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Abstract
Considering resource usage is a powerful insight in the analysis of many phenomena in the
sciences. Much of the current research on these resource theories focuses on the analysis of
specific resources such quantum entanglement, purity, randomness or asymmetry. However, the
mathematical foundations of resource theories are at a much earlier stage, and there has been no
satisfactory account of quantitative aspects such as costs, rates or probabilities.

We present a categorical foundation for quantitative resource theories, derived from enriched
category theory. Our approach is compositional, with rich algebraic structure facilitating calcu-
lations. The resulting theory is parameterized, both in the quantities under consideration, for
example costs or probabilities, and in the structural features of the resources such as whether
they can be freely copied or deleted. We also achieve a clear separation of concerns between
the resource conversions that are freely available, and the costly resources that are typically the
object of study. By using an abstract categorical approach, our framework is naturally open to
extension. We provide many examples throughout, emphasising the resource theoretic intuitions
for each of the mathematical objects under consideration.

2012 ACM Subject Classification Theory of computation → Logic, Theory of computation →
Categorical semantics

Keywords and phrases Resource Theory, Enriched Category, Profunctor, Monad, Combinatorial
Species, Multicategory, Operad, Bimodule

Digital Object Identifier 10.4230/LIPIcs.CSL.2018.32

Acknowledgements This work was supported by Institute for Information & communications
Technology Promotion(IITP) grant funded by the Korea government(MSIT) (No.2015-0-00565,
Development of Vulnerability Discovery Technologies for IoT Software Security). We would like
to thank Bob Coecke, Tobias Fritz and Rob Spekkens for enlightening discussions about resource
theories. We would also like to thank the anonymous referees for their feedback.

1 Introduction

The importance of analyzing phenomena from the perspective of resource conversions and
consumption is an insight that pervades many disciplines. Logicians have long understood
the significance of this point of view. For example, strong resource based intuitions underlie
linear logic [14] and the resource and differential lambda calculi [2, 6].

In the natural sciences, many aspects of physics are now investigated using what are
loosely termed resource theories. There are many different resource theories, for example, for
quantum information alone, researchers have considered a multitude of possibilities, including
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32:2 Quantitative Foundations for Resource Theories

asymmetry [24], non-uniformity [15], athermality [3] and superposition [29]. Much of the
current work on resource theories focuses on specific situations. An exception is [4], where a
pleasing categorical abstraction of resource theories is proposed.

In order to facilitate discussions, we describe a very simple culinary example, which
hopefully does not require any domain specific expertise. Consider the “recipe”:

egg + egg + cream + sugar→ custard (1)

We read this as saying if we take two eggs, a standard unit of both cream and sugar, we
can produce one unit of custard. Obviously we would like to combine such conversions, for
example as a second step, we may want to combine our custard with an apple pie to form a
pleasant dessert. Therefore a model of resource conversions should be compositional.

The recipe (1) already encodes some simple quantitative data about resources - two eggs
are required as an input. In this paper we are interested not in quantifying the resources
themselves, but in adding the ability to provide quantitative data about the conversions that
can take place. For example:

There may be a cost to producing custard, in elapsed time, energy consumed, or simply
in paying a chef to do the cooking.
Producing custard is unfortunately probabilistic, the custard may split or get burnt
during cooking. We may therefore wish to quantify the success probability of a conversion
taking place.
If we are running a restaurant we may be interested in the rate of production so that we
can keep our customers happy.

One can imagine quantifying similar features for chemical and biological reactions, economic
behaviour, network communications, physical interactions and so on. Refining these ideas,
resource theories typically separate resources into “free” resources conversions that are readily
available, and “costly” processes that are often the focus of attention. An abstract model of
resources should provide a clear separation of concerns between these two classes of resources.

Although some specific quantitative elements of resource theories are touched upon
towards the end of [4], the approach is ad-hoc and no general purpose account of quantitative
aspects is provided. They also fix the structural aspects of resources once and for all, rather
than identifying this as a parameter of their theory. We provide a more general framework
that allows variation in both the quantitative and structural aspects of resource theories.

We propose a foundation for quantitative resource theories, in which quantitative data
can be attached to resource conversions. Our approach is based on two central ideas:
1. Exploiting enriched category theory allows us to incorporate quantitative data in a

categorical framework. This is a classical idea, originating in Lawvere’s seminal paper on
generalized metric spaces [22]. By varying the base of enrichment, we can then adjust
our quantities to the needs of a given application.

2. More recent theory on generalized algebraic structures [17, 23, 9] allows us to incorporate
structural aspects of resources, such as whether they can always be deleted, or copied, or
if the order in which they are provided matters. These models of generalized algebraic
structures are closely related to relational models of linear logic, and many of the structures
we exploit can intuitively be viewed as generalized binary relations.

By successfully combining these two elements, and systematically applying categorical
methods, a satisfactory mathematical theory emerges. Pleasingly, many meaningful resource
theoretic features emerge naturally as standard categorical structures such as monads,
profunctors and bimodules.
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Providing a general purpose foundation for quantitative resource theories opens up the
opportunity for the unification and transfer of ideas between many fields of mathematics and
the sciences. It also allows us to analyze such models in the abstract, letting us compare
theories and understand their essential features, uncluttered by application specific details.
At this level of abstraction, unexpected connections become apparent, for example there
is clearly a link with Pavlovic’s quantitative formal concept analysis [27] that should be
explored.

1.1 Features
We highlight the following key features of our framework:

Modularity: Our approach is parametric in two key directions. Firstly, how resource
conversions are quantified can be configured to suit application needs, for example
probabilities, rates or costs. Secondly, we can choose the structural aspects of resources,
does their order matter? Can they be copied or deleted?
Compositionality: The ability to compose and combine resources is intrinsic to our
categorical approach. As we develop the underlying mathematics a great deal of algebraic
structure emerges. This structure enables a calculational approach to reasoning about
resource theories.
Separation of concerns: We provide a clear separation between the “free” resource
conversions that are readily available to everybody, and the “costly” conversions that are
typically the main object of study.
Extensibility: A categorical framework is naturally open to further extensions. This is
a necessary feature of any realistic approach to quantifying resources. Given the breadth
of potential applications, it is unrealistic to expect to anticipate every possible model of
resources, their composition and quantification.
Practicality: Although we work with abstractions such as enriched categories, monads
and bicategories, in the special cases we deal with they have simple concrete descriptions
as special sorts of matrices. This means that calculations in particular instances of
our framework should be straightforward, and will not require advanced mathematical
techniques.

1.2 Contribution
We outline our contribution:

We provide a consistent resource theoretic interpretation of all the mathematical structure
under consideration, building upon classical ideas of Lawvere [22]. This begins with
material that will be familiar to some in the community, as we introduce mathematical
background in sections 2 and 3, and continues with the newer concepts in later sections.
In section 4 we give concrete descriptions of a hierarchy of five different free constructions
on quantale enriched categories, that can be used to model the structural aspects of
resources.
Also in section 4, we show that each of the monads corresponding to the hierarchy of free
constructions distributes over the free cocompletion monad. This allows us to extend our
notions of resource interaction with new structural features.
In section 5 we demonstrate how the resulting comonads yield “thin” variations on the
notion of multicategory or operad, suitable for quantitative reasoning.
In section 6 we show bimodules are the correct mathematical framework for incorporating
freely available conversions requiring multiple components.

CSL 2018



32:4 Quantitative Foundations for Resource Theories

In section 7 we address practical methods for closing resource conversions under composi-
tion in various ways. We establish that these constructions are canonical, by showing
that each of them yields a free internal monad in an appropriate bicategory.

2 Quantale Enriched Categories

This section sets up standard technical background and notation. Throughout the paper,
we aim for a self contained account with respect to enriched category theory. We will
assume some basic knowledge of category theory, at the level of categories, functors, natural
transformations, and (co)monads and their (co)Kleisli categories. The ideas in this section
are well known, and the basic resource theoretic interpretations will be familiar to some in
the community.

Throughout the document, we will specialize definitions to our situation of interest,
without spelling out the details in full generality, as this will often significantly reduce the
complexity involved. This applies to notions such as enriched categories, free constructions,
bimodules and internal monads that occur in later sections. Experts will be able to recover
our definitions from the more abstract formulations.

2.1 Quantales
We will use quantales to describe the abstract mathematical structure needed to quantify
the costs of resource conversions.

I Definition 1 (Quantale). A quantale is a complete join semilattice with a monoid
structure (⊗, k) such that the following axioms hold 1:

p⊗

(∨
i

qi

)
=
∨
i

p⊗ qi and
(∨

i

pi

)
⊗ q =

∨
i

pi ⊗ q

A commutative quantale is a quantale whose underlying monoid is commutative. All
the quantales we consider in this paper will be commutative. Throughout, we shall use the
symbol Q to denote an arbitrary commutative quantale.

The structure of a commutative quantale has a clear resource theoretic interpretation, with
two key components:
1. The monoid structure allows us to combine quantities across the different steps of a

process or algorithm, for example costs, success probabilities or connection strengths.
2. The join semilattice structure is then an optimizer. Having calculated aggregate values

for various candidate procedures to achieve a desired aim, we can then quantify the
best value attainable. For example, this might be the cheapest price, highest success
probability or best connection strength achievable.

We introduce four quantales that will be used repeatedly in examples throughout the paper.

I Example 2. The Boolean quantale B has the two Boolean truth values as its underlying
set, with logical disjunction and conjunction providing the join semilattice and monoid
structure respectively.

1 Sometimes the term unital quantale is used, but we will have no interest in the case without a unit.
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I Example 3. The interval quantale I has underlying set the closed real interval [0, 1]. The
join semilattice structure is given by the usual supremum, and the binary monoid operation
takes the minimum of two elements.

I Example 4. The Lawvere quantale L has underlying set the extended positive reals [0,∞]
with the join semilattice structure given by infima and the monoid structure given by addition
of real numbers.

I Example 5. The multiplicative quantale M has underlying set the closed real inter-
val [0, 1]. The join semilattice is given by suprema, and the binary monoid is ordinary
multiplication of real numbers.

Finally, we remark that there are many more examples of commutative quantales. In
particular, every locale [18] is a commutative quantale, including all complete Boolean
algebras, finite distributive lattices and complete chains.

From a categorical perspective, a commutative quantale is a (small, thin, skeletal) complete
and cocomplete symmetric monoidal closed category. It is this structure that makes them
very pleasant to work with in enriched category theory.

2.2 Quantale Enriched Category Theory
The use of enriched category theory will be an essential tool for this paper. The standard
source for enriched category theory is [19], but as we suggested earlier, the general definitions
simplify significantly in the quantale enriched case. This is because there are many axioms
to enforce structure, such as composition being associative or functors preserving identities,
that are phrased in terms of certain diagrams commuting. As quantales are thin categories,
all these axioms become trivial. We therefore provide concrete descriptions of the various
enriched mathematical objects that we use, specialized to the simpler quantale enriched
setting. Via examples, we take the opportunity to introduce our resource theoretic perspective
on each of the various notions.

All our quantale enriched categories will be small, that is, we will require that they have
a set of objects.

I Definition 6 (Q-enriched Categories). A Q-enriched category A consists of:
A set of objects objA. We will typically denote these objects as a, b, c, ....
For each pair of objects, there is a hom object A(a, b) ∈ Q.

The hom objects are required to satisfy two axioms:
The identity axiom, for all a:

k ≤ A(a, a)

The composition axiom, for all a, b, c:

A(b, c)⊗A(a, b) ≤ A(a, c)

Enrichment over each of our example quantales has a natural resource theoretic interpretation.

I Example 7 (Boolean Quantale Enrichment). A B-enriched category is the same thing as a
preorder. We can interpret a ≤ b as meaning it is possible to convert resource a to b. The
identity axiom corresponds to reflexivity, we can always convert a resource to itself. The
composition axiom corresponds to transitivity, and captures the idea that if we can convert
resource a to b and we can convert b to c, then we can combine these conversions to convert a
to c.

CSL 2018
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I Example 8 (Interval Quantale Enrichment). An I-enriched category A is a “fuzzy” generaliz-
ation of a preorder. From a resource perspective, we interpret A(a, b) as a connection strength
between a and b. Connection strengths are valued in a worst case manner, a composite
connection is only as good as its weakest link. Then:

The identity axiom tells us we can always connect any a to itself with maximum strength.
The composition axiom tell us that if we can connect a to b and b to c, we should be able
to connect a to c at least as strongly as going via the intermediate b.

I Example 9 (Lawvere Quantale Enrichment). For an L-enriched category A, A(a, b) can be
seen as the cost of converting a to b.

The identity axiom tells us that we can freely convert a to itself. In Lawvere’s original
metric space reading [22] the absence of the axiom A(a, b) = 0⇒ a = b is inconvenient.
However, from a resource conversion perspective it is entirely natural that two distinct
resources could be interconvertible.
The composition axiom is a triangle inequality, saying that the cost of converting from a

to c should be at least as cheap as converting via any intermediate resource b.

a

b c
≥
R

A(a, b)

A(b, c)

A(a, c)

I Example 10 (Multiplicative Quantale Enrichment). For an M-enriched category A, we
interpret A(a, b) as the probability of successfully converting a to b. Conversion probabilities
are assumed to be independent, so they multiply.

The identity axiom tells us we can always convert a resource to itself with certainty.
The composition axiom tells us that we can convert a to c with a success probability
at least as high as that achievable by chaining two conversions via any intermediate
resource b.

This concludes our examples for this section. It remains to define the enriched notions
of Q-functors and Q-natural transformations in preparation for later sections.
I Definition 11 (Q-enriched Functor). Let A and B be Q-enriched categories. A Q-enriched
functor F of type A → B consists of an object assignment function:

F : objA → objB

such that:

A(a, b) ≤ B(Fa, Fb)

Identity and composite functors are given in the obvious way, and the resulting structure
yields a category Cat(Q) of Q-categories and functors between them.
I Definition 12 (Q-enriched Natural Transformations). Let F,G : A → B be parallel Q-
enriched functors. The existence of a Q-enriched natural transformation α of type F ⇒
G simply states that the following inequalities hold for all objects of A:

k ≤ B(Fa,Ga)

That is, there can be at most one Q-natural transformation between two such functors.
We do not dwell on examples of functors and natural transformations now, as there will be
many examples later in cases of particular importance.
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3 Presheaves and Profunctors

We first introduce some constructions on quantale enriched categories.

I Definition 13. Let A and B be Q-enriched categories.
There is a unit Q-category I with a single object and the quantale unit as the unique
hom object.
The tensor category A⊗ B has set of objects objA× objB, and hom objects:

(A⊗ B)((a, b), (a′, b′)) = A(a, a′)⊗ B(b, b′)

The opposite category Aop has the same objects as A, and hom objects:

Aop(a, a′) = A(a′, a)

A quantale Q also carries a canonical structure as a Q-category, with objects the elements
of Q, and hom objects:

Q(q, q′) = q ( q′

Where q ( q′ denotes the internal hom in Q.

I Definition 14 (Presheaf). Let A be a Q-category.
A copresheaf is a functor of type A → Q. This is a function F : objA → objQ such
that:

F (a)⊗A(a, b) ≤ F (b)

A presheaf is a functor of type Aop → Q. This is a function F : objA → objQ such
that:

A(a, b)⊗ F (b) ≤ F (a)

I Definition 15 (Profunctor). For a commutative quantale Q, and Q-enriched categories A
and B, a profunctor from A to B is a functor of type:

Aop ⊗ B → Q

Concretely, this is a function R : objA× objB → objQ such that:

A(a′, a)⊗R(a, b)⊗ B(b, b′) ≤ R(a′, b′)

We write R : A −7−→ B to indicate R is a profunctor from A to B.
A profunctor can be thought of as a categorical generalization of the notion of binary
relation, taking truth values in the underlying quantale. They generalize both presheaves
and copresheaves, as they are profunctors of type A −7−→ I and I −7−→ A respectively.

I Example 16. (Co)presheaves have natural resource theoretic interpretations. For example,
if we consider L-enrichment:

A copresheaf on A is a coherent set of costs for acquiring the resources in A. The
copresheaf condition:

F (a) +A(a, b) ≥R F (b)

requires that it is always cheaper to buy a resource b directly, rather than purchase some
other resource a and then pay A(a, b) to turn it into b.

CSL 2018
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A presheaf on A is a coherent set of costs for disposing of the resource in A. The presheaf
condition:

A(a, b) + F (b) ≥R F (a)

requires that it is always cheaper to dispose of a resource a directly, rather than pay the
cost A(a, b) to convert it to some b and then pay the cost to destroy b.

I Example 17. We consider profunctors from a resource perspective, using the multiplicative
quantale. A profunctor R : A −7−→ B satisfies:

A(a′, a)×R(a, b)× B(b, b′) ≤R R(a′, b′)

If we interpret R as describing a probabilistic device for converting A resources to B resources,
the profunctor axiom says that the device will convert a′ to b′ with a success probability
higher than the product of the probabilities of converting a′ to a in A, and then using R to
convert a to b, and then converting b to b′ in B, as shown below:

a

a’ b’

b

A(a, a′)

R(a′, b′)

B(b′, b)

Notice the probabilities here describe the chances of success of a chosen conversion, rather
than which conversion will take place, as might be seen in stochastic relations for example.
I Remark (Separation of Concerns). Profunctors are the first point at which we see that
the enriched categorical framework provides a clear separation of concerns between free
and costly resources. The domain and codomain model the resources freely available. The
transition costs encoded by the profunctor then provide additional resources conversions,
with the profunctor axiom requiring that these all these conversions are better than can be
achieved by additionally exploiting free resources.

I Definition 18. Given profunctors R : A −7−→ B and S : B −7−→ C, we can form their
composite S ◦R : A −7−→ C, defined pointwise as follows:

(S ◦R)(a, c) =
∨
b

R(a, b)⊗ S(b, c)

This composition is associative, and has identity at A given by:

1A(a, a′) = A(a, a′)

Therefore Q-profunctors form a category Prof(Q).

I Example 19. Continuing example 17, we consider the composition of two M-profunctors,
R : A −7−→ B and S : B −7−→ C. Intuitively, the value:

(S ◦R)(a, c) = sup
b
{R(a, b)× S(b, c)}

describes the best probability achievable for converting a to c via some intermediate b using
the two probabilistic devices described by R and S.
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I Remark. In general, composition of profunctors is defined using colimits in the enriching
category. Therefore we can only expect associativity and unitality of composition to hold up
to isomorphism, pointing us in the more complicated direction of bicategories. Fortunately,
the only isomorphisms in a quantale are the identities, and so composition is defined “on the
nose”, yielding a genuine category.

The tensor structure of definition 13 gives Prof(Q) the structure of a symmetric monoidal
category. In fact it is a compact closed category [20], and so has a powerful graphical calculus
that can be exploited in calculations.
As profunctors are a generalization of binary relations, and relations are closed under taking
unions, we may expect similar structure of profunctors.

I Definition 20. A complete join semilattice enriched category is an ordinary category such
that the hom sets are complete join semilattices, and the following axioms hold:(⊔

i

Si

)
◦R =

⊔
i

(Si ◦R) and S ◦

(⊔
i

Ri

)
=
⊔
i

(S ◦Ri)

Complete join semilattice enrichment also implies that hom sets have a partial order ⊆ such
that composition is monotone in both components.

The following then gives us a straightforward generalization of taking unions of ordinary
binary relations.

I Lemma 21. For a commutative quantale Q, the category Prof(Q) is complete join
semilattice enriched with:(⊔

i

Ri

)
(a, b) =

∨
i

Ri(a, b)

If we return to our resource theoretic perspective,
⊔
iRi combines the best capabilities of a

family of different resource conversion options. The induced order R ⊆ S is equivalent to
there being a Q-natural transformation R⇒ S. We require another specialized definition.

I Definition 22 (Internal Monad). An internal monad in a complete join semilattice
enriched category is an endomorphism R : A→ A such that both:

1A ⊆ R and R ◦R ⊆ R

Internal monads are an important concept. From the point of view of resources, an internal
monad captures closure under repeated application of the available conversions. We can
think of an internal monad on A as describing a “better” Q-enriched category structure on
the objects of A.

I Example 23 (Internal Monads as Better Structures). An internal monad R : A −7−→ A
in Prof(L) is a selection of resource conversion costs that is closed under composition. That
is, the cost R(a, a′) will be cheaper than the cost of any iterated conversion:

a→ b1 → ...→ bn → a′

Such a monad provides resource conversion costs that are closed under composition, and
better than those of the underlying category A.

Similarly, an internal monad P : A −7−→ A in Prof(B) is a preorder stronger than the
original order on A.

We shall encounter internal monads again in sections 5, 6 and 7 as we introduce richer
structure to our resources.

CSL 2018
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4 A Hierarchy of Resource Structures

So far, we have considered only conversions between individual resources. In this section, we
introduce additional structure that will allow us to consider conversions that require multiple
inputs, such as the custard recipe of the introduction.

I Definition 24. A Q-category A is:
Strictly monoidal if the objects carry a monoid structure ⊗, I such that:

A(a1, b1)⊗A(a2, b2) ≤ A(a1 ⊗ a2, b1 ⊗ b2)

From here on, we will drop explicitly saying “strictly” and simply use the term monoidal Q-
category.
Symmetric monoidal if it is monoidal and for all a, b ∈ A:

k ≤ A(a⊗ b, b⊗ a)

Deleting if it is symmetric monoidal, and for all a ∈ A:

k ≤ A(a, I)

Copying if it is symmetric monoidal, and for all a ∈ A:

k ≤ A(a, a⊗ a)

Cartesian if it is both copying and deleting.
A homomorphism of each of these special sorts of Q-categories is a Q-functor that is a monoid
homomorphism with respect to the monoid structure on objects.

Each of these structures has a resource theoretic reading. A monoidal Q-category allows us to
combine ordered collections of resources. This setting is very restrictive, we are not necessarily
able to even adjust the order of the resources provided. A symmetric monoidal Q-category
allows us to cheaply interchange the order of resources. If a Q-category is deleting, we can
also delete resources we do not need, and if it is copying, we can copy available resources,
effectively making them reusable. This perspective will be most apparent in the forthcoming
free constructions, in which the objects are lists of resources.

We also introduce some additional properties of quantales that we will require, using
terminology paralleling that used for Q-categories.

I Definition 25. We say that a quantale Q is:
Deleting if the monoid unit k is the top element.
Copying if the for all q ∈ Q, q ≤ q ⊗ q.
Cartesian if it is both copying and deleting2.

In this section we describe a hierarchy of free constructions on Q-enriched categories. This
family of constructions is reminiscent of the Boom type hierarchy [26] familiar to the
functional programming community, in which varying the axioms required of a construction
of a particular shape results in a family of different datatypes. In our case, the objects of
each free construction will be lists of resources. The interesting structure is in the hom
objects, which will encode the resource conversions we wish to provide as standard. We will
therefore frequently need to work with finite lists.

2 A commutative quantale is Cartesian if and only if it is a locale.
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IDefinition 26 (List Notation). We will write [a] for the singleton list. For a list of elements A,
we will write Ai for the ith element of the list and #A for the length of the list. We will
also write i : #A to mean 1 ≤ i ≤ #A, and ⊗i:#Aτi as shorthand for the iterated tensor
product τ1⊗ ...⊗ τ#A. We will also abuse notation, and identify #A with the set {1, ...,#A}.

I Theorem 27. For a commutative quantale Q, Q-category A, and lists of A-objects A,B,
define:∨

ψ:#B→#A
⊗i:#BA(Aψi, Bi) (2)

The following categories all have objects finite lists of elements from A:
The free monoidal Q-category L(A) has hom objects L(A)(A,B) given by expression (2)
with ψ restricted to identity functions.
The free symmetric monoidal Q-category M(A) has hom objects M(A)(A,B) given by
expression (2) with ψ restricted to permutations.
If Q is deleting, the free deleting Q-category D(A) has hom objects D(A)(A,B) given by
expression (2) with ψ restricted to injective functions.
If Q is copying, the free copying Q-category C(A) has hom objects C(A)(A,B) given by
expression (2) with ψ restricted to surjective functions.
If Q is Cartesian, the free Cartesian Q-category K(A) has hom objects K(A)(A,B) given
by expression (2) with ψ ranging over all functions.

Proof. We sketch the required argument. In each case, the universal morphism is given by
the map to the singleton list, which can be verified to be a Q-functor. It follows from the
universal property of the free monoid construction on sets that there is a unique possible
fill in Q-functor. This can be confirmed by direct calculation, exploiting the additional
properties of Q in the deleting, copying and Cartesian cases. J

Given they result from a free / forgetful adjunction, each of the constructions of theorem 27
yields a monad on Cat(Q). We wish to lift this structure to profunctors. As profunctors
are analogous to binary relations, we might expect they arise as the Kleisli category of a
generalization of the powerset monad. Recall [19] that the presheaves on a Q-category form
a Q-category themselves. In fact, this is the free cocompletion, in the enriched sense. In
general this construction does not induce a monad as there are size issues, leading to the
need for more complex machinery [9]. In the case of quantale enrichment, we are fortunate
as this problem goes away, and it can be shown that Prof(Q) is the Kleisli category of the
free cocompletion monad. Lifting a monad to Prof(Q) can then be done by exhibiting an
appropriate distributive law [1].

I Theorem 28. Let Q be a commutative quantale, P the free cocompletion comonad, A
a Q-category, A a list of A-objects, and F a list of presheaves on A. Define:∨

ψ:#F→#A
⊗i:#FFiAψi (3)

There is a distributive law λL : LP ⇒ PL with λLA(F )(A) given by expression (3), with ψ
restricted to identity functions.
There is a distributive law λM : MP ⇒ PM with λMA (F )(A) give by expression (3),
with ψ restricted to permutations.
If Q is deleting, there is a distributive law λD : DP ⇒ PD with λDA(F )(A) given by
expression (3), with ψ restricted to injective functions.

CSL 2018
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If Q is copying, there is a distributive law λC : CP ⇒ PC with λCA(F )(A) given by
expression (3), with ψ restricted to surjective functions.
If Q is Cartesian, there is a distributive law λK : KP ⇒ PK with λKA (F )(A) given by
expression (3), with ψ ranging over all functions.

Proof. We can only sketch the proof. We first confirm that the components of each law are
valid Q-functors, and naturality of their components. With this in place, we verify Beck’s
axioms [1] by direct calculation. This is a long series of calculations to cover all the cases.
Generally establishing the unit laws is routine. The naturality checks and multiplication
laws are less straightforward, particularly in the deleting, copying and Cartesian cases. In
these cases, we must carefully apply the additional quantale axioms to confirm the required
properties, effectively by “copying” and “deleting” sub-terms in calculations. J

I Corollary 29. As Prof(Q) is self-dual, each of the constructions L,M,D,C,K induces a
comonad (!, ε, δ) 3 on Prof(Q), with action on morphisms:

!R(A,B) =
∨

ψ:#B→#A
⊗i:#BR(Aψi, Bi)

Where ψ is restricted appropriately as in theorem 27. The component of the counit and
comultiplication at A are:

εA :!A −7−→ A
εA(A, a) =!A(A, [a])

δA :!A −7−→!!A
δA(A,A) =!A(A, concatA)

Here, concat denotes list concatenation.

Proof. Although this is a natural construction, it is necessary to be careful with the various
dualities involved, as some of the constructions on profunctors are necessarily oriented in
nature. J

From the point of view of resources, the quantale value εA(A, a) is the best way to convert
the list A into the single [a], using the structural features of !A. Similarly, δA(A,A) is the
best way to convert the lists A into the concatenation of the list of list A using the structural
features of !A.
I Remark. These co-Kleisli categories carry a lot of additional structure that unfortunately
we have insufficient space to exploit here. This includes further enrichment, various type
constructors, and operations induced by the Day convolution [5]. Depending on the choice of
comonad, there may also be higher order and differential structure [6]. This provides a rich
algebra for calculations involving quantitative resources, formally similar to the calculus of
generalized species presented in [7, 8].

5 Multicategories

If we examine a morphism A → B in the co-Kleisli category of one of the comonads in
section 4, concretely, this is a profunctor of the form !A −7−→ B. From a resource perspective,
we can read this as describing conversions from lists of A-resources to B-resources. So the
comonad allows us to describe many-to-one resource conversions, diagrammatically:

3 Our notation is a nod to connections with relational linear logic models.
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Depending on our choice of comonad, we can incorporate different structural aspects of the
free conversions available, for example we may be able to cheaply reorder, copy or delete
resources.

It is instructive to consider the co-Kleisli composition S •R of two such morphisms. This
is given in Prof(Q) by the composite:

!A δA−7−→!!A !R−7−→!B S−7−→ C

Intuitively, we can read the three steps as follows:
1. We first break our list of resources up into a list of lists, using the comultiplication δA.
2. We then use the resource conversions provided by R to process each of the sub-lists.
3. Finally, we process the resulting list using S, resulting in a two step multi-input conversion,

which we might depict:

Then (S • R)(A, c) gives the best two stage conversion achievable converting the list of
resources A to the resource c. The choice of comonad incorporates the structural aspects,
such as copying or deleting, that we are prepared to permit.

What if we want to consider repeated many-to-one conversions? For that we must confirm
a bit more structure is available.

I Proposition 30. Each of the comonads of corollary 29 preserves non-empty joins.

I Corollary 31. Each of the co-Kleisli categories of these comonads is a non-empty join
semilattice enriched category.

It therefore makes sense to consider internal monads in our co-Kleisli categories. These
internal monads quantify what we might call multi-conversions, in a manner that is closed
under identities and composition. That is, they are generalizations of coloured operads [25],
otherwise termed multicategories [21].

I Remark. This perspective on internal monads in such co-Kleisli bicategories is discussed
in [8, 17]. There, they restrict to internal monads on discrete categories. However, in our
setting, multicategories with non-discrete endpoints are a virtue. They describe the freely
available resource conversions. The discrete case would say that the only freely available
resource conversions are the trivial ones.

I Example 32. Even in the B-enriched case, such multicategories are interesting objects.
They are a multi-input generalization of preorders, describing the possibility of various
multi-conversions being achievable. Possible conversions can be chained together, and trivial
conversions are available. The choice of comonad introduces additional structure. For
example in the deleting case, the list of resources [a, b, c] is always convertible to [a], by
discarding the other resources.

CSL 2018



32:14 Quantitative Foundations for Resource Theories

6 Bimodules

In section 3 we showed how single input - single output resource conversions could be modelled
as profunctors. In sections 4 and 5 we introduced additional comonadic structure that allowed
us to introduce many-to-one costly resource conversions. In this section we show that an
extra layer of abstraction allows us to model freely available many-to-one conversions with
our categorical framework. We require the notion of bimodule between monads.

I Definition 33. Let C be a preorder enriched category. For internal monads (A, RA)
and (B, RB), a bimodule of type (A, RA) ◦−→ (B, RB) is a C-morphism S : A → B such
that:

S ◦RA ⊆ S and RB ◦ S ⊆ S

As with our previous mathematical structures, it is helpful to think of bimodules as binary
relations respecting some additional structure.

I Proposition 34. In a non-empty join semilattice enriched category C, bimodules between
monads include the identity morphisms, and are closed under both composition and joins
in C. They therefore form a non-empty join semilattice enriched category Bimod(C).

Bimodules between monads can be defined more generally, but their composition becomes
more complicated, requiring a coequalizer construction not present in proposition 34. For-
tunately, the quantale enriched setting circumvents this additional complexity. Resource
theoretically, bimodules on our co-Kleisli categories have good properties:

As coKleisli(!) morphisms, they model multi-conversions between A and B resources.
These conversions are closed under precomposition with the multi-conversions described
by the monad (A, RA).
The conversions are also closed under post composition with the multi-conversions
described by the monad (B, RB).

That is, they are exactly the right categorical object for describing resource conversions
respecting freely available multi-conversions. As a corollary of proposition 34, we note that:

I Corollary 35. The category coKleisli(!) is complete join semilattice enriched for any of
the comonads introduced in section 4.

Corollary 35 tells us that we can take composites and unions of bimodules to build more
interesting structures. Also, we can consider internal monads in the categories of bimodules of
interest. These can be seen as multicategories that respect freely available multi-conversions.

7 Reflexive Transitive Closure

Given the importance of internal monads in earlier sections, we briefly consider how they
can be constructed from simpler data in complete join semilattice enriched categories. We
require a new definition.

I Definition 36. Let C be a complete join semilattice enriched category. A monad T : A → A
is free over an arbitrary endomorphism R : A → A if it is the least monad containing R.

We fall back on our intuition that each of our categories of interest can be interpreted as a
category of generalized binary relations. It is therefore natural to ask if some operations on
ordinary relations have analogues in this setting. The construction of immediate interest is a
generalization of reflexive transitive closure.
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I Proposition 37. In a non-empty join semilattice enriched category C, the free monad
induced by an endomorphism R : A→ A is given by:

F (R) =
⊔
i

Ri where R0 = 1A and Rn+1 = R ◦Rn

Recalling lemma 21, and corollaries 31 and 35, the categories Prof(Q), coKleisli(!) for any
of the hierarchy of comonads of section 4, and the categories of bimodules on these co-Kleisli
categories are all appropriately enriched. Therefore, we can conclude:

I Corollary 38. Every endomorphism in our categories of interest can be used to construct
a free internal monad using the reflexive transitive closure construction of proposition 37.

In this way we can take some basic data specifying one-to-one or many-to-one resource
conversions of interest. We can close them under composition in a canonical way.

8 Conclusion

We presented a flexible foundation for constructing compositional, quantitative models of
resources, within which:

There is a clear separation of concerns between freely available resource conversion,
encoded as objects in our categories, and the costly conversions, encoded in the morphisms.
Profunctors quantify one-to-one resource conversions, parameterized by a choice of
quantity such as costs or probabilities.
Morphisms in suitable co-Kleisli categories describe many-to-one resource conversions,
parameterized by a choice of structural features such as copying and deleting.
Bimodules model many-to-one resource conversions in which the freely available conver-
sions may also include such multi-conversions.
Throughout, internal monads capture closure under composition, yielding generalizations
of categories or multicategories suitable for the quantitative setting.
Free internal monads provide a convenient mechanism for building these (multi)categories
from simpler data.
The underlying objects can be considered as generalized relations, or just certain matrices
of truth values, meaning calculations do not require difficult mathematical machinery.

Our approach is open to extension. For example, it is natural to also consider multi-input to
multi-output conversions, in the style of polycategories [28]. These can be formulated in a
similar manner to that used in sections 4 and 5. For the ordinary categorical setting this is
technically complex, and has been developed by Garner [11, 10, 12]. Given the degeneracy
of quantale enriched categories, we anticipate a more elementary approach will be feasible,
and aim to develop this in later work.

We have focused on models. It would be interesting to develop corresponding syntactic
aspects, in the form of a suitable metalanguage. Discussions in the related work of [16]
and [8] suggest such a language will have a process algebraic feel, but we leave the details to
later work.

Finally, a more speculative suggestion. Exciting recent categorical work on compositional
game theory [13] has shown surprising applications of category theory in economic settings.
Given the intrinsic interest of economists in both resources and costs, it would be interesting
to explore applications of our approach in that setting.
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