3-QSAT instances. J

5 Note there is one “global copy” of each clause c that is “shared” by all Cv.

MFCS 2018
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v1 v2 v3 v4 v5 v1 v2 v3 v4

v1 v2 v3

v4

v5v6v7

Figure 1 (Left) Solving the path rooted at v1 via CR satisfies clauses (v1, v2) and (v2, v3), and
projects clause (v3, v4, v5) onto a 2-local residual clause on (v4, v5). The CR then stops. (Middle)
Letting c denote the clause on (v2, v3), v2 is the start of path (v2, v1, . . .), and v3 is the start of path
(v3, v4, . . .). (Right) Inducing CRs on v1 and v7, we assign values to v3 and v5. This collapses 3-local
clause (v3, v4, v5) into a 1-local clause on v4 with a unique satisfying assignment, which induces a
new CR starting at v4. Thus, two CR’s are “fused” into one CR.

3 Quantum SAT and parameterized algorithms

We next develop a parameterized algorithm for computing an explicit (product state) solution
to a non-trivial class of k-QSAT instances (Theorem 23). Although the inspiration stems
from algebraic geometry (AG), we generally avoid AG terminology to increase accessibility
(see the full version for an overview in AG terms).

3.1 The transfer type of a hypergraph
I Definition 5. A hypergraph G = (V,E) is of transfer type b if there exists a chain of
subhypergraphs (denoted a transfer filtration of type b) G0 ⊆ G1 ⊆ · · · ⊆ Gm = G and an
ordering of the edges E(G) = {E1, . . . , Em} such that
1. E(Gi) = {E1, . . . , Ei} for each i ∈ {0, . . . ,m},
2. |V (Gi)| ≤ |V (Gi−1)|+ 1 for each i ∈ {1, . . . ,m},
3. if |V (Gi)| = |V (Gi−1)|+ 1, then V (Gi) \ V (Gi−1) ⊆ Ei,
4. |V (G0)| = b, where we call V (G0) the foundation,
5. and each edge of G has at least one vertex not in V (G0).
In other words, a transfer filtration of type b builds up G iteratively by choosing b vertices
as a “foundation”, and in each iteration adding precisely one new edge Ei and at most one
new vertex. If a new vertex is added in iteration i, condition (3) says it must be in edge Ei
added in iteration i.

I Example 6 (Running example). We introduce a hypergraph G to serve as a running
example in this section. Let V (G) = {1, 2, 3, 4} with edges E1 = {1, 2, 3}, E2 = {1, 2, 4},
E3 = {1, 3, 4} and E4 = {2, 3, 4}. By Definition 4, G is a 3-uniform cycle. Consider
hypergraphs G0, G1, G2, G3 such that V (G0) = {1, 2}, V (G1) = {1, 2, 3}, V (G2) = V (G3) =
V (G4) = V (G), E(G0) = ∅ and E(Gj) = {E1, . . . , Ej} for j = 1, 2, 3. Then G0 ⊆ G1 ⊆
G2 ⊆ G3 ⊆ G4 = G is a transfer filtration of type 2, G2 is a chain, and G3 is a semicycle.

I Remark 7. Let G be a hypergraph with transfer filtration G0 ⊆ G1 ⊆ · · · ⊆ Gm = G

of type b. Order the edges of G so that E(Gi) = {E1, . . . , Ei} ∀i ∈ {1, . . . ,m}. Since by
construction each edge contains at least one vertex not in V (G0), there exists a function r :
{1, . . . ,m} → {0, . . . ,m− 1} such that r(i) < i and |Ei \ V (Gr(i))| = 1 for all i ∈ {1, . . . ,m}.

I Example 8 (Running example). Let G be the 3-uniform cycle of Example 6. Then one can
choose r : {1, 2, 3, 4} → {0, 1, 2, 3} with r(1) = r(2) = 0, r(3) = 1 and r(4) = 1.

As the first step in our construction, we show how to map any k-uniform hypergraph G of
transfer type b to a new k-uniform hypergraph G′ of transfer type b whose transfer filtration
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v1

v2 v3

v4

v1

v2 v3

v4 v5

Figure 2 For the hypergraph on the left, consider the transfer filtration with foundation G0 =
{v1, v2}, and we iteratively add edges {v1, v2, v3}, {v1, v2, v4}, and {v1, v3, v4}. The Decoupling
Lemma maps this hypergraph to the one on the right, decoupling the intersection on vertex v4. The
surjective function p “undoes” the decoupling by mapping v1, v2, v3 to themselves, and v4, v5 to v4.

must add a vertex in each step (this follows directly from the relationship between |V (G)|
and |E(G)| below). This has two effects worth noting: First, G′ is guaranteed to have an
SDR. Second, it decouples certain intersections in the hypergraph, as illustrated in Figure 2.
For clarity, in the lemma below, for a function p acting on vertices, we implicitly extend its
action to edges in the natural way, i.e. if e = (v1, v2, v3) then p(e) = (p(v1), p(v2), p(v3)).

I Lemma 9 (Decoupling lemma). Given a k-uniform hypergraph G of transfer type b, there
exists a k-uniform hypergraph G̃ of transfer type b with |E(G)|+ b vertices and a surjective
function p : V (G̃)→ V (G) such p(Ẽ) ∈ E(G) for every Ẽ ∈ E(G̃).

Proof. (Sketch) Let G0 ⊆ G1 ⊆ · · · ⊆ Gm = G be a transfer filtration such that V (G0) =
{1, . . . , b}, E(Gi) = {E1, . . . , Ei} for every i ≥ 1 and let r : {1, . . . ,m} → {0, . . . ,m− 1} as
in Remark 7. By Remark 7, there is a surjection p : {1, . . . ,m+ b} → {1, . . . , n} such that
p(i) = i for all i ∈ {1, . . . , b} and {p(i)} = Ei−b \V (Gr(i−b)) for all i ∈ {b+1, . . . , b+m}. For
each j ∈ {1, . . . ,m+ b}, let j = min(p−1(p(j))) and Ẽi = {i+ b}∪{j | j ∈ p−1(Ei \p(i+ b))}
for each i ∈ {1, . . . ,m}. Setting V (G̃i) = {1, . . . , b} and E(G̃i) = {Ẽ1, . . . , Ẽi} for each
i = {0, . . . ,m} we obtain a transfer filtration G̃0 ⊆ G̃1 ⊆ · · · ⊆ G̃m = G̃ of type b satisfying
the requirements of the claim. J

I Example 10 (Running example). Let G be the 3-uniform cycle of Example 6. The proof of
Lemma 9 (full version) produces a 3-uniform hypergraph G̃ with vertices {1, 2, 3, 4, 5, 6} and
edges Ẽ1 = {1, 2, 3}, Ẽ2 = {1, 2, 4}, Ẽ3 = {1, 3, 5}, Ẽ4 = {2, 3, 6}, and surjective function p :
{1, 2, 3, 4, 5, 6} → {1, 2, 3, 4} defined by p(1) = 1, p(2) = 2, p(3) = 3, p(4) = p(5) = p(6) = 4.
This choice is not unique: setting Ẽ4 = {2, 4, 6} and p(6) = 3 also satisfies Lemma 9.

One of the “parameters” in our parameterized approach will be the radius of a transfer
filtration, defined next. The concept is reminiscent of radii of graphs, and roughly measures
“how far” an edge is from the foundation of b vertices with respect to the filtration.

I Definition 11 (Radius of transfer filtration). Let G be a hypergraph admitting a transfer
filtration G0 ⊆ · · · ⊆ Gm = G of type b. Consider the function (whose existence is
guaranteed by Remark 7) r : {0, . . . ,m} → {0, . . . ,m− 1} such that r(0) = 0 and r(i) is the
smallest integer such that |Ei \ V (Gr(i))| = 1 ∀i ∈ {1, . . . ,m}. The radius of the transfer
filtration G0 ⊆ · · · ⊆ Gm = G of type b is the smallest integer β such that rβ(i) = 0 for all
i ∈ {1, . . . ,m} (rβ denotes composition of r with itself β times). The type b radius of G is
the minimum value ρ(G, b) of β over the set of all possible transfer filtrations of type b on G.
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I Example 12 (Running example). For G the 4-cycle from Example 6, since function r

described in Example 8 is non-constant and r(r(i)) = 0 for all i ∈ {1, 2, 3, 4}, the transfer
filtration of Example 6 has radius β = 2.

3.2 The main construction
Let W be a two dimensional vector space over a field K. To discuss k-local constraints
and product state solutions to k-QSAT instances, we now set up somewhat more general
terminology than is standard in the literature. While this level of generality is natural given
the geometric nature of our construction, for simplicity one may set K = C and identify W
with C2 if desired.

I Definition 13. A function Hi : Wn → K is k-local if there exists a subset Ei =
{i1, . . . , ik} ⊆ {1, . . . , n} and a nonzero functional H∗i : W⊗k → K such that Hi(v1, . . . , vn) =
H∗i (vi1 ⊗ · · · ⊗ vik ) for all v1, . . . , vn ∈ W , i.e. Hi acts non-trivially only on a subset of
k indices. A collection H = (H1, . . . ,Hm) of k-local functions H1, . . . ,Hn : Wn → K is
k-local. The corresponding subsets Ei (i.e. on which Hi acts non-trivially) are the edges of a
hypergraph GH with vertices {1, . . . , n}, the interaction graph of H. The product satisfiability
set of k-local collection H is the set SH of all (v1, . . . , vn) ∈ Wn such that vi 6= 0 for all
i ∈ {1, . . . , n} and Hj(v1, . . . , vn) = 0 for all j ∈ {1, . . . ,m}.

I Remark 14. Consider an isomorphism ] between W and its dual W∨ that to each v ∈W
assigns a functional v] ∈W∨ such that v](v) = 0. For instance, if a basis {w1, w2} for W is
chosen then we may define ] by setting ((a1w1 + a2w2)])(b1w1 + b2w2) = a1b2 − a2b1 for all
a1, a2, b1, b2 ∈ K. Given any v1, v2 ∈W , v]1(v2) = 0 if and only if ∃λ ∈ K such that λv2 = v1.

I Definition 15. For N ∈ Z+, the Fibonacci numbers of order N are the entries of the
sequence (F (N)

r ) such that F (N)
r = F

(N)
r−1 + . . .+F

(N)
r−N for all r ≥ N , F (N)

N−1 = 1 and F (N)
r = 0

for all r ≤ N − 2. Note that there exists [27] a monotonically increasing sequence (ψN ) with
values in the real interval [1, 2) such that, for each N ≥ 1, F (N)

r ∼ ψrN as r → +∞.

I Definition 16. A function f onW l with values in a K-vector space has degree (d1, . . . , dl) if
f(λ1v1, . . . , λlvl) = λd1

1 · · ·λ
dl

l f(v1, . . . , vl) for every λ1, . . . , λl ∈ K and every v1, . . . , vl ∈W .

Applying the Decoupling Lemma to an input k-uniform hypergraph G with transfer type
b, we obtain a k-uniform hypergraph G̃ of type b with m = n− b, for m and n the number
of edges and vertices, respectively. The next lemma shows that G̃ is “easier to solve”, in that
any global (product) solution to the k-QSAT system can be derived from a set of assignments
to the b foundation vertices, and conversely, any (product) assignment to the latter can be
extended to a global (product) solution.

I Lemma 17 (Transfer Lemma). Let H = (H1, . . . ,Hn−b) be a k-local collection of functions
Hi : Wn → K whose interaction graph is a k-uniform hypergraph of transfer type b. There
exist non-zero (non-constant) functions, “transfer functions” g1, . . . , gn : W b →W , s.t.:
1. (Global to local assignments) If (v1, . . . , vn) ∈ SH (recall vi 6= 0 by definition of SH) there

exist nonzero λ1, . . . , λn ∈ K such that, ∀i ∈ {1, . . . , n}, λivi = gi(v1, . . . , vb).
2. (Local to global assignments) For any nonzero v1, . . . , vb ∈W there exist vb+1, . . . , vn ∈W

such that (v1, . . . , vn) ∈ SH and vi = gi(v1, . . . , vb) for every i such that gi(v1, . . . , vb) 6= 0.
3. (Degree bounds) gi has degree (di1, . . . , dib) such that dij ≤ F (b)

i for all j ∈ {1, . . . , b}.

Proof. (Sketch) We sketch the proof in the case b = 2 and k = 3. Define g1(v1, v2) = v1
and g2(v1, v2) = v2. Assume G0 ⊆ G1 ⊆ · · · ⊆ Gn−2 = GH is a transfer filtration of type
b, V (Gi) = {1, . . . , i + 2} for all i ∈ {1, . . . , n − 2}. Assume E(Gi) = {E1, . . . , Ei} with
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Ei = {i, i1, i2} for some i1, i2 < i. We construct transfer functions inductively as follows.
First define (g]i (v1, v2))(v) = H∗i−2(gi1(v1, v2) ⊗ gi2(v1, v2) ⊗ v) for all v1, v2, v ∈ W . Then,
given an isomorphism ] between W and W∨ as in Remark 14, define gi : W 2 →W such that
(gi(v1, v2))] = g]i (v1, vb) for all v1, v2 ∈W . The properties of transfer functions stated in the
lemma are proved by straightforward induction. We leave the details to the reader. J

I Example 18 (Running example). Let H = (H1, H2, H3, H4) be a 3-local collection of
functions Hi : W 6 → K whose interaction graph is the 3-uniform chain G̃ described in
Example 10 (obtained by plugging the 4-cycle G of Example 6 into the Decoupling Lemma).
For clarity, Hi is defined on hyperedge Ẽi, where the order of vertices in each edge is fixed by
the transfer filtration chosen; in particular, use ordering Ẽ1 = (1, 2, 3), Ẽ2 = (1, 2, 4), Ẽ3 =
(1, 3, 5), Ẽ4 = (2, 4, 6) with foundation {1, 2}. The proof of Lemma 17 constructs transfer
functions g1, . . . , g6 : W 2 →W which give assignments to qubits 1 through 6, respectively,
as follows. Fixing a basis {w1, w2} of W : g1(v1, v2) = v1, g2(v1, v2) = v2, g3(v1, v2) =
H∗1 (v1 ⊗ v2 ⊗w2)w1 −H∗1 (v1 ⊗ v2 ⊗w1)w2, g4(v1, v2) = H∗2 (v1 ⊗ v2 ⊗w2)w1 −H∗2 (v1 ⊗ v2 ⊗
w1)w2, g5(v1, v2) = H∗3 (v1 ⊗ g3(v1, v2) ⊗ w2)w1 − H∗3 (v1 ⊗ g3(v1, v2) ⊗ w1)w2, g6(v1, v2) =
H∗4 (v2 ⊗ g4(v1, v2)⊗ w2)w1 −H∗4 (v2 ⊗ g4(v1, v2)⊗ w1)w2.

Thus far, we have seen how combining the Decoupling and Transfer Lemmas “blows up”
an input k-QSAT system Π to a larger “decoupled” system Π+ which is easier to solve due
to its decoupled property. Now we wish to relate the solutions of Π+ back to Π. This is
accomplished by the next lemma, which introduces a set of “qualifier” constraints {hs} with
the key property: Any solution to {hs} can be extended to one for Π+, and then mapped
back to a solution for Π. Importantly, the qualifier constraints act only on the b foundation
vertices, as opposed to all n vertices!

I Lemma 19 (Qualifier Lemma). Let H = (H1, . . . ,Hm) be a k-local collection of functions
Hi : Wn → K whose interaction graph is a k-uniform hypergraph of transfer type b such
that m > n − b. Then there exist non-zero (non-constant) functions, called qualifiers,
h1, . . . , hm−n+b : W b → K and π : Wn →W b such that
1. hs(π(SH)) = 0 for all s ∈ {1, . . . ,m− n+ b};
2. hs has degree (ds1, . . . , dsb) with dsr ≤ 2F (b)

ρ(G,b)+b+1 ∀s ∈ [m+ b] and ∀r ∈ [b].

Proof. (Sketch) We sketch the proof in the case b = 2. Given a transfer filtration G0 ⊆
· · · ⊆ Gm = GH of type 2 and radius ρ(GH , 2), the Decoupling Lemma yields a hypergraph
G̃H and a surjection p. Note that G̃H is the interaction graph of a k-local collection
H̃ = (H̃1, . . . , H̃m) of functions H̃i : Wm+2 → K such that H̃∗i = H∗i for each i ∈ {1, . . . ,m}.
Let ∆ : Wn → Wm+2 be such that ∆(v1, . . . , vn) = (ṽ1, . . . , ṽm+2), where ṽi = vp(i) for
all i ∈ {1, . . . ,m + 2}. In particular (v1, . . . , vn) ∈ SH if and only if ∆(v1, . . . , vn) ∈ S

H̃
.

Applying the Transfer Lemma to G̃H yields transfer functions g1, . . . , gm+2 : W 2 → W .
Borrowing notation from the proof of Lemma 9, let {i1, . . . , im−n+2} be the subset of all
i ∈ {1, . . . ,m+2} such that i < i. For each s ∈ {1, . . . ,m−n+2}, define qualifier hs : W 2 → K
such that hs(v1, v2) = (g]is(v1, v2))(gis(v1, v2)) for all v1, v2 ∈W . If (v1, . . . , vn) ∈ SH , then
for every s ∈ {1, . . . ,m − n + 2} there exists λis , λis ∈ K such that λisvp(is) = gis(v1, v2)
and λisvp(is) = gis(v1, v2). Therefore hs(v1, v2) = λisλisv

]
p(is)(vp(is)) = 0 for every s ∈

{1, . . . ,m− n+ 2}. Upon defining π as the composition of ∆ with the projection onto the
first two entries, this proves the first statement of the lemma. The second statement follows
from the Transfer Lemma. J

I Remark 20. To recap, the construction in the proof of Lemma 19 implies that to solve
the k-QSAT instance Π, we: (1) Apply the Decoupling Lemma to blow up Π to decoupled
instance Π+. (2) Apply the transfer functions from the Transfer Lemma to v1, . . . , vb to
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obtain a solution on all m+ b vertices for Π+. Crucially, the qualifier constraints ensure that
all decoupled copies of a vertex v receive the same assignment. (3) Map this solution back
to one on n vertices for Π by “merging” decoupled copies of vertices.

I Example 21 (Running example). Let H = (H1, H2, H3, H4) be a 3-local collection of
functions Hi : W 4 → K whose interaction graph is the 3-uniform cycle of transfer type
2 from Example 6. If p is chosen as in Example 10, then the two qualifier functions are
h1(v1, v2) = (g]5(v1, v2))(g4(v1, v2)) of degree (3, 2) and h2(v1, v2) = (g]6(v1, v2))(g3(v1, v2)) of
degree (2, 3), where g3, g4, g5, g6 so that dsr ≤ 3 ≤ 10 = 2F (2)

5 for each s, r ∈ {1, 2}.

3.3 Generic constraints
Remark 20 outlined the high-level strategy for computing a (product-state) solution to an
input k-QSAT system Π. For this strategy to work, however, we require an assignment to
the foundation of the transfer filtration which (1) satisfies the qualifier functions from the
Qualifier Lemma, and (2) causes the transfer functions gi from the Transfer Lemma to output
non-zero vectors. When are (1) and (2) possible? We now answer this question affirmatively
for a non-trivial class of k-QSAT instances, assuming constraints are chosen generically.
I Remark 22 (Generic constraints). The set of k-local constraints H on k-uniform interaction
hypergraph G is canonically identified with the projective variety XG(K) = (P2k−1(K))m.
(See also [17].) We say a property holds for the generic constraint with interaction graph
G if it holds for every k-local constraint on a Zariski open set of XG(K). In the important
case K = C, this implies in particular that such a property holds for almost all choices of
constraints (with respect to the natural measure on XG(C) induced by the Fubini-Study
metric).

We now show the main theorem of this section (whose proof requires a few other definitions
and a Surjectivity Lemma; see full version). The theorem applies to k-uniform hypergraphs
of transfer type b = n−m+1, which includes non-trivial instances such as the semi-cycle and
the “fir tree” (full version). In words, the theorem says that for any k-uniform hypergraph of
transfer type b = n−m+1 (i.e. there is one qualifier function h1), if the constraints are chosen
generically, then any zero of h1 is the image under the map π (defined in Qualifier Lemma)
of a satisfying assignment to the corresponding k-QSAT instance. The key advantage to this
approach is simple: To solve the k-QSAT instance, instead of solving a system of equations,
we are reduced to solving for the roots of just one polynomial – h1. Moreover, if both the
foundation size b and the radius of the transfer filtration of G are at most logarithmic in m
and n, then h1 has polynomial degree in m and n.

I Theorem 23. Let K be algebraically closed, and let F denote the set of k-uniform hyper-
graphs with n vertices, m edges, and transfer type b = n−m+ 1. If H is a generic k-local
constraint with interaction graph G ∈ F and h1 and π are as in the Qualifier Lemma (Lemma
19), then (h1 ◦ π)−1(0) ∩ SH is nonempty.

I Example 24 (Running example). We illustrate the proof of Theorem 23 by specializing the
construction to the 3-uniform semicycle G3 from Example 6. Then G̃3 is the hypergraph
with vertices {1, 2, 3, 4, 5} and edges Ẽ1 = {1, 2, 3}, Ẽ2 = {1, 2, 4}, Ẽ3 = {1, 3, 5}. Moreover,
the transfer functions g1, . . . , g5 : W 2 →W can be chosen as in Example 18. Let h1 be as in
Example 21 and suppose v1, v2 ∈W are such that h1(v1, v2) = 0. If none of the gi(v1, v2) are
zero, then a solution of the form (v1, v2, v3, v4) can be found by Remark 20. Else, suppose
(say) g3(v1, v2) = 0 (generically, only one gi(v1, v2) will be zero in this case) so that v3 is not
constrained by v1 and v2. With respect to a fixed basis {w′, w′′} ofW , we need to show that v3



M. Aldi, N. de Beaudrap, S. Gharibian, and S. Saeedi 38:13

can be chosen in such a way that (v1, v2, v3, v4), where (according the Transfer Lemma) v4 =
H∗2 (v1⊗v2⊗w′′)w′−H∗2 (v1⊗v2⊗w′)w′′, is a solution. The idea is to modify G̃3 by removing
the edge Ẽ1 and adding the vertex labeled by 3 to the foundation. With this modification,
the Transfer Lemma yields g5(v1, v2, v3) = H∗3 (v1 ⊗ v3 ⊗ w′′)w′ −H∗3 (v1 ⊗ v3 ⊗ w′)w′′. By
the Qualifier Lemma, we conclude that g5(v1, v2, v3) is a non-zero multiple of v4 if and only
if H∗3 (v1⊗ v3⊗w′)H∗2 (v1⊗ v2⊗w′′)−H∗3 (v1⊗ v3⊗w′′)H∗2 (v1⊗ v2⊗w′) = 0. Introducing a
coordinate v3 = w′+xw′′, this last condition is equivalent to the vanishing of a polynomial in
x. While this particular example the polynomial is linear, it is in general of high degree and
the assumption that K is algebraically closed is required in order to guarantee the existence
of a root.

I Remark 25 (Reduction to univariate polynomials). Theorem 23 reduces us to solving a single
polynomial equation, h1(v1, . . . , vb) = 0, which is multi-variate. In this case, we can reduce it
further to a univariate polynomial by fixing arbitrary vectors w1, . . . , wb ∈W and w′b ∈W
linearly independent from wb. Then P (x) = h1(w1, . . . , wb + xw′b) is a univariate polynomial
in K[x], which has a root x ∈ K since K is algebraically closed.
I Remark 26 (Runtimes, and complexity of solving for roots). By Theorem 23 and Remark 25,
solving k-QSAT instances on hypergraphs in F with generic constraints reduces to solving
for the roots of a single univariate polynomial, P (x) ∈ K[x]. This can be accomplished by
combining Theorem 2.7 of [25] and the algorithm of Schönhage [24] (Section 3.4 therein),
which yields numerical approximations to all the roots of P within additive inverse exponential
error in time exponential only in r and b. More specifically, in the full version, we give an
explicit statement of the algorithm and a formal runtime analysis. We find k-QSAT instances
with generic constraints and b = n−m+1 require total time at most (for radius r, foundation
size b, degree d ≤ 2r+b+2, m the number of constraints, n the number of qubits, k ∈ Θ(1) the
locality of the constraints, and p a fixed polynomial which determines the additive accuracy
2−p(n) to which we solve for roots of polynomials)

O(mn) +O
(

22kb(r+b)
)

+O
(
d3 log d+ d2 log

(
9d2p(n)d

))
+O((r + b)2b(r+b+2)). (1)

Thus, the algorithm is polynomial in m, n, and p, and exponential in k (the locality of the
constraints), r (the radius), and b (foundation size).

Before discussing exponential speedups, we tie Theorem 23 back to SDRs:

I Corollary 27. If G is a k-uniform hypergraph of transfer type b = |V (G)| − |E(G)| + 1,
then G has an SDR.

Thus, Theorem 23 constructively recovers the result of [17] (that any k-QSAT instance
with an SDR has a (product-state) solution) in the case when the additional conditions of
Theorem 23 are met (recall [17] works on all graphs with an SDR, but is not constructive).
More generally, we can prove

I Theorem 28. If G is a k-uniform hypergraph of transfer type b ≤ |V (G)| − |E(G)|+ k− 1,
then G has an SDR.

On exponential speedups via Theorem 23. Recall Theorem 23 applies to k-uniform hy-
pergraphs of transfer type b = n −m + 1, such as the semicycle. From a parameterized
complexity perspective, however, most interesting are hypergraphs for which the foundation
size b and filtration radius r satisfy b, r ∈ o(n+m), for which we might obtain an asymptotic
speedup over brute force diagonalization of the Quantum SAT system (note the semicycle
has b ∈ Θ(k), r ∈ Θ(n)). In the full version, we discuss the triangular tiling of the torus and

MFCS 2018



38:14 On Efficiently Solvable Cases of Quantum k-SAT

222221212211122121112111

22211211

21

(0, 2)(0, 1)

Figure 3 Depiction of 3-uniform crash hypergraph C3,3. Generally, Ct,k has an exponential
separation between the filtration radius and foundation size versus number of vertices and edges.

the fir tree as examples with a quadratic separation b, r ∈ Θ(
√
n+
√
m). (Note that for the

runtime of Equation (1), however, a quadratic separation is unfortunately not enough for
an asymptotic speedup.) Here, however, we give a hypergraph with a stronger, exponential,
separation. Namely, we introduce the hypergraph Crash (Figure 3), with r ∈ Θ(t) and
b ∈ O(k), but n,m ∈ Θ((k − 1)t) for k ≥ 3. On such hypergraphs, our parameterized
algorithm hence runs in polynomial time, whereas brute force diagonalization would require
time exponential in m and n.

We define k-uniform hypergraph family Crash, denoted Ct,k, as follows. For k ≥ 2, let
Σ = {1, 2, . . . , k− 1}. For t ≥ 1, Ct,k has vertices V (Ct,k) =

⋃t
j=0 Vj where V0 = {(0, x) |x ∈

Σ} and Vj = Σt−j+1 for all 1 ≤ j ≤ s. The edge set of Ct,k is the union of all edges of the
following three forms:
1. For every x ∈ V1, Ex = {x} ∪ V0;
2. for every 2 ≤ j ≤ t and every x ∈ Vj , Ex = {x} ∪ {xa |, a ∈ Σ};
3. E0 = {(0, 1)} ∪ Vt.
Then Ct,k has a transfer filtration with foundation V0 obtained by first adding all the
edges Ex with x ∈ V1, then adding all the edges Ex with x ∈ V2, etc, with E0 added last.
This transfer filtration has radius t and type k − 1 = |V (Cn,k)| − |E(Cn,k)| + 1, whereas
|V (Cn,k)| , |E(Cn,k)| ∈ Θ((k − 1)t) (full version).
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