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—— Abstract

Various key problems from theoretical computer science can be expressed as polynomial optimiz-
ation problems over the boolean hypercube. One particularly successful way to prove complexity
bounds for these types of problems are based on sums of squares (SOS) as nonnegativity certific-
ates. In this article, we initiate optimization over the boolean hypercube via a recent, alternative
certificate called sums of nonnegative circuit polynomials (SONC). We show that key results for
SOS based certificates remain valid: First, there exists a SONC certificate of degree at most
n + d for polynomials which are nonnegative over the n-variate boolean hypercube with con-
straints of degree d. Second, if there exists a degree d SONC certificate for nonnegativity of
a polynomial over the boolean hypercube, then there also exists a short degree d SONC certi-
ficate, that includes at most n®@ nonnegative circuit polynomials. Finally, we show certain
differences between SOS and SONC cones: we prove that, in contrast to SOS, the SONC cone
is not closed under taking affine transformation of variables and that for SONC there does not
exist an equivalent to Putinar’s Positivestellensatz. We discuss these results both from algebraic
and optimization perspective.
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1 Introduction

An optimization problem over a boolean hypercube is an n-variate (constrained) polynomial
optimization problem where the feasibility set is restricted to some vertices of an n-dimensional
hypercube. This class of optimization problems belongs to the core of theoretical computer
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science. However, it is known that solving them is NP-hard in general, since one can easily
cast, e.g., the Independent Set problem in this framework.

One of the most promising approaches in constructing theoretically efficient algorithms
is the sum of squares (SOS) hierarchy |23, 45, 48, 55|, also known as Lasserre relazation
[34]. The method is based on a Positivstellensatz result [50] saying that the polynomial f,
which is nonnegative over the feasibility set, can be expressed as a sum of squares times
the constraints defining the set. Bounding a maximum degree of a polynomial used in a
representation of f provides a family of algorithms parametrized by an integer d. Finding a
degree d SOS certificate for nonnegativity of f can be performed by solving a semidefinite

O(d), Finally, for every (feasible) n-variate hypercube

programming (SDP) formulation of size n
optimization problem, with constraints of degree at most d, there exists a degree 2(n+ [d/2])

SOS certificate.

The SOS algorithm is a frontier method in algorithm design. It provides the best available
algorithms used for a wide variety of optimization problems. The degree 2 SOS for the
INDEPENDENT SET problem implies the Lovdsz 6-function [40] and gives the Goemans-
Williamson relaxation [20] for the MAX CuT problem. The Goemans-Linial relaxation for
the SPARSEST CUT problem (analyzed in [2]) can be captured by the SOS of degree 6.
Finally, the subexponential time algorithm for UNIQUE GAMES [1] is implied by a SOS of
sublinear degree [4, 24]. Moreover, it has been shown that SOS is equivalent in power to
any SDP extended formulation of comparable size in approximating MAXIMUM CONSTRAINT
SATISFACTION problems (CSP) [39]. Recently SOS has been also applied to problems in
DICTIONARY LEARNING [6, 54], TENSOR COMPLETION AND DECOMPOSITION [7, 26, 49], and
ROBUST ESTIMATION [28]. Other applications of the SOS method can be found in [4, 8, 12,
13, 16, 17, 24, 41, 42, 51], see also the surveys [14, 35, 37].

On the other hand it is known that the SOS algorithm admits certain weaknesses. For
example, Grigoriev shows in [21] that a £2(n) degree SOS certificate is needed to detect a
simple integrality argument for the KNAPSACK problem, see also [22, 31, 36]. Other SOS
degree lower bounds for KNAPSACK problems appeared in [11, 32]. Some lower bounds on
the effectiveness of SOS has been shown for CSP problems [29, 56] and for planted clique
problem [3, 43]. Finally degree Q(y/n) SOS was proved to have problems scheduling unit
size jobs on a single machine to minimize the number of late jobs [33]. The problem is
solvable in polynomial time using the Moore-Hodgson algorithm. Finally, SOS has hard time
proving global nonnegativity, as first proved by Hilbert [25]. Later an explicit example was
given by Motzkin [44]. Moreover, as shown by Blekherman [9], there are significantly more
nonnegative polynomials than SOS polynomials. The above arguments motivate the search
of new nonnegativity certificates for solving optimization problems efficiently.

In this article, we initiate an analysis of hypercube optimization problems via sums of
nonnegative circuit polynomials (SONC). SONCs are a nonnegativity certificate introduced
in [27], which are independent of sums of squares; see Definition 1 and Theorem 5 for further
details. This means particularly that certain polynomials like the Motzkin polynomial,
which have no SOS certificate for global nonnegativity, can be certified as nonnegative via
SONCs. Moreover, SONCs generalize polynomials which are certified to be nonnegative
via the arithmetic-geometric mean inequality [52]. Similarly as Lasserre relaxation for
SOS, a Schmiidgen-like Positivstellensatz yields a converging hierarchy of lower bounds for
polynomial optimization problems with compact constraint set; see [19, Theorem 4.8] and
Theorem 6. These bounds can be computed via a convex optimization program called relative
entropy programming [19, Theorem 5.3]. Our main question in this article is:
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Can SONC certificates be an alternative for SOS methods for optimization problems
over the hypercube?

We answer this question affirmatively in the sense that we prove SONC complexity bounds
for boolean hypercube optimization analogous to the SOS bounds mentioned above. More
specifically, we show:

1. For every polynomial which is nonnegative over an n-variate hypercube with constraints
of degree at most d there exists a SONC certificate of nonnegativity of degree at most
n + d; see Theorem 16 and Corollary 17.

2. If a polynomial f admits a degree d SONC certificate of nonnegativity over an n-variate
hypercube, then the polynomial f admits also a short degree d SONC certificate that
includes at most n®@ nonnegative circuit polynomials; see Theorem 18.

Furthermore, we show some structural properties of SONCs:

1. We give a simple, constructive example showing that the SONC cone is not closed under
multiplication. Subsequently we use this construction to show that the SONC cone is
neither closed under taking affine transformations of variables, see Lemma 8 and Corollary
9 and the discussion afterwards.

2. We address an open problem raised in [19] asking whether the Schmiidgen-like Posit-
ivstellensatz for SONCs (Theorem 6) can be improved to an equivalent of Putinar’s
Positivstellensatz [50]. We answer this question negatively by showing an explicit hyper-
cube optimization example, which provably does not admit a Putinar representation for
SONCs; see Theorem 19 and the discussion afterwards.

Our article is organized as follows: In Section 2 we introduce the necessary background
from theoretical computer sciences and about SONCs. In Section 3 we show that the
SONC cone is closed neither under multiplication nor under affine transformations. In
Section 4 we provide our two main results regarding the degree bounds for SONC certificates
over the hypercube. In Section 5 we prove the non-existence of an equivalent of Putinar’s
Positivstellensatz for SONCs and discuss this result.

2 Preliminaries

In this section we collect basic notions and statements on sums of nonnegative circuit
polynomials (SONC).

Throughout the paper, we use bold letters for vectors, e.g., x = (x1,...,2,) € R™. Let
N* =N\ {0} and R>( (Rs() be the set of nonnegative (positive) real numbers. Furthermore
let R[x] = R[z1,...,z,] be the ring of real n-variate polynomials and the set of all n-variate
polynomials of degree less than or equal to 2d is denoted by R[x], 24. We denote by [n] the
set {1,...,n} and the sum of binomial coefficients ZZ:O (1) is abbreviated by (). Let
e1,...,en denote the canonical basis vectors in R™.

2.1 Sums of Nonnegative Circuit Polynomials

Let A C N™ be a finite set. In what follows, we consider polynomials f € R[x] supported on
A. Thus, f is of the form f(x) =3 c4 fax® with fo € R and x* = 27" --- 20", A lattice
point is called even if it is in (2N)™ and a term fox® is called a monomial square if fo, >0
and a even. We denote by New(f) = conv{a € N : f,, # 0} the Newton polytope of f.

Initially, we introduce the foundation of SONC polynomials, namely circuit polynomials;
see also [27]:

82:3

MFCS 2018



82:4

Optimization over the Boolean Hypercube via SONCs

» Definition 1. A polynomial f € R[x] is called a circuit polynomial if it is of the form

&) = fexP ) fax®W, (2.1)

j=0
with r < n, exponents a(j), 8 € A, and coefficients fq(;) € Rso, fg € R, such that the
following conditions hold:

(C1) New(f) is a simplex with all even vertices a(0), a(1),...,a(r) € Z".
(C2) The exponent S is in the strict interior of New(f). Hence, there exist unique barycentric

coordinates \; relative to the vertices a(j) with j =0, ..., satisfying
B =) Na(j) with A; > 0 and » X = 1.
§=0 j=0
We call the terms fa(o)xa(o), cee fa(r)xo‘(’“) the outer terms and fﬁxﬁ the inner term of f.

For every circuit polynomial we define the corresponding circuit number as

0, = H (%ﬁ”)k (2.2)

Jj=0

Note that the name of these polynomials is motivated by the fact that their support set
forms a circuit, i.e. a minimal affine dependent set, see e.g. [47]. The first fundamental
statement about circuit polynomials is that its nonnegativity is determined by its circuit
number O and fg entirely:

» Theorem 2 ([27], Theorem 3.8). Let f be a circuit polynomial with inner term fgxP and
let © be the corresponding circuit number, as defined in (2.2). Then the following statements
are equivalent:

1. f is nonnegative.

2. |fﬁ| < @f and B ¢ (2N)n or fﬁ > 7®f and B € (2N)n
We illustrate the previous definition and theorem by an example:

» Example 3. The Motzkin polynomial [44] is given by
M(xy,29) = xjws +xiz; — 3323 + 1.
It is a circuit polynomial since New(f) = {(4, 2), (2,4), (0,0)}, and 8 = (2, 2) with Ag, A1, A2 =

, 3
1/3. We have |fg| = 3 and compute O = ¢ (ﬁ) = 3. Hence, we can conclude that

M (z1,z2) is nonnegative by Theorem 2.

» Definition 4. We define for every n,d € N* the set of sums of nonnegative circuit
polynomials (SONC) in n variables of degree 2d as

k
Chrod = {f €ER[X|p2q : = Zpi, p; is a nonnegative circuit polynomial, k € N*}
i=1

Note that the degree is attained at the outer terms and hence it is even.

We denote by SONC both the set of SONC polynomials and the property of a polynomial
to be a sum of nonnegative circuit polynomials.

In what follows let P, 24 be the cone of nonnegative n-variate polynomials of degree at
most 2d and ¥, o4 be the corresponding cone of sums of squares respectively. An important
observation is, that SONC polynomials form a convex cone independent of the SOS cone:
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» Theorem 5 ([27], Proposition 7.2). C), 24 is a convex cone satisfying:
1. Cy 24 C Py 24 for alln,d € N¥,

2. Cpoa C Xy 04 tif and only if (n,2d) € {(1,2d), (n,2),(2,4)},

3. 2,24 € Ch.2q for all (n,2d) with 2d > 6.

For further details about the SONC cone see [18, 19, 27].

2.2 SONC certificates over a Constrained Set

In [19, Theorem 4.8], Iliman, the first, and the third author showed that for an arbitrary real
polynomial which is strictly positive on a compact, basic closed semialgebraic set K there
exists a SONC certificate of nonnegativity. Hereinafter we recall this result.

We assume that K is given by polynomial inequalities g;(x) > 0 for i = 1,...,s and is
compact. For technical reason we add 2n redundant box constraints [;(x) := N £ z; > 0 for
some sufficiently large N € N, which always exists due to our assumption of compactness of
K; see [19] for further details. Hence, we have

K = {xeR":g;(x) >0 forie [s] and [;(x) > 0 for j € [2n]}. (2.3)

In what follows we consider polynomials H(9 (x) defined as products of at most ¢ € N* of
the polynomials g;,; and 1, i.e.,

HO(x) = [] he(x), (2.4)
k=1

where hy € {1,91,...,9s,01,...,l2,}. Now we can state:

» Theorem 6 ([19], Theorem 4.8). Let f,q1,...,9s € R[x] be real polynomials and K be a
compact, basic closed semialgebraic set as in (2.3). If f > 0 on K then there exist d,q € N*
such that we have an explicit representation of f of the form:

fx) = Y s(x)H(x),

finite
where the s(x) are contained in C, 24 and every H'9(x) is a product as in (2.4).

The central object of interest is the smallest value of d and ¢ that allows f a decomposition
as in Theorem 6. This motivates the following definition of a degree d SONC' certificate.

» Definition 7. Let f € R[x] such that f is positive on the set K given in (2.3). Then f
has a degree d SONC certificate if it admits for some g € N* the following decomposition:

Fx) = Y sHD(x),

finite
for s(x) SONCs, the H@(x) products as in (2.4), and deg (3" s(x)H?(x)) < d.

For a given set A C N", searching through the space of degree d certificates can be

O(d)  REPs are convex optimiz-

computed via a relative entropy program (REP) [19] of size n
ation programs which are slightly more general than geometric programs but still efficiently

solvable with interior point methods; see e.g. [10, 46] for more details.
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X

Figure 1 The Newton polytope and the support set of r(x1,xr) with the supports of p1 and p2
in blue ovals.

3 Properties of the SONC cone

In this section we show that the SONC cone is neither closed under multiplication nor under
affine transformations. First, we give a constructive proof for the fact that the SONC cone is
not closed under multiplication, which is simpler than the initial proof of this fact in [19,
Lemma 4.1]. Second, we use our construction to show that the SONC cone is not closed
under affine transformation of variables.

» Lemma 8. For everyd > 2, n € N* the SONC cone C,, 4 is not closed under multiplication
in the following sense: if p1,p2 € Cy 4, then p1 - pa & C,, 24 in general.

Proof. For every d = 2n, n € N* we construct two SONC polynomials p;, p2 € C,, 4 such
that the product pip» is an n variate, degree 2d polynomial that is not inside C,, 2q4.
Let n = 2. We construct the following two polynomials p;, pa € Rlzq,2s]:

pi(z1,12) = (1—21)3, po(z1,22) = (1 —ax9)%

First, observe that p;, ps are nonnegative circuit polynomials, since, in both cases, Ay = A\ =
1/2, fa(l) = fa(g) =1, and fﬁ = —2, thus 2 = G)f > |fﬁ|

Now consider the polynomial r(z1,z5) = ((1 — z1)(1 — 23))?. We show that this poly-
nomial, even though it is nonnegative, is not a SONC polynomial. Note that r(z1,22) =
1 — 221 — 229 + 43129 + 22 + 23 — 22339 — 23123 + 2222; the support of r is shown in
Figure 1. Assume that r € Cy 4, i.e., r has a SONC decomposition. This implies that the
term —2x; has to be an inner term of some nonnegative circuit polynomial r; in this repres-
entation. Such a circuit polynomial necessarily has the terms 1 and 2% as outer terms, that is,
r1(x1) = p1(z1,22) = 1 + 2% — 22;. Since O,, = 2 the polynomial 71 is indeed nonnegative
and, in addition, we cannot choose a smaller constant term and preserve nonnegativity
without simultaneously increasing the coefficient x2. Next, also the term —2z5 has to be an
inner term of SONC ry. Since this term again is on the boundary of New(r) the only option
for such an ry is: 79(w2) = pa(w1,22) = 1 + 22 — 225. However, the term 1 has been already
used in 71, which leads to a contradiction, i.e., r ¢ Cs 4. Since Cy, 29 C Cp11,24, the general
statement follows. <

Hereinafter we show another operation, which behaves differently for SONC than it does
for SOS: Similarly as for multiplications, affine transformations also do not preserve the SONC
structure. This observation is important for possible degree bounds on SONC certificates,
when considering optimization problems over distinct descriptions of the hypercube.

» Corollary 9. For every d > 4, n € N* the SONC cone C,, 4 is not closed under affine
transformation of variables.
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Proof. Consider the polynomial f(z1,22) = x223. Clearly, the polynomial f is a nonnegative
circuit polynomial since it is a monomial square, hence u € C,, 4. Now consider the following
affine transformation of the variables z1 and z9: 1 — 1 — x1, zo — 1 — xo. After applying
the transformation the polynomial f equals the polynomial p;ps from the proof of Lemma 8
and thus is not inside C,, 4. <

Corollary 9, from optimization perspective, implies that problem formulations obtained
by applying affine transformations of variables can lead to problems of different tractability
when using the SONC method. This means, on the one hand, that a choice of representation
has to be done carefully, which makes the process of algorithm design more demanding. On
the other hand, even a small change of representation might allow to find a SONC certificate
or simplify an existing one. Note that whatever affine transformation of variables is applied
to the Motzkin polynomial it never has a SOS certificate over reals, as the SOS cone is closed
under affine transformations. The affine closure of the SONC cone, however, strictly contains
the SONC cone and still yields a certificate of nonnegativity. In this sense, Corollary 9
motivates the following future research question:

Find an efficient algorithm to determine whether an affine transformation of a given
polynomial f admits a SONC representation.

4 An Upper Bound on the Degree of SONC Certificates over the
Hypercube

In this section we prove that every n-variate polynomial which is nonnegative over the boolean
hypercube has a degree n SONC certificate. Moreover, if the hypercube is additionally
constrained with some polynomials of degree at most d, then the nonnegative polynomial
over such a set has degree n + d SONC certificate. Motivated by the Corollary 9 and the
discussion afterwards, we show this fact for all affine transformations of the 0/1 hypercube,
that is for hypercubes {a;, b;}™.

Formally, we consider the following setting: We investigate real multivariate polynomials
in R[x]. For j € [n], and a;,b; € R, such that a; < b; let

9;(x) = (; —a;)(z; —bj)
be a quadratic polynomial with two distinct real roots. Let H C R™ denote the n-dimensional
hypercube given by H;;l{aj, b;}. Moreover, let

P = {p1,-..,pm: pi €R[x], i € [m]}
be a set of polynomials, which we consider as constraints p;(x) > 0 with deg(p;(x)) < d for
all i € [n] as follows. We define

Hp = {xeR": g;(x) =0, j € [n], p(x) >0, pe P}

as the n-dimensional hypercube H constrained by polynomial inequalities given by P. Through-
out the paper we assume that |P| = poly(n), i.e. the size of the constraint set P is polynomial
in n. This is usually the case, since otherwise the problem gets less tractable from the optim-
ization point of view.

As a first step, we introduce a Kronecker delta function:

» Definition 10. For every v € H the function
—x; +b; Ti—a;
Ov(x) = " 2 41
(X) ' H (bj—aj> ' H (b_j_aj) ( )
jE€n]: vi=a; jE€n]: vj=b;

is called the Kronecker delta (function) of the vector v.

82:7
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Next we justify the term “Kronecker delta”, we show that for every v € H the function
dv(x) takes the value zero for all x € H except for x = v where it takes the value one.

» Lemma 11. For every v € H it holds that:

5u(x) = {07 for every x € H\ {v},

1, forx=wv.

Proof. On the one hand, if x € % \ {v}, then there exists an index k such that xj # vy.
This implies that there exists at least one multiplicative factor in d, which attains the value
zero due to (4.1). On the other hand if x = v then we have

—a; +b; b; —a;
Oy = 1 2 I ) =1, |
&) , 1 (bj—%‘), 1 <bj—aj>
J€Eln]: vi=a; JEn]: v;=b;
The main result of this section is the following theorem.

» Theorem 12. Let f(x) € R[X|n,n. Then f(x) >0 for every x € Hp if and only if f has
the following representation:

n

FR) = D ed()+ Y edv(Ipv(x) + Y si(x)g5(%) + Y s (%) (—g5(x)), (4.2)

veHp veEH\Hp j=1

where s1,...,82n € Cpn_2, v € R>g and py € P.

Since we are interested in optimization on the boolean hypercube H, we assume without
loss of generality that the polynomial f considered in Theorem 12 has degree at most n.
Otherwise, one can efficiently reduce the degree of f by applying iteratively the polynomial
division with respect to polynomials g; with j € [n]. The remainder of the division process
is a polynomial with degree at most n that agrees with f on all the vertices of H.

We begin with proving the easy direction of the equivalence stated in Theorem 12.

» Lemma 13. If f admits a decomposition (4.2), then f(x) is nonnegative for all x € Hp.

Proof. The coefficients ¢, are nonnegative, all s;(x) are SONC and hence nonnegative on
R™. We have +¢;(x) > 0 for all x € H, and for all choices of v € H we have p,(x) > 0 for
all x € Hp, and dy(x) € {0,1} for all x € H. Thus, the right hand side of (4.2) is a sum of
positive terms for all x € Hp. <

We postpone the rest of the proof of Theorem 12 to the end of the section. Now, we state
a result about the presentation of the Kronecker delta function dy. In what follows let K be
the basic closed semialgebraic set defined by g1,...,¢, and ly,...,ls, as in (2.3).

» Lemma 14. For every v € H the Kronecker delta function can be written as

27L
_ (n)
5\; = ZSjHjn s
j=1
for si,...,s9n € R>q and every Hj(n) given as in (2.4) with ¢ = n.
Proof. First note that the function d, can be rewritten as

2n
) = [[—— I (o+b) [ —a,
j=1

bj — aj . .
J€[n]: vi=a; J€[n]: v;=b;

where [[7_, ﬁ € R>¢. Now, the proof follows just by noting that for every j € [n] both

inequalities —x; +b; > 0 and x; — a; > 0 are in K. <
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The following statement is well-known in similar variations; see e.g. [5, Lemma 2.2 and
its proof]. For clarity, we provide an own proof in the appendix.

» Proposition 15. Let f € R[x],, 24 be a polynomial vanishing on H. Then f = Z?:l D;g;
for some polynomials p; € R[x], 24—2.

Proof. Let J := (g1,...,9n) be the ideal generated by the g;’s. Let V(J) denote the affine
variety corresponding to J, Z(V(J)) denote its radical ideal, and let Z(H) denote the ideal
of #. It follows from [[7_, g; € J that V(J) € H and hence Z(H) C Z(V(J)) = J. The
last equality holds since J itself is a radical ideal. This results from Seidenberg’s Lemma;
see [30, Proposition 3.7.15] by means of the following observations. The affine variety V(J)
consists exactly of the points defining H, therefore we know that 7 is a zero-dimensional ideal.
Furthermore, for every j € [n] the polynomials g; satisfy g; € J N K[x;] and ged(g;, ;) = 1.
Thus, every f € Z(H) is of the form f = 3", p;g;.

Moreover G := {g1,...,gn} is a Grobner basis for J with respect to the graded lex-
icographic order <gicx. This follows from Buchberger’s Criterion, which says that G is a
Grobner basis for J if and only if for all pairs ¢ # j the remainder on the division of the
S-polynomials S(g;, g;) by G with respect to <glex is zero. Consider an arbitrary pair g;, g;
with ¢ > j. Then the corresponding S-polynomial is given by

S(gir95) = (aj +bj)xia; — (a; + bi)wias — ajbjal + abix’ .

Applying polynomial division with respect to <giex yields the remainder 0 and hence G is a
Grobner basis for J with respect to <giex. Therefore, we conclude that if f € R[x], 24, then
deg(p;) < 2d — 2. <

For an introduction to Grobner bases see for example [15].

» Theorem 16. Let d € N and f € R[x], 2a+2 such that f vanishes on H. Then there exist
815+ 1820 € Cpoq such that f =370 5505 + 201 snvj(—gj)-

Proof. By Proposition 15 we know that f = Z?Zl p;jg; for some polynomials p; of degree
< 2d. Hence, it is sufficient to show that every single term p;g; is of the form 2?21 895 —
Z;'L=1 Sn+jg; for some sq,...,82, € Cpoq. Let p;j = Zle aj;m;; where every aj; € R and
every mj; is a single monomial. We show that p;g; has the desired form by investigating an
arbitrary individual term a;;m;;9;.

Case 1: Assume the exponent of m;; is contained in (2N)”. If a;;m;; is a monomial square,
then ajymj; is a circuit polynomial. If a;; < 0, then —a;;mj; is a monomial square. In
both cases we obtain a representation s;;(+g;;), where sj; € Cp, 24.

Case 2: Assume the the exponent 8 of m;; contains odd numbers. Without loss of generality,
assume that 8 = (81,..., Bk, Bk+1,- - -, On) such that the first k entries are odd and the
remaining n — k entries are even. We construct a SONC polynomial s;; = aa(l)xa(l) +
aa(g)xo‘@) + ajixﬂ such that

[k/2] k [k/2] k
a(l) = B+ Z e — Z €, a2) = - Z e; + Z e;, (4.3)
j=1 j=[k/2]+1 Jj=1 J=[k/2]+1

|aji| < V/200(1)0a(2)- (4.4)
By the construction (4.3) a(1), a(2) € (2N)™ and 8 = 1/2(a(1) + «(2)). Thus, sj; is a
circuit polynomial and by (4.4) the coefficients aq(1), @a(2) are chosen large enough such
that |aj;| is bound by the circuit number |/2a4(1)a«(2) corresponding to s;;. Thus, s;; is
nonnegative by [27, Theorem 1.1]. Thus, we obtain

ajimgjig; = Sjig; + (aa(l)Xa(l) + aa(z)Xa(Z))(—gj)’

where s, aq(1X*Y, and aq2)x*?) are nonnegative circuit polynomials.
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Degree: All involved nonnegative circuit polynomials are of degree at most 2d. In Case
1 this follows by construction. In Case 2 we have for the circuit polynomial sj; that
deg(a(1)),deg(x(2)) = deg(B) if k is even, and deg(a(1)) = deg(B) + 1, deg(a(2)) =
deg(B) if k is odd. Since B is an exponent of the polynomial f, we know that deg(3) < 2d.
If £ is odd, however, then

k n
deg(B) = > B+ > B
=1 odd number g=k+1 even number

i.e., deg(B) is a sum of & many odd numbers, with k being odd, plus a sum of even
numbers. Thus, deg(3) has to be an odd number and hence deg(B) < 2d. Therefore, all
degrees of terms in sj; are bounded by 2d and thus sj; € Cy, 24.

Conclusion: We have that

n n 4 n ¥4
[ = ijgj = Zzajimjigj = Zzsjigj-
j=1

j=1i=1 j=1i=1

By Cases 1 and 2 and the degree argument, we have s;; € C), 24 for every ¢,; and by
defining s; = fozl 5ji € Cp 24 We obtain the desired representation of f. |

4.1 Proof of Theorem 12

In this section we combine the results of this section and finish the proof of Theorem 12.
Due to Lemma 13, it remains to show that f(x) admits a decomposition of the form (4.2)
with Hp = H if f(x) >0 for every x € H.
Hence, when restricted to the hypercube H, the polynomial f can be represented as:

fx) = fx) D) ) +fx) D v(x) for all x € H

vEHP veH\Hp

= D G+ D Gx)f(v) for all x € H,

vEHP veEH\Hp

where the last equality follows by Lemma 11 .

Note that there might exist a vector v € H \ Hp such that f attains a negative value at
v. If f(v) <0, then let p, € P be one of the polynomials among the constraints satisfying
pv(v) < 0. Otherwise, let p, = 1. Since by Lemma 11 we have &y (x)py(x) = 0y (x)py (V) for
every v, X € H, we can now write:

f(v)
pv(v)

for all x € H.

) = Y AW+ Y ape(x)

VEH P vEH\Hp

Thus, the polynomial f(x) — > ep, Ov(X) (V) = Dvernny 5v(x)pv(x)p{’((vv)) has degree
at most n + d and vanishes on H. By Theorem 16 we finally get

RS SUISIIES SERNEIENE SEN I SEEN SN

b
v et pv(Vv)

for some sq,..., 2, € Cy n—2 and py € P. This finishes proof together with Lemma 14. <«
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» Corollary 17. For every polynomial f, nonnegative over the boolean hypercube, constrained
with polynomial inequalities of degree at most d, there exists a degree n+d SONC certificate.

Proof. The argument follows directly from Theorem 12 by noting that the right hand side
of (4.2) is a SONC certificate of degree n + d (see the Definition 7). <

4.2 Degree d SONC Certificates

In this section we show that if a polynomial f admits a degree d SONC certificate, then f
also admits a short degree d certificate that involves at most n°(® terms.

» Theorem 18. Let f be an n-variate polynomial, nonnegative on the constrained hypercube
Hp with |P| = poly(n). Assume that there exists a degree d SONC certificate for f, then
there exists a degree d SONC' certificate for f involving at most n°4Y many nonnegative
circuit polynomials.

Proof. Since there exists a degree d SONC proof of the nonnegativity of f on Hp we know
that f(x) = Zj stj(-q), where the summation is finite, s;’s are SONCs, and H;q)’s are
product as defined in (2.4).

Step 1: We analyze the terms s;. Since every s; is a SONC, there exists a representation

kj
Sj 0= Kjt ) Mg dij
i=1
such that kj, u1j,..., k5 € Rso, Zf;l ti; = 1, and the ¢;; are nonnegative circuit
polynomials. Since s; is of degree at most d, we know that Q; := {qij,...,qx,;} is

contained in R, 4[x], which is a real vector space of dimension (”;d). Since s;/k; is
a convex combination of the g;;, i.e. in the convex hull of @;, and dim(Q;) < (";d),
applying Carathéodory’s Theorem, see e.g. [57], yields that s;/k; can be written as a

convex combination of at most (”zd) + 1 many of the g¢;;.

Step 2: We analyze the terms H;q). By definition of the Hp and the terms Hj(-q) we
have H](Q) = Gjr 9. lry oo le, - Doy - Do, With ji,...,Js € [n], 71,..., 7 € [2n], and
ly,...,0, € [m]. Since the maximal degree of HJ(-q) is d, the number of different H](-q)’s is
bounded from above by ("*21+™).

Conclusion: In summary, we obtain a representation:
n+2n+m n+2n+m n+d
+2n+ Fantm) ("5 41

d d
1) = > s = 3 HT 3 ey
i=1 i=1 j=1

Since we assume that m can bounded by poly(n) the total number of summands is
poly(n)o(d) =nP@  and we found a desired representation with at most n°(@ nonnegat-
ive circuit polynomials of degree at most d. <

The Theorem 18 states that when searching for a degree d SONC certificate it is enough
to restrict to certificates containing at most nO@ nonnegative circuit polynomials. Moreover,
as proved in [19, Theorem 3.2] for a given set A C N", searching through the space of degree
d SONC certificates supported on a set A can be computed via a relative entropy program
(REP) of size n°@ see e.g. [19] for more information about REP. However, the above
arguments do not necessarily imply that the search through the space of degree d SONC
certificates can be performed in time n®@ . The difficulty is that one needs to restrict the
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configuration space of n-variate degree d SONCs to a subset of order n®@ to be able to
formulate the corresponding REP in time n©(? . Since the current proof of Theorem 18 just
guarantees the existence of a short SONC certificate, it is currently not clear, how to search
for a short certificate efficiently. We leave this as an open problem.

5 There Exists No Equivalent to Putinar’s Positivstellensatz for
SONCs

In this section we address the open problem raised in [19] asking whether the Theorem 6
can be strengthened by requiring ¢ = 1. Such a strengthening, for a positive polynomial
over some basic closed semialgebraic set, would provide a SONC decomposition equivalent
to Putinar’s Positivstellensatz for SOS. The advantage of Putinar’s Positivstellensatz over
Schmiidgen’s Positivstellensatz is that for every fixed degree d the cardinality of possible
degree d certificates is smaller; for background see e.g., [38, 50] however, asymptotically still
in both cases it is n(®,

We answer this question in a negative way. More precisely, we provide a polynomial f
which is strictly positive over the hypercube {#1}" such that there does not exist a SONC
decomposition of f for ¢ = 1. Moreover, we prove it not only for the most natural choice of
the box constraints that is I; = 1 £ z;, but for a generic type of box constraints of the form
l; =1+ c; £ x;, for ¢; € R>g. We close the section with a short discussion.

Let H = {£1}™ and consider the following family of polynomials parametrized by a
natural number a:

falx) = <a—1>f[l (9”2“) i

These functions take the value a for a vector e = Y. | e; and the value 1 for every other
x € H \ {e}. We define for every d € N

Sy = {Zsh : 5 € Ch 24, he{l,j:(x?—l),l—kci:txi : ie[n],cieRzo}}

finite

be the set of polynomials admitting a SONC decomposition over H given by Theorem 6
for ¢ = 1. The main result of this section is the following theorem.

» Theorem 19. For every a > % we have f, ¢ Sq for all d € N.

Before we prove this theorem, we show the following structural results. Note that similar
observations were already made for AGIforms by Reznick in [52] using a different notation.

» Lemma 20. Every s(x) € C, 24 attains at most two different values on H = {£1}".
Moreover, if s(x) attains two different values, then each value is attained for exactly the half
of the hypercube vertices.

Proof. By Definition 1 every nonnegative circuit polynomial is of the form:
T
s(x) = Y Sapx™ + foxP.
j=0

Note that for j =0,...,r, we have a(j) € (2N)™. Hence when evaluated over the hypercube
x € H = {£1}", s(x) can take only one of at most two different values Z;:o fai) £ fa-
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If s(x) attains two different values over H, then there has to exist a non empty subset
of variables that have an odd entry in 8. Let I C [n] be this subset. Then s(x) =
Z;:O fa()(x) = fa(x), for x € H if and only if x has an odd number of —1 entries in the
set I. The number of such vectors is equal to

I
2n7\I| i 21 _ 2n7|1\2\1|71 _ 277,71. <
i=0,
i odd
» Lemma 21. Every polynomial s(x)¢;(x), with s € Cy 24 and ¢; = 1+ ¢; £ x; being a box
constraint, attains at most four different values on H = {£1}". Moreover, each value is
attained for at least one forth of the hypercube vertices.

Proof. By Lemma 20, s(x) attains at most the two values (Z;:o faG) £ fﬁ) on H. Similarly,
¢;(x) attains at most the two values 1+ ¢; & x; over H. Thus, a polynomial s(x)¢;(x) attains
at most the four different values (Z;:o faG) £ fp) (1+c; £x;) on H.

Let I be as in the proof of Lemma 20, i.e., the subset of variables that have an odd entry
in 8. If I = (), then the first term Z;:o fa(j) + fpg is constant over the hypercube H, thus
s(x)¢;(x) takes two different values depending on the i-th entry of the vector. Each value is
attained for exactly half of the vectors.

If I # () and ¢ ¢ T the claim holds since the value of the first term depends only on
the entries in I and the value of the second term depends on the i-th entry. Hence, the
polynomial s(x)¢;(x) attains four values each on exactly one fourth of H vectors.

Finally, let I # () and 4 € I. Partition the hypercube vertices into two sets depending on
the i-th entry. Each set has cardinality 2”~!. Consider the set with x; = 1. For the vectors
in this set the second term takes a constant value 2 4+ ¢. Over this set the polynomial s
takes one of the values Z;:o Ja() (%) £ fg(x), depending on whether x has an odd or even
number of —1 entries in the set 7\ {—1}. In both cases the number of such vectors is equal

to
1I]-1
2n—\I| Z 21' — 2n—|1|2\1\—2 _ 2n—2'
i=0,
i odd
The analysis for the case z; = —1 is analogous. |

Now we can provide the proof of Theorem 19.

Proof of Theorem 19. Assume f, € Sy for some a € N and d € N. We prove that a has to
be smaller or equal than 2?:7;711 Since f, € Sq we know that
n

Jax) = s0(x) + D silx +ng (@ = 1) + 54 (01— 23)

with sg,...,8n,81,..., 82, € Cp 24. Since i(mf — 1) for j € [n] vanishes over the hypercube
H, for some sy, s; € Cp 24 We can conclude

fa(x) = so(x)+ Z 8:(x)4;(x) forallx e H (5.1)
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Let so , and s; ; be some nonnegative circuit polynomials such that sg = Zk 50,k, and
8 = Zj s; ;. Thus, we get

> <So(x) + Z Si(x)&(x)>

xEH

Z Z SO,k(X) + Z Z Z Si,j (X)f@j (X)

k x€EH 7 Jj xXEH

D2 son(e) + DD 2" Psig(e)lisle)
. i

> on—2 (80(8) + ZSAG)&(G)) = 2”720,,

Y

where the first inequality comes from Lemma 20 and 21 and the last equality from the fact
that f,(e) = a. On the other hand, by the properties of f, and the equality (5.1), we know
that

3 <80<x>+zsi<x>zi<x>> — 2" —14q,

XEH
which makes the subsequent inequality a necessary requirement for f, € Sy:

2" —1

a < m |

Note that an easier example of polynomial nonnegative over the set H exists, that does not
attain a SONC decomposition for ¢ = 1. Consider a polynomial d, (x) defined in Definition 10
for z € R™, for n > 3. The analysis for this example is easier since the polynomial is zero on
all vertices of H but one, thus by Lemma 21 it is impossible to fit a SONC certificate that
matches those values. However, an important fact is that, by Theorem 6 a polynomial to
admit a SONC certificate has to necessarily be strictly positive over the given set, which is
not the case for J,(x) and the set H.

Speaking from a broader perspective, we interpret Theorem 19 as an indication that the
real algebraic structures, which we use to handle sums of squares, do not apply in the same
generality to SONCs. We find this not at all surprising from the point of view that in the
19th century Hilbert initially used SOS as a certificate for nonnegativity and many of the
algebraic structures in question where developed afterwards with Hilbert’s results in mind;
see [53] for a historic overview. Our previous work shows that SONCs, in contrast, can,
e.g., very well be analyzed with combinatorial methods. We thus see Theorem 19 as further
evidence about the very different behavior of SONCs and SOS and as an encouragement
to take methods beside the traditional real algebraic ones into account for the successful
application of SONCs in the future.
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