
Double Threshold Digraphs
Peter Hamburger
Department of Mathematics, Indiana-Purdue University
Fort Wayne, IN 46805, USA
hamburge@ipfw.edu

Ross M. McConnell
Department of Computer Science, Colorado State University
Fort Collins, CO 80523, USA
rmm@cs.colostate.edu

Attila Pór
Department of Mathematics, Western Kentucky University
Bowling Green, KY 42101
attila.por@wku.edu

Jeremy P. Spinrad
Department of Computer Science, Vanderbilt University
Nashville, TN 37235, USA
Jeremy.P.Spinrad@vanderbilt.edu

Zhisheng Xu
Department of Computer Science, Colorado State University
Fort Collins, CO 80523, USA
xuzs9298@cs.colostate.edu

Abstract
A semiorder is a model of preference relations where each element x is associated with a utility
value α(x), and there is a threshold t such that y is preferred to x iff α(y) − α(x) > t. These
are motivated by the notion that there is some uncertainty in the utility values we assign an
object or that a subject may be unable to distinguish a preference between objects whose values
are close. However, they fail to model the well-known phenomenon that preferences are not
always transitive. Also, if we are uncertain of the utility values, it is not logical that preference
is determined absolutely by a comparison of them with an exact threshold. We propose a new
model in which there are two thresholds, t1 and t2; if the difference α(y) − α(x) is less than
t1, then y is not preferred to x; if the difference is greater than t2 then y is preferred to x; if
it is between t1 and t2, then y may or may not be preferred to x. We call such a relation a
(t1, t2) double-threshold semiorder, and the corresponding directed graph G = (V,E) a (t1, t2)
double-threshold digraph. Every directed acyclic graph is a double-threshold digraph; increasing
bounds on t2/t1 give a nested hierarchy of subclasses of the directed acyclic graphs. In this
paper we characterize the subclasses in terms of forbidden subgraphs, and give algorithms for
finding an assignment of utility values that explains the relation in terms of a given (t1, t2) or
else produces a forbidden subgraph, and finding the minimum value λ of t2/t1 that is satisfiable
for a given directed acyclic graph. We show that λ gives a useful measure of the complexity
of a directed acyclic graph with respect to several optimization problems that are NP-hard on
arbitrary directed acyclic graphs.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases posets, preference relations, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.69

Related Version A full version of the paper is available at [6], https://arxiv.org/abs/1702.
06614.

© Peter Hamburger, Ross M. McConnell, Attila Pór, Jeremy P. Spinrad, and Zhisheng Xu;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 69; pp. 69:1–69:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hamburge@ipfw.edu
mailto:rmm@cs.colostate.edu
mailto:attila.por@wku.edu
mailto:Jeremy.P.Spinrad@vanderbilt.edu
mailto:xuzs9298@cs.colostate.edu
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.69
https://arxiv.org/abs/1702.06614
https://arxiv.org/abs/1702.06614
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

69:2 Double Threshold Digraphs

1 Introduction

A poset P can be identified with a transitive digraph on its elements. The poset P = P (V,<)
is a semiorder [10] if for some utility function α : V → R we have u <P v if and only if
α(v)−α(u) > 1. Semiorders were introduced as a possible mathematical model for preference
in the social sciences. A first possible model for preference is the weak orders, in which each
element is assigned a utility value, such that u is preferred to v iff the value of u is greater
than the value of v. This was viewed as too restrictive; many preference relationships cannot
be modeled by a weak order. Semi-orders were designed to model imprecision in the valuation
function; we may be indifferent between elements not only if they have exactly the same
values, but also if the difference between the values is smaller than some threshold. There is
a great deal of literature on the subject of semiorders and preference; see the books [2, 11].

Our original motivation for defining double-threshold digraphs comes from an attempt
to deal with an issue in mathematical psychology. Intuitively, it is natural to think that
preference is transitive; if one prefers a to b and b to c, then one “should” prefer a to c.
However, a variety of evidence exists showing that preferences are not always transitive.
This has led to a great deal of discussion; for a summary of this issue, see [3]. Viewpoints
range from the idea that the intuitive notion that preference is transitive are simply wrong
and must be thrown away entirely to questioning whether what was being measured in the
non-transitive findings was really a preference relation. Between these two views, there has
been work on finding mathematical models that explain non-transitive preference; Fishburn
[3] gives some possible models.

One approach to mathematical modeling is to try to give a reasonable model of extremely
non-transitive preference; the famous cyclic voter’s paradoxes can be viewed as a model of
preference which can allow not just non-transitivity, but also cycles.

Unlike these approaches, we generalize semi-orders to allow non-transitivity, but we
require that the given set of preferences continue to be acyclic. In other words, we consider
any preference relation represented by a directed acyclic graph (a dag). As in the case of
semiorders, we assume that reported preferences are influenced by an underlying hidden
utility function, which may be approximate, imperfectly known by a subject, or otherwise
fail to capture all factors influencing a report of a preference.

One of our objectives is to obtain a measure of the departure of a given arbitrary acyclic
set of pairwise preferences from a model where preferences are driven exclusively by an
underlying hidden utility function, as well as derive an assignment of utility values that has
the most explanatory power, in a sense that we define within a new model that we propose.

We propose a generalization of a semiorder, a double-threshold semiorder. We loosen the
definition of a semiorder to a broader class of relations that are acyclic but not necessarily
transitive, by allowing two thresholds t1 and t2 such that t1 ≤ t2, and finding a valuation
α(x) for each element x. For two elements x and y, (x, y) is not reported as a preference if
α(y)−α(x) < t1, (x, y) can freely be reported as a preference or not if t1 ≤ α(y)−α(x) ≤ t2,
and (x, y) is reported as a preference if α(y) − α(x) > t2. Let a satisfying utility function
or a satisfying assignment of α values for (t1, t2) be a utility function α that meets these
constraints. This accommodates within the model the well-known phenomenon in the
literature on perception that there can be a range of differences between the minimum
difference that is sometimes perceived and the minimum difference that is perceived reliably.

When the relation of the double-threshold semiorder is modeled by a dag, it is called a
double-threshold digraph. If a dag can be represented with thresholds (t1, t2), then it can be
represented with any pair (t′1, t′2) of thresholds such that t′2/t′1 = t2/t1, since a solution α

P. Hamburger, R.M. McConnell, A. Pór, J. P. Spinrad, and Z. Xu 69:3

for (t1, t2) can be turned into a solution for (t′1, t′2) by rescaling all α values by the factor
t′1/t1 = t′2/t2. Therefore, for any pair (t1, t2) of thresholds, the question of whether a
particular dag can be represented with them depends on the ratio r = t2/t1; larger ratios
allow representations of more dags.

Henceforth, given a digraph G, let n(G) denote the number of vertices and m(G) the
number of edges. When G is understood, we may denote these as n and m. For a dag G,
let λ(G) denote the minimum ratio of t2/t1 such that G has a satisfying utility function for
(t1, t2). When G models a weak order, t1 = 1 and t2 = ε for any ε > 0 has a satisfying utility
function. For this trivial special case, which is easily recognized in linear time, we define
λ(G) to be 0, the lower bound on the satisfiable ratios t2/t1, and call such a dag a degenerate
dag. All other dags are nondegenerate.

When G or the preference relation it models is understood, we denote λ(G) simply by
λ. For a dag that models a nondegenerate semiorder, λ = 1; higher values of λ provide a
measure of the degree to which a given set of preferences depart from a semiorder. An acyclic
preference relation is a (t1, t2)-semiorder if it has a satisfying utility function for (t1, t2), that
is, if t2/t1 ≥ λ. When such a preference relation is modeled as a digraph, we say the digraph
is a (t1, t2) double-threshold digraph. We show that for any nondegenerate dag G, λ(G) can
be expressed as a ratio j/i where i and j are integers such that 1 ≤ i ≤ j < i + j ≤ n

(Theorem 4), allowing t1, t2, and the utility function to have small integer values. Also, for
any dag, t1 = 1 and t2 = n− 1 is always satisfiable, so λ ≤ n− 1. An example of when the
bound is tight is when G is a directed path.

Thus, the classes of dags with λ bounded by different values give a nested hierarchy of
dags, starting with weak orders and semiorders. For each class in the hierarchy, we give a
characterization of the class in terms of a set of forbidden subgraphs for the class.

When G has no satisfying utility function for t1, t2, we show how to return a forbidden
subgraph as a certificate of this in O(nm/r) time, where r = t2/t1, and an O(nm/λ) time
bound for finding λ (Theorem 18). The algorithm combines elements of the Bellman-Ford
single-source shortest paths algorithm [1], Karp’s minimum mean cycle algorithm [8], and
dynamic programming techniques based on a topological sort of a dag. For t2/t1 = λ, a
satisfying assignment, together with a forbidden subgraph for a smaller ratio, give a certificate
that λ = t2/t1, and these take O(nm/λ) time to produce.

If λ is less than 2, G must be transitive. The converse is not true: it is easy to show
that the class of posets does not have bounded λ. Consider a chain (v1, v2, . . . , vn−1) in a
poset and a vertex vn that is incomparable to the others; t2 ≥ t1(n − 2)/2. Even though
they are transitive, some posets are not good models of a preference relation that is based
on an underlying utility function.

Although we show that bounding λ can make some NP-complete problems tractable,
bounded-ratio double-threshold digraphs are in one sense enormously larger than semiorders.
Semiorders correspond to digraphs that can be represented with ratio 1. These classes of
digraphs both have implicit representations [12], implying that there are 2O(n logn) such
digraphs on a set of n labeled vertices. By contrast, every height 1 digraph can be represented
with ratio 1: for each vertex x, assign α(x) = 0 if is it a source or α(x) = 1 if it is a sink and
make the thresholds t1 = t2 = 1. The number of such digraphs on n labeled vertices, hence
the number with ratio λ for any λ greater than or equal to 1, is 2Θ(n2).

The underlying undirected graph of a dag is the symmetric closure, that is, the undirected
graph obtained by ignoring the orientations of the edges. In this paper, we say that a dag is
connected if its underlying undirected graph is connected. Similarly, by a clique, coloring,

MFCS 2018

69:4 Double Threshold Digraphs

independent set, or clique cover of a dag, we mean a clique, coloring, independent set or
clique cover of the underlying undirected graph. Hardness results about these problems
on undirected graphs also apply to dags, since every undirected graph G is the underlying
undirected graph of the dag obtained by assigning an acyclic orientation to G’s edges.

Finding a maximum independent set or clique in a dag takes polynomial time if the
dag is transitive (a poset), hence if it is a semiorder, but for arbitrary dags, there is no
polynomial-time approximation algorithm for finding a independent set or clique whose size
is within a factor of n1−ε of the largest unless P = NP [7]. However, for a connected dag G,
we give an O(λmbλ+1c/2) algorithm for finding a maximum clique (Corollary 10), and an
approximation algorithm that finds a clique whose size is within a desired factor of i of that
of a maximum clique in O(nm/λ+mbλ/i+1c/2) time (Corollary 11).

We show that finding a maximum independent set is still NP-hard when λ ≥ 2, but we
give a polynomial-time approximation algorithm that produces an independent set whose
size is within a factor of bλ + 1c of the optimum (Theorem 12). We give approximation
bounds of bλ+ 1c for minimum coloring and minimum clique cover (Theorems 13 and 14),
which also have no polynomial algorithms for finding an n1−ε approximation for arbitrary
dags unless P = NP.

Thus, restricting attention to dags such that λ is bounded by a constant makes some
otherwise NP-hard problems easy and gives rise to polynomial-time approximation algorithms
that cannot exist in general unless P = NP. In each case, the time bound or the approximation
bound is an increasing function of λ. This supports the view of λ as a measure of complexity
of a dag. By contrast, for most similar attempts to measure complexity of a graph or digraph,
the measurement is NP-hard to compute; examples include dimension of a poset, interval
number, boxicity, and many others; see [12].

A concept similar to λ was given previously by Gimbel and Trenk in [5]. They developed
a generalization of weak orders to partial orders that corresponds to the special case of
a (1, k) transitive dag. Not assuming transitivity requires us to use different algorithmic
methods, but our bounds improve their bounds for their special case from O(n4k) and O(n6)
to O(mn/k). Most of their structural results are disjoint from ours because they are relevant
to partial orders and their underlying undirected graphs, the comparability graphs.

2 Satisfying utility functions and forbidden subgraphs

We give the following formal definition:

I Definition 1. A dag is a (t1, t2) double-threshold digraph if there exists an assignment of
a real value α(v) to each vertex v such that whenever (u, v) is an edge, α(v)− α(u) ≥ t1 and
whenever (u, v) is not an edge, α(v)− α(u) ≤ t2.

Whether the constraints can be satisfied can be formulated as the problem of finding a
feasible solution to a linear program:

α(v)− α(u) ≥ t1 for each (u, v) such that (u, v) is an edge;
α(v)− α(u) ≤ t2 for each (u, v) such that neither (u, v) nor (v, u) is an edge;
α(v) ≤ 0 for all v ∈ V (G).

The last constraint is added as a convenience; for any satisfying assignment, an arbitrary
constant can be subtracted from all of the α values to obtain a new satisfying assignment, so
the constraint cannot affect the existence of a feasible solution.

This is a special case of a linear program, a system of difference constraints, where each
constraint is an upper bound on the difference of two variables. This reduces to the problem
of finding the weight of a least-weight path ending at each vertex in a digraph derived from

P. Hamburger, R.M. McConnell, A. Pór, J. P. Spinrad, and Z. Xu 69:5

t2
t2

G
d

−t
1

−t
1

G

Figure 1 Reduction of finding a satisfying utility function to the single-source least-weight paths
problem. Edges of weight t1 in Gd are acyclic.

the constraints, as described in [1], where there is a satisfying assignment if and only if the
digraph of the reduction has no negative-weight cycle. Applying the reduction to the problem
of determining whether there is a satisfying utility function on G yields a digraph Gd, where
V (Gd) = V (G) (see Figure 1). Gd has an edge (y, x) of weight −t1 for each edge (x, y) of
G, and edges (u, v) and (v, u) of weight t2 for each pair {u, v} such that neither of (u, v)
and (v, u) is an edge of G. A negative cycle in Gd proves that the system is not satisfiable;
otherwise, for each x ∈ V , assigning α(x) to be the minimum weight of any path ending at x
gives a satisfying assignment for (t1, t2).

The single-source least-weight paths problem where some weights are negative can be
solved in O(nm) time, but Gd has Θ(n2) edges, so a direct application of this approach takes
Θ(n3) time to find a satisfying assignment or produce a negative-weight cycle in Gd. We
derive tighter bounds below.

In terms of G, a negative cycle of Gd translates to a forbidden subgraph characterization
of (t1, t2) double-threshold digraphs:

I Definition 2. Let (u, v) be a hop in G if neither (u, v) nor (v, u) is an edge of G. Let a
forcing cycle be a simple cycle (v1, v2, ..., vk) such that such that for each consecutive pair
(vi, vi+1) (indices mod k), the pair is either a directed edge of G or a hop. Let the ratio of
the forcing cycle be the ratio of the number of edges to the number of hops.

I Theorem 3. For a nondegenerate dag G, the minimum satisfiable ratio λ is equal to the
maximum ratio of a forcing cycle in G.

One consequence of the theorem is that when G is a nondegenerate dag, a satisfying
assignment of α values for thresholds (t1, t2), together with a forcing cycle with ratio equal
to t2/t1 gives a certificate that λ(G) = t2/t1, as illustrated in Figure 2.

I Theorem 4. For every nondegenerate dag G, λ(G) can be expressed as a ratio i/j of
integers such that 1 ≤ i ≤ j < i+ j ≤ n.

Proof. This follows from the fact that λ ≥ 1 and is the ratio of the number j of edges to the
number i of hops on a forcing cycle. J

Aside from showing that optimum values of t1 and t2 can be expressed as small integers,
the theorem gives an immediate O(n3 logn) bound for finding λ. This is because it implies
that the number of possible values j/i that λ can take on is O(n2), and that these can be
generated and sorted in O(n2 logn) time. A binary search on this list, spending O(n3) time
at each probe j/i to determine whether G is an (i, j) double-threshold digraph, as described
above, can then be used to find λ. Once λ is known, a satisfying assignment of utility values

MFCS 2018

69:6 Double Threshold Digraphs

a(2)

b(5)

t 2 = 5t
1 = 3

f(1)

g(4)

h(7)

c(0)

e(6)

d(3)

Figure 2 A dag such that λ = 5/3. The number next to each vertex is the value of the utility
function, conforming to t1 = 3 and t2 = 5. The cycle (a, b, c, d, e, f, g, h) is a cycle of directed edges
and hops in which the ratio of edges to hops is 5/3. Since λ < 2, the dag is transitive.

for t2/t1 = λ, together with a forcing cycle with forcing ratio equal to λ gives a certificate
that the claimed value of λ is correct. We improve these bounds to O(nm/λ) in section 5.

3 k-clique extendable orderings

In the book [12], Spinrad introduced the class of k-clique extendable orderings of the vertices of
graphs, which we explain below. Finding whether a graph has a 2-clique extendable ordering
takes polynomial time, but no polynomial time bounds are known for k ≥ 3. However, we
show in the next section that a topological sort of a nondegenerate dag G is a k-clique
extendable ordering for k = bλ(G)c+ 1, and develop several applications of this result to
optimization problems. In this section, we give the details and analysis of the time bound of
an algorithm suggested in [12] for finding a maximum clique, given a k-clique extendable
ordering.

Two sets overlap if they intersect and neither is a subset of the other. Let σ = (v1, v2, . . . ,

vn) be an ordering of the vertices of a graph, G = (V,E). For U ⊆W ⊆ V let us say that
W ends with U if the elements of U are the last elements of W in σ, that is, if no element of
W \U occurs after an element of U . W begins with U if W ends with U in (vn, vn−1, . . . , v1).

I Definition 5. An ordering σ = (v1, v2, . . . , vn) of vertices of a graph G = (V,E) is k-
clique extendable ordering of G if, whenever X and Y are two overlapping cliques of size k,
|X ∩ Y | = k − 1, and X ∪ Y begins with X \ Y = {a} and ends with Y \X = {b} in σ, then
a and b are adjacent and X ∪ Y is a clique.

This is a generalization of transitivity, since a dag is transitive if and only if its topological
sorts are two-clique extendable orderings, hence a graph is a comparability graph if and only
if it has a two-clique extendable orderings. In [12], it is shown that three-clique extendable
orderings arise naturally in connection with visibility graphs, and that it takes polynomial
time to find a maximum clique in a graph, given a three-clique extendable ordering. A
polynomial-time generalization for k-clique extendable orderings is implied; we give details
and a time bound next.

I Lemma 6. If σ = (v1, v2, . . . , vn) is a k-clique extendable ordering of a graph G and X
and Y are overlapping cliques of any size greater than or equal to k, such that |X ∩Y | ≥ k−1
and X ∪ Y begins with X \ Y and ends with Y \X in σ, then X ∪ Y is a clique.

P. Hamburger, R.M. McConnell, A. Pór, J. P. Spinrad, and Z. Xu 69:7

Proof. It suffices to show that every element of X \ Y is adjacent to every element of Y \X.
Let x be an arbitrary element of X \ Y , y be an arbitrary element of Y \X, and Z be any
k − 1 elements of X ∩ Y . Then {x} ∪Z and Z ∪ {y} are two k-cliques and, by the definition
of a k-clique extendable ordering, their union is a clique, and x and y are adjacent. J

I Corollary 7. If σ = (v1, v2, . . . , vn) is a k-clique extendable ordering of a graph G, X is a
k-clique ending with {v} and Z is a largest clique of G ending with the (k− 1)-clique X \ {v},
then Z ∪ {v} is a largest clique of G ending with X.

Proof. For any clique Y ending with X, Y \ {v} is a clique ending with X \ {v}. Z ∪ {v} =
Z ∪X, which is a clique by Lemma 6. J

Corollary 7 is the basis of the recurrence for a dynamic programming algorithm for finding
a maximum clique of G, given a k-clique extendable ordering. We enumerate all k-cliques
and then label each k-clique K with the maximum size hK of a clique that ends with K. If
(u1, u3, . . . , uk) is the left-to-right ordering of a k-clique in the ordering, then its label is one
plus the maximum of the labels of cliques of the form (x, u1, u2, . . . , uk−1). The size of the
maximum clique of G is the maximum of the labels. Details and the proof of the following
resulting time bound appear in the ArXiv version [6].

I Theorem 8. Given a k-clique extendable ordering of a graph G, a maximum clique can be
found in O(kmk/2) time.

It is easy to see that when the vertices of G have positive weights, the problem of finding
a maximum weighted clique can be solved in the same time bound, using a trivial variant of
Corollary 7.

4 Optimization problems on dags with bounded λ values

We now show that restricting attention to dags such that λ is bounded by a constant
makes some otherwise NP-hard problems easy or gives rise to polynomial-time approximation
algorithms that cannot exist for the class of all dags unless P = NP. The NP-hard problems we
consider can be trivially solved in linear time on degenerate dags, so we focus on nondegenerate
dags.

I Theorem 9. Let G be a nondegenerate dag and k = bλ(G)c+ 1. A topological sort of G is
a k-clique extendable ordering.

Proof. Let (v1, v2, . . . , vn) be a topological sort, and let α be a satisfying utility function
for (t1, t2) such that t2/t1 = λ. Let (w1, w2, . . . , wk) and (w2, w3, . . . , wk, wk+1) be the
left-to-right orderings of two k-cliques K ′ and K. Then (w1, w2, . . . , wk+1) is a directed path
in G, hence α(wk+1)− α(w1) ≥ kt1 > t2, (w1, wk+1) is an edge and K ∪K ′ is a clique. J

I Corollary 10. It takes O(λmbλ+1c/2) time to find a maximum clique in a connected
nondegenerate dag G.

Proof. To avoid an additive O(nm/λ) term, run the dynamic programming algorithm on
a topological sort under the assumption that it is a 2-clique extendable ordering in O(m)
time by Theorem 8, and return the result if it is a clique. Otherwise, do the same under
the assumption that it is a 3-clique extendable ordering, in O(m3/2) time. If a max clique
has not yet been returned, then λ ≥ 3 by Theorem 9, so compute λ in O(nm/λ) = O(m2)
time, which is now subsumed by the bound we want to show. A topological sort is a bλc+ 1
extendable ordering by Theorem 9, so it takes O(λmbλ+1c/2) time to find a maximum clique
by Theorem 8. J

MFCS 2018

69:8 Double Threshold Digraphs

Even if λ is bounded by a moderately large constant, this bound could be prohibitive in
practice, but it also gives an approximation algorithm that allows a tradeoff between time
and approximation factor:

I Corollary 11. Given a connected nondegenerate dag G and integer i such that 1 ≤ i ≤ λ,
a clique whose size is within a factor of i of the size of a maximum clique can be found in
O((λ/i)m(bλ/ic+1)/2) time.

Proof. Let G′ be the result of removing the edges {(u, v)|(u, v) ∈ E(G) and α(v)−α(u) < i}.
A satisfying function α for G and thresholds (1, λ(G)) is also a satisfying function for G′ and
thresholds (i, λ(G)), so λ(G′) ≤ λ(G)/i. Applying Theorems 8 and 9, we get a maximum
clique of G′ in O((λ/i)m(bλ/ic+1)/2) time. A maximum clique of G induces a directed path
(v0, v1, ..., vk) in G, and {v0, vi, v2i, . . . , vbk/ic} is a clique of G′, so the size of a maximum
clique in G′ is within a factor of i of the size of a maximum clique in G. J

If λ(G) < 2, a maximum independent set in G can be obtained in polynomial time, since
G is transitive [4]. However, even when λ(G) = 2, the problem of determining whether G
has an independent set of size k is NP-complete. This is seen as follows. It is NP-complete
to decide whether a 3-colorable graph has an independent set of a given size k, even when
the 3-coloring is given [9]. Given such a graph G′, k, and three-coloring, let C1, C2, and C3
be the three color classes. Every edge e has endpoints in two of the classes; orient e from
the endpoint in the class with the smaller subscript to the endpoint in the class with the
larger subscript. Doing this for all edges results in a dag G such that λ(G) = 2, since, for
each vertex x, if x ∈ Ci, assigning α(x) = i gives a satisfying assignment of utility values for
t2 = 2 and t1 = 1. There is an independent set of size k in G if and only if there is one in G′.

I Theorem 12. For G in the class of dags where bλ(G)c + 1 ≤ k, there is a polynomial
k-approximation algorithm for the problem of finding a maximum independent set in G.

Proof. Find a satisfying assignment of utility values for (t1, t2) such that t2/t1 = λ(G), then
find an interval of the form [x, x+ t1) such that the size of the set Y whose α values are in
the interval is maximized. Y is an independent set, since no pair of them has α values that
differ by t1. Return these vertices as an independent set.

For the approximation bound, let X be a maximum independent set. The α values of
X lie in an interval of the form [y, y + t2], which is a subset of the union [y, y + kt1), of k
intervals of the form [x, x+ t1), hence |X| ≤ k|Y |. J

Proofs of the following make similar use of the availability of satisfying α values and are
given in the ArXiv version [6].

I Theorem 13. For G in the class of dags where bλ(G)c + 1 ≤ k, there is a polynomial
k-approximation algorithm for the problem of finding a minimum coloring of G.

I Theorem 14. For G in the class of dags where bλ(G)c + 1 = k, there is a polynomial
k-approximation algorithm for the problem of finding a minimum clique cover of G.

5 O(nm/λ) bounds for finding satisfying utility functions, λ, and
certificates

In this section, we first show how to find a satisfying assignment of utility values for given
thresholds (t1, t2), in O(nm/r) time, where r = t2/t1. We then show how to find λ in
O(nm/λ) time. By solving the second problem to find λ, then selecting (t1, t2) such that

P. Hamburger, R.M. McConnell, A. Pór, J. P. Spinrad, and Z. Xu 69:9

t2/t1 = λ and solving the first, we get the certificates for λ, that is, a satisfying assignment
and a cycle such that the ratio of edges to hops is λ, which comes from a zero-weight cycle
in Gd.

For both of these problems, we use the following. When G is an arbitrary digraph where
each vertex x has a weight w(x) and each edge (y, z) has a weight w(y, z), it takes O(m)
time to find w′(v) = min({∞} ∪ {w(u) + w(u, v)|(u, v) is an edge of G} for each vertex v of
G. Let us call this the general relaxation procedure. In the special case where G is a dag, it
takes O(m) time to find w′(v) = minu({w(u) + wuv)}), where wuv is the minimum weight
of any path from u to v and wvv = 0. This can be used to solve the single-source shortest
paths problem on a connected dag in O(m) time [1]. Let us call this the dag variant of the
relaxation procedure.

In a digraph with edge weights, let the length of a walk be the number of occurrences
of edges on the walk and its weight be the sum of weights of occurrences of edges. If an
edge occurs k times on the walk, it contributes k to the length, and if its weight is w, it
contributes kw to the weight and kw to the number of (occurrences of) edges of weight w on
the walk.

5.1 Finding a satisfying utility function or a forbidden subgraph for
(t1, t2)

The Bellman-Ford algorithm is a dynamic programming algorithm that works as follows on a
connected digraph G where a vertex s has been added that has an edge of weight zero to all
other vertices. Let D(i, v) be the minimum weight of any walk from s to v that has at most
i+ 1 edges. D(i, v) is just the minimum weight of any walk of length at most i in G ending at
v; henceforth we omit s from the discussion. D(0, v) = 0 for all v ∈ V . During the “ith pass”
the algorithm computes D(i, v) as min({(D(i− 1, u) + w(u, v)|(u, v) ∈ E}). This is just an
instance of the general relaxation procedure where w(v) = D(i− 1, v) and the loop (v, v) is
considered to be an edge of weight 0 for each v ∈ V . If there is no negative cycle, there is
always a path ending at v that is a minimum-weight walk ending at v, so D(n− 1, v) gives
the minimum weight of any path ending at v. If there is a negative cycle, this is detected
when D(n, v) < D(n− 1, v) for some v, indicating a walk of length n of smaller weight of
any path, which must have a negative cycle on it. By annotating the dynamic programming
entries with suitable pointers, it is possible to find such a cycle within the same bound. The
n passes to compute D(n, v) for all v each take O(m) time, for a total of O(nm) time.

To exploit the structure of Gd to improve the running time, we let B(i, v) denote the
minimum weight of any path that has at most i edges of weight t2, rather than at most i edges
in total. We use the elements B(i, v), rather than the elements of D(i, v), as the elements
of the dynamic programming table. Let us call this reindexing the dynamic programming
table. We obtain B(0, v) by assigning w(v) = 0 and running the dag variant of the relaxation
procedure on the edges of weight −t1, since they are acyclic. For pass i such that i > 0, any
improvements obtained by allowing an ith edge of weight t2 are computed with the general
relaxation procedure, where loops are considered to be edges of weight 0, and, after this, any
additional improvements obtained by appending additional edges of weight −t1 are computed
by the dag variant of the relaxation procedure.

Because every vertex has a walk of length and weight 0 ending at it, B(i, v) ≤ 0 for
i ≥ 0. Therefore, for i > 0, if B(i, v) < B(i − 1, v), the ratio of edges of weight −t1 to
edges of weight t2 is greater than r = t2/t1. Any such walk must have more than ir edges
of weight −t1, hence length greater than i(r + 1). Therefore, if there is no negative cycle
in Gd, for i = b(n − 1)/(r + 1)c + 1, B(i, v) = D(n − 1, v), and a negative cycle occurs if
B(i+ 1, v) < B(i, v) for this i and some v. A negative cycle can be found by the standard

MFCS 2018

69:10 Double Threshold Digraphs

technique of annotating the results of the relaxation operations with pointers to earlier
results. The advantage of reindexing the table is that the algorithm now takes O(n/r) passes
instead of n of them.

To get the O(nm/r) bound, it remains to show how to perform each pass in O(m) time.
The bottleneck is evaluating w′(v) = min{{w(v)} ∪ {w(u) + t2|(u, v) is an edge of weight
t2} for the general relaxation step. Since all of the edges have the same weight, we rewrite
this as w′(v) = min{w(v), w(x) + t2} where x minimizes w(u) = B(i− 1, u) for all u such
that w(u, v) = t2. To evaluate this, we just have to find x. At the beginning of the pass, we
radix sort the vertices in ascending order of B(i− 1, ∗), giving list L. To compute B′(i, v),
we mark the vertices that have an edge to v, then traverse L until we find x as the first
unmarked vertex we encounter, then unmark the vertices that have edges to v. This takes
time proportional to the in-degree of v, hence O(m) time for all vertices in the pass.

5.2 Finding λ
To find λ(G), we use the fact that that if t2/t1 = λ, the corresponding weighting of Gd will
give it a zero-weight cycle in Gd, which gives a forcing cycle of ratio λ in G as a certificate.

For arbitrary (t1, t2), let the mean weight of a directed cycle or path of length at least one
in Gd be the weight of the cycle divided by the number of edges. The minimum mean weight
of a cycle is the minimum cycle mean. Subtracting a constant c from the weight of all edges
in Gd subtracts c from the mean weight of every cycle and path of length at least one. For
arbitrary t1 and t2, weighting Gd in accordance with (t1 + c, t2 − c) in place of (t1, t2) has
the same effect of subtracting c from the weights of all edges. Thus, for arbitrary (t1, t2), if c
is the minimum cycle mean of the corresponding weighting of Gd, then λ = (t2 − c)/(t1 + c).
Finding λ reduces to finding the minimum cycle mean in the weighting of Gd obtained from
an arbitrarily assigned (t1, t2).

In a digraph G with edge weights, let F (i, v) be the minimum weight of any walk of
length exactly i ending at v. In [8], Karp showed the following:

I Theorem 15. The minimum cycle mean of a digraph with edge weights is
minv∈V max0≤i<n[(F (n, v)− F (i, v))/(n− i)].

Karp actually shows this when an arbitrary vertex s is selected and F (i, v) is defined
to be the minimum weight of all walks of length i from s to v, but if it is true for walks
beginning at an arbitrary vertex s, then it is true when s is allowed to vary over all vertices of
V . Omitting s from consideration in this way in his proof gives a direct proof of this variant
of his theorem. He reduces the problem to the special case where G is strongly connected by
working on each strongly-connected component separately, but the only purpose of this in
his proof is to ensure that there is a path from s to all other vertices, and this is unnecessary
when s is allowed to vary over all vertices.

F (i, v) can be computed by a variant of Bellman-Ford, by using the recurrence F (i, v) =
min({∞}∪{F (i−1, u)+w(u, v)|(u, v) ∈ E}) in place of D(i, v) = min({D(i−1, v)}∪{D(i−
1, u) + w(u, v)|(u, v) ∈ E}). The only difference from the algorithm of Section 5.1 is that
loops of the form (v, v) are not considered to be edges. Computing F (n, v) for all v ∈ V
takes n passes, each of which applies the general relaxation operation, for a total of O(nm)
time.

An obstacle to an O(nm/λ) bound that we did not have in Section 5.1 is that in
Theorem 15, computing [(F (n, v)−F (i, v))/(n−i)] for 0 ≤ i < n requires Θ(n2) computations,
which is not O(nm/λ).

P. Hamburger, R.M. McConnell, A. Pór, J. P. Spinrad, and Z. Xu 69:11

We again reindex the dynamic programming table (Section 5.1), letting H(i, v) denote the
minimum-weight walk ending at v in Gd that has exactly i edges of weight t2. We compute
the values in passes, computing H(i, v) for each v ∈ V during pass i. As in Section 5.1, each
pass takes takes O(m) time; the only change is that in the general relaxation step, loops
are not considered to be edges. We claim that O(n/λ) passes suffice, but a new difficulty is
knowing when to stop, since, unlike r of the Section 5.1, λ is not known in advance.

A walk with i edges of weight t2 and weight H(i, v) has i edges of weight t2, so it must have
(it2 − F (i, v))/t1 edges of weight −t1. Its length, l(i, v), can be computed as i+ it2 − F (i, v)
in O(1) time.

Let a term H(i, v) be term of interest if l(i, v) = n, that is, if it corresponds to a walk
of interest of length n. We use the following reindexed variant of Karp’s theorem, which
says that it suffices to compute an inner maximum over a smaller set, and only for terms
of interest. The proof is the one Karp gives, reindexed, and omitting reference to a start
vertex s by allowing the start vertex to vary over all vertices. For completeness, we give the
modified proof in the ArXiv version [6].

I Theorem 16. In Gd, the minimum mean weight of a cycle is equal to
min{(i,v)|l(i,v)=n}max0≤j<i(H(i, v)−H(j, v))/(n− l(j, v))

The solution is given as Algorithm 1. During the ith pass, the algorithm computes H(i, v)
for all v ∈ V . Before proceeding to the next pass, it updates a partial computation of the
expression of Theorem 16, computing max0≤j<i(H(i, v)−H(j, v))/(l(i, v)− l(j, v)) for each
the terms of interest H(i, v) that has been computed during the pass, and keeping track of
the minimum of these computations so far. Let a term of interest H(i, v) be critical if the
minimum cycle mean is equal to max0≤j<i(H(i, v)−H(j, v))/(l(i, v)− l(j, v)). The strategy
of the algorithm is to return the minimum it has found so far once it detects that a critical
term has been evaluated.

Let a critical walk be a walk of length n giving rise to a critical term.

I Lemma 17. In Gd, the mean weight of a critical walk is less than or equal to the minimum
cycle mean.

The proof is given in the ArXiv version [6].

I Theorem 18. Given a nondegenerate dag G, it takes O(nm/λ) time to find λ(G).

Proof. The basis of this is Algorithm 1. For a term of interest, H(i, v), the mean weight
of the corresponding walk is (it2 − (n− i)t1)/n, which is an increasing function of i. Thus,
once this exceeds the minimum value, min, found so far a critical term has been found and
is already reflected in the value of min. Thus, Algorithm 1 returns the minimum cycle mean.

The minimum cycle mean is the ratio of edges of weight −t1 to edges of weight t2 on a
cycle of minimum mean. This must also be true for a critical walk, by Lemma 17. This ratio
for the walks of interest in pass i is (n− i)/i, so the algorithm halts before the first pass i′
such that (n− i′)/i′ > λ, and i′ = O(n/λ). Thus, Algorithm 1 halts after O(n/λ) passes.

Using the approach of Section 5.1, the operations in a pass take O(m) time except for
evaluating max0≤j<i(H(i, v) −H(j, v))/(n − l(j, v)) for terms H(i, v) of interest. For any
vertex v, H(i, v) is a term of interest for at most one value of i. Therefore, the cost of
evaluating max0≤j<i(H(i, v) − H(j, v))/(n − l(j, v)) for terms of interests is bounded by
the total number of dynamic programming table entries H(j, w) for 0 ≤ j ≤ i and w ∈ V
computed by the algorithm, which is the number n of them computed in each pass times
O(n/λ) passes. This is O(n2/λ). J

MFCS 2018

69:12 Double Threshold Digraphs

Algorithm 1: Find the minimum cycle mean of Gd.
Data: Gd, (t1, t2)
Result: The minimum cycle mean λ of Gd

1 min :=∞ ;
2 H(0, v) := 0 for all v ∈ V ;
3 for i := 1 to ∞ do
4 if min < (it2 − (n− i)t1)/n then
5 return min
6 Compute H(i, v) for all v ∈ V from H(i− 1, v) for all v ∈ V ;
7 for each term H(i, v) such that l(i, v) = n do
8 k := max0≤j<i(H(i, v)−H(j, v))/(n− l(j, v)) ;
9 if k < min then

10 min = k

References
1 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction

to Algorithms. MIT, 2009.
2 Peter C. Fishburn. Interval Orders and Interval Graphs: Study of Partially Ordered Sets.

Wiley, 1985.
3 Peter C. Fishburn. Nontransitive preferences in decision theory. Journal of Risk and

Uncertainty, 4:113–134, 1991.
4 Fanica Gavril. Maximum weight independent sets and cliques in intersection graphs of

filaments. Information Processing Letters, 11:181–188, 2000.
5 John G. Gimbel and Ann N. Trenk. On the weakness of an ordered set. SIAM J. Discrete

Math, 11:655–663, 1998.
6 Peter Hamburger, Ross M. McConnell, Attila Pór, and Jeremy P. Spinrad. Double threshold

digraphs, 2018. arXiv:arXiv:1702.06614.
7 Johan Hastad. Clique is hard to approximate within n1−ε. Acta Math., 182:105–142, 1999.
8 Richard Karp. A characterization of the minimum cycle mean in a digraph. Discrete

Mathematics, 23:309–311, 1978.
9 Jan Kratochvil and Jaroslav Nešetřil. Independent set and clique problems in intersection-

defined classes of graphs. Comment.Math.Univ.Carolinae, 31:85–93, 1990.
10 Duncan R. Luce. Semiorders and a theory of utility discrimination. Econometrica, 24:178–

191, 1956.
11 Marc Pirlot and Ph Vincke. Semiorders: Properties, Representations, Applications, vol-

ume 36 of Theory and Decision Library. Series B: Mathematical and Statistical Methods.
Kluwer, 1997.

12 Jeremy P. Spinrad. Efficient Graph Representations, volume 19 of Fields Institute Mono-
graphs. American Mathematical Society, 1991.

http://arxiv.org/abs/arXiv:1702.06614

	Introduction
	Satisfying utility functions and forbidden subgraphs
	k-clique extendable orderings
	Optimization problems on dags with bounded lambda values
	O(nm/lambda) bounds for finding satisfying utility functions, lambda, and certificates
	Finding a satisfying utility function or a forbidden subgraph for (t_{1},t_{2}
	Finding lambda

