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Abstract
This paper proposes an algorithm that decomposes the Periodic Event Scheduling Problem
(PESP) into trees that can efficiently be solved. By identifying at an early stage which par-
tial solutions can lead to a feasible solution, the decomposed components can be integrated back
while maintaining feasibility if possible. If not, the modifications required to regain feasibility
can be found efficiently. These techniques integrate dynamic programming into standard search
methods.

The performance of these heuristics are very satisfying, as the problem using publicly available
benchmarks can be solved within a reasonable amount of time, in an alternative way than the
currently accepted leading-edge techniques. Furthermore, these heuristics do not necessarily rely
on linearity of the objective function, which facilitates the research of timetabling under nonlinear
circumstances.
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1 Introduction

In many countries with an advanced transport network, the planning process of the transport
provider is an extremely complicated and time-consuming procedure. Due to the applications
of the algorithms proposed in this paper, we focus mainly on the train timetabling process,
although the algorithms presented in this paper are not restricted to this setting. From a
high-level point of view, the planning process for train networks, can be divided into the
following tasks [1]:

1. Network planning: constructing the infrastructure of the railway network.
2. Line planning: determining the routes (and frequencies) of trains within the railway

network.
3. Train timetable generation: determining the arrival and departure times of trains, includ-

ing their routes through the infrastructure/stations.
4. Rolling stock and personnel planning: assigning the available rolling stock and personnel

to the trips.
5. Real time traffic: ensuring the realization of the planning by solving irregularities (e.g.,

delays) on an operational level.
This paper focuses on a part of the third step within this hierarchy, the design of train
timetables (excluding routing through the infrastructure). Due to the numerous constraints
that are involved in a timetable, it is practically undesirable or even impossible to construct a
feasible timetable manually, which motivates the research for automated timetable generation.
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A considerable part of this research is based on the Periodic Event Scheduling Problem
(PESP), as initially proposed in [16]. One of the earlier and more influential solution methods
in a railway timetabling context is found in [15], which briefly will be described further.
Moreover, an overview of the operations research of railway timetabling can be found in [3],
while an overview for the PESP in particular (including extensions) can be found in [5].

Overview

As opposed to the modern solution methods that are based on mathematical programming,
this research combines dynamic programming based methods with heuristics to find feasible
and optimal solutions within the PESP framework. In Section 2, the PESP model will be
discussed, alongside its complexity and differences between the model within this paper and
the models in the literature.

Section 4 considers a special case of the PESP which can be solved efficiently using
dynamic programming, even when a (possibly non-linear) optimization function is used
(the standard PESP is a feasibility problem). This dynamic provides the required insights
to understand several heuristics that will be proposed in Section 5, whose performance is
described in the experimental results in Section 6 and the method is concluded in Section 7.
Sections 1 to 3 contains work that for a large part already has been discussed and/or noted
in the current literature, while Sections 4 until 7 concern own work.

2 Problem description

2.1 The Periodic Event Scheduling Problem
The Periodic Event Scheduling Problem (PESP) aims to schedule a number of events within
a cyclic framework of length T , i.e., all events occur exactly once every cycle. In a railway
timetabling context, examples of such events can be the departure, pass-through or arrival of
a train at a station.

Define V as the set of events that need to be scheduled, and decision variable vi ∈ [0, T )
as the time at which event i takes place for all i ∈ V . Within the standard PESP model
with constraint set A, every constraint a ∈ A may only induce a lower and upper bound,
respectively La and Ua, on the scheduled time difference of two events i and j. Therefore,
constraints can be formulated as:

(vj − vi) mod T ∈ [La, Ua] (1)

for every (i, j) ∈ A. Thus, every constraint can be specified by two events and two constants.
For example, if i and j represent the departure of two different trains from the track, safety
regulations could require the trains to depart at least 3 minutes after each other. In this case,
La = 3 and Ua = 57 to prevent trains (from possibly different cycles) to coincide, assuming
T = 60.

A PESP instance can be transformed and visualized in a directed graph D = (V,A), where
n = |V | is the number of vertices/variables, and m = |A| is the number of arcs/constraints.
For every constraint a, an arc i→ j is introduced and labeled with [La, Ua]. For convenience,
vertices and variables are used as synonyms throughout this paper. The same holds for
constraints and arcs. See Figure 1 for a simple example with only three constraints.
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Figure 1 Example of a PESP instance visualized in a graph (T = 60).

As a notational remark: x mod T is abbreviated to (x)T , where x can be a number, but
also an interval (that will be scaled within the interval [0, T ). Since the graph formulation is
slightly preferred in the literature, this paper adopts the same notation, which allows the
problem to be formally defined as follows.

Periodic Event Scheduling Problem (PESP)

Given: A directed graph D = (V, A), a feasible interval [La, Ua] for every a = (i, j) ∈ A

and a cycle time T .
Goal: Find a v ∈ [0, T )n such that vj − vi ∈ [La, Ua] for every a = (i, j) ∈ A, or state

infeasibility.

Trivially, it is assumed that La ≤ Ua as the instance is infeasible otherwise, and that
Ua − La < T , since the constraint would be redundant otherwise. Moreover, all La and
Ua are assumed to be integer, which is practically justified because timetables are usually
published in minutes (integers). Using this assumption, [10] proved that every feasible
PESP-instance then has an integer solution.

Note that by the cyclicity of PESP, the orientation of the arcs can be reversed by
“mirroring” the corresponding interval with T/2 as the center, i.e., constraints of the type in
Equation 1 is equivalent to

(vj − vi)T ∈ [T − Ua, T − La] . (2)

2.2 Complexity of PESP
For T = 2, PESP can be solved in polynomial time, for which an algorithm is given
in [13]. However, the PESP is strongly NP-complete for T ≥ 3. At least three proofs
are currently known, being reductions from the Linear Ordering Problem [6], the
Hamiltonian Cycle Problem [8] and the k-Vertex Colorability Problem [10].
Hence, no (pseudo)polynomial time algorithm can be found to solve the PESP, unless P =
NP.

2.3 Handling the modulo operator
Even though the modulo operator follows naturally from the cyclicity of the model, most
standard mathematical optimization techniques (such as Branch and Bound) are unable to
handle this operator. For this reason, constraints of the type as in Equation 1 are alternatively
in the literature formulated as:

La ≤ vj − vi + T · pij ≤ Ua (3)

at the cost of one extra integer variable pij per constraint (in similar other models, pij can
also be a binary variable). Here, pij ∈ Z indicates the cycle difference between i and j. In
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these constraints, pij is also referred to as the modulo parameter of the constraint. The
model now has become suitable for Mixed Integer Linear Programming (MIP) methods.

Using this integer variable, one can implicitly define non-convex intervals, even though
the interval [La, Ua] for every constraint a is convex. This follows from the possibility in the
model to allow multiple constraints between a pair of events, and because La and Ua do not
necessarily need to be in [0, T ). For instance, the two constraints:

(vj − vi)T ∈ [0, 45] and (vj − vi)T ∈ [30, 72]

result in a feasible difference interval between vi and vj of [0, 12]∪ [30, 45], by the cyclicity of
the model. Even though this model is used widely in the literature, this is not the model to
be used in this paper, but will be referred to further in this paper for comparison.

2.4 Cost optimization
Although PESP is originally formulated as a feasibility problem, an objective function can be
added without complications. One of the easiest, but also practically most useful, objective
functions can be deduced from the constraints. In many cases, the lower bound La of the
constraint is an optimal value to obtain from an efficiency perspective.

For example, if arc a = (i, j) corresponds to the constraint that the changeover time
between two trains (that correspond to variables i and j) should lie in [La, Ua], the waiting
time is minimized if vj − vi = La. If wa denotes the cost of every time unit that all travellers
need to wait longer at the changeover corresponding to the constraint, one could add the
term:

za(v) = ((vj − vi)T − La) (4)

to an objective function. The objective function, referred to as the weighted slack function,
can then be expressed as z(v) =

∑
a∈A wa · za(v).

We focus in this paper on this weighted slack function. Other objective functions are
discussed in [13] and [7], such as minimization of passenger travel time, required rolling stock,
or the number of violated constraints (in case of an infeasible instance), while maximization
functions include the profit or robustness.

2.5 Related work
This paper focuses for a large part on heuristics, but will use efficient combinatorial optimiz-
ation algorithms to solve subproblems if possible. The PESP was originally formulated in
[16], where directly several algorithms were proposed. These are primarily searching methods
where the modulo parameters are solved first. To this aim, a minimum spanning tree is
initially constructed, where the interval cardinalities are used as weights on the arc. The
idea is that a solution is found that satisfied the n− 1 of the tightest (and therefore expected
to be the hardest to fulfill) constraints beforehand, but similar techniques might lead to a
brute-force algorithm in an early stage.

Exact methods

A large part of the methods in the current literature focus on the PESP as a feasibility
problem, rather than an optimization problem. One of the first solution methods in a
railway timetabling context has been implemented by [15] by solving the Mixed Integer
Linear Program (MILP) using constraints of the type as in Equation 3. With the aid of the
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commercial optimization software package CPLEX, solutions for practical railway timetabling
instances can be found with the aid of searching algorithms and adjustable parameters within
the software package. Other papers that focus on solving the MILP can be found in [11], [12],
[7] and [13], using cutting planes and similar other mathematical optimization techniques.
A relevant approach, but different perspective is presented in [14], where feasible railway
timetables can be found with minimal deviations from the original constraints in case no
feasible timetable exists.

Heuristics

A few heuristics already exist that output only very few violated constraints for real-world
instances, for example in [4], where cuts and/or local improvements are used to improve the
original heuristic from [16]. Although the performance may be relatively good in practice,
many of the currently known heuristics struggle with the task of restoring an infeasible
solution, without using brute-force early.

The work presented in this paper is similar to the modulo simplex algorithm, firstly
presented in [9], and improved by [2], by exploiting advanced methods in the modulo simplex
tableau and larger classes of cuts to escape from local optima. This method currently
performs best on many benchmarks that are also used for this paper. Still, more ways to
backtrack a solution and escape local optima are searched for in the current literature. This
paper aspires to contribute to this concept from a difference perspective.

3 State- and search space reduction techniques

From a practical point of view, it may be computationally very beneficial to reduce the state-
and search space without excluding feasible solutions. This usually can be achieved fairly
simple indeed, especially within a railway timetabling context. In the following paragraphs,
several state- and search space reduction techniques are discussed, of which most are also
(partially) noted in [7]. Even though most of these methods are straightforward, it is useful
to mention these methods (informally) to provide an intuition for the complexity of the
reduced problem.

3.1 Intersecting feasible intervals
As also noted in Subsection 2.3, multiple constraints between a pair of variables i and j can be
constructed to implicitly define a constraint with a non-convex feasible interval. When using
MILP methods, it is essential that a single constraint induces a convex interval. However, the
heuristics explained in this paper are not MILP methods, and are not affected by whether
these intervals are convex or not. This allows to combine all constraints between a specific
pair of variables, into one constraint. To elaborate the possibilities, the following simple
definition is introduced for notational convenience.

I Definition 1. The feasible interval ∆ij between variables i and j are the values vj − vi

such that all constraints a ∈ A with i ∈ a and j ∈ a are satisfied.

Initializing ∆ij can simply be done as follows. For every constraint, scale the feasible interval
[La, Ua] within the cycle [0, T ) and call this new interval ∆a. For example, [30, 75] will be
scaled to [0, 15]∪ [30, 59]. Then, let ∆ij = ∩(i,j)∈A∆a. Note that ∆ij instead of ∆a now may
be used as notation, since there exists only one constraint including both variables i and j.
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For this reason, constraints are referred to either (i, j,∆ij) or (i, j,∆a). In Subsection 2.1
was argued that the orientation of arcs can simply be redirected, which implies that at most
1
2n(n− 1) constraints have to be considered.

3.2 Eliminating variables
Variables can be eliminated in two ways.

For every constraint (i, j,∆ij) where |∆ij | = 1, either variable vi or vj does not have to
be considered for optimization, as its value completely depends on the other variable.
Let δij be the only value in ∆ij . Assuming vj will be deleted, all constraints of the type
(j, k,∆jk) can be replaced by (i, k, (∆jk + δij) mod T ). A similar shift can be done for
constraints of the type (k, j,∆jk). After solving the model without xj , its value can easily
be determined by vj = (vi + δij) mod T .
If a variable vi is contained in only one constraint (i, j,∆ij), the constraint always can
be satisfied. After all, consider the problem without vi. Once vj is determined, one can
afterwards choose |∆ij | different values for vi such that the constraint is satisfied.

3.3 Propagating constraints
Constraint propagation refers to the method of tightening the feasible interval between
variable i and j, ∆ij , by combining a series of ∆ik, . . . ,∆k′j , where i→ k → ...→ k′ → j is
a path from i to j in the PESP graph.

Reconsider the example in Figure 1. There is one direct constraint which initializes ∆13
to [20, 35]. However, using constraints (1, 2, [10, 20]) and (2, 3, [15, 20]), it is easy to see this
sequence induces a constraint between variable 1 and 3 with feasible interval:

[10, 20]⊕ [15, 20] = [25, 40]

Hence, ∆13 can be reduced to [20, 35]∩ [25, 40] = [25, 35]. To describe the method informally,
let P ⊆ A be a path from i to j. To reduce the feasible interval ∆ij , consider all possible
paths P between i and j and verify whether ⊕a∈P ∆a reduces the feasible interval ∆ij .
Indeed, the number of possible paths between i and j may be exponential, but a precise
description on how to propagate constraints efficiently can be found in [7].

4 The Restricted Periodic Event Scheduling Problem

This section defines and analyzes a special case of the PESP, the so-called Restricted Periodic
Event Scheduling Problem (RPESP), which provides the basis for heuristic methods for the
PESP in this paper. Even though these heuristics will be explained in detail in the next
section, it is helpful to provide a motivation for the upcoming heuristics in a later section, in
order to understand the intuition behind the problem considered in this section.

4.1 Motivation
The heuristics in this paper are based on the concept of decomposing a PESP instance into
components that each contain a subset of the variables (and therefore also a subset of the
constraints), which separately will be solved. Trees are large components, for which will be
shown that these can be efficiently solved, and even optimized. To clarify the concept, a few
definitions will be introduced first.
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Figure 2 Example of restrictions while integrating components.

I Definition 2. A PESP instance Cx = (Vx, Ax) is a component of PESP instance D = (V,A)
if Vx ⊂ V and Ax = {(i, j) ∈ A : i, j ∈ Vx}.

It is important to see that whenever a problem D = (V,A) is decomposed into k disjoint
subproblems C1, . . . , Ck with ∪k

x=1Vx = V , that A is not necessarily equal to ∪k
x=1Ax. After

all, constraints/arcs that connect two components in the original instance D are not included
in A1, . . . , Ak.

I Definition 3. The bridging constraints Bxy between two components Cx = (Vx, Ax) and
Cy = (Vy, Ay) with respect to D = (V,A) are all constraints (i, j) ∈ A for which i ∈ Vx and
j ∈ Vy.

With this definition, note that A =
(
∪k

x=1Ax

)
∪
(
∪k

x=1 ∪k
y=x+1 Bxy

)
. In particular, given two

components (or subproblems) Cx and Cy w.r.t. D, the combined subproblem is denoted by
Cxy = (Vx ∪ Vy, Ax ∪Ay ∪Bxy).

When two components are solved separately, it is likely that the combined solution does not
correspond to a feasible solution with respect to D, because the bridging constraints cannot
be satisfied. If so, one prefers to make as few adjustments as possible to the components,
such that two solutions can be integrated. This idea provides the basis for the heuristics in
this paper, and also motivates the consideration of trees because of the following concept.

Suppose that the solution values of the variables in a component Cx are fixed, and
one wants to integrate this component, with another component, a tree Cy = (Vy, Ay).
The solution within Cx might induce several constraints on the values in Cy (the bridging
constraints). Basically, these bridging constraints induce restrictions on the exact values of
the variables in Cy, alongside the constraints that already were in Cy. See Figure 2 for an
example.

The graph contains 8 variables and 9 constraints. An already solved component Cx is
the subgraph containing variables v1 to v4. The dashed lines correspond to the bridging
constraints, which are not considered when the components are solved individually.

Based on these values, an algorithm needs to determine whether the fixed solution
(v1, . . . , v4) w.r.t. Cx can be extended to a feasible solution (v1, . . . , v8) w.r.t. D. To do so,
the algorithm needs to solve Cy based on the values v1, . . . , v4 and the bridging constraints.
In this case, one can easily see that at least v5 ∈ [15, 20] ∩ [12, 17] = [15, 17] and v6 ∈ [26, 27].
These constraints need to be taken as a starting point for solving Cy, in order to determine
whether a solution for the entire problem can be found with the starting solution for Cx.
Such constraints are referred to as exact variable restrictions Xi for variable vi. This concept
motivates the subproblem defined in the following subsection.
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4.2 Problem description
I Lemma 4. A PESP instance for which the underlying graph D = (V,A) is a tree can be
solved in linear time.

To see the correctness of this lemma, take an arbitrary vertex i ∈ V and fix vi with any value
(e.g., vi = 0). The possible values from the adjacent variables can be determined directly
from the constraints corresponding to the arc. This procedure can be repeated for unfixed
variables adjacent to fixed variables, until all variable values are fixed.

As argued in the motivation, so-called variable restrictions will be added to the problem,
meaning that every variable vi might be bound to a specific set of values Xi. This notation
allows the RPESP to become formulated as follows.

Restricted Periodic Event Scheduling Problem (RPESP)

Given: A directed, cycle-free graph D = (V, A), a cycle time T , a feasible interval ∆ij ⊆
{0, . . . , T − 1} for all (i, j) ∈ A and variable restrictions Xi ⊆ {0, . . . , T − 1} for all
i ∈ V .

Goal: Find a v ∈ [0, T )n such vj − vi ∈ ∆ij for all (i, j) ∈ A and vi ∈ Xi for all i ∈ V , or
state infeasibility.

Note that due to the addition of variable restrictions, the problem has become non-trivial
and a different algorithm is required.

4.3 Optimizing RPESP
I Theorem 5. RPESP can be optimized in O(nT 2) time.

Theorem 5 is fundamental for the heuristic in this paper, and will be proven using dynamic
programming. To this aim, label a vertex of choice as the root r of the tree, and define d(i)
as the minimum number of arcs required from vertex i to reach the root r. A vertex j is a
child of i if d(j)− d(i) = 1 and there exists an arc between i and j. Similarly, i is the parent
of j, which is denoted by i ↓ j.

The dynamic program starts with the vertices at the bottom of the tree (i.e., the vertices
without children), and proceeds in a bottom-up fashion by considering in every iteration a
vertex of which all children have been considered earlier. Because the graph contains no
cycles, such a vertex always exists.

At vertex i, the dynamic program enumerates all feasible solution values for vi ∈ Xi

and determines for which of these values a feasible solution exists, considering only the
constraints and variables in the subtree rooted at i (i.e., a subproblem is considered). Using
the mentioned model and definitions, the dynamic program will use the following function:

f(i, x) =
minimum cost of a feasible solution of the subproblem rooted at
vertex i, while x ∈ Xi and vi = x

with initialization for the leaves as:

f(i, x) =
{

0 if x ∈ Xi

∞ otherwise

In other words, the subproblem rooted at vertex i using xi = t is infeasible if and only if
f(i, x) =∞. The recursive identity that solves the dynamic program is:

f(i, x) =
∑

(j:i↓j)

min
vj∈{0,...,T−1}

(f(j, vj) + zij(vi, vj))
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for xi ∈ X. This correctness of the recursion of the dynamic program can be inductively
argued as follows. One wants to know the optimal solution value of the subproblem rooted
at i, when vi is fixed at x. Prior to this stage, the dynamic program has determined
for all children j of i determined what the optimal value f(j, vj), for every possible value
vj = 0, . . . , T − 1 of the individual subproblems rooted at its children j. Whenever vertex
i is added to the subproblem, more terms in the objective function need to be considered.
However, by the assumption at the beginning of this section, only terms to the objective
function are added between i and its children (i.e., the terms zij(vi, vj) for all j). Since a
fixed vi = x is considered for evaluating f(i, x) and the subproblems rooted at the children
of i can be optimized independently of each other, one can simply iterate in linear time what
the optimal value for vj is, including also the terms in zij(vi, vj)

The running time of this dynamic program is as follows. Let ci be the number of children
of vertex i. Note that

∑
i∈V ci = n − 1, because every vertex, apart from the root, is

a child of exactly one other vertex. Computing one value for f(i, x) takes O(ciW ) time,
because for every child j = 1, . . . , ni of i, for exactly |∆ij | = O(W ) values need to be
verified whether there exists a vj such that (vj − x) mod T ∈ ∆ij . Since f(i, x) needs to
be calculated for at most W values for every vertex i ∈ V , the running time concludes to
O
(
W ·

∑
i∈V ciW

)
= O(

(∑
i∈V ci

)
W 2) = O(nW 2). This proves Theorem 5.

Finally note that the dynamic program can be terminated earlier if it detects for a vertex
i that there exists no f(i, x) < ∞, as this implies there is no solution for the subproblem
rooted at i (and therefore the RPESP instance).

5 Tree decomposition heuristics

Decomposing the PESP into trees is the key technique for heuristics used in this paper to
solve PESP instances. The intuition behind this method has been explained in Subsection 4.1:
the problem is decomposed in subproblems which are solved independently, and integrated
afterwards. If integration is not possible, it is desirable to make a few changes as possible to
enable integration. This is elaborated in the next subsections.

5.1 Decomposing a PESP graph into trees
An important part of the algorithm concerns the decomposing of the original graph D into
trees. Clearly, this can be done in numerous ways for realistic instances. For this research,
a simple greedy heuristic has been applied based on the feasible intervals ∆ij . To describe
the method informally, a component C will be initialized by adding the two vertices i and j
that correspond to the arc with minimal |∆ij |. Subsequently, a vertex is added to C if its
addition will not lead to a cycle within the component.

The resulting tree graphs, which by definition are components, are denoted as C1, . . . , Ck.
As mentioned earlier, the original graph D is not equal to ∩k

i=1Ci, since the bridging
constraints are not considered. Indeed, when all trees are optimized individually, the
bottleneck lies in satisfying the bridging constraints.

5.2 Requirements for partial solutions
I Remark. Given two components Cx and Cy w.r.t. D, a given solution vx can be extended
to a feasible solution for the (merged) component Cxy = (Vx ∪ Vy, Ax ∪ Ay ∪ Bxy) if
and only if there exists a solution to the RPESP instance Cy with variable restrictions
Xj = ∩(i,j)∈A:i∈Vx

((vi ⊕∆ij) mod T ), for all vj ∈ Vy.
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To emphasize the difference, vx is a partial solution to D, but a complete solution to Cx.
It is of interest whether vx can be extended to a feasible solution for the merged subproblem
Cxy, including the bridging constraints.

To see the correctness of Remark 2, note that by definition, all constraints in Ax are
satisfied by definition of vx. Moreover, by construction of Xi, the bridging constraints Bxy

are fulfilled if the variable restrictions are satisfied. Hence, the remaining constraints Ay are
fulfilled if there exists a solution to the RPESP instance using these variable restrictions.

Note that the dynamic program explained in Subsection 4.3 can answer the question
whether a partial solution vx can be extended to a feasible solution for Cxy. Moreover,
optimization of an objective can be taken into account to retrieve the best solution for Cxy

given vx. This justifies more formally the consideration of the RPESP. Indeed, the next step
is to integrate a feasible solution for Cxy to a solution for a larger component.

Using this concept, one needs to find partial solutions v1, . . . , vk such that vx ∪ vy is a
feasible solution for Cxy for all x = 1, . . . , k and y = x+ 1, . . . , k.

Clearly, a prerequisite for every partial solution vx w.r.t. D is that it can be extended to
a solution for the merged subproblem Cxy for all y = 1, . . . , k. If not, then vx clearly cannot
be extended to a solution for the original problem D = (V,A). One can verify in O(knT 2)
time whether a solution can be extended to a solution for merged subproblems, using the
dynamic program.

5.3 Identifying non-extendable partial solutions
The idea will firstly be illustrated informally by reconsidering the example in Figure 2.
Given the solution v1 = (0, 12, 14, 18) for C1, the bridging constraints impose variable
restrictions X5 = {15, 16, 17} and X6 = {26, 27}. It turns out that, given the solution v1

for C1, that C2 in fact has become infeasible. After all, the constraint a57 demands that
v7 ∈ {15, . . . , 27}, while a67 demands that v7 ∈ {28, 29, 30}, making the feasible region for v7
equal to {15, . . . , 27} ∩ {28, 30} = ∅.

Even though the full PESP-instance is feasible, e.g., v = (0, 10, 10, 15, 15, 23, 25, 35), no
feasible solution v2 for C2 can be found given the variable restrictions imposed by solution
v1. This clearly means that a different solution for C1 needs to be found. While attempting
to solve C2, the dynamic program will note this as well, since f(7, x) will be False for
all x. Informally, the dynamic program needs to send feedback to C1 on how to find a
feasible solution (that can be extended to a feasible solution for C2), by imposing additional
constraints on finding a solution for v1 for C1.

In this specific example, note that a change has to be made in the subset (v1, v2, v4);
a feasible value for v3 can instantly be found due to the tree structure. Thus, one needs
to analyze the possible values for (v1, v2, v4) and identify which combinations of values can
never lead to a feasible solution for C2. This procedure will be formalized in the next section.

5.4 Fixing non-extendable partial solutions
I Definition 6. A subset ban (Yi, . . . , Yk), with Yj ⊆ {0, . . . , T − 1} for j = i, . . . , k, is a
set of variable values for which any combination (vi, . . . , vk) ∈ Yi, . . . , Yk can never extend to
feasible solution.

Subset bans basically form an administration of combinations of variables from which the
dynamic program already concluded that this leads to guaranteed infeasibility. In this way,
an earlier found partial solution for a component Cx can never be considered again, if it has
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Table 1 Results of the tree decomposition for the PESP using the PESLlib datasets.

Dataset Variables Constraints Trees Sol. value Best value % Difference
R1L1 3664 6385 5 36.1 31.1 +16.0%
R1L2 3668 6543 4 38.3 31.7 +20.8%
R1L3 4184 7031 5 35.0 30.5 +14.8%
R1L4 4760 8528 4 31.9 27.9 +14.3%
R2L1 4156 7361 4 48.8 42.5 +14.8%
R2L2 4204 7563 5 50.1 43.1 +16.2%
R2L3 5048 8286 4 42.9 39.9 +7.5%
R2L4 7660 13173 4 40.1 33.0 +21.5%
R3L1 4516 9145 5 55.4 45.4 +22.0%
R3L2 4452 9251 5 54.7 46.2 +18.4%
R3L3 5724 11169 5 56.5 43.0 +31.4%
R3L4 8180 15657 5 N/A 35.5 N/A
R4L1 4932 10262 5 61.2 51.7 +18.3%
R4L2 5048 10735 5 64.6 52.0 +24.4%
R4L3 6368 13238 6 N/A 45.8 N/A
R4L4 8384 17754 4 N/A 38.8 N/A

been proven to be non-extendable to another component. When finding a feasible solution
from the dynamic program described in 5, one can easily determine a value that fulfills these
bans by picking a value x for a variable i for which f(i, x) <∞ and vi /∈ Xi.

To complete the heuristic, suppose vx can be extended to a solution vx ∪ vy for Cxy, and
vx can also be extended to a solution vx ∪ vz for Cx,z, where vy and vz can be deduced
from the dynamic programs. Having found these solutions, this does not necessarily mean
that vy ∪ vz is a solution for Cyz (the constraints in Byz have not been considered). This
directly implies that vx ∪ vy ∪ vz is not necessarily a solution to Cxyz. This is indeed where
exponentiality theoretically can occur. Once multiple trees are integrated in a component
C, but are not able to be integrated with another tree Cx, there may be subset bans in C
spanning multiple trees. Note that this problem occurs more if the trees are connected to
each other, which occurs less in a railway timetabling framework due the railway network
(variables/trains in a specific part of the country are less related to variables/trains at the
far other end of the country).

6 Experimental results

For this research, the 16 railway timetabling instances from publicly available PESP bench-
mark library PESPlib1 have been used. The upper bound for the running time has been set
to 1 hour, though if a possible solution can be found, it is usually done within minutes. The
remainder of the running time is spent on optimizing the objective function. The results are
summarized in Table 1.

All experiments were conducted on a PC with an AMD Ryzen 5 1600 Six-Core Processor
(3.20 GHz) with 16 GB of RAM. The source code was written in Java. To clarify Table 1:

1 http://num.math.uni-goettingen.de/ m.goerigk/pesplib/
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Trees is the number of trees are the minimum number of trees to which the variables
can be decomposed for the tree decomposition heuristic.
Sol. value is the solution value when using the tree decomposition heuristic presented
in this paper in millions. If no feasible solution could be found within the time bound,
N/A is given.
Best value is the currently best found solution value so far (also in millions), generally
by Goerigk & Liebchen.
% difference is the percentual difference between sol. value and best value.
Although the tree decomposition heuristic does not give the hoped results, the performance

on these datasets can still be satisfying and at least offer perspective for improvements.
Particularly the short duration of the tree decomposition method, for an entire timetable
with constraints of an entire country, is one of they key contributions of this paper. To the
best of the knowledge presented in this paper, there exists no method that can solve large
instances (after data reduction) within such a short amount of time.

Unfortunately, three of the datasets could not be solved by the tree decomposition
heuristic. This may be due to the higher number or constraints, or possibly a structure
within the constraints where the heuristic cannot deal properly with. Nevertheless, the
other 13 datasets could be solved, although the performance is about 20% worse on average
than the currently best found solutions. Still, since this method is a heuristic from a new
perspective, there is room for improvements and perhaps potential to improve the currently
known approaches.

7 Conclusions and future work

The PESP is a difficult problem for which the current literature is seeking more practical
methods to escape local optima, without applying brute force in an early stage. This paper
has proposed techniques for heuristics that decompose a PESP problems into trees. These
techniques are primarily based on dynamic programming, which allows the usage of a smart
objective function that heuristically maximizes the possibility that a solution for a component
can be extended to a solution for all other components. Experiments are performed using
online benchmarks, and the even though the heuristic performs on average about 20% worse
in terms of objective function, feasible solutions can still be found quickly.

Future research will be done in improving this method to find feasible and better solutions
in a faster way. Other future work concerns the incorporation of heuristics for the PESP into
parallel problems; current research includes the routing of trains through stations in parallel
to the optimization of the PESP. Due to the highly complex structure of both problems,
heuristics are likely to be more suitable than standard optimization techniques.
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