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—— Abstract

In this paper we study recently introduced conflict version of the classical FEEDBACK VERTEX
SET (FVS) problem. For a family of graphs F, we consider the problem F-CF-FEEDBACK
VERTEX SET (F-CF-FVS, for short). The F-CF-FVS problem takes as an input a graph G, a
graph H € F (where V(G) = V(H)), and an integer k, and the objective is to decide if there
is a set S C V(G) of size at most k such that G — S is a forest and S is an independent set in
H. Observe that if we instantiate F to be the family of edgeless graphs then we get the classical
FVS problem. Jain, Kanesh, and Misra [CSR 2018] showed that in contrast to FVS, F-CF-FVS
is W[1]-hard on general graphs and admits an FPT algorithm if F is the family of d-degenerate
graphs. In this paper, we relate F-CF-FVS to the INDEPENDENT SET problem on special
classes of graphs, and obtain a complete dichotomy result on the Parameterized Complexity of
the problem F-CF-FVS, when F is a hereditary graph family. In particular, we show that
F-CF-FVS is FPT parameterized by the solution size if and only if F+CLUSTER IS is FPT
parameterized by the solution size. Here, F4+CLUSTER IS is the INDEPENDENT SET problem
in the (edge) union of a graph G € F and a cluster graph H (G and H are explicitly given).
Next, we exploit this characterization to obtain new FPT results as well as intractability results
for F-CF-FVS. In particular, we give an FPT algorithm for F+CLUSTER IS when F is the
family of K, j-free graphs. We show that for the family of bipartite graph B, B-CF-FVS is
WI[1]-hard, when parameterized by the solution size. Finally, we consider, for each 0 < € < 1, the
family of graphs F., which comprise of graphs G such that |E(G)| < [V(G)|*7¢, and show that
F-CF-FVS is W[1]-hard, when parameterized by the solution size, for every 0 < e < 1.
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1 Introduction

FEEDBACK VERTEX SET (FVS) is one of the classical NP-hard problems that has been
subjected to intensive study in algorithmic paradigms that are meant for coping with NP-hard
problems, and particularly in the realm of Parameterized Complexity. In this problem, given
a graph G and an integer k, the objective is to decide if there is S C V(G) of size at most k
such that G — S is a forest. F'VS has received a lot of attention in the realm of Parameterized
Complexity. This problem is known to be in FPT, and the best known algorithm for it runs
in time O(3.618 7)) [8, 13]. Several variant and generalizations of FEEDBACK VERTEX
SET such as WEIGHTED FEEDBACK VERTEX SET [2, 7|, INDEPENDENT FEEDBACK VERTEX
SET [1, 14], CONNECTED FEEDBACK VERTEX SET [15], and SIMULTANEOUS FEEDBACK
VERTEX SET [3, 6] have been studied from the viewpoint of Parameterized Complexity.

Recently, Jain et al. [12] defined an interesting generalization of well-studied vertex
deletion problems — in particular for FVS. The CF-FEEDBACK VERTEX SET (CF-FVS, for
short) problem takes as input graphs G and H, and an integer k, and the objective is to
decide if there is a set S C V(G) of size at most k such that G — S is a forest and S is an
independent set in H. The graph H is also called a conflict graph. Observe that the CF-FVS
problem generalizes classical graph problems, FEEDBACK VERTEX SET and INDEPENDENT
FEEDBACK VERTEX SET. A natural way of defining CF-FVS will be by fixing a family F
from which the conflict graph H is allowed to belong. Thus, for every fixed F we get a new
CF-FVS problem. In particular we get the following problem.

F-CF-FEEDBACK VERTEX SET (F-CF-FVS) Parameter: k
Input: A graph G, a graph H € F (where V(G) = V(H)), and an integer k.
Question: Is there a set S C V(G) of size at most k, such that G — S is a forest and S
is an independent set in H?
Jain et al. [12] showed that F-CF-FVS is W[1]-hard when F is a family of all graphs and
admits FPT algorithm when the input graph H is from the family of d-degenerate graphs

and the family of nowhere dense graphs. The most natural question that arises here is the
following.

Question 1: For which graph families F, 7-CF-FVS is FPT?

Our Results. Starting point of our research is Question 1. We obtain a complete dichotomy
result on the Parameterized Complexity of the problem F-CF-FVS (for hereditary F) in
terms of another well-studied problem, namely, the INDEPENDENT SET problem — the wall
of intractability. Towards stating our results, we start by defining the problem F+CLUSTER
IS, which is of independent interest. A cluster graph is a graph formed from the disjoint
union of complete graphs (or cliques).

F+CLUSTER INDEPENDENT SET (F+CLUSTER IS) Parameter: k
Input: A graph G € F, a cluster graph H (where V(G) = V(H)), and an integer k,
such that H has exactly k connected components.

Question: Is there a set S C V(G) of size k, such that S is an independent set in both
G and in H?
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We note that F+CLUSTER IS is the INDEPENDENT SET problem on the edge union of
two graphs, where one of the graphs is from the family of graphs F and the other one is a
cluster graph. Here, additionally we know the partition of edges into two sets, F, and Fs
such that the graph induced on F; is in F and the graph induced on Ej5 is a cluster graph.
We note that F+CLUSTER IS has been studied in the literature for F being the family
of interval graphs (with no restriction on the number of clusters) [18]. They showed the
problem to be FPT. Recently, Bentert et al. [4] generalized the result from interval graphs to
chordal graphs. This problem arises naturally in the study of scheduling problems. We refer
the readers to [18, 4] for more details on the application of F+CLUSTER IS.

We are now ready to state our results. We show that F-CF-FVS is in FPT if and only if
F+CLUSTER IS is in FPT, where F is a family of hereditary graphs. We obtain a complete
characterization of when the F-CF-FVS problem is in FPT, for hereditary graph families. To
prove the forward direction, i.e., showing that F+CLUSTER IS is in FPT implies F-CF-FVS
is in FPT, we design a branching based algorithm, which at the base case generates instances
of F+CLUSTER IS, which is solved using the assumed FPT algorithm for #+CLUSTER IS.
Thus, we give “fpt-turing-reduction” from F-CF-FVS to F+CLUSTER IS. It is worth to
note that there are very few known reductions of this nature. To show that F-CF-FVS
is in FPT implies that F+CLUSTER IS is in FPT, we give an appropriate reduction from
F+CLUSTER IS to F-CF-FVS, which proves the statement. We note that our result that
F-CF-FVS is in FPT implies F+CLUSTER IS is in FPT, holds for all families of graphs.

Next, we consider two families of graphs. We first design FPT algorithm for the corres-
ponding F+CLUSTER IS problem. For the second class we give a hardness result. First, we
consider the problem Kj; j-free4-CLUSTER IS, which is the /4+-CLUSTER IS problem for the
family of K; j-free graphs. We design an FPT algorithm for Kj; ;-free4+CLUSTER IS based on
branching together with solving the base cases using a greedy approach. This adds another
family of graphs, apart from interval and chordal graphs, such that F4+CLUSTER IS is FPT.

We note that K j-free graphs have at most n?~¢ edges, where n is the number of vertices
in the input graph and e = €(,5) > 0 [17, 11]. We complement our FPT result on K ;-
free+CLUSTER IS with the W[1]-hardness result of the F+CLUSTER IS problem when
F is the family of graphs with at most n2~¢ edges. This result is obtained by giving an
appropriate reduction from the problem MULTICOLORED BICLIQUE, which is known to be
W([1]-hard [8, 10]. We also show that the F+CLUSTER IS problem is W[1]-hard when F is the
family of bipartite graphs. Again, this result is obtained via a reduction from MULTICOLORED
BICLIQUE.

2 Preliminaries

In this section, we state some basic definitions and terminologies from Graph Theory that
are used in this paper. For the graph related terminologies which are not explicitly defined
here, we refer the reader to the book of Diestel [9].

Graphs. Consider a graph G. By V(G) and E(G) we denote the set of vertices and edges
in G, respectively. When the graph is clear from the context, we use n and m to denote the
number of vertices and edges in the graph, respectively. For X C V(G), by G[X] we denote
the subgraph of G with vertex set X and edge set {uv € E(G) | u,v € X}. Moreover, by
G — X we denote graph G[V(G)\ X]. For v € V(G), Ng(v) denotes the set {u | uv € E(G)},
and Ng[v] denotes the set Ng(v) U {v}. By dego(v) we denote the size of Ng(v). A path
P = (v1,...,v,) is an ordered collection of vertices, with endpoints v; and v,, such that
there is an edge between every pair of consecutive vertices in P. A cycle C = (v1,...,v,) is
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a path with the edge viv,. Consider graphs G and H. We say that G is an H-free graph if
no subgraph of G is isomorphic to H. For u,v € V(G) NV (H), we say that v and v are in
conflict in G with respect to H if uv € E(H).

3 W-hardness of F-CF-FVS Problems

This section is devoted to showing W-hardness results for /-CF-FVS problems for certain
graph classes, F. In Section 3.1, we show one direction of our dichotomy result. That is, if
for a family of graphs F, F+CLUSTER IS is not in FPT when parameterized by the size of
solution then F-CF-FVS is also not in FPT when parameterized by the size of solution. This
result is obtained by giving a parameterized reduction from F+CLUSTER IS to F-CF-FVS.
Next, we show that the problem F-CF-FVS is W[1]-hard, when parameterized by the size
of solution, where F is the family of bipartite graphs (Section 3.2) or the family of graphs
with sub-quadratic number of edges (Section 3.3). These results are obtained by giving an
appropriate reduction from the problem MULTICOLORED BICLIQUE, which is known to be
WI[1]-hard [8, 10].

3.1 F+Cluster IS to F-CF-FVS

In this section, we show that, for a family of graphs F, if F+CLUSTER IS is not in FPT,
then F-CF-FVS is also not in FPT (where the parameters are the solution sizes). To prove
this result, we give a parameterized reduction from F+CLUSTER IS to F-CF-FVS.

Let (G, H, k) be an instance of F+CLUSTER IS. We construct an instance (G', H', k')
of F-CF-FVS as follows. We have H' = G, k' = k, and V(G") = V(H). Let C be the set
of connected components in H. Recall that we have |C| = k. For each C' € C, we add a
cycle (in an arbitrarily chosen order) induced on vertices in V(C') in G’. This completes the
description of the reduction. Next, we show the equivalence between the instance (G, H, k)
of F+CLUSTER IS and the instance (G', H', k') of F-CF-FVS.

» Lemma 1. (G, H,k) is a yes instance of F+CLUSTER IS if and only if (G', H', k') is a
yes instance of F-CF-FVS.

Proof. In the forward direction, let (G, H, k) be a yes instance of F+CLUSTER IS, and S
be one of its solution. Since H' = G, therefore, S is an independent set in H’. Let C be the
set of connected components in H. As S is a solution, it must contain exactly one vertex
from each C' € C. Moreover, G’ comprises of vertex disjoint cycles for each C' € C. Thus S
intersects every cycle in G’. Therefore, S is a solution to F-CF-FVS in (G', H', k).

In the reverse direction, let (G, H', k") be a yes instance of F-CF-FVS, and S be one of
its solution. Recall that G’ comprises of k vertex disjoint cycles, each corresponding to a
connected component C' € C, where C is the set of connected components in H. Therefore,
S contains exactly one vertex from each C € C. Also, H = G, and therefore, S is an
independent set in G. This implies that S is a solution to F+CLUSTER IS in (G, H, k). <

Now we are ready to state the main theorem of this section.

» Theorem 2. For a family of graphs F, if F+CLUSTER IS is not in FPT when parameterized
by the solution size, then F-CF-FVS is also not in FPT when parameterized by the solution
size.
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3.2 W][1]-hardness on Bipartite Graphs

In this section, we show that for the family of bipartite graphs, B, the B-CF-FVS problem is
WI[1]-hard, when parameterized by the solution size. Throughout this section, B will denote
the family of bipartite graphs. To prove our result, we give a parameterized reduction from
the problem MULTICOLORED BICLIQUE to B-CF-FVS. In the following, we formally define
the problem MULTICOLORED BICLIQUE.

MULTICOLORED BICLIQUE (MBC) Parameter: k
Input: A bipartite graph G, a partition of A into k sets Ay, Ao, -+, Ak, and a partition
of B into k sets By, Bs, -+ , By, where A and B are a vertex bipartition of G.

Question: Is there a set S C V(G) such that for each i € [k] we have |SN A4;| =1 and
|S N B;| =1, and G[S] is isomorphic to K 7

Let (G, Ay, -+, Ak, By, -+, Bg) be an instance of MULTICOLORED BICLIQUE. We con-
struct an instance (G', H', k') of B-CF-FVS as follows. We have V(G') =V (H') = V(G),
and E(H') = {uv | u € UjepAdi, v € Ui Bi, and wv ¢ E(G)}. Next, for each i € [k], we
add a cycle (in an arbitrary order) induced on vertices in A; in G’. Similarly, we add for
each ¢ € [k], a cycle induced on vertices in B; in G’. Notice that G’ comprises of 2k vertex
disjoint cycles, and H’ is a bipartite graph. Finally, we set k¥’ = 2k. This completes the
description of the reduction.

» Lemma 3. (G, A, -, Ay, By, -, B) is a yes instance of MULTICOLORED BICLIQUE if
and only if (G', H' k') is a yes instance of B-CF-FVS.

Now we are ready to sate the main theorem of this section.

» Theorem 4. B-CF-FVS parameterized by the solution size is W[1]-hard, where B is the
family of bipartite graphs.

3.3 W][1]-hardness on Graphs with Sub-quadratic Edges

In this section, we show that F-CF-FVS is W[1]-hard, when parameterized by the solution
size, where F is the family of graphs with sub-quadratic edges. To formalize the family of
graphs with subquadratic edges, we define the following. For 0 < ¢ < 1, we define F, to
be the family comprising of graphs G, such that |E(G)| < |[V(G)[*>~¢. We show that for
every 0 < € < 1, the F.-CF-FVS problem is W[1]-hard, when parameterized by the solution
size. Towards this, for each (fixed) 0 < € < 1, we give a parameterized reduction from
MULTICOLORED BICLIQUE to F.-CF-FVS.

Let (G, Ay, , Ak, B1, -+, By) be an instance of MULTICOLORED BICLIQUE. We con-
struct an instance (G', H', k') of F-CF-FVS as follows. Let n = |V(G)|, m = |E(G)|, and
X be a set comprising of n7-¢ — n (new) vertices. The vertex set of G’ and H' is X UV(G).
For each i € [k], we add a cycle (in arbitrary order) induced on vertices in A4; in G’. Similarly,
we add for each i € [k], a cycle induced on vertices in B; in G’. Also, we add a cycle induced
on vertices in X to G'. We have E(H') = {uv | u € UjeAi, v € Ui Bi, and uv ¢ E(G)}.
Finally, we set k' = 2k + 1. Notice that since |V(H')| = n7 =, and |E(H")| < n?, therefore,
H e F.

» Lemma 5. (G, Ay, -+, A, By, ,By) is a yes instance of MULTICOLORED BICLIQUE if
and only if (G',H' k') is a yes instance of F.-CF-FVS.

Now we are ready to state the main theorem of this section.

» Theorem 6. For 0 < e <1, F.-CF-FVS parameterized by the solution size is W[1]-hard.
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4 FPT algorithms for 7-CF-FVS for Restricted Conflict Graphs

For a hereditary (closed under taking induced subgraphs) family of graphs F, we show that
if F+CLUSTER IS is FPT, then F-CF-FVS is FPT. Throughout this section, whenever
we refer to a family of graphs, it will refer to a hereditary family of graphs. To prove our
result, for a family of graphs F, for which F4+CLUSTER IS is FPT, we will design an FPT
algorithm for F-CF-FVS, using the (assumed) FPT algorithm for 74+CLUSTER IS. We note
that this gives us a Turing parameterized reduction from F-CF-FVS to F+CLUSTER IS.
Our algorithm will use the technique of compression together with branching. We note that
the method of iterative compression was first introduced by Reed, Smith, and Vetta [16],
and in our algorithm, we (roughly) use only the compression procedure from it.

In the following, we let F to be a (fixed hereditary) family of graphs, for which
F+CLUSTER IS is in FPT. Towards designing an algorithm for F-CF-FVS, we define
another problem, which we call F-Di1sjoINT CONFLICT FREE FEEDBACK VERTEX SET (to
be defined shortly). Firstly, we design an FPT algorithm for 7-CF-FVS using an assumed
FPT algorithm for F-D1sJOINT CONFLICT FREE FEEDBACK VERTEX SET. Secondly, we
give an FPT algorithm for F-DI1SJOINT CONFLICT FREE FEEDBACK VERTEX SET using the
assumed algorithm for F+CLUSTER IS. In the following, we formally define the problem
F-Di1sjoINT CONFLICT FREE FEEDBACK VERTEX SET (F-DCF-FVS; for short)

F-Di1sJOINT CONFLICT FREE FEEDBACK VERTEX SET (F-DCF-FVS) Parameter: k
Input: A graph G, a graph H € F, an integer k, a set W C V(G), aset RC V(H)\ W,
and a set C, such that the following conditions are satisfied: 1) V(G) CV(H),2) G- W
is a forest, 3) the number of connected components in G[W] is at most k, and 4) C is a
set of vertex disjoint subsets of V/(H).

Question: Is there a set S C V(H) \ (W U R) of size at most k, such that G — S is a
forest, S is an independent set in H, and for each C' € C, we have |S N C| # 07

We note that in the definition of F-DCF-FVS, there are three additional inputs (i.e.
W, R and C'). The purpose and need for these sets will become clear when we describe the
algorithm for F-DCF-FVS. In Section 4.1, we will prove the following theorem.

» Theorem 7. Let F be a hereditary family of graphs for which there is an FPT algorithm for
F+CLUSTER IS running in time f(k)n®®Y), where n is the number of vertices in the input
graph. Then, there is an FPT algorithm for F-DCF-FVS running in time 16kf(k:)no(1),
where n is the (total) number of vertices in the input graphs.

In the rest of the section, we show how we can use the FPT algorithm for F~-DCF-FV'S
to obtain an FPT algorithm for 7-CF-FVS.

An Algorithm for F-CF-FVS using the algorithm for F-DCF-FVS. Let I = (G, H,k) be
an instance of F-CF-FVS. We start by checking whether or not G has a feedback vertex set
of size at most k, i.e. a set Z of size at most k, such that G — Z is a forest. For this we employ
the algorithm for FEEDBACK VERTEX SET running in time O(3.619¥n°(1)) of Kociumaka
and Pilipczuk [13]. Here, n is the number of vertices in the input graph. Notice that if G does
not have a feedback vertex set of size at most k, then (G, H, k) is a no instance of F-CF-FVS,
and we can output a trivial no instance of F-DCF-FVS. Therefore, we assume that (G, k)
is a yes instance of FEEDBACK VERTEX SET, and let Z be one of its solution. We note that
such a set Z can be computed using the algorithm presented in [13]. We generate an instance
Iy of F-DCF-FVS, for each Y C Z, where Y is the guessed (exact) intersection of the set
Z with an assumed (hypothetical) solution to F-CF-FVS in I. We now formally describe
the construction of Iy. Consider a set Y C Z, such that Y is an independent set in H. Let
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Gy =G-=Y, Hy =H-Y, ky =k-|Y|, Wy =Z\Y, Ry = (Ng(Y)\ Wy) NV (Hy),
and Cy = (. Furthermore, let Iy = (Gy, Hy, ky, Wy, Ry,Cy), and notice that Iy is a
(valid) instance of F-DCF-FVS. Now we resolve Iy using the (assumed) FPT algorithm for
F-DCF-FVS, for each Y C Z, where Y is an independent set in H. It is easy to see that
I is a yes instance of F-CF-FVS if and only if there is an independent set Y C Z in H,
such that Iy is a yes instance of F-DCF-FVS. From the above discussions, we obtain the
following lemma.

» Lemma 8. Let F be a family of graphs for which F-DCF-FVS admits an FPT algorithm
running in time f(k)cFn®®)  where n is the (total) number of vertices in the input graph.
Then F-CF-FVS admits an FPT algorithm running in time f(k)(1+ ) nOM where n is
the number of vertices in the input graphs.

Using Theorem 7 and Lemma 8, we obtain the main theorem of this section.

» Theorem 9. Let F be a hereditary family of graphs for which there is an FPT algorithm
for F+CLUSTER IS running in time f(k)no(l), where n is the number of vertices in the
input graph. Then, there is an FPT algorithm for F-CF-FVS running in time 17% f (k)n®W)
where n is the number of vertices in the input graphs of F-CF-FVS.

4.1 FPT Algorithm for 7-DCF-FVS

The goal of this section is to prove Theorem 7. Let F be a (fixed) hereditary family of
graphs, for which F+CLUSTER IS admits an FPT algorithm. We design a branching based
FPT algorithm for F-DCF-FVS, using the (assumed) FPT algorithm for F+CLUSTER IS.

Let I = (G, H,k,W,R,C) be an instance of F-DCF-FVS. In the following we describe
some reduction rules, which the algorithm applies exhaustively, in the order in which they
are stated.

» Reduction Rule 1. Return that (G, H,k,W, R,C) is a no instance of F-DCF-FVS if one
of the following conditions are satisfied:

1. if k<O,

if k=0 and G has a cycle,

k=0andC#0,

G[W] has a cycle,

if |C| >k, or

there is C € C, such that C C R.

A

» Reduction Rule 2. If k=0, G is acyclic, and C = 0, then return that (G, H,k, W, R,C)
s a yes instance of F-DCF-FVS.

In the following, we state a lemma, which is useful in resolving those instances where the
graph G has no vertices.

» Lemma 10. Let (G, H,k, W, R,C) be an instance of F-DCF-FVS, where Reduction Rules 1
is not applicable and G — W has no vertices. Then, in polynomial time, we can generate
an instance (G', H', k') of F+CLUSTER IS, such that (G, H,k, W, R,C) is a yes instance of
F-DCF-FVS if and only if (G',H', k') is a yes instance of F+CLUSTER IS.

Lemma 10 leads us to the following reduction rule.

» Reduction Rule 3. If G — W has no vertices, then return the output of algorithm for
F+CLUSTER IS with the instance generated by Lemma 10.
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» Reduction Rule 4. If there is a vertex v € V(G) of degree at most one in G, then return
(G—{v}, Hk, W\ {v},R,C).

The safeness of Reduction Rule 4 follows from the fact that a vertex of degree at most one
does not participate in any cycle.

» Reduction Rule 5. Let uv € E(G) be an edge of multiplicity greater than 2 in G, and
G’ be the graph obtained from G by reducing the multiplicity of uwv in G to 2. Then, return

(G', H, k, W, R,C).

The safeness of Reduction Rule 5 follows from the fact that for an edge, multiplicity of 2 is
enough to capture multiplicities of size larger than 2.

» Reduction Rule 6. Let v € R be a degree 2 vertex in G with u and w being its neighbors
in G. Furthermore, let G' be the graph obtained from G by deleting v and adding the (multi)
edge uw. Then, return (G', H — {v}, k, W, R\ {v},C).

The safeness of Reduction Rule 6 follows from the fact that a vertex in R cannot be part of
any solution and any cycle (in G) containing v must contain both v and w.

» Reduction Rule 7. If there is v € (V(G) N R), such that v has at least two neighbors in
the same connected component of W, then return that (G, H,k, W, R,C) is a no instance of
F-DCF-FVS.

» Reduction Rule 8. If there is v € V(G)\ (WUR), such that v has at least two neighbors in
the same connected component of W, then return (G — {v}, H — {v},k—1,W, RU Ny (v),C).

» Reduction Rule 9. Let v € V(G)NR, such that Ng(v)NW # 0. Then, return (G, H, k, WU
{v}, R\ {v},0).

Let 1 be the number of connected components in G[W]. In the following, we define the
measure we use to compute the running time of our algorithm.

w(l) = p((G. H,k,W,R,C)) =k +n—[C|

Observe that none of the reduction rules that we described increases the measure, and a
reduction rule can be applied only polynomially many time. When none of the reduction
rules are applicable, the degree of each vertex in G is at least two, multiplicity of each edge
in G is at most two, degree two vertices in G do not belong to the set R, and G[W] and
G — W are forests. Furthermore, for each v € V(G) \ W, v has at most 1 neighbor (in G) in
a connected component of G[W].

In the following, we state the branching rules used by the algorithm. We assume that
none of the reduction rules are applicable, and the branching rules are applied in the order
in which they are stated. The algorithm will branch on vertices in V/(G) \ W.

» Branching Rule 1. If there is v € V(G) \ W that has at least two neighbors (in G), say
wy,ws € W. Since Reduction Rule 7 and 8 are not applicable, wy and ws belong to different
connected components of GIW]. Also, since Reduction Rule 9 is not applicable, we have
v ¢ R. In this case, we branch as follows.
(i) v belongs to the solution. In this branch, we return (G — {v},H — {v},k — 1,W,RU
NH (’U), C)
(ii) v does not belongs to the solution. In this branch, we return (G, H, k,W U {v}, R,C).
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In one branch when v belongs to the solution, k decreases by 1, and n and |C| do not change.
Hence, u decreases by 1. In other branch when v is moved to W, number of components in n
decreases by at least one, and k and |C| do not change. Therefore, i decreases by at least 1.
The resulting branching vector for the above branching rule is (1,1).

If Branching Rule 1 is not applicable, then each v € V(G) \ W has at most one neighbor
(in G) in the set W. Moreover, since Reduction Rule 4 is not applicable, each leaf in G — W
has a neighbor in W.

In the following, we introduce some notations, which will be used in the description of
our branching rules. Recall that G — W is a forest. Consider a connected component 7" in
G — W. A path P,, from a vertex u to a vertex v in T is nice if v and v are of degree at
least 2 in G, all internal vertices (if they exist) of P,, are of degree exactly 2 in G, and v is a
leaf in T'. In the following, we state an easy proposition, which will be used in the branching
rules that we design.

» Proposition 1. Let (G, H,k,W,R,C) be an instance of F-DCF-FVS, where none of
Reduction Rule 1 to 9 or Branching Rule 1 apply. Then there are vertices u,v € V(G) \ W,
such that the unique path Py, in G — W is a nice path.

Consider u,v € V(G)\ W, for which there is a nice path P,, in T, where T is a connected
component of G — W. Since Reduction Rule 4 is not applicable, either u has a neighbor in
W, or u has degree at least 2 in 7. From the above discussions, together with Proposition 1,
we design the remaining branching rules used by the algorithm. We note that the branching
rules that we describe next is similar to the one given in [3].

» Branching Rule 2. Let v € V(G)\ W be a leaf in G — W for which the following holds.
There is u € V(G) \ W, such that Ng(u) "W # 0 and there is a nice path Py, from u to
vin G—W. Let C = V(Py,) \ {u}, v and v’ be the neighbors (in G) of w and v in W,
respectively. Observe that since Reduction Rule 9 is not applicable, we have u,v ¢ R. We
further consider the following cases, based on whether or not ' and v’ are in the same
connected component of GIW].

Case 2.A. ' and v’ are in the same connected component of GIW|. In this case, G[V (Pyy)U
W1 contains exactly one cycle, and this cycle contains all vertices of V(Py,) (consecut-
ively). Since vertices in W cannot be part of any solution, either u belongs to the solution
or a vertex from C' belongs to the solution. Moreover, any cycle in G containing v must
contain all vertices in V(Pyy), consecutively. This leads to the following branching rule.
(i) u belongs to the solution. In this branch, we return (G — {u}, H — {u},k — 1,W,RU

NH (U,), C)

(ii) w does not belong to the solution. In this branch, we return (G—C, H,k,W, R,CU{C}).
In the first branch k decreases by one, and n and |C| do not change. Therefore, u decreases
by 1. On the second branch |C| increases by 1, and k and n do not change, and therefore,
u decreases by 1. The resulting branching vector for the above branching rule is (1,1).

Case 2.B. ' and v' are in different connected component of G[W]. In this case, we branch
as follows.

(i) u belongs to the solution. In this branch, we return (G — {u}, H — {u}, W,k —1,RU

NH (u), C)

(ii) A vertex from C is in the solution. In this branch, we return (G—C, H,k, W, R,CU{C?}).

(iii) No wvertex in {u} U C is in the solution. In this branch, we add all vertices in {u} UC

to W. That is, we return (G, H, kE,W U ({u} UC),R\ ({u} UC),C).
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(b)

Figure 1 The cases handled by Branching Rule 2, (a) T is a connected component in G[W],
similarly in (b) 71,7 are connected components in G[W].

In the first branch k decreases by one, and n and |C| do not change. Therefore, u decreases
by 1. On the second branch |C| increases by 1, and k and n do not change, and therefore,
u decreases by 1. In the third branch, n decreases by one, and k and |C| do not change.
The resulting branching vector for the above branching rule is (1,1,1).

» Branching Rule 3. There is u € V(G) \ W which has (at least) two nice paths, say Py,
and Py, to leaves v1 and ve (in G — W ). Let C; = V(Pyy,) \ {u} and Cy = V(Pyy,) \ {u}.
We further consider the following cases depending on whether or not vy and vy have neighbors
(in G) in the same connected component of GIW] and u € R.

Case 3.A. vy and vy have neighbors (in G) in the same connected component of GIW| and
u € R. In this case, GIW U {u} U Cy U Cs] contains (at least) one cycle, and u cannot
belong to any solution. Therefore, we branch as follows.

(i) A vertex from Cy belongs to the solution. In this branch, we return (G—Cy, H,k, W, R,
CuU{C1}).
(ii) A vertex from Co belongs to the solution. In this branch, we return (G—Cs, H, k, W, R,
CU{Cy}).
Notice that in both the branches p decreases by 1, and therefore, the resulting branching
vector is (1,1).

Case 3.B. vy and vy have neighbors (in G) in the same connected component of GIW| and
u ¢ R. In this case, GIW U {u} U Cy U Cy] contains (at least) one cycle. We branch as
follows.

(i) u belongs to the solution. In this branch, we return (G —{u}, H — {u},k —1,W,RU
Ny (u),C).
(ii) A vertex from Cy belongs to the solution. In this branch, we return (G—Ci, H,k, W, R,
CU{Ci}).
(iii) A vertex from Cy belongs to the solution. In this branch, we return (G —Cs, H, k, W, R,
CU{Cy}).
Notice that in all the three branches u decreases by 1, and therefore, the resulting branching
vector is (1,1,1).

Case 3.C. Ifv; and vy have neighbors in different connected components of GIW| and u € R.
In this case, we branch as follows.

(i) A wvertex from Cy belongs to the solution. In this branch, we return (G—Cy, H, k, W, R,
CU{C}).
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Figure 2 The cases handled by Branching Rule 3, In (a) T is a connected component in G[W],
similarly in (b) 71, 7> are connected components in G[W].

(ii) A vertex from Cs belongs to the solution. In this branch, we return (G—Csy, H, k, W, R,
CU{Cs}).
(iii) No wvertex from C1 U Cy belongs to the solution. In this case, we add all vertices in
{u}UuCLUCy to W. That is, the resulting instance is (G, H, k, WU ({u}UC1UCy), R\
({u} uciu CQ),C)
Notice that in all the three branches p decreases by 1, and therefore, the resulting branching
vector is (1,1,1).
Case 3.D. Ifvy and va have neighbors in different connected components of GIW| and u ¢ R.
In this case, we branch as follows.
(i) u belongs to the solution. In this branch, we return (G — {u}, H — {u},k — 1,W,RU

NH (u), C)

(ii) A vertex from Cy belongs to the solution. In this branch, we return (G—Ci, H,k, W, R,
Cu{C1}).

(iii) A vertex from Cy belongs to the solution. In this branch, we return (G —Cs, H, k, W, R,
CU{Cy}).

(iv) No vertex from {u} U Cy U Cy belongs to the solution. In this case, we add all vertices
in {u} UCyLUCy to W. That is, the resulting instance is (G, H,k, W U ({u} U Cy U
CQ), R\ ({u} U Cl U CQ),C)

Notice that in all the four branches p decreases by 1, and therefore, the resulting branching
vector is (1,1,1,1).

This completes the description of the algorithm. By showing the correctness of the
presented algorithm, together with computation of the running time of the algorithm
appropriately, we obtain the proof of Theorem 7.

5 FPT Algorithm for K; ;-free4Cluster IS

In this section, we give an FPT algorithm for K; ;-free4-CLUSTER IS, which is the 74+CLUSTER
IS where F is family of K; j-free graphs. Here, ¢,7 € N, 1 < ¢ < j. In the following we
consider a (fixed) family of K, ;-free graphs. To design an FPT algorithm for F+CLUSTER
IS, we define another problem called LARGE K; ;-free4+-CLUSTER IS. The problem LARGE
K; j-free+-CLUSTER IS is formally defined below.
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LARGE K; j-free+CLUSTER IS Parameter: k
Input: A K j-free graph G, a cluster graph H (G and H are on the same vertex set),
and an integer k, such that the following conditions are satisfied: 1) H has exactly k
connected components, and 2) each connected component of H has at least k* vertices.
Question: Is there a set S C V(G) of size k such that S is an independent set in both
G and in H?

In Section 5.1, we design a polynomial time algorithm for the problem LARGE Kj ;-
free+CLUSTER IS. In the rest of this section, we show how to use the polynomial time al-
gorithm for LARGE K j-free4CLUSTER IS to obtain an FPT algorithm for K ;-free4+-CLUSTER
IS.

» Theorem 11. K; ;-free+CLUSTER IS admits an FPT algorithm running in time (’)(kkz
no(l)), where n is the number of vertices in the input graph.

Proof. Let (G, H, k) be an instance of K; j-free+CLUSTER IS, and let C = {C1,Ca,--- ,Cy}
be the set of connected components in H. If k < 0, we can correctly resolve the instance
in polynomial time (by appropriately outputting yes or no answer). Therefore, we assume
k > 1. If for each C € C, we have |V (C)| > k¥, then (G, H, k) is also an instance of LARGE
K; j-free4-CLUSTER IS, and therefore we resolve it in polynomial time using the algorithm
for LARCGE K; j-free+CLUSTER IS (Section 5.1). Otherwise, there is C' € C, such that
[V(C)| < k*. Any solution to K; j-free+CLUSTER IS in (G, H, k) must contain exactly one
vertex from C. Moreover, if a vertex v € V(C) is in the solution, then none of its neighbors
in G and in H can belong to the solution. Therefore, we branch on vertices in C' as follows.
For each v € V(C), create an instance I,(G — (Ng(v) U Ng(v)), H — (Ng(v)U Ng(v)), k—1)
of K; ;-free4+CLUSTER IS. If number of connected components in H — N[C] is less than
k — 1, then we call such an instance I, as invalid instance, otherwise the instance is a valid
instance. Notice that for v € V(C), if I, is an invalid instance, then v cannot belong to any
solution. Thus, we branch on valid instances of I,,, for v € V(C). Observe that (G, H, k)
is a yes instance of Kj; j-free4+-CLUSTER IS if and only if there is a valid instance I, for
v € V(C), which is a yes instance of K j-free+CLUSTER IS. Therefore, we output the OR
of results obtained by resolving valid instances I,,, for v € V/(C).

In the above we have designed a recursive algorithm for the problem Kj; j-free+CLUSTER
IS. In the following, we prove the correctness and claimed running time bound of the
algorithm. We show this by induction on the measure y = k. For p < 0, the algorithm
correctly resolve the instance in polynomial time. This forms the base case of our induction
hypothesis. We assume that the algorithm correctly resolve the instance for each p < 4,
for some § € N. Next, we show that the correctness of the algorithm for p =6 + 1. We
assume that k > 0, otherwise, the algorithm correctly outputs the answer. The algorithm
either correctly resolves the instance in polynomial time using the algorithm for LARGE
K; j-free+CLUSTER IS, or applies the branching step. When the algorithm resolves the
instance in polynomial time using the algorithm for LARGE K ;-free+-CLUSTER IS, then
the correctness of the algorithm follows from the correctness of the algorithm for LARGE
K; j-free+CLUSTER IS. Otherwise, the algorithm applies the branching step. The branching
is exhaustive, and the measure strictly decreases in each of the branches. Therefore, the
correctness of the algorithm follows form the induction hypothesis. This completes the proof
of correctness of the algorithm.

For the proof of claimed running time notice that the the worst case branching vector is
is given by the k¥ vector of all 1s, and at the leaves we resolve the instances in polynomial
time. Thus, the claimed bound on the running time of the algorithm follows. <
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5.1 Polynomial Time Algorithm for Large K ;-free4Cluster IS

Consider a (fixed) family of K; ;-free graphs, where 1 <17 < j. The goal of this section is to
design a polynomial time algorithm for LARGE K; ;-free+CLUSTER IS. Let (G, H, k) be an
instance of LARGE K; ;-free+-CLUSTER IS, where G is a K; j-free graph and H is a cluster
graph with k& connected components. We assume that £ > ¢ 4+ j + 2, as otherwise, we can
resolve the instance in polynomial time (using brute-force). Let C = {C,Cq,- -+ ,Ci} be the
set of connected components in H, such that |[V(C1)| > |V(C2)| > -+ > [V(Ck)|.

We start by stating/proving some lemmata, which will be helpful in designing the
algorithm.

2—e

» Lemma 12. [5] The number of edges in a K; j-free graph are bounded by n*~¢, where

e=€(i,7) € (0,1].

» Lemma 13. Let (G, H, k) be an instance of LARGE K j-free+CLUSTER IS. There exists
v € V(C1), such that for each C € C\ {C}, we have |Ng(v) N C| < %

Proof. Consider a connected component C € C \ {C1}, and let x = |C1] and y = |C].

Furthermore, let E(C1,C) = {uv € E(G) | u € C1,v € V(C)}. In the following, we prove
some claims which will be used to obtain the proof of the lemma.

» Claim 14. |E(Cy,C)| < jy* + jz.

Proof. Consider the partition of V(C}) in two parts, namely, C} and C}, where C} = {v €
V(C1) | [Na(v) NV (C)| = i} and C7 = V(C1) \ Cj,.

E(C,0) = Y INa() V(@) = Y INa() VO + 3 INa() N V(C)).

veCy veC} veC}

By construction of C}, we have Zvecj |INg(v) N V(C)| < iz. In the following, we bound
ZvEC}L |INg(v) N V(C)|. Since G is a K; j-free graph, therefore, any set of ¢ vertices in
V(C) can have at most j — 1 common neighbors (in G) from V(Cy), and in particular
from C}. Moreover, every v € C} has at least i neighbors in Ng(v) N V/(C). Therefore
Zveoi INg(v)NV(C)| <i(j—1)(Y). Hence, |E(Cy,0)| <i(j—1)(Y) +iz <i(j—1)% —Hx <
Y+ jo. <

Let Ageg(C1,C) denote average degree of vertices in set Cy in G[E(Cy,C)]. That is,

Adeg(C1,C) = w In the following claim, we give a bound on Ageg(C1,C).

» Claim 15. Ay (Cy,C) < 2.

Proof. From Claim 14, we have |E(Cy,C)| < jy' + jz. Therefore, Ageg(C1,C) < j + %

Using Lemma 12, we have Ageg(C1,C) < % < 4z'=¢. To prove the claim, us consider

the following cases:

Case 1. z > k?*y’~!. In this case, using the inequality Ageg(C1,C) < j + 2
Ageg(C1,C) < j + 5. Since y > k? (and k > 5), we have Ageg(C1,C) < k—y

Case 2. z < k?y’~!. In this case, we use the inequality Ageg(C1,C) < 42'7¢, to obtain
Ageg(C1,C) < 4k21=9)yi-D-¢) < % Since y > k¥, we have y(2=9+e(i=1)

B .
%. Therefore, we have Ageg(Cy,C) < 2,5—;’ <

i

we have

x
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Algorithm 1 (G, H,k): Greedy algorithm for LARGE K; ;-free+CLUSTER IS.

1: t=Fkand S =0
2: while ¢t > 25 do

3: Let Cq,- -+, C} be the connected components of H, sorted in decreasing order of their
sizes;

4: Let v € V(C1) be a vertex which satisfies the condition of Lemma 13;

5: Add v to S;

6: Decrease t by 1;

7: G =G — (Ng(v)UNg[v]) and H = H — (Ng(v) U Ng[v]);

8: end while

9: Solve (G, H,t) by a brute force algorithm, as t < 2j;

In the following, we will give a probabilistic argument on the existence of a vertex with
the desired properties in the lemma statement. For v € V(Cy), let deg(v, C) denote the size
of |Ng(v) NV(C)|. From Claim 15, we have Ageg(C1,C) < %y Using Markov’s inequality,
the upper bound on the probability that deg(v, C') > %Ty is P(deg(v,C) > ijy) < +. Using
Boole’s inequality (the union bound), the probability that deg(v, C') is greater than or equal
to % for at least one C' € C \ {C1} is bounded by P(Ucec\(c, deg(v,C) > %) <
+.(k — 1) < 1. This implies that probability that deg(v,C) < %, for each C € C\ {C1} is
greater than 0. This completes the proof. |

We are now ready to describe our algorithm, which is given in Algorithm 1.

» Lemma 16. Algorithm 1 for LARGE K; j-free+CLUSTER IS is correct and runs in poly-
nomial time.

Proof. We first prove the correctness of the algorithm using induction on, . The base case
is when 1 < ¢t < 2j. The algorithm correctly resolve the instance using brute force. For
the induction hypothesis, we assume that the algorithm is correct for each t < d — 1. Next,
we show that the algorithm is correct for t = d. Let C1,---,Cy be the set of connected
components in H, sorted in decreasing order of their sizes. By Lemma 13, there is v € Cf,
such that for each C' € C\ {C1}, we have deg(v,C) < %.

We delete all vertices in Ny[v] U Ng(v) from G and H. Observe that from each C €
C\ {C1}, we have deleted at most # vertices, which are neighbors of v in G. Let
C' = C\ (Ng[v]UNg(v)) = C\ Ng(v). Tt is enough to show that |C’| > (d — 1)(¢=1). Note
that |C'| > |C| — % As base case is not applicable, we can assume that d > 2j. Hence,
C'1 = 101(1 = 3) 2 d(1 = ) 2 d"H(d = 2j) = (d - D)"Y,

This concludes the proof of correctness of the algorithm. At each step we either sort the
components on the basis of their size or find a vertex of lower degree which can be carried
out in polynomial time, or solve the instance using brute force approach, where the solution
size we are seeking for is bounded by a constant (at most 2j). Moreover, the algorithm
terminates after at most k iterations. Thus, the running time of the algorithm is bounded by

a polynomial in the size of the input. <

Using Lemma 16, we obtain the following theorem.

» Theorem 17. The problem LARGE K, j-free+CLUSTER IS admits a polynomial time
algorithm.
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