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Abstract
We consider the classical broadcast problem in ad-hoc (that is, unknown topology) directed
radio networks with no collision detection, under the additional assumption that at most h
transmissions (shots) are available per node. We focus on adaptive deterministic protocols for
small values of h. We provide asymptotically matching lower and upper bounds for the cases
h = 2 and h = 3. While for h = 2 our bound is quadratic, similar to the bound obtained for
oblivious protocols, for h = 3 we prove a sub-quadratic bound of Θ(n2 log logn/ logn), where
n is the number of nodes in the network. The latter is the first result showing an adaptive
algorithm which is asymptotically faster than oblivious h-shot broadcast protocols, for which a
tight quadratic bound is known for every constant h. Our upper bound for h = 3 is constructive,
making use of constructions of graphs with large girth. We also show an improved upper bound
of O(n1+α/

√
h) for h ≥ 4, where α is an absolute constant independent of h. Our upper bound

for h ≥ 4 is non-constructive.
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1 Introduction

1.1 Model of broadcast with limited transmissions per node
In this paper a transmission network is a directed graph G = (V,E) with the set of nodes
V = {0, 1, . . . , n− 1}, where node 0 is the source node, denoted also by s, and all other nodes
are reachable from this node. Initially each node knows only its identifier and the size n of
the network. The source node knows also the message, which is to be broadcast to all other
nodes. Let G ≡ G(n) denote the family of all transmission networks of size n.

We consider the following model of h-shot broadcast. Nodes of the network transmit in
globally synchronized steps (counted from 1), with each node transmitting in at most h steps.
If a node v transmits in a given step, then each node w such that (v, w) ∈ E receives the
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transmitted message, unless a collision occurs at node w, that is, unless there is another
edge (v′, w), v′ 6= v, with node v′ transmitting in the same step. We assume that there is
no collision detection: a node w cannot distinguish between no transmission from any of
the neighbouring nodes and simultaneous transmissions by two or more neighbouring nodes.
The only node transmitting in step 1 is the source node 0 and a node can transmit in the
current step t ≥ 2 only if it has already received the message in previous steps.

Most of the research on communication protocols for various models of radio networks
has been concerned with minimizing the number of steps, without putting constraints on
the number of transmissions by individual nodes or the total number of transmissions by all
nodes. Limiting the maximum number of transmissions per node has received somewhat less
attention, especially in the context of ad-hoc (that is, unknown) networks. This objective,
however, may be important in practice, since it may mean limiting the maximum energy
usage per node to keep all nodes alive for as long as possible.

An h-shot broadcast protocol can be viewed as a function Π ≡ Πn which for any node v,
a time step t ≥ 1, and the knowledge κ gathered by node v in steps 1, 2, . . . , t− 1, tells node
v whether it transmits in step t. The protocol has to ensure that, within all constraints of the
model, for each transmission network G ∈ G, all nodes eventually receive the message, that
is, broadcast is always eventually completed. The design objective is to keep the worst-case
completion time as small as possible.

An oblivious h-shot protocol is defined by a sequence of transmission sets S1 = {0}, S2,

S3, . . . , which are subsets of the node set V . Once a node v receives the message in step t,
it wakes up and transmits in the first h steps τi ≥ t+ 1, 1 ≤ i ≤ h, such that v ∈ Sτi . The
source node 0 is considered awake at time 0 and transmitting at step 1. (We remark that
slightly different definitions of obliviousness may be used in other variants of radio network
models.)

In a general (adaptive) h-shot protocol, nodes can take into account information which
they have received in earlier steps when they decide whether to transmit in the current step.
We do not put any limits on how much information can be transmitted in one step or stored
in one node. In fact, for our lower bounds we assume that during a successful transmission
from a node v to a node w, all knowledge accumulated so far by node v is transmitted to
node w and is added to w’s knowledge. We remark though that the (adaptive) protocols
for our upper bounds include in the transmissions only the source message and the current
count of step. They achieve a speed-up over oblivious protocols by using the current count
of steps in a more subtle way.

1.2 Our results
We study adaptive deterministic protocols for h-shot broadcast (note that the term ‘k-shot
broadcasting’ has been used in some literature for the same notion). We focus on small
values of h and provide asymptotically matching lower and upper bounds on the (worst-case)
number of steps for the cases h = 2 and h = 3, as well as improved upper bounds for larger
values of h.

In particular, for h = 2 we provide a quadratic lower bound of n2/8−O(n), showing that
adaptive 2-shot broadcast protocols are not (asymptotically) faster than oblivious 2-shot pro-
tocols. On the other hand, for h = 3 we prove a sub-quadratic bound of Θ(n2 log logn/ logn).
To the best of our knowledge this is the first result showing an adaptive h-shot protocol
which is asymptotically faster than oblivious h-shot protocols. For oblivious protocols a
tight quadratic bound has been shown in [14] for every constant h. Our proof of exist-
ence of a O(n2 log logn/ logn)-step 3-shot broadcast protocol is constructive, making use of
constructions of graphs with large girth. The girth of a graph is the length of a shortest
cycle.
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Our improved upper bounds for h ≥ 4 include a bound of O(n1+α/
√
h), where h is constant

or grows (slowly) with n and α is an absolute constant independent of h. Our upper bounds
for h ≥ 4 are non-constructive and are based on hyper-graphs without small 2-covers. We
give the precise definition of 2-covers in hyper-graphs in Section 4, noting here only that this
notion can be viewed as a generalization of the notion of cycles in graphs.

1.3 Related previous work

Radio broadcasting with unlimited number of shots was first introduced by Chlamtac and
Kutten [5] and has been extensively studied ever since. The first protocol, given by Bar-
Yehuda, Goldreich and Itai [1], was randomized and worked in O(D logn+ log2 n) expected
time, where D is the diameter of the graph and n the number of nodes. Improved randomized
protocols were later proposed in [10, 15] yielding a tight upper bound ofO(D log(n/D)+log2 n)
steps.

Deterministic radio broadcasting attracted much attention in the last two decades. Brusci
and Del Pinto [4] proved a lower bound of Ω(D logn) for undirected networks, which was
subsequently improved for directed networks to Ω(n logD) by Clementi et al. [9] and for
undirected networks to Ω((n logn)/ log(n/D)) by Kowalski and Pelc [15]. The round-robin
protocol, in which node i is the only node transmitting in steps i+ 1 + qn, for each q ≥ 1,
gives a trivial O(n2) upper bound on deterministic broadcast. Chlebus et al. [6] presented
the first sub-quadratic protocol of O(n11/6) time complexity. The upper bound was then
improved to O(n5/3 log3 n) by De Marco and Pelc [17] and further by Chlebus et al. [7], who
showed an O(n3/2)-time algorithm. Chrobak, Ga̧sieniec and Rytter [8] gave an O(n log2 n)
non-constructive protocol and De Marco [11] proved the best currently known upper bound
of O(n logn log logn), again in a non-constructive manner.

Better upper bounds are known for undirected networks. Chlebus et al. [6] proposed
a deterministic O(n)-time broadcasting algorithm, assuming spontaneous wake-up (that is,
allowing the nodes to transmit before receiving the source message, learning that way the
topology of the network). An optimal O(n logn)-time broadcasting algorithm for undirected
networks with non-spontaneous wake-up was given by Kowalski and Pelc [15].

Broadcasting with a limited number of shots (“h-shot broadcasting”) in known-topology
undirected networks was first studied by Ga̧sieniec et al. [12], who showed a lower bound
of D + Ω((n−D)1/(2h)) and a randomized protocol which works in D +O(hn1/(h−2) log2 n)
steps and has high probability of completing the broadcast. These lower and upper bounds
were improved for the same setting (undirected known networks) by Kantor and Peleg [13]
to D + Ω(h · (n−D)1/2h) and D +O(hn1/2h) log2+1/h n), respectively. They also presented
the first randomized h-shot broadcasting protocols for unknown undirected networks, which
work in O((D + min{Dh, logn})n1/(h−1) logn) steps for h ≥ 2 and in O(Dn2 logn) steps
for h = 1. Still in the same setting, Berenbrink et al. [2] proposed, among other results, a
randomized algorithm with optimal broadcasting time O(D log(n/D) + log2 n) that uses an
expected number of O(log2 n/ log(n/D) transmissions per node.

The first work to address deterministic h-shot broadcasting in directed ad hoc radio
networks is due to Karmakar et al. [14], who proved a lower bound of Ω(n2/h) for oblivious
protocols and a matching upper bound of O(n2/h) for each h ≤

√
n, as well as an upper

bound of O(n3/2) for h >
√
n. They also presented a lower bound of Ω

(
n1+1/h) for adaptive

broadcasting protocols, leaving open the question whether there are upper bounds for adaptive
h-shot broadcast which are better than the O(n2/h) bound achieved by oblivious protocols.

MFCS 2018
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2 Lower bounds

2.1 Layered networks

We show lower bounds using the following layered networks. We assume n ≥ 4, and in
addition to the source node s = 0, we also distinguish the node d = n− 1 as the “target” of
the broadcast. Node d will be the last node of a layered network to receive the message. We
derive lower bounds on the number of steps needed by a broadcast protocol to deliver the
message from node s to node d in the worst case.

Consider a partition L0, L1, . . . , Lk of the set of nodes V into k ≥ 2 sets called layers,
such that L0 = {0}, Lk = {n− 1} and Li 6= ∅ for 0 ≤ i ≤ k. These layers define the following
acyclic broadcast network G ≡ G(L0, L1, . . . Lk). For each 0 ≤ i ≤ k − 1, the consecutive
layers Li and Li+1 are fully connected, that is, there is a directed edge from each node of Li
to each node of Li+1, and there are no any other edges.

For any pairwise disjoint non-empty subsets L0, L1, . . . , Lj of V \ {n− 1}, where j ≥ 1
and L0 = {0}, we denote by Gj ≡ Gj(L0, L1, . . . Lj) the family of all layered networks
G(L0, L1, . . . Lj , Lj+1 . . . Lk), where k > j, Lk = {n− 1} and Lj+1 . . . Lk−1 are non-empty
sets partitioning V \

(
{n− 1} ∪

⋃j
i=0 Li

)
. In other words, Gj is the family of all layered

networks which have the same fixed initial layers L0, L1, . . . , Lj . In particular, G0 is the
family of all layered networks.

We use layered networks in order to show that for any given protocol, there is an assignment
of nodes to layers which makes the progress of broadcast slow because of relatively long
delays at each layer.

2.2 Conditional transmission sets

Let Π be any h-shot broadcast protocol for n-node networks and let Tmax denote the maximum
broadcast time of Π over all n-node networks. We define below conditional transmission sets
for families of layered graphs described above.

Let i ≥ 1 and consider the family of networks Gi−1(L0, L1, . . . , Li−1) for some arbitrary
layer sets L0 = {0}, L1, L2, . . . , Li−1, such that |

⋃i−1
j=0 Lj | ≤ n− 3. This bound implies that

the target node and at least two other nodes are still outside of the fixed layers. Protocol
Π behaves in exactly the same way on any network G ∈ Gi−1(L0, L1, . . . , Li−1) until (and
including) the step Ti−1 when the source message leaves layer i − 1 for the first time.
That is, Ti−1 is the first step when a unique node in Li−1 transmits, sending the message
simultaneously to all nodes in the next layer. Note that T0 = 1 and step Ti−1 is uniquely
determined by the sets L0, L1, . . . , Li−1. We select the next layer Li from the set

Ui = V \

{n− 1} ∪
i−1⋃
j=0

Lj

 ,

trying to maximize the weighted delay (Ti − Ti−1)/|Li| at this layer.
For t ≥ 1, the conditional transmission set St ⊆ Ui contains a node v ∈ Ui, if and only if,

node v transmits at step Ti−1 + t, if v is included in the layer Li. Set St is well defined since
for each network G ∈ Gi−1(L0, L1, . . . , Li−1) with v ∈ Li, node v transmits in exactly the
same steps, irrespectively of how the other nodes in Ui \ {v} are distributed among the layers
Lj , j ≥ i. This follows from the fact that a node in one layer gets information, directly or
indirectly, only from nodes in previous layers.
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Since we consider h-shot protocols, each node v ∈ Ui belongs to at most h conditional
transmission sets St. We assume w.l.o.g. that v transmits in exactly h steps Ti−1 + t, so it
belongs to exactly h conditional transmission sets. (If v belongs to k < h conditional sets,
then add v to h − k sets Sτ for τ = Tmax − Ti−1 + 1, . . . , Tmax − Ti−1 + h − k. This may
create new transmission collisions, but only after step Tmax, that is, after the completion of
broadcast.) For convenience, if it is clear from the context that we are discussing the selection
of nodes for the layer Li, then we will refer to the (global) transmission step Ti−1 + t as
simply the transmission step t (the t-th step after step Ti−1). Also, “conditional transmission
sets” will be abbreviated to “transmission sets’.’

At least one of the transmission sets St must be a singleton, or otherwise the message
would never reach the target node in the network G(L0, L1, . . . , Li−1, Ui, {n− 1}), that is,
when layer i contains all remaining nodes (other than the target node n− 1). Let τ1 ≥ 1 be
the smallest index of a singleton transmission set. Let Sτ1 = {v1} and we also use t0(v1) and
S0(v1) to denote τ1 and Sτ1 , respectively.

Applying the same argument to sets S′t = St \ {v1}, we observe that there must be a
singleton also among these sets. Indeed, if each non-empty set S′t, t ≥ 1, had size at least 2,
then the message would never reach the target node in the network G(L0, L1, . . . , Li−1, Ui \
{v1}, {v1}, {n− 1}). Let S′τ2

= {v2} be the first singleton among sets S′t, and let t0(v2) and
S0(v2) denote τ2 and Sτ2 , respectively. We note that S0(v2) is equal to either {v2} or {v1, v2}
and step t0(v2) can be before or after step t0(v1).

Continuing this way, we put all nodes of Ui in a sequence v1, v2, . . . , vu, where u = |Ui| ≥ 2,
and associate with them distinct transmission steps t0(vj) and transmission sets S(vj) such
that:

S0(v1) = {v1} and S0(vj) \ {v1, v2, . . . , vj−1} = {vj}, for 2 ≤ j ≤ u.

Note that for each 1 ≤ j ≤ u, we have
⋃j
l=1 S0(vl) = {v1, v2, . . . , vj}.

By construction, for any two distinct nodes v and w in Ui, the steps t0(v) and t0(w) are
also distinct. Thus for at least du/2e nodes in Ui, we have t0(v) > bu/2c. We denote the set
of these nodes by U ′i , that is,

U ′i = {v ∈ Ui : t(v) > bu/2c},

and let u′ = |U ′i | ≥ du/2e.
For each node v ∈ U ′i , we have designated one of the v’s (conditional) transmission steps

as the step t0(v) ≥ |Ui|/2 and we have denoted the corresponding transmission set by S0(v).
We now further denote by t1(v) < t2(v) < · · · < th−1(v) and by S1(v), S2(v), . . . , Sh−1(v) the
other h− 1 steps when node v transmits (if in Li) and the transmission sets at those steps.
While for any two distinct nodes v′ and v′′ in U ′i , t0(v′) 6= t0(v′′), we may have tq(v′) = tr(v′′)
for some 1 ≤ q, r ≤ h− 1.

The general idea for forcing a large weighted delay at layer i is to try to select for this
layer a relatively small number of nodes x1, x2, . . . , xk from U ′i which have transmission
conflicts at all transmission steps tl(xj), for 1 ≤ j ≤ k and 1 ≤ l ≤ h− 1. That is, for each
1 ≤ j ≤ k and 1 ≤ l ≤ h − 1, there is 1 ≤ a ≤ k, a 6= j such that {xj , xa} ⊆ Sl(xj). If
we manage to select such a layer, then the progress of broadcast from this layer will have
to rely on one of the steps t0(x1), t0(x2), . . . , t0(xk), so the weighted delay will be at least
min{t0(x1), t0(x2), . . . , t0(xk)}/k ≥ |Ui|/(2k). This will be the basic case in our lower-bound
analysis.

MFCS 2018
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2.3 Lower bound for 2-shot broadcast
We consider now the case when each node has only two transmissions, with a node v ∈ U ′i
transmitting in steps t0(v) and t1(v). Recall that u′ = |U ′i | ≥ du/2e and consider two cases:
either there is a node v ∈ U ′i with t1(v) ≥ du/2e or, by the pigeonhole principle, there are
two distinct nodes v and w in U ′i such that t1(v) = t1(w) < du/2e. We set Li = {v} in the
former case, to get Ti = Ti−1 + min{t0(v), t1(v)} ≥ Ti−1 + du/2e, and Li = {v, w} in the
latter case, to get Ti = Ti−1 + min{t0(v), t0(w)} ≥ Ti−1 + du/2e. Thus we can force the
delay at layer i of at least du/2e by putting one or two nodes into this layer, so we have the
following lemma.

I Lemma 1. For each 2-shot broadcast protocol Π for n-node networks and a family
of networks G(L0, L1, . . . , Li−1), where |

⋃i−1
j=0 Lj | ≤ n − 3, there exists Li ⊆ Ui = V \(

{n− 1} ∪
⋃i−1
j=0 Lj

)
such that 1 ≤ |Li| ≤ 2 and for each network in G(L0, L1, . . . , Li−1, Li),

the message does not leave layer i (that is, is not delivered to the next layer i+ 1) before the
step Ti−1 + d|Ui|/2e.

Using this lemma iteratively, we prove the following lower bound on the worst-case time
of 2-shot broadcast protocols.

I Theorem 2. For each 2-shot broadcast protocol Π for n-node networks, there exists a
network in G0 on which Π needs at least n2/8−O(n) steps to complete broadcast.

Proof. Starting from L0 = {0}, we apply Lemma 1 iteratively for i = 1, 2, . . . to obtained a
network G(L0 = {0}, L1, L2, . . . , Lk−1, Lk = {n − 1}) such that k ≥ n/2, 1 ≤ |Li| ≤ 2, for
each 1 ≤ i ≤ k−1, and Ti ≥ Ti−1+|Ui|/2. We have |U1| = n−2 and |Ui| ≥ |Ui−1|−2 ≥ n−2i,
for 2 ≤ i ≤ k − 1, so the worst-case number of steps needed by protocol Π to complete the
broadcast is at least

1 +
∑

1≤i≤k−1
|Ui|/2 ≥

∑
1≤i≤(n/2)−1

(n− 2i)/2 = n2/8−O(n). J

2.4 Lower bound for 3-shot broadcast
We consider now a 3-shot broadcast protocol Π and, as before, the family of networks
Gi−1(L0, L1, . . . , Li−1) for some arbitrary layer sets L0 = {0}, L1, L2, . . . , Li−1. The message
leaves layer i− 1 at time step Ti−1 and we want to select nodes for the next layer i to force
a relatively large weigthed delay (Ti − Ti−1)/|Li|. We refer to the notation of (conditional)
transmission sets and the related terminology introduced in Sections 2.1 and 2.2. A node
v in the set U ′ = U ′i transmits in the step t0(v) ≥ u/2 and in steps t1(v) < t2(v), where
u = n− 1−

∣∣∣⋃i−1
j=0 Lj

∣∣∣ and |U ′| ≥ u/2.
For an integer parameter 1 ≤ p ≤ u/2, which will be set later, we put each node v ∈ U ′

into one of the sets V0, V1 and V2, depending on when the v’s transmission steps t1(v) and
t2(v) are in relation to step p:

V0 = {v ∈ U ′ : p < t1(v) < t2(v)},
V1 = {v ∈ U ′ : t1(v) ≤ p and t2(v) > p},
V2 = {v ∈ U ′ : t1(v) < t2(v) ≤ p}.

For the set V2, we construct an undirected (multi-)graph H2 with vertices tl(v), where v ∈ V2
and l = 1, 2, and edges {t1(v), t2(v)} for all v ∈ V2. More precisely, the vertex set and the
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edge (multi-)set of graph H2 are

V (H2) = {t : t = tl(v) for some v ∈ V2 and 1 ≤ l ≤ 2},
E(H2) = {{t′, t′′} : t′ = t1(v) and t′′ = t2(v) for some v ∈ V2}.

Thus graph H2 has at most p vertices and exactly |V2| ≤ u′ edges. There may be parallel edges
in H2 because there may be two nodes v′, v′′ in V2 with {t1(v′), t2(v′)} = {t1(v′′), t2(v′′)}.
To avoid confusion, nodes are in the transmission network, while vertices are in the auxiliary
graph H2 (and in other similar auxiliary graphs constructed later). The vertices of graph H2
correspond to (some) steps of the protocol and the edges of H2 correspond to (some) nodes
in the transmission network.

The underlying idea in our lower-bound argument is that if the number of edges in graph
H2 is relatively large in relation to p, that is, if H2 is sufficiently dense, then it must contain
a short cycle Γ = (τ0, τ1, . . . , τk−1, τk = τ0). Let vi ∈ V2 be the node in the transmission
network which corresponds to the edge {τi, τi+1} in this cycle, for i = 0, 1, . . . , k − 1.
(Two parallel edges in H2 would form a cycle of length k = 2.) If we set the next layer
Li = {v0, v1, . . . , vk−1}, then these nodes transmit in steps τ0, τ1, . . . , τk−1, but in each of
these steps exactly two nodes in Li transmit, resulting in a collision. This means that the
progress of broadcast has to rely on one of the steps t0(v0), t0(v1), . . . , t0(vk−1), but each of
these steps is at least u/2, so the weighted delay at layer i is at least u/(2k). Therefore we
have the following lemma.

I Lemma 3. If graph H2 has a cycle Γ of length k, then taking for the layer Li the set of
transmission nodes which correspond to the edges of Γ gives the weighted delay at layer i at
least u/(2k).

To proceed with our analysis, we need an upper bound on the girth of a graph, that is,
on the length of a shortest cycle. The asymptotic bounds given below in Lemma 4 and in its
corollary are widely known and sufficient for us, but we note that more precise bounds are
available in the literature, for example, in [3].

I Lemma 4. Every graph with p vertices and the minimum degree d = d(p) ≥ 3 contains a
cycle of length O(log p/ log d).

Proof. Consider any graph H with p vertices and the minimum degree d ≥ 3. Let v be any
vertex in H, k ≥ 1 and H(v, k) the subgraph of G induced by the vertices within distance at
most k from v. If H does not have a cycle of length 2k or less, then H(v, k) is a tree and
has more than (d− 1)k vertices. This means that for k = dlogn/ log(d− 1)e, H(v, k) is not
a tree and contains a cycle of length at most 2k = O(logn/ log d). J

I Corollary 5. Every graph of average degree d with p vertices contains a cycle of length
O(log p/ log d).

Proof. Any graph G of average degree d must contain a nonempty subgraph G′ of minimum
degree at least d/2. To see this, repeatedly remove from G all vertices of degree strictly less
than d/2. Not all vertices can be removed in this process because otherwise G would contain
fewer than pd/2 edges altogether, a contradiction. By applying Lemma 4 to G′ the claim
follows. J

I Lemma 6. Let Π be any 3-shot broadcast protocol Π for n-node networks and con-
sider any family of networks G(L0, L1, . . . , Li−1), where |

⋃i−1
j=0 Lj | ≤ n/2. There exists

the next i-th layer Li ⊆ Ui = V \
(⋃i−1

j=0 Lj ∪ {n− 1}
)

such that for each network in
G(L0, L1, . . . , Li−1, Li), the weighted delay at layer i is Ω(n log logn/ logn).

MFCS 2018
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Proof. We set p = n log logn/ logn and consider sets V0, V1 and V2. If V0 is not empty, then
we take Li = {v} where v is an arbitrary node in V0. All three steps t0(v), t1(v) and t2(v)
when node v transmits are at least p, so the weighted delay at layer i is at least p.

If |V1| > p, then there must be two nodes v′ and v′′ in V1 such that t1(v′) = t1(v′′) ≤ p,
but all other steps t0(v′), t2(v′), t0(v′′) and t2(v′′) when v′ or v′′ transmits are at least p.
Taking Li = {v′, v′′} gives the weighted delay at layer i at least p/2.

If V0 is empty and V1 has fewer than p nodes, then V2 has more than u′ − p nodes, so
graph H2 has |V2| > u′− p ≥ |Ui|/2− p ≥ n/5 edges but at most p vertices. This means that
the average degree in H2 is greater than (2/5)n/p, so, from Corollary 5, H2 has a cycle Γ of
length O(log p/ log(n/p)) = O(logn/ log logn). Thus Lemma 3 implies that taking for the
layer Li the set of transmission nodes which correspond to the edges of Γ gives the weighted
delay at layer i at least Ω(n log logn/ logn). J

We are now ready to prove the lower bound for the 3-shot case.

I Theorem 7. For each 3-shot broadcast protocol Π for n-node networks, there exists a
network in G0 on which Π needs Ω(n2 log logn/ logn) steps to complete broadcast.

Proof. Starting from L0 = {0}, we use Lemma 6 iteratively, obtaining layers L1, L2, . . . , Lm
and stopping when

⋃
0≤i≤m |Li| > n/2. From Lemma 6, there is a constant c > 0 such that

for each layer i = 1, 2, . . . ,m, the weighted delay (Ti−Ti−1)/|Li| is at least cn log logn/ logn.
Therefore,

Tmax ≥ Tm = 1 +
∑

1≤i≤m
(Ti − Ti−1) ≥

∑
1≤i≤m

(|Li|cn log logn/ logn)

≥ (c/2)n2log logn/logn. J

3 Upper bounds for h-shot broadcast for h ≤ 3

For the 2-shot case a trivial upper bound which matches asymptotically the Ω(n2) lower
bound of Section 2.3 is given by the oblivious Round Robin (which is actually a 1-shot
broadcast protocol).

We provide in this section an upper bound of O(n2 log logn/ logn) for 3-shot broadcast,
which matches our lower bound and shows that in contrast to the 2-shot case, the fastest
adaptive 3-shot protocols are faster than the best oblivious protocols by a factor ω(1).3 We
base our approach on graph-theoretic results [16] showing that it is possible to construct
relatively dense graphs of high girth. We use such graphs to specify appropriate transmission
sets as detailed below.

To define the sequence of transmission sets in our protocol, we use a graph H = H(n, p, g)
with n edges, p vertices and girth g. Any graph H(n, p, g) would do for the correctness of our
protocol, but to achieve fast (worst case) broadcast, we need a graph with relatively small
number of nodes p and high girth g. More precisely, to have asymptotically fastest broadcast,
we need a graph H(n, p, g) with p = Θ(n log logn/ logn) and g = Θ(logn/ log logn).

We identify the edge set E(H) of graph H with the node set V (G) of the transmission
network G, and we number the vertices in H from 1 to p (in an arbitrary way). Let Hi

denote the set of edges in H which are incident to vertex i. The sets H1, H2, . . . ,Hp are
(some of) the transmission sets of our protocol. Clearly, for any node v of G, v belongs to two

3 Recall that the oblivious bound is Θ(n2/k) for k-shot protocols and k ≤
√

n.
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sets Hi and Hj , where {i, j} ∈ E(H) is the edge identified with node v. Node v transmits
in two steps with transmissions sets Hi and Hj , while the third transmission is within one
Round-Robin sequence.

Formally, our protocol Π(H) is defined by the repeated Round-Robin sequence 〈R〉 =
({0}, {1}, . . . , {n− 1}) interleaved with the repeated sequence 〈H〉 = (H1, H2, . . . ,Hp). Let’s
say that we use the odd steps of the protocol for repeating the Round-Robin sequence and
the even steps for repeating the sequence 〈H〉. If a node v receives the message in step t,
then it transmits in its step of the first Round-Robin sequence which starts after step t, and
in the steps Hi and Hj of the first copy of the sequence 〈H〉 which starts after step t, where
{i, j} ∈ E(H) is the edge identified with node v.

We now proceed with the analysis of protocol Π(H). Consider any n-node transmission
network G with source s and an arbitrary node v 6= s. Let k ≥ 1 denote the distance from s

to v. In order to upper-bound the time needed for the message to go from source node s to
node v, we consider the partitioning Lv(G) of the nodes within distance k to v into layers.
These are breadth-first-search layers constructed from node v following the edges of G in
reverse direction. For 0 ≤ i ≤ k, the layer Li is the set of all nodes in G with distance k − i
to v. Thus Lk = {v}, Lk−1 is the set of all nodes with edges to v, and so on. The source
node s belongs to layer L0.

Note that for each 1 ≤ i ≤ k, each node u ∈ Li and each edge (x, u), x ∈ Lj for some
j ≥ i− 1. Thus the message reaches layer Li (any node in layer Li) for the first time during
a transmission by a node from layer Li−1. We use Ti to denote the time step at which the
message first reaches layer Li. We have T1 = 1 (layer L1 must have at least one out-neighbour
of the source) and the following lemma gives an upper bound on the delays at layers of
relatively small cardinality.

I Lemma 8. Consider an n-node transmission network G with source s, an arbitrary node
v, the layers L0, L1, . . . , Lk corresponding to this node and the protocol Π(H) defined by a
graph H = H(n, p, g). During the execution of this protocol, if |Li| < g, then the time needed
to transmit the message from Li to Li+1, that is, Ti+1 − Ti, is at most 4p.

Proof. Let L′i ⊆ Li be the set of nodes in Li that have received the message by time Ti + t,
where t is the smallest integer such that (Ti + t) mod (2p) = 0. Only nodes in L′i will be
transmitting at even steps between Ti + t+ 1 and Ti + t+ 2p.

Since |L′i| ≤ |Li| < g, the edges corresponding to nodes of L′i form an acyclic subgraph T
of H, so for each vertex wj in H with degree 1 in T (there must be at least two such vertices)
the transmission set Hj contains exactly one node from L′i. During each such step, the
message is transmitted from layer Li to layer Li+1. Hence Ti+1 ≤ Ti + t+ 2j ≤ Ti + 4p. J

I Theorem 9. Protocol Π(H) defined by a graph H = H(n, p, g) completes broadcast in an
arbitrary n-node transmission network G within O(n2/g + np) steps.

Proof. We take an arbitrary node v 6= s and consider its layers L0, L1, . . . , Lk. There can
be at most n/g layers of size at least g. For each such layer Li, when a message arrives at
this layer, then it will reach the next layer Li+1 by the time the next full Round Robin is
completed. That is, in this case Ti+1 ≤ Ti + 4n. Combining this with Lemma 8 gives the
claimed bound on the number of steps, since the number of layers of size smaller than g is at
most n− 1. J

To minimize the upper bound O(n2/g+np) = O(n2/min{g, dave}), where dave is the aver-
age degree in graph H(n, p, g), we have to find a graph with n edges and min{g, dave} as large
as possible. Corollary 5 implies that for all graphs, min{g, dave} = O(min{logn/ log dave,
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dave}) = O(logn/ log logn). It turns out that there are explicitly constructed graphs with n
edges for which min{g, dave} = Θ(logn/ log logn). We use the construction given in [16].

I Theorem 10 ([16]). For each positive odd integer k ≥ 3 and a power of a prime q, there
is an explicit construction of a q-regular bipartite graph H(q, k) with 2qk vertices and girth
at least k + 5.

I Corollary 11. There exists an explicit construction of a graph H with n edges, p =
Θ(n log logn/ logn) vertices and girth g = Θ(logn/ log logn).

Proof. For a given sufficiently large n, let q ≥ 4 be the largest power of 2 not greater than
logn/ log logn and let k = q−1 ≥ 3. Let H(q, k) be the graph from Theorem 10. This graph
has 2qq−1 vertices, qq ≤ n edges and girth at least q + 4.

Let H be a graph with exactly n edges obtained by taking copies of graph H(q, k) as
connected components. We remove (arbitrarily) some edges from the last copy of H(q, k) so
that the total number of edges is exactly n. We need dn/qqe copies of H(q, k), so the number
of vertices in graph H is at most 2qq−1(n/qq + 1) ≤ 4n/q ≤ 8n log logn/ logn. Graph H has
the same girth as H(q, k), so at least q + 4 ≥ (1/2) logn/ log logn. J

Using in protocol Π(H) the graph H from Corollary 11, Theorem 9 gives us the following
result.

I Corollary 12. There exists a constructive 3-shot broadcast protocol which completes broad-
cast on any graph G with n nodes in time O(n2 log logn/logn).

4 Upper bounds for h-shot broadcast for h ≥ 4

It was shown in [14] that for any h ≥ 1, an h-shot broadcast protocol requires Ω
(
n1+1/h)

steps. In previous sections, we improved this lower bound and provided matching upper
bounds for the cases when h is equal to 2 and 3. In this section, we show upper bounds for
h ≥ 4. In particular, if h is a sufficiently large constant or is slowly growing with n, then
we prove that there exist h-shot broadcast protocols with O(n1+α/

√
h) steps, where α is an

absolute constant independent of h.
The general idea for h-shot broadcast protocols for h ≥ 4 is similar to the idea of using a

large girth graph to construct a 3-shot protocol. Now, however, we need to define r = h−1 ≥ 3
transmission slots for each node (in addition to the transmissions defined by Round-Robin),
so we use r-uniform hyper-graphs instead of graphs H(n, p, g). Let Hr = Hr(n, p, k) be an
r-uniform hyper-graph (each edge is a set of r vertices) with n (hyper-)edges, p vertices,
and no 2-cover of size k or smaller. A 2-cover of a hyper-graph is a non-empty subset A of
edges such that each node which belongs to an edge in A belongs to at least two edges in A.
The notion of 2-covers in hyper-graphs generalizes the notion of cycles in graphs: minimal
2-covers in graphs are (simple) cycles.

Similarly as in the previous subsection, we identify the edge set E(Hr) of the hyper-graph
Hr with the node set V (G) of the transmission network G. We number the vertices in
Hr from 1 to p in an arbitrary order and denote by H(i)

r the set of edges in Hr which are
incident to vertex i. If we use the sequence 〈Hr〉 = 〈H(1)

r , H
(2)
r , . . . ,H

(p)
r 〉 as a sequence

of transmission sets, then for each nonempty subset W of at most k nodes in G, one of
these transmission sets has exactly one node from W – otherwise the set of edges in Hr

corresponding to the nodes in W would form a 2-cover in Hr of size at most k.
The following simple counting argument shows how large k can be in an Hr(n, p, k)

hyper-graph.
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I Lemma 13. There is a constant C such that for each n ≥ 1 and for each p ≥ r ≥ 3, there
exists a hyper-graph Hr = Hr(n, p, k) with k = bp/(Crn2/r)c.

Proof. We consider a random r-uniform hyper-graph H with p vertices and n edges (inde-
pendently and uniformly selected from the family of sets of r vertices) and show that for k
defined in the lemma (where constant C will come out from the calculations) and for a fixed
2 ≤ q ≤ k, the probability that H has a 2-cover of size q is at most 1/2q. By summing up over
all 2 ≤ q ≤ k, we get the conclusion that there must exist a hyper-graph Hr = Hr(n, p, k).

A 2-cover A of size q covers at most qr/2 vertices, or otherwise there would be a vertex
belonging to exactly one edge in A. Thus the probability that H has a 2-cover of size q is at
most the probability that there exists in H a set A of q edges and a set X of qr/2 vertices
such that each edge in A is a subset of X. Using the union bound over all possible A and X,
the probability of the latter event is at most

(
n

q

)(
p

qr/2

)(qr/2
r

)q
(
p

r

)q ≤
(
en

q

)q (2ep
qr

)qr/2 (eqr/2)qr/rqr

pqr/rqr
≤ 1
qq

(
Cqrn2/r

p

)qr/2

≤ 1
2q ,

where the second inequality holds for C = (2e)2 and the last one holds for any 2 ≤ q ≤

p/(Crn2/r). For the first inequality, we use
(a
b

)b
≤
(
a

b

)
≤
(ea
b

)b
. J

For a hyper-graph Hr = Hr(n, p, k), the protocol Π(Hr) which interleaves repeated copies
of 〈Hr〉 with copies of a Round-Robin sequence 〈R〉 is an h-shot broadcast protocol with
O(n2/k+np) steps. This can be shown in an analogous way as in the proof of Theorem 9, by
considering separately the layers with sizes at most k and the layers with sizes greater than
k. If we consider hyper-graphs Hr = Hr(n, p, k) with k = bp/(Crn2/r)c, whose existence is
guaranteed by Lemma 13, and take p = r1/2n1/2+1/r to minimize O(n2/k + np), then we
obtain an h-shot broadcast protocol with O(h1/2n3/2+1/(h−1)) steps. This gives, for example,
upper bounds O(n11/6) and O(n7/4) for 4-shot and 5-shot broadcast, respectively, but no
better bound than O(n3/2) even if h grows to infinity.

To obtain upper bounds with the exponent at n decreasing to 1 for increasing values of h,
we combine hyper-graphs Hr(n, p, k) for a number of different values of k. More specifically,
for h = ρ2/2+1, where ρ is an even integer at least 4, let Hρ,j = Hρ(n,Cρn2j/ρ, n2(j−1)/ρ), for
j = 1, 2, . . . , J = ρ/2, where C is the constant from Lemma 13. Our h-shot broadcast protocol
Πh is defined by the sequence of transmission sets obtained by interleaving ρ+ 1 sequences
(〈Hρ,1〉, 〈Hρ,1〉, . . .), (〈Hρ,2〉, 〈Hρ,2〉, . . .), . . . , (〈Hρ,J〉, 〈Hρ,J〉, . . .), and (〈R〉, 〈R〉, . . .), and by
the following transmission schedule. For a node v in the transmission network G, if v receives
the message for the first time in step t, then let 〈Hρ,j〉, for j = 1, 2, . . . , J , and 〈R〉 be, re-
spectively, the first copies of 〈Hρ,1〉, 〈Hρ,2〉, . . . , 〈Hρ,J〉 and 〈R〉 which start after step t. Node
v transmits in the steps corresponding to the transmission sets in 〈Hρ,1〉, 〈Hρ,2〉, . . . , 〈Hρ,J〉
and 〈R〉 which include v. Thus v transmits in ρ · (ρ/2) + 1 = h steps.

I Theorem 14. For h = ρ2/2+1, where ρ is an even integer at least 4, the (non-constructive)
protocol Πh is an h-shot broadcast protocol with O(hn1+

√
8/(h−1)) steps.

Proof. By the definition of protocol Π, no node transmits more then h times. We show now
the claimed bound on the number of steps.

Similarly to the analysis of the 3-shot protocol in Section 3, we consider an arbitrary
node v and its in-neighbourhood layers L0, L1, . . . , Lk, where s ∈ L0 and v ∈ Lk. The delay
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at layer Li, that is, the number of steps between the time when the first node in Li receives
the message and the time when the first node in Li+1 receives the message (from one of
the nodes in Li), depends on the size of this layer. If n2(j−2)/ρ < |Li| ≤ n2(j−1)/ρ, for some
1 ≤ j ≤ J , then the message is delivered from (one of the nodes of) layer Li to (one of the
nodes of) the next layer by the next copy of 〈Hρ,j〉, so within Cρ2n2j/ρ steps. (Recall that
the transmission sets of each 〈Hρ,i〉 are scheduled every ρ/2 + 1 steps, hence the additional
factor of ρ).

For a layer Li such that n2(J−1)/ρ < |Li|, the message is delivered to the next layer by
the next copy of Round-Robin, so within ρn steps. Thus the delay at each layer Li is at most
Cρ2n4/ρ|Li| steps, so node v receives the message within O(ρ2n1+4/ρ) = O(hn1+

√
8/(h−1))

steps. J

We defined protocols Πh only for values h = ρ2/2 + 1, where ρ is an even integer at
least 4. Since the h-shot broadcast protocol Πh is also an h′-shot broadcast protocol for any
h′ ≥ h, then Theorem 14 implies the following corollary.

I Corollary 15. There is a constant α such that for any 1 ≤ h = O(logn), there exists an
h-shot broadcast protocol with O(min{n2, n1+α/

√
h}) steps.

Proof. It is enough to consider h ≥ 9, since the case when h < 9 can be covered by taking
sufficiently large α. For h ≥ 9, take ρ = b

√
2(h− 1)c, h̃ = ρ2/2 + 1 ≤ h and the protocol

Πh̃, which is an h-shot broadcast protocol. Theorem 14 implies that protocol Πh̃ works in
O(ρ2n1+4/ρ) steps, which is O(n1+5/

√
h) for 9 ≤ h = O(logn). J

For the cases h = 2 and h = 3, we have obtained asymptotically matching lower and
upper bounds on the number of steps in h-shot broadcast protocols. For h ≥ 4, however, we
still have a gap between the lower bound of Ω

(
n1+1/h) shown by Karmakar et al. [14] and

our upper bounds.
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