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Abstract
In this paper, we consider an on-line scheduling problem that is motivated by applications such
as car sharing, in which users submit ride requests, and the scheduler aims to accept requests of
maximum total profit using two servers (cars). Each ride request specifies the pick-up time and
the pick-up location (among two locations, with the other location being the destination). The
length of the time interval between the submission of a request (booking time) and the pick-up
time is fixed. The scheduler has to decide whether or not to accept a request immediately at the
time when the request is submitted. We present lower bounds on the competitive ratio for this
problem and propose a smart greedy algorithm that achieves the best possible competitive ratio.
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1 Introduction

In a car-sharing system, a company offers cars to customers for a period of time. Customers
can pick up a car in one location, drive it to another location, and return it there. Car
booking requests arrive on-line, and the goal is to maximize the profit obtained from satisfied
requests. We consider a setting where all driving routes go between two fixed locations,
but can be in either direction. For example, the two locations could be a residential area
and a nearby shopping mall or central business district. Other applications that provide
motivation for the problems we study include car rental, taxi dispatching and boat rental for
river crossings.
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In a real setting, customer requests for car bookings arrive over time, and the decision
about each request must be made immediately, without knowledge of future requests. This
gives rise to an on-line problem that bears some resemblance to interval scheduling, but in
which additionally the pick-up and drop-off locations play an important role: The server that
serves a request must be at the pick-up location at the start time of the request and will
be located at the drop-off location at the end time of the request. A server can serve two
consecutive requests only if the drop-off location of the first request is the same as the pick-up
location of the second request, or if there is enough time to travel between the two locations
otherwise. We allow ‘empty movements’ that allow a server to be moved from one location to
another while not serving a request. Such empty movements could be implemented by having
company staff drive a car from one location to another, or in the future by self-driving cars.

We assume that every request is associated with a profit r > 0 that is obtained if the
request is accepted. When a server moves while not serving a request, a certain cost c,
0 ≤ c ≤ r, is incurred. The goal is to maximize the total profit, which is the sum of the
profits of the accepted requests minus the costs incurred for moving servers while not serving
a request. We refer to this problem as the car-sharing problem. The time interval between the
submission of a request (booking time) and the pick-up time is called the booking interval. In
this paper, we focus on the special case of two servers and assume that the booking interval
for each request is a fixed value a that is the same for all requests. We assume that a ≥ t,
where t is the time to move a server from one location to the other.

In [8], the authors studied the car-sharing problem for the special case of a single server,
considering both the case of fixed booking intervals and the case of flexible booking intervals,
and presented tight results for the competitive ratio. The optimal competitive ratio was
shown to be 2r/(r − c) for fixed booking intervals and (3r − c)/(r − c) for flexible booking
intervals if 0 ≤ c < r, and 1 for fixed booking intervals and proportional to the length of
the booking horizon (the range of allowed booking intervals) for flexible booking intervals if
c = r.

The car-sharing problem belongs to the class of dynamic pickup and delivery problems
surveyed by Berbeglia et al. [2]. The problem that is closest to our setting is the on-line
dial-a-ride problem (OLDARP) that has been widely studied in the literature. In OLDARP,
transportation requests between locations in a metric space arrive over time, but typically it
is assumed that requests want to be served ‘as soon as possible’ rather than at a specific time
as in our problem. Known results for OLDARP include on-line algorithms for minimizing
the makespan [1, 3] or the maximum flow time [7]. Work on versions of OLDARP where
not all requests can be served includes competitive algorithms for requests with deadlines
where each request must be served before its deadline or rejected [9], and for settings with a
given time limit where the goal is to maximize the revenue from requests served before the
time limit [6]. In contrast to existing work on OLDARP, in this paper we consider requests
that need to be served at a specific time that is specified by the request when it is released.
Another related problem is the k-server problem [5, Ch. 10], but in that problem all requests
must be served and requests are served at a specific location.

Off-line versions of car-sharing problems are studied by Böhmová et al. [4]. They show that
if all customer requests for car bookings are known in advance, the problem of maximizing
the number of accepted requests can be solved in polynomial time using a minimum-cost
network flow algorithm. Furthermore, they consider the problem variant with two locations
where each customer requests two rides (in opposite directions) and the scheduler must accept
either both or neither of the two. They prove that this variant is NP-hard and APX-hard.
In contrast to their work, we consider the on-line version of the problem with two servers.
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In Section 2, we define the problem, introduce terminology, and present lower bounds
on the competitive ratio. If 0 ≤ c < r, the lower bound is 2, and if c ≥ r, the lower bound
is 1. In Section 3, we propose a smart greedy algorithm that achieves the best possible
competitive ratio. Section 4 concludes the paper.

2 Problem Formulation and Preliminary Results

2.1 Definitions and Problem Formulation

We consider a setting with only two locations (denoted by 0 and 1) and two servers (denoted
by s1 and s2). The travel time from 0 to 1 is the same as the travel time from 1 to 0 and
is denoted by t. Let R denote a sequence of requests that are released over time. The i-th
request is denoted by ri = (t̃ri , tri , pri) and is specified by the booking time or release time
t̃ri , the start time (or pick-up time) tri , and the pick-up location pri ∈ {0, 1}. We assume
that the booking interval tri − t̃ri is equal to a fixed value a for all requests ri ∈ R, and
we assume that a ≥ t so that an available server always has enough time to travel to the
pick-location of a request. If ri is accepted, the server must pick up the customer at pri
at time tri and drop off the customer at location ṗri = 1− pri , the drop-off location of the
request, at time ṫri = tri + t, the end time (or drop-off time) of the request. We say that
the request ri starts at time tri . For an interval [b, d), we say that ri starts in the interval if
tri ∈ [b, d).

Each server can only serve one request at a time. Serving a request yields profit r > 0.
The two servers are initially located at location 0. If the pick-up location pri of a request ri
is different from the current location of a server and if at least t time units remain before the
start time of ri, the server can move from its current location to pri . We refer to such moves
(which do not serve a request) as empty moves. An empty move takes time t and incurs a
cost of c, 0 ≤ c ≤ r, and we say that ri is accepted with cost in this case. If the server is
already located at pri , we say that ri is accepted without cost. If two requests are such that
they cannot both be served by one server, we say that the requests are in conflict. We do
not require that the algorithm assigns an accepted request to a server immediately, provided
that it ensures that one of the two servers will serve the request. In our setting with fixed
booking intervals, however, it is not necessary for an algorithm to use this flexibility.

We denote the requests accepted by an algorithm by R′, and the i-th request in R′,
in order of request start times, is denoted by r′i. The l-th request which is assigned to sj
(j ∈ {1, 2}) in R′, in order of request start times, is denoted by r′l,j . Suppose r′l,j (j ∈ {1, 2})
is r′i. We say that request r′i is accepted without cost if l = 1 and pr′

l,j
= 0 or if l > 1 and

pr′
l,j

= ṗr′
l−1,j

. Otherwise, r′i is accepted with cost. We denote the profit of serving the
requests in R′ by PR′ . If R′c denotes the subset of R′ consisting of the requests that are
accepted with cost, we have PR′ = r · |R′| − c · |R′c|. The goal of the car-sharing problem is
to accept a set of requests R′ that maximizes the profit PR′ . The problem for two servers
and two locations is called the 2S2L problem.

2.2 Online Optimization and Competitive Analysis

From an online perspective, the requests in R and the number of requests in R are unknown,
and request ri only becomes known at time t̃ri . For any request sequence R, let PRA denote
the objective value produced by an on-line algorithm A, and PR∗ that obtained by an optimal
scheduler OPT that has full information about the request sequence in advance.

MFCS 2018
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The performance of an online algorithm for 2S2L is measured using competitive analysis
(see [5]). The competitive ratio of A is defined as ρA = supR

PR∗
PRA

. We say that A is
ρ-competitive if PR∗ ≤ ρ · PRA for all request sequences R. Let ON be the set of all on-line
algorithms for a problem. A value β is a lower bound on the best possible competitive ratio
if ρA ≥ β for all A in ON . We say that an algorithm A is optimal if there is a lower bound
β with ρA = β.

2.3 Lower Bounds

In this subsection, we present the lower bounds for the 2S2L problem. We use ALG to denote
any on-line algorithm and OPT to denote an optimal scheduler. We refer to the servers of
ALG as s′1 and s′2, and the servers of OPT as s∗1 and s∗2, respectively. The set of requests
accepted by ALG is referred to as R′, and the set of requests accepted by OPT as R∗. For
the case c ≥ r, a lower bound of 1 on the competitive ratio of any algorithm holds trivially.

I Theorem 1. For 0 ≤ c < r, no deterministic on-line algorithm for 2S2L can achieve
competitive ratio smaller than 2.

Proof. Initially, the adversary releases r1 and r2 with r1 = r2 = (t, t+ a, 1). We distinguish
three cases.
Case 1: ALG accepts r1 and r2 (with cost). Note that r1 and r2 are assigned to different

servers as they are in conflict. The adversary releases requests r3 and r4 with r3 = r4 =
(ε+ t, a+ ε+ t, 0) and r5 and r6 with r5 = r6 = (ε+ 2t, a+ ε+ 2t, 1), where 0 < ε < t.
OPT accepts r3, r4, r5 and r6 without cost, but ALG cannot accept any of these requests
as they are in conflict with r1 and r2. We have PR∗ = 4r and PR′ ≤ 2(r − c), and hence
PR∗/PR′ ≥ 2.

Case 2: ALG accepts either r1 or r2. The adversary accepts r1 and r2. We have PR∗ = 2(r−c)
and PR′ ≤ r − c, and hence PR∗/PR′ ≥ 2.

Case 3: ALG does not accept request r1 and r2. In this case, OPT accepts r1 and r2 and
we have PR∗ = 2(r − c) and PR′ = 0, and hence PR∗/PR′ =∞. J

3 Upper Bound

In this section, we propose a Smart Greedy Algorithm (SG) for the 2S2L problem, shown in
Algorithm 1. Intuitively, if a request is acceptable, the algorithm always accepts it if this
increases the profit by r, and it accepts the request only if it starts at least t time units later
than the end time of the latest previously accepted request if the profit increase is positive
but less than r. The algorithm uses the following notation:

R′i is the set of requests accepted by SG before ri is released, together with the server to
which each request is assigned. R′i ∪ {ri,s′j} denotes the union of R′i and {ri,s′j}, where
ri,s′

j
represents the request ri assigned to server s′j , j ∈ {1, 2}, without conflict.

rni,j denotes the latest request which was assigned to s′j , j ∈ {1, 2}, before ri is released.
(If there is no such request, take rni,j to be a dummy request with drop-off location 0 and
drop-off time 0.)
ri is acceptable if and only if ∃j ∈ {1, 2} : tri − ṫrni,j ≥ t if pri = prn

i,j
, and tri − ṫrni,j ≥ 0 if

pri 6= prn
i,j
.

rni is the latest request that was accepted before ri is released. Note that rni = rni,j with
j = arg max{trn

i,j
| j = 1, 2}. Note that ṫrn1 = 0.
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Algorithm 1 Smart Greedy Algorithm (SG).
Input: two servers, requests arrive over time with fixed booking interval a.
Step: When request ri arrives, accept ri and assign it to the most economical server s′j if ri is
acceptable and PR′

i
∪{ri,s′

j
}−PR′i = r (j ∈ {1, 2}), or if ri is acceptable, PR′

i
∪{ri,s′

j
}−PR′i > 0

(j ∈ {1, 2}) and tri − ṫrni ≥ t;

If an accepted request is acceptable by both servers, it is assigned to the most economical
server, which is the server s′j with j = arg max{PR′

i
∪{ri,s′

j
} | j = 1, 2}. If PR′

i
∪{ri,s′1

} =
PR′

i
∪{ri,s′2

}, s′j is chosen as the server which has accepted rni (or arbitrarily in case rni
does not exist).

We use OPT to denote an optimal scheduler. We refer to the servers of SG as s′1 and
s′2, and the servers of OPT as s∗1 and s∗2, respectively. For an arbitrary request sequence
R = (r1, r2, r3, . . . , rn), note that we have tri ≤ tri+1 for 1 ≤ i < n because tri − t̃ri = a

is fixed. Denote the requests accepted by OPT by R∗ = {r∗1 , r∗2 , . . . , r∗k∗} and the requests
accepted by SG by R′ = {r′1, r′2, ...r′k}, indexed in order of non-decreasing start times. Denote
the requests accepted by SG which start at location 0 by R′0 = {r′01 , r′02 , ...r′0k0

} and the
requests accepted by SG which start at location 1 by R′1 = {r′11 , r′12 , ...r′1k1

}. Denote the
requests accepted by OPT which start at location 0 by R∗0 = {r∗01 , r∗02 , ...r∗0k∗0

} and the
requests accepted by OPT which start at location 1 by R∗1 = {r∗11 , r∗12 , ...r∗1k∗1

}. Note that
R′0

⋃
R′1 = R′ and R∗0

⋃
R∗1 = R∗.

I Theorem 2. Algorithm SG is 1-competitive for 2S2L if c = r.

Proof. If c = r, accepting a request with cost yields profit r − c = 0. Without loss of
generality, we can therefore assume that both SG and OPT only accept requests without
cost. Observe that this means that both the SG servers (s′1 and s′2) and the OPT servers
(s∗1 and s∗2) accept requests with alternating pick-up location, starting with a request with
pick-up location 0. Therefore each server can accept at most one more request which starts
at location 0 over the requests which start at location 1. That means when OPT accepts w
requests which start at location 1, OPT at least accepts w requests which start at location
0, and accepts at most w + 2 requests which start at location 0 (k∗1 ≤ k∗0 ≤ k∗1 + 2).

Considering the condition that requests r∗0j and r∗1j are both assigned to the same
server for j < i and r∗0i and r∗1i are assigned to different servers (without loss of gener-
ality, suppose r∗0i is assigned to s∗1 and r∗1i is assigned to s∗2), we reassign r∗1i to server
s∗1, reassign all requests in R∗\({r∗01 , r∗02 , ..., r∗0i+1}

⋃
{r∗11 , r∗12 , ..., r∗1i }) that are assigned

to s∗1 (denote the set of these requests by <1) to server s∗2, and reassign all requests in
R∗\({r∗01 , r∗02 , ..., r∗0i+1}

⋃
{r∗11 , r∗12 , ..., r∗1i }) that are assigned to s∗2 (denote them by <2) to

server s∗1. As each server accepts requests with alternating pick-up location, starting with a
request with pick-up location 0, we have ṫr′0

i
≤ tr′1

i
(for all i ≤ k′1) and ṫr∗0

i
≤ tr∗1

i
(for all

i ≤ k∗1). That means for i ≤ k∗1 , r∗0i and r∗1i are not in conflict, and hence reassigning r∗1i to
server s∗1 is valid. Observe that s∗2 must serve a request which has pick-up location 0 and
starts during interval [tr∗0

i
, tr∗1

i
− t] and that request is r∗0i+1. Because tr∗0

i+1
≤ tr∗1

i
− t and the

first request in <1, denoted by ro, has pick-up location 1 and starts after tr∗1
i
, ro and r∗0i+1

are not in conflict. As any two consecutive requests in <1 are not in conflict, reassigning
all requests of <1 to server s∗2 is valid. Note that tr∗0

i+2
≥ ṫr∗1

i
as OPT accepts at most two

requests which start during interval [tr∗0
i
, tr∗1

i
] (during interval [0, tr∗1

i
] if i = 1) and have

pick-up location 0. Because the first request (rl) in <2 starts at 0 and starts after ṫr∗1
i
, rl and

MFCS 2018
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r∗1i are not in conflict. As any two consecutive requests in <2 are not in conflict, reassigning
all requests of <2 to server s∗1 is valid. From this it follows that R∗ is still a valid solution
with the same profit after the reassignment. For simplification of the analysis, we reassign
the requests in R∗ and R′ based on the above process until both request r∗0i and r∗1i are
assigned to the same server for i ≤ k∗1 , and r′0i and r′1i are assigned to the same server for
i ≤ k′1. Note that this reassignment does not affect the validity of R∗ and R′, and PR∗ and
PR′ do not change.

We claim that R∗ can be transformed into R′ without reducing its profit, thus showing
that PR∗ = PR′ . As SG accepts the request rγ which is the first acceptable request that
starts at location 0 and the request rδ which is the first acceptable request that starts at
location 1 (rδ is the first request in R that starts at location 1 and starts after ṫrγ ), it is
clear that tr′01

≤ tr∗0
1

and tr′11
≤ tr∗1

1
. If r′01 6= r∗01 , we can replace r∗01 by r′01 in R∗0, and if

r′11 6= r∗11 , we can replace r∗11 by r′11 in R∗1.
Now assume, that R′ and R∗ are identical with respect to 2i requests (i requests in R∗0

and i requests R′0, and i requests in R∗1 and i requests in R′1, where 1 ≤ i ≤ k∗1), and both
requests r∗0j and r∗1j are assigned to the same server for 1 ≤ j ≤ i.

Without loss of generality, suppose r′1i is assigned to s∗1 by OPT and r′1i is assigned to s′1
by SG. Observe that s∗1 and s′1 are at location 0 at time ṫr′1

i
. We claim that s∗2 (resp. s′2)

is at location 0 at time ṫr′1
i−1

and ṫr′1
i−1
≤ tr∗0

i+1
. If r′1i−1 is assigned to s∗2 (resp. s′2), s∗2 (resp.

s′2) is at location 0 at time ṫr′1
i−1

and ṫr′1
i−1

= min{ṫr′1
i−1
, ṫr′1

i
} ≤ tr∗0

i+1
. If r′1i−1 is assigned to

s∗1 (resp. s′1), we have ṫr′1
i−1
≤ tr′0

i
≤ tr∗0

i+1
. Observe that OPT does not accept any request

which starts in period (tr′1
i−1
, ṫr′1

i−1
). As both SG servers, s′1 and s′2, and OPT servers, s∗1

and s∗2, accept requests with alternating pick-up location and starting with a request with
pick-up location 0, either the pick-up location of the request ro (where ro is the last request
which starts at or before tr′1

i−1
and is assigned to s∗2 (resp. s′2)) is 1, or s∗2 (resp. s′2) does not

accept any request which starts before tr′1
i−1

. Hence s∗2 (resp. s′2) is at location 0 at time ṫro
(≤ ṫr′1

i−1
), or at time 0 if ro does not exist, and stays at that location until time ṫr′1

i−1
.

If there are two requests r∗0i+1 and r∗1i+1, as s′2 is at location 0 at ṫr′1
i−1

and ṫr′1
i−1
≤ tr∗0

i+1
,

there must also be two requests r′0i+1 and r′1i+1 with tr′0
i+1
≤ tr∗0

i+1
and tr′1

i+1
≤ tr∗1

i+1
, as SG

could accept r∗0i+1 and r∗1i+1 by s′2. We can replace r∗0i+1 and r∗1i+1 by r′0i+1 and r′1i+1 in R∗0 and
R∗1. If k∗0 = k∗1 , the claim thus follows by induction.

If k∗0 6= k∗1 (k∗0 − k∗1 = 1 or k∗0 − k∗1 = 2), then R∗1 is already identical to R′1, and the first
k∗1 requests of R∗0 are already identical to the first k∗1 requests of R′0 by the argument above.
If k∗0 − k∗1 = 1, there is a request r∗0k∗1 +1. As s′2 is at location 0 at ṫr′1

k∗1−1
and ṫr′1

k∗1−1
≤ tr∗0

k∗1 +1
,

there must also be one request r′0k∗1 +1 with tr′0
k∗1 +1

≤ tr∗0
k∗1 +1

, as SG could accept r∗0k∗1 +1 by s′2.

We can replace r∗0k∗1 +1 by r′0k∗1 +1 in R∗0, making R∗0 identical to R′0. If k∗0 − k∗1 = 2, there
are two requests r∗0k∗1 +1 and r∗0k∗1 +2. Note that r∗0k∗1 +1 and r∗0k∗1 +2 must be assigned to different
servers by OPT as k∗0 − k∗1 = 2. Recall that s∗1 is at location 0 at ṫr′1

k∗1
, and s∗2 is at location

0 at ṫr′1
k∗1−1

. Hence tr∗0
k∗1 +1

≥ ṫr′1
k∗1−1

and tr∗0
k∗1 +2

≥ ṫr′1
k∗1
. As s′1 is at location 0 at ṫr′1

k∗1
and s′2 is

at location 0 at ṫr′1
k∗1−1

, there must also be two requests r′0k∗1 +1 and r′0k∗1 +2 with tr′0
k∗1 +1

≤ tr∗0
k∗1 +1

and tr′0
k∗1 +2

≤ tr∗0
k∗1 +2

, as SG could accept r∗0k∗1 +1 by s′2, and accept r∗0k∗1 +2 by s′1. We can replace

r∗0k∗1 +1 and r∗0k∗1 +2 by r′0k∗1 +1 and r′0k∗1 +2 in R∗0, making R∗0 identical to R′0. As R∗1 is already
identical to R′1, R∗ is identical to R′ because R∗ = R∗0

⋃
R∗1 and R′ = R′0

⋃
R′1. J

I Theorem 3. Algorithm SG is 2-competitive for 2S2L if c = 0.
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Figure 1 c = 0, |R′| = k > 1, 1 ≤ i ≤ k.

Proof. We partition the time horizon [0,∞) into intervals (periods) that can be analyzed
independently. Period i, for 1 < i < k, is the interval [max{ṫr′

i−1
, tr′

i
}, max{ṫr′

i
, tr′

i+1
}).

Period 1 is [0,max{ṫr′1 , tr′2}), and period k is [max{ṫr′
k−1

, tr′
k
},∞). (If k = 1, there is only

a single period [0,∞).) Set tr′
k+1

= ∞ and ṫr′0 = 0. Let R∗i denote the set of requests
accepted by OPT that start in period i, for 1 ≤ i ≤ k. For all 1 ≤ i ≤ k, if max{ṫr′

i−1
, tr′

i
} ≥

max{ṫr′
i
, tr′

i+1
}, R∗i = ∅, and hence PR∗

i
= 0. Denote R′i = {r′i} for 1 ≤ i ≤ k.

For 1 < i ≤ k, r′i starts at time tr′
i
and the first request of R∗i starts during the interval

[max{ṫr′
i−1
, tr′

i
},max{ṫr′

i
, tr′

i+1
}) (or the interval [max{ṫr′

k−1
, tr′

k
},∞) if i = k). Furthermore,

r′1 is the first acceptable request in R, and so the first request of R∗1 cannot start before tr′1 .
Hence, for all 1 ≤ i ≤ k, the first request in R∗i cannot start before tr′

i
.

We bound the competitive ratio of SG by analyzing each period independently. As
R′ =

⋃
iR
′
i and R∗ =

⋃
iR
∗
i , it is clear that PR∗/PR′ ≤ α follows if we can show that

PR∗
i
/PR′

i
≤ α for all i, 1 ≤ i ≤ k. For 1 ≤ i ≤ k we distinguish the following cases in order

to bound PR∗
i
/PR′

i
. As R′i = {ri}, PR′

i
= r (because c = 0). We need to show PR∗

i
≤ 2r.

Case 1: k = 1. Without loss of generality, suppose r′1 is assigned to s′1. We claim R∗ contains
at most one request (r′1). Assume that R∗ contains at least two requests and the second
request is ro. As s′2 is at location 0 at time 0, ro would be acceptable to SG by s′2. Hence,
there cannot be such a request ro that starts in period [0,∞). As we have shown that
OPT can accept at most one request (r′1), we get that PR∗

PR′
≤ r

r < 2.
Case 2: k > 1. For all 1 ≤ i ≤ k, we claim that R∗i contains at most two requests (each

server accepts at most one request). Assume that s∗q (q ∈ {1, 2}) accepts at least two
requests. Let ro be the second request (in order of start time) which is assigned to s∗q in
R∗i . We distinguish three sub-cases. Without loss of generality, suppose r′i is assigned to
s′1.

Case 2.1: ṫr′
i
> tr′

i+1
(Fig. 1.a shows an example). If i > 1, the period i, which is the period

[max{ṫr′
i−1
, tr′

i
}, max{ṫr′

i
, tr′

i+1
}) = [max{ṫr′

i−1
, tr′

i
}, ṫr′

i
), has length less than t. If i = 1,

note that the period [tr′1 ,max{ṫr′1 , tr′2}) = [tr′1 , ṫr′1) has length less than t and no request
of R∗1 can start before tr′1 during period 1, [0,max{ṫr′1 , tr′2}). Therefore, each server can
accept at most one request that starts during period i, and hence R∗i contains at most
two requests.

Case 2.2: ṫr′
i
≤ tr′

i+1
and ṫr′

i−1
> tr′

i
(Fig. 1.b shows an example). Observe that s′1 is at pr′

i

at tr′
i
. As the drop-off time of r′i−1 is later than the pick-up time of r′i, r′i−1 must be

assigned to s′2 and we have that s′2 is at ṗr′
i−1

at ṫr′
i−1

. As the first request in R∗i does
not start before ṫr′

i−1
, we have tro ≥ ṫr′i−1

+ t. This means that ro would be acceptable
to s′2. Therefore, SG accepts either ro or another request starting before tro , and that
request becomes r′i+1. Hence, there cannot be such a request ro that starts in period i.

Case 2.3: ṫr′
i
≤ tr′

i+1
and ṫr′

i−1
≤ tr′

i
(Fig. 1.c shows an example). As the drop-off time of

r′i−1 is earlier than the pick-up time of r′i, s′2 is at the drop-off location of the request
rl (where rl denotes the latest request that starts at or before tr′

i
and is assigned to s′2;
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if there is no such request, let rl be a dummy request with ṫrl = 0 and ṗrl = 0) at ṫrl
and ṫrl ≤ ṫr′i−1

≤ tr′
i
. Observe that s′2 does not accept any request which starts during

period [tr′
i
, ṫr′

i
), s′2 does not start to move before tr′

i
for serving the next request, and

hence s′2 is at ṗrl (0 or 1) at tr′
i
. As the first request in R∗i does not start before tr′

i
, we

have tro ≥ tr′i + t. This means that ro would be acceptable to s′2. Therefore, SG accepts
either ro or another request starting before tro , and that request becomes r′i+1. Hence,
there cannot be such a request ro that starts in period i.

As we have shown that R∗i contains at most two requests, we get that PR∗
i
≤ 2r. Since

PR′
i

= r, we have PR∗
i
/PR′

i
≤ 2r/r = 2. The theorem follows. J

I Lemma 4. When 0 < c < r, for all 1 < i ≤ k, one server of SG is at pr′
i
at tr′

i
and the

other server of SG is at 0 or 1 at max{ṫr′
i−1
, tr′

i
}.

Proof. For 1 < i ≤ k, without loss of generality, suppose r′i is assigned to s′1. Observe that
s′1 is at pr′

i
at tr′

i
.

If ṫr′
i−1

> tr′
i
, then r′i−1 must be assigned to s′2, and hence s′2 is at ṗr′

i−1
(0 or 1) at ṫr′

i−1

(= max{ṫr′
i−1
, tr′

i
} ).

If ṫr′
i−1
≤ tr′

i
, then s′2 is at 0 or 1 at the drop-off time t′ (t′ ≤ ṫr′

i−1
) of the latest request

which is assigned to s′2 and starts at or before tr′
i
. (If no such request exists, s′2 is at 0 at

t′ = 0.) Suppose rf is the first request that starts at or after tr′
i
and is served by s′2. If rf does

not exist, then s′2 does not move after ṫr′
i−1

, and s′2 is at 0 or 1 at max{ṫr′
i−1
, tr′

i
} (ṫr′

i−1
≤ tr′

i
).

If rf exists and rf is accepted with cost, then trf − ṫr′i ≥ t (ṫr′i ≤ ṫrnf ) because SG accepts a
request rj with cost only if the condition trj − ṫrnj ≥ t is satisfied. That means s′2 starts an
empty move at or after ṫr′

i
. If rf exists and rf is accepted without cost, then s′2 starts to

move at or after tr′
i
(trf ≥ tr′i). Therefore s

′
2 is at 0 or 1 at tr′

i
(= max{ṫr′

i−1
, tr′

i
}). J

I Lemma 5. When 0 < c < r, for all 1 ≤ i ≤ k, if r′i is accepted with cost, then one server
of SG is at pr′

i
at tr′

i
and the other server of SG is at ṗr′

i
at tr′

i
.

Proof. For 1 ≤ i ≤ k, without loss of generality, suppose r′i is assigned to s′1. Observe that
s′1 is at pr′

i
at tr′

i
.

If i = 1, then pr′1 = 1 and s′2 is at ṗr′1 (location 0) at time 0. Suppose ro is the first
request which is assigned to s′2. If pro = 0, then s′2 starts to move at tro (≥ tr′1), and hence
s′2 is at 0 at tr′

i
. If pro = 1, then tro ≥ ṫr′1 + t because by definition SG accepts a request rj

with cost only if the condition trj − ṫrnj ≥ t is satisfied. Observe that s′2 starts to move at
tro − t (≥ ṫr′1), and hence s′2 is at 0 at tr′

i
.

If 1 < i ≤ k, s′2 is at 0 or 1 at max{ṫr′
i−1
, tr′

i
} according to Lemma 4. As r′i is accepted with

cost, tr′
i
− ṫr′

i−1
≥ t because SG accepts a request rj with cost only if the condition trj− ṫrnj ≥ t

is satisfied, and hence max{ṫr′
i−1
, tr′

i
} = tr′

i
. We prove this lemma by contradiction. Assume

that s′2 is at pr′
i
at tr′

i
. Note that r′i is acceptable to SG by s′2 without cost, and hence SG

assigns r′i to s′2 because SG always assigns a request to the most economical server (Recall
Algorithm 1). This contradicts our initial assumption that r′i is assigned to s′1. J

I Lemma 6. When 0 < c < r, for all 1 < i < k, if r′i is accepted without cost and r′i+1 is
accepted with cost, then one server of SG is at pr′

i
at tr′

i
, and the other server of SG is at ṗr′

i

at max{ṫr′
i−1
, tr′

i
}.

Proof. For 1 < i < k, without loss of generality, suppose r′i is assigned to s′1. Observe that
s′1 is at pr′

i
at tr′

i
. According to Lemma 4, s′2 is at 0 or 1 at max{ṫr′

i−1
, tr′

i
}. As r′i+1 is

accepted with cost, tr′
i+1
− ṫr′

i
≥ t because SG accepts a request rj with cost only if the
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condition trj − ṫrnj ≥ t is satisfied. Note that pr′
i+1

= pr′
i
, otherwise r′i+1 is acceptable to SG

by s′1 without cost.
We prove this lemma by contradiction. Assume that s′2 is at pr′

i
at max{ṫr′

i−1
, tr′

i
}.

Suppose rf = r′i+1. Observe that pr′
f

= pr′
i
and tr′

f
≥ ṫr′

i
+ t ≥ max{ṫr′

i−1
, tr′

i
}. From this

it follows that r′f is acceptable to SG by s′2 without cost, and hence SG assigns r′f to s′2
because SG always assigns a request to the most economical server (Recall Algorithm 1).
This contradicts the statement that r′i+1 is accepted with cost. J

I Lemma 7. When 0 < c < r, for all 1 < i < k, if r′i is accepted without cost and r′i+1 is
accepted with cost, then r′i−1 must be accepted without cost.

Proof. For 1 < i < k, without loss of generality, suppose r′i−1 is assigned to s′1. Observe
that s′1 is at pr′

i−1
at tr′

i−1
(and is at ṗr′

i−1
at ṫr′

i−1
). We prove this lemma by contradiction.

Assume r′i−1 is accepted with cost. According to Lemma 5, s′2 is at ṗr′
i−1

at tr′
i−1

. As r′i is
accepted without cost, the pick-up location of r′i is ṗr′i−1

. Suppose rf = r′i+1. Observe that
trf ≥ ṫr′i + t (because rf is accepted with cost) and prf = pr′

i
= ṗr′

i−1
(otherwise, the server

that has served r′i could accept rf without cost).
If r′i is assigned to s′1, then s′2 does not accept any request which starts in period

[max{ṫr′
i−2
, tr′

i−1
}, trf ), and hence s′2 is at ṗr′

i−1
in period [max{ṫr′

i−2
, tr′

i−1
}, trf − t). If r′i is

assigned to s′2, then s′1 does not accept any request which starts in period [ṫr′
i−1
, trf ), and

hence s′1 is at ṗr′
i−1

in period [ṫr′
i−1
, trf − t). As rf is released and t̃rf = trf − a ≤ trf − t,

server s′q (for a q ∈ {1, 2}) is at ṗr′
i−1

and does not plan to move, hence rf is acceptable to
SG by s′q without cost. From this it follows that rf will be accepted by SG without cost
because SG always assigns a request to the most economical server. This contradicts the
statement that r′i+1 is accepted with cost. J

For simplification of the analysis, we suppose that the OPT servers make an empty
movement only if they do so in order to serve a request ri such that the pick-up location of
ri is the pick-up location of the previous request which is assigned to the same server, or
the pick-up location is 1 if ri is the first request which is assigned to a server s∗q (q ∈ {1, 2}),
and we suppose that for all such requests ri (ri ∈ R∗), the OPT server serving ri makes an
empty movement between tri − t and tri . This simplification does not affect the validity of
R∗, and does not decrease PR∗ .

I Theorem 8. Algorithm SG is 2-competitive for 2S2L if 0 < c < r.

Proof. Assume that SG accepts k (k = |R′|) requests. We partition the time horizon [0,∞)
into k′ (1 ≤ k′ ≤ k) intervals (periods) that can be analyzed independently. We partition
the time horizon based on Algorithm 2, in such a way that all requests in the first period
are accepted with cost (if r′1 is accepted with cost), and exactly one request of each period
(except the first period if r′1 is accepted with cost), the first request of each period, is accepted
without cost. Denote the request number in R′ (in order of starting time) of the first request
of period j (1 ≤ j ≤ k′) by lj . For 1 < j < k′, SG j period is [tr′

lj
, tr′

lj+1
). SG 1 period is

[0, tr′
l2

) and SG k′ period is [tr′
l
k′
,∞) (If k′ = 1, there is only a single period [0,∞)). We

set lk′+1 = k + 1, tr′0 = 0 and tr′
k+1

= ∞. Let R′j (1 ≤ j ≤ k′) denote the set of requests
accepted by SG that start in SG j period. For 1 < j ≤ k′, if tr′

lj−1
= tr′

lj
, let R′j−1 = {r′lj−1

}
and R′j = {r′lj , r

′
lj+1..., r

′
lj+1−1}. Note that there are exactly lj+1− lj (lj+1− lj ≥ 1) requests

in R′j (1 ≤ j ≤ k′), and R′j = {r′lj , r
′
lj+1..., r

′
lj+1−1}.

For all 1 < j ≤ k′, we have the following property: if |R′j | = 1, then r′lj is accepted
without cost; if |R′j | > 1, then r′lj is accepted without cost, the remaining requests in R′j
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Algorithm 2 Partition Rule (PR).
Initialization: k = |R′|, k′ = 1, j = 1, lj = j for all 1 ≤ j ≤ k.

For i = 2 to k
if r′i is accepted without cost then
j = j + 1, lj = i;

k′ = j, lk′+1 = k + 1.

Figure 2 An example of tj .

are accepted with cost. For j = 1, if r′1(= r′l1) is accepted with cost, all requests in R′1
are accepted with cost; if r′1 is accepted without cost, then except r′1 all requests in R′1 are
accepted with cost.

I Definition 9. For 1 < j ≤ k′, tj is defined as follows: tj = tr′
lj

if r′lj−1 is accepted with
cost, r′lj is accepted without cost, ṫr′

lj−1
> tr′

lj
and ṗr′

lj−1
= pr′

lj
(Fig. 2 shows an example).

Otherwise, tj = max{ṫr′
lj−1

, tr′
lj
}. tk′+1 = tr′

k+1
=∞.

For 1 < j ≤ k′, tj+1 = tr′
lj+1

or tj+1 = max{ṫr′
lj+1−1

, tr′
lj+1
}, and tj = tr′

lj
or tj =

max{ṫr′
lj−1

, tr′
lj
}. Because tr′

lj
≤ tr′

lj+1
and ṫr′

lj−1
≤ tr′

lj+1
(if r′lj−1 and r′lj are assigned to

the same server, then ṫr′
lj−1
≤ tr′

lj
; and if r′lj−1 and r′lj are assigned to different servers, then

ṫr′
lj−1
≤ tr′

lj+1
), tj ≤ tj+1 if tj = max{ṫr′

lj−1
, tr′

lj
} and tj+1 = tr′

lj+1
. As tj ≤ max{ṫr′

lj−1
, tr′

lj
}

and tj+1 ≥ tr′
lj+1

, we have that tj ≤ tj+1 always holds. For 1 < j ≤ k′, OPT period j is
defined as [tj , tj+1). OPT period 1 is defined as [0, t2) (If k′ = 1, there is only a single period
[0,∞)). Let R∗j denote the set of requests accepted by OPT that start in OPT period j,
and R∗i = ∅ if tj = tj+1.

For all 1 < j ≤ k′, r′lj starts at time tr′
lj

and the first request of R∗j starts during
the interval [tj , tj+1) where tj = tr′

lj
or tj = max{ṫr′

lj−1
, tr′

lj
} (recall the definition of tj).

Furthermore, r′1 is the first acceptable request in R, and so the first request of R∗1 cannot
start before r′1. Hence, for all 1 ≤ j ≤ k′, the first request in R∗j cannot start before tr′

lj
.

We bound the competitive ratio of SG by analyzing each period independently. As
R′ =

⋃k′

j=1 R
′
j and R∗ =

⋃k′

j=1 R
∗
j , it is clear that PR∗/PR′ ≤ α follows if we can show that

PR∗
j
/PR′

j
≤ α for all 1 ≤ j ≤ k′. For 1 ≤ j ≤ k′, if tj = tj+1, then R∗i = ∅ and hence PR∗

i
= 0.

Otherwise, for 1 ≤ j ≤ k′ we distinguish the following cases in order to bound PR∗
j
/PR′

j
.

Case 1: j = 1. The first request of SG period 1 is r′1. Without loss of generality, suppose r′1
is assigned to s′1.

Case 1.1: r′1 is accepted with cost. Note that all requests in R′j are accepted with cost and
PR′1 = (l2 − l1)(r − c) (if k′ = 1, then PR′ = k(r − c)). Observe that pr′

i
= 1 (1 ≤ i < l2)

and all requests in R′1 are assigned to s′1 by the definition of Algorithm 1. As r′l2−1 is
accepted with cost, one server is at pr′

l2−1
at tr′

l2−1
(and this server is at ṗr′

l2−1
at ṫr′

l2
−1),
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and the other server is at ṗr′
l2−1

at tr′
l2−1

(by Lemma 5). As r′l2 is accepted without cost,
we have ṗr′

l2−1
= pr′

l2
. If k′ = 1, t2 =∞. If k′ > 1, then t2 = tr′

l2
: if ṫr′

l2−1
> tr′

l2
, t2 = tr′

l2
because pr′

l2
= ṗr′

l2−1
, r′l2−1 is accepted with cost and r′l2 is accepted without cost; if

ṫr′
l2−1
≤ tr′

l2
, t2 = max{ṫr′

l2−1
, tr′

l2
} = tr′

l2
. As s′2 does not accept any request which starts

before tr′
l2

and s′2 would not accept any request with cost which starts in period [tr′
l2
, ṫr′

l2
)

(Recall that Algorithm 1 accepts a request rj with cost only if trj − ṫrnj ≥ t is satisfied.),
s′2 is at 0 in period [0, tr′

l2
]. We claim that R∗j only contains requests which start at 1.

Otherwise, the request is acceptable to SG by s′2 without cost. Assume that R∗j contains
a request ro which start at location 0. As tro ≤ t2 = tr′

l2
, ro is acceptable to SG by s′2

without cost. Therefore, SG accepts either ro or another request starting before tro , and
that request becomes r′l2 . Hence, there cannot be such a request ro in R∗j .
Note that each server of OPT does not accept any request which starts in period [0, tr′1).
For all l1 ≤ i ≤ l2 − 2, we claim that each server of OPT can accept at most one request
which starts during period [tr′

i
, tr′

i+1
) (l1 ≤ i ≤ l2 − 2), or period [tr′

l2−1
, t∗) (if k′ > 1,

t∗ = tr′
l2
; if k′ = 1, t∗ = tr′

k
+ 2t). Assume that s∗q (q ∈ {1, 2}) accepts at least two

requests in one of those periods. Let ro be the second request (in order of start time)
which is assigned to s∗q and starts during period [tr′

i
, tr′

i+1
) (l1 ≤ i ≤ l2 − 2) or period

[tr′
l2−1

, t∗). As the request does not start before tr′
i
(l1 ≤ i ≤ l2−1), we have tro ≥ tr′i +2t.

ro is acceptable to SG with cost. Therefore, SG accepts either ro or another request
starting before tro , and that request becomes r′i+1 (l1 ≤ i < l2). Hence, there cannot be
such a request ro that starts during period [tr′

i
, tr′

i+1
) (l1 ≤ i ≤ l2−2) or period [tr′

l2−1
, t∗).

Therefore OPT can accept at most 2(l2− l1) (= 2(l2− 2− l1 + 1 + 1)) requests that start
during period [tr′1 , t

∗).
When k′ = 1, we claim that OPT does not accept any request which starts in period
[t∗,∞). Without loss of generality we assume that OPT accepts at least one request.
Let ro be the request in R∗1 that starts during period [t∗,∞). As tro ≥ tr′

k
+ 2t. ro is

acceptable to SG. Therefore, SG accepts either ro or another request starting before tro ,
and that request becomes r′k+1. Hence, there cannot be such a request ro that starts in
period [t∗,∞).
As we have shown that R∗j contains at most 2(l2 − l1) requests and the pick-up locations
of them are the same (location 1), we get that PR∗

j
≤ 2(l2 − l1)(r − c). Since PR′

j
=

(l2 − l1)(r − c), we have PR∗
j
/PR′

j
≤ 2(l2 − l1)(r − c)/((l2 − l1)(r − c)) = 2.

Case 1.2: r′1 is accepted without cost. If k = 1, then k′ = 1, s′2 is at 0 in period [0,∞). If
k > 1, we claim that r′2 is also accepted without cost. Assume that r′2 is accepted with
cost, we have tr′2 − ṫr′1 > t because Algorithm 1 accepts a request rj with cost only if
trj − ṫrnj ≥ t is satisfied. If pr′2 = 0, r′2 is acceptable to SG by s′2 without cost; if pr′2 = 1,
r′2 is acceptable to SG by s′1 without cost. Therefore s′2 must be accepted by SG without
cost because by definition (see Algorithm 1) SG always assigns a request to the most
economical server. This contradicts the assumption that r′2 is accepted with cost. Observe
that t2 = max{ṫr′1 , tr′2} (Recall from the definition of t2 that t2 = tr′2 only if r′1 is accepted
with cost), |R′1| = 1 and hence PR′1 = r. As s′2 does not accept any request which starts
before tr′2 and s′2 would not accept any request with cost which starts in period [tr′2 , ṫr′2)
(Recall that Algorithm 1 accepts a request rj with cost only if trj − ṫrnj ≥ t is satisfied.),
s′2 is at 0 in period [0, tr′2 ].
We claim that R∗1 contains at most two requests (each server serves at most one request).
Assume that s∗q (q ∈ {1, 2}) accepts at least two requests. Let ro be the second request
(in order of start time) which is assigned to s∗q in R∗1. As the first request in R∗1 does not
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start before tr′1 , we have tro ≥ tr′1 + t. If pro = ṗr1 , ro is acceptable to SG by s′1 without
cost; if pro = pr1 , ro is acceptable to SG by s′2 without cost. Hence, there cannot be such
a request in R∗1. Since PR′1 = r, we have PR∗1 ≤ 2r, and hence PR∗1/PR′1 ≤ 2r/r = 2.

Case 2: j > 1 (1 < j ≤ k′). The first request of SG period j is r′lj .Without loss of generality,
suppose r′lj is assigned to s′1. We distinguish the following cases based on |R′j |.

Case 2.1: |R′j | = 1. Note that r′lj is accepted without cost. We distinguish two sub-cases.
(1) ṫr′

lj
> tr′

lj+1
. Because r′lj (= r′lj+1−1) is accepted without cost, tj+1 = max{ṫr′

lj
, tr′

lj+1
} =

ṫr′
lj

(Recall that tj+1 = tr′
lj+1

only if r′lj+1−1 is accepted with cost by the definition
of tj+1). As OPT period j [tj , tj+1) has length less than t (tj = max{ṫr′

lj−1
, tr′

lj
} or

tj = tr′
lj
), each server of OPT can accept at most one request in R∗j , and hence R∗j

contains at most two requests.
(2) ṫr′

lj
≤ tr′

lj+1
(tr′

lj+1
=∞ if j = k′). Note that tj+1 = tr′

lj+1
. There are two sub-cases

based on the position of s′2 at max{ṫr′
lj−1

, tr′
lj
} (recall that by Lemma 4, s′2 is at pr′

lj

or ṗr′
lj

at time max{ṫr′
lj−1

, tr′
lj
}).

The first sub-case is that s′2 is at pr′
lj

at max{ṫr′
lj−1

, tr′
lj
}. We claim that R∗j contains at

most two requests (each server serves at most one request). Assume that s∗q (q ∈ {1, 2})
accepts at least two requests. Let ro be the second request (in order of start time) which is
assigned to s∗q in R∗j . As the requests in R∗j do not start before tr′

lj
, we have tro ≥ tr′lj + t.

If pro = ṗr′
lj
, ro is acceptable to SG by s′1 without cost; if pro = pr′

lj
, ro is acceptable to

SG by s′2 without cost. Therefore, SG accepts either ro or another request starting before
tro , and that request becomes r′lj+1. Hence, there cannot be such a request ro that starts
in OPT period j.
The second sub-case is that s′2 is at ṗr′

lj
at max{ṫr′

lj−1
, tr′

lj
}. Note that tj = max{ṫr′

lj−1
, tr′

lj
}

(Recall from the definition of tj that tj = tr′
lj

only if ṫr′
lj−1

> tr′
lj

and ṗr′
lj−1

= pr′
lj

are
satisfied. From this it follows that r′lj−1 must be assigned to s′2, that means s′2 is at ṗr′

lj−1

(= pr′
lj
) at ṫr′

lj−1
(= max{ṫr′

lj−1
, tr′

lj
}). This contradicts the initial assumption that s′2

is at ṗr′
lj

at max{ṫr′
lj−1

, tr′
lj
}.). We claim that R∗j contains at most two requests (each

server serves at most one request) and the pick-up locations of these two requests are
pr′
lj
. Assume that R∗j contains a request ri which starts at ṗr′

lj
. As the requests in R∗j

cannot start before tj (tj = max{ṫr′
lj−1

, tr′
lj
}), ri is acceptable to s′2 (without cost) as

s′2 is at ṗr′
lj

at max{ṫr′
lj−1

, tr′
lj
}. Hence, there cannot be such a request ri that starts in

OPT period j. Next assume that s∗q (q ∈ {1, 2}) accepts at least two requests. Let ri
and ro be the first and second request (in order of start time) which is assigned to s∗q in
R∗j . As the requests in R∗j do not start before tr′

lj
and the pick-up location of ri and ro

both are pr′
lj
, we have tro ≥ tr′lj + 2t. If pro = ṗr′

lj
, ro is acceptable to SG by s′1 without

cost; if pro = pr′
lj
, ro is acceptable to SG by s′2 with cost. Therefore, SG accepts either

ro or another request starting before tro , and that request becomes r′lj+1
(if it is accepted

without cost) or gets added to R′j (if it is accepted with cost). Hence, there cannot be
such a request ro that starts in OPT period j.
As we have shown that R∗j contains at most two requests, we get that PR∗

j
≤ 2r. Since

PR′
j

= r, we have PR∗
j
/PR′

j
≤ 2r/r = 2.

Case 2.2: |R′j | > 1. Note that r′lj is accepted without cost and r′lj+1 is accepted with cost. We
have that s′2 is at ṗr′

lj
at max{ṫr′

lj−1
, tr′

lj
} by Lemma 6, and that r′lj−1 is accepted without
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cost by Lemma 7. Hence, tj = max{ṫr′
lj−1

, tr′
lj
} (recall from the definition of tj that

tj = tr′
lj

only if r′lj−1 is accepted with cost). As r′lj+1−1 is accepted with cost, one server
is at pr′

lj+1−1
at tlj+1−1 (and this server is at ṗr′

lj+1−1
at ṫr′

lj+1−1
), and the other server

is at ṗr′
lj+1−1

at tr′
lj+1−1

(Recall Lemma 5). As r′lj+1
is accepted without cost, we have

ṗr′
lj+1−1

= pr′
lj+1

. If ṫr′
lj+1−1

> tr′
lj+1

(1 ≤ j < k′), tj+1 = tr′
lj+1

according to the definition
of ts (1 ≤ s ≤ k′). If ṫr′

lj+1−1
≤ tr′

lj+1
(1 ≤ j < k′), tj+1 = max{ṫr′

lj+1−1
, tr′

lj+1
} = tr′

lj+1
.

Hence, tj+1 = tr′
lj+1

(1 ≤ j < k′). Observe that if j = k′, tj+1 = tr′
lj+1

=∞.
We claim that R∗j only contains requests which start at pr′

lj
. Assume that R∗j contains a

request ri which starts at ṗr′
lj
. As the first request in R∗j cannot start before tj , we have

tri ≥ tj = max{ṫr′
lj−1

, tr′
lj
}. As s′2 is at ṗr′

lj
at max{ṫr′

lj−1
, tr′

lj
} and s′2 does not accept

any request which starts in period [max{ṫr′
lj−1

, tr′
lj
}, tri), and hence ri is acceptable to

SG by s′2 without cost. This contradicts the property of R′j that except r′lj all requests
in R′j are accepted with cost. Hence, there cannot be such a request ri that starts in
OPT period j.
We claim that each server of OPT can accept at most one request which starts in period
[tj , tr′

lj+1
), or period [tr′

i
, tr′

i+1
) (lj+1 ≤ i ≤ lj+1−2), or period [tr′

lj+1−1
, t∗) (if 1 ≤ j < k′,

t∗ = tr′
lj+1

; if j = k′, t∗ = tr′
k

+ 2t). Assume that s∗q (q ∈ {1, 2}) accepts at least two
requests in one of these periods. Let ro be the second request (in order of start time)
which is assigned to s∗q and starts in one of these periods. As the requests in R∗j that
start in one of these periods do not start before the corresponding tr′

i
(lj ≤ i ≤ lj+1 − 1)

and have the same pick-up location pr′
lj
, we have tro ≥ tr′lj + 2t. ro is acceptable to SG

with cost. Therefore, SG accepts either ro or another request starting before tro , that
request becomes r′i+1 (lj ≤ i ≤ lj+1 − 2), or we get a contradiction to r′lj+1−1 being the
last request that is accepted with cost and starts in period [tr′

lj+1−1
, t∗) (i = lj+1 − 1).

Hence, there cannot be such a request ro that starts in period [tj , tr′
lj+1

), or period
[tr′

i
, tr′

i+1
) (lj + 1 ≤ i ≤ lj+1 − 1). Therefore OPT can accept at most 2(lj+1 − lj)

(= 2(lj+1 − 2− (lj + 1) + 1 + 2)) requests that start in period [tr′
lj+1

, t∗).
When j = k′, we claim that OPT does not accept any request which starts in period
[t∗,∞). Without loss of generality we assume that OPT accepts at least one request.
Let ro be the request in R∗j which starts during period [t∗,∞). As tro ≥ tr′

k
+ 2t, ro is

acceptable to SG with cost. Therefore, SG accepts either ro or another request starting
before tro , and that request becomes r′k+1. Hence, there cannot be such a request ro that
starts in period [t∗,∞).
As we have shown that R∗j contains at most 2(lj+1− lj) requests and the pick-up locations
of them are the same (pr′

lj
), we get that PR∗

j
≤ 2r + 2(lj+1 − lj − 1)(r − c). Since

PR′
j

= r + (lj+1 − lj − 1)(r − c), we have PR∗
j
/PR′

j
≤ (2r + 2(lj+1 − lj − 1)(r − c))/(r +

(lj+1 − lj − 1)(r − c)) = 2.
Because PR∗

j
/PR′

j
≤ 2 holds for all 1 ≤ j ≤ k′, we have PR∗/PR′ ≤ 2. This proves the

theorem. J

4 Conclusion

We have studied an on-line problem with two servers and two locations that is motivated
by applications such as car sharing and taxi dispatching. The upper bounds for the 2S2L
problem are all achieved by the smart greedy algorithm. A number of directions for future

MFCS 2018
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work arise from this work. If there are k servers, does a kind of greedy algorithm still work
well? Furthermore, it would be interesting to extend our results to the case of more than
two locations. It would be interesting to determine how the constraints on the servers affect
the competitive ratio for the general car-sharing problem with k servers and m locations.
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