
Approximating Probabilistic Automata by Regular
Languages
Rohit Chadha1

University of Missouri
Columbia, USA
chadhar@missouri.edu

A. Prasad Sistla2

University of Illinois, Chicago
Chicago, USA
sistla@uic.edu

Mahesh Viswanathan3

University of Illinois, Urbana-Champaign
Urbana, USA
vmahesh@illinois.edu

Abstract
A probabilistic finite automaton (PFA) A is said to be regular-approximable with respect to
(x, y), if there is a regular language that contains all words accepted by A with probability at
least x+y, but does not contain any word accepted with probability at most x. We show that the
problem of determining if a PFAA is regular-approximable with respect to (x, y) is not recursively
enumerable. We then show that many tractable sub-classes of PFAs identified in the literature
– hierarchical PFAs, polynomially ambiguous PFAs, and eventually weakly ergodic PFAs – are
regular-approximable with respect to all (x, y). Establishing the regular-approximability of a
PFA has the nice consequence that its value can be effectively approximated, and the emptiness
problem can be decided under the assumption of isolation.

2012 ACM Subject Classification Theory of computation → Probabilistic computation

Keywords and phrases Probabilistic Finite Automata, Regular Languages, Ambiguity

Digital Object Identifier 10.4230/LIPIcs.CSL.2018.14

1 Introduction

Probabilistic finite automata (PFA), introduced by Rabin [26], are finite state machines that
read symbols from an input string and whose state transitions are determined by the input
symbol being read and the result of a coin toss. For an input string w, the probability of
accepting w is the measure of all runs of the automaton on w that end in an accepting state.
Given a threshold x, the language recognized by a PFA is the collection of all words w whose
probability of acceptance is at least x. Probabilistic finite automata serve as convenient
models of open stochastic systems. Despite their simplicity, PFAs are a surprisingly powerful
model of computation and typical decision problems of PFAs are undecidable. For example,
the classical decision problem that arises when verifying a design described by a PFA against
regular specifications, namely emptiness, is undecidable [11].

1 NSF CNS 1314338 and NSF CNS 1553548
2 NSF CNS 1314485 and NSF CCF 1564296
3 NSF CSR 1422798 and NSF CPS 1329991

© Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan;
licensed under Creative Commons License CC-BY

27th EACSL Annual Conference on Computer Science Logic (CSL 2018).
Editors: Dan Ghica and Achim Jung; Article No. 14; pp. 14:1–14:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chadhar@missouri.edu
mailto:sistla@uic.edu
mailto:vmahesh@illinois.edu
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Approximating PFAs by regular languages

The reason for the computational hardness of problems involving PFAs is because they
can “simulate” powerful computational models like Turing machines. The question we
ask is if, despite this evidence of expressive power, languages recognized by PFAs can be
“approximated” by regular languages, in a sense that we will make precise later in this
introduction. If PFAs can be approximated by regular languages, it opens up the possibility
of solving some of these decision problems partially. For example, if we want to verify
that a stochastic open system modeled by a PFA meets a regular specification, we could
approximate the PFA language by a regular language, and then check containment/emptiness.
This approach would be similar to the effective role finite state abstractions have played in
verifying real world designs.

So what type of regular approximations are we talking about? For a PFA A, let L≥x(A)
and L≤x(A) be the sets of strings accepted with probability ≥ x and ≤ x, respectively. We
say that A is regular-approximable with respect to (x, y) if there is a regular language L that
separates L≥x+y(A) and L≤x(A), i.e., L≥x+y(A) ⊆ L and L∩ L≤x(A) = ∅ (i.e., L ⊆ L>x(A)).
Thus, L is a “over-approximation” of L≥x+y(A) and an “under-approximation” of L>x(A).
Such a notion of separability has been previously studied in the context of PFAs [24].
Separability using regular languages have played a significant role in understanding the
expressive power of formal languages and coming up with decision procedures [12, 25].

First, even if L≥x+y(A) and L≤x(A) are not regular, A maybe regular-approximable with
respect to (x, y) (see Example 7). On the other hand, there are PFAs A and (x, y) such
that A is not regular-approximable with respect to (x, y) (see [24] and Theorem 8). So how
difficult is it to check regular-approximability? We show that the problem of determining
if a PFA A is regular-approximable with respect to (x, y) is not recursively enumerable
(Theorem 9). Our proof relies on showing that a closely related problem of determining if
a PFA A is regular-approximable with respect to some (x, y) is Σ0

2-hard; Σ0
2 is the second

level of the arithmetic hierarchy.
Given that determining if a PFA A is regular-approximable with respect to (x, y) is

undecidable, we try to identify sufficient conditions that guarantee the regular-approximability
of PFAs in a very strong sense. In particular, we identify conditions under which a PFA is
guaranteed to be regular-approximable with respect to every pair (x, y). Further, we’d like
to identify when the regular language approximating the PFA can be effectively constructed
from A and (x, y). PFAs that satisfy such strong properties are amenable to automated
analysis. We show that problems that are undecidable (or open) for general PFAs, become
decidable in such situations. We give examples of two such problems. The first is the value
problem for PFAs, where the goal is to compute the supremum of the acceptance probabilities
of all input words. When a PFA A represents the product of an open probabilistic system
and an incorrectness property given as deterministic automaton on the system executions,
then value of A gives a tight upper bound on the probability of incorrectness of the system
on all input sequences. Decision versions of the value problem are known to be Σ0

2-complete.
The second problem is checking emptiness under isolation. A threshold x is said to be
isolated for PFA A with a degree of isolation ε if the acceptance probability of every word is
ε-bounded away from x. A classical result is that when x is isolated, the language L≥x(A) is
regular [26]. The emptiness under isolation problem, is to determine if the language L≥x(A)
is empty, under the promise that x is an isolated cut-point for A (but no degree of isolation
is given). The decidability of this is a long standing open problem. We prove that for PFAs
that are effectively regular-approximable (that is regular separator L can be constructed for
every (x, y)), the value problem can be approximated with arbitrary precision (Theorem 11)
and the emptiness under isolation is decidable (Corollary 12).

R. Chadha, A. P. Sistla, and M. Viswanathan 14:3

Our semantic condition that identifies when a PFA is regular-approximable is as follows.
A leaky transition is a transition whose probability is less than 1. A PFA A is said to be leak
monotonic if for every ε, there is a number Nε such that, for any input u, the measure of all
accepting runs ρ on u that have at least Nε leaks is < ε. In other words, runs with many
leaky transitions contribute very little to the acceptance probability of a word. We prove that
leak monotonic PFAs are regular-approximable with respect to every (x, y) (Corollary 20).
If a leak monotonic PFA in addition has the property that Nε can be computed from ε, then
one can show that the regular separator of L≥x+y(A) and L≤x(A) can also be effectively
constructed (Corollary 20). The deterministic automaton B that recognizes the regular
separator has the property that its computation on any input u can be used to approximately
compute A’s acceptance probability as follows – one can associate a function from states of
B to [0, 1] such that the label of the state reached on reading u is an approximation of the
acceptance probability of u.

Our last set of results in the paper show that many of the tractable sub-classes of
PFAs discovered, enjoy the nice decidability properties because of regular-approximability.
Hierarchical PFAs [9] are those that obey the restriction that states can be partitioned into a
hierarchy of ranks, and transitions from a state only go to states of the same or higher rank
(for a precise definition, see paragraph before Theorem 26). Another class of PFAs are those
with polynomial ambiguity [16]. These are PFAs with the property that on any input u, the
number of accepting runs on u (not its probability) is bounded by a polynomial function of
the input length |u|. Both these sub-classes of PFAs are effectively leak monotonic, and hence
effectively regular-approximable. Thus their value can be effectively approximated, and the
emptiness problem is decidable under the promise of isolation for these classes. These results
for hierarchical PFAs subsume [8], and are new for polynomial ambiguous PFAs. Our results
also show the existence of a large class of non-trivial PFAs that exhibit exponential ambiguity
but are nonetheless still leak monotonic and hence regular approximable; Theorem 21 gives
a method of obtaining such PFAs (Figure 2a shows such a PFA Az). In this paper, we also
show that the emptiness problem is undecidable for linearly ambiguous PFAs, thus resolving
an open problem posed in [16], and tightening the decidability results presented in [16].
Another tractable class of PFAs is that of eventually weakly ergodic PFAs [10]. We show
that though eventually weakly ergodic PFAs are not leak monotonic, they are effectively
regular-approximable. Once again, as a consequence, the decidability results proved in [10]
follow from observations made here.

The rest of the paper is organized as follows. We conclude this section with a discussion
of closely related work. Basic definitions and notations are introduced in Section 2. Regular-
approximability is defined and the undecidability of deciding of a PFA regular-approximable
with respect to (x, y) is proved in Section 3. Next, in Section 4, we give the semantic
definition of leak monotonicity, its relation to regular-approximability, and its application
to computing the value and deciding the emptiness problem. Section 5 presents results
establishing the regular-approximability of hierarchical PFAs and polynomially ambiguous
PFAs, and Section 6 shows that eventually weakly ergodic PFAs are also regular-approximable.
Conclusions are presented in Section 7. All missing proofs can be found in the Appendix.

Related Work

The problem of checking whether the language recognized by a PFA is regular known to be
undecidable [17, 4]. As mentioned above, regular-approximability of PFAs was first studied
in [24], where Paz gave an alternate, semantic characterization of regular-approximable
PFAs. We are not aware of any further work on this topic in the context PFAs, though

CSL 2018

14:4 Approximating PFAs by regular languages

separation using regular languages has been used to obtain expressiveness and decidability
results [12, 25]. \-acyclic automata and their generalization leak-tight automata [15, 14], are
special classes of PFAs for which the value 1 problem is decidable. The classes of leaktight
and leak monotonic automata (introduced in this paper) are incomparable – PFA A3 in
Figure 1c on page 7 is leaktight but not leak monotonic. On the other hand, consider any
PFA A that is not leaktight, and let B be PFA that is identical to A, but with an empty
set of final states. B is still not leaktight, but B is trivially leak monotonic (and hence
regular approximable). The relationship between \-acyclic automata/leaktight automata and
regular-approximable automata still needs further investigation. In particular, it is open
whether \-acyclic and leaktight automata are a subclass of regular approximable automata.
Bounding the ambiguity of PFAs as been a way to identify subclasses of PFAs for which
certain computational problems become decidable [6, 8, 16]. However, all these results only
pertain to automata with constant ambiguity and their subclasses. In this paper, we obtain
positive results for more general classes of PFAs that go beyond polynomially ambiguous
automata. The undecidability of the emptiness problem for linearly ambiguous automata
was also independently observed in [13].

2 Preliminaries

We assume that the reader is familiar with probability distributions, stochastic matrices,
finite-state automata, and regular languages. The set of natural numbers will be denoted by
N, the closed unit interval by [0, 1] and the open unit interval by (0, 1). The power-set of a
set X will be denoted by 2X . For any function f : X → Y and Y1 ⊆ Y , f−1(Y1) is the set
{x ∈ X | f(x) ∈ Y1}. If X is a finite set |X| will denote its cardinality. We assume that the
reader is familiar with the arithmetic hierarchy.

Sequences. Given a finite sequence s = s0s1 . . . over S, |s| will denote the length of s and
s[i] will denote the ith element si of the sequence with s[0] being the first. We will use λ to
denote the (unique) empty string/sequence. For natural numbers i, j, i ≤ j < |s|, s[i : j] is
the sequence si . . . sj . As usual S∗ will denote the set of all finite sequences/strings/words
over S, S+ will denote the set of all finite non-empty sequences/strings/words over S.

Given u ∈ S∗ and v ∈ S∗, uv is the sequence obtained by concatenating the two sequences
in order. Given L1 ⊆ S∗ and L2 ⊆ S∗, the set L1L2 is defined to be {uv | u ∈ L1 and v ∈ L2}.

Ambiguity and Pumping Lemma

Let A be a nondeterministic automaton recognizing a regular language over alphabet Σ. The
degree of ambiguity [22, 21, 27] of A on input word u ∈ Σ∗, denoted dA(u), is the number of
accepting runs of A on u. It is shown in [28, 20] that the degree of ambiguity of a NFA A is
one the following.
1. A is finitely ambiguous if there is a constant k such that dA(u) ≤ k for all input words

u ∈ Σ∗.
2. A is polynomially ambiguous if there is a non-constant polynomial p : N→ N such that

dA(u) ≤ p(|u|) for all all input words u ∈ Σ∗; if p has degree 1 or 2 then A is said to be
linearly or quadratically ambiguous, respectively.

3. A is exponentially ambiguous if for every polynomial p : N→ N, there is a word u ∈ Σ∗
such that dA(u) > p(|u|).

A trim NFA is an automaton that does not have any silent edges. The following can be
concluded from the results of [28]:

R. Chadha, A. P. Sistla, and M. Viswanathan 14:5

I Lemma 1. The problems of deciding whether a trim A is finitely ambiguous, whether
A is polynomially ambiguous and whether A is exponentially ambiguous are decidable in
polynomial time. If A is polynomially ambiguous then a constant C and a constant ` can be
computed in polynomial time such that dA(u) ≤ C|u|` for all input words u ∈ Σ∗.

The following lemma, used in parts of the paper, states a simple property of regular
languages and is easily proved along the same lines as the standard pumping lemma.

I Lemma 2. For a regular language L ⊆ Σ∗, where |Σ| ≥ 2, there exists an integer constant
N > 0 such that the following property holds for each a ∈ Σ and each k ≥ 1: if there exists a
string of the form u1au2a...uka ∈ L, where each ui ∈ (Σ \ {a})∗, for 1 ≤ i ≤ k, then there
exists such a string such that |ui| ≤ N , for each i, 1 ≤ i ≤ k.

Probabilistic automaton (PFA)

Informally, a PFA is like a finite-state deterministic automaton except that the transition
function from a state on a given input is described as a probability distribution which
determines the probability of the next state.

I Definition 3. A finite-state probabilistic automaton (PFA) [26, 24] on finite strings over
a finite alphabet Σ is a tuple A = (Q, qs, δ, Qf) where Q is a finite set of states, qs ∈ Q is
the initial state, δ : Q× Σ×Q→ [0, 1] is the transition relation such that for all q ∈ Q and
a ∈ Σ, δ(q, a, q′) is a rational number and

∑
q′∈Q δ(q, a, q′) = 1, and Qf ⊆ Q is the set of

accepting/final states. We say that the PFA A is a deterministic automaton if, for every
q ∈ Q, a ∈ Σ there exists exactly one q′ ∈ Q such that δ(q, a, q′) = 1.

I Notation. The transition function δ of PFA A on input a can be seen as a square matrix δa
of order |Q| with the rows labeled by “current” state, columns labeled by “next state” and the
entry δa(q, q′) equal to δ(q, a, q′). Given a word u = a0a1 . . . an ∈ Σ+, δu is the matrix product
δa0δa1 . . . δan . For the empty word λ ∈ Σ∗ we take δλ to be the identity matrix. Finally
for any Q0 ⊆ Q, we say that δu(q,Q0) =

∑
q′∈Q0

δu(q, q′). Given a state q ∈ Q and a word
u ∈ Σ+, post(q, u) = {q′ | δu(q, q′) > 0}. For a set C ⊆ Q, let post(C, u) = ∪q∈C post(q, u).

Intuitively, the PFA starts in the initial state qs and if after reading a0, a1 . . . , ai it is in
state q, then the PFA moves to state q′ with probability δai+1(q, q′) on symbol ai+1. A run
of the PFA A starting in a state q ∈ Q on an input u ∈ Σ∗ is a sequence ρ ∈ Q∗ such that
|ρ| = 1 + |u|, ρ[0] = q and for each i ≥ 0, δu[i](ρ[i], ρ[i+ 1]) > 0. The probability measure of
such a run ρ on u is defined to be the value

∏
0≤i<|ρ| δu[i](ρ[i], ρ[i+ 1]). We say that the run

ρ is an accepting run if ρ[|ρ|] ∈ Qf , i.e., it ends in an accepting state. Unless otherwise stated,
a run for us will mean a run starting in the initial state qs. The probability of acceptance of
u ∈ Σ∗ by the PFA A, denoted by PA(u), is defined to be the sum of probability measures
of all accepting runs of A on u. Note that PA(u) = δu(qs, Qf).

PFA languages

Given a PFA A, a rational threshold x ∈ [0, 1] and ♦ ∈ {<,≤,=,≥, >}, the language
L♦x(A) = {u ∈ Σ∗ | PA(u) ♦ x} is the set of finite words accepted by A with probability
♦x. If A is a deterministic automaton then we let L(A) denote the language L≥1(A). In
general, the language L♦x(A) for a PFA A, threshold x, and ♦ ∈ {<,≤,=,≥, >}, may be
non-regular. However, when x is an extremal threshold (x ∈ {0, 1}), it is regular.

I Proposition 4. For any PFA A, the languages L♦x(A) is effectively regular for x ∈ {0, 1}
and ♦ ∈ {<,≤,=,≥, >}.

CSL 2018

14:6 Approximating PFAs by regular languages

Given a PFA A and rational threshold x, the problem of checking whether L>x(A) = ∅ is
known to be co-R.E.-complete [24, 11].

Isolated cut-points

For a PFA A, a rational threshold x ∈ [0, 1] is said to be an isolated cut-point of A if there is
an ε > 0 such that for each word u ∈ Σ∗, |PA(u)− x| > ε. If such an ε exists, then ε is said
to be a degree of isolation. An important observation about PFAs with isolated cut-points,
is that their language is regular; however, the deterministic finite automaton recognizing this
language is known to be constructible only given a degree of isolation.

I Theorem 5 (Rabin [26]). For any PFA A with an isolated cut-point x, the languages
L♦x(A) are regular, where ♦ ∈ {<,≤,=,≥, >}.

The isolation decision problem is the problem of deciding for a given PFA A and a rational
x ∈ [0, 1] whether x is an isolated cut-point of A. The isolation decision problem is known to
be undecidable [3], even when x is 0 or 1 [18]. The problem is known to be Σ0

2-complete [10].

The value problem. For a PFA A, let value(A) denote the least upper bound of the set
{PA(u) | u ∈ Σ∗}. The value computation problem for a PFA is the problem of computing
value(A) for a given A. The value decision problem is the problem of deciding for a given
PFA A and a rational threshold x ∈ [0, 1] whether value(A) = x. The value decision problem
is known to be undecidable [3, 18] and known to be Π0

2-complete [10] even when x is taken
to be 1 [10].

3 Approximability and Value problem

3.1 Regular Approximability.
The problem of approximating a PFA by a regular language was first discussed by Paz [24].
We will say that PFA A can be approximated by a regular language L at a threshold x with
precision y if L separates the languages L≥x+y(A) and L≤x(A). Formally,

I Definition 6. Given x, y ∈ [0, 1] such that y > 0, a PFA A = (Q, qs, δ, Qf) over Σ is said
to be regular-approximable with respect to the pair (x, y) if there is a regular language L
such that L≥x+y(A) ⊆ L ⊆ L>x(A).

It is easy to see that A is regular-approximable with respect to (x, y) if either L>x(A) or
L≥x+y(A) is a regular set. We say that the pair (x, y), x, y ∈ [0, 1], is a trivial pair if either
x = 0 or x+ y ≥ 1. It is seen that every PFA is regular-approximable with respect to every
trivial pair thanks to Proposition 4.

I Example 7. Consider the PFA A1, shown in Figure 1a. It has been shown in [7] that both
L> 1

2
(A1) and L≥ 1

2
(A1) are non-regular. Further, given this observation, we can also conclude

that L≥ 3
4
(A1) is non-regular. This is because L≥ 1

2
(A1) = 1{0,1}∗∪0L≥ 3

4
(A1). Inspite of this,

we can show that a regular language can separate L≥ 3
4
(A1) and L≤ 1

2
(A1), i.e., A1 is regular-

approximable with respect to the pair (1
2 ,

1
4). Observe that L≥ 2

3
(A1) = 1{0,1}∗ is a regular

set. Since L≥ 3
4
(A1) ⊆ L≥ 2

3
(A1) ⊆ L> 1

2
(A1), we can conclude that A1 is regular-approximable

with respect to the pair (1
2 ,

1
4). In fact, as we will show later, A1 is regular-approximable

with respect to every pair (x, y) where y > 0.

R. Chadha, A. P. Sistla, and M. Viswanathan 14:7

qs

qr

qa

0| 23

1| 13

0,1|1

0,1|1

0| 13

1| 23

q0 q1

q2

0| 12 0|1

0,1|1

1|1

0| 12

1|1

q0 q1

0| 12

1|1

0|1
0| 12

1|1

Figure 1 On the left (a) is PFA A1, in the middle (b) is PFA A2, and on the right (c) is PFA
A3. In these pictures, for states q and q′ and input letter a, if δ(q, a, q′) > 0 then we label the edge
from q to q′ by a|δ(q, a, q′). The initial state is indicated by a dangling → and the final state by two
concentric circles.

While A1 is an example of a PFA that is regular-approximable with respect to every
pair (x, y) such that y > 0, the following theorem shows the existence of a PFA that is not
regular-approximable with respect to any non-trivial pair.

I Theorem 8. There exists a PFA A that is not regular-approximable with respect to any
pair (x, y) such that x, y > 0 and x+ y < 1.

Proof. We prove the theorem by construction. Consider the PFA A2 over the input alphabet
Σ = {0,1}, shown in Figure 1b. This automaton was used in [1] to show that the language
recognized by a Probabilistic Büchi automaton (PBA) with threshold 0 can be nonregular.

We make the following observations, which are easily seen. Every word starting with 1 or
that contains two consecutive 1s is accepted by A2 with probability zero. For every k > 0
and every z, 0 < z < 1, there is a word in (0∗1)k that is accepted with probability ≥ z.

Consider any pair (x, y) such that x, y > 0 and x + y < 1. We show that A2 is not
regular-approximable with respect to (x, y), by contradiction. Assume for contradiction, that
there is a regular language L such that L≥x+y(A2) ⊆ L ⊆ L>x(A2). Since L is a regular
language, let N be the constant satisfying Lemma 2. Now, let k ∈ N be any integer such
that (1− 1

2N)k ≤ x. Such a k exists since x > 0. From our earlier observation, we see that
there exists a string u ∈ (0∗1)k that is in L≥x+y(A2). Clearly, u ∈ L. Now, from Lemma 2,
we see that there exists a string v = 0n110n21 · · ·0nk1 where ni ≤ N , for 1 ≤ i ≤ k such
that v ∈ L. Word v is accepted by A2, with probability

∏
1≤i≤k (1− 1

2ni). Since each ni ≤ N ,
we have (1 − 1

2ni) ≤ (1 − 1
2N). From this we see that the probability of acceptance of v

by A2 is ≤ (1 − 1
2N)k ≤ x. Hence v /∈ L>x(A2) which contradicts our assumption that

L ⊆ L>x(A2). J

The following theorem shows that the problem of checking if a given PFA A is regular-
approximable with respect to a given pair (x, y) is undecidable.

I Theorem 9. Given a PFA A and rational values x, y ∈ [0, 1], the problem of checking if
A is approximable with respect to (x, y), is undecidable. Formally the language Approx =
{(A, x, y) |x, y ∈ [0, 1], A is a PFA that is regular-approximable w.r.t. (x, y)} is undecidable.

CSL 2018

14:8 Approximating PFAs by regular languages

3.2 Value Problem and Emptiness under isolation
PFAs that are effectively regular-approximable for every pair (x, y) enjoy nice properties.

I Definition 10. We say that A is regular-approximable if it is regular-approximable with
respect to every pair (x, y) such that x, y ∈ [0, 1] and y > 0.We further say that A is effectively
regular-approximable if there is a procedure that, given x and y terminates and outputs a
deterministic automaton that accepts a language L where L≥x+y(A) ⊆ L ⊆ L>x(A). A class
C of regular-approximable PFAs is said to be effectively regular-approximable if there is a
procedure that, given A ∈ C, x and y terminates and outputs a deterministic automaton
that accepts a language L where L≥x+y(A) ⊆ L ⊆ L>x(A).

We shall establish later that the class of hierarchical probabilistic automata (HPAs)
is effectively regular-approximable (See Theorem 26). It has been shown in [5, 8, 2] that
the emptiness problem and the value decision problem continues to be undecidable if we
restrict our attention to HPAs. Thus, there is no algorithm that given an effectively regular-
approximable PFA A computes its value. Nevertheless, we now show that if A is effectively
regular-approximable then its value can be computed to a given precision.

I Theorem 11. There is a procedure ComputeVal that given an effectively regular-approxima-
ble PFA A and ε > 0 terminates and returns an interval [z1, z2] such that value(A) ∈ [z1, z2]
and z2 − z1 ≤ ε.

Proof. ComputeVal works as follows. Initially, it checks if there is u such that PA(u) = 1 or
if for every u, PA(u) = 0. If either of these conditions hold then it returns the corresponding
value as value(A). Observe that these conditions can be checked thanks to Proposition 4. If
neither of these conditions holds, it acts as follows. It maintains two variables z1, z2 such
that 0 ≤ z1 < z2 ≤ 1 and value(A) ∈ [z1, z2]. Initially z1, z2 are set to 0, 1 respectively.

The following procedure is iterated until z2− z1 ≤ ε. In each iteration, it first computes a
deterministic automaton B such that L≥x+y(A) ⊆ L(B) ⊆ L>x(A) where x = z1 + z2−z1

3 and
y = z2−z1

3 . Such an automaton B can be computed since A is effectively regular-approximable.
(Observe that both x+ y− z1 and z2− x are equal to 2

3 (z2− z1).) Now, the algorithm checks
if L(B) = ∅. If L(B) = ∅ then this implies L≥x+y(A) = ∅ and hence value(A) lies in the
interval [z1, x+ y]; in this case, it repeats the above procedure by setting z2 = x+ y and
keeping z1 unchanged. On the other hand, if L(B) 6= ∅, then this implies that value(A) lies
in the interval [x, z2]; so, in this case the algorithm sets z1 = x, keeps z2 unchanged and
repeats the above procedure.

Notice that the length of the interval (z1, z2) at the beginning of each succeeding iteration
is 2

3 rd of its value at the beginning of the preceding iteration; further, at the beginning
of the first iteration, its value is 1. From this we see that this algorithm terminates after
k iterations where k is the least value such that (2

3)k ≤ ε, that is, k = dlog 3
2
(1
ε)e. From

our arguments, we see that at the beginning of each iteration, we have value(A) ∈ (z1, z2)
and when it terminates z2 − z1 ≤ ε. Thus, it returns an interval in which value(A) lies and
its length is at most ε. Observe that, in the above procedure, we only need to check the
emptiness of L(B) in each iteration; no explicit computation of B is needed. J

An immediate consequence of the above observation is that if A is effectively regular-
approximable and x is an isolated cut-point of A, then we can check the emptiness of
L>x(A).

I Corollary 12. There is a procedure IsoEmpty that given an effectively regular-approximable
PFA A and a threshold x such that x is an isolated cut-point of A, terminates and decides if
L>x(A) = ∅.

R. Chadha, A. P. Sistla, and M. Viswanathan 14:9

Proof. Observe that A is isolated at x with a degree of isolation ε0 then either value(A) ≥
x+ ε0 or value(A) ≤ x− ε0. IsoEmpty works iteratively as follows. Initially it sets ε = 1

2 and
uses the algorithm ComputeVal in Theorem 11 to compute [z1, z2] such that value(A) ∈ [z1, z2]
and z2 − z1 ≤ ε. If x ∈ [z1, z2] then it sets ε = ε

2 and repeats. Otherwise if z1 > x then it
returns 1 and if z2 < x then it returns 0. It is easy to see that IsoEmpty always returns the
correct answer and terminates when ε takes a value < ε0. J

4 Leak monotonicity and complexity

We shall now identify a semantic class of PFAs that are regular-approximable. Our proof of
the fact that polynomial ambiguous automata are regular-approximable shall be established
by showing that they belong to this class. In order to define these classes, we shall need the
concept of a leak. Intuitively, a leak happens at a position i in a run q0q1 . . . qn of A on input
u if the probability of transitioning from qi to qi+1 is non-zero and yet is less than 1.

I Definition 13. Consider a PFA A = (Q, qs, δ, Qf) over an alphabet Σ. We say that a
triple (q, a, q′), where q, q′ ∈ Q and a ∈ Σ, is a leaky transition of A if 0 < δ(q, a, q′) < 1.
Let u ∈ Σ∗ be a finite word and ρ be a run of A on u. We let NbrLeaks(A, u, ρ) to be the
number of leaky transitions in ρ with respect to the word u; formally, it is |{i | 0 ≤ i < |ρ|,
δ(ρ[i], u[i], ρ[i+ 1]) < 1}|.

4.1 Leak Monotonicity
The class of PFAs that we will be interested in are PFAs in which the measure of accepting
a word is concentrated mostly in runs with a few leaks. We formalize this intuition below:

I Definition 14. Let ε ∈ (0, 1) be a rational number. We say that A is ε-leak monotonic if
there exists some Nε ∈ N such that for all u ∈ Σ∗, the measure of accepting runs of A on u
having at least Nε leaks is strictly less than ε. Such an Nε will be called a horizon of ε-leak
monotonicity of A.

I Example 15. The PFA A1 in Figure 1a on page 7, can be shown to be ε-leak monotonic
by taking Nε to be any integer n such that (2

3)n ≤ ε. In contrast, the PFA A2 in Figure 1b
is not ε-leak monotonic for any ε ∈ (0, 1). This is an immediate consequence of Theorem 8
and Theorem 16 established below.

The following theorem connects ε-leak monotonicity with regular-approximability.

I Theorem 16. If A is a PFA over an alphabet Σ which is ε-leak monotonic then A is
regular-approximable with respect to every pair (x, ε), for x ∈ [0, 1] and ε > 0.

Proof. Let PFA A = (Q, qs, δ, Qf) over alphabet Σ be ε-leak monotonic. Let N ∈ N be an
integer such that ∀u ∈ Σ∗, the probability measure, of all accepting runs of A on u having at
least N leaks, is at most ε. Let x ∈ [0, 1]. Now, we give the construction of a deterministic
automaton B on alphabet Σ such that L≥x+ε(A) ⊆ L(B) ⊆ L>x(A).

Without loss of generality, let Q = {q0, q1, ..., qn−1} with the start state qs = q0. For
any u ∈ Σ∗, let LeakPru be a n × N matrix such that, for 0 ≤ i < n and 0 ≤ j < N ,
LeakPru(i, j) is the probability measure of all runs ρ of A on input u starting from q0,
ending in state qi and having exactly j leaky transitions, i.e., NbrLeaks(A, u, ρ) = j.

Consider the automaton (not necessarily finite) B = (R, r0, δ
′, Rf) where R = {LeakPru |

u ∈ Σ∗}; r0 is the matrix such that r0(0, 0) = 1 and r0(i, j) = 0 when i 6= 0 or j 6= 0;
Rf = {r | (

∑
i:qi∈Qf

∑
0≤j<N r(i, j)) > x}. We define δ′ as follows. Let r ∈ R and a ∈ Σ.

CSL 2018

14:10 Approximating PFAs by regular languages

By definition, there exists u ∈ Σ∗ such that r = LeaksPru. Let r′ = LeaksPrua. Fix any i, j
such that 0 ≤ i < n and 0 ≤ j < N. Let p1 be the sum of all r(i′, j) such that δ(qi′ , a, qi) = 1,
i.e., the transition (qi′ , a, qi) is not a leaky transition of A. Let p2 be a value defined as
follows: if j = 0 then p2 = 0, otherwise p2 is the sum of r(i′, j − 1) · δ(qi′ , a, qi) where the
sum is taken over all i′ such that δ(qi′ , a, qi) < 1, i.e., (qi′ , a, qi) is a leaky transition of A. It
is easily shown that r′(i, j) = p1 + p2. We call r′ as the a-successor of r. Observe that the
values p1, p2 for a given pair i, j are independent of u and hence, the relationship between
r, r′, as given above, is independent of u. This leads us to the following definition of δ′. We
define δ′ so that δ′(r, a, r′) = 1 iff r′ is the a-successor of r. Now, by induction on |u|, we can
easily show that, for any r ∈ R, δ′u(r0, r) = 1 iff r = LeaksPru.

Now, we show that R is a finite set and bound its size. Let D be the maximum of the
denominators of the non-zero transition probabilities of A. The probability of any run of
A, on some input, having less than N leaks is a rational number x′

y′ where y′ is a positive
integer such that y′ ≤ DN . For any state r ∈ R and for any i, j, i < n, j < N , the value of
the entry r(i, j) is the sum of the probabilities of some runs of A each having fewer than N
leaks; the least common multiple of the denominators of these probabilities is bounded by
DN ·DN . Hence r(i, j) is either zero, or is a rational number whose denominator is bounded
by DN ·DN . This implies that the number of distinct values r(i, j) can take is bounded by
1 + (DN ·DN)2 = 1 +D2N ·DN . Since r has n ·N such entries, we see that |R|, which is the
number of distinct values r can take, is bounded by (1 +D2N ·DN)n·N and hence is finite.

Now we show that L≥x+ε(A) ⊆ L(B) ⊆ L>x(A). Consider any u ∈ Σ∗. The set of accepting
runs of A on u can be partitioned into two sets X1, X2 which are, respectively, the sets of
runs having less than N leaks, or having at least N leaks. Let z1, z2, respectively, be the
probability measures of these two sets of runs. Clearly, PA(u) = z1 + z2. Based on the value
of N , we have z2 ≤ ε. Suppose that r is the unique state in R such that δ′u(r0, r) = 1. Then,
from our earlier observations, we see that

∑
i:qi∈Qf

∑
j<N r(i, j) = z1. If u ∈ L≥x+ε(A) then

z1 > x since z2 < ε, and from the definition of Rf , it follows that r ∈ Rf and u ∈ L(B).
Thus, we see that L≥x+ε(A) ⊆ L(B). If u ∈ L(B) then, from the definition of Rf , we have
z1 > x and hence u ∈ L>x(A). Thus, we see that L(B) ⊆ L>x(A). J

I Remark. The deterministic automaton B that we construct for an ε-leak monotonic PFA
A in the proof of Theorem 16 has the following property: for each input string u, the state
r that is reached in B on input u, starting from its initial state, gives the probability of
acceptance of u by A with precision ε. Equivalently, there is a function f from the states of
B to [0, 1] such that f(q) ≤ PA(u) < f(q) + ε. f(q) can be computed in time polynomial in
the size of the representation of q. The above observations imply that the value of A lies in
the interval [v, v + ε] where v = max f(q). Thus, if B can be constructed then value of A can
be approximated within ε.

However, there are regular-approximable PFAs that are not ε-leak monotonic for any ε.

I Proposition 17. There is a PFA A that is regular-approximable but not ε-leak monotonic
for any ε ∈ (0, 1).

Proof. Consider the PFA A3 shown in Figure 1c on page 7. Given x ∈ (0, 1), let nx be the
largest integer such that 1

2
nx > x. It is easy to see that L>x(A3) = λ + {0,1}∗1(λ + 0 +

02 + . . .0nx) where λ is the empty word. Thus, L>x(A3) is regular for each x and hence
regular-approximable. Furthermore, observe that for each n, the word un = (01)n is accepted
by A3 with probability 1. In addition, for each n, un has exactly 2n runs, each of which is
accepting and has exactly n leaks. From these observations, it is easy to see that A3 is not
ε-leak monotonic for any ε – for every possible horizon Nε there are infinitely many words
such that the measure of accepting runs having at least Nε leaks is 1. J

R. Chadha, A. P. Sistla, and M. Viswanathan 14:11

The following theorem shows that the problem of checking if a given PFA is ε-leak
monotonic with respect to given ε ∈ (0, 1) is undecidable.

I Theorem 18. Given a PFA A and a rational value ε ∈ (0, 1), the problem of checking if A is
ε-leak monotonic is undecidable. Formally the set LeakMon = {(A, ε) |ε ∈ (0, 1), A is a PFA
that is ε-leak monotonic} is undecidable.

It is easy to see that we can give a simple algorithm that takes as input A, x,N and
constructs the deterministic automaton B defined in the proof of Theorem 16. Such an
algorithm starts with an initial set of states of B which is taken to be r0 and enlarges this
set by choosing an unexplored state from it, and explores it by constructing and adding
all its a-successors, that are not already present, to the set of states, for each a ∈ Σ. This
algorithm terminates when no new states can be added. Hence if we can compute a horizon
of ε-leak monotonicity of an ε-leak monotonic A then we can compute the regular language
that approximates L>x(A) for every threshold x.

I Definition 19. We say that a PFA A is leak monotonic if A is ε-leak monotonic with
respect to every ε ∈ (0, 1). A is said to be effectively leak monotonic if there is an algorithm
that given ε outputs a horizon of ε-leak monotonicity of A. A class C of leak monotonic
PFAs is said to be effectively leak monotonic if there is a procedure that, given A ∈ C and
ε > 0 terminates and outputs a horizon of ε-leak monotonicity of A.

The PFA A1 given in Figure 1a on page 7 is leak monotonic. We have the following as a
consequence of Theorem 16.

I Corollary 20. If a PFA is (effectively) leak monotonic then it is (effectively) regular-
approximable.

The following theorem allows us to construct leak monotonic PFAs from smaller leak
monotonic PFAs.

I Theorem 21. If a PFA A = (Q, δ, qs, Qf) over Σ is such that Q can be partitioned into
sets Q0, . . . , Qm such that qs ∈ Q0 and the following conditions hold:
1. For each i ≥ 1, q ∈ Qi and a ∈ Σ, post(q, a) ⊆ Qi.
2. There is a constant m > 0 such that from every state in Q0 and on every input u of

length at least m, some state outside Q0 is reachable, and
3. For i > 0, the restriction of A to each Qi, when started in any state q ∈ Qi, is leak

monotonic,
then A is leak monotonic.

4.2 Leak Complexity
In this subsection, we introduce a syntactic class of PFAs that are leak monotonic. The
syntactic class of PFAs shall be defined through the concept of leak complexity defined below.

I Definition 22. Let f : N → N be a function. We say that the leak complexity of A is
given by f (or is simply f) if for all u ∈ Σ∗, for all ` ∈ N, the number of accepting runs of A
on u having exactly ` leaks is at most f(`), i.e., |{ρ | ρ is an accepting run of A on u and
NbrLeaks(A, u, ρ) = `}| ≤ f(`).

Notice that we are only using the accepting runs to define the leak complexity. Further,
observe that if f, g are functions from N to N such that f(`) ≤ g(`) for all ` ∈ N, and the
leak complexity of A is given by f , then its leak complexity is also given by g. We try to use
the tightest function to specify the leak complexity of a PFA.

We shall be interested in PFAs whose leak complexity is given by special functions.

CSL 2018

14:12 Approximating PFAs by regular languages

q0

q1

q2

q5

q4

q3

2| 12

2| 12

2|1

0|z1|1− z

0|z1|1− z

0,1,2|1

0,1,2|1

0|1− z

1|z

0|1− z

1|z

q0

q1

q2

0| 12

0| 12

1|1

0|1
1|1

0,1|1

Figure 2 Automaton Az on the left (a) and Automaton A5 on the right (b).

I Definition 23. Let A = (Q, δ, qs, Qf) be a PFA.
A is said to have polynomial leak complexity if its leak complexity is given by a polynomial
function h.
For A, let MaxTrPr(A) be maximum probability of a leaky transition, i.e., the value
max{δ(q, a, q′) | 0 < δ(q, a, q′) < 1, q, q′ ∈ Q, a ∈ Σ}. We say that A has sub-exponential
leak complexity if there exist constants c, d > 0 such that d < 1

MaxTrPr(A) and the leak
complexity of A is c · d`.

Clearly, if A has polynomial leak complexity then it has sub-exponential leak complexity.

I Example 24. For the PFA A1 in Figure 1a on page 7, on any input, the number of accepting
runs having ` leaks is at most 1 and hence its leak complexity is constant. Figure 2a shows a
PFA Az over the input alphabet Σ = {0,1,2} that has sub-exponential leak complexity, but
not polynomial leak complexity. Here z ∈ (0, 1) is a number that is left unspecified. In the
figure, all unspecified transitions, from states q0, q1, q2, q5, on the appropriate input symbols,
go to the reject state q4 with probability 1. Both q3, q4 are absorbing states in which q3 is the
accepting state. It is not difficult to see that all accepting runs of Az on an input word have
an even number of leaks. Furthermore, for an even `, the number of accepting runs having
` leaks is exactly 2 `2 , i.e., (

√
2)`. Observe that MaxTrPr(Az) = z if z > 1

2 else it is 1− z.
Hence, Az has subexponential leak complexity iff 1− 1√

2 < z < 1√
2 . Thus, for example, Az has

sub-exponential leak complexity if z = 2
3 . On the other hand Az does not have subexponential

leak complexity if z = 3
4 . However, note that Az is leak monotonic for each z ∈ (0, 1) as

Az satisfies conditions of Theorem 21 with m = 2, Q0 = {q0, q1, q5, q2}, Q1 = {q4} and
Q2 = {q3}.

We show that every PFA that has sub-exponential leak complexity is leak monotonic.

I Theorem 25. If a PFA A over an alphabet Σ has sub-exponential leak complexity then A
is leak monotonic and hence regular-approximable.

Proof. Let A = (Q, qs, δ, Qf) be a PFA over alphabet Σ with sub-exponential leak complexity.
This means, there exist constants c, d > 0 such that d < 1

MaxTrPr(A) and the leak complexity
of A is c · d`, i.e. on every word u ∈ Σ∗ the number of accepting runs of A on u having
` leaks is bounded by c · d`. We prove the theorem by showing that A is leak monotonic
and appealing to Corollary 20. Let ε ∈ [0, 1] be such that ε > 0. Let p = d ·MaxTrPr(A).

R. Chadha, A. P. Sistla, and M. Viswanathan 14:13

Observe that 0 < p < 1 since d < 1
MaxTrPr(A) . Now, let N ∈ N be the smallest integer such

that

N >
log(c

ε·(1−p))
log 1

p

(1)

Consider any u ∈ Σ∗. Let z2 be the probability measure of accepting runs of A having at least
N leaks. The probability of any single run having ` leaks is bounded by (MaxTrPr(A))`.
Since there are at most c · d` accepting runs of A on u having ` leaks, we see that z2 ≤∑
`≥N c · d` · (MaxTrPr(A))`. Using p = d ·MaxTrPr(A), we have

z2 ≤
∑
`≥N

c · p` = c · pN ·
∑
`≥0

p`.

From this we see that z2 ≤ c · pN · 1
1−p . Now using inequality (1) and raising both its

two sides to the power of 2, after simplification, we get (1
p)N > c

ε·(1−p) , which leads to
ε > pN · c

1−p ≥ z2. Hence, we see that A is ε-leak monotonic. Clearly this holds for every
ε ∈ [0, 1] such that ε > 0. Hence A is leak monotonic. J

Observe that the proof of Theorem 25 also shows that if the (sub-exponential) leak
complexity function of A is known (or can be computed) then A is effectively regular-
approximable. Theorem 25 can be used to identify classes of PFAs that are leak monotonic.
In conjunction with Theorem 21 and Theorem 16, it can be used to identify regular-
approximable PFAs . We conclude by showing that the class of Hierarchical PFAs (HPA)s
(introduced in [9, 6]) is effectively leak monotonic.

Hierarchical PFAs (HPA)s

(HPAs), introduced in [9, 6], are defined as follows. A k-HPA A on Σ is a probabilistic
automaton whose states can be partitioned into k+ 1 levels Q0, Q1, . . . , Qk such that for any
state q and input symbol a ∈ Σ, at most one successor state is at the same level, and others are
higher level states. In other words for each q ∈ Qi and a ∈ Σ, post(q, a) ⊆ Qi ∪Qi+1 · · · ∪Qk
and |post(q, a) ∩Qi| ≤ 1. Without loss of generality, we can assume that the initial state is
at level 0. The following theorem shows that the class of HPAs are effectively leak monotonic
and hence regular-approximable.

I Theorem 26. Every k-HPA A with n-states and k > 0, has leak complexity at most
nk`k−1. Hence, the class of hierarchical probabilistic automata is effectively leak monotonic
and hence regular-approximable.

I Example 27. The automaton A1 in Figure 1a on page 7 is a 1-HPA whose leak complexity
is 1. Automaton Az in Figure 2a on page 12 is not a HPA.

Thanks to Theorem 11 and Corollary 12, the values of HPAs can be approximated and
emptiness checked under isolation. These facts are also established in [2] through an
alternative proof.

5 Ambiguity and Approximability

We now identify a large class of PFAs which are effectively leak monotonic. Any PFA A over
Σ can be viewed as a non-deterministic finite automaton NFA nfa(A) over Σ by ignoring the
probability of transitioning from one state to another: nfa(A) has the same set of states as

CSL 2018

14:14 Approximating PFAs by regular languages

A and there is a transition from state q to q′ on a in nfa(A) iff δ(q, a, q′) > 0. The degree
of ambiguity of A on word u is the degree of ambiguity of nfa(A) on word u. We will be
interested in PFAs that are polynomially ambiguous. We have the following observation.

I Proposition 28. If a PFA A has polynomial leak complexity with polynomial h(`) then A
is polynomially ambiguous with polynomial nh(n).

Proof. Let A have polynomial leak complexity with polynomial h(`). Any accepting run of
A on a word of length n can have at most n leaks. Thus the number of accepting runs of A
on a word of length n is bounded above by

∑n
`=1 h(`) ≤ nh(n). J

From the proof of Theorem 26 and Proposition 28, we can conclude that every HPA is
polynomially ambiguous. However, the converse is not true. We give an example of a linearly
ambiguous PFA that is not a HPA.

I Example 29. Consider the PFA A5 on Σ = {0,1} shown in Figure 2b on page 12. A5 is
not hierarchical. This can be seen as follows. Since S = {q0, q1} form a strongly connected
component, they must be in the same level. However, then post(q0,0) = {q0, q1} has two
successors in the same level. Next, observe that on input 0k there are only two runs that
remain in S. Thus, on input 0k there are k − 1 accepting runs. On the other hand, on input
0k1 there is exactly one run that remains in S, and this run ends in q0. Further, the number
of accepting runs on 0k1 is k. Now a general input over Σ is either u = 0k110k21 · · ·1kn or
u1. Putting the above observations together, we have the number of accepting runs on u is
k1 + k2 + · · · kn−1 + (kn − 1) and on u1 is k1 + k2 + · · · kn. Thus, A5 has linear ambiguity.

Thanks to Theorem 26 and Proposition 28, we can conclude that a k-HPA is polynomially
ambiguous with polynomial O(nk). Since the value decision problem and emptiness problem
of 2-HPAs are undecidable [8, 2], we get that the value decision problem and emptiness
problem for quadratically ambiguous PFAs is also undecidable. The emptiness problem for
quadratically ambiguous PFAs is shown to be undecidable in [16] as well. The problem of
emptiness of linearly ambiguous PFAs was left open. A close examination of the 2-HPAs
constructed in the undecidability proof of the emptiness problem for 2-HPAs established
in [2], shows that the resulting automata have only linear ambiguity (instead of quadratic
ambiguity). This observation proves that the emptiness problem of linearly ambiguous
automata is undecidable. This result (with a different proof) was also independently observed
in [13].

I Theorem 30. The emptiness problem for linearly ambiguous PFAs is undecidable.

In contrast, we will show that polynomially ambiguous automata are effectively regular-
approximable, which will imply that their value can be approximated and emptiness under
isolation be checked thanks to Theorem 11 and Corollary 12. We establish this by showing that
every polynomially ambiguous PFA has polynomial leak complexity. This is a consequence
of Lemma 32 below, which will allow us to bound leak complexity from bounds on degree of
ambiguity. We need one further definition.

I Definition 31. For a PFA A on Σ, word u ∈ Σ∗ and ` ∈ N, let accruns(A, u, `) be
the set of accepting runs of A on u with leaks ≤ `. Formally, accruns(A, u, `) is the set
{ρ | ρ is accepting and NbrLeaks(A, u, ρ) ≤ `}.

We now show that for any word u and any integer `, there is a short word v such that v
has at least as many accepting runs with at most ` leaks as u does.

R. Chadha, A. P. Sistla, and M. Viswanathan 14:15

q0 q1 q2 q3

0|1 1|1
1|1

0|1

1|1

0|1

1|1

0|1

Figure 3 Deterministic automaton A6 that is not eventually weakly ergodic.

I Lemma 32. Let A be a PFA with m states. For any word u and integer ` > 0, there is a
word v of length ≤ m+ ((`+ 1)m)m such that |accruns(A, v, `)| ≥ |accruns(A, u, `)|.

Polynomial ambiguity implies polynomial leak complexity follows from Lemma 32.

I Theorem 33. If PFA A with m states is polynomially ambiguous with polynomial p(n)
then A has polynomial leak complexity with polynomial h(`) = p(m+ ((`+ 1)m)m).

Proof. Let A be a PFA withm states. Fix an input word u and an integer `. From Lemma 32,
there is a word v such that |v| ≤ m+ ((`+ 1)m)m and |accruns(A, u, `)| ≤ |accruns(A, v, `)|.
Now accruns(A, v, `) is a subset of the accepting runs of A on input v. Since A is polynomially
ambiguous, we get accruns(A, v, `) ≤ p(|v|) = p(m+ ((`+ 1)m)m). J

Thanks to Theorem 33, we get that

I Corollary 34. The class of polynomially ambiguous PFAs is effectively regular-approximable.
The value of a polynomially ambiguous PFA can be approximated to any degree of precision
and emptiness checked under isolation.

6 Eventually Weakly Ergodic PFAs

Not all effectively regular-approximable PFAs are leak monotonic. We exhibit a class of PFAs
from the literature that is effectively regular-approximable but not leak monotonic. Recall
that a Markov Chain is ergodic if it is aperiodic and its underlying transition graph is strongly
connected. Ergodicity in the context of PFAs have been studied in [29, 23, 19]. Intuitively,
a PFA is weakly ergodic if any sequence of input symbols has only one terminal strongly
connected component and this component is aperiodic. Weak ergodicity was generalized
in [10] to define a new class of PFAs, called eventually weakly ergodic PFAs. Informally, a
PFA A is eventually weakly ergodic if its states can be partitioned into sets QT , Q1, . . . , Qr
and there is an ` such that in the transition graph on any word of length `, Q1, . . . , Qr are
the only terminal strongly connected components, and in addition, they are aperiodic. (See
Appendix F for the formal definition.) Every unary PFA turns out to be eventually weakly
ergodic [10]. The problem of checking whether a PFA is eventually weakly ergodic is also
decidable [10].

I Example 35. The PFA A3 in Figure 1c on page 7 is eventually weakly ergodic but not
leak monotonic. This can be seen by taking ` = 1, QT = ∅, Q1 = {q0, q1}. On the other hand,
the deterministic automaton A6 in Figure 3 is shown to be not eventually weakly ergodic
in [10]. Thus, the class of leak monotonic automata and eventually weakly ergodic automata
are not comparable.

Using the techniques of [10], we can show that the class of weakly ergodic PFAs is
effectively regular-approximable. (See Appendix F for the proof.)

CSL 2018

14:16 Approximating PFAs by regular languages

I Theorem 36. The class of eventually weakly ergodic PFAs is effectively regular-approxima-
ble.

Thus, we can approximate the value of eventually weakly ergodic PFAs and check emptiness
under isolation for eventually weakly ergodic PFAs. Please note that the latter result is also
given in [10].

7 Conclusions

In this paper, we addressed the problem of regular-approximability of PFAs. We showed
that regular-approximability problem is undecidable. We also showed that if a PFA is
regular-approximable then its value can be computed with arbitrary precision. We also
showed that emptiness problem is decidable for regular-approximable PFAs when the given
cut-point is isolated. We defined a class of PFAs, called leak monotonic PFAs and showed
them to be regular-approximable. For PFAs belonging to this class, we gave an effective
procedure for computing a deterministic automaton that approximates the language accepted
by the given PFA with a given minimum probability threshold. We showed that PFAs with
polynomial ambiguity as well as all HPAs are leak monotonic. We also introduced leak
complexity and showed that PFAs with sub-exponential leak complexity are leak monotonic.
We also solved an open problem showing that the emptiness problem is undecidable for PFAs
with linear ambiguity. Finally, we showed that eventually weakly ergodic PFAs are also
regular-approximable. As part of future work, it will be interesting to investigate algorithms
to decide if a given PFA has sub-exponential leak complexity. The decidability of determining
whether a given PFA is leak monotonic and checking emptiness under isolation for general
PFAs are some other open problems.

References
1 C. Baier and M. Größer. Recognizing ω-regular languages with probabilistic automata. In

20th IEEE Symposium on Logic in Computer Science, pages 137–146, 2005.
2 Y. Ben and A. P. Sistla. Model checking failure-prone open systems using probabilistic

automata. In 13th International Symposium on Automated Technology for Verification
and Analysis, volume 9364 of Lecture Notes in Computer Science, pages 148–165. Springer,
2015.

3 A. Bertoni. The solution of problems relative to probabilistic automata in the frame of the
formal languages theory. In GI Jahrestagung, pages 107–112, 1974.

4 A. Bertoni. Mathematical methods of the theory of stochastic automata. In 3rd Symposium
of Mathematical Foundations of Computer Science, volume 28 of Lecture Notes in Computer
Science, pages 9–22. Springer, 1975.

5 R. Chadha, A. P. Sistla, and M. Viswanathan. Probabilistic Büchi automata with non-
extremal acceptance thresholds. In 11th International Conference on Verification, Model
checking and Abstract Interpretation, pages 103–117, 2010.

6 R. Chadha, A. P. Sistla, and M. Viswanathan. Power of randomization in automata on
infinite strings. Logical Methods in Computer Science, 7(3):1–22, 2011.

7 R. Chadha, A. P. Sistla, M. Viswanathan, and Y. Ben. Decidable and expressive classes
of probabilistic automata. In 18th International Conference on Foundations of Software
Science and Computation Structures, volume 9034 of Lecture Notes in Computer Science,
pages 200–214. Springer, 2015.

8 R. Chadha, A. Prasad Sistla, and M. Viswanathan. Emptiness under isolation and the value
problem for hierarchical probabilistic automata. In Foundations of Software Science and
Computation Structures - 20th International Conference, FOSSACS 2017, volume 10203 of
Lecture Notes in Computer Science, pages 231–247, 2017.

R. Chadha, A. P. Sistla, and M. Viswanathan 14:17

9 R. Chadha, A.P. Sistla, and M. Viswanathan. Power of randomization in automata on
infinite strings. In 20th International Conference on Concurrency Theory, pages 229–243,
2009.

10 R. Chadha, A.P. Sistla, and M. Viswanathan. Probabilistic automata with isolated cut-
points. In 38th International Symposium on Mathematical Foundation of Computer Science,
pages 254–265, 2013.

11 A. Condon and R. J. Lipton. On the complexity of space bounded interactive proofs
(extended abstract). In 30th Annual Symposium on Foundations of Computer Science,
pages 462–467, 1989.

12 W. Czerwinski and S. Lasota. Regular separability of one counter automata. In 32nd IEEE
Symposium on Logic in Computer Science, pages 1–12, 2017.

13 L. Daviaud, M. Jurdzinski, R. Lazic, F. Mazowiecki, G. A. Pérez, and James Worrell. When
is containment decidable for probabilistic automata? In 45th International Colloquium on
Automata, Languages, and Programming, 2018. To appear.

14 N. Fijalkow, H. Gimbert, E. Kelmendi, and Youssouf Oualhadj. Deciding the value 1
problem for probabilistic leaktight automata. Logical Methods in Computer Science, 11(2),
2015.

15 N. Fijalkow, H. Gimbert, and Y. Oualhadj. Deciding the value 1 problem for probabilistic
leaktight automata. In 27th IEEE Symposium on Logic in Computer Science, pages 295–
304, 2012.

16 N. Fijalkow, C. Riveros, and J. Worrell. Probabilistic automata of bounded ambiguity. In
the International Conference on Concurrency Theory, pages 19:1–19:14, 2017.

17 N. Fijalkow and M. Skrzypczak. Irregular behaviours for probabilistic automata. In Reach-
ability Problems, pages 33–36, 2015.

18 H. Gimbert and Y. Oualhadj. Probabilistic automata on finite words: Decidable and
undecidable problems. In 37th International Colloquium on Automata, Languages and
Programming, pages 527–538, 2010.

19 J. Hajnal and M. S. Bartlett. Weak ergodicity in non-homogeneous markov chains. Math-
ematical proceedings of the Cambridge Philosophical Society, 54(02):233–246, 1958.

20 O. H. Ibarra and B. Ravikumar. On sparseness, ambiguity and other decision problems for
acceptors and transducers. In 3rd Annual Symposium on Theoretical Aspects of Computer
Science, pages 171–179, 1986.

21 G. Jacob. Un algorithme calculant le cardinal, fini ou infini, des demi-groupes de matrices.
Theoretical Computer Science, 5(2):183–204, 1977.

22 A. Mandel and I. Simon. On finite semigroups of matrices. Theoretical Computer Science,
5(2):101–111, 1977.

23 A. Paz. Definite and quasidefinite sets of stochastic matrices. Proceedings of the Amer-
ican Mathematical Society, 16(4):634–641, 1965. URL: http://www.jstor.org/stable/
2033893.

24 A. Paz. Introduction to Probabilistic Automata. Academic Press, 1971.
25 T. Place and M. Separation for dot-depth two. In 32nd IEEE Symposium on Logic in

Computer Science, pages 1–12, 2017.
26 M. O. Rabin. Probabilistic automata. Information and Control, 6(3):230–245, 1963.
27 C. Reutenauer. Propriétés arithmétiques et topologiques de séries rationnelles en variables

non commutatives, 1997. Thése troisiéme cycle, Université Paris VI.
28 A.Weber and H. Seidl. On the degree of ambiguity of finite automata. Theoretical Computer

Science, 88(2):325–349, 1991.
29 J. Wolfowitz. Products of indecomposable, aperiodic, stochastic matrices. Proceedings of

the American Mathematical Society, 14(5):733–737, 1963.

CSL 2018

http://www.jstor.org/stable/2033893
http://www.jstor.org/stable/2033893

14:18 Approximating PFAs by regular languages

A Proof of Theorem 9

Proof. Let SomeApprox be the set of all PFAs A such that there is a non-trivial rational
pair (x, y) such that (A, x, y) ∈ Approx. We show that SomeApprox is Σ0

2-hard where Σ0
2

is the second level in the arithmetical hierarchy. This automatically implies that Approx is
not even recursively enumerable; for if it were recursively enumerable this would imply that
SomeApprox is also recursively enumerable which will be a contradiction.

Let ValueNot1 = {A | A is a PFA and value(A) < 1}. It has been shown in [10] that
ValueNot1 is Σ0

2-complete. We prove that SomeApprox is Σ0
2-hard by reducing ValueNot1

to SomeApprox. Our reduction, given a PFA A over Σ, constructs a PFA B such that
value(A) < 1 iff B ∈ SomeApprox. Let A = (Q, qs, δ, Qf) be any PFA over some alphabet Σ.
Now, we define B as follows. If ∃u ∈ Σ∗ such that PA(u) = 1 then B is simply the PFA A2
given in Figure 1b on page 7; observe that in this case, A /∈ ValueNot1, and B /∈ SomeApprox
as shown by Theorem 8. Note that the above condition can be checked effectively thanks to
Proposition 4. If there is no such a string u, then we define B to be a PFA over the alphabet
Σ′ = Σ ∪ {]} defined as follows. B = (Q′, qs, δ′, Qf) where Q′ = Q ∪ {qr} where qr /∈ Q
and δ′ defined as follows: δ′(q, a, q′) = δ(q, a, q′) for q, q′ ∈ Q and a ∈ Σ; δ′(q,], qs) = 1 for
q ∈ Qf ; δ′(q,], qr) = 1 for q /∈ Qf ; δ′(qr, a, qr) = 1 for all a ∈ Σ′. Now, we make the following
observations. For any u ∈ Σ∗, the acceptance probabilities of u by A and B are the same.
Now consider any string v of the form u1]u2]...uk] where each ui ∈ Σ∗, for 1 ≤ i ≤ k. It is
easy to see that PB(v) =

∏
1≤i≤k PA(ui). Also, value(B) = value(A).

Now, we show that A ∈ ValueNot1 iff B ∈ SomeApprox. Suppose A ∈ ValueNot1. In this
case, take any x, y ∈ (0, 1) such that value(A) < x < x + y < 1. Clearly such x, y exist,
since value(A) < 1. Since value(B) = value(A), we have value(B) < x < x + y < 1. Clearly
L>x(B) = L≥x+y(B) = ∅. Since the empty set is a regular set, we see that B is approximable
with respect to (x, y) and hence B ∈ SomeApprox. Now, assume A /∈ ValueNot1. This means
value(A) = 1. Now, we have two cases. In the first case, ∃u ∈ Σ∗ such that PA(u) = 1.
In this case, by construction, B is the automaton A2 which is not in SomeApprox. The
second case is when there is no such string u. This means, for each i > 0,∃ui ∈ Σ∗ such
that PA(ui) > (1 − 1

2i). Since PB(ui) = PA(ui), we have PB(ui) > (1 − 1
2i). We show

that B /∈ SomeApprox by contradiction. Suppose B ∈ SomeApprox. This means ∃x, y and a
regular language over L ⊆ (Σ′)∗ such that 0 < x < x+ y < 1 and L≥x+y(B) ⊆ L ⊆ L>x(B).
Since L is a regular language, there exists an integer N > 0 satisfying Lemma 2. Now,
let z1 = max{PA(u′) | u′ ∈ Σ∗, |u′| ≤ N}. Fix an integer k > 0 such that (z1)k ≤ x. Now,
let v ∈ Σ∗ be any string such that v = ui for some i > 0 such that (PA(v))k ≥ x + y.

Clearly such a string v exists. Now consider the string w = (v])k in (Σ′)∗. Now, we have
PB(w) = (PA(v))k ≥ x+ y. Hence w ∈ L. Now applying Lemma 2, we see that there exists
a string w′ = w1]w2] · · ·wk] such that wi ∈ Σ∗,|wj | ≤ N , for 1 ≤ j ≤ k and w′ ∈ L. Clearly,
PA(wi) ≤ z1, for each i, 1 ≤ i ≤ k. Now, PB(w) =

∏
1≤i≤k PA(wi) ≤ (z1)k. Since (z1)k ≤ x,

we see that PB(w) ≤ x which contradicts our assumption that L ⊆ L>x(B). J

B Proof of Theorem 18

Proof. Let SomeLeakMon be the set of all PFAs A such that there is an ε such that
(A, ε) ∈ LeakMon. We show that SomeLeakMon is Σ0

2-hard where Σ0
2 is the second level in

the arithmetical hierarchy, which implies that LeakMon is not even recursively enumerable.
As in the proof of Theorem 9, ValueNot1 = {A | A is a PFA and value(A) < 1} which is a
Σ0

2-hard problem. We can conclude the theorem by reducing ValueNot1 to SomeLeakMon.

R. Chadha, A. P. Sistla, and M. Viswanathan 14:19

Our reduction, given a PFA A = (Q, qs, δ, Qf) over Σ, constructs a PFA B such that
value(A) < 1 iff B ∈ SomeLeakMon. Let A = (Q, qs, δ, Qf) be any PFA over some alphabet
Σ. Now, we define B as follows. If ∃u ∈ Σ∗ such that PA(u) = 1 then B is simply the
PFA A3 given in Figure 1c on page 7; observe that in this case, A /∈ ValueNot1, and
B /∈ SomeLeakMon.

If there is no such a string u, then we define B to be a PFA over the alphabet Σ as
follows. B = (Q × {1, 2}, (qs, 1), δ′, Qf × {1, 2}) where δ′((q, i), a, (q′, j)) = 1

2δ(q, a, q
′) for

q, q′ ∈ Q, a ∈ Σ and i, j ∈ {1, 2}.
Now, we make the following observations. For any u ∈ Σ∗, the acceptance probabilities

of u by A and B are the same. Thus, value(B) = value(A). Furthermore, every accepting
run of B on u has |u| leaks. Using these observations, we shall show that A ∈ ValueNot1 iff
B ∈ SomeLeakMon.

SupposeA ∈ ValueNot1. Then there must exist ε0 such that value(B) = value(A) < ε0 < 1.
As no word is accepted by B with probability ≥ ε0, B is ε0-leak monotonic with horizon
Nε0 = 0.

Suppose A 6∈ ValueNot1. Then value(A) = 1. As there is no word accepted by A with
probability 1 and Σ is finite, we get that there must be an infinite sequence of non-empty
words u1, u2, . . . such that for each i, |ui| < |ui+1| and PA(ui) > 1 − 1

i . Suppose, for
contradiction, B ∈ SomeLeakMon. This means that there must exist ε0 ∈ (0, 1) and Nε0

such that B is ε0-leak monotonic with horizon Nε0 . Please note that as ε0 < 1, there must
exist a j0 such that 1− 1

i > ε0 for all i ≥ j0. Fix k = max(Nε0 , j0). Consider the word uk.
We have that |uk| ≥ k ≥ Nε0 and every run of B on uk has exactly |k| leaks. As Nε0 is a
horizon of ε0-leak monotonicity we must have PA(uk) < ε0. This contradicts the fact that
PA(uk) = 1− 1

k > ε0. J

C Proof of Theorem 21

Proof. For i > 0, q ∈ Qi, let Ai,q be the restriction of A to the set Qi of states with starting
state q. For any ε ∈ (0, 1), let Nε > 0 be a constant such that, for each i > 0, q ∈ Qi and
each u ∈ Σ∗, the measure of the set of accepting runs of Ai,q on u, having at least Nε leaks,
is less than ε. Such a constant Nε exists since each Ai,q is leak monotonic. Now let p be the
minimum of the probabilities of reaching a state in Q \ Q0, from any state in Q0, on any
input string of length exactly m, where m is the constant specified in the theorem. Clearly
p > 0. Now, fix an ε ∈ (0, 1). We specify a constant Mε such that on every u ∈ Σ∗, the
measure of the set of accepting runs of A on u, having at least Mε leaks, is less than ε. Let
n′ be the smallest integer such that (1− p)n′

< ε
2 and let L ε

2
= m · n′. Observe that for any

u ∈ Σ∗ of length at least L ε
2
, δu(qs, Q0) < ε

2 , i.e., the probability that A is in some state in
Q0 after u is < ε

2 .

Now, let Mε = L ε
2

+N ε
2
. We show that Mε satisfies the desired property. Now, consider

any input string u ∈ Σ∗. If |u| < Mε then the measure of the set of all runs of A on u having
at least Mε leaks is zero. So, assume that |u| ≥Mε. Let u1 be the prefix of u of length L ε

2

and u2 ∈ Σ∗ be the suffix of u following u1, i.e., u = u1u2. For any i > 0, q ∈ Qi, let pq be
the probability measure of the set of all runs of Ai,q, on input u2, having at least N ε

2
leaks.

Observe that pq < ε
2 . Now, we see that the probability measure of the set of all accepting

runs of A on u, having at least Mε leaks, is bounded by ε
2 +

∑
q∈Q\Q0

δu1(qs, q) · pq. In the
above expression, the first term in the sum bounds the probability of all such runs that
remain entirely with in Q0 and the second term bounds the probability of all such runs that
end in a state outside Q0. Since pq < ε

2 for q ∈ Q \Q0 and since
∑
q∈Q\Q0

δu1(qs, q) ≤ 1, we
see that the probability measure of the set of all accepting runs of A on u, having at least
Mε leaks, is less than ε. J

CSL 2018

14:20 Approximating PFAs by regular languages

D Proof of Theorem 26

Proof. The theorem is an easy consequence of Theorem 25, Theorem 16 and the following
claim:

I Claim. Every k-HPA A with n-states and k > 0, has leak complexity at most nk`k−1.

Proof. We prove this claim by induction on k. The base case is when k = 1. In this case,
any accepting run that has ` leaks, either completely stays at level 0 or goes from a level
0 state to a higher level state making a non-leaky transition, or it goes to a level 1 state
exactly after the `th leak (this is so because there can not be any leaks from level 1 states).
Clearly, there can be at most m such runs that end in a level 1 accepting state, where m is
the number of level 1 states. Thus, the total number of such runs can be at most 1 +m ≤ n,
which is a constant independent of `.

Now, assume that the claim is true for any k > 0. We show that that claim holds for
(k + 1)-HPA as well. Consider a (k + 1)-HPA A on an input alphabet Σ. Let m be the total
number of states at levels 1 and higher. Consider an input u ∈ Σ∗. Let X be the set of
accepting runs of A on an input u, having ` > 0 leaks. Let `′ be the maximum of the number
of leaks from a level 0 state in any of the runs in X. Observe that `′ ≤ `. The set X can be
partitioned into `′ + 1 disjoint sets Xb, X1, ..., X`′ , where Xb is a singleton consisting of the
run that stays at level 0 or transitions from a level 0 state to a higher level state using a
non-leaky transition, and Xi are the set of runs that made a transition from a level 0 state to
a higher level state on the ith leak, for 1 ≤ i ≤ `′. For each i, 1 ≤ i ≤ `′, let ui be the prefix
of the input after which the ith leak occurred, and vi be the suffix of u following ui. All runs
in Xi have the same prefix, say ρi, until the level 0 state from which the ith leak occurred
and they transition to one or more of the m higher level states after this leak. Thus, we can
partition Xi into mi ≤ m disjoint sets Xi,1, ..., Xi,mi such that all runs in Xi,j transition to
the same higher level state, say qi,j , after the ith leak, which is immediately after ρi. Now
Xi,j is simply the set of runs having prefix ρi followed by the set X ′i,j of all accepting runs
of A starting from the state qi,j on the input vi and having `− i leaks. Since qi,j is a higher
level state, the restriction of A having qi,j as a start state is a k′-HPA for some k′ ≤ k. Now
by the induction hypothesis, we see that the number of runs in X ′i,j and hence those in Xi,j

is bounded by nk · (`− i)k−1. From this we see that the number of runs in Xi is bounded by
m · nk · (`− i)k−1. From this we see that |X| ≤ 1 +

∑
1≤i≤`′ m · nk · (`− i)k−1. Since `′ ≤ `,

we get |X| ≤ 1 +m · nk · `k ≤ nk+1`k. J

The Theorem follows. J

E Proof of Lemma 32

Proof. Fix u and `. Let v be the word of the shortest length such that |accruns(A, v, `)| ≥
|accruns(A, u, `)|. We will show that length of v is ≤ m+ ((`+ 1)m)m. Observe that the set
of finite non-empty prefixes of accruns(A, v, `) can be arranged as a tree T as follows. The
initial state qs is the root of the tree. If ρq is a prefix of some run in accruns(A, v, `) then ρq
is a child of ρ. Attach to each node ρ of T, two labels: a state label st(ρ) which is the last
state of ρ and a leak label lk(ρ) which is the number of leaks in ρ. For each depth i, let ci
be the set of nodes at depth i. We say that a leak occurs at node ρ if there is a state q′ such
that ρq′ is in the tree T and lk(ρq′) = lk(ρ) + 1. Observe that if there is a leak at a node ρ
at depth i with state label ρ then there is a leak at every node ρ′ at depth i with state label
q. We say that a leak occurs at depth i if a leak occurs at some node ρ ∈ ci. We show that
leaks in T cannot be too far apart.

R. Chadha, A. P. Sistla, and M. Viswanathan 14:21

I Claim. Let i, j ≤ |v| be such that j − i > mm then there is a i ≤ k ≤ j such that a leak
occurs at depth k.

Proof. We proceed by contradiction. Assume that there are i and j with j− i > mm with no
leak occurring at any depth k between i and j. Consider any node ρ ∈ ci. By our assumption,
for each i ≤ k ≤ j, there is a unique descendant of ρk of ρ. The leak label of ρk is exactly the
leak label of ρ. Furthermore, for any two nodes ρ and ρ′ of ci with the same state labels, the
state labels of ρk and ρ′k are exactly the same. From this, it is easy to see that there are k1
and k2 with i ≤ k1 < k2 ≤ j such that for each node ρ of ci, the state and leak labels of ρk1

and ρk2 are exactly the same. Let w be the string obtained from u by deleting the subword
u[k1 + 1 : k2] from v. It is easy to see that accruns(A, w, `) ≥ accruns(A, v, `) contradicting
the minimality of v. J

A similar argument shows that there must be an i ≤ m such that there is a leak at depth i.
Thus, we can conclude the Lemma if we can show that there are at most (`+ 1)m depths at
which a leak can occur; this is so due to the fact that the first depth at which a leak occurs
is in the first m input symbols, and there are at most (`+ 1)m depths at which leaks can
occur and there are at most mm input symbols between two successive such depths.

I Claim. There are at most (`+ 1)m depths at which a leak can occur.

Proof. For each depth i, we define a function smli : Q→ {⊥, 1, 2, . . . , `} as follows

smli(q) =
{
⊥ if {ρ | ρ ∈ ci, st(ρ) = q, lk(ρ) > 0} = ∅
n if n = min{j > 0 | ∃ρ ∈ ci, st(ρ) = q and lk(ρ) = j}

.

Since there are only (` + 1)m possible functions smli, it suffices to show that for any two
depths i < j such that there is a leak at some depth i ≤ k < j, we have that smli 6= smlj .
Observe that if there is no leak up-to depth i, then the latter is trivially true. So, we consider
the case when there has been at least one leak before depth i.

To each depth j such that there is a leak before depth j, we associate an integer
1 ≤ levelj ≤ `+ 1. If there is no leak at depth j, levelj = `+ 1. Otherwise levelj is the smallest
integer 1 ≤ r ≤ `+ 1 such there is a leak at node ρ of cj with leak label r.

Fix j such that there is a leak before depth j. We make the following two observations:
(a) For each r < levelj , we have that |sml−1

j ({1, 2, . . . , r})| ≥ |sml−1
j+1({1, 2, . . . , r})|. This

follows from the fact that there is a surjection g from the set sml−1
j ({1, 2, . . . , r}) to the

set sml−1
j+1({1, 2, . . . , r}) defined as follows. Let q ∈ sml−1

j ({1, 2, . . . , r}). The definition
of sml implies that there is a unique state q′ such that δ(q, v[j], q′) = 1. Let g(q) = q′.

The function g is easily seen to be a surjection.
(b) If there is a leak at depth j then |sml−1

j ({1, 2, . . . , levelj})| > |sml−1
j+1({1, 2, . . . , levelj})|.

This can be concluded as follows. Let A ⊆ sml−1
j ({1, 2, . . . , levelj)} be the set of states

q such that there is no leak at any node ρ ∈ cj with state label q. Clearly A is a
proper subset of sml−1

j ({1, 2, . . . , levelj}). We can again define a surjection g from A onto
|sml−1

j+1({1, 2, . . . , levelj})| as in (a) above.
Now, let i < j be such that such that there is a leak at some depth i ≤ k < j. Let
r = min(levelt | i ≤ t < j). Observations (a) and (b) above imply that |sml−1

i ({1, 2, . . . , r})| >
|sml−1

j ({1, 2, . . . , r})|. Thus, smli 6= smlj . J

This concludes the proof of the Lemma. J

CSL 2018

14:22 Approximating PFAs by regular languages

F Eventually weakly ergodic PFAs are regular-approximable

We recall the formal definition of eventually weakly ergodic PFAs.

I Definition 37. A PFA A = (Q, δ, qs, Qf) is said to be eventually weakly ergodic if there is a
partition QT , Q1, . . . , Qr of Q and a natural number ` > 0 such that the following conditions
hold:

For each word u of length `, each 1 ≤ i ≤ r and state qi ∈ Qi, post(qi, u) ⊆ Qi.
For each word u of length ` and each 1 ≤ i ≤ r, there exists a state qui ∈ Qi such that
qui ∈ post(qi, u) for each qi ∈ Qi.
For each word u of length ` and each state q ∈ QT , post(q, u) ∩ (∪1≤j≤rQj) 6= ∅.

It is shown in [10] that the acceptance probability of each word u can be approximated by
a short word v. In order to describe this result, we recall the following definition from [10]:

I Definition 38. Given an alphabet Σ and natural numbers `, `′ > 0 such that `′ divides `,
let c(`,`′) : Σ∗ → Σ∗ be defined as follows.

c(`,`′)(u) =
{
u if |u| < `′ + 2`;
u0u1v1 if u = u0u1wv1, |u0| < `′, |u1| = `, w ∈ (Σ`′)+ and |v1| = `

.

I Remark. Observe that c(`,`′)(·) is well defined. If |u| ≥ `′ + 2` then there are unique
u0, u1, w, v1 such that u = u0u1wv1, |u0| < `′, |u1| = `, w ∈ (Σ`′)+, |v1| = `.

The following is shown in [10].

I Lemma 39. Given an eventually weakly ergodic PFA A = (Q, δ, qs, Qf) and y > 0, there
are ` > 0 and `′ > 0 s.t. `′ divides ` and

∀u ∈ Σ∗. |PA(u)− PA(c(`,`′)(u))| < y

2 .

Furthermore, if y is rational then `, `′ can be computed from A and y.

Given x, y, Lemma 39 can be used to show that an eventually weakly ergodic PFA A is
regular-approximable with respect to (x, y). The proof proceeds as follows. First, we compute
`′, ` as given in Lemma 39. Next, we construct a regular language L that approximates
L>x(A) as follows. L is the union of two regular languages Lshort and Llong. Lshort = {u ∈
Σ∗ | |u| < `′ + 2`,PA(u) > x}. It is easy to see that Lshort is finite and hence regular.

We construct Llong by constructing a NFA B that recognizes Llong. The set of states of B
is a union of four sets Q0, Q1, Q2, Q3 defined as follows:

Q0 = {u0 ∈ Σ∗ | |u0| < `′}.
Q1 = {(u0, u1) ∈ Σ∗ | |u0| < `′, |u1| ≤ `}.
Q2 = ∅ if `′ = 1 else Q2 = {(u0, u1, i) ∈ Σ∗ | |u0| < `′, |u1| = `, 1 ≤ i ≤ `′ − 1}.
Q3 = {(u0, u1, v1) ∈ Σ∗ | |u0| < `′, |u1| = `, |v1| ≤ `}.

The transition relation of B is defined as follows. For each input symbol a:
For each u0 ∈ Q0, there is a transition from u0 to (u0, a) ∈ Q1 on a. Furthermore, there
is also a transition from u0 to u0a if |u0a| < `′.

For each (u0, u1) ∈ Q1 such that |u1| < `, there is a transition from (u0, u1) to (u0, u1a)
on a.
For each (u0, u1) ∈ Q1 such that |u1| = `, there are two transitions on input a:
1. There is a transition to (u0, u1, a) ∈ Q3 on a.
2. If `′ = 1 then there is a transition from (u0, u1) to itself on a. If `′ > 1 then there is a

transition from (u0, u1) to (u0, u1, 1) ∈ Q2 on a.

R. Chadha, A. P. Sistla, and M. Viswanathan 14:23

For each (u0, u1, i) ∈ Q2 such that i < `′ − 1, there is a transition to (u0, u1, i+ 1) ∈ Q2
on input a.
For each (u0, u1, `

′ − 1) ∈ Q2, there is a transition to (u0, u1) ∈ Q1 on input a.
For each (u0, u1, v1) ∈ Q3 such that |v1| < `, there is a transition to (u0, u1, v1a) ∈ Q3
on input a.
There are no other transitions of B.

The initial state of B is the empty string λ. The set of final states of B is the set:

{(u0, u1, v1) ∈ Q3 | |v1| = `,PA(u0u1v1) ≥ x+ y

2}.

Thanks to Lemma 39, it is easy to see that L≥x+y(A) ⊆ L ⊆ L>x(A).

CSL 2018

	Introduction
	Preliminaries
	Approximability and Value problem
	Regular Approximability.
	Value Problem and Emptiness under isolation

	Leak monotonicity and complexity
	Leak Monotonicity
	Leak Complexity

	Ambiguity and Approximability
	Eventually Weakly Ergodic PFAs
	Conclusions
	Proof of Theorem 9
	Proof of Theorem 18
	Proof of Theorem 21
	Proof of Theorem 26
	Proof of Lemma 32
	Eventually weakly ergodic PFAs are regular-approximable

