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Abstract
This paper addresses the capacity planning problem of coordinating train services and network
maintenance windows for a railway system. We present model reformulations, for a mixed in-
teger linear optimization model, which give a mathematically stronger model and substantial
improvements in solving performance – as demonstrated with computational experiments on a
set of synthetic test instances. As a consequence, more instances can be solved to optimality
within a given time limit and the optimality gap can be reduced quicker.
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1 Introduction

Scheduling access to a railway infrastructure, commonly termed capacity planning, is the
core tactical planning problem for all railway systems and can be seen as a resource planning
for the infrastructure components (stations, lines, yards, tracks, switches, signalling blocks
etc). Capacity planning includes producing a timetable for the train traffic and access (or
possession) plans for maintenance and work tasks. Timetables and possession plans will in
turn form the basis for other resource plans, such as rolling stock plans and crew schedules for
the train operators as well as equipment and work force plans for maintenance and renewal
contractors.

Train services and maintenance tasks should ideally be planned together, but have
mostly been treated as separate planning problems. While planning of train operations has
been extensively studied in the research literature [2, 3, 4, 5, 6], there has been much less
focus on maintenance planning [8]. As for the joint planning of train services and network
maintenance there are a few examples, which consider the introduction of a small number of
work possessions into an existing train timetable [7, 11] or operative plan [1], by allowing
different types of adjustments to the trains.

This research focuses on the long term tactical coordination of a large volume of main-
tenance windows and train services on a railway network. An example of how such plans
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1:2 Reformulations for Railway Traffic and Maintenance Planning

Figure 1 Train and work graph example.

might look is given in Figure 1, as a train and work graph. The geographic distance and
sectioning into links is shown on the vertical axis while time is on the horizontal axis. Train
services are shown as tilted lines while maintenance windows are shown as yellow boxes. In
this case no trains are allowed to run “through” the maintenance windows.

An initial MILP model that solves this coordination problem to optimality has been
presented in [9]. Model extensions for assigning maintenance crew resources and considering
their costs and limitations regarding spatial availability as well as work and rest time
regulations are treated in [10]. The latter model also has a stronger formulation for the train
and maintenance window scheduling, but that paper only briefly summarizes these model
improvements. In this paper we describe and compare the two formulations more closely.

The original model, which we here denote with ORG, uses cumulative train entry/exit
variables (for each link and time period) and implicit link usage variables for the train
scheduling. The improved model, which we denote with IMP, instead uses binary train
entry/exit detection variables and explicit link usage variables. These changes increase the
number of variables and decrease the number of constraints. The linear relaxation does
not become tighter, but the MILP solver benefits from having more binary variables to
branch on, a better linking of constraints and some possibilities for pruning due to the binary
restrictions.

The main improvement in IMP concerns the maintenance scheduling part. First of all,
some coupling constraints have been aggregated, but more importantly a tighter formulation
has been used for the maintenance work and window start variables – according to the
modelling for bounded up/down sequences as presented in [12, section 11.4, pp 341–343] and
mathematically analysed in [13]. These improvements do make the linear relaxation tighter
and in addition the MILP solver presolve method is able to reduce the size more effectively.

The net effect of these model improvements is that the solution performance gets better,
more instances can be solved to optimality within a given time limit and the optimality gap
can be reduced quicker.

The remainder of the paper is organised as follows: Section 2 gives the mathematical
formulation by first introducing the necessary notation and giving an overview of the model
structure. Then the reformulation for the train scheduling part is described, followed by the
changes for the maintenance window scheduling part. The computational experiments are
presented in Section 3 after which some concluding remarks are made.
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2 Mathematical formulation

2.1 Notation and model structure
The railway network is modelled by a link set L, where a subset of links LM ⊆ L shall have
maintenance windows. The scheduling problem has a planning horizon of length H, divided
into a sequence T = {0, . . . ,H − 1} of unit size time periods t ∈ T , each covering real-valued
event times between t and t+ 1.

For each link l ∈ LM , a required number of time periods shall have maintenance windows.
The scheduling shall be done according to a set Wl of window options where each option
o ∈Wl is defined by a tuple o = (ηo, θo) that gives the required number ηo of maintenance
windows to schedule, and the window length θo expressed as an integer number of time
periods. As an example, Wl = {(1, 3) , (2, 2)} means that either one window of length three
or two windows of length two shall be scheduled on link l.

For the train traffic we have a set S of train services. Each train service s ∈ S has a set
Rs of possible routes. Each route r ∈ Rs implies a sequence Lr of links, and the set Ls of all
possible links that train service s can traverse is given by the union of the sets Lr for all
r ∈ Rs. The scheduling of trains shall be done by selecting one route r ∈ Rs and deciding
entry and exit times for each link in that route, such that all event times are within the
scheduling window defined by Ts ⊆ T .

The model has two groups of variables. The main variables for scheduling train services
are:

zsr route choice: whether train service s uses route r or not
e+

sl, e−
sl event time: entry(+)/exit(−) time for service s on link l

x+
slt, x−

slt link entry/exit: whether train service s enters/exits link l in time period t or not
uslt link usage: whether train service s uses link l in time period t or not
nh

lt number of train services traversing link l in direction h during time period t

The ORG formulation uses cumulative x variables, which we denote by x̄+
slt, x̄

−
slt, and implicit

u variables, while the IMP formulation uses binary x variables and explicit u. The variables
for scheduling maintenance windows are:

wlo maintenance window option choice: whether link l is maintained with window
option o or not

ylt maintenance work: whether link l is maintained in time period t or not
vlot work start: whether maintenance on link l according to window option o is

started in time period t or not

The model can be summarized as follows:

minimize c (z, e,y,v) (1)
subject to A(z, e,x,u) route (2)

A(z, e) trains (3)
A(w,y,v)maintenance (4)
A(u,n,y) capacity (5)
variable types and bounds

where c(..) is the objective function and A(..) are linear constraint functions over one or
more of the indicated variables. The objective (1) is a linear combination of the train and
maintenance scheduling variables, while the constraints enforce: (2) correct (feasible) bounds
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zsr

easl

x̄aslt uslt nhlt ylt wlo

vlot

(2.2a)

(3) (2.3a–2.4a)

(5.1) (4)

(4)(4)

(5.2)

(2.1a)

Figure 2 Variable and constraint graph – ORG formulation.

on the train events and linking of entry / exit and usage variables according to the selected
route, (3) sufficient travel durations and dwell times along the chosen route, (4) sufficient
maintenance windows scheduled according to the chosen option, and (5) that the available
network capacity is respected.

The ORG and IMP formulations differ regarding constraints (2) and (4), which will be
described in the following sections. For the details regarding the objective function and other
constraints, we refer to [10].

2.2 Train scheduling
The ORG formulation uses cumulative variables x̄+

slt, x̄
−
slt, which takes value 1 if train service

s has entered/exited link l in time period t or earlier. The link usage is given by the implicit
variables uslt := x̄+

slt − x̄
−
sl,t−1, with the convention that x̄asl,t−1 = 0 for t = 0.

The constraint set (2) for ORG is:

x̄aslt ≥ x̄asl,t−1 ∀s ∈ S, l ∈ Ls, t ∈ Ts, a ∈ {+,−} (2.1a)

x̄asl,last(Ts) =
∑

r∈Rs:l∈Lr

zsr ∀s ∈ S, l ∈ Ls, a ∈ {+,−} (2.2a)

easl ≥
∑
t∈Ts

LBat (x̄aslt − x̄asl,t−1) ∀s ∈ S, l ∈ Ls, a ∈ {+,−} (2.3a)

easl ≤
∑
t∈Ts

UBat (x̄aslt − x̄asl,t−1) ∀s ∈ S, l ∈ Ls, a ∈ {+,−} (2.4a)

where LBat and UBat are the lower and upper bound time values for entry and exit in time
period t. The constraints enforce: (2.1a) the cumulative property, (2.2a) that all links in the
selected route will be visited, and (2.3a–2.4a) correct lower and upper bounds for the event
variables.

The structure of this model is illustrated in Figure 2 as a constraint (or co-occurrence)
graph with vertices for the variables and edges connecting variables that occur in the same
constraint. The constraints correspond to cliques in the graph as indicated in the figure.

The IMP formulation uses binary detection variables x+
slt, x

−
slt to track whether service s

enters or exits link l in time period t or not. These variables correspond to the cumulative x̄
variables in the ORG formulation as follows

xaslt = x̄aslt − x̄asl,t−1

This relation is illustrated in Figure 3, both for the binary case and for a linear relaxation.
Using the expression

x̄aslt =
∑

t′∈Ts:t′≤t
xaslt′
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Binary case

first(Ts) ... t′ ... last(Ts) t

zsr = 1

x̄slt

xsl,t′

Linear relaxation

first(Ts) ... t′ ... last(Ts) t

zsr

x̄slt

xsl,t′−1

xsl,t′

xsl,t′+1

Figure 3 Relation between cumulative variables x̄ and detection variables x.

zsr

easl

xaslt uslt nhlt ylt wlo

vlot

(2.2b)

(3) (2.3b–2.4b)

(2.5b) (5.1) (4)

(4)(4)

(5.2)

Figure 4 Variable and constraint graph – IMP formulation.

we transform constraints (2.2a–2.4a) and introduce explicit u variables to get the IMP
formulation of (2):

∑
t∈Ts

xaslt =
∑

r∈Rs:l∈Lr

zsr ∀s ∈ S, l ∈ Ls, a ∈ {+,−} (2.2b)

easl ≥
∑
t∈Ts

LBat x
a
slt ∀s ∈ S, l ∈ Ls, a ∈ {+,−} (2.3b)

easl ≤
∑
t∈Ts

UBat x
a
slt ∀s ∈ S, l ∈ Ls, a ∈ {+,−} (2.4b)

uslt =
∑

t′∈Ts:t′≤t
x+
slt′ −

∑
t′∈Ts:t′≤t−1

x−slt′ ∀s ∈ S, l ∈ Ls, t ∈ Ts (2.5b)

Note that the cumulative constraints disappear, but that we have new constraints
(2.5b) for the usage variables. The IMP formulation will have |S| |Ls| |Ts| more variables
but |S| |Ls| |Ts| less constraints as compared to ORG. Also the train counting constraints
(nhlt =

∑
uslt) will operate on the explicit u variables and hence contain fewer elements in

IMP as compared to ORG.

The increase in variables might be a drawback, but also gives the MILP solver an
opportunity for more pruning (due to the binary restriction of u) and another set of variables
to branch on during the branch and bound procedure.

The constraint graph for the IMP formulation is shown in Figure 4.

ATMOS 2018
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2.3 Maintenance scheduling
In the following we study the formulation differences between ORG and IMP for the
maintenance scheduling constraints (4). In the ORG formulation we have∑

o∈Wl

wlo = 1 ∀l ∈ LM (4.1)

∑
t∈T

vlot ≥ ηowlo ∀l ∈ LM , o ∈Wl (4.2)

vlot + 1 ≥ ylt − yl,t−1 + wlo ∀l ∈ LM , o ∈Wl, t ∈ T (4.3a)
vlot ≤ wlo ∀l ∈ LM , o ∈Wl, t ∈ T (4.4)
vlot ≤ ylt ∀l ∈ LM , o ∈Wl, t ∈ T (4.5a)
vlot ≤ 1− yl,t−1 ∀l ∈ LM , o ∈Wl, t ∈ T (4.6a)

t+θo∑
t′=t

ylt′ ≥ θovlot ∀l ∈ LM , o ∈Wl, t ∈ T (4.7a)

Constraint (4.1) ensures that exactly on window option is used, while (4.2) ascertain
a sufficient number of maintenance windows. Constraints (4.3a–4.6a) ensure the correct
coupling of work start variables (vlot), window choice (wlo) and work variables (ylt), while
constraint (4.7a) imposes the required maintenance window lengths.

The coupling constraints (4.3a,4.5a,4.6a) can be aggregated, by utilising the fact that
exactly one window option must be selected. Hence, since only one vlot variable for each l, t
combination can be non-zero, IMP uses summations over the window options, as follows:

∑
o∈Wl

vlot ≥ ylt − yl,t−1 ∀l ∈ LM , t ∈ T (4.3b)

∑
o∈Wl

vlot ≤ ylt ∀l ∈ LM , t ∈ T (4.5b)

∑
o∈Wl

vlot ≤ 1− yl,t−1 ∀l ∈ LM , t ∈ T (4.6b)

Next, we make use of a model for bounded on/off sequences, presented in [13], where the
formulation describes the convex hull. Thus there is no tighter formulation for that set of
variables. We extend this model with the window option choice wlo and can then replace
(4.7a) with the following constraints:

∑
o∈Wl

[
t∑

t′=t+1−θo

vlot′

]
≤ ylt ∀l ∈ LM , t ∈ T (4.7b)

t∑
t′=t+1−θo

vlot′ + 1 ≥ ylt + wlo ∀l ∈ LM , o ∈Wl, t ∈ T (4.8b)

∑
o∈Wl

vlot ≤ 1− yl,t−1 ∀l ∈ LM , t ∈ T (4.9b)

t+MSo∑
t′=t+1

vlot′ ≥ wlo − ylt ∀l ∈ LM , o ∈Wl, t = 1, . . . ,H −MSo (4.10b)
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The constraints (4.7b)-(4.8b) enforce that each window should span exactly θo time
periods. Constraint (4.9b) enforces at least one time period between two maintenance
windows, but since it is precisely the same as (4.6b) and hence redundant it is not needed. If
there would be requirements for larger separation between windows on each link, the LHS
should be a suitable forward going sum over vlot. Constraint (4.10b) will make sure that the
maximum separation (MSo) between windows is respected. This constraint and (4.8b) will
only be active for the chosen window option. Here we can only aggregate over the window
options for constraints (4.7b) (and (4.9b)).

3 Computational results

The same set of synthetic test instances as in [9] has been used for evaluating the efficiency
of the different formulations. The data instances are available as JSON files together with
a set of Python parsers at https://github.com/TomasLiden/mwo-data.git. The test set
consists of nine line instances (L1–L9) and five network instances (N1–N5), having a planning
horizon of five hours to one week divided into 1 h periods and with 20 to 350 train services.
All line instances except one (L4) are single track, while the network instances have a mixture
of single and double track links. The trains are uniform with no runtime or cost differences –
only the preferred departure times differ. These simplifications, which make the trains almost
indistinguishable for the solver, are used in order to test the scalability and solvability of the
models. Real-life instances will of course use more realistic settings for costs and runtimes.

The evaluations have been done in two steps. First, various alternatives for the train
scheduling formulation have been tested. These tests were made with Gurobi 6.0.5 as MIP
solver on a MacBook Pro with a 2,6 GHz Intel Core i5 processor, 8 GB 1600 MHz DDR3
memory and OSX 10.10.5. The formulation with the best performance, as presented in Section
2.2, was then used when evaluating various alternatives for the maintenance scheduling part.
The latter tests were made with Gurobi 6.5 as MIP solver on a Dell PowerEdge R710 rack
server with dual hex core 3.06GHz Intel Xeon X5675 processors and 96GB RAM running
Red Hat Enterprise Linux 6. For all tests, a maximum computation time of 3600 seconds
have been used. Most tests have a relative MIP gap tolerance of 0.001 (0.1%) while some of
the smaller instances (L1–L5 and N1–N2) have 0.01%. All other options have been left at
their default values.

The computational results are presented in Table 1, where the left part gives instance
properties, the middle part lists solution statistics for the four alternatives
(a) ORG - the original formulation, run with Gurobi 6.0.5
(b) T60 - the improved train scheduling formulation with Gurobi 6.0.5
(c) T65 - the improved train scheduling formulation with Gurobi 6.5
(d) IMP - the complete improved formulation with Gurobi 6.5
and the right part lists the absolute improvement in initial LP value as compared to the
ORG formulation.

There is a clear improvement in solving performance – both solution times and remaining
MIP gaps are reduced. Also, we see that IMP is tighter since the initial LP value is increasing
(the small increases for some T65 instances are caused by a more efficient pre-solve).

To further illustrate the improvements, performance profile plots are used which show
the accumulated number of instances (on the vertical axis) reaching a certain level of quality
measure (on the logarithmic horizontal axis) – normalised as a factor of the best outcome for
all alternatives. Thus an alternative have better performance when being above (= more
instances) and to the left (= better quality) of another curve. In Figure 5 the time for

ATMOS 2018
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Table 1 Instances, properties, performance (time (seconds) to reach optimality or else remaining
gap after 3600 seconds) and improvement in initial LP value vs ORG.

Properties Performance (sol. time / rem. gap) LP improvement
Case |L| |T | |S| ORG T60 T65 IMP T60 T65 IMP
L1 4 5 20 66 15 3 4 0 0 0
L2 4 5 20 181 18 4 4 0 0 0
L3 4 12 40 0.15% 255 102 46 0 0 0.6
L4 4 12 40 2 4 2 1 0 0 0.4
L5 9 24 40 0.16% 2878 3415 1796 0 0 0.75
L6 9 48 80 0.77% 0.50% 0.21% 0.13% 0 0 0.95
L7 18 24 80 31.0% 1.24% 0.90% 0.53% 0 0 1.35
L8 18 96 160 32.0% 17.6% 1.62% 1.14% 0 0 0.55
L9 25 168 350 265% 201% 170% 64.4% 0 0 2.76
N1 9 5 20 7 9 5 3 0 0.02 0.02
N2 9 24 50 42 25 6 5 0 0.12 0.27
N3 9 48 100 97 179 193 23 0 0 0.98
N4 9 96 200 1209 535 435 264 0 0.01 0.28
N5 9 168 350 0.14% 0.13% 3600 907 0 0 0.92
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Figure 5 Performance profile – time to reach optimality.
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Figure 6 Performance profile – final MIP gap.
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reaching optimality is the quality measure, while Figure 6 shows the remaining MIP gap for
those instances that have not been solved to optimality. The improvement obtained for each
step is clear – including the performance gain when changing solver version and computer
platform.

The net result is that three more instances (L3, L5, N5) are solved to optimality, the
optimal solutions are reached quicker (with a speed up between 2 and 10 times) and two more
instances (L7, L8) are solved to a MIP gap < 1.5%, which can be considered an acceptable
solution quality for the cost factors being used.

4 Concluding remarks

We have investigated and found reformulations that substantially improve the solving
performance for an optimization model that jointly schedules train services and network
maintenance windows. The reformulations include the removal of cumulative variables,
making implicit variables explicit, using aggregation where appropriate but most importantly
to use a tighter model for bounded up/down sequences (according to [13]).

These improvements have made it possible to extend the model with maintenance resource
considerations (see [10]), and in recent work the models have also been applied to real world
problems of realistic size – which will be reported in the presentation. In the latter work cyclic
scheduling is used, which unfortunately destroys the integral properties of the previously
mentioned model for bounded up/down sequences. Hence, the mathematical properties
of cyclic on/off sequences are currently being studied with the aim of finding methods for
strengthening such models.
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