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Abstract
We investigate the notion of pseudodeterminstic approximation algorithms. A randomized ap-
proximation algorithm A for a function f is pseudodeterministic if for every input x there is a
unique value v so that A(x) outputs v with high probability, and v is a good approximation of
f(x). We show that designing a pseudodeterministic version of Stockmeyer’s well known approxi-
mation algorithm for the NP-membership counting problem will yield a new circuit lower bound:
if such an approximation algorithm exists, then for every k, there is a language in the complexity
class ZPPNP

tt that does not have nk-size circuits. While we do not know how to design such an
algorithm for the NP-membership counting problem, we show a general result that any random-
ized approximation algorithm for a counting problem can be transformed to an approximation
algorithm that has a constant number of influential random bits. That is, for most settings of
these influential bits, the approximation algorithm will be pseudodeterministic.
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1 Introduction

Consider the computational problem: Given an input 1n, generate an n-bit prime. Is there a
deterministic polynomial-time algorithm for this problem? Even though primality testing
can be done in deterministic polynomial time, we do not know whether a deterministic
polynomial-time algorithm exists for this problem. However, a straightforward probabilistic
algorithm exists for this task: Randomly pick an n-bit integer and output it if it is a prime.
The density of primes implies that this algorithm succeeds with inverse polynomial probability.
Hence by repeating this procedure polynomially many times, we can output an n-bit prime
number with very high probability. A drawback of this algorithm is that the output of the
algorithm depends on the random choices it makes. In particular, on two different random
choices the algorithm may output two different prime numbers. A natural question to ask is:
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is there a randomized, polynomial-time algorithm that on input 1n outputs a unique n-bit
prime number on most random choices. Such an algorithm is called a pseudodeterministic
algorithm. This notion of pseudodeterminism was formulated by Gat and Goldwasser [7],
motivated by its applications in distributed computing and cryptography.

Let f be a multi-valued function ( i.e. f(x) is a non-empty set). We say that a probabilistic
algorithm A computes f if A(x) outputs a value in the set f(x) with high probability. A
probabilistic algorithm A for f is pseudodeterministic if for every x, there exists a unique
u ∈ f(x) such that A(x) outputs u with high probability [7]. The problem of designing
pseudodeterministic algorithms is interesting in scenarios where we know of a probabilistic
polynomial time algorithm that computes f , but no deterministic algorithm for f is known.

Related Work
Since the work of Gat and Goldwasser, the notion of pseudodeterministic algorithms has
received moderate attention [7, 8, 9, 10, 11, 16]. Now we know of pseudodeterministic
algorithms for certain algebraic problems such as finding non-residues of Zp, and finding
non-roots of multivariate polynomials [7]. The work of Oliveria and Santhanam gives a
pseudodeterministic, sub-exponential time algorithm for generating primes (that works
at infinitely many input lengths) [16]. Recently Goldwasser and Grossman obtained a
pseudodeterministic NC algorithm that computes perfect matchings in bipartite graphs [9].
The work of Goldreich, Goldwasser and Ron investigates the power and limitations of
pseudodeterministic algorithms in the context of general probabilistic algorithms and sub-
linear time algorithms [8]. The notion of pseudodeterminism has been studied earlier in
the literature in the context of approximation algorithms [6], where the authors relate the
existence of such algorithms for approximation problems to communication complexity of
certain key-agreement problems. They used the term monic selection to capture the notion
of pseudodeterminism. To the best of our knowledge, pseudodeterminism in the context of
computing approximations of function has not been studied further.

Our Contribution
In this paper, we investigate pseudodeterministic approximation algorithms. Given a function
f whose range is the integers, we say that a probabilistic algorithm A is a pseudodeterministic
approximation algorithm for f if, for every input x, there is a value v such that A(x) outputs
v with high probability and v is a “good approximation” of f(x), (for a formal definition,
please see the next section). We consider the following counting problem which we call
NP-membership counting problem: Given a language L in NP, compute the number of strings
in L at a given length. The well-known result due to Stockmeyer [19, 20, 3] shows that
NP-membership counting problem can be approximated in BPPNP

tt , where BPPNP
tt denotes

the class of problems solvable in probabilistic polynomial-time with nonadaptive queries
to SAT4. However, Stockmeyer’s algorithm is not pseudodeterministic: the algorithm can
output different good approximations on different probabilistic paths. A natural question is:
Is there a pseudodeterministic BPPNP

tt approximation algorithm for NP-membership counting
problem? We relate this question to establishing new circuit lower bounds.

Proving circuit lowerbounds is one of the most significant research directions in complexity
theory. While it is widely believed that there are languages in NP that cannot be solved
by subexponential-size Boolean circuits, we do not even know how to prove that NP does

4 Even though BPPNP
tt denotes a class of languages, here we slightly abuse the notation and view it as a

function class.
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not have linear-size circuits. This leads to investigating the question: “What is the smallest
complexity class that provably cannot be solved by a linear-size circuit?” The first result
in this direction is due to Kannan [13], who showed that there are languages in the second
level of the Polynomial-time Hierarchy (ΣP

2 ), that do not have linear-size circuits. This result
has been improved to show that there are languages in ZPPNP that do not have linear-size
circuits [4, 15]. Subsequently, Sengupta [5] showed that the complexity class SP

2 does not
have linear-size circuits. This together with Cai’s result [5] that SP

2 ⊆ ZPPNP, improved
the upper bound to SP

2 . It is also known that the complexity class PP has languages that
do not have linear-size circuits [21]. Currently a significant open question is to show that
the class MA does not have linear-size circuits. A step in this direction is a result due
to Santhanam [18] who showed that MA//1 does not have linear-size circuits (MA//1 is a
“promise version” of MA: see the next section for a formal definition). We note that in all
these circuit lower bound results, “linear-size” can be replaced by “nk-size circuits” (for a
fixed k ≥ 0).

We ask the following question: Can we show that ZPPNP
tt has languages that do not have

linear-size circuits? Note that MA ⊆ ZPPNP
tt ⊆ ZPPNP and hence it is a natural question.

In this work, we show that this goal can be achieved if we can design a psedodeterminstic
version of Stockmeyer’s approximate counting algorithm for the NP-membership counting
problem.

Theorem. If there is a pseudodeterministic BPPNP
tt approximation algorithm for the NP-

membership counting problem, then for every k there is a language Lk in ZPPNP
tt that does

not have nk-size circuits.
We note that there are oracles with respect to which ZPPNP

tt has linear-size circuits [1].
Hence a pseudodeterministic algorithm for the NP-membership counting problem will lead
to non-relativizable circuit lower bounds.

Can we design a pseudodeterministic BPPNP
tt approximation algorithm for the NP-

membership counting problem? While we are unable to answer this question, we show a very
general result: every randomized approximate counting algorithm can be transformed to an
approximation algorithm that has a constant number of influential random bits in the sense
defined recently by Grossman and Liu [12]. Grossman and Liu [12] generalized the notion of
pseudodeterministic algorithms to influential bit algorithms. They defined this new notion in
the context of logspace computation and applied it to certain search problems in randomized
logspace. This notion can be adapted to polynomial-time bounded settings. Informally, a
probabilistic algorithm A is a k(n)-bit influential algorithm, if A (on an input x of length n),
uses k(n) + r(n) random bits, and for most choices of the first k(n)-random bits, A behaves
in a pseudodeterministic manner. That is, for most p ∈ Σk(n), there exists a v such that
A(x, pr) outputs v with high probability (where r is randomly chosen from Σr(n)). For two
different strings p1 and p2, the outputs of A(x, p1r) and A(x, p2r) could differ. However, if
we fix a “good” k(n)-bit string p, then A(x, pr1) is the same as A(x, pr2) for most choices of
r1 and r2. Note that an algorithm is pseudodeterministic if and only if it is a 0-influential
bit algorithm. We show that any randomized relative-error approximate counting algorithm
can be made to have a constant number of influential bits. This implies that

Theorem. There is a O(1)-bit influential, BPPNP
tt approximation algorithm for the NP-

membership counting problem.

MFCS 2018
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2 Preliminaries

We assume familiarity with standard notation and definitions from complexity theory [2].

I Definition 1. Let f be a function whose range is the integers. We say that a probabilistic
algorithm A is an (ε, δ)-approximation algorithm for f if for every x, the random variable
A(x) has the following property: Pr[(1 − ε)f(x) ≤ A(x) ≤ (1 + ε)f(x)] ≥ (1 − δ). We say
that A is an (ε, δ) pseudodeterministic approximation algorithm for f if for every x there
exists an integer v such that

(1− ε)f(x) ≤ v ≤ (1 + ε)f(x) and Pr[A(x) = v] ≥ 1− δ.

In general an approximation algorithm can output different good approximations on
different random choices. For an approximation algorithm A to be pseudodeterministic, A
has to usually output a unique approximation v which is independent of the random string,
for every input.

I Definition 2. Let f be a function whose range is the integers. We say that f has an (ε, δ)-
BPPNP

tt pseudodeterministic approximation algorithm if there exists an (ε, δ), polynomial-time,
pseudodeterministic approximation algorithm for f , that makes nonadaptive queries to SAT.

Let R ⊆ Σ∗ × Σ∗ be a binary-relation that is decidable in NP. Let fR(x) be the
number of strings y such that 〈x, y〉 ∈ R. The class ]NP is defined as ]NP = {fR |
R is a relation that is decidable in NP}. The following well-known theorem due to Stock-
meyer gives a BPPNP

tt approximation algorithm for problems in ]NP.

I Theorem 3 ([19]). Every problem in ]NP has a (1/n, 1/2n)-BPPNP
tt approximation algo-

rithm.

Stockmeyer’s algorithm is not pseudodeterministic: it may produce different, correct
approximations on different random choices.

Recently, Grossman and Liu defined the notion of influential bits as a generalization of
pseudodeterminism [12]. They defined it in the logspace regime and applied it to search
problems in RL. We adapt it to the context of approximation algorithms.

I Definition 4. Let f be a function whose range is the integers. For a function k : N→ N,
we say that a randomized (ε, δ)-approximation algorithm A for f is k(n)-bit influential if
for every x, the following holds: A takes random string r = st where |s| ≤ k(n) and for
more than 2

3 of strings s, there exists an integer vs such that Prt[A(x, st) = vs] ≥ 1− δ and
(1− ε)f(x) ≤ vs ≤ (1 + ε)f(x).

Note that an algorithm is pseudodeterministic if and only if it is 0-bit influential. Next
we define a variant of the complexity class AM.

I Definition 5. A language L is in AM//1 if there exists a polynomial-time machine V , a
polynomial p, and a sequence of bits b1, b2, · · · such that

x ∈ L⇒ Pr
r∈Σp(n)

[∃y ∈ Σp(n), V (xbn, r, y) = 1] ≥ 2/3,

x /∈ L⇒ Pr
r∈Σp(n)

[∃y ∈ Σp(n), V (xbn, r, y) = 1] ≤ 1/3,

where n is the length of x.
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Santhanam showed that for every k there is a language in AM//1 that does not have
nk-size circuits [18] (Santhanam showed the lower bound for MA//1, but we will only need
the AM//1 bound for establishing our result).

I Theorem 6 ([18]). For every k, there is a language Lk ∈ AM//1 so that Lk cannot be
computed by nk-size Boolean circuits.

3 Pseudodeterminism for ]NP and circuit lower bounds

In this section we show that the existence of a pseudodeterministic version of Stockmeyer’s
approximate counting algorithm for ]NP implies new circuit lower bounds.

I Theorem 7. If for every function f in ]NP there exists an ( 1
10 ,

1
10 )-BPPNP

tt pseudodeter-
ministic approximation algorithm for f , then for every k > 0, there is a language Lk in
ZPPNP

tt such that Lk cannot be computed by nk-size Boolean circuits.

Proof of this theorem follows from Lemma 8, and Theorem 9 stated below. Theorem 9
could be of independent interest.

I Lemma 8. If for every function f in ]NP there exists an ( 1
10 ,

1
10 )-BPPNP

tt pseudodetermin-
istic approximation algorithm for f , then for every k > 0, there is a language Lk in BPPNP

tt

such that Lk cannot be computed by nk-size Boolean circuits.

I Theorem 9. If NP has polynomial-size circuits, then BPPNP
tt = ZPPNP

tt .

Assuming Lemma 8 and Theorem 9, Theorem 7 follows from the type of argument due
to Kannan [13]. If NP does not have polynomial-size circuits, trivially ZPPNP

tt does not have
nk-size circuits. Assume that NP has polynomial-size circuits. By Lemma 8 we have BPPNP

tt

does not have nk-size circuits, and by Theorem 9 BPPNP
tt is the same as ZPPNP

tt . Hence
ZPPNP

tt does not have nk-size circuits.

Proof of Lemma 8. Fix a k > 0 and let L be a language in AM//1 that does not have
nk-size circuits [18]. Thus there exists a sequence of bits b1, b2, · · · , a polynomial p and a
polynomial-time machine V such that

x ∈ L ⇒ Pr
r∈Σp(n)

[∃y ∈ Σp(n), V (xbn, r, y) = 1] ≥ 2/3, and

x /∈ L ⇒ Pr
r∈Σp(n)

[∃y ∈ Σp(n), V (xbn, r, y) = 1] ≤ 1/3

Consider the following NP relation:

R = {〈xb, r〉 | r ∈ Σp(|x|), b ∈ {0, 1},∃y ∈ Σp(n)V (xb, r, y) = 1}

The corresponding ]NP problem is fR(xb) = |{r | 〈xb, r〉 ∈ R}|. By our hypothesis, there is
a ( 1

10 ,
1
10 )-BPPNP

tt pseudodeterministic approximation algorithm M for fR. Let Sxb denote
the set {r | 〈xb, r〉 ∈ R}. Consider the following BPPNP

tt algorithm.

Input: x and a bit b.
Run M on xb. Let v be the output.
If v ≥ 2p(n)−1 then accept, else reject.

MFCS 2018
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We will first show that on every input 〈x, b〉, the above algorithm either accepts with
high probability or rejects with high probability. Let 〈x, b〉 be an input. Since M is a
pseudodeterministic algorithm, there is an integer v such that M outputs v with probability
at least 9

10 . If v is at least 2p(n)−1, then the above algorithm accepts, else it rejects. Thus
on every input 〈x, b〉, the above algorithm either accepts with probability 9

10 or rejects with
probability at least 9

10 . Let L′ be the language accepted by the above algorithm. Clearly
L′ ∈ BPPNP

tt .

I Claim 9.1. L′ cannot be computed by nk-size Boolean circuits.

Assume that L′ is accepted by a circuit family of size nk. We will show that there is an
nk-size circuit family for L, which gives us a contradiction. Fix an input length n and let
Cn be a circuit that accepts L′ at length n+ 1. The definition of advice guarantees that for
each input length, there is some advice string (in our case, a single bit) for which the circuit
correctly decides the language. Let bn be the correct advice bit for strings of length n for
the language L. Consider the following circuit Dn: Dn(x) is same as Cn(x, bn). I.e., with bn
hardwired in Cn. Thus Dn on input x (of length n) evaluates Cn on input 〈x, bn〉. Clearly
the size of Dn is nk. We now show that the circuit family Dn accepts the language L.

Consider the case that x is in L. Note that fR(xbn) is at least 2
32p(n). Thus on input

〈x, bn〉 M outputs a number v with probability at least 2/3 such that v ≥ 9
10fR(xbn). Since

fR(xbn) is at least 2
32p(n), we have that v is bigger than 2p(n)−1. Thus M accepts 〈x, bn〉

with probability at least 9
10 . Thus 〈x, bn〉 ∈ L

′, and the circuit Cn accepts 〈x, bn〉. Thus Dn

accepts x. A similar argument shows that if x is not in L, then Dn rejects x. Since the size
of Dn is nk, we have that L is accepted by nk-size circuits, which is a contradiction. J

Next, we complete the proof of Theorem 9.

Proof of Theorem 9. The argument goes in two steps: (1) under the assumption that NP
has polynomial-size circuits, it can be shown that a Boolean function has S(n)-size SAT
oracle circuits if and only if it has S′(n)-size Boolean circuits, where S′(n) and S(n) are
polynomially related. (2) A ZPP machine can randomly pick a truth-table t of a Boolean
function on O(logn)-bits and verify using the NP oracle that t does not have 2εn-size circuits.
Use this hard function to construct a pseudorandom generator. Use this PRG to derandomize
a BPPNP

tt computation to ZPPNP
tt . We provide more details.

Since NP has polynomial-size circuits, there is a constant ` > 0 such that SAT has n`-size
circuits. Suppose that a Boolean function g has 2γn-size SAT-oracle circuit family {Dn}.
Consider Dn. We can convert this into a circuit that does not make oracle calls to SAT.
This circuit can generate queries (to SAT) of size at most 2γn. Since SAT has n`-size circuits,
each query can be answered by a circuit of size 2`γn. Thus if we replace each oracle call
in Dn by a circuit of size at most 2`γn, we obtain Boolean circuit of size 2δn for g where
δ = 2lγ. This circuit does not make any queries to SAT.

We will use the following derandomization result due to Klivans and Melkebeek [14]

I Theorem 10. Let M be a BPPNP
tt machine that uses t(n) random bits on inputs of length

n. For every γ > 0, there exists b, c and a polynomial-time computable family of functions
{Fn} such that Fn : Σnc ×Σb logn → Σt(n), and if u is the truth-table of a c logn-bit Boolean
function with SAT-oracle circuit complexity Ω(2γn), then for every x of length n∣∣∣∣ Pr

r∈Σt(n)
[M(x, r) = 1]− Pr

r∈Σb log n
[M(x, Fn(u, r) = 1]

∣∣∣∣ ≤ 0.1



P. Dixon, A. Pavan, and N. V. Vinodchandran 61:7

Let L be a language in BPPNP
tt and M be a BPPNP

tt machine that accepts L and runs
in t(n) time. Using Theorem 10, the following is a ZPPNP

tt machine that simulates M :
Randomly pick u of size nc – truth table of a function over c logn bits. By making a query
to the NP oracle, check if u has circuit complexity at least 2εn. If not, then output “I do not
know”. Else, we can conclude that u has SAT-oracle circuit complexity at least 2γn for some
γ > 0. Now simulate M using Fn(u, r) as random bits for every r ∈ Σb logn and accept if
the majority of simulations accept. Since with very high probability a randomly chosen u
has circuit complexity at least 2εn, by Theorem 10 the simulation is correct. Thus L is in
ZPPNP

tt . J

We can extend Theorem 7 to a subclass of ZPPNP
tt .

I Theorem 11. If for every function f in ]NP there exists an ( 1
10 ,

1
10 )-BPPNP

tt pseudodeter-
ministic approximation algorithm, then for every k > 0, there is a language Lk in ZPPNP

tt ∩SP
2

such that Lk cannot be computed by nk-size Boolean circuits.

Proof. If NP does not have polynomial-size circuits, then the statement of the theorem triv-
ially holds. If NP has polynomial-size circuits, then by Sengupta’s result [5], the Polynomial-
time Hierarchy collapses to SP

2 . Thus BPPNP
tt is in SP

2 . Thus by Theorem 9, if NP has
polynomial-size circuits, then BPPNP

tt is a subset of ZPPNP
tt ∩ SP

2 . By Lemma 8, under the
hypothesis, BPPNP

tt does not have nk-size circuits. The theorem follows. J

4 Constant-bit Influential algorithm for approximate counting

In this section we show that every probabilistic algorithm that computes an (ε, δ)-approxima-
tion to a function f can be transformed into a O(1)-bit influential algorithm.

I Theorem 12. Let ε ∈ o(1), and δ ≤ 1/3. Let f be a function whose range is the integers
that admits an (ε, δ)-approximation algorithm. Then there is a O(1) influential-bit, (O(ε), δ)-
approximation algorithm for f .

Implicit in the work of Saks and Zhou [17] is a O(logn)-bit influential, absolute error
approximation algorithm for matrix powering. The main technical tool they use is that of
randomized rounding. In the relative error setting that we are interested in, their rounding
scheme does not work. We use an adaptive randomized rounding scheme that can handle
relative errors and use this to design a constant-bit influential algorithm. Before we present
our proof, we provide a high level overview of Saks and Zhou’s proof adapted to our setting,
and explain why it is not straight forward to apply in the relative error setting.

Let f be a function from Σ∗ to integers such that n-bit integers are mapped to the range
[0, · · · , 2n]. We say that an algorithm A computes (ε, δ), absolute approximation for f , if for
every x, the value of A(x) lies between f(x)− ε2n and f(x) + ε2n with probability at least
1− δ. Let s be an integer such that ε2n is close to 2n−s, thus the approximation error is close
to 2n−s. Saks and Zhou consider the following rounding operator Rb,s(x), where b is a 4-bit
integer. Subtract 2n−s × b from x and replace the last n− s− 4 bits of the resulting number
with zeros. Saks and Zhou show that if z1 and z2 are any two good approximations of f(x)
(I.e, both z1 and z2 lie between f(x)− ε2n and f(x) + ε2n), then for a random choice of b,
Rb,s(z1) = Rb,s(z2), and Rb,s(z1) is still a good approximation of f(x) with high probability.
From this it follows that any absolute error approximation algorithm can be made 4-bit
influential. In the case of matrix powering, the rounding has to be applied for polynomially
many entries, which will lead to an O(logn)-bit influential algorithm for matrix powering.

MFCS 2018



61:8 Pseudodeterministic Algorithms

For the above rounding scheme to work, it is critical that we know the value of s which
depends on the value of approximation error which is at most ε2n. However, in the relative
error setting we do not a priori know the value of the approximation error, as it depends on
f(x). We could infer the of value of εf(x) by looking at an output, and try to estimate s.
However, since the approximation algorithm can produce multiple outputs, it is not possible
to uniquely infer a value for s. We get around these problems by using additional (constant
bits) randomness, and an adaptive rounding scheme. We now present a proof of Theorem 12.

Proof. Let f be a function from Σ∗ to integers and let A be a (ε, δ)-approximation algorithm
for f . For ease of presentation, we assume that f(x) ≤ 2n, where n = |x|. Consider the
following algorithm. In this algorithm we set ` to 8 and p to 8 − log(1/ε). Note that p is
negative. Given a number y in binary, and an integer z, we use ycz to denote the value
obtained by replacing the last z bits of y with zeros. We use % for the modulo operator:
x%y is the unique integer z in {0 . . . y − 1} satisfying yr + z = x for some integer r. We say
x ≡ y%z if x%y = z%y.

1. Input x of length n.
2. Choose m uniformly at random from {0 . . . 4}.
3. Choose r uniformly at random from {1 . . . 2`}.
4. Run A(x) and let y be the output.
5. Choose ky so that 2ky ≤ y < 2ky+1.
6. Set zy = ky + p+ {2, 1, 0,−1,−2} so that zy ≡ m % 5.
7. Set rzy

= r · 2(zy−`).
8. Output (y − rzy )czy .

We prove that this is a O(1)-bit influential algorithm for f , where the influential bits
describe m and r. Fix an input x. The probability that A outputs a value in the range
[(1− ε)f(x), (1 + ε)f(x)] is at least 1− δ. From now we assume that this event has happened.
Let {y1, y2, · · · , yN} be all possible outputs of A(x) such that every yi ∈ (1 ± ε)f(x). Let
ymin and ymax be the smallest and the largest of these values respectively. Since ε ≤ 1/2,
there exists a k ≥ 0 such that for every yi, 2k ≤ yi < 2k+2. Note that once the input x is
fixed, k is also fixed.

We say m ∈ {0, · · · , 4} is good if all zyi
(1 ≤ i ≤ N) are the same (defined in Line 6). We

will establish the following claim.

I Claim 12.1. If we choose m randomly from {0, 1, 2, 3, 4}, m is good with probability 4/5.

Proof. Consider yi and yj , i 6= j. If both yi and yj lie between 2k and 2k+1, then clearly
zyi

equals zyj
. Suppose that yi lies between 2k and 2k+1 and yj lies between 2k+1 and 2k+2.

Thus zyi
∈ {k+ p− 2, k+ p+ 1, k+ p, k+ p+ 1, k+ p+ 2} and zyj

∈ {k+ p− 1, k+ p, k+ p+
1, k+p+2, k+p+3}. Note that both zyi

and zyj
are equal m modulo 5. If (k+p−2) ≡ m%5,

then the value of zyi
equals k + p− 2 and zyj

equals k + p+ 3 and they differ. In all other
cases, zyi equals zyj . The probability that randomly chosen m ≡ (k + p− 2)%5 is exactly
1/5. Thus m is good with probability 4/5. J

From now on we will assume that the event “m is good” has happened. Thus zy1 = zy2 =
· · · = zyN

. For notational simplicity, we will denote this value by z. Note that rz is formed
by randomly picking r ∈ {1, · · · 2`} and multiplying with 2(z−`). We will prove the following
claim that will be used later.
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I Claim 12.2. For every X ∈ [0 . . . 2z],
1. X

2z − 1
2` ≤ Pr[rz ≤ X] ≤ X

2z

2. 1− X
2z ≤ Pr[rz > X] ≤ 1− (X2z − 1

2` )

Proof. Note that rz is uniformly distributed in { 2z

2` , 2 · 2z

2` , 3 · 2z

2` , . . . n
2 · 2z

2` }.
Thus, if i 2z

2` ≤ X < (i+ 1) 2z

2` , there are i values of rz that are at most X. We can write i as
bX·n

`

2z c ≤ X·2`

2z , giving us Pr[rz ≤ X] = i
2` ≤ X·2`

2`·2z = X
2z and Pr[rz > X] = 1− i

2` ≥ 1− X
2z

Similarly, i ≥ X·2`

2z − 1, so Pr[rz ≤ X] = i
2` ≥ X

2z − 1
2` and Pr[rz > X] = 1 − i

2` ≤
1− (X2z − 1

2` ) J

I Lemma 13. For every good m, if we randomly choose r ∈ {1, · · · , 2`}, then for at least
223/256 of the possible r, the following holds: For every i 6= j (1 ≤ i, j ≤ r) (yi − rz)cz =
(yj − rz)cz.

Proof. The cz operation can be viewed as dividing the interval [0, 2n] into subintervals
[0, 2z − 1], [2z, 2 · 2z − 1], [2 · 2z, 3 · 2z − 1] . . . [2n − 2z, 2n], and mapping the contents of each
interval to its left endpoint. Note that ymax − ymin is at most 2f(x)ε. Since f(x) ≤ 2k+2

and 2z ≥ 2k+p−2, ymax− ymin is at most 2k+3ε, which is at most 2z/8. Since the size of each
interval is 2z and the difference between ymax and ymin is less than the size of the interval,
either both ymin and ymax lie in the same interval or lie in two contiguous intervals. We
consider both cases.
Case 1. Both ymax and ymin are in the same interval, say [i · 2z, (i+ 1) · 2z] for some i. If

subtracting rz causes them to be in different intervals, rz must be large enough to move
ymin to a new interval, but not so large that ymax moves too. That is, rz > (ymin− i · 2z)
and rz ≤ (ymax − i · 2z). They are in the same interval when rz ≤ (ymin − i · 2z) or
rz > (ymax − i · 2z).
So, the probability that ymin and ymax are in the same interval is

Pr[rz > (ymax − i · 2z)] + Pr[rz ≤ (ymin − i · 2z)]

≥ 1− ymax − i · 2z

2z + ymin − i · 2z

2z − 1
2`

= 1− ymax − ymin
2z − 1

2l
≥ 223/256

The first inequality follows from Claim 12.2. The second follows from the conclusion that
ymax − ymin is at most 2z/8. The last inequality follows because ` = 8.

Case 2. Now consider the other case, where ymin is in the interval [i · 2z, (i+ 1) · 2z] and
ymax is in [(i+1) ·2z, (i+2) ·2z]. If subtracting rz causes ymax and ymin to be in different
intervals, either rz is not large enough to move ymax into the same interval as ymin, or rz
is so large that it moves ymin into a new interval as well. In this case, the condition is
rz > (ymin − i · 2z) or rz ≤ (ymax − (i + 1) · 2z). Then, the probability that ymin and
ymax end up in different intervals is

Pr[rz > (ymin − i · 2z)] + Pr[rz ≤ (ymax − (i+ 1) · 2z)]

≤ 1− (ymin − i · 2
z

2z − 1
2` ) + ymax − (i+ 1) · 2z

2z

= 1− ymin
2z + i+ 1

2` + ymax
2z − i− 1

= ymax − ymin
2z + 1

2`
≤ 33/256

The first inequality follows from Claim 12.2. The second follows from the conclusion that
ymax − ymin is at most 2z/8. J

MFCS 2018



61:10 Pseudodeterministic Algorithms

Our next claim shows that the operation cz preserves the approximation (up to a constant
factor).

I Claim 13.1. If y ∈ f(x)(1± ε), then (y − rz)cz ∈ f(x)(1±O(ε)).

Proof. Subtracting rz and taking the cz only decrease, so this is at most y, which is at most
f(x)(1 + ε). For a given y, the minimum value of (y − rz)cz occurs when r is as large as
possible and cz changes the last z bits from 1 to 0. rz is at most 2z. cz can decrease the input
by at most 2z. Thus, (y − rz)cz is at least y − 2z − 2z. Consider the following inequalities.

2z+1 ≤ 2k+2+p+2

= 2k+13−log 1/ε

≤ f(x)(213ε)( as f(x) ≥ 2k)

Since (y−rz)cz ≥ y−2z+1, and y ≥ f(x)(1−ε), we obtain that (y−rz)cz ≥ f(x)(1−214ε). J

Now we can finish the proof of Theorem 12. The influential bits of the algorithm are
m and r. Note that the number of influential bits is constant. Let us call the set of r for
which the consequence of Lemma 13 holds as good. Note that for every fixing of good m and
r, the output of the algorithm is unique and is a good approximation, with probability at
least 1− δ, by Lemma 13 and Claim 13.1. Finally the fraction of bad m and r is at most
1/5 + 33/256 which is at most 1/3. Thus the algorithm is a constant-bit influential algorithm.

The statement of Theorem 12 assumed that ε ∈ o(1). However, the proof goes through
for any sufficiently small ε. We have the following as a corollary of Theorem 12. J

I Theorem 14. For every problem in ]NP, there is a O(1)-bit influential, (1/n, 1/2n)-
approximation algorithm.
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