
Directed Graph Minors and Serial-Parallel Width

Argyrios Deligkas
Leverhulme Research Centre, University of Liverpool, UK
argyrios.deligkas@liverpool.ac.uk

Reshef Meir
Faculty of Industrial Engineering and Management, Technion, Israel
reshefm@ie.technion.ac.il

Abstract
Graph minors are a primary tool in understanding the structure of undirected graphs, with many
conceptual and algorithmic implications. We propose new variants of directed graph minors
and directed graph embeddings, by modifying familiar definitions. For the class of 2-terminal
directed acyclic graphs (TDAGs) our two definitions coincide, and the class is closed under both
operations. The usefulness of our directed minor operations is demonstrated by characterizing
all TDAGs with serial-parallel width at most k; a class of networks known to guarantee bounded
negative externality in nonatomic routing games. Our characterization implies that a TDAG has
serial-parallel width of 1 if and only if it is a directed series-parallel graph. We also study the
computational complexity of finding a directed minor and computing the serial-parallel width.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis, Math-
ematics of computing → Graph theory

Keywords and phrases directed minors, pathwidth

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.44

Related Version A full version of the paper is available at https://tinyurl.com/y9hcukyz.

1 Introduction

Graph theory has been one of the fundamental tools in computer science since its inception
and in many computational problems the inputs are in a form of a graph, e.g., analysis of
electric circuits and communication networks, and training of neural nets. More important
still, numerous problems from various domains are often solved by reducing them to some
algorithmic problem on a graph. Some prominent examples include search and path-
finding [31]; planning graphs [3]; constraint satisfaction [26]; AND-OR graph [4]; and
inference in Bayesian networks [7].

The structure of these graphs is often crucial to the modeling of the problem. For instance,
the last two examples above use directed acyclic graphs (DAGs), which are also used to
represent belief structures, influence relations and decision diagrams [15]. Restrictions on
the degree, maximum length, or other properties of the underlying graph, can be exploited:
problems that are not guaranteed to have a solution in general may behave better on some
classes of graphs, and many algorithms are guaranteed to have a lower runtime subject to
structural assumptions.

© Argyrios Deligkas and Reshef Meir;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 44; pp. 44:1–44:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:argyrios.deligkas@liverpool.ac.uk
mailto:reshefm@ie.technion.ac.il
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.44
https://tinyurl.com/y9hcukyz
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


44:2 Directed Graph Minors and Serial-Parallel Width

Graph minors
When considering undirected graphs, some of the primary tools of structural analysis use
graph embeddings and graph minors. These are substructures whose exclusion from a graph
indicates certain “simplicity” properties. Some famous results are the characterization of
planar graphs [23], and of graphs with bounded treewidth [32] by excluded minors. In fact,
for undirected graphs there is by now a sound theory of graph minors with many applications;
see, e.g., [25] for a survey, and [8] for algorithmic implications. The culmination of this theory
is the Graph Minor Theorem [40, 33], which states that any class of undirected graphs that
is closed under the minor operation, can be characterized by a finite set of excluded minors.

Perhaps the most important application of graph minor theory to computer science
is its use for developing efficient algorithms on graphs with bounded treewidth and/or
other properties [13, 6, 34]. Graph minors were also recently used to characterize classes
of graphs induced by planning problems to identify potential effects of time-inconsistent
planning [21, 38].

Although the graphs encountered in many theoretical and realistic problems are directed,
there is no single theory of directed graph minors, and results are far more scarce than in the
undirected case. Several papers suggested various definitions of directed minors, embeddings,
and subdivisions, and provided various characterization results [17, 20, 14, 18, 19, 22].
However, each such definition uses different graph operations, some of which we explain
in detail later on. Certain notions of directed minors are only applicable for subclasses of
directed graphs. For example, the definitions in [22] apply only to minors with a certain
structure called “crown”.

In this paper, we will be interested mainly in directed graphs that are acyclic (DAG), or
2-terminal, or both (TDAG). 2-terminal graphs occur in routing [1], circuit analysis [36] and
in many planning problems [21]. Thus understanding the structure of graphs in these classes
is an important challenge.

Paper structure and contribution. In the first part of the paper (Section 3) we define new
notions of graph embedding and graph minor for general directed graphs.1 We show that for
the class of 2-terminal directed acyclic graphs (TDAGs) these two operations exactly reverse
one another. Thus, a TDAG G′ is a directed minor of G if and only if it is embedded in G.
Also, the class of TDAG is closed under directed minor and directed embedding operations.
We thus argue that our definitions provide a sound basis for a theory of directed graph
minors, at least for the class of TDAGs.

To demonstrate the usefulness of our directed minor theory, we apply it in Section 4
to characterize TDAGs with bounded parallel width and serial-parallel width. The parallel
width of a graph corresponds to the maximal cut separating the source from the target.
Serial-parallel width of a graph is a parameter recently introduced in the context of routing
games [28], and it is useful for bounding negative externalities. We describe a finite set of
graphs (generalized variants of the Braess/Wheatstone network) whose exclusion as directed
minors of a TDAG G is necessary and sufficient to determine that G has serial-parallel width
lower than k, for any k.

In Section 5 we settle several computational questions arising from our definitions. Some
proofs are omitted due to space constraints and are available in the full version of this paper
which is attached at the end of the file.

1 To avoid confusion, we should note that the term graph embedding is used in the machine learning
literature to describe embedding of graphs in various topological or metric spaces (e.g., [41]), which is a
very different problem.



A. Deligkas and R. Meir 44:3

2 Preliminaries

For convenience, we will use the letter H for undirected graphs, and the letter G for directed
graphs. We denote a path in graph 〈V, E〉 by (v1, v2, . . . , vm), where for every i ≤ m − 1,
(vi, vi+1) ∈ E. We use dash to abbreviate the path, e.g. a − b − c is an abbreviation to a
path (a, . . . , b, . . . , c); if more than one such path exists, we refer to one of them arbitrarily,
unless stated otherwise.

If nodes x, y are on some path p, then pxy denotes the open subpath of p between nodes
x and y, and [pxy] = x− pxy − y the closed subpath that includes the extreme vertices.

I Definition 1 (2-terminal graph [29, 14]). A 2-terminal [directed] graph G = 〈V, E, s, t〉 is a
[directed] multigraph with no self-loops and two distinguished vertices s, t ∈ V , such that
every vertex and edge belong to at least one [directed] simple s− t path.

A forward-subtree of a directed 2-terminal graph G is a subset of edges that form a
directed tree with a single source. Similarly, a backward-subtree of G is a subset of edges
that form a directed tree with a single target.

A directed 2-terminal graph with no cycles is referred to as TDAG (2-Terminal Directed
Acyclic Graph). The vertices of a TDAG can always be sorted in increasing order, called
topological order, so that all edges, and thus all directed paths, are from vi to vj for some
j > i. In particular, s and t are the first and last vertices, respectively.

I Lemma 2. A DAG is a TDAG if and only if it has a unique source and a unique sink.

3 Directed Graph Minors and Embeddings

In undirected graphs, a graph H ′ is called a minor of H if H ′ can be obtained from H by a
sequence of edge deletions and contractions. As an example of a simple characterization via
exclusion of minors, observe that any graph H (not a multigraph) is acyclic if and only if it
excludes a triangle as a minor.

3.1 Directed minors.
There are several extensions of the notion of a minor to directed graphs. One that is closest
to our needs is the butterfly minor [17], see Def. 3 without the underlined part. However,
neither the class of 2-terminal graphs nor the class of TDAGs is closed under the butterfly
minor operation, since, for example, it may leave an isolated node. We thus modify it by
restricting which edges may be deleted (underlined).

I Definition 3 (Directed minor). A graph G′ is a directed minor (or simply a d-minor)
of a directed graph G, if G′ can be obtained from G by a sequence of the following local
operations:
Deletion. Deleting an edge (a, b) where a has outdegree at least 2, and b has indegree at

least 2.
Backward contraction. Contracting an edge (a, b) where b has indegree 1.
Forward contraction. Contracting an edge (a, b) where a has outdegree 1.

For example, the edge (a, b) in Fig. 1c may not be contracted, but can be backward-
contracted after the edge (s, b) is deleted.

I Lemma 4. The class of directed acyclic graphs is closed under d-minor operations.

MFCS 2018



44:4 Directed Graph Minors and Serial-Parallel Width

s

a

t

b

x

y

(a)

s

u

t

s

u

v

t

(b)

s

a b

t

(c) The Braess graph.

Figure 1 The graph in Fig. 1a is a directed 2-terminal graph (solid edges only). Adding the
dashed edge (x, y), regardless of its direction, results in a non-2-terminal graph. Fig. 1b: The graph
G′ on the left is d-embedded in G on the right, as we can forward-split u into (u, v) (u retains all
incoming edges, and v retains at least one outgoing edge). However, there is no edge we can add or
subdivide to get G from G′ so G′ is not h-embedded in G. The Braess graph GB is on Fig. 1c.
Examples.

3.2 Graph Embeddings
There are various definitions of graph embeddings and subdivisions [12, 29, 14], which can
be summarised together as follows.

I Definition 5 (Homeomorphic embedding). A [directed] graph G′ is h-embedded in (or a
topological minor of) G, if G (or a graph isomorphic to G) can be derived from G′ by a
sequence of the following operations:
Addition. The addition of a new edge joining two existing vertices.
Subdivision. Replacement of an edge (a, b) by two edges (a, x) and (x, b).
Terminal extension. (only for 2-terminal graphs) Addition of a new edge e joining s or t

with a new vertex, which becomes the new source or target.

For an undirected graph H ′, every h-embedding operation maintains various properties
like being a 2-terminal graph. However, for a 2-terminal directed graph G′, an h-embedding
operation may not maintain this property (see Fig. 1a). Also, this set of operations is not
rich enough for our needs. Thus, we propose a new definition for directed embeddings.

I Definition 6 (Directed embedding). A directed graph G′ is d-embedded in a directed graph
G if G′ is isomorphic to G or to a graph derived from G by a sequence of the following
operations:
Addition. Addition of a new edge (a, b), such that there is no path b− a.
Forward split. Replacement of node a 6= t with outdegree greater than zero, by two nodes

a1 and a2 and an edge (a1, a2), where a1 retains all incoming edges, and a2 retains at
least one outgoing edge.

Backward split. Replacement of node a 6= s with indegree greater than zero, by two nodes
a1 and a2 and an edge (a1, a2), where a2 retains all outgoing edges, and a1 retains at
least one incoming edge.

It is not hard to see that a subdivision of an edge (directed or undirected) can be replicated
by splitting one of its end nodes, and a terminal extension can be replicated by splitting the
terminal (backward split of s or forward split of t). We thus allow the operations of edge
subdivision and terminal extension as valid d-embedding operations as well.

I Lemma 7. The classes of 2-terminal directed graphs and directed acyclic graphs are closed
under d-embedding.



A. Deligkas and R. Meir 44:5

In particular, if G′ is a TDAG and G′ is d-embedded in G, then G is a TDAG.
For a 2-terminal directed graph G, the graph G′ is a valid subgraph of G if it is a subgraph

of G and is also 2-terminal. While the next lemma may seem trivial, note that it does not
hold for general 2-terminal directed graphs, since a single edge is not d-embedded in any
cyclic graph.

I Lemma 8. Let G be a TDAG. If G′ is a valid subgraph of G, then G′ is d-embedded in G.

We will need the following lemma later on, but it is useful to know regardless. An
immediate corollary is that embedding steps only add paths and increase the connectivity of
a graph.

I Lemma 9. If G, G′ differ by a single split step of vertex a into (a, b), then there is a one
to one mapping between paths in G′ and paths in G.

3.3 Relations among graph operations
The way we defined them, d-minors are more restrictive than butterfly minors, whereas
d-embeddings are more permissive than h-embeddings when restricting attention to acyclic
graphs; see Fig. 1b. However, d-embeddings are not infinitely richer than h-embeddings. A
vertex is called a hub if it has both an indegree and an outdegree larger than one.

I Proposition 10. Let G′ = 〈V ′, E′〉 and let J ⊆ V ′ be the hubs of G′. There is a set G
of at most 2|J|×|V ′|2 graphs, such that for any G = 〈V, E〉, graph G′ is d-embedded in G if
and only if some graph in G is h-embedded in G. Each such graph has at most |V |(1 + |J |)
vertices.

For the class of TDAGs, the concepts of directed-minor and directed-embedding turn out
to be equivalent.

I Theorem 11. Let G and G′ be TDAGs. G′ is d-embedded in G if and only if G′ is a
d-minor of G.

Intuitively, addition and deletion operations cancel one another, as do split and contraction
operations. This equivalence does not hold for general directed graphs, as added edges may
not qualify for deletion (e.g. if we add an edge (a, b) where a has only incoming edges), and
vice versa (if we remove an edge that is part of a cycle).

Proof. By induction, it is sufficient to show this for G′, G that differ by a single d-embedding
or d-minor operation. “⇒” There are 3 cases, depending on the embedding operation:
1. The addition of edge (a, b) to G′ can be reversed by deleting the same edge from G. Note

that b 6= s as otherwise there is a path in G′ from b = s to a, and similarly a 6= t. Thus,
a has outdegree at least 1 in G′ and at least 2 in G. Similarly, b has indegree at least 2
in G, and thus deleting the edge (a, b) is a valid d-minor step.

2. Suppose that a vertex a in G′ is split to {a, b} with a forward split. Then, since a retains
all incoming edges, b has a single incoming edge (a, b) in G. Thus, we can contract the
edge (a, b) in G using backward contraction.

3. Similarly, a backward split can be reversed with a forward contraction.

“⇐” There are 3 cases, depending on the d-minor operation:
1. If the edge (a, b) is deleted from G, then since G is acyclic there is no path b− a. Thus

adding (a, b) to G′ is a valid d-embedding step.

MFCS 2018



44:6 Directed Graph Minors and Serial-Parallel Width

2. Suppose that the edge (a, b) in G is backward-contracted to some vertex x in G′. This
means that b has a single incoming edge. Thus all edges incoming to the pair {a, b} are
leading to a. Let R(a) and R(b) be the out-neighbors of a and b in G, respectively. Then
by forward-splitting node x in G′ and split the outgoing edges of x according to R(a) and
R(b), we get the graph Gi.

3. Similarly, forward contraction can be reversed with backward split. J

4 Serial-Parallel Width

A cut in a 2-terminal graph G = 〈V, E, s, t〉 is a set of edges C ⊆ E such that there is no
s− t path in E \ C. C is minimal if there is no cut C ′ ( C.

A set of edges S ⊆ E is parallel if there is some C ⊆ E s.t. S ⊆ C, and C is a minimal
cut;S is serial if there is a simple directed s− t path p that contains S.

I Definition 12 (Parallel Width). The parallel width of a directed 2-terminal graph, PW (G),
is the size of the largest parallel set S ⊆ E.

I Definition 13 (Serial-Parallel Width [28]). The serial-parallel width of a directed 2-terminal
graph, SPW (G), is the size of the largest set S ⊆ E that is both serial and parallel.

Intuitively, the parallel width is the size of a maximum s−t cut. For example, the width of an
electric circuit coincides with the parallel width of its underlying TDAG [5]. A serial-parallel
width of k means that there are at least k source-target paths, and some additional path that
edge-intersects all of them. It was shown in [28] that in nonatomic routing games with diverse
players, the negative externality is bounded by the serial-parallel width of the underlying
network.

I Example 14. Consider the Braess graph in Fig. 1c. The minimal s − t cuts are:
{sa, sb}, {at, bt}, {sa, bt}, and {sb, ab, at}. The set {sa, bt} is both parallel and serial, which
means SPW (GB) ≥ 2. The set {sa, at} is serial but not parallel; and {sa, sb, ab} is neither.
In fact, the only parallel set of size greater than 2 is {sb, ab, at}, which is not serial, thus
SPW (GB) < 3. We conclude that the serial-parallel width of the Braess graph is 2.

In contrast, both graphs in Fig. 1b have PW (G) = 2 and SPW (G) = 1.
For any 2-terminal graph G, we have 1 ≤ SPW (G) ≤ |V | − 1. The lower bound is since

any single edge is both parallel and serial, and the upper bound since there is no simple path
of length |V | or more.

I Definition 15. For any k ≥ 2, we define the k-serial-parallel graph GSP (k) as follows. G =
〈V, E, s, t〉, where V = {s, t, a2, . . . , ak, b1, . . . , bk−1}, and E =

⋃k−1
i=2 {(s, ai), (ai, bi), (bi, t),

(bi, ai+1)} ∪ {(s, b1), (ak, t)} (see Fig.2). Furthermore, GP (k) is a TDAG that contains k

internally disjoint s− t paths.

I Definition 16. A graph G is a variant of GSP (k) if we replace the edges {(s, ai)}k
i=2 with

an arbitrary forward-subtree that respects the lexicographic order s, a2, . . . , ak, and replace
the edges {(bi, t)}k−1

i=1 with an arbitrary backward-subtree that respects the lexicographic
order b1, . . . , bk−1, t.

The serial-parallel width of GSP (k) is exactly k, where
{(s, b1), (a2, b2), . . . , (ak−1, bk−1), (ak, t)} are the serial-parallel edges.

The graph GSP (k) was used under different names in [2, 30, 28], usually to derive examples
of games with high equilibrium costs.



A. Deligkas and R. Meir 44:7

b1

a2

b2

a3

b3

a4

b4

a5

s = a1

t = b5

b1

a2

b2

a3

b3

a4

b4

a5

s = a1

t = b5

Figure 2 The left figure is the graph GSP (5), and the right figure is a variant of it. For convenience,
the long path in each graph appears in double lines, and the forward- and backward-trees in thin
lines.

I Lemma 17. If S is a set of parallel [serial] edges in a 2-terminal graph G′, then after any
sequence of d-embedding steps on G′, the set S is still parallel [resp., serial]. In particular, if
G′ is d-embedded in G then PW (G) ≥ PW (G′) and SPW (G) ≥ SPW (G′).

Proof sketch. For serial sets the statement is obvious.
Consider a sequence of J d-embedding operations on G0 = G′ that ends in GJ = G.

Suppose that S is parallel. Let C0 be a minimal cut in G0 = G′ containing S. We show by
induction that after every step j ≤ J there is a minimal cut Cj in Gj , such that Cj−1 ⊆ Cj .

Assume by induction that Cj−1 is a minimal cut in Gj−1. The graph Gj differs from
Gj−1 either by a single added edge, or by a single split vertex. By Lemma 9 split steps do
not change the set of paths, and thus Cj = Cj−1 is still a minimal cut. Thus suppose Gj

differs by an addition step of an edge e = (a, b). Either Cj−1 is still a cut in Gj , or e connects
a node a reachable from s to a node b with a path to t. In the latter case, Cj = Cj−1 ∪ {e}
is a cut. To see that Cj is minimal suppose we remove an edge e′ 6= e. If C ′ = Cj \ {e′} is a
cut in Gj , then C ′ \ {e} = Cj−1 \ {e′} is a cut in Gj−1, in contradiction to the induction
hypothesis that Cj−1 is minimal. In either case, S is still contained in a minimal cut Cj

after every operation, and in particular contained in a minimal cut CJ of GJ = G. J

4.1 Characterization of graphs with bounded serial-parallel width
Before we get to our main theorem we start with a characterization of parallel sets.

I Proposition 18 (Parallel sets characterization). Let G = 〈V, E, s, t〉 be a TDAG, and a
set of k edges S ⊆ E, where for each ei ∈ S, ei = (ai, bi). The following conditions are
equivalent: (1) S is parallel; (2) there is a forward-subtree Ts in G with root s and leafs
{ai}i≤k, and a backward-subtree Tt in G with leaf t and roots {bi}i≤k; (3) there is a sequence
of d-minor operations that deletes or contracts all edges except S.

Proof. “1 ⇒ 2”: Suppose that S is parallel, then it is contained in a minimal cut C. Let
GC be graph G without the edges of C. Let Ts be all vertices reachable from s in GC , and
Tt all vertices from which t is reachable and let G(X) be the subgraph of G induced by
X ⊆ V . Ts ∩ Tt = ∅ as otherwise there is a path from s to t in GC . Also, ai ∈ Ts for all i, as
otherwise the edge ei can be removed from C and C \ {ei} is still a cut. Likewise for bi ∈ Tt.
Since G is a TDAG, and G(Ts) contains a path from s to every ai, then G(Ts) is w.l.o.g. a
forward-tree. Similarly for Tt.

“2⇒ 3”: The union of G(Ts), G(S), and G(Tt) is a valid subgraph G′ of G of which S is
a minimal cut: for any ei there is a path s− ai − bi − t. Since G′ is a valid subgraph of G,
then by Lemma 8 it is d-embedded and thus a d-minor of G. Then, since all nodes in Ts

MFCS 2018



44:8 Directed Graph Minors and Serial-Parallel Width

have indegree at most 1, we can backward-contract all of Ts to a single node s. Similarly, we
forward-contract all of Tt to the node t, and we are left with a graph that has two nodes
whose only edges are S.

“3⇒ 1”: By Theorem 11 we can consider the reverse sequence of d-embedding operations
from G0 = GP (k) to GJ = G. By Lemma 17, the set S is still parallel after every operation
and in particular in G. J

We get a characterization of graphs with bounded parallel width as a simple corollary.

I Theorem 19. For any TDAG G and k ≥ 2, PW (G) ≥ k if and only if GP (k) is a d-minor
of G.

Proof. “⇒”: Consider some parallel set S of size k. By Prop. 18 there is a sequence of
d-minor operations that ends with a graph whose only edges are S. This graph is GP (k).
“⇐”: Follows directly from Lemma 17 and Thm. 11, since PW (GP (k)) = k. J

I Theorem 20 (Main Theorem). For any TDAG G and k ≥ 2, SPW (G) ≥ k if and only if
some variant of GSP (k) is a d-minor of G.

Proof. “⇒”: Consider the graph G. Suppose that SPW (G) ≥ k, then there is a set
S = {e1, . . . , ek} that is part of a minimal cut C between s and t. Denote ei = (ai, bi).

By Prop. 18, G has a forward-subtree Ts with root s and leafs {ai}i≤k, and a backward-
subtree Tt in G with leaf t and roots {bi}i≤k. Also, by definition of the parallel width, there
is a simple s− t path p′ containing S, w.l.o.g. in lexicographic order.

We now describe a series of d-minor steps on G that will result in a variant of GSP (k).
Delete all edges and vertices that are not part of p′, Ts or Tt. This leaves us with a graph G′

that is a valid subgraph of G and thus, by Lemma 8 and Thm. 11, is also a d-minor of G.
p′ is composed of a sequence of subpaths between vertices s, y1, x2, y2 . . . , xk−1, yk−1, xk, t,

where each xi is the first intersection of [p′bi−1ai
] with Ts. Thus xi is an ancestor of (or

coincides with)ai in Ts. Similarly, {yi}k−1
i=1 are on the backward-subtree Tt, where yi is the

last intersection of [p′biai+1
] and Tt. Denote by Ai ⊆ {a2, . . . , ak} all leafs of the subtree of

Ts rooted at xi, and by Bi ⊆ {b1, . . . , bk−1} all roots of the subtree of Tt whose leaf is yi. In
particular, ai ∈ Ai, and aj /∈ Ai for j < i, as otherwise there is a cycle xi − aj − bj − yj − xi.
Likewise, bi ∈ Bi and bj /∈ Bi for j > i.

Note that the indegree of all nodes in Ts is 1, except for {xi}k
i=2 whose indegree is 2 (one

edge from the parent in Ts, and one from the predecessor node on p′), and s whose indegree
is 0. We thus backward-contract all edges in Ts that do not point to some xi. We get a
forward-subtree T̂s:

The root of T̂s is s = x1, and its nodes are {xi}k
i=2;

Each path xi − ai in G′ becomes a single node xi = ai in Ĝ;
The subtree rooted by xi in Ts becomes a subtree in T̂s over nodes Ai maintaining their
order, i.e., children have higher index than their parent. For example, in Fig. 2 on the
right, A4 = {a4, a5} and a4 is a parent of a5.

We similarly contract Tt to T̂t on nodes {yi}.
The last step is to contract every subpath [p′yixi+1

] to a single edge (yi, xi+1). Denote the
union of these edges by F̂ , so that S ∪ F̂ is the path we get after contracting p′.

We get that the contracted graph Ĝ′ = S ∪ F̂ ∪ T̂s ∪ T̂t is isomorphic to a variant of
GSP (k). More specifically, s and t are mapped to themselves, each xi for i = 2, . . . , k in Ĝ is
mapped to ai in GSP (k), and each yi for i = 1, . . . , k− 1 in Ĝ′ is mapped to bi in GSP (k). For
each i = 2, . . . , k, let j be the maximal index such that xj is an ancestor of xi in Ts. If such



A. Deligkas and R. Meir 44:9

j exists, then the parent of ai in Ĝ′ is aj , and otherwise its parent is s = a1. The parent of
ai in GSP (k) is the closest ancestor xj of the node xi in Ts (and similarly for the child of bi).

“⇐”: Follows directly from Lemma 17 and Thm. 11, since SPW for any variant of GSP (k)
is k. J

Since GSP (k) has 2k vertices, we get that SPW (G) ≤ |V |
2 . Another corollary of The-

orem 20 is a generalization of the lower bounds on negative externality from [2, 28]. These
papers show how instances with high externality (depending on k) can be constructed from
any variant of GSP (k). By Theorem 20 this is true for any graph G with SPW (G) ≥ k.

4.2 Series-parallel graphs
Series-parallel 2-terminal graphs have been long studied in contexts such as electric circuits [9],
complexity of graph algorithms [37], and also routing games [29, 11].

I Definition 21 (Series-parallel graph [10, 16]). A [directed] series-parallel graph is a 2-
terminal graph 〈V, E, s, t〉, and is either a single edge (s, t), or is composed recursively by
one of the two following steps:
Serial composition. Combine two [directed] 2-terminal graphs 〈V1, E1, s1, t1〉 , 〈V2, E2, s2, t2〉

serially by merging t1 with s2.
Parallel composition. Combine two [directed] 2-terminal graphs 〈V1, E1, s1, t1〉 ,
〈V2, E2, s2, t2〉 in parallel by merging s1 with s2, and t1 with t2.

Our last result in this section is showing that directed series-parallel graphs (DSP)
characterize exactly the 2-terminal graphs with serial-parallel width of 1.

I Proposition 22 ([14]). Let G be a 2-terminal directed graph. Then G is a DSP if and only
if the directed Braess graph GB is not h-embedded in G.

Proposition 22 and the relation between h-embeddings and d-embeddings yield the
following.

I Theorem 23. Let G be a TDAG, and let k ≥ 2. The following conditions coincide. (1) G

is a directed series-parallel graph. (2) The directed Braess graph GB is not d-embedded in G.
(3) SPW (G) = 1.

Proof. Note that GB has no hubs, as all vertices have at most 3 neighbors. Thus by Prop. 10,
GB is d-embedded in G if and only if it is h-embedded (as |J | = 0, G contains only GB itself).
Thus we get (1)⇐⇒ (2).

(2)⇐⇒(3) follows as a special case from Thm. 20. J

5 Computational Problems

We first ask whether we can efficiently decide when a directed graph is 2-terminal.

I Proposition 24. It is NP-complete to decide if a directed graph is 2-terminal, but in P if
the graph is acyclic.

The next two natural computational questions accept as input 2-terminal graphs G and
G′.
IsDMinor: Is G′ a d-minor of G?
IsDEmbedded: Is G′ d-embedded in G?
The complexity may depend on whether the graphs are TDAGs (in which case the questions
coincide), and also on whether G′ is a fixed graph of size k. We write down some of our
results explicitly, and summarize all of them in Table 1.

MFCS 2018



44:10 Directed Graph Minors and Serial-Parallel Width

Table 1 The computational complexity of problems we study. Results without references either
follow from other results in the table or from known results.
* - IsDEmbedded is easy if the minor G′ is acyclic.

2-terminal graph TDAG
any k fixed k any k fixed k

IsSerial N P-c N P-c [P. 25] P P
IsParallel ? ? ? P [P. 26]
IsSerialParallel N P-c N P-c [P. 25] ? P [P. 26]
MaxSerial N P-c P P P
MaxParallel N P-c ? N P-c [P. 27] P [C. 28]
MaxSerialParallel ? ? ? P [C. 28]
IsDMinor N P-c ? N P-c P
IsDEmbedded N P-c P * N P-c P

5.1 Testing properties of edge sets
We are interested in the following questions on a given 2-terminal graph G = 〈V, E, s, t〉 and
a set S = {(ai, bi)}i≤k of k edges:
IsSerial: Is there an s− t path containing S?
IsParallel: Is S parallel?
IsSerialParallel: Is S both serial and parallel?
Note that since all of these properties are phrased in terms of existence, containment in NP
is trivial.

Our main tool in many of the results, both positive and negative, will be the m-
VertexDisjointPaths problem: given a directed graph G = 〈V, E〉 and m pairs of vertices
{(xi, yi)}i≤m, find whether there are vertex-disjoint paths xi − yi in G for all i ≤ m. This
problem is equivalent to that of checking if a graph G′ is h-embedded in G [12], yet using it
for our problems requires some modifications. The problem is NP-complete even when G is
a DAG [39], and NP-complete for m = 2 in general directed graphs [12]. In contrast, it is in
P when G is a DAG and m is fixed [12].

I Proposition 25. IsSerial and IsSerialParallel are NP-complete even for k = 3.

For k = 1 every instance is a ‘yes’ instance, as any single edge is part of a simple path and
part of a minimal cut.

The most tricky part is the complexity of identifying a parallel set. Using some of the
structural results obtained in the previous sections, we can show the following.

I Proposition 26. IsParallel is inP for TDAGs and fixed k.

Proof. Denote ei = (ai, bi) for any ei ∈ S. Denote A = {a1, . . . , ak} and B = {b1, . . . , bk}.
By Prop. 18, it suffices to decide if G contains a forward-subtree Ts to all of A, and a
backward-subtree Tt from all of B to t. Note that Ts contains at most k − 1 “junctions”,
i.e., nodes with outdegree greater than one (including s). Suppose first that we guess what
these vertices are and what is their hierarchy, and denote them by X = {s = x1, . . . , xk′}
and relations TX . We similarly guess a set Y of junctions in Tt and the relations among
them TY . Our algorithm works as follows:

For every xj with degree dj in TX , split xj into dj + 1 nodes such that one of them x0
j

retains all incoming edges (entry port), and each of the other x
vj

j (exit port) retains all
outgoing edges. vj is the first node from X ∪A downward from xj on Ts.



A. Deligkas and R. Meir 44:11

Connect x0
j to all of x

vj

j .
Similarly split each yj ∈ Y to multiple entry ports and a single exit port.
Find vertex-disjoint paths from each exit port to the entry port of one child in TX or TY ,
respectively. E.g. from x

vj

j to ai if vj = ai for some i ≤ k, or to x0
j′ if vj = xj′ for some

j′ ≤ k′.
Consider the algorithm above. The total number of edges in each tree TX , TY is at most 2k,
so the total number of paths we seek in each iteration is less than 4k. Such paths, if exist,
can be found in time |V |O(k2) due to the result of [12].

If such vertex-disjoint paths exist, then merging back all copies of each junction will
provide us with a disjoint forward-subtree Ts and backward-tree Tt. In the other direction, if
such trees exist and use junctions X and Y respectively, then the paths between every two
junctions are vertex-disjoint except in the junctions themselves. Since we split each junction,
these paths will be fully vertex disjoint. Thus the algorithm will always find trees Ts, Tt

using junctions X, Y , if such exist.
The total number of iterations is the number of ways to select 2k vertices out of |V |,

times the number of trees we can try on each set of size 2k (less than (2k)(2k) by Cayley’s
formula), so in total no more than |V |O(k2) iterations.

The total runtime is |V |O(k2) which is polynomial for fixed k.

In the full version of the paper we have shown a polynomial time algorithm to determine if
S is serial(even polynomial in k for TDAGs). Hence, we can check whether S is serial-parallel
by checking each property separately. J

5.2 Testing width properties of graphs
Given 2-terminal graph G and an integer k we study:
MaxSerial: Is there a serial set S of size ≥ k?
MaxParallel: Is PW (G) ≥ k?
MaxSerialParallel: Is SPW (G) ≥ k?

I Proposition 27. MaxParallel is NP-complete even on TDAGs.

Proof. MaxParallel problem is in NP. Given any 2-terminal directed graph G = 〈V, E〉
and a set S of edges in E we can easily check whether S is an s− t cut; if S is indeed an
s− t cut, then by deleting the edges in S there is no directed path from s to t and this can
be easily verified via Dijkstra algorithm .

To show completeness we reduce from MaxDiCut on DAGs [24]. In an instance of
MaxDiCut problem we are given a directed acyclic graph G = 〈V, E〉 and an integer k, and
we are asked if there is a partition of V into two sets V1 and V2 so that the cardinality of
the edge set C = {(u, v) ∈ E|u ∈ V1, v ∈ V2} is at least k. We construct a 2-terminal DAG
G′ as follows. We add the vertex s and we connect it with every vertex v ∈ V via an edge
directed from s to v. Furthermore, we add the vertex t and we connect it with every vertex
v ∈ V via an edge directed from v to t. Clearly, G′ is a 2-terminal graph. Furthermore, it
is not hard to see that no directed cycles were created. Thus, G′ is a 2-terminal DAG. We
will prove that there exists a directed cut of size k in G if and only if there exists an s− t

directed cut of size |V |+ k in G′.
Firstly, assume that in G there exists a partition of V into V1 and V2 such that the size

of C, i.e., the number of directed edges from V1 to V2, is k. Then, the set S that contains C,
the edges from the vertices of V1 to t and the edges from s to vertices of V2, is a minimal
s− t cut. Observe, |S| = |C|+ |V1|+ |V2| = k + |V |. To see why S is an s− t cut, observe

MFCS 2018



44:12 Directed Graph Minors and Serial-Parallel Width

that there is no path of the form s− v − t with v ∈ V , because one of the edges (s, v) and
(v, t) is missing. The only other way to reach t from s is to go from s to some vertex of V1,
move to V2, and then reach t. But every edge from V1 to V2 is in C, hence there is no such
s− t path. Furthermore, S is minimal since for any edge (u, v) in C there is clearly a path
s−u− v− t in G′ that does not contain any other edge in S, and for any other edge in S \C

there is an s− t path of length three that does not use any other in S.
For the other direction now, consider a minimal s− t cut S in G′ of size |V |+ k. Denote

by A all the vertices accessible from s in E \ S, and by B all other vertices of G. The cut S

contains every edge from A to B, every edge from s to B, and every edge from A to t, so in
particular we get that the size of the cut defined by the partition of V to A and B in G is
exactly |S| − (|A|+ |B|) = |V |+ k − |V | = k. Finally, observe that the partition defined by
A and B is a directed cut for G, because otherwise there would be a directed s− t path and
thus S would not be an s− t cut. J

As an immediate corollary we get that IsDMinor and IsDEmbedded are NP-complete
even on a TDAG. When G′ = 〈V ′, E′〉 is fixed, both problems are in P : we use the algorithm
of [12] for h-embedding as a subroutine on at most 2|V ′|3 graphs due to Proposition 10.

Since by Theorems 19 and 20 finding the parallel (or serial-parallel) width is equivalent
to check for excluded minors whose size is a function of k, we get the following.

I Corollary 28. MaxParallel and MaxSerialParallel are in P for TDAGs and fixed k.

6 Discussion

Many different variations of operations can be used to obtain “simple” graphs that capture
the essential forbidden properties of large classes of graphs: minors, embeddings, subdivisions,
etc. These operations should be rich enough to allow for a small set of forbidden graphs, but
restricted enough to only capture the intended class.

We believe that d-embeddings and d-minors will turn out to be useful, beyond the
applications demonstrated in the paper. For example, in [21] bad graphs for planning are
identified by undirected minors, which mislabels many graphs due to ignoring edge directions.
A tighter characterization could be obtained by d-minors.

It is interesting whether d-embeddings or d-minors can be used to characterize other
classes of directed graphs, such as graphs with bounded triangular width [27] or D-width [35].
Finally, there is the question of whether a directed graph version of the Graph Minor Theorem
holds for d-minors or d-embeddings [19].

References
1 I. Ashlagi, D. Monderer, and M. Tennenholtz. Two-terminal routing games with unknown

active players. Artificial Intelligence, 173(15):1441–1455, 2009.
2 M. Babaioff, R. Kleinberg, and C. Papadimitriou. Congestion games with malicious players.

In EC, pages 103–112. ACM, 2007.
3 A. Blum and M. Furst. Fast planning through planning graph analysis. Artificial intelli-

gence, 90(1-2):281–300, 1997.
4 C. Chang and J. Slagle. An admissible and optimal algorithm for searching AND/OR

graphs. Artificial Intelligence, 2(2):117–128, 1971.
5 B. Codenotti and M. Leoncini. Parallel Complexity of Linear System Solution. World

Scientific, 1991.



A. Deligkas and R. Meir 44:13

6 D. Cohen, M. Cooper, P. Jeavons, and S. Zivny. Tractable classes of binary csps defined
by excluded topological minors. In IJCAI, pages 1945–1951, 2015.

7 G. Cooper. The computational complexity of probabilistic inference using bayesian belief
networks. Artificial intelligence, 42(2-3):393–405, 1990.

8 E. Demaine, M. Hajiaghayi, and K. Kawarabayashi. Algorithmic graph minor theory:
Decomposition, approximation, and coloring. In FOCS, pages 637–646. IEEE, 2005.

9 R.J Duffin. Topology of series-parallel networks. Journal of Mathematical Analysis and
Applications, 10(2):303–318, 1965.

10 D. Eppstein. Parallel recognition of series-parallel graphs. Inf. and Comp., 98(1):41–55,
1992.

11 A. Epstein, M. Feldman, and Y. Mansour. Efficient graph topologies in network routing
games. Games and Economic Behavior, 66(1):115–125, 2009.

12 Fortune, Hopcroft, and Wyllie. The directed subgraph homeomorphism problem. TCS:
Theoretical Computer Science, 10, 1980.

13 V. Gogate and R. Dechter. A complete anytime algorithm for treewidth. In UAI, pages
201–208, 2004.

14 R. Holzman and N. Law-Yone. Network structure and strong equilibrium in route selection
games. Mathematical Social Sciences, 46(2):193–205, 2003.

15 E. Horvitz, J. Breese, and M. Henrion. Decision theory in expert systems and artificial
intelligence. International journal of approximate reasoning, 2(3):247–302, 1988.

16 A. Jakoby, M. Liśkiewicz, and R. Reischuk. Space efficient algorithms for directed series–
parallel graphs. Journal of Algorithms, 60(2):85–114, 2006.

17 T. Johnson, N. Robertson, P. Seymour, and R. Thomas. Directed tree-width. Journal of
Combinatorial Theory, Series B, 82(1):138–154, 2001.

18 T. Johnson, N. Robertson, P. Seymour, and R. Thomas. Excluding a grid minor in planar
digraphs. arXiv:1510.00473, 2015.

19 K. Kawarabayashi and S. Kreutzer. Towards the graph minor theorems for directed graphs.
In ICALP, pages 3–10. Springer, 2015.

20 S. Kintali and Q. Zhang. Forbidden directed minors and kelly-width. arXiv:1308.5170,
2013.

21 J. Kleinberg and S. Oren. Time-inconsistent planning: a computational problem in beha-
vioral economics. In EC, pages 547–564. ACM, 2014.

22 S. Kreutzer. Nowhere crownful classes of directed graphs. In Encyclopedia of Algorithms,
pages 1416–1419. Springer, 2016.

23 Casimir Kuratowski. Sur le probleme des courbes gauches en topologie. Fundamenta
mathematicae, 15(1):271–283, 1930.

24 Michael Lampis, Georgia Kaouri, and Valia Mitsou. On the algorithmic effectiveness of
digraph decompositions and complexity measures. Discrete Optimization, 8(1):129–138,
2011. Parameterized Complexity of Discrete Optimization. doi:10.1016/j.disopt.2010.
03.010.

25 László Lovász. Graph minor theory. Bulletin of the American Mathematical Society,
43(1):75–86, 2006.

26 A. Mackworth. Consistency in networks of relations. In Readings in AI, pages 69–78. Tioga
Publ. Col., 1981.

27 K. Meer. An extended tree-width notion for directed graphs related to the computation of
permanents. Computer Science–Theory and Applications, pages 247–260, 2011.

28 R. Meir and D. Parkes. Playing the wrong game: Bounding negative externalities in diverse
populations of agents. In AAMAS’18, 2018. To appear.

29 I. Milchtaich. Network topology and the efficiency of equilibrium. GEB, 57:321–346, 2006.

MFCS 2018

http://dx.doi.org/10.1016/j.disopt.2010.03.010
http://dx.doi.org/10.1016/j.disopt.2010.03.010


44:14 Directed Graph Minors and Serial-Parallel Width

30 E. Nikolova and N. Stier-Moses. The burden of risk aversion in mean-risk selfish routing.
In EC, pages 489–506, 2015.

31 Ira Pohl. Heuristic search viewed as path finding in a graph. Artificial intelligence, 1(3-
4):193–204, 1970.

32 N. Robertson and P. Seymour. Graph minors. II. algorithmic aspects of tree-width. Journal
of algorithms, 7(3):309–322, 1986.

33 N. Robertson and P. Seymour. Graph minors. xx. wagner’s conjecture. Journal of Com-
binatorial Theory, Series B, 92(2):325–357, 2004.

34 M. Rowland, A. Pacchiano, and A. Weller. Conditions beyond treewidth for tightness of
higher-order lp relaxations. In AI and Statistics, pages 10–18, 2017.

35 M. Safari. D-width: A more natural measure for directed tree width. In MFCS, pages
745–756. Springer, 2005.

36 C. Shannon. The synthesis of two-terminal switching circuits. Bell Labs Technical Journal,
28(1):59–98, 1949.

37 K. Takamizawa, T. Nishizeki, and N. Saito. Linear-time computability of combinatorial
problems on series-parallel graphs. JACM, 29(3):623–641, 1982.

38 P. Tang, Y. Teng, Z. Wang, S. Xiao, and Y. Xu. Computational issues in time-inconsistent
planning. In AAAI, pages 3665–3671, 2017.

39 J. Vygen. NP-completeness of some edge-disjoint paths problems. Discrete Applied Math-
ematics, 61(1):83–90, 1995.

40 K. Wagner. Über eine eigenschaft der ebenen komplexe. Mathematische Annalen,
114(1):570–590, 1937.

41 Z. Wang, J. Zhang, J. Feng, and Z. Chen. Knowledge graph embedding by translating on
hyperplanes. In AAAI, pages 1112–1119, 2014.


	Introduction
	Preliminaries
	Directed Graph Minors and Embeddings
	Directed minors.
	Graph Embeddings
	Relations among graph operations

	Serial-Parallel Width
	Characterization of graphs with bounded serial-parallel width
	Series-parallel graphs

	Computational Problems
	Testing properties of edge sets
	Testing width properties of graphs

	Discussion

