
Climbing up the Elementary Complexity Classes
with Theories of Automatic Structures
Faried Abu Zaid
TU Ilmenau, Germany

Dietrich Kuske
TU Ilmenau, Germany

Peter Lindner
RWTH Aachen University, Germany

Abstract
Automatic structures are structures that admit a finite presentation via automata. Their most
prominent feature is that their theories are decidable. In the literature, one finds automatic struc-
tures with non-elementary theory (e.g., the complete binary tree with equal-level predicate) and
automatic structures whose theories are at most 3-fold exponential (e.g., Presburger arithmetic
or infinite automatic graphs of bounded degree). This observation led Durand-Gasselin to the
question whether there are automatic structures of arbitrary high elementary complexity.

We give a positive answer to this question. Namely, we show that for every h ≥ 0 the forest
of (infinitely many copies of) all finite trees of height at most h+ 2 is automatic and it’s theory
is complete for STA(∗, exph(n,poly(n)),poly(n)), an alternating complexity class between h-fold
exponential time and space. This exact determination of the complexity of the theory of these
forests might be of independent interest.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic

Keywords and phrases Automatic Structures, Complexity Theory, Model Theory

Digital Object Identifier 10.4230/LIPIcs.CSL.2018.3

1 Introduction

The idea of an automatic structure goes back to Büchi and Elgot who used finite automata
to decide, e.g., Presburger arithmetic [6]. In essence, a structure is automatic if the elements
of the universe are strings form a regular language and every relation of the structure is
synchronously-rational [11]. The notion was introduced in [13] and a systematic study was
initiated by Khoussainov and Nerode [15] and started to attract quite some interest with
the work by Blumensath and Grädel [3, 4], see the surveys [23, 1, 24, 14]. One of the
main motivations for investigating automatic structures is that their first-order theories are
decidable. This decidability holds even if one extends first-order logic by quantifiers “there
exist infinitely many” [3], “the number of elements satisfying ϕ is a finite multiple of p” [16],
and “there exists an infinite relation satisfying ϕ” (provided ϕ mentions the infinite relation
only negatively) [19].

Already in [3, 4], the authors observe that the first-order theory of an automatic structure
is, in general, non-elementary (i.e., does not belong to n-EXPSPACE for any n ∈ N). The
simplest example is provided by the set of binary words with the prefix relation, the two
successor relations, and the equal-length predicate. An inspection of the decidability proof
for arbitrary automatic structures shows that validity of a formula in Σn+1 can be decided
in n-EXPSPACE. Note that this problem has two inputs: a formula from Σn+1 and an

© Faried Abu Zaid, Dietrich Kuske, and Peter Lindner;
licensed under Creative Commons License CC-BY

27th EACSL Annual Conference on Computer Science Logic (CSL 2018).
Editors: Dan Ghica and Achim Jung; Article No. 3; pp. 3:1–3:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2018.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2 Elementary Complexity Classes with Theories of Automatic Structures

automatic structure (given by a tuple of automata). In [18], it is shown that fixing one of
the two inputs does not make the problem simpler. In other words: both the expression and
the data complexity are complete for n-EXPSPACE.

On the positive side, there are also automatic structures whose theories are much simpler.
One example is Presburger’s arithmetic, i.e., the structure (N,+) that is automatic [6] and
has a theory in 2-EXPSPACE [22, 8]. Another example are automatic structures of bounded
degree [20] whose theories are in 2-EXPSPACE. Finally, let us mention structures, which have
an automatic presentation over a unary alphabet, e.g. the natural Numbers with successor
(N, S). The first-order theory of every such structure is decidable in polynomial time [17].

To the authors’ knowledge, no automatic structure is known whose theory is elementary
but not in 2-EXPSPACE. In this article, we provide such examples. More precisely, for any
h ∈ N, we provide an automatic structure whose theory is complete for the class of problems
that can be decided in h-fold exponential time with polynomially many alternations, i.e., for
Berman’s complexity class STA(∗, exph(2, poly(n)), poly(n)) [2].

This structure is the forest Fh+2 consisting of countably many copies of all trees of height
at most h+ 2. Containment in STA(∗, exph(2, poly(n)), poly(n)) is shown as follows: Let ϕ
be a first-order sentence of quantifier rank r. In a first step, we show that any tree of height
≤ h+ 2 is indistinguishable from some tree of size h-fold exponential in r by any formula of
quantifier rank r. Consequently, to determine the truth of the sentence ϕ in the forest Fh+2,
it suffices to determine it in a forest whose trees have size h-fold exponential in r. Since
the elements of this forest can be described by words of h-fold exponential size, its model
checking can be done in the said complexity class.

For the lower bound, we first reduce any problem in the said complexity class to the
theory of the free monoid where quantification is restricted to words of h-fold exponential
length. This theory is then reduced to the theory of the forest Fh+2. This second step is
based on an encoding of h-fold exponential numbers and their addition in the forest.

Thus, technically, the main result of this paper is the complete characterisation of the
complexity of the theory of the forest Fh+2. Since this forest is automatic, we get an
affirmative answer to the open question from the theory of automatic structures. Besides
this, the forest Fh+2 is a natural structure, so that our result can have consequences in other
contexts as well.

The results presented in this paper close the gap that was left open in the third author’s
master thesis [21].

2 Preliminaries

The set of natural numbers is denoted N = {0, 1, 2, . . .}; N>0 = {1, 2, 3, . . .} denotes the
positive natural numbers. For m,n, r ∈ N we write m =r n if m = n or m,n ≥ r. Inductively,
we define the class of functions expm : N2 → N for m, c, n ∈ N:

expm(c, n) =
{
n if m = 0
cexpm−1(c,n) if m > 0

Intuitively, expm(c, n) is a stack of cs of height m with the number n on top of this stack.
By poly(n) we denote the class of all polynomial functions N→ N.

We assume that the reader is familiar with the basics of automata theory and formal
logic, especially first-order logic. We use this section to recall some of the key notions in
order to fix our notation.

F. Abu Zaid, D. Kuske, and P. Lindner 3:3

A (directed) graph is a tuple G = (V,E), where V is a set and E ⊆ V ×V \{(v, v) | v ∈ V }
is a binary irreflexive relation. A tree is a finite graph T = (V,E) such that, for some node
r ∈ V , any node v ∈ V has precisely one path from r to v. The node r, being unique, is
called the root of T . Now let T = (V,E) be a tree and v ∈ V . The depth of v is the length
of the path from r to v (i.e., the number of edges such that the depth of the root is 0). The
height of v is the maximal length of a path starting in v. A node v is a leaf if its height is 0.
The height of T is the height of the root r or, equivalently, the maximal depth of a node in
T . A subtree is an induced subgraph of a tree T = (V,E) whose vertex set is of the form
{w ∈ V | w is reachable from v} for some node v ∈ V . Note that v is the root of this subtree
and every subtree is uniquely dertermined by its root. Therefore we denote the subtree with
root v by Tv.

An automatic graph is a graph G = (V,E) such that V ⊆ Σ∗ is a regular language over
some alphabet Σ and the edge relation E is synchronously rational [11].

First-order formulas (over the language of graphs) are build up from variables {xi | i ∈ N},
the Boolean connectives {¬,∨,∧,→}, the edge relation symbol E, quantifiers {∀,∃}, and the
bracket symbols {(,)}. The quantifier rank qr(ϕ) of a formula ϕ is the maximal nesting depth
of quantifiers within ϕ. Two graphsG andH are r-equivalent (denotedG ≡r H) if they cannot
be distinguished by any formula of quantifier rank ≤ r. For a tuple a = (a1, . . . , ak) ∈ Ak and
B ⊆ A let a�B denote the restriction of a to the components in B, i.e. the tuple (ai1 , . . . , ai`)
with {i1, . . . , ik} = {i | ai ∈ B} and i1 < i2 < · · · < i`.

The Ehrenfeucht-Fraïssé-game is a game-theoretic characterisation of elementary equival-
ence. It is played on two graphs G and H, where the two players, Spoiler and Duplicator,
choose alternately elements of these two structures for a prescribed number of rounds. More
precisely the i-th round of an r-round Ehrenfeucht-Fraisse-game on G = (V G, EG) and
H = (V H , EH) (Gr(G,H)) has the following form: First Spoiler picks an element ai from
G or an element bi from H. Duplicator answers by choosing an element bi from H or an
element ai from G, respectively. Therefore the two players iteratively construct two tuples
(a1, . . . , ar) ∈ (V G)r and (b1, . . . , br) ∈ (V H)r. Duplicator wins if the mapping ai 7→ bi is a
partial isomorphism, that is if ai = aj ⇔ bi = bj and (ai, aj) ∈ EG ⇔ (bi, bj) ∈ EH for all
1 ≤ i, j ≤ r. Otherwise Spoiler wins.

I Theorem 1 ([5]). Let G and H be two graphs. Then Duplicator has a winning strategy in
the game Gr(G,H) if, and only if, G ≡r H.

The main object of study in this paper is the following forest:

I Definition 2. For H ∈ N, let FH denote the disjoint union of ℵ0 many copies of all trees
of height at most H.

Thus, FH is the forest of all trees of height at most H, containing countably many copies of
every such tree.

I Remark 3. Natural variants of this forest are, among others, the following:
The disjoint union F∞H of ℵ0 many copies of all countably infinite (or at most countably
infinite) trees of height at most H.
The disjoint union F 1

H of all finite (or at most countably infinite) trees of height at most
H up to isomorphism (i.e., one tree per isomorphism class).

We will show that FH is automatic which is not the case for F∞H (it is ω-automatic) and we
conjecture that also F 1

H is not automatic.
Nevertheless, the proofs of the complexity results can easily be transformed to show that

also the theories of these forests are complete for STA(∗, expH−2(2, poly(n)), poly(n)).

CSL 2018

3:4 Elementary Complexity Classes with Theories of Automatic Structures

3 Trees of Bounded Height

The goal of this section is to provide an automatic copy of the forrest FH for every H ∈ N.
The idea is to use XML-like notation to describe a tree and to encode an element by marking
its position in the tree that it belongs to. Because the nesting-depth of parentheses will be
bounded for every H, the resulting languages remain regular. Let Σ = {〈〉, 〈\〉, 〈x〉, 〈\x〉}.
We define regular languages JH and KH for every H ∈ N:

J0 = {〈〉〈\〉}
K0 = {〈x〉〈\x〉}

and

JH+1 = 〈〉J∗H〈\〉
KH+1 = 〈x〉J∗H〈\x〉 ∪ 〈〉J∗HKHJ

∗
H〈\〉.

Every word in w ∈ KH contains the tag 〈x〉 . . . 〈\x〉 exactly once. This tag marks the selected
node in the tree that is presented by w.

Next we show that the edge relation on KH is synchronously-rational [11]. Two nodes
u and v from FH are connected by a directed edge if, and only if, they belong to the same
tree and u is the parent of v. To describe the edge relation EH of our automatic copy, write

L�2 =
{(

w

w

)
: w ∈ L

}
for any language L. Then we have

E0 = ∅

E1 =
(
〈x〉
〈〉

)(
〈〉 〈\〉
〈〉 〈\〉

)∗(〈〉 〈\〉
〈x〉 〈\x〉

)(
〈〉 〈\〉
〈〉 〈\〉

)∗(〈\x〉
〈\〉

)
EH+2 =

(
〈x〉
〈〉

)
(J�2
H+1)∗

(
〈〉
〈x〉

)
(J�2
H)∗

(
〈\〉
〈\x〉

)
(J�2
H+1)∗

(
〈\x〉
〈\〉

)
∪
(
〈〉
〈〉

)
(J�2
H+1)∗EH+1(J�2

H+1)∗
(
〈\〉
〈\〉

)
.

Note that the languages that we defined so far do not induce an isomorphic copy of FH .
We need to modify the languages such that every tree of height at most H will appear

infinitely often. Therefore let LH = $∗KH and E′H =
(

$
$

)∗
EH . Then (LH , E′H) ∼= FH is an

automatic copy of FH .

4 Upper Bound

We provide a simple decision procedure for the theory of FH+2 that runs in alternating H-fold
exponential time while making only polynomially many alternations. We found it more
convenient to first prove this result in the realm of order trees: An order tree is a finite partial
order (V,≤) with a minimal element such that, for any v ∈ V , the set {w ∈ V | w ≤ v}
is finite and linearly ordered by ≤. An order forest is a disjoint union of order trees. The
length of an order forest is the maximal size of a linearly ordered subset, its height is the
predecessor of its length.

Let oFh denote the order version of the forest Fh, i.e., the disjoint union of infinitely
many copies of any order tree of height ≤ H. The theory of this order forest can be decided
as follows: We determine from a sentence ϕ of quantifier rank r a finite order forest satisfying

F. Abu Zaid, D. Kuske, and P. Lindner 3:5

ϕ iff oFH+2 |= ϕ. The size of this order forest can be bounded since, as we show below,
every finite order tree of height ≤ H + 2 is r-equivalent to an order tree of size at most
expH+1(r + 1, poly(n+ 1)). The elements of this finite order forest have encodings by words
of length ≤ expH+1(r + 1, poly(n + 1)). Then, the standard alternating model checking
algorithm is applied to this forest (without computing it explicitely). The result on the forest
FH+2 follows because of a polynomial-time reduction of the theory of the forest FH+2 to
that of the order forest oFH+2.

The following lemma on order forests prepares the construction of a “small” equivalent
order tree.

I Lemma 4. Let (Si)i∈I and (Tj)j∈J be nonempty (possibly infinite) families of order trees
such that

|{i ∈ I | Si ∈ τ}| =r |{j ∈ J | Tj ∈ τ}| (1)

holds for any ≡r-equivalence class τ . Then⊎
i∈I

Si ≡r
⊎
j∈J

Tj . (2)

Proof. We show that Duplicator has a winning strategy in the r-round Ehrenfeucht-Fraïssé-
game on the forests S =

⊎
i∈I Si and T =

⊎
j∈J Tj . More precisely we show that Duplicator

can maintain the following invariant after ` ∈ {0, 1, . . . , r} rounds (when the current position
is (a, b)):

For all i ∈ I, there exists j ∈ J such that for all k ∈ {1, 2, . . . , `}, we have
ak ∈ Si ⇐⇒ bk ∈ Tj and (Si, a�Si

) ≡r−` (Tj , b�Tj
).

Since no edge connects distinct trees in a forest, every position (a1, . . . , ar, b1, . . . , br) satisfying
this invariant describes a partial isomorphism ai 7→ bi. Therefore it remains to be shown
that Duplicator can maintain this invariant.

So let 0 ≤ ` < r, a1, . . . , a` ∈ S, and b1, . . . , b` ∈ T such that the invariant holds. Note
that the invariant is equivalent to its dual:

For all j ∈ J , there exists i ∈ I such that for all k ∈ {1, 2, . . . , `}, we have
bk ∈ Ti ⇐⇒ ak ∈ Sj and (Tj , a�TJ

) ≡r−` (Si, a�Si
).

Hence, by symmetry, we can assume that Spoiler chooses an element a`+1 of S in round
`+ 1 ≤ r. Then there is i ∈ I such that a`+1 is a node from Si. We distinguish two cases:
either there is k ∈ {1, 2, . . . , `} with ak ∈ Si or there is no such k.

First, assume ak ∈ Si for some 1 ≤ k ≤ `. By the induction hypothesis, there ex-
ists j ∈ J with bk ∈ Tj and (Si, a�Si

) ≡r−` (Tj , b�Tj
). Hence, there is b`+1 ∈ Tj with

(Si, aa`+1�Si
) ≡r−`−1 (Tj , bb`+1�Tj

). Chosing this element b`+1, Duplicator can move the
play into a position that satisfies the invariant.

Now consider the second case, ak /∈ Si for all 1 ≤ k ≤ `. Let I ′ = {i′ ∈ I | Si ≡r Si′}
and, similarly, J ′ = {j′ ∈ J | Si ≡r Tj′}. If |I ′| = |J ′|, the invariant implies the existence of
j ∈ J ′ such that no element bk belongs to Tj . Otherwise, we have |J ′| ≥ r by (1). Since only
` < r many nodes bk have been chosen so far, also in this case there exists j ∈ J ′ such that
no element bk belongs to Tj . Because of Si ≡r Tj , the tree Tj has some element b`+1 with
(Si, a`+1) ≡r−1 (Tj , b`+1) (and therefore also (Si, a`+1) ≡r−`−1 (Tj , b`+1)). Thus, also in this
case, Duplicator can move the play into a position that satisfies the invariant. J

CSL 2018

3:6 Elementary Complexity Classes with Theories of Automatic Structures

I Lemma 5. Let r, h ∈ N. There exists a polynomial function ph : N → N such that the
following holds: For any order tree S of height ≤ h, there exists an ≡r-equivalent order tree
T of height ≤ h and size

≤

{
ph(r + 1) if h ≤ 2
exph−2(r + 1, ph(r + 1)) if h > 2 .

Proof. For each h, r ∈ N, we let ≡hr denote the restriction of the relation ≡r to order trees
of height ≤ h.

By induction on h, we prove in addition

index(≡hr) ≤
{

1 if h = 0
exph−1(r + 1, r + 1) if h ≥ 1 .

For h = 0, there is only one order tree of height h and this tree has size 1, hence we set
p0(x) = 1. Furthermore, index(≡0

r) = 1 is obvious.
Now let h > 0 and let S be some order tree of height h. Let I denote the set of nodes of

depth 1 and, for i ∈ I, let Si denote the subtree of S rooted at i. By the induction hypothesis,
any ≡h−1

r -equivalence class τ contains some order tree Tτ of size ≤ ph−1(r + 1) (if h ≤ 3)
and ≤ exph−3(r + 1, ph−1(r + 1)) otherwise. For i ∈ I, let Ti = T[Si] be the representative of
the ≡h−1

r -class of Si. Let J ⊆ I such that

min
(
r, |{i ∈ I | Si ∈ τ}|

)
= |{j ∈ J | Tj ∈ τ}|

for any ≡r-equivalence class τ . Then (1) from Lemma 4 holds, implying
⊎
i∈I Si ≡r

⊎
j∈J Tj

by Lemma 4. Let the order tree T arise from the order forest
⊎
j∈J Tj by the addition of

a root that is smaller than any other node. Note that T is quantifier free definable in the
disjoint sum of

⊎
j∈J Tj and a single node.1 Since S arises in the same way from the order

forest
⊎
i∈I Si, we get S ≡r T [7].

Next, we prove the upper bound for the size of the order tree T . Note that this size is at
most |J | multiplied with the maximal size of an order tree Tj . Since J contains at most r
elements per ≡h−1

r -equivalence class, we obtain

|J | ≤ r · index(≡h−1
r)

≤ r ·


1 if h = 1
r + 1 if h = 2
exph−2(r + 1, r + 1) if h ≥ 3 .

Since the size of the order trees Tj is bounded as described above, the size of the order tree
T is

≤ r ·


1 · p0(r + 1) if h = 1
(r + 1) · p1(r + 1) if h = 2
exp1(r + 1, r + 1) · p2(r + 1) if h = 3
exph−2(r + 1, r + 1) · exph−3(r + 1, ph−1(r + 1)) if h > 3

≤

{
ph(r + 1) if h ≤ 2
exph−2(r + 1, ph(r + 1)) if h ≥ 3

for a suitably chosen polynomial function ph. This proves the claim from the lemma.

1 Here we need order trees since this does not hold for successor trees (V, E).

F. Abu Zaid, D. Kuske, and P. Lindner 3:7

It remains to prove the additional inductive invariant on the number of equivalence classes
of ≡hr . Note that the order tree T constructed above is completely given by a mapping from
the ≡h−1

r -equivalence classes into the set of numbers {0, 1, . . . , r}. Hence, the number of
distinct order trees T that can arise in the above way, is

≤ (r + 1)index(≡h−1
r)

≤

{
(r + 1) if h = 1
(r + 1)exph−2(r+1,r+1) if h > 1

= exph−1(r + 1, r + 1) . J

For r, k ∈ N, we let oFr,kh denote the disjoint union of r copies of every order tree of
height ≤ h and size ≤ k.

I Proposition 6. Let r, h ∈ N. There exists a polynomial function ph : N → N such that
oFh ≡r oFr,kh with

k =
{
ph(r + 1) if h ≤ 2
exph−2(r + 1, ph(r + 1)) if h > 2 .

Proof. Let τ be some ≡r-equivalence class containing some order tree S of height ≤ h. The
order forest oFh contains infinitely many copies of S. By Lemma 5, there exists an order tree
T in oFr,kh with T ∈ τ . More precisely, there are ≥ r such order trees (possibly isomorphic).
From Lemma 4, we obtain Fh ≡r Fhr,k. J

I Corollary 7. For H ∈ N, the theory of oFH+2 belongs to STA(∗, expH(2, poly(n)),poly(n)).

Proof. Let ϕ be a sentence of size n. Without loss of generality, we assume ϕ to be in prenex
normal form. Let furthermore p be the polynomial pH+2 from Proposition 6.

The quantifier rank of ϕ is ≤ n. Hence, by Proposition 6, it suffices to decide whether ϕ
holds in the finite order forest oFn,kH+2 with k = expH(r + 1, p(r + 1)). Using the encoding of
FH+2 as automatic structure, the elements of oFn,kH+2 can be encoded as strings of length
O(n+ k). Hence the standard alternating model-checking algorithm for first-order logic uses
time O(poly(n+ k)) and ≤ n alternations. Note that this algorithm does not calculate the
order forest oFn,kH+2 explicitely, but only handles words of length O(n+ k). J

As a consequence, we get the following result about the forest FH+2.

I Theorem 8. For H ∈ N, the theory of FH+2 belongs to STA(∗, expH(2, poly(n)),poly(n)).

Proof. We reduce this theory to the theory of the ordered forest oFH+2: Let ϕ be a sentence
in the signature of trees. In ϕ, replace every occurrence of the atomic formula E(x, y) by

x < y ∧ ¬∃z : x < z < y

and call the resulting sentence ϕ′. Then FH+2 |= ϕ ⇐⇒ oFH+2 |= ϕ′. Since ϕ′ can be
computed from ϕ in polynomial time, the claim follows from Corollary 7. J

CSL 2018

3:8 Elementary Complexity Classes with Theories of Automatic Structures

5 Lower Bound

Let H ≥ 1 be fixed throughout this section. We want to show that the theory of the forest
FH+2 is hard for the class STA(∗, expH(2, poly(n)), poly(n)).

We will reduce an arbitrary language L ⊆ Σ∗ from the said complexity class to the theory
of the forest FH+2 in two steps: First, we reduce L to the theory of the free monoid ∆∗. In
this reduction, we can restrict quantification to words of length ≤ expH(2, poly(|x|)). In a
second step, we reduce this bounded theory of the free monoid to the theory of the forest
FH+2.

Let ϕ be a formula and k ≥ 1. Then ∃≥ky : ϕ abbreviates the formula

∃y1, y2, . . . , yk :
∧

1≤i<j≤k
yi 6= yj ∧ ∀y :

(∨
1≤i≤k

y = yi

)
→ ϕ


and ∃=ky : ϕ stands for ∃≥ky ϕ∧¬∃≥k+1y ϕ. Note that the size of these formulas is O(k2+|ϕ|).

5.1 Reduction to the theory of the bounded free monoid

Let N ≥ 0 and let ∆ be an alphabet. The N -bounded free monoid is the structure

(∆≤expH(N,N), ·, (a)a∈∆)

where ∆≤expH(N,N) is the set of words over ∆ of length ≤ expH(N,N), · is the concatenation
of such words (considered as a ternary relation such that the product of two “long” words is
not defined), and any letter a ∈ ∆ serves as a constant.

An alternating Turing machine is a tuple M = (Q,Σ,Γ, δ, ι,�, tp, F) where Q is the finite
set of states, Σ ⊆ Γ are the input- and tape-alphabets, δ ⊆ Q× Γ×Q× Γ× {−1, 0, 1} is the
transition relation, ι ∈ Q is the initial state, � ∈ Γ \ Σ is the blank symbol, tp : Q→ {∀,∃}
is the type function with tp(ι) = ∃, and F ⊆ Q is the set of final states. We assume the tape
of M to be infinite on the right, only. We write ∆ for the set Γ ∪Q ∪ {/, .} (assuming these
three sets to be mutually disjoint).

A configuration is a word from .Γ∗QΓ∗/. We write c ` c′ for configurations c and c′ if
the machine can move from c to c′ in one step. The type of a configuration is the type of its
state. A computation is a finite sequence of configurations (ci)0≤i≤n for some n ∈ N with
ci ` ci+1 for all 0 ≤ i < n. We say that it is a computation from c0 to cn. It is existential if
all configurations are existential; it is homogeneous if

the types of c0, c1, . . . , cn−1 are the same and
the types of c0 and cn are different.

For configurations c and c′, we write

c `∃ c′ and c `hom c′

if there exists an existential and a homogeneous computation, respectively, from c to c′. Note
that the latter implies that c and c′ have distinct types.

Let f : N → N be a function. The alternating Turing machine is f(n)-time bounded if
any computation (ci)0≤i≤N with first configuration in .ιw�∗/ and w ∈ Σ∗ makes ≤ f(|w|)
steps, i.e., satisfies N + 1 ≤ f(|w|).

F. Abu Zaid, D. Kuske, and P. Lindner 3:9

Now let a ∈ N be odd and w ∈ Σ∗. Then x is accepted by M with a alternations if there
exists a configuration c0 ∈ .ιw�∗/ such that the following holds:

∃ configuration c1 with c0 `hom c1

∀ configurations c2 with c1 `hom c2

∃ configuration c3 with c2 `hom c3

∀ configurations c4 with c3 `hom c4

. . . (3)
∃ configuration ca−2 with ca−3 `hom ca−2

∀ configuration ca−1 with ca−2 `hom ca−1

∃ accepting configuration ca : ca−1 `∃ ca

For our reduction, fix a language L ∈ STA(∗, expH(2, poly(n)), poly(n)). Then there exist
an alternating Turing machine M and polynomial functions p, q : N → N such that M is
expH(2, p(n))-time bounded and L is the set of words w that are accepted by M with q(|w|)
alternations. For notational simplicity, we assume q(n) to be odd for all n ∈ N.

Let w ∈ Σ∗. Furthermore, let N = p(|w|)2. We want to express the acceptance of w by
M by a formula of polynomial size over

Mp(n)2 = (∆≤expH(p(n)2,p(n)2), ·, (a)a∈∆) .

To achieve this, first note the following:
A word c is an existential configuration if it satisfies

conf∃(c) = ∃x, y ∀z1, z2 :
∧

a∈Q∪{/,.}

(
x 6= z1az2 ∧ y 6= z1az2

)
∧

∨
q∈Q,tp(q)=∃

c = .xqy / .

Universal and accepting configurations are described similarly by formulas conf∀(c) and
confacc(c), respectively. Let conf = conf∃ ∨ conf∀.
A word c is an initial configuration with input w, i.e., c ∈ .ιw�∗/, iff it satisfies

initw(c) = ∃y
(
c = .ιwy / ∧∀z1, z2 :

∧
a∈∆\{�}

y 6= z1az2

)
.

c `M c′ iff they satisfy

step(c, c′) = conf(c) ∧ conf(c′) ∧ ∃x, y :
∨

(`,r)∈R

(
c = x`y ∧ c′ = xry

)
where R is some finite subset of ∆3 ×∆3.

I Lemma 9. There is a formula comphom(x, y) such that for any configurations c and c′,
we haveMp(n)2 |= comphom(c, c′) if, and only if, there exists a homogeneous computation

c = c0 ` c1 ` c2 ` · · · ` cK = c′

with ∑
0≤i≤K

|ci| ≤ expH(p(n)2, p(n)2) . (4)

Similarly, there is a formula comp∃ expressing the existence of an existential computation
with the same length bound.

CSL 2018

3:10 Elementary Complexity Classes with Theories of Automatic Structures

Proof. We will express the existence of a word W = c0 c1 c2 . . . cK such that
c = c0,
ci `M ci+1 for all 0 ≤ i < K,
cK = c′,
and all configurations ci for i < K have the type of c0.

Note that this is the case iff there exists a word W such that
c is a prefix of W ,
c′ is a suffix of W ,
any factor x of W that is a configuration is either a suffix of W or followed by a factor y
which is a configuration satisfying x `M y. In the latter case, its type is that of c.

If we consider this formula in the free monoid ∆∗, then it expresses the existence of a
homogeneous computation from c to c′ of arbitrary length. In the structure Mp(n)2 , the
length of the word W is bounded by expH(p(n)2, p(n)2). Hence we get (4). J

I Proposition 10. From w ∈ Σ∗ with |w| = n, we can compute in polynomial time a sentence
ϕw such that w ∈ L if, and only if,Mp(n)2 |= ϕw.

Proof. Let ϕw be the following sentence:

∃c0 : initw(c0)
∧ ∃c1 : conf(c1) ∧ comphom(c0, c1)

∧ ∀c2 : conf(c2) ∧ comphom(c1, c2)
→ ∃c3 : conf(c3) ∧ comphom(c2, c3)

∧ ∀c4 : conf(c4) ∧ comphom(c3, c4)
. . .
∃cq(n)−2 : conf(cq(n)−2) ∧ comphom(cq(n)−3, cq(n)−2)

∧ ∀cq(n)−1 : conf(cq(n)−1) ∧ comphom(cq(n)−2, cq(n)−1)
→ ∃cq(n) : confacc(cq(n))

∧ comp∃(cq(n)−1, cq(n))

Since this is the direct translation of the acceptance condition by alternating Turing
machines (3), we obtain thatMp(n)2 |= ϕw implies w ∈ L.

Conversely, suppose w ∈ L, i.e., (3) holds. Since M is exp(2, p(n))-time bounded,
any computation starting from a configuration c0 ∈ .ιw�∗/ has length ≤ expH(2, p(n));
in particular, the machine’s head can only move expH(2, p(n)) cells to the right. Since
(3) quantifies over reachable configurations, only, we can restrict quantification in (3) to
configurations of length ≤ expH(2, p(n)). Furthermore, (3) quantifies over computations
(hidden in the statements ci `hom ci+1 and ca−1 `∃ ca). Since these computations start
in reachable configurations, their length is at most expH(2, p(n)) and all intermediate
configurations are reachable and therefore of length ≤ expH(2, p(n)). Note that

(expH(2, p(n)) + 1) · expH(2, p(n)) ≤ expH(p(n)2, p(n)2) .

Hence, statements of the form ci `hom ci+1 can be replaced by statements of the form
Mp(n)2 |= comphom(ci, ci+1) (and similarly for cq(n)−1 `∃ cq(n)). Thus, in summary, we get
Mp(n)2 |= ϕw. J

F. Abu Zaid, D. Kuske, and P. Lindner 3:11

5.2 Interpretation of the bounded free monoid in FH+2

To complete the reduction of L to the theory of the forest FH+2, it remains to provide an
interpretation of the theory ofMp(n)2 in FH+2. This interpretation has to be computable
in time polynomial in N = p(n)2. This reduction requires to express certain numerical
properties. Therefore, we first show how to encode numbers by nodes from FH+2 and how
to do some restricted form of arithmetic.

5.2.1 Nodes as numbers
Let N ≥ 3. We define the number JvKN for any node v of the forest FH+2. Let v1, . . . , v` be
the children of v (if v is of height 0, then there is no such child, i.e., ` = 0). For k ∈ N, let tk
denote the number of children vi with JviKN = k, i.e.,

tk = |{i | 1 ≤ i ≤ `, JviKN = k}| .

Note that tk = 0 for almost all k since any node of FH+2 has only finitely many children.
We want to consider the number tk as k-th digit in a base-N -representation of some natural
number. Therefore, we normalize this number to

dk = min(tk, N − 1)

such that dk ∈ {0, 1, . . . , N − 1}. Let χN (v) = (dk)k∈N denote the characteristic of v and
define

JvKN =
∑
k∈N

dk · bk .

Note that the sequence χN (v) is the base-N -representation of the number JvKN .2

I Example 11. The number 0 is represented by all nodes of height 0, i.e., all leaves in
FH+2. A number i ∈ {1, 2, . . . , N − 2} is represented by all nodes of height 1 with precisely
i children. Any height-1-node with ≥ N − 1 children represents the number N − 1. If
am ∈ {0, 1, . . . , N − 1} for 0 ≤ m < n, then a =

∑
0≤m<N amb

m is represented, e.g., by a
height-2-node v such that am children v have m children, i.e., represent the number m (for
all 0 ≤ m < N). If am = N − 1, then we can even add further children representing m
without changing JvKN .

By induction, one obtains for any node v of height h:

JvKN = 0 if h = 0
exph−2(N,N) ≤ JvKN < exph−1(N,N) if h ≥ 1

Conversely (for h ≤ H + 2), any a < exph−1(N,N) is represented by some node of height
≤ h.

We next show that the relations Jv1KN < Jv2KN and Jv1KN = Jv2KN can be defined by
first-order formulas.

2 For N = 2, this is a simple variation of the encoding from [9]. For this case, Flum and Grohe also prove
Lemma 12i, but neither Lemma 12ii nor Lemma 13. In contrast to them, we measure the size of our
formulas in terms of N while H is considered a constant.

CSL 2018

3:12 Elementary Complexity Classes with Theories of Automatic Structures

I Lemma 12. From N ∈ N, one can compute formulas eqN (x1, x2) and lessN (x1, x2) in
time polynomial in N such that for any two nodes v1 and v2 in FH+2 the following hold:
(i) (FH+2, v1, v2) |= eqN if, and only if, Jv1KN = Jv2KN and
(ii) (FH+2, v1, v2) |= lessN if, and only if, Jv1KN < Jv2KN .

Proof. For 0 ≤ h ≤ H+2, we can construct a formula in time O(h) expressing that the height
of a node is at most h: ¬∃x0, x1, . . . , xh+1 : x = x0 ∧

∧
0≤i≤hE(xi, xi+1). We abbreviate this

formula by hgt≤h(x).
Let v1 and v2 be nodes of FH+2. Then Jv1KN = Jv2KN if, and only if, χN (v1) = χN (v2).

But this is the case if, and only if, for all children v of v1 or v2, the number of children v′1
of v1 with JvKN = Jv′1KN equals the number of children v′2 of v2 with JvKN = Jv′2KN or both
numbers are ≥ N − 1. Thus, to build the formula eqN , we have to apply the same formula
to nodes of smaller height. Therefore, we first construct formulas eqhN that satisfy i at least
for all nodes v1 and v2 of height at most h (for 0 ≤ h ≤ H + 2). The first claim then follows
with eqN = eqH+2

N .
The formula eq0

N = (x1 = x1) satisfies i for nodes of height ≤ 0 since, whenever v1 and
v2 are nodes of height 0, they both represent 0. We define eqh+1

N as follows:

eqh+1
N = ∀y :

(E(x1, y) ∨ E(x2, y)
)
→

∧
1≤i<N

(
∃≥iy1 : E(x1, y1) ∧ eqhN (y, y1)

↔ ∃≥iy2 : E(x2, y2) ∧ eqhN (y, y2)

)
By the above explanation and by induction, this formula satisfies i for all nodes of height
≤ h+ 1. This completes the definition of the formula eqN = eqH+2

N .
By induction, there are constants c1, c2, . . . , cH+2 such that, for sufficiently large n, we

have |eqh+1
N | ≤ ch+1|(n3 + |eqhN |). Consequently,

|eqH+1
N | ∈ O(N3·(H+2)) .

Since H was fixed from the beginning, the formula eqH+2
N = eqN can be constructed from N

in time polynomial in N .

Similarly, we construct formulas lesshN that satisfy ii at least for all nodes v1 and v2 of
height at most h (for 0 ≤ h ≤ H + 2). The second claim then follows with lessN = lessH+2

N .
Let χN (vi) = (dik)k∈N for i ∈ {1, 2} be the characteristic of vi. Then Jv1KN < Jv2KN if,

and only if, χN (v1) is lexicographically properly smaller than χN (v2). This means that there
is some k ∈ N with d1

k < d2
k and d1

i ≤ d2
i for all i < k. Since, in particular, d2

k > 0, there is a
child v′ of v2 with Jv′KN = k.

The formula less0
N = (x1 = x1) satisfies the required property. Let lessh+1

N denote the
following formula:

∃y : E(x2, y) ∧
∨

1≤i<N

(
¬∃≥iy1 : E(x1, y1) ∧ eqhN (y, y1)

∧ ∃≥iy2 : E(x2, y2) ∧ eqhN (y, y2)

)
∧

∧
1≤i<N

∀z :
((

E(x1, z) ∧ lesshN (z, y) ∧ ∃≥iz1 : E(x1, z1) ∧ eqhN (z, z1)
)

→ ∃≥iz2 : E(x2, z2) ∧ eqhN (z, z2)

)
By induction, there are constants c1, c2, . . . , cH+2 such that, for sufficiently large N , we

have |lessh+1
N | ≤ ch+1(N3 + |eqhN |+ |lesshN |). Consequently,

|lessH+1
N | ∈ O(N3·(H+2)) .

Since H was fixed from the beginning, the formula lessH+2
N = lessN can be constructed

from N in time polynomial in N . J

F. Abu Zaid, D. Kuske, and P. Lindner 3:13

Using the two formulas from above, we are now able to also define addition:

I Lemma 13. From N ∈ N, one can compute a formula addN (x1, x2, x3) in time polynomial
in N such that for any three nodes v1, v2, and v3 in FH+2, the following holds:

(FH+2, v1, v2, v3) |= addN if, and only if, Jv1KN + Jv2KN = Jv3KN .

Proof. In the following explanations, let t = expH(N,N).
Let v1, v2, and v3 be nodes from FH+2, and let χN (vi) = (dik)k∈N for all 1 ≤ i ≤ 3. Then

dik = 0 for all k ≥ t since the height of vi is ≤ H+2, i.e, its children (being of height ≤ H+1)
represent numbers < t. Since (dik)0≤i<t is the base-N -representation of JviKN , the following
are equivalent:

Jv1KN + Jv2KN = Jv3KN
There exist ek ∈ {0, 1} (the carry bits) for 0 ≤ k < t such that

(a) e0 = 0,
(b) d3

k +N · ek+1 = d1
k + d2

k + ek for 0 ≤ k < t− 1, and
(c) d3

t−1 = d1
t−1 + d2

t−1 + et−1.
We will translate this description into the formula addN . Note that nodes of height H+2 have
characteristics of length t (more precisely: from the entry number t on, they are constantly
zero). Hence any sequence (e0, e1, . . . , et−1, 0, 0, . . .) of bits is the characteristics of some
node y. Furthermore note that we have to quantify over numbers k with 0 ≤ k < t – but
these are precisely the values of nodes of height ≤ H + 1. Therefore, the following formulas
succN and maxN will become useful.

The formula

succN (z, z′) = hgt≤H+1(z)∧hgt≤H+1(z′)∧ lessN (z, z′)∧¬∃z′′ : lessN (z, z′′)∧ lessN (z′′, z′)

expresses that z and z′ are two nodes of height ≤ H + 1 satisfying JzKN + 1 = Jz′KN .
Furthermore, the formula

maxN (z) = hgt≤H+1(z) ∧ ¬∃z′ : hgt≤H+1(z′) ∧ lessN (z, z′)

expresses that z is a node of height at most H + 1 that represents the maximal possible value
for such a node, i.e., JzKN = t− 1.

Let I denote the set of quintuples (a1, a2, b1, a3, b2) of natural numbers from {0, 1, . . . , n−
1} with a1 + a2 + b1 = a3 +N · b2. Finally, for i ∈ {0, 1, . . . , N − 1} set

Qixϕ =
{
∃=ixϕ if i < N − 1
∃≥N−1xϕ if i = N − 1 .

Now consider the following formula addN (x1, x2, x3):

∃y ∀z, z′ :
(
E(y, z) ∧ E(y, z′) ∧ eqN (z, z′)

)
→
(
z = z′ ∧ ∃y′ : E(z, y′)

)

∧ succ(z, z′)→
∨

(a1,a2,b1,a3,b2)∈I


Qa1x′1 : E(x1, x

′
1) ∧ eqN (x′1, z)

∧ Qa2x′2 : E(x2, x
′
2) ∧ eqN (x′2, z)

∧ Qb1y′ : E(y, y′) ∧ eqN (y′, z)
∧ Qa3x′3 : E(x3, x

′
3) ∧ eqN (x′3, z)

∧ Qb2y′ : E(y, y′) ∧ eqN (y′, z′)



∧ max(z)→
∨

(a1,a2,b1,a3,0)∈I


Qa1x′1 : E(x1, x

′
1) ∧ eqN (x′1, z)

∧ Qa2x′2 : E(x2, x
′
2) ∧ eqN (x′2, z)

∧ Qb1y′ : E(y, y′) ∧ eqN (y′, z)
∧ Qa3x′3 : E(x3, x

′
3) ∧ eqN (x′3, z)



CSL 2018

3:14 Elementary Complexity Classes with Theories of Automatic Structures

Let y be some node of FH+2 such that the formula starting with ∀z holds. Let furthermore
(ek)k∈N be the characteristic of the node y. Since the height of y is ≤ H + 2, we get ek = 0
for all k ≥ t. The first conjunct expresses ek ∈ {0, 1} (since no two distinct children of y
represent the same number) and e0 = 0 (since no child of y has height 0, i.e., represents 0).
Having said this, it is clear that the second and third conjunct ensure properties (b) and (c)
from above. Thus, indeed, the formula addN expresses the relation Jv1KN + Jv2KN = Jv3KN .

Furthermore note that |I| ≤ N5. Hence, using Lemma 12, the formula addN can be
constructed in polynomial time from N . J

5.2.2 Tuples of nodes as words
In the previous section, we agreed how to consider a node v of depth ≥ 1 (and therefore of
height ≤ H+ 1) as a number JvKN between 0 and expH(N,N)−1. Now, we want to consider
a tuple v = (va)a∈∆ of nodes as word wordN (v) over the alphabet ∆. To this aim, let

Pa = {Jv′aKN | (va, v′a) ∈ E}

denote the set of numbers represented by children of the node va (for a ∈ ∆). The word
wordN (v) is defined only in case these sets of numbers are mutually disjoint and the union
of these sets is an initial segment of the natural numbers. Let ` = sup

(⋃
a∈∆ Pa

)
. Then

wordN (v) is the word

a0a1a2 . . . a`

with ak = a ⇐⇒ k ∈ Pa ⇐⇒ k = Jv′aKN for some child v′a of va. Thus, the children of the
node va represent the positions of the letter a in wordN (v). Since children of nodes have
height ≤ H + 1, the word wordN (v) has length ≤ expH(N,N). Conversely, any word of this
length can be represented by a tuple of nodes wordN (v).

I Lemma 14. From N ∈ N, one can compute in polynomial time formulas is wordN (x) and
prod(x, y, z), such that, for any ∆-tuples u, v, and w of nodes, the following hold:

(FH+2, v) |= is wordN if, and only if, the tuple wordN (v) is defined.
(FH+2, u, v, w) |= prod if, and only if, wordN (u), wordN (v), and wordN (w) are defined
and wordN (u) wordN (v) = wordN (w).

Proof. The formula is wordN looks as follows:

∀x, y

(∨
a∈∆

E(xa, y) ∧ lessN (x, y)
)
→ ∃x′

(∨
b∈∆

E(xb, x′) ∧ eqN (x, x′)
)

∧
∧

a,b∈∆,a 6=b

((
E(xa, x) ∧ E(xb, y)

)
→ ¬eqN (x, y)

)
The first line expresses that

⋃
a∈∆ Pa is an initial segment of (N,≤), the second one ensures

that the sets Pa are mutually disjoint.
Note that the length of the word wordN (v) is the successor of the maximal number

represented by any of the children of nodes va from the tuple v. Therefore, the following
formula ensures that the length of wordN (x) equals J`KN :

∀x :
∧
a∈∆

(
E(xa, x)→ lessN (x, `)

)
∧∃x :

∨
a∈∆

E(xa, x) ∧ ¬∃y : lessN (x, y) ∧ lessN (y, `)

F. Abu Zaid, D. Kuske, and P. Lindner 3:15

We just remark that representable words have length ≤ expH(N,N). Hence, their length is
always represented by some node of height ≤ H + 2.

We denote the above formula by |wordN (x)| = `. Now the formula prod looks as follows:

∃`x, `y, `z : is wordN (x) ∧ is wordN (y) ∧ is wordN (z)
∧ |wordN (x)| = `x ∧ |wordN (y)| = `y ∧ |wordN (z)| = `z

∧ addN (`x, `y, `z)

∧
∧
a∈∆

∀x∃z : E(xa, x)→ E(za, z) ∧ eqN (x, z)

∧
∧
a∈∆

∀y∃z : E(ya, y)→ E(za, z) ∧ addN (y, `x, z) J

I Observation 15. From N ∈ N and a ∈ ∆, one can construct in polynomial time a formula
is letterN,a(x) such that, for any ∆-tuple u of nodes, we have

(FH+2, u) |= is letterN,a(x) ⇐⇒ wordN (u) is defined and equals a .

This is obtained by the formula

is wordN (u) ∧
∧
b 6=a
∀y ¬E(xb, y) ∧ ∃=1y E(xa, y) .

This finishes the construction of an interpretation of the bounded free monoidMN in the
forest FH+2. Since all the formulas is wordN , prodN , and is letterN,a can be computed in
polynomial time, we can reduce the theory of the bounded free monoidMN in polynomial
time to the theory of FH+2. Together with Proposition 10, this finishes the proof of the
following theorem:

I Theorem 16. The theory of the forest FH+2 is hard for the class

STA(∗, expH(2, poly(n)), poly(n)).

6 Conclusion

We have shown that for every h there is an automatic structure, whose theory is complete
for the Berman complexity class STA(∗, exph(2, poly(n)), poly(n)). Therefore theories of
automatic structures are distributed across all stages of elementary complexity. The variants
F 1
H and F∞H of our structure FH that we mentioned in the beginning might be interesting in

their own right. A careful analysis of our proof reveals without much effort that the theories
of these two structures have the same complexity as the theory of FH .

I Theorem 17. The theories of F 1
H and F∞H are complete for

STA(∗, expH(2, poly(n)), poly(n)).

Finally let us mention a related problem from parameterized complexity theory.

I Conjecture 18. There is no algorithm that determines correctly for every tree T of height
at most H and every first-order sentence ϕ whether T |= ϕ in time expH−3(2, poly(|ϕ|)) ·
poly(|T |).

An upper bound this problem is given in [12]. It might be possible to prove Conjecture 18
(under suitable complexity theoretic assumptions) with a similar strategy as it was used in
[10] for the class of all finite trees. The formulas that we defined for our lower bound might
be useful in this case.

CSL 2018

3:16 Elementary Complexity Classes with Theories of Automatic Structures

References
1 V. Bárány, E. Grädel, and S. Rubin. Automata-based presentations of infinite structures.

In Finite and Algorithmic Model Theory, pages 1–76. Cambridge University Press, 2011.
2 L. Berman. The complexity of logical theories. Theoretical Computer Science, 11:71–77,

1980.
3 A. Blumensath. Automatic structures. Technical report, RWTH Aachen, 1999.
4 A. Blumensath and E. Grädel. Automatic Structures. In LICS’00, pages 51–62. IEEE

Computer Society Press, 2000.
5 Andrzej Ehrenfeucht. An application of games to the completeness problem for formalized

theories. Fundamenta Mathematicae, 49(2):129–141, 1961. URL: http://eudml.org/doc/
213582.

6 C.C. Elgot. Decision problems of finite automata design and related arithmetics. Trans.
Am. Math. Soc., 98:21–51, 1961.

7 S. Feferman and R.L. Vaught. The first order properties of algebraic systems. Fund. Math.,
47:57–103, 1959.

8 J. Ferrante and Ch. Rackoff. The Computational Complexity of Logical Theories. Lecture
Notes in Mathematics vol. 718. Springer, 1979.

9 J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, Heidelberg, 2006.
10 Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order

logic revisited. Ann. Pure Appl. Logic, 130(1-3):3–31, 2004.
11 Ch. Frougny and J. Sakarovitch. Synchronized rational relations of finite and infinite words.

Theor. Comput. Sci., 108:45–82, 1993.
12 Jakub Gajarský and Petr Hlinený. Faster deciding MSO properties of trees of fixed height,

and some consequences. In IARCS Annual Conference on Foundations of Software Techno-
logy and Theoretical Computer Science, FSTTCS 2012, December 15-17, 2012, Hyderabad,
India, pages 112–123, 2012. doi:10.4230/LIPIcs.FSTTCS.2012.112.

13 B.R. Hodgson. On direct products of automaton decidable theories. Theoretical Computer
Science, 19:331–335, 1982.

14 B. Khoussainov and M. Minnes. Three lectures on automatic structures. In Proceedings of
Logic Colloquium, pages 132—-176, 2007.

15 B. Khoussainov and A. Nerode. Automatic presentations of structures. In Logic and Com-
putational Complexity, Lecture Notes in Comp. Science vol. 960, pages 367–392. Springer,
1995.

16 B. Khoussainov, S. Rubin, and F. Stephan. Definability and regularity in automatic struc-
tures. In STACS’04, Lecture Notes in Comp. Science vol. 2996, pages 440–451. Springer,
2004.

17 Bakhadyr Khoussainov, Jiamou Liu, and Mia Minnes. Unary automatic graphs: an al-
gorithmic perspective. Mathematical Structures in Computer Science, 19(1):133–152, 2009.

18 D. Kuske. Theories of automatic structures and their complexity. In CAI 2009, Lecture
Notes in Comp. Science vol. 5725, pages 81–98. Springer, 2009.

19 D. Kuske and M. Lohrey. Some natural decision problems in automatic graphs. Journal
of Symbolic Logic, 75(2):678–710, 2010.

20 D. Kuske and M. Lohrey. Automatic structures of bounded degree revisited. Journal of
Symbolic Logic, 76(4):1352–1380, 2011.

21 P. Lindner. Theorien automatischer Strukturen in der Exponentialzeithierarchie. Master’s
thesis, TU Ilmenau, 2017.

22 D.C. Oppen. A 222cn

upper bound on the complexity of Presburger arithmetic. Journal of
Computer and System Sciences, 16:323–332, 1978.

23 S. Rubin. Automata presenting structures: A survey of the finite string case. Bulletin of
Symbolic Logic, 14:169–209, 2008.

24 F. Stephan. Automatic structures – recent results and open questions. Journal of Physics:
Conference Series, 632:012013, 2015.

http://eudml.org/doc/213582
http://eudml.org/doc/213582
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.112

	Introduction
	Preliminaries
	Trees of Bounded Height
	Upper Bound
	Lower Bound
	Reduction to the theory of the bounded free monoid
	Interpretation of the bounded free monoid in F_{H+2}
	Nodes as numbers
	Tuples of nodes as words

	Conclusion

