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Abstract
Under the reconfiguration framework, we consider the various ways that a target graph H is a
minor of a host graph G, where a subgraph of G can be transformed into H by means of edge
contraction (replacement of both endpoints of an edge by a new vertex adjacent to any vertex
adjacent to either endpoint). Equivalently, an H-model of G is a labeling of the vertices of G
with the vertices of H, where the contraction of all edges between identically-labeled vertices
results in a graph containing representations of all edges in H.

We explore the properties of G and H that result in a connected reconfiguration graph, in
which nodes represent H-models and two nodes are adjacent if their corresponding H-models
differ by the label of a single vertex of G. Various operations on G or H are shown to preserve
connectivity. In addition, we demonstrate properties of graphs G that result in connectivity
for the target graphs K2, K3, and K4, including a full characterization of graphs G that result
in connectivity for K2-models, as well as the relationship between connectivity of G and other
H-models.
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1 Introduction

Graph minors have been studied extensively as a means for categorizing graphs and exploiting
their properties. A graph H is a minor of a graph G if H can be formed from a subgraph
of G by a series of edge contractions, where the contraction of the edge uv results in the
replacement of both u and v by a new vertex w that is adjacent to any vertex that was
adjacent to u or v (or both). Much of the research in the area has focused on classes of
graphs that are closed under the taking of minors, and on exploiting properties of graphs
known not to contain certain graphs as minors. For example, it is known that for every minor

© Benjamin Moore, Naomi Nishimura, and Vijay Subramanya;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 75; pp. 75:1–75:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:brmoore@uwaterloo.ca
mailto:nishi@uwaterloo.ca
mailto:v7subram@uwaterloo.ca
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.75
https://arxiv.org/pdf/1804.09240.pdf
https://arxiv.org/pdf/1804.09240.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


75:2 Reconfiguration of Graph Minors

closed class, that class is characterized by a finite set of forbidden minors [12]. Additionally,
it has been shown that for any fixed graph H, every H-minor-free graph of treewidth w has
an Ω(w)× Ω(w) grid as a minor [2].

In our work, we instead focus on the solution space of H-models of a graph G using
the reconfiguration framework [6, 11, 14], where an H-model is a mapping that labels the
vertices of G with the vertices of H. A reconfiguration graph for an instance of a problem
consists of a node for each possible feasible solution and an edge between any two nodes
representing solutions that are adjacent. The definition of adjacency may be presented as a
reconfiguration step used to transform a solution into a neighbouring solution. Structural
properties of the reconfiguration graph, including its diameter and whether it is connected,
are of interest both in their own right and as keys to solving algorithmic problems, such as
determining whether there is a path (or reconfiguration sequence) in the graph between two
given vertices and, if so, finding the shortest such path.

The reconfiguration framework has been used to explore the relationships among solutions
to instances of many graph problems, such as Independent Set, Shortest Path, and
k-Colouring. Practical uses of such work include determining whether and how it is
possible to make incremental changes to form one solution from another, ensuring that at
each step along the way, the intermediate configuration is also a solution. The study of
minor reconfiguration is a natural extension of work that determines conditions under which
reconfiguration graphs are guaranteed to be connected, as well as recent work on mappings
between graphs, in which each node in the reconfiguration graph represents a subgraph in a
specified class [5, 10]. In addition, our results widen the scope of work in which configurations
are represented as labelings, which previously had been limited to problems entailing moving
labels from a source to a target configuration using the minimum number of exchanges of
labels on adjacent vertices (detailed in a survey of reconfiguration [11]), and the use of labeled
edges in the reconfiguring of triangulations [8].

In this paper, we consider how the connectivity of the reconfiguration graph depends on the
choices of the host G and target H. We consider an instance of Minor Reconfiguration
to consist of a host graph G and target graph H such that H is a minor of G. Each node in
the reconfiguration graph consists of a labeling of the vertices of G with the vertices of H
(or, more simply, integers in {1, . . . , |V (H)|}) such that the contraction of each edge with
identically-labeled endpoints results in a graph that, upon deletion of zero or more edges,
yields H. We consider two H-models to be adjacent if they differ by a single label.

We begin by establishing properties of k-connected graphs and minors in Section 2, based
on which we form a toolkit of techniques used in reconfiguration (Section 3). We consider
various properties of G and H that determine whether or not the reconfiguration graph is
connected. For a target graph H, we define host(H) to be the set of host graphs G such
that the reconfiguration graph for G and H is connected (Definition 8). We then focus on
characterizing host(K2) (Section 4), host(K3) (Section 5), and host(K4) (Section 6). Finally,
in Section 7, we summarize the results and present directions for future work.

2 Preliminaries

We define key terms used in the description of graphs; for common terms not defined in this
paper, the reader is referred to a resource on graph theory [3]. We will frequently focus on
subsets of the vertices; for a subgraph V ⊆ V (G), the induced subgraph G[V ] is the subgraph
with vertex set V and edge set {uv ∈ V (G) | u, v ∈ V }. As shorthand, for G a graph and S
a set of vertices, we use G \ S to denote G[V (G) \ S]. In order to avoid confusion with the
vertices in graphs G and H, we refer to the nodes of a reconfiguration graph.
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2.1 Properties of k-connected graphs
We focus on various ways of connecting vertices in the graph. A cut set S of G is a set of
vertices such that G \ S consists of at least two components; the member of a cut set of size
one is also called a cut vertex. A bridge is an edge whose deletion disconnects the graph. A
graph is k-connected if there is no cut set of size k. Equivalently, in a k-connected graph
there exist k vertex-disjoint paths between any pair of vertices in the graph. At times we
will focus on how highly connected a specific vertex might be. A universal vertex is adjacent
to all other vertices in the graph. In a complete graph on j vertices, denoted Kj , all vertices
are universal vertices.

To characterize the behaviour of various host and target graphs, we make use of charac-
terizations of graphs in terms of a base graph class and a series of operations. Adding an
edge consists of adding an edge between two vertices in V (G). To split a vertex v is to first
delete v from G, and then add two vertices v1 and v2 to G such that v1v2 ∈ E(G), each
neighbour of v in G is a neighbour of exactly one of v1 or v2, and deg(vi) ≥ 3 for i ∈ {1, 2}.

We make use of Tutte’s characterization of 3-connected graphs and Ding and Qin’s
characterization of a subset of the 4-connected graphs, given below. The base case for Tutte’s
characterization is a wheel, defined as follows.

I Definition 1. A k-wheel Wk is a graph on k + 1 vertices, the rim vertices r1, . . . , rk and
the hub vertex h, where there is a cycle induced on the rim vertices and an edge between h
and each rim vertex.

I Theorem 2. [13] A graph is 3-connected if and only if it is obtained from a wheel by
repeatedly adding edges and splitting vertices.

To state Ding and Qin’s result, we need a few additional definitions. The line graph L(G)
of a graph G has a vertex corresponding to each edge of G and two vertices are adjacent if
their corresponding edges share an endpoint in G. A graph is cubic if each vertex has degree
three. Furthermore, a cubic graph with at least six vertices is internally 4-connected if its
line graph is 4-connected. One of the base classes for their characterization is a square of a
cycle, as defined below.

I Definition 3. The square of a cycle C2
k is formed from the cycle Ck by adding an edge

between any pair of vertices joined by a path of length two.

Finally, we say a sequence of 4-connected graphs G1, . . . , Gn form a (G1, Gn)-chain if for
all i ∈ {1, . . . , n− 1}, there exists an edge e such that Gi+1 is formed from Gi by removal of
the edge e. Theorem 4 is a generalization of a well-known theorem of Martinov [9].

I Theorem 4. [4] Let C = {C2
k : k ≥ 5} and L = {H : H is the line graph of an internally

4-connected cubic graph}. Let G be a 4-connected graph not in C ∪ L. Then if G is planar,
there is a (G,C2

6 )-chain. Otherwise, there is a (G,K5)-chain.

2.2 Branch sets, H-models, host(H), and block trees
For the purposes of reconfiguration, we make use of an equivalent definition of a minor as a
mapping of each vertex of host graph G to a vertex of target graph H. For convenience, we
sometimes represent the vertices of H as integer labels.

I Definition 5. For graphs G and H and mapping f : V (G)→ V (H), we refer to f(v) as
the label of v and define the branch set G(f, i) to be the subgraph of G induced on the set of
vertices with label i.

MFCS 2018
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For ease, we will make use of |G(f, i)| to denote |V (G(f, i))|. Given a mapping between
V (G) and V (H), an edge of G is a connecting edge if its endpoints are members of two
different branch sets, and we say that it connects those two branch sets. A mapping is
equivalent to a minor when two additional properties hold, as indicated in Definition 6.

I Definition 6. For graphs G and H and mapping f : V (G)→ V (H), we say that H is a
minor of G and that f is an H-model of G if the following conditions hold:
1. for each i ∈ V (H), each branch set G(f, i) is nonempty and connected, and
2. for each edge ij ∈ E(H), there exists an edge in E(G) connecting G(f, i) and G(f, j).

I Definition 7. For any graphs G and H such that H is a minor of G, the branch set
reconfiguration graph of G and H consists of a node for each H-model of G and, for each
pair of H-models f and g, an edge between the nodes corresponding to f and g if and only
if there exists a v ∈ V (G) such that f(v) 6= g(v) and for all u 6= v, f(u) = g(u).

I Definition 8. For any graphs G and H such that H is a minor of G, G ∈ host(H) if and
only if the branch set reconfiguration graph of G and H is connected.

We will often find it convenient to view each branch set in terms of the tree structure of
its 2-connected components. A block of a connected graph is either a maximal 2-connected
subgraph or one of the endpoints of a bridge. The block tree of a connected graph consists of
a node for each block B; there is an edge between the nodes corresponding to blocks B and
B′ if there exists a cut vertex v of G such that V (B) ∩ V (B′) = {v}. Given a graph G, an
H-model f , and a label a, we use T (G, f, a) to denote the block tree for G(f, a). In addition,
for a subgraph A of G, we use T (G, f, a,A) to denote the subtree of T (G, f, a) induced by
the blocks containing vertices in V (G(f, a)) ∩ V (A). For convenience, we sometimes use
“block of G(f, a)” to refer to a block of T (G, f, a).

To make use of the tree structure, our algorithms typically process a block tree starting
with blocks that are leaves of their block trees, or leaf blocks; a branch set that is 2-connected
can be viewed as having a block tree consisting of a single leaf block. For ease of description,
we will refer to the cut vertices of G that appear in multiple blocks as joining vertices and
all other vertices as interior vertices.

2.3 Essential edges, crucial vertices, weak connections, and lynchpins
When considering how labelings can be reconfigured, we need to ensure that we retain the
connecting edges as required in Definition 6. In doing so, we need to pay particular attention
to vertices and edges whose relabeling will cause problems.

When there exists only a single edge that connects a pair of branch sets with labels a
and b, ab ∈ E(H), we call such an edge an essential edge, and denote it as ess(a, b). If all
the edges between branch sets with labels a and b have the same endpoint in a, we call that
vertex an essential vertex for b; clearly every endpoint of an essential edge is an essential
vertex, but not every essential vertex is the endpoint of an essential edge.

The presence of essential vertices will be important in determining when it is easy to
relabel vertices. For any two labels, if the branch set with label a contains an essential vertex
for b or if the branch set with label b contains an essential vertex for a, we will say that the
branch sets with labels a and b are weakly connected, or form a weak connection.

Our results rely on the interplay between the presence of weak connections and the
connectivity of a graph. For each weak connection, we identify a vertex as the lynchpin
for the connection. When the branch sets with labels a and b are weakly connected by an
essential edge, then either of the endpoints of the essential edge can be designated as the
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lynchpin. Otherwise, the (single) essential vertex giving rise to the weak connection is the
lynchpin for that connection. We will use lynchpins to form cut sets between non-lynchpins
and other branch sets.

A vertex v with label a is a crucial vertex if it is an essential vertex for b and an essential
vertex for c, for b 6= c, and a non-crucial vertex otherwise. If for some distinct labels a, b,
and c, a vertex v ∈ G(f, a) is essential for c and also has at least one neighbour in G(f, b),
then v is a b-crucial vertex. Clearly, a vertex in G(f, a) that is essential for b and c is crucial,
b-crucial, and c-crucial.

2.4 Properties of H-models of k-connected graphs
When G is k-connected, we are able to establish properties of connecting edges of branch sets,
as shown in Lemma 9 and Lemma 10, as well as the structure of weak edges (Lemma 11).
The results make use of the fact that in a k-connected graph there cannot be a cut set of size
less than k separating any two vertices; cut sets are typically formed from the joining vertices
of leaf blocks and lynchpins, and vertices separated by cut sets are typically non-lynchpins.
Proofs of results marked with (*) have been omitted due to space limitations.

I Lemma 9 (*). Given a k-connected graph G and an H-model f of G for some graph H,
for any branch set G(f, a), each leaf block has k − 1 interior vertices that are endpoints of
connecting edges.

I Lemma 10. Given a k-connected graph G and an H-model f of G, where |V (H)| = k,
suppose there exist branch sets G(f, `) and G(f,m) such that `m ∈ E(H) and there are weak
connections between G(f, `) and each branch set other than G(f,m) (where a weak connection
between G(f, `) and G(f,m) is possible but not required). Then, the following hold:
1. Each leaf block in G(f, `) must contain an interior vertex that is the endpoint of a

connecting edge to G(f,m).
2. If it is possible to designate lynchpins of the weak connections such that G(f, `) contains

a non-lynchpin, then each leaf block in G(f,m) must contain an interior vertex that is
the endpoint of a connecting edge to G(f, `).

Proof. To see why the first point holds, suppose instead that no such interior vertex existed
in a leaf block of G(f, `). Then, each path between an interior vertex u in the leaf block in
G(f, `) and any vertex v in G(f,m) must pass through either the joining vertex of the leaf
block or one of the lynchpins for the weak connections. However, u and v are thus separated
by a cut set of size at most k − 1, contradicting the k-connectivity of G.

The argument for the second point is similar; we can show that the joining vertex of the
leaf block in G(f,m) and the lynchpins of the weak connections form a cut set of size at most
k − 1 separating any interior vertex in the leaf block and the non-lynchpin in G(f, `). J

I Lemma 11 (*). Given a k-connected graph G and a Kk-model f of G such that there is a
branch set B with weak connections to all other branch sets, it is not possible to designate
lynchpins such that B contains at least one vertex x that is not a lynchpin for any of the
weak connections, and at least one other branch set contains a vertex y that is not a lynchpin
for any of the weak connections.

3 Toolkit for reconfiguration of minors

In this section, we introduce techniques and properties that are exploited in the results found
in the rest of the paper. In particular, we focus on the types of steps used in reconfiguration
and the properties that need to be satisfied for each type of transformation. In Lemmas 12

MFCS 2018
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and 13 we determine conditions under which a vertex can be relabeled in a single step. In
the remainder of the section, we present results that can be used to handle more complex
situations in which one or more of the conditions do not hold.

Lemma 12 delineates the conditions necessary for a vertex to be able to be relabeled from
a to b in a single reconfiguration step: it cannot be the only vertex with label a, it cannot be
a cut vertex in its branch set, it must be connected to a vertex with label b, and it is not
incident with every edge between the branch sets for labels a and c, where c 6= b.

I Lemma 12 (*). Given a graph G and an H-model f of G, a vertex v can be relabeled from
a to b in a single reconfiguration step if and only if the following conditions hold:
1. |G(f, a)| > 1;
2. v is not a cut vertex in G(f, a);
3. v has at least one neighbour in G(f, b); and
4. v is not a b-crucial vertex.

Because several of the conditions hold automatically for a universal vertex, the following
lemma lists a smaller number of conditions:

I Lemma 13 (*). Given a graph G and an H-model f of G, a vertex v can be relabeled from
a to b in a single reconfiguration step if the following conditions hold:
1. G(f, a) contains a universal vertex u such that u 6= v; and
2. v has at least one neighbour in G(f, b).

When neither Lemma 12 nor Lemma 13 applies, the relabeling of a vertex requires a
series of reconfiguration steps. When the vertex to be relabeled is the only member of its
branch set or a crucial vertex, we first need to fill its branch set with new vertices that can
provide the necessary connecting edges to other branch sets. When the vertex to be relabeled
is a cut vertex, we will need to siphon away vertices from its branch set so that it is no longer
a cut vertex among the remaining vertices with its label.

When a branch set is a block tree, both filling and siphoning entail the relabeling of
vertices in a branch set block by block, starting at the leaf blocks. If we are able to relabel
all the interior vertices of a leaf block, we can simplify the block tree by removing the leaf
block. We will show in Lemma 20 that such relabeling is possible as long as we can avoid
certain bad situations involving leaf-crucial models and leaf-`-crucial models, as outlined in
Definitions 14, 15, and 16.

I Definition 14. Given a graph G and an H-model f of G, we say that a vertex v is a
leaf-crucial vertex if v is a crucial vertex that is an interior vertex in a leaf block in its branch
set. An H-model that contains a leaf-crucial vertex is a leaf-crucial model.

I Definition 15. Given a graph G and an H-model f of G, we say that a vertex v is a
leaf-`-crucial vertex if v is an `-crucial vertex that is an interior vertex in a leaf block in its
branch set. An H-model that contains a leaf-`-crucial vertex is a leaf-`-crucial model.

I Definition 16. Given a graph G, an H-model f of G, a label a, and a subgraph A of
G(f, a), we say that f hits a leaf-crucial model on relabeling A if any relabeling of f that
changes only the vertices of A can be extended by relabeling only the vertices of A to reach
a leaf-crucial model, and that f hits a leaf-`-crucial model on relabeling A if any relabeling
of f that changes only the vertices in A can be extended by relabeling only the vertices of A
to reach a leaf-`-crucial model.
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I Observation 17. Given a graph G, an H-model f of G, a label a, and a subgraph A

of G(f, a), if f does not hit a leaf-`-crucial model on relabeling A, then for each model g
reachable from f by relabeling only the vertices of A, no interior vertex in a leaf block of
T (G, g, a) is `-crucial.

In Lemma 18, we show that each time we relabel an interior vertex in a leaf block, if the
leaf block still has interior vertices, one will be a neighbour of the relabeled vertex. We use
the result in Lemma 19 to show that if we can avoid leaf-crucial models, then it is possible
to relabel all the interior vertices in a leaf block (and hence remove it from the branch set).
By repeatedly relabeling leaf blocks, an entire connected component can be siphoned away,
as shown in Lemma 20.

I Lemma 18. Given a graph G and an H-model f of G, suppose there exist labels a and b
and a vertex v such that |G(f, a)| ≥ 2, v is in a leaf block L of T (G, f, a), and relabeling v to
b (and no other vertices) results in another H-model g. Then v has a neighbour in G(g, a),
and if |V (L) \ {v}| ≥ 2, then v has a neighbour u in G(g, a) such that u ∈ V (L) and u is an
interior vertex in a leaf block of T (G, g, a).

Proof. We observe that since Lemma 12 holds for the relabeling of v from a to b, |G(f, a)| ≥ 2,
and since each branch set is connected, v must then have a neighbour in G(g, a).

We now suppose that |V (L) \ {v}| ≥ 2. At least one neighbour u ∈ V (L) of v is in a leaf
block Lg of T (G, g, a), as v is not a cut vertex of G(f, a) (by Lemma 12, condition 2) and L
is a 2-connected leaf block of T (G, f, a). If u is an interior vertex in G(g, a), we are done.
If instead u is a joining vertex and there exists no interior vertex in Lg that is a neighbour
of v, then for each interior vertex w ∈ V (Lg), u lies on every path from v to w in L, which
contradicts the fact that L is 2-connected. Hence, v is adjacent to an interior vertex in
G(g, a). J

I Lemma 19 (*). Given a graph G, an H-model f of G, a label a, and a leaf block L of
T (G, f, a), suppose that |V (G(f, a)) \ V (L)| ≥ 1, L contains at least one interior vertex that
is the endpoint of a connecting edge, and f does not hit a leaf-crucial model on relabeling L.
Then we can reconfigure f to a model g such that g(v) 6= f(v) for each v ∈ V (L) that is an
interior vertex of G(f, a) and g(u) = f(u) for all other vertices u.

I Lemma 20. Given a 2-connected graph G and an H-model f of G, suppose there exist
ab ∈ E(H), a cut vertex x of G(f, a), and a connected component C of G(f, a) \ {x} that
contains at least one vertex with a neighbour in G(f, b) such that f does not hit a leaf-crucial
model or a leaf-b-crucial model on relabeling C. Then we can reconfigure f to a model g such
that g(v) 6= f(v) for each v ∈ V (C), g(u) = f(u) for all u /∈ V (C), and x has a neighbour in
G(g, b).

Proof. We use B to denote the block of T (G, f, a, C) containing x, and view T (G, f, a, C) as
rooted at B. We observe that any leaf block of T (G, f, a, C) is also a leaf block of T (G, f, a).

To reconfigure f to g, we work up the tree T (G, f, a, C) from leaf blocks up to B, at each
step relabeling all the vertices in the current block with labels different from a. Specifically,
if a leaf block does not have an interior vertex with a neighbour labeled b, then in Case 1
below, we can relabel the vertices in the block; such a relabeling removes the block from the
branch set for label a. If instead a leaf block does have an interior vertex with a neighbour
labeled b, then in Case 2 below, we can relabel the block with b. Such a relabeling not only
removes the block from the branch set for label a, but also ensures that the joining vertex
of the block has a neighbour with label b. Repeated applications of the two cases suffice
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to ensure that we eventually reach a point in the process at which B is a leaf block and
contains an interior vertex with a neighbour labeled b; using Case 2, we can then satisfy the
statement of the lemma by ensuring that every vertex in B except x receives label b.

Case 1: A leaf block L of T (G, f, a, C) does not contain an interior vertex with a neighbour
in G(f, b).

Since G is 2-connected, by Lemma 9, L has at least one interior vertex that is an endpoint
of a connecting edge. Because f does not hit a leaf-crucial model and |V (G(f, a))\V (L)| ≥ 1,
by Lemma 19, we can relabel the interior vertices of L.

Case 2: A leaf block L of T (G, f, a, C) contains an interior vertex v with a neighbour in
G(f, b).

We first observe that we can relabel v to b: since f does not hit a leaf-b-crucial model on
relabeling C, v is not b-crucial (Observation 17), and hence all the conditions of Lemma 12
hold. We can then repeat the same argument on the resulting model h, as follows. For Lh

the leaf block of T (G, h, a, C) such that V (Lh) = V (L) \ {v}, if one exists, by Lemma 18,
Lh contains an interior vertex u that is a neighbour of v. We can then use the fact that f
does not hit a leaf-b-crucial model on relabeling C to again apply Observation 17 to conclude
that u is not b-crucial and that Lemma 12 is satisfied for the labeling of u to b. Further
repetitions of the argument result in the relabeling of all interior vertices of L to b. J

4 Characterizing host(K2)

Theorem 21 fully characterizes host(K2); as a consequence, we can use membership in
host(K2) as an alternate definition of 2-connectivity. The reconfiguration of a 2-connected
graph G is achieved by defining a canonical model (one in which one vertex has one label and
all other vertices have the other label) and then showing it is possible both to reconfigure any
K2-model to a canonical model and to reconfigure between canonical models. In contrast,
when G is not 2-connected, the presence of a cut vertex prevents reconfiguration, as no
ordering of relabeling steps can prevent a branch set from being disconnected.

I Theorem 21 (*). G ∈ host(K2) if and only if G is 2-connected.

5 Characterizing host(K3)

To show that every 3-connected graph is in host(K3), we make use of Tutte’s characterization
in Theorem 2. In order to prove Theorem 22, it suffices to show that wheels are in host(K3)
(Corollary 24) and that connectivity is preserved under the splitting of vertices (Lemma 27)
and adding of edges (Lemma 30).

I Theorem 22 (*). Every 3-connected graph is in host(K3).

The result for wheels (Corollary 24) follows from a result on a generalization of wheels by al-
lowing multiple hub vertices, each of which is a universal vertex, and replacing each rim vertex
by a connected graph. To obtain a more general result, we use W (G1, G2, . . . , Gm, n, `,m)
to denote a generalized wheel, for each Gi a connected graph on n vertices, V (Gi) =
{v(i,1) . . . v(i,n)}, and ` and m both positive integers. The graph W (G1, G2, . . . , Gm, n, `,m)
consists of ` hub vertices, VH = {h1, . . . , h`}, and mn subgraph vertices, VS = {si,j | 1 ≤
i ≤ m, 1 ≤ j ≤ n}, where si,j corresponds to v(i,j). The edge set consists of the hub edges,
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EH = {hihj | 1 ≤ i ≤ `, 1 ≤ j ≤ `, i 6= j}, the subgraph edges, Es = {si,jsi,k | v(i,j)v(i,k) ∈
E(Gi), 1 ≤ i ≤ m}, the rim edges, ER = {s(i,j)s(k,j) | k ≡ i + 1 mod m, 1 ≤ j ≤ n}, and
the connecting edges, EC = {hks(i,j) | 1 ≤ k ≤ `, 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Observe that
W (G1, G2, . . . , Gm, n, l,m) has a Kl+2-minor when m ≥ 3.

I Lemma 23 (*). For any graphs Gi, W (G1, G2, . . . , Gm, n, `,m) is in host(K`+2) for any
m ≥ 3.

I Corollary 24. Wn is in host(K3).

We consider the splitting of vertices in two steps. In Lemma 25, which applies more
generally to Kk for any k > 2, we show that we can reconfigure between models in which
the vertices resulting from the split have the same label. Then, in Lemma 27, which uses
Lemma 26, we consider cases in which the vertices can have different labels.

I Lemma 25. Let G be a 2-connected graph and G′ be formed from G by splitting a vertex
v into vertices x and y. For any k > 2, let f and g be Kk-models of G and f ′ and g′ be Kk

models of G′ such that f(v) = f ′(x) = f ′(y), g(v) = g′(x) = g′(y) and for all u ∈ V (G) \ {v},
f(u) = f ′(u) and g(u) = g′(u). If f and g are reconfigurable, then f ′ and g′ are reconfigurable.

Proof. Since f and g are reconfigurable, there is a reconfiguration sequence σ = f =
f1, . . . , f` = g for some value of `. Using σ, we wish to form a reconfiguration sequence σ′

from f ′ to g′ in the reconfiguration graph for G′. In forming the sequence, we observe that if
there is a prefix τ of σ such that v is not relabeled in any of the steps, then we can form a
prefix τ ′ of σ′ by executing the same sequence of steps.

We now consider the first relabeling of v in σ, say from fj to fj+1; we wish to show that
in σ′, we can relabel both x and y in the same way. Without loss of generality, we assume
that fj(v) = f ′

j(x) = f ′
j(y) = a and that fj+1(v) = b.

We can use the fact that Lemma 12 holds for the labeling of v by b to establish useful
properties of x and y. Because v is not in a branch set of size one (condition 1), x and y
are not the only two vertices in G′(f ′

j , a). Since v is a not a cut vertex of its branch set
(condition 2), x and y together cannot form a cut set. As v has a neighbour with label b
(condition 3), either x or y (or both) must have a neighbour with label b under f ′

j . Finally,
because v is not a b-crucial vertex (condition 4), there must exist some vertex other than x
or y in G′(f ′

j , a) that has a neighbour with label b.
Without loss of generality, we assume that x has a neighbour with label b, and consider

two cases, depending on whether or not x is a joining vertex in the block tree of G′(f ′
j , a).

Case 1: x is a not a joining vertex of the block tree of G′(f ′
j , a)

By our observations above, all conditions of Lemma 12 hold for the relabeling of x to b.
As a consequence of the relabeling, y now has a neighbour with label b. Because v was not a
cut vertex in G(fj , a), the removal of both x and y cannot disconnect G′(f ′

j , a), and hence
condition 2 holds for y. As the remaining conditions of Lemma 12 were established in the
argument above, we can now relabel y to b, as needed.

Case 2: x is a joining vertex in the block tree of G′(f ′
j , a)

We first show that the component C of G′(f ′
j , a) containing y consists solely of the vertex

y. If instead there existed another vertex in C, then the removal of both x and y would
separate the vertex from the other components of G′(f ′

j , a) \ {x}, and consequently v would
be a cut vertex in G(fj , a), which contradicts Lemma 12 for the relabeling of v to b.
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By the definition of the split operation, deg(y) ≥ 3; because x is y’s only neighbour with
label a, y must have at least one neighbour with label b or c, for some c /∈ {a, b}. If y has
a neighbour with label b, we can use Case 1 to complete the relabeling of y and then x.
Otherwise, we will show that we can first relabel y to c, relabel x to b, and finally relabel y
to b. In each case, we show that we can use Lemma 12.

To see that we can relabel y to c, it suffices to observe that y is not c-crucial, as x has a
neighbour in b, and if y were essential for some d /∈ {b, c}, then v would be essential for d in
fj , and hence b-crucial in fj , which is a contradiction. Now, since x is now no longer a cut
vertex, we can relabel x to b. Finally, since y now has a neighbour with label b (that is, x),
we can relabel y with b, as needed. J

I Lemma 26. Given a 3-connected graph G and a K3-model f of G, suppose there exists a
cut vertex x of G(f, a) with a neighbour in G(f, b) such that x is not essential for c. Then
there exists a component D of G(f, a) \ {x} such that we can reconfigure f to a model g in
which g(v) = f(v) for each v ∈ V (D), g(x) = b, and g(u) 6= f(u) for all other vertices of
G(f, a).

Proof. We form model g by first siphoning all components of G(f, a) \ {x} except D out of
G(f, a) and then by relabeling x to b.

Because x is not essential for c, there must exist at least one component of G(f, a) \ {x}
that contains a vertex with a neighbour in G(f, c); we choose D to be one such component.

By Lemma 9, each other component C must have a neighbour in either G(f, b) or G(f, c).
Since x has a neighbour in G(f, b) and D has a neighbour in G(f, c), f does not hit a
leaf-crucial model, a leaf-b-crucial model, or a leaf-c-crucial model on relabeling C, and hence
we can use Lemma 20 to relabel all vertices of C with either b or c.

After the vertices of every component except D have been relabeled, all the conditions for
Lemma 12 now hold for the relabeling of x to b: the branch set for label a has at least one
vertex other than x, x is no longer a cut vertex, x has a neighbour labeled b, and a vertex in
D has a neighbour labeled c. J

I Lemma 27. Suppose G is a 3-connected graph such that G ∈ host(K3) and G′ is a graph
formed from G by splitting a vertex v into vertices x and y. Then G′ is in host(K3).

Proof. We show that for any source and target K3-models of G′, we can find a reconfiguration
sequence from the source to the target. We know from Lemma 25 that we can reconfigure
between any two K3-models in which x and y have the same labels. Here, we show that we
can reconfigure any K3-model to a K3-model in which x and y have the same labels. This
suffices to demonstrate the existence of a reconfiguration sequence between the source and
target K3-models, as we reconfigure from the source K3-model to a K3-model in which x and
y have the same labels, then to another K3-model in which x and y have the same labels,
and finally to the target K3-model.

Without loss of generality, we assume that the labels are a, b, and c, and that in the
starting K3-model, f ′(x) = a and f ′(y) = b. If Lemma 12 holds for either relabeling x to b
or relabeling y to a, then we can accomplish the reconfiguration in a single step. Similarly,
the reconfiguration can be accomplished using Lemma 26 if either x or y is a cut vertex that
is not essential for c.

Thus, it suffices to consider the cases in which either condition 1 or 4 of Lemma 12 must
be violated for both relabeling x to b and relabeling y to a. In any case, both x and y will be
essential for c. By Lemma 11, it is not possible for both x and y to be essential for c unless
|G′(f ′, a)| = |G′(f ′, b)| = 1. Thus, it suffices to consider the case |G′(f ′, a)| = |G′(f ′, b)| = 1.
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Due to the 3-connectivity of G, x and y will each have at least two neighbours in G′(f ′, c).
We will show that one of y’s neighbours w can be relabeled b, after which y can be relabeled
a.

If Lemma 12 does not apply for the relabeling of w to b, then because w is not b-crucial,
the only possible condition of Lemma 12 that can be violated is condition 2. Suppose that
every neighbour of y in G′(f ′, c) is a cut vertex. Since by Lemma 9, each leaf block in
G′(f ′, c) has two interior vertices that are endpoints of connecting edges, each of these edges
must connect to x. By 3-connectivity, there must be three vertex-disjoint paths to y from
an interior vertex in a leaf block in G(f ′, c). As only one can pass through x and only one
can pass through the joining vertex of the leaf block, there can only be two paths at most,
forming a contradiction. Because all conditions of Lemma 12 must hold, we can relabel w to
b.

To see that we can now relabel y to a, we observe that since G′(f ′, c) was connected, z
has a neighbour with label c. This implies that y is not essential for c, as needed to satisfy
all conditions of Lemma 12. J

Finally, in Lemma 30, we show that for G′ the graph formed by adding an edge xy to a
3-connected graph G ∈ host(K3), G′ is also in host(K3). We achieve the result by showing
that we can handle situations in which xy plays a role not played by any other edge, either as
an essential edge or as a bridge within a branch set. The proof relies on the following results:

I Lemma 28 (*). Given a 2-connected graph G and a K3-model f of G, any branch set
containing at least two vertices has no crucial vertex.

I Lemma 29. Given a 3-connected graph G and a K3-model f of G, suppose that x ∈ G(f, a),
y ∈ G(f, b), and xy is an essential edge. Then we can reconfigure f to a K3-model g such
that g(v) 6= f(v) for each v ∈ G(f, c), c /∈ {a, b}, g(u) = f(u) for all other vertices u, and xy
is not an essential edge in g.

Proof. We consider two cases, depending on whether or not G(f, c) is 2-connected.

Case 1: G(f, c) is not 2-connected.

By Lemma 9, each leaf block L in G(f, c) has at least two interior vertices that are
endpoints of connecting edges. Due to 3-connectivity, we can further show that each leaf
block in G(f, c) has edges to both G(f, a) and G(f, b), as otherwise the joining vertex of the
leaf block and either x or y would form a cut set of size two separating internal vertices of
the leaf block at one of the branch sets.

The fact that all other leaf blocks connect to both G(f, a) and G(f, b) ensure that f does
not hit a leaf-crucial model on relabeling L. We can then use Lemma 19 to relabel all interior
vertices of L. Due to the connectivity of L and the fact that it contained neighbours in both
G(f, a) and G(f, b), it follows that xy is not an essential edge in the resulting model g.

Case 2: G(f, c) is 2-connected.

We first use 3-connectivity to show that |G(f, c)| > 1 and that G(f, c) contains vertices u
and v such that u has a neighbour in G(f, a) and v has a neighbour in G(f, b). If |G(f, c)| = 1,
then the vertex in G(f, c) and either x or y form a cut set of size two separating the branch
sets G(f, a) and G(f, b). Similarly, if G(f, c) contained only a single endpoint of a connecting
edge, then the endpoint and either x or y would also form a cut set of size two.

We can choose u and v such that P is a (u, v)-path in G(f, c) such that no vertex in P
other than u or v has a neighbour in G(f, a) or G(f, b). We let u = v1, . . . , vt = v be the
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vertices of P with edges vivi+1, i ∈ {1, . . . , t}. Since G is 3-connected and xy is an essential
edge, G(f, c) must contain vertices w /∈ {u, v} and z /∈ {u, v} such that w has an edge to
G(f, a) and z has an edge to G(f, b).

We will attempt to relabel all of P to label a. As G(f, c) is 2-connected, we can relabel v1
to a. If the resulting branch set is 2-connected, then we attempt relabel v2,v3, . . . , vt in that
order until we relabel the entire path. If this succeeds, then we are done. Otherwise, at some
step relabeling along the path we obtain a K3 model g such that G(g, c) is not 2-connected.
Now we apply Case 1 to g to complete the claim. J

I Lemma 30. Suppose G is a 3-connected graph such that G ∈ host(K3) and G′ is formed
from G adding an edge xy. Then G′ ∈ host(K3).

Proof. We first observe that any K3-model of G is also K3-model of G′. Consequently, to
show that we can reconfigure between any K3-models of G′, it suffices to show that we can
reconfigure between any K3-model of G′ and a K3-model of G, as the fact that G ∈ host(K3)
ensures that we can reconfigure between any two K3-models of G.

There are only two cases in which a K3-model f of G′ is not a K3-model of G, namely
cases in which the role xy plays in the K3-model is not played by any other edge. In both
cases we can assume that G′ 6= G, and consequently that |V (G′)| > 3.

Case 1: xy is the essential edge connecting G′(f, f(x)) and G′(f, f(y))

Without loss of generality, we assume f(x) = a and f(y) = b. By Lemma 29, we can
reconfigure f to a K3-model f ′ by relabeling only vertices in G(f, c) such that xy is not an
essential edge in f ′, which means f ′ is also a K3-model of G.

Case 2: f(x) = f(y) and xy is a bridge in G′(f, f(x))

We show that we can reconfigure to a model in which x and y have different labels so
that xy is a connecting edge. Depending on whether xy is then an essential edge, we have
either completed the reconfiguration or we have reduced the situation to Case 1.

Without loss of generality, we assume that f(x) = f(y) = a, and observe that the removal
of xy separates G′(f, a) into two components C1 (containing x) and C2 (containing y), each
of which contains at least one leaf block.

By Lemma 9, each of the leaf blocks has two vertices with neighbours in G′(f, b) or
G′(f, c). We will show that we can reconfigure to a K3-model in which either C1 or C2 has
no vertex with label a, so that xy is no longer a bridge.

Case 2a: One component has edges to both G′(f, b) and G′(f, c).

Without loss of generality, let C1 have connecting edges to both G′(f, b) and G′(f, c).
Then f does not hit a leaf-b-crucial model or a leaf-c-crucial model on relabeling C2 because
there are necessary connecting edges from C1. Also, f does not hit a leaf-crucial model
on relabeling C2 because there are at least two vertices labeled a in each model in the
reconfiguration sequence, and so by Lemma 28, there never exists a crucial vertex labeled a.
Now by Lemma 20, since x is a cut vertex of G′(f, a), we can relabel all the vertices of C2,
which ensures xy is a connecting edge.

Case 2b: One component has two edges to G′(f, b) and one component has two edges to
G′(f, c).
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Without loss of generality, let C1 have connecting edges to G′(f, b) and C2 have connecting
edges to G′(f, c). Then f does not hit a leaf-c-crucial model on relabeling C2 because C1
has edges to G′(f, b). Also, it follows from Lemma 28 that f does not hit a leaf-crucial
model on relabeling C2 because there are at least two vertices labeled a in each model in the
reconfiguration sequence. Hence, by Lemma 20, since x is a cut vertex of G′(f, a), we can
relabel all the vertices of C2, which ensures xy is a connecting edge. J

6 Characterizing host(K4)

In order to use Ding and Qin’s characterization in Theorem 4, we show that C2
6 ∈ host(K4)

(Lemma 32) and K5 ∈ host(K4) (a special case of Lemma 33) and present analogues of
Lemmas 27 and 30 (Lemmas 37 and 38), showing that host(K4) is closed under the splitting
of vertices or adding of edges for 4-connected graphs. The four results are sufficient to prove
the following theorem:

I Theorem 31 (*). Every 4-connected graph is in host(K4), provided it is not in L, where
L = {H : H is the line graph of an internally 4-connected cubic graph}.

The results establishing the base cases of the characterization are relatively straightforward.
Lemma 32 makes use of various properties of the structure of C2

6 , most notably the fact that
for each vertex v, there is a unique vertex s(v) such that there is no edge between v and
s(v). As an immediate consequence, any four vertices form a 4-cycle, which permits the
use of Theorem 21 for reconfiguration of part of the graph. Lemma 33, a generalization of
K5 ∈ host(K4), follows easily from the high connectivity of cliques.

I Lemma 32 (*). C2
6 is in host(K4).

I Lemma 33 (*). For any m > `, Km ∈ host(K`).

As essential edges can result from either the splitting of vertices or the adding of edges,
Lemma 36 plays a crucial role in the proofs of both Lemma 37 and Lemma 38. The proof of
Lemma 36 makes extensive use of Lemmas 11, 34, and 35 in covering all possible cases of
weak connections among branch sets, where branch sets of size one are handled separately.

I Lemma 34 (*). Given a 4-connected graph G and a K4-model f of G such that for labels
a, b, c, d there exist weak connections between branch sets with labels a and b, b and c, c and
d, and d and a, then it is not possible to designate lynchpins such that the branch set with
label a contains at loeast one vertex x that is not a lynchpin and the branch set with label d
contains at least one vertex y that is not a lynchpin.

I Lemma 35. Given a 3-connected graph G and an K4-model f of G, suppose xy is an
essential edge and there exists an essential edge e from G(f, f(y)) to G(f, f(z)), z 6= x, such
that y is not the endpoint of e. Then it is possible to reconfigure f to a model g in which
g(x) = g(y) = f(x), and for all a 6= f(y), for v ∈ G(f, a), g(v) = f(v).

Proof. Without loss of generality, we let f(x) = a, f(y) = b, and f(z) = c, so that there is
an essential edge ess(b, c). We consider two cases, depending on whether or not y is a cut
vertex.

When y is not a cut vertex, we verify that all conditions of Lemma 12 hold for relabeling y
to a: condition 1 follows asG(f, b) contains at least y and an endpoint v of ess(b, c), condition 2
follows by assumption, condition 3 follows from the existence of xy, and condition 4 follows
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from the observation that if y is an a-crucial vertex, then it must be essential for d, which
implies {y, z} is a 2-cut in G, contradicting the fact that G is 3-connected.

If instead y is a cut vertex, by removing y we can break T (G, f, b) into components such
that one of the components C contains the endpoint of ess(b, c). By Lemma 9, each leaf
block of C must contain at least two vertices with neighbours in other branch sets, and hence
C must contain an edge with a neighbour in G(f, d). As C has all necessary connecting
edges, we can apply Lemma 20 to siphon away the vertices in every other component C ′ 6= C.
Consequently, y will no longer be a cut vertex, we can then relabel y to a, as needed. J

I Lemma 36 (*). Suppose G is a 4-connected graph such that G ∈ host(K4), |V (G)| ≥ 5,
and xy is an essential edge under the K4-model f . Then it is possible to reconfigure G to a
K4-model in which x and y have the same label.

Lemma 37 follows the structure of the proof of Lemma 27, relying on Lemma 25 for the
reconfiguring between K4-models in which x and y have the same label and on Lemma 36
for the case in which xy is an essential edge. The two possible cases for Lemma 38 are xy
being an essential edge (handled by Lemma 36) and xy being a bridge in a branch set.

I Lemma 37 (*). Suppose G is a 4-connected graph such that G ∈ host(K4) and G′ is a
4-connected graph formed from G by splitting a vertex v into vertices x and y. Then G′ is in
host(K4).

I Lemma 38 (*). Suppose G is a 4-connected graph such that G ∈ host(K4) and G′ is
formed from G adding an edge xy. Then G′ ∈ host(K4).

7 Conclusions and open questions

We have developed a toolkit for the reconfiguration of minors, and specific results for H-
models of small cliques H. Our results imply an alternate definition of 2-connectivity, whereby
a graph is 2-connected if and only if it is in host(K2). Furthermore, we have shown that
every 3-connected graph is in host(K3) and that every 4-connected graph is in host(K4),
provided that it is not in L, where L = {H : H is the line graph of an internally 4-connected
cubic graph}.

It remains to be shown whether similar results can be obtained for larger cliques, or for
other graphs H. As our results rely on characterizations of k-connected graphs, further work
is likely to depend on further progress on such results.

As there are alternate ways of defining adjacency relations, further work is needed to
determine which definitions are equivalent and for those that are not, what results can be
obtained. In our work, we can view each label as a token; based on this viewpoint, the
adjacency relation we have considered can be viewed as Token relabeling (TR), changing the
label of one vertex in G. Two other possibilities worthy of consideration are Token sliding
(TS), swapping the labels of two adjacent vertices in G, and Token jumping (TJ), swapping
the labels of any two vertices in G. Both TS [6] and TJ [7] are well-studied for other types
of reconfiguration problems, many of which have unlabeled or distinctly labeled tokens. The
use of TS instead of TR is instrumental in handling degree-one vertices in G, which otherwise
can rarely be relabeled.

Moreover, it is worth considering an alternate formulation in which solutions are considered
to be adjacent if one can be formed from another by reassigning labels to vertices according
to some permutation on the labels.

Future directions for research include considering other ways of assessing the reconfigura-
tion graph, such as determining its diameter or, in cases in which the reconfiguration graph
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is connected, to form algorithms that determine whether there is a path between an input
pair of solutions. It remains open how to characterize isolated vertices in the reconfiguration
graph, known as frozen configurations [1].

Throughout the paper, we required every vertex of G to be a member of a branch set in
an H-model. If instead we considered a subgraph of G, a solution might entail the labeling
of a subset of the vertices of G. We observe that when the number of labels is equal to
the number of vertices in H, the problem is reduced subgraph isomorphism [5]. Alternative
mappings can be considered as well, such as topological embedding of one graph in another.
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