
Oligopolistic Competitive Packet Routing
Britta Peis
Department of Management Science, RWTH Aachen
Kackertstraße 7, 52072 Aachen, Germany
peis@oms.rwth-aachen.de

Bjoern Tauer
Department of Management Science, RWTH Aachen
Kackertstraße 7, 52072 Aachen, Germany
bjoern.tauer@oms.rwth-aachen.de

Veerle Timmermans
Department of Management Science, RWTH Aachen
Kackertstraße 7, 52072 Aachen, Germany
veerle.timmermans@oms.rwth-aachen.de

Laura Vargas Koch
Department of Management Science, RWTH Aachen
Kackertstraße 7, 52072 Aachen, Germany
laura.vargas@oms.rwth-aachen.de

Abstract
Oligopolistic competitive packet routing games model situations in which traffic is routed in
discrete units through a network over time. We study a game-theoretic variant of packet routing,
where in contrast to classical packet routing, we are lacking a central authority to decide on an
oblivious routing protocol. Instead, selfish acting decision makers (“players”) control a certain
amount of traffic each, which needs to be sent as fast as possible from a player-specific origin to
a player-specific destination through a commonly used network. The network is represented by
a directed graph, each edge of which being endowed with a transit time, as well as a capacity
bounding the number of traffic units entering an edge simultaneously. Additionally, a priority
policy on the set of players is publicly known with respect to which conflicts at intersections are
resolved. We prove the existence of a pure Nash equilibrium and show that it can be constructed
by sequentially computing an integral earliest arrival flow for each player. Moreover, we derive
several tight bounds on the price of anarchy and the price of stability in single source games.

2012 ACM Subject Classification Networks → Network algorithms

Keywords and phrases Competitive Packet Routing, Nash Equilibrium, Oligopoly, Efficiency of
Equilibria, Priority Policy

Digital Object Identifier 10.4230/OASIcs.ATMOS.2018.13

1 Introduction

One of the fundamental problems in parallel and distributed systems lies in the transport of
discrete traffic units (“packets”) through a network over time. From a centralized optimization
perspective, the design of routing protocols requires two kinds of decisions: first, an origin-
destination path needs to be selected for each of the packets, and second, priority policies
need to be defined to resolve conflicts whenever more packets than the link-capacity allows
are going to traverse the same link simultaneously.

© Britta Peis, Bjoern Tauer, Veerle Timmermans, and Laura Vargas Koch;
licensed under Creative Commons License CC-BY

18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2018).
Editors: Ralf Borndörfer and Sabine Storandt; Article No. 13; pp. 13:1–13:22

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:peis@oms.rwth-aachen.de
mailto:bjoern.tauer@oms.rwth-aachen.de
mailto:veerle.timmermans@oms.rwth-aachen.de
mailto:laura.vargas@oms.rwth-aachen.de
http://dx.doi.org/10.4230/OASIcs.ATMOS.2018.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

13:2 Oligopolistic Competitive Packet Routing

We model the network by a directed graph G = (V,E) whose edges correspond to the
links of the network. Each edge e ∈ E is equipped with a certain bandwidth ue > 0 denoting
the maximal number of packets that are allowed to enter edge e simultaneously, and a certain
transit time τe ≥ 0 denoting the time needed for a single packet to traverse e. Each packet
must be sent through the network from its origin si ∈ V to its destination ti ∈ V along a
single path Pi selected from the collection Pi ⊆ 2|E| of all simple si-ti-paths. We assume
that time is discrete and that all packets take their steps simultaneously. Thus, it suffices to
consider integral capacities and travel times. The corresponding packet routing problem is
to minimize the makespan of such a routing protocol, which is the latest point in time when
a packet reaches its destination vertex. This problem is also known under the name quickest
integral multi-commodity flow over time (see e.g. [4]).

When considering packet routing problems, like routing traffic in a road network, it is
natural to view these problems from a game-theoretical perspective. In particular, as it might
well be the case that there is no central authority which predescribes a routing protocol.
Instead, packets are routed through the network by selfish acting decision makers (“players”)
each of which aiming at sending the packets under her control as fast as possible from the
player-specific origin to the player-specific destination. Such situations can be modeled by
competitive packet routing games, a special class of non-cooperative strategic games. In a
competitive packet routing game, the network and the forwarding policy are publicly known.
Each of the players i ∈ N = {1, . . . , n} decides on the routes along which the ki packets
under her control are to be routed from origin si to destination ti.

Packet routing games usually restrict to the setting where each player controls exactly one
packet. In this paper, we consider the more general setting where each player i ∈ N controls
an arbitrary integral amount of ki packets which all need to be routed along paths in Pi. We
call these games oligopolistic competitive packet routing games to distinguish between our
model and the model of competitive packet routing games investigated in [6]. The individual
goal for each player is to minimize the average arrival time of the packets under her control,
which corresponds to the computation of an earliest arrival schedule [9]. As a forwarding
policy, we assume in our model that a global priority list π on the players is given according
to which conflicts at intersections are resolved. That is, when more packets seek to enter an
edge than the capacity allows for, packets belonging to players higher on the priority list go
first. In these games, we study the drawbacks of the absence of a central authority, and the
benefits of coordination between players. This analysis is motivated by future road traffic
scenarios where instead of individual cars, private companies own fleets with a large number
of autonomous vehicles. Similar to the development of the commercialization of the internet
(and the possible abolition of net neutrality), one can think of a system where higher paying
fleet owners gain benefits (priority) over non-paying fleet owners. As a city you are interested
in the performance of such a prioritized system.

Contributions

A strategy where no player can unilaterally deviate to decrease her cost is called a pure Nash
equilibrium (equilibrium, for short). In Section 3, we show that an equilibrium exists and that
it can be constructed within pseudo-polynomial time by sequentially computing an earliest
arrival flow for each player. In Section 4 and Section 5, we measure the efficiency of equilibria
by comparing the best and worst total cost under an equilibrium state with the minimal
total cost achievable by a central authority. The corresponding ratios are usually referred to
as Price of Stability (PoS) [cf. [1]] and the Price of Anarchy (PoA) [cf. [11]], respectively.

B. Peis, B. Tauer, V. Timmermans, and L. Vargas Koch 13:3

In Section 4 we consider games in which all players share a common source and a common
sink (“single commodity games”). We prove that the PoS in single commodity games is
equal to 1, while the PoA is bounded from above by n. To show the tightness of the PoA,
we provide an example in which the PoA converges to n with increasing number of packets.
For the case where all players have identical demands, i.e., where ki = kj for all i, j ∈ N , we
prove that the PoA is bounded from above by 1

2 (n+ 1) and give a matching lower bound
example. Note that these bounds depend on the number of players, but are independent of
the number of packets to be routed through the network. Thus, even for a very high number
of packets we get a low price of anarchy if the number of players is small.

Lastly, in Section 5, we study games in which all players share a common source s, but
might have player-specific sinks ti (“single source games”). For single source games, we give
an example where the PoS grows to 2 with increasing number of packets. The PoA might also
be larger than for single commodity games. We even give an algorithm that computes, given
the demands of all players, an example maximizing the PoA for the given set of demands.

Related Work

Packet routing has received a vast amount of attention in the past decades. A break-through
result is due to Leighton, Maggs and Rao [13], who prove the existence of a routing protocol
for fixed paths, whose makespan is a constant-factor approximation in terms of the natural
lower bound (C + D)/2. Here, C denotes the congestion, i.e., the maximum number of
packets traversing the same edge, and D denotes the dilation, i.e., the length of the longest
path along which a packet is routed. This result has been improved and simplified several
times in the past (see, e.g., [19, 16, 7, 17]). For the more general problem where paths are
not fixed, Srinivasan and Teo [21] show that a constant factor approximation is still possible.
To prove this result they use the fact that it is sufficient to find paths which minimize the
sum of congestion and dilation. Koch et al. [10] extend this result to a more general setting,
where messages that consist of several packets need to be routed through a network. In
contrast to our model, they require that all packets of a message wait at the head of each
traversed link until the last packet of the message arrived.

A game-theoretic perspective on packet routing can be found in the pioneering work of
Hoefer et al. [8]. Here, they start with network congestion games (see Roughgarden [18]
for an introduction) and generalize this model to a variant over time. More details on this
development can be found in [8]. Similar to our competitive packet routing model, the model
in [8] considers players i ∈ N , and each player is associated with an origin vertex si, a
destination vertex ti, and a player-specific weight wi. However, in contrast to our model,
the capacity on each link does not bound the number of packets allowed to traverse the
link simultaneously at each integral time step. Rather, it bounds the total load on an edge
induced by packets traversing this edge at each point in time. The authors analyze four
different forwarding policies (FIFO, equal time sharing, (non-) preemptive global ranking),
they focus on the existence of Nash equilibria and the convergence of best responses. Kulkarni
et al. [12] extend the model of Höfer et al. and bound the price of anarchy, using LP duality.
Lastly, Harks et al. [6] investigates the special class of competitive packet routing in which
each player controls exactly one packet. They study existence, efficiency, and computability
of equilibria with respect to both local (i.e. edge-dependent) and global priority lists on the
players. For both forwarding policies, they analyze the existence of equilibria and establish
bounds on the price of anarchy and the price of stability using the techniques introduced by
Kulkarni et al [12]. A more detailed comparison can be found in the respective chapters.

ATMOS 2018

13:4 Oligopolistic Competitive Packet Routing

2 Preliminaries

The Model

A multi commodity oligopolistic competitive packet routing game G is represented by the
tuple: G := (G,N, (si, ti, ki)i∈N , π), where G := (V,E, (τe)e∈E , (ue)e∈E) is a directed graph
that consists of a set of nodes V and edges E, where each edge e ∈ E is endowed with an
integral transit time τe ≥ 0 and an integral capacity ue > 0. The transit time of an edge
denotes the time it takes for each player to traverse this edge. The capacity is a limit on the
number of packets that can enter an edge at each integral time step. We use N to denote
the set of players, where each player i ∈ N has a player-specific source and sink si, ti ∈ V .
Additionally, each player has a set of ki identical packets she desires to send from si to ti.
We denote this set by Ki. Lastly, as a forwarding policy, we are given a priority list π ∈ Πn,
where Πn is the set of all different orderings on n players. Whenever more packets desire to
enter an edge than the capacity allows for, packets of players higher in the priority list can
go first. Without loss of generality, we assume that players are numbered according to their
position in the priority list π.

A feasible strategy xi of a player i ∈ N determines for every packet in Ki a simple
si-ti-path, together with a release time, i.e., the time the packet should start trying to
traverse its assigned path. That is, player i decides on a path vector Pi ∈ Pki

i , where Pi
denotes the set of all simple si-ti-paths. Additionally, player i decides on a release time for
every packet by selecting a release-time vector Ri ∈ Nki

≥0. Thus, the set of feasible strategies
of player i can be described as Si(ki) :=

{
xi = (Pi, Ri) | Pi ∈ Pki

i , Ri ∈ Nki

≥0

}
.

The combined strategy space is denoted by S :=
∏
i∈N Si(ki) and additionally we denote

by x := (xi)i∈N the overall strategy profile. In a strategy profile x, each packet ` ∈ Ki

travels over its assigned path to its destination. We let Ci,`(x) denote its arrival time at
sink ti. The goal of each player is to minimize the sum of the arrival times of her packets
Ci(x) :=

∑
`∈Ki

Ci,`(x). The social cost of strategy profile x ∈ S is C(x) =
∑
i∈N Ci(x),

i.e., the total cost of all players. A profile x ∈ S minimizing the social cost is called social
optimum.

Note that the arrival time of each packet is uniquely determined by embedding the
strategies of the players in graph G. We embed the players one by one in order of their
priority list and for every player we embed the packets in order of the strategy vector
(assuming a decreasing priority) starting at their respective release time. In our model,
packets are not allowed to wait at any intermediate node unless necessary. Thus, such an
embedding is unique.

As usual in game theory, for every i ∈ N , we write S−i(k−i) :=
∏
j 6=i Sj(kj) and

x = (xi, x−i) meaning that xi ∈ Si(ki) and x−i ∈ S−i(k−i). A strategy profile x is called
a Nash equilibrium whenever no player can unilaterally deviate and decrease her own cost,
i.e. Ci(xi, x−i) ≤ Ci(yi, x−i) for all yi ∈ Si(ki). A pair (x, (yi, x−i)) is called an improving
move when Ci(yi, x−i) < Ci(x). A strategy xi of player i is called a best response to x−i
whenever xi ∈ arg minyi∈Si(ki){Ci(yi, x−i)}. Thus, a profile x is a Nash equilibrium if and
only if there is no player that has an improving move, or equivalently, if each player plays a
best response.

I Example 1. Consider the single commodity game G on directed graph G depicted in
Figure 1, where the transit times are depicted in the picture, and the capacity of each edge
is equal to one. We consider two players, each controlling exactly one packet that needs to
be routed from the common source s to the common sink t. As stated before, we assume the

B. Peis, B. Tauer, V. Timmermans, and L. Vargas Koch 13:5

s t

u

v

1 1

1

0

1

Figure 1 Graph G.

s t

u

v

Figure 2 Social optimum.

s t

u

v

Figure 3 Strategy in a NE.

1

2

3

n

n+ 1

n+ 2

n+ 3

2n

2n+ 1

2n+ 2
... ...

...

Figure 4 Graph BG(n).

s v t
0

3

1

Figure 5 Release times as part of the strategy.

players to be numbered according to their spot in the priority list, hence, player 1 has priority
over player 2. Note that the first player has three optimal strategies: she selects release
time zero and either uses one of the parallel paths (Figure 2) or the path that intersects
with both of these paths (Figure 3). If she chooses one of the parallel paths, the second
player can take the other parallel path, resulting in a socially optimal equilibrium x ∈ S with
C1(x) = C2(x) = 2. If she uses the the zig-zag path depicted in Figure 3 instead, she harms
player 2 who cannot arrive at t before time step 3. If, for example, the second player selects
release time zero, and travels along either path, we result in an equilibrium x′ with social
cost C1(x′) + C2(x′) = 2 + 3 = 5. Thus, PoS = 1 and PoA ≥ 5

4 .

The graph G depicted in Figure 1 is a well-known graph, famous from the Braess-paradox,
and is used several times to prove lower bounds on the price of anarchy, e.g. [12]. In the rest of
this paper we use this graph, and an extension of it several times. Therefore, we define BG(n)
as a graph on 2n+2 vertices with four types of edges EBG(n) = E1(n)∪E2(n)∪E3(n)∪E4(n),
where: E1(n) := {(1, v) | v ∈ {2, . . . , n + 1}, E2(n) := {(v, v + n) | v ∈ {2, . . . , n + 1},
E3(n) := {(v, v− n+ 1) | v ∈ {n+ 2, . . . , 2n}, E4(n) := {(v, 2n+ 2) | v ∈ {n+ 2, . . . , 2n+ 1}.
Note that graph BG(n) has n parallel paths from node 1 to 2n + 2, and one path that
intersects all n parallel paths. A visualisation of graph BG(n) can be found in Figure 4.

As stated in the model, players do not only choose a path in the network, but also a
release time for each packet, i.e., the time at which a packet starts traversing its assigned
path. This brings no advantage regarding the cost function of a player. Though, by allowing
players to set a release time for each packet, friendly players have the option not to congest
the network unnecessarily. Moreover, players might prefer to wait at the source instead of
waiting at intermediate nodes. As is proven in Section 3, it also allows us to compute social
optima in all single commodity games. We give an example that illustrates the use of setting
release times for packets: Consider the graph depicted in Figure 5, with four players owning
one packet each. The first edge has capacity two and the other edges have capacity one.
The transit times of the edges are depicted in the network. We denote the path taking the
lower edge (v, t) as p1 and the path taking the upper edge as p2. A possible equilibrium is
x1 = (p1, 0), x2 = (p1, 1), x3 = (p1, 2) and x4 = (p2, 0) realizing arrival times C1 = 1, C2 = 2,
C3 = 3 and C4 = 3. If players cannot choose release times, there is a unique equilibrium in
which all players choose p1, realizing arrival times C1 = 1, C2 = 2, C3 = 3 and C4 = 4.

ATMOS 2018

13:6 Oligopolistic Competitive Packet Routing

s t

Figure 6 No PNE without global priority list.

Table 1 Three possible equilibria.

Strategy 1 Strategy 2 Strategy 3
(1, 1) (top,0) (top,0) (top,0)
(1, 2) (top,0) (bottom,0) (bottom,0)
(2, 1) (bottom,0) (top,0) (bottom,0)
(2, 2) (bottom,0) (bottom,0) (top,0)

In Section 3 we prove that, whenever we are given a priority list on the players, Nash
equilibria exist. In contrast, if the priority list is given on the set of packets instead of players,
the existence of equilibria cannot be guaranteed.

I Example 2. Consider an oligopolistic packet routing game on the graph depicted in Figure 6.
This graph has two edges: top and bottom, with both capacity and transit time equal to
one. We assume there are two players that both want to route two packets from source s to
sink t. Let (i, `) denote packet ` of player i. Assume that the priority over the packets is
π = ((1, 1), (2, 1), (1, 2), (2, 2)). Note that in this network no player can decrease her costs
by increasing the release time from zero. Further, note that in any equilibrium each edge
is used by exactly two packets. This implies that without loss of generality there are three
candidates for an equilibrium, which are depicted in Table 1.

Strategy 1 is not an equilibrium, as player 1 is better of by switching packet one to
the other edge. Strategy 2 is not an equilibrium, as player 2 is better of by interchanging
packet one and two. Strategy 3 is also not an equilibrium, as player 1 would be better of by
switching packet one and two around. Hence, this game does not have a Nash equilibrium.

Due to the simplicity of the example, it is sensible to restrict our research to priority lists on
players instead of packets.

Flows over time and earliest arrival flows

In an oligopolistic packet routing game, a player sends a set of ki packets from a source si to
a sink ti. Thus, every feasible strategy is an integral si-ti-flow over time of flow value ki. We
shortly introduce flows over time, also known under the name dynamic flows. For a more
detailed introduction on static and dynamic flows, we refer to Skutella [20].

I Definition 3. Given a graph G = (V,E, (τe)e∈E , (ue)e∈E) with transit times and capacities,
an integral s-t-flow over time is a set of functions fe : N≥0 → N≥0 for all e ∈ E satisfying
the following two constraints:

fe(θ) ≤ ue ∀e ∈ E, θ ∈ N≥0, (1)∑
e∈δ−(v)

ξ−τe∑
θ=0

fe(θ) ≥
∑

e∈δ+(v)

ξ∑
θ=0

fe(θ) ∀ξ ∈ Z≥0, v ∈ V \ {s, t}. (2)

B. Peis, B. Tauer, V. Timmermans, and L. Vargas Koch 13:7

Here δ+(v) := {(v, u) ∈ E | u ∈ V } and δ−(v) := {(u, v) ∈ E | u ∈ V }. The first
inequality imposes the capacity constraint of the edges on the flow, and the second constraint
represents the flow conservation property. If Equation (2) is fulfilled with equality, we say
that strong flow conservation holds, implying that there is no waiting at intermediate nodes.

A special variant of flows over time are earliest arrival flows. Such an earliest arrival
flow (EAF) maximizes the flow value arriving at the sink at each integral time step θ ∈ N≥0.
To be more precise, we define A(f, T) to be the amount of flow that arrives at t on or before
time T , e.g. A(f, T) :=

∑T
θ=0 a(f, θ), where a(f, θ) denotes the amount of flow arriving at the

sink at time θ. We say that a feasible integral s-t-flow over time f fulfills the earliest arrival
property whenever A(f, θ) ≥ A(f ′, θ) for all feasible integral s-t-flows f ′ and all θ ∈ N≥0.
An integral s-t-flow over time that satisfies strong flow conservation and fulfills the earliest
arrival property is called an integral earliest arrival s-t-flow (s-t-EAF). Integral earliest
arrival flows are guaranteed to exist in a single commodity network [5]. In such networks, an
earliest arrival flow can be computed by Wilkinson’s algorithm [23] when the capacities do
not vary over time, and Tjandra’s algorithm when capacities do vary over time [22]. In a
multiple source, single sink setting, earliest arrival flows also exist, and can be computed
when capacities do not change over time [14, 15]. In a multi commodity setting there are
networks such that no earliest arrival flow exists [3].

3 Existence of Nash equilibria

Whenever each player has exactly one packet, Harks et al. [6] show that a pure Nash
equilibrium exists and can be found using a sequence of shortest path computations. We
prove the existence of pure Nash equilibria in multi commodity oligopolistic competitive
packet routing games by exploiting the connection to earliest arrival flows. We start by
showing how to compute a best response for player i by computing an si-ti-EAF in a network
with time-varying capacities. Afterwards, we prove that a pure Nash equilibrium can be
obtained by sequentially computing such an earliest arrival flow for each player, in order of
the priority list. Lastly, we show that in a single commodity game an earliest arrival flow
minimizes the social cost function.

I Theorem 4. In a multi commodity oligopolistic competitive packet routing game, a best
response of a player i ∈ N corresponds to an si-ti-earliest arrival flow with time-varying
capacities, and vice versa.

Proof. Fix a player i ∈ N and strategies x1, . . . , xi−1 of players higher in the priority list,
arbitrarily. As mentioned before, we assume that players are ordered according to the priority
list. Thus, players j ∈ {i+ 1, . . . , n} cannot influence the travel time of packets controlled
by player i. A best response of player i towards x−i is therefore a strategy choice (or flow)
xi minimizing

∑
`∈Ki

Ci,`(x), i.e., the sum of arrival times of all packets in Ki. Obviously,
this corresponds to minimizing the average arrival time 1

ki

∑
`∈Ki

Ci,`(x). In [9], it was
shown that minimizing 1

ki

∑
`∈Ki

Ci,`(x) is equivalent to maximizing
∑
θ∈N≥0

Ai(x, θ), where
Ai(x, θ) := |{` ∈ Ki | Ci,`(x) ≤ θ}| denotes the number of packets of player i arriving at
sink ti before time θ under strategy x. For sake of completeness, we present a proof for this
fact in Appendix A.

It is well-known, that every s-t-network admits an s-t-earliest arrival flow even for
the case of time-dependent capacities (cf. Tjandra [22]). By definition, an earliest arrival
flow (EAF) is a flow maximizing Ai(x, θ) for every time θ. Thus, such an EAF maximizes
the sum

∑
θ∈N≥0

Ai(x, θ) as well, and therefore corresponds to a best response of player i.

ATMOS 2018

13:8 Oligopolistic Competitive Packet Routing

On the contrary, there can be no feasible flow other than an earliest arrival flow maximizing
this sum, since the earliest arrival flow maximizes every single summand. As a consequence,
every best response corresponds to an earliest arrival flow, and vice versa.

We can compute a best response xi as follows: We embed the strategies x1, . . . xi−1 of
players {1, . . . , i − 1} one by one in the network, in order of the priority list. Using the
algorithm of Tjandra [22], we compute an si-ti-EAF f in the resulting network with varying
capacities. We decompose flow f in ki paths (p`)`∈Ki

, where w.l.o.g. we assume that the
paths are ordered according to non-decreasing path lengths. Each packet l ∈ Ki is assigned
the release time r` according to its release time in the path decomposition of the earliest
arrival flow. To show that the strategy xi = (p`, r`)`∈Ki

is a feasible one, we prove that
packets never wait at intermediate nodes, unless the capacity of this edge is reduced due to a
preceding player, and that all paths are cycle-free. For a proof of the cycle-freeness, we refer
to the Appendix B. If all packets start according to their release dates, no packet of player i
has to wait for another packet of player i, since f is an earliest arrival flow. Particularly,
all packets take the same path and arrive at every intermediate node at the same point
in time as their correspondent in the earliest arrival flow. So, the arrival pattern of the
flow corresponding to xi has the earliest arrival property and thus xi is a best response for
player i. The priority rules in the model are obeyed since the players are embedded one by
one in order to the priority list. If a packet of a player i needs to wait due to a reduced
capacity, this corresponds to a packet of a player j < i using the edge. J

Thus, in order to compute a pure Nash equilibrium, we subsequently compute earliest
arrival flows for the players in the order of the priority lists according to Theorem 4.

I Corollary 5. Each multi commodity oligopolistic competitive packet routing game admits a
pure Nash equilibrium. Moreover, a pure Nash equilibrium can be computed by calculating
subsequently an earliest arrival flow for each player in the order of the priority list by using
the algorithm of Tjandra [22]. The running time is within O(|E| · |V | ·

∑
i∈N (S′i + ki)2 · ki),

where S′i is the length of a shortest si-ti-path in the underlying network with capacities adapted
according to the best responses of players in {1, . . . , i− 1}.

In order to achieve a social optimum, we assume there is one central authority who
coordinates all packets. Note that this central authority still needs to take the priority rules
into account. In single commodity games, we are able to compute a social optimum.

I Theorem 6. In single commodity oligopolistic competitive packet routing games, a social
optimum can be computed within pseudo-polynomial time.

Proof. First, we assume that there is a central authority controlling all K =
∑
i∈N ki

packets. According to Theorem 4, a strategy minimizing the social cost function for one
player corresponds to an earliest arrival flow. As capacities are constant over time, we
can compute an earliest arrival flow f by using Wilkinson’s algorithm [23]. Note that this
algorithm computes K shortest paths, and thus runs in pseudo-polynomial time. It is left to
decompose this strategy into player specific strategies and check if the player specific strategies
obey the priority rules. In order to do so, we find a path decomposition of flow f with a
corresponding release time for each packet: (pq, rq)1≤q≤K , where the tuples are numbered
according to the time the corresponding packet arrives at the sink. We define Fi :=

∑i−1
q=1 kq

and xi = (pq, rq)Fi<q≤Fi+ki
.

By the choice of the release times, we guarantee that a packet following the corresponding
successive shortest path can traverse the network without being delayed by other packets.
Hence, x realizes the arrival pattern of an earliest arrival flow while obeying the priority
rules. The paths are cycle-free due to Appendix B. J

B. Peis, B. Tauer, V. Timmermans, and L. Vargas Koch 13:9

4 Efficiency in single commodity games

We discuss the price of stability (PoS) and the price of anarchy (PoA) in single commodity
games in this section, and in single source multiple sink games in the subsequent section.
First of all, similar as in the model of Harks et al. [6], it can easily be derived from Theorem 6
that the price of stability in single commodity games is equal to one.

I Corollary 7. Each single commodity oligopolistic competitive packet routing game admits
a socially optimal pure Nash equilibrium which can be computed via one earliest arrival flow
computation.

Proof. We compute a social optimum as described in the proof of Theorem 6, and prove that
the resulting strategies form a Nash equilibrium. Observe that strategy xi is a best response
for player i, as she cannot decrease the arrival times of her packets due to the earliest arrival
property of the total flow. Thus, strategy (xi)i∈N is an equilibrium minimizing the social
cost. J

We show that in the single commodity setting, the price of anarchy is bounded by n.
Furthermore, we introduce an example such that, when the number of packets grows large,
the price of anarchy in our example converges to n. We start by proving an upper bound on
the price of anarchy. The proof is based on the following insight.

I Lemma 8. Let NE be a Nash equilibrium for game G and let OPT be a socially optimal
strategy profile constructed as described in the proof of Theorem 6. Then, for every player i
and every packet ` ∈ Ki, it holds that: Ci,`(NE) ≤ i · Ci,`(OPT).

A proof of Lemma 8 can be found in the Appendix C. Using Lemma 8 we prove an upper
bound on the price of anarchy in single commodity oligopolistic competitive packet routing
games.

I Theorem 9. In single commodity oligopolistic competitive packet routing games, the price
of anarchy is bounded from above by n.

Proof. Let NE be the Nash equilibrium for single commodity game G that maximizes the
social cost, and let OPT be a strategy profile that minimizes the social cost function. We
prove that C(NE)

C(OPT) ≤ n. We use Lemma 8 to obtain:

C(NE) ≤
n∑
i=1

∑
`∈Ki

i · Ci,`(OPT) ≤ n ·
n∑
i=1

∑
`∈Ki

Ci,`(OPT) = n · C(OPT).

Thus, the price of anarchy has an upper bound of n. J

In Theorem 10 we state an example of a single commodity game where, if the total
number of packets in the game grows large, the price of anarchy converges to n.

I Example 10. Consider a game with n players, where the first n− 1 players have only one
packet, and player n has kn packets. All players need to route their packets from s to t in
the Braess graph BG(n+ kn − 1) depicted in Figure 7.

In an optimal solution, all packets traverse the kn + n − 1 available parallel paths as
depicted in Figure 8, incurring a social cost of kn + n− 1. Note that it is also a viable option
for the first n− 1 players to traverse the path as depicted in Figure 9. The kn packets of

ATMOS 2018

13:10 Oligopolistic Competitive Packet Routing

s t... ...

...

1
1
1

1
1

Figure 7 Graph BG.

s t... ...

...

Figure 8 OP T .

s t... ...

...

Figure 9 NE.

player n cannot arrive before time n, incurring a social cost of 1
2n(n− 1) + nkn. Hence, in

this example the price of anarchy is:

PoA =
1
2n(n− 1) + nkn

kn + n− 1 = n−
1
2n(n− 1)
kn + n− 1 .

Note that when kn grows large, this ratio converges to n. Also observe that this result
generalizes the bound in [6], where all players own only one packet each (k = 1).

Hence, the bound we prove in Theorem 9 is tight. In this example, we exploit the fact
that the last player has far more packets than the others. Hence, it is reasonable to consider
the special case that all players have the same number of packets k, i.e. ki = kj for all
i, j ∈ N . We denote such a game as a symmetric game, since the strategy spaces of all the
players are identical. In a symmetric game the price of anarchy decreases to 1

2 (n+ 1). This is
an extension of the result of Harks et al. [6], which would give a price of anarchy of 1

2 (kn+ 1)
and coincide for k = 1. In order to prove this statement, we first show that 1

2 (n+ 1) is an
upper bound on the price of anarchy.

I Theorem 11. In symmetric oligopolistic competitive packet routing games the price of
anarchy is bounded from above by 1

2 (n+ 1).

Proof. Let S be the length of the shortest s-t-path in the network. Assume that in an
optimal strategy the first player has ap packets arriving at time S+p−1, where p ranges from
one up to some q1 ∈ N>0, where q1 = arg minp∈N>0{aq′ = 0,∀q′ > p}. Thus

∑q1
p=1 ap = k,

and within a time span of q1 all packets of player 1 reach the sink. We say that q1 is the
arrival spread of player 1. Note that 1 ≤ a1 ≤ a2 ≤ · · · ≤ aq1−1, as at least one packet of
player 1 can arrive at time S by taking the shortest path. Further, if ap packets arrive at
time S + p− 1 at least so many packets can arrive at S + p by choosing the same paths as
the packets arriving at S + p− 1 as long as there are enough packets left to fill up all paths.

As arrival times are increasing, the arrival times for all packets of the remaining n− 1
players are at least S + q1 − 1. Hence, we can find the following lower bound on the social
cost: C(OPT) ≥ knS +

∑q1
p=1 ap(p− 1) + (q1 − 1)k(n− 1).

In order to find an upper bound on the worst Nash equilibrium, we give an upper bound
on the arrival times of the i’th player, in terms of the arrival times of the first player. We
show that player i can always copy the strategy of player 1, but increase the release times
by (i− 1)q1 time units. In general, we prove the following statement: if the first player has
ap packets arriving at S + p− 1 as described above, then the i’th player can play the same
strategy (i− 1)q1 time units later, with ap packets arriving at S + p− 1 + (i− 1)q1.

We prove this statement by induction. In order to do so, we use the even stronger
statement which says: player i can copy the strategy of the first player (i− 1)q1 time units
later, without being delayed by any other player. Assume the induction hypothesis holds for

B. Peis, B. Tauer, V. Timmermans, and L. Vargas Koch 13:11

the first i− 1 players. Then we show that the i’th player can play the strategy of the first
player, where the release times are increased by (i− 1)q1. Note that the arrival times of the
first i− 1 players are all strictly smaller than S + (i− 1)q1. On the contrary, we assume that
there exists a packet ` of player i that needs to wait for a packet `′ by a previous player. This
implies that, if packet `′ would not block packet `, then packet ` could arrive on the original
arrival time of packet `′, which is smaller than S+(i−1)q1. As packet ` can only depart from
s at release time (i− 1)q1, this would imply that the shortest s-t-path has a length smaller
than S, which contradicts the fact that S is the length of shortest path in the network. Hence,
player i can repeat the strategy of the first player (i− 1)q1 time units later without being
delayed and thus with ap packets arriving at S + p− 1 + (i− 1)q1. Furthermore, we know by
Theorem 4 that a best response is equivalent to an earliest arrival flow. This guarantees that
no packet of player i arrives later than S + q1 − 1 + (i− 1)q1. This gives us an upper bound
on the total cost of any Nash equilibrium: C(NE) ≤

∑n
i=1
∑q1
p=1 ap(S + p− 1 + (i− 1)q1).

As we have a lower bound on the social cost of an optimal solution, and an upper bound
of the cost in any Nash equilibrium, we can find an upper bound on the price of anarchy.

PoA ≤
∑n
i=1
∑q1
p=1 ap(S + p− 1 + (i− 1)q1)

knS +
∑q1
p=1 ap(p− 1) + (q1 − 1)k(n− 1)

.

This fraction is maximized whenever S = 1 and q1 = 1, therefore the price of anarchy is
bounded from above by 1

2 (n+ 1). The technical argument for this claim can be found in the
Appendix D. J

To observe that this result is tight, consider Braess graph BG(n) (see Figure 7), where each
edge has a capacity k. Assume that the edges leaving s have cost S. Since there are n disjoint
paths with capacity k, all packets of all players reach the sink simultaneously at time S in a
social optimal profile OPT (see Figure 8), resulting in a social cost C(OPT) = nkS. However,
there is a profile in which all packets of each player take the path depicted in Figure 9, which
turns out to be a Nash equilibrium NE. Here, the arrival time is Ci,`(NE) = S + i− 1 for
all players i ∈ N and for all packets ` ∈ Ki. Therefore C(NE) = nk(S − 1) + k

∑n
i=1 i. If

we choose S = 1 we get the tight upper bound PoA = 1
2 (n+ 1). Observe that this result

generalizes the bound in [6], where all players own only one packet each (k = 1).

5 Efficiency in single source games

In this section, we consider games where players have a common source s, but player specific
sinks ti, i ∈ N . In general, earliest arrival flows do not necessarily exist in multi-commodity
games, even if all commodities share a common source (see, e.g., [2]).

I Example 12. Consider the graph depicted in Figure 10 with unit capacities and travel
times as shown in the picture. Assume one traffic unit needs to be send from s to t1, and one
unit from s to t2. In order to maximize the amount of flow arriving after two units of time,
we send one unit along edge (s, t1) and one unit along (s, v, t2) so that both units reach the
respective sink after two time units. This flow does obviously not maximize the amount of
flow reaching sink t1 at time step θ = 1. Thus, in this graph, no earliest arrival flow exists.

We extend this example to a single source competitive packet routing game on n players,
and show that, in contrast to single commodity games, single source games do not necessarily
admit socially optimal pure Nash equilibria.

I Theorem 13. In oligopolistic competitive packet routing games with a global source s and
player specific sinks t1, . . . , tn, the price of stability is bounded from below by 2.

ATMOS 2018

13:12 Oligopolistic Competitive Packet Routing

s

t1

v t2
0

2

2
1

Figure 10 Network without an EAF.

s

t1

t2

tn−2

tn−1

tn
0 0 . . . 0 1
2

3

n− 1

n

1
1

1
1

Figure 11 Network with a PoS converging to 2.

Proof. We consider the graph depicted in Figure 11, where the capacity of each edge is equal
to one. We assume there are n players, where the first n− 1 players control one packet, and
the last player controls n packets. Note that each of the first n− 1 players has two feasible
strategies. Either she takes her direct s-ti-route, or the path using the zero-length edges.
The last player has only one feasible strategy.

In the optimal solution OPT , the first n−1 players all take the direct s-ti-route, incurring
a total cost of n(n+ 1)− 1 for all players. In the unique Nash equilibrium NE, all players
use their indirect route, incurring a total cost of n(2n− 1). Hence, the price of stability is:

PoS = C(NE)
C(OPT) = n(2n− 1)

n(n+ 1)− 1 ≥
2n− 1
n+ 1 = 2− 3

n+ 1 .

Note that the last term converges to 2 when the number of players grows to infinity. J

In the remaining part of this section we focus on the price of anarchy. We show that, in
contrast to single commodity games, the bound for the setting with equal demands coincides
with the general bound. The tight bound turns out to be a fraction that depends on the
number of packets ki of player i and the number of players n. We present an algorithm that
constructs a matching lower bound example for every given n and (ki)i∈N .

Similar as in the previous section, we define Si to be the length of a shortest s-ti-path in
(G, τ), i.e., Si := minP∈Pi

∑
e∈P τe. For each player i ∈ N , let OPTi be an optimal strategy

under the assumption that no other player exists, i.e., OPTi is an integral earliest arrival
flow with source s and sink ti. Clearly, under flow OPTi, at least one packet reaches the sink
at time Si. We are interested in the arrival spread qi of flow OPTi which is the length of the
time interval in which packets are arriving at the sink under flow OPTi. Here, q1 corresponds
to the arrival spread q1 we defined in the proof of Theorem 11. To be more precise, we let
Mi(OPTi) denote the makespan of player i in OPTi, i.e., the latest point in time when a
packet of player i reaches the sink. Then, we define qi := Mi(OPTi) − Si + 1 to be the
arrival spread of flow OPTi. Let Ci,l(OPTi) denote the arrival time of the packet l ∈ Ki

under flow OPTi.

I Theorem 14. Let NE be an arbitrary pure Nash equilibrium in a single source multiple
sink oligopolistic competitive packet routing game G. Then, if Ci,`(NE) denotes the arrival
time of packet l ∈ Ki under NE,

Ci,`(NE) ≤ Ci,`(OPTi) +
i−1∑
k=1

qk,

Proof. Recall that, under an equilibrium, each player i ∈ N plays a best response towards
the strategy choices of the players j ∈ {1, . . . , i− 1} higher in the priority list. We prove this

B. Peis, B. Tauer, V. Timmermans, and L. Vargas Koch 13:13

s v w

tj

ti

e

Figure 12 Two player with origin s interact at a common edge e in the network.

theorem by induction. For the first player, the statement trivially holds, since a best response
corresponds to an s-t1-EAF, so C1,l(NE) = C1,l(OPT1) for each packet l ∈ K1 controlled by
the first player. Assume that Cj,`(NE) ≤ Cl,`(OPTj)+

∑j−1
k=1 qk holds for each packet l ∈ Kj

controlled by a player j ∈ {1, . . . , i− 1}. To show that Ci,`(NE) ≤ Ci,`(OPTi) +
∑i−1
k=1 qk

is true, it suffices to convince ourselves that player i could release all of her packets at
time

∑i−1
k=1 qk and follow the flow pattern of OPTi without ever being delayed by a packet of

players higher in the priority list.
For the sake of contradiction, we assume that a packet `i of player i has to wait for a

packet `j of player j < i. If this is the case, there must exist an edge e = (v, w) that is
traversed by both packets `i and `j (see Figure 12). Hence, packet `j could have started at
time

∑i−1
k=1 qk and arrive at node v at the same time as before, by taking the same s-v-path

as packet `i. By the induction hypothesis, the original arrival time of packet `j is smaller or
equal to Sj − 1 +

∑i−1
k=1 qk. Note that if packet `j takes the same s-v-path as packet `i, and

after that continues with its original v-tj route, it leaves s after time
∑i−1
k=1 qk and arrives

at tj before time
(
Sj − 1 +

∑i−1
k=1 qk

)
. Thus, the time that packet `j is in the network is

bounded from above by:(
Sj − 1 +

i−1∑
k=1

qk

)
−

i−1∑
k=1

qk = Sj − 1.

This contradicts the fact that Sj is the length of a shortest s-tj-path. Thus, all packets of
player i can leave s at time

∑i−1
j=1 qj , and arrive at ti using their optimal strategy, without

being delayed by previous players. Therefore:

Ci,`(NE) ≤ Ci,`(OPTi) +
i−1∑
k=1

qk.

Further, no packet of player i arrives later than Si − 1 +
∑i−1
j=1 qj since any best response of

a player is an earliest arrival flow by Theorem 4. Thus, in no best response a packet falls
behind a realizable time. J

I Corollary 15. For a single source competitive packet routing game G with n players,
demands (ki)i∈N and arrival spreads (qi)i∈N of the associated earliest arrival flows OPTi
for each i ∈ N , we have

PoA(G) ≤ 1 +
∑
i∈N

∑n
j=i+1 qikj∑

i∈N Ci(OPTi)
.

Proof. Assume that strategy OPT is a strategy that minimizes the social cost function.
Using Theorem 14 we obtain that for any Nash equilibrium NE, we have that:

C(NE)
C(OPT) ≤

∑
i∈N Ci(OPTi) +

∑
i∈N

∑n
j=i+1 qikj∑

i∈N Ci(OPTi)
= 1 +

∑
i∈N

∑n
j=i+1 qikj∑

i∈N Ci(OPTi)
. J

We prove that this bound is actually tight.

ATMOS 2018

13:14 Oligopolistic Competitive Packet Routing

I Theorem 16. Let N be a set of n players and let (qi)i∈N and (ki)i∈N be arbitrary, but
fixed, sequences of non-negative integers such that qi ≤ ki for all i ∈ N . Then, there exists a
single source competitive packet routing game G̃ on n players with

PoA(G̃) = 1 +
∑
i∈N

∑n
j=i+1 qikj∑

i∈N Ci(OPTi)
= 1 +

∑
i∈N

∑n
j=i+1 qikj∑

i∈N
∑qi

j=1 ai,j(Si + j − 1)
.

The proof of this theorem can be found in Appendix E. In the rest of this paper we create
an algorithm that, for any set of players N with demands (ki)i∈N , can find arrival patterns
for each player that maximizes the price of anarchy. First note that our goal is to maximize
qi while minimizing Ci(OPTi) =

∑qi

j=1 ai,j(Si + j − 1).

I Lemma 17. For any player with ki packets and arrival spread of qi ≤ ki, her cost
Ci(OPTi) =

∑qi

j=1 ai,j(Si + j − 1) is minimized by Qi(Si, qi), where Qi(Si, 1) := kiSi and

Qi(Si, qi) := ki(Si − 1) +
⌊
ki − 1
qi − 1

⌋
· 1

2qi(qi − 1) +
qi∑

j=qi−(ki−1) mod (qi−1)

j.

Proof. Given a number of packets ki and an arrival spread qi, we determine the arrival
pattern (ai,p)p≤qi such that

∑qi

j=1 ai,j(Si + j − 1) is minimized. In order to get a feasible
arrival pattern we are restricted to arrival patterns where ai,1 ≤ · · · ≤ ai,qi−1. We choose
aqi = 1, and divide the ki − 1 leftover packets evenly over the qi − 1 leftover arrival times
such that ai,1 ≤ · · · ≤ ai,qi−1 . Thus:

ai,1 = · · · = ai,p =
⌊
ki − 1
qi − 1

⌋
, ai,p+1 = · · · = ai,qi−1 =

⌊
ki − 1
qi − 1

⌋
+ 1, ai,qi

= 1,

where p = qi − 1− ((ki − 1) mod (qi − 1)). The total cost that corresponds to this arrival
pattern is the Qi(Si, qi) described in the lemma. J

In order to find an example the expression mentioned in Theorem 16, we pick Si = 1 and
define Qi(qi) := Qi(1, qi) for each i ∈ N . Then, we use Lemma 17 and it is left to maximize

P ((qi)i∈N) :=

∑
i∈N

(
Qi(qi) + qi

∑n
j=i+1 kj

)
∑
i∈N Qi(qi)

. (3)

Thus, in order to find an example that maximizes the price of anarchy, we only need to
decide on a qi for each player. In order to do so, we define µi,OPT (p) := Qi(p+ 1)−Qi(p)
and µi,NE(p) := Qi(p+ 1)−Qi(p) +

∑n
j=i+1 kj . Intuitively, if a player decides to increase

qi from p to p + 1, it would add a cost of µi,OPT (p) to the social optimum and a cost of
µi,NE(p) to the worst equilibrium. We state Algorithm 1 using µi,OPT (p) and µi,NE(p).

I Theorem 18. Given a set of players N , where each player has a demand ki. Then,
Algorithm 1 returns an sequence q := (qi)i∈N that maximizes P (q) as defined in (3).

Proof. First note, that by definition∑
i∈N

∑qi−1
p=0 µi,NE(p)∑

i∈N
∑qi−1
p=0 µi,OPT (p)

=

∑
i∈N

(
Qi(qi) + qi

∑n
j=i+1 kj

)
∑
i∈N Qi(qi)

.

Let q′ ∈ arg maxP (q) and let (qi)i∈N be the output of Algorithm 1. Assume (qi)i∈N is not
optimal, thus P (q′) > P (q). We first prove that q′i ≤ qi for all i ∈ N .

We define q−i to be the vector (qj)j∈N\{i}. For sake of contradiction, assume that there
exists an i ∈ N such that q′i > qi. We distinguish two cases:

B. Peis, B. Tauer, V. Timmermans, and L. Vargas Koch 13:15

Algorithm 1: Creating an example with maximized price of anarchy.
Input: A set N consisting of n players with ki packets.
Output: A vector (qi)i∈N .

1 qi ← 1 for all i ∈ N ;
2 for i ∈ N do

3 pi ← arg maxqi≤p<ki

{ ∑p

q=qi
µi,NE(q)∑p

q=qi
µi,OP T (q)

}
;

4 Pi ← maxqi≤p<ki

{ ∑p

q=qi
µi,NE(q)∑p

q=qi
µi,OP T (q)

}
;

5 end
6 j ← arg maxi∈N{Pi};

7 while Pj >
∑

i∈N

(
Qi(qi)+qi

∑n

j=i+1
kj

)∑
i∈N

Qi(qi)
do

8 qj ← pj + 1;

9 pj ← arg maxqj≤p<kj

{ ∑p

q=qj
µj,NE(q)∑p

q=qj
µj,OP T (q)

}
;

10 Pj ← maxqj≤p<kj

{ ∑p

q=qj
µj,NE(q)∑p

q=qj
µj,OP T (q)

}
;

11 j ← arg maxi∈N{Pi};
12 end
13 return (qi)i∈N

1. P (q−i, q′i) > P (q). In this case the algorithm would not terminate. From the assumption
P (q−i, q′i) > P (q) we get that∑

i∈N
∑qi−1
p=0 µi,NE(p) +

∑q′i−1
p=qi

µi,NE(p)∑
i∈N

∑qi−1
p=0 µi,OPT (p) +

∑q′
i
−1

p=qi
µi,OPT (p)

>

∑
i∈N

∑qi−1
p=0 µi,NE(p)∑

i∈N
∑qi−1
p=0 µi,OPT (p)

.

Thus,∑q′i−1
p=qi

µi,NE(p)∑q′
i
−1

p=qi
µi,OPT (p)

> P (q),

is one candidate for Pj determined in line 10 of the algorithm. This candidate is already
larger than P (q), thus the algorithm would not terminate with q respectively P (q). Thus,
this contradicts the fact that Algorithm 1 outputs q.

2. P (q−i, q′i) ≤ P (q). In this case, (
∑q′i−1
p=qi

µi,NE(p))/(
∑q′i−1
p=qi

µi,OPT (p)) ≤ P (q) < P (q′).
Decreasing q′i to qi would increase the quotient of P (q′), which means P (q′−i, qi) > P (q′).
This is a contradiction to q′ ∈ arg maxP (q).

Thus, we have shown that if q is not optimal, q′i ≤ qi for all i ∈ N . It remains to show
that q′i < qi leads to a contradiction. Due to the initialization of qi = 1 which is minimal,
we know that qi is less or equal to q′i at the start of Algorithm 1. Assume that during the
execution of Algorithm 1, we obtain the following vectors for (qi)i∈N : ~1, q1, . . . , qk, q.

If there is a i ∈ N such that q′i < qi, during Algorithm 1 there needs to be a vector qb
such that qbj ≤ q′j for all j ∈ N and there is an i ∈ N such that qb+1

i > q′i and qb+1
j ≤ q′j

for all j ∈ N\{i}. This means qb+1 is the vector where for the first time in Algorithm 1 a
value of q is increased over a value of q′. By definition of Algorithm 1, we know that the
chosen value qb+1

i maximizes the quotient of marginal cost increase of Nash equilibrium over

ATMOS 2018

13:16 Oligopolistic Competitive Packet Routing

optimal solution among all alternative vectors. This means:∑qb+1
i
−1

p=qb
i

µi,NE(p)∑qb+1
i
−1

p=qb
i

µi,OPT (p)
≥ max

j∈N

∑q′j−1
p=qb

j

µj,NE(p)∑q′
j
−1

p=qb
j

µj,OPT (p)
. (4)

Furthermore, by the choice of q′ we know that:

P (q′) =

∑
i∈N

(∑qb
i−1
p=0 µi,NE(p) +

∑q′i−1
p=qb

i

µi,NE(p)
)

∑
i∈N

(∑qb
i
−1

p=0 µi,OPT (p) +
∑q′

i
−1

p=qb
i

µi,OPT (p)
) .

By definition of Algorithm 1:∑qb+1
i
−1

p=qb
i

µi,NE(p)∑qb+1
i
−1

p=qb
i

µi,OPT (p)
> P (qb) =

∑
i∈N

∑qb
i−1
p=0 µi,NE(p)∑

i∈N
∑qb

i
−1

p=0 µi,OPT (p)
. (5)

and by (4):∑qb+1
i
−1

p=qb
i

µi,NE(p)∑qb+1
i
−1

p=qb
i

µi,OPT (p)
≥

∑
i∈N

∑q′i−1
p=qb

i

µi,NE(p)∑
i∈N

∑q′
i
−1

p=qb
i

µi,OPT (p)
. (6)

Given a1
a2
, b1
b2
, c1
c2
∈ Q, then, whenever a1

a2
> b1

b2
and a1

a2
≥ c1

c2
, it holds that a1

a2
> b1+c1

b2+c2
. We use

this type of argumentation on (5) and (6) to obtain:∑qb+1
i
−1

p=qb
i

µi,NE(p)∑qb+1
i
−1

p=qb
i

µi,OPT (p)
> P (q′).

Hence, one could increase P (q′) by increasing q′i to qb+1
i . This contradicts the fact that q′

maximizes P (·). J

I Remark. The running time of the algorithm is polynomial in k1, . . . , kn and n.

Proof. In the initial phase we compute n times a maximum value which takes at most k3
i

time for every i ∈ N . In the while loop, we do the same computation. Note that in every
execution of the while loop one qi for i ∈ N is increased by at least one. Since the qi’s
are initialized as one and bounded from above by ki, the while loop takes at most

∑
i∈N ki

iterations. Hence, the running time of the algorithm is polynomial in (ki)i∈N and n. J

In Appendix F we apply this algorithm to a small example.

References
1 Elliot Anshelevich, Anirban Dasgupta, Jon Kleinberg, Eva Tardos, Tom Wexler, and Tim

Roughgarden. The price of stability for network design with fair cost allocation. SIAM
Journal on Computing, 38(4):1602–1623, 2008.

2 Nadine Baumann and Martin Skutella. Earliest arrival flows with multiple sources. Math-
ematics of Operations Research, 34(2):499–512, 2009.

3 Lisa K Fleischer. Faster algorithms for the quickest transshipment problem. SIAM journal
on Optimization, 12(1):18–35, 2001.

4 Lisa K Fleischer and Martin Skutella. Quickest flows over time. SIAM Journal on Com-
puting, 36(6):1600–1630, 2007.

B. Peis, B. Tauer, V. Timmermans, and L. Vargas Koch 13:17

5 David Gale. Transient flows in networks. Michigan Math. J., 6(1):59–63, 1959.
6 Tobias Harks, Britta Peis, Daniel Schmand, Bjoern Tauer, and Laura Vargas Koch. Compet-

itive packet routing with priority lists. ACM Trans. Econ. Comput., 6(1):4:1–4:26, March
2018.

7 David G. Harris and Aravind Srinivasan. Constraint satisfaction, packet routing, and the
lovasz local lemma. In Proceedings of the Forty-fifth Annual ACM Symposium on Theory
of Computing, STOC ’13, pages 685–694, New York, NY, USA, 2013. ACM.

8 Martin Hoefer, Vahab S Mirrokni, Heiko Röglin, and Shang-Hua Teng. Competitive routing
over time. Theoretical Computer Science, 412(39):5420–5432, 2011.

9 John J Jarvis and H Donald Ratliff. Note - some equivalent objectives for dynamic network
flow problems. Management Science, 28(1):106–109, 1982.

10 Ronald Koch, Britta Peis, Martin Skutella, and Andreas Wiese. Real-time message routing
and scheduling. In Approx., Rand., and Comb. Opt. Algorithms and Techniques, pages
217–230. Springer Berlin Heidelberg, 2009.

11 Elias Koutsoupias and Christos Papadimitriou. Worst-case equilibria. In Stacs, volume 99,
pages 404–413. Springer, 1999.

12 Janardhan Kulkarni and Vahab Mirrokni. Robust price of anarchy bounds via lp and
fenchel duality. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1030–1049. SIAM, 2014.

13 Frank Thomson Leighton, Bruce M Maggs, and Satish B Rao. Packet routing and job-shop
scheduling in O(congestion + dilation) steps. Combinatorica, 14(2):167–186, 1994.

14 Nimrod Megiddo. Optimal flows in networks with multiple sources and sinks. Mathematical
Programming, 7(1):97–107, 1974.

15 Edward Minieka. Maximal, lexicographic, and dynamic network flows. Operations Research,
21(2):517–527, 1973.

16 Britta Peis and Andreas Wiese. Universal packet routing with arbitrary bandwidths and
transit times. In Proceedings of the 15th International Conference on Integer Program-
ming and Combinatoral Optimization, IPCO’11, pages 362–375, Berlin, Heidelberg, 2011.
Springer-Verlag.

17 Thomas Rothvoß. A simpler proof for o(congestion + dilation) packet routing. CoRR,
abs/1206.3718, 2012.

18 Tim Roughgarden. Routing games. In Algorithmic Game Theory, pages 461–486. Cam-
bridge Univ. Press, 2007.

19 Christian Scheideler and Berthold Vöcking. From static to dynamic routing: Efficient
transformations of store-and-forward protocols. SIAM Journal on Computing, 30(4):1126–
1155, 2000.

20 Martin Skutella. An introduction to network flows over time. In Research trends in com-
binatorial optimization, pages 451–482. Springer, 2009.

21 Aravind Srinivasan and Chung-Piaw Teo. A constant-factor approximation algorithm
for packet routing and balancing local vs. global criteria. SIAM Journal on Computing,
30(6):2051–2068, 2001.

22 Stevanus Adrianto Tjandra. Dynamic network optimization with application to the evacu-
ation problem. Shaker, 2003.

23 William L Wilkinson. An algorithm for universal maximal dynamic flows in a network.
Operations Research, 19(7):1602–1612, 1971.

ATMOS 2018

13:18 Oligopolistic Competitive Packet Routing

A Technical details of the Proof of Theorem 4

We use ideas of [6] to prove that:

min
∑
`∈Ki

Ci,`(x) = max
∑
θ∈N>0

Ai(x, θ − 1).

Observe that:∑
`∈Ki

Ci,`(x)

=
∑
θ∈N>0

(Ai(x, θ)−Ai(x, θ − 1)) θ

=
∑
θ∈N>0

Ai(x, θ)θ −
∑
θ∈N>0

Ai(x, θ − 1)θ

=
∑
θ∈N>0

Ai(x, θ)θ −
∑
θ∈N>0

Ai(x, θ − 1)(θ − 1)−
∑
θ∈N>0

Ai(x, θ − 1).

Note that
∑
θ∈N>0

Ai(x, θ)θ =
∑
θ∈N>0

Ai(x, θ − 1)(θ − 1), as Ai(x, 0) = 0. Thus:

min
∑
`∈Ki

Ci,`(x) = min−

 ∑
θ∈N>0

Ai(x, θ − 1)

 = max
∑
θ∈N>0

Ai(x, θ − 1).

B Cycle free path decomposition

I Lemma 19. For any s-t-graph G, there exist an earliest arrival flow for varying capacities
that has a path decomposition where no flow is send along cycles.

Proof of Lemma 19. First we construct an earliest arrival flow by using the algorithm of
Tjandra [22]. The algorithm is roughly speaking a successive shortest path algorithm in a
network with varying capacities. We prove that there exists a sequence of shortest paths in
the successive shortest path algorithm such that the resulting flow does not contain cycles.
If no cycles occurs in the flow, then no cycles occur in any path decomposition of the earliest
arrival flow.

During the successive shortest path algorithm, cycles can arise in two different ways.
1. During the course of the algorithm, we choose a shortest path that contains a cycle. As

all transit times are non-negative, the length of the cycle is bounded from below by zero.
Hence, we can delete this cycle and use the resulting (shortest) path.

2. During the course of the algorithm, we add a shortest path P that closes a directed cycle
for the first time, by connecting some nodes u and v by forward edges. Thus, there needs
to be a directed sequence of edges connecting the nodes v and u. Instead of closing the
cycle, the path could also go along this forward edges as backwards edges. Since the cost
of the sequence of forward edges is lower bounded by zero and the cost of the backwards
edges is upper bounded by zero, this never increases the costs of the path. Thus, this is a
feasible choice for a shortest path.

Hence, there exists a sequence of shortest paths such that the resulting flow does not contain
any cycles. J

B. Peis, B. Tauer, V. Timmermans, and L. Vargas Koch 13:19

C Proof of Lemma 8

Proof of Lemma 8. We prove this lemma by induction. Note that, as player 1 is not affected
by other players, C1,`(NE) = C1,`(OPT). Hence, the lemma clearly holds for the first player.

Assume that the lemma holds for the first i−1 players (players with highest priority) then
we prove that Ci,`(NE) ≤ i · Ci,`(OPT). As player i comes after player j on the priority list
for any player j < i, we have, by construction of OPT , that Ci,`(OPT) ≥ Cj,`(OPT).

Hence:
Cj,`(NE)
Ci,`(OPT) ≤

Cj,`(NE)
Cj,`(OPT) ≤ j,

where the last inequality holds as of our induction hypothesis. Therefore, we know that:

Cj,`(NE) ≤ j · Ci,`(OPT). (7)

Observe that in the worst case, player i can play the same strategy as she did in the optimal
solution, but only after all previous players j < i have already left the network. Hence:

Ci,`(NE) ≤ max
j<i,`∈Kj

{Cj,`(NE)}+ Ci,`(OPT). (8)

We combine inequalities (7) and (8) to obtain

Ci,`(NE) ≤ max
j<i,`∈Kj

{j · Ci,`(OPT)}+ Ci,`(OPT).

Then, j · Ci,`(OPT) is clearly maximized whenever j = i− 1. Hence, we obtain:

Ci,`(NE) ≤ (i− 1) · Ci,`(OPT) + Ci,`(OPT) = i · Ci,`(OPT),

which proves the lemma. J

D Details of Theorem 11

In this appendix, one can find the technical details of the proof of Theorem 11. We formally
prove why:

PoA ≤
∑n
i=1
∑q1
p=1 ap(S + p− 1 + (i− 1)q1)

knS +
∑q1
p=1 ap(p− 1) + (q1 − 1)k(n− 1)

≤ 1
2(n+ 1).

Technical details. During the proof of Theorem 11 we established a lower bound on the cost
of a socially optimal profile:

C(OPT) ≥ knS +
q1∑
p=1

ap(p− 1) + (q1 − 1)k(n− 1).

Furthermore, we bounded the cost of any equilibrium from above by:

C(NE) ≤
n∑
i=1

q1∑
p=1

ap(S + p− 1 + (i− 1)q1)

= n

(
q1∑
p=1

ap(S + p− 1)
)

+ 1
2q1kn(n− 1)

= knS + n

(
q1∑
p=1

ap(p− 1)
)

+ 1
2q1kn(n− 1).

ATMOS 2018

13:20 Oligopolistic Competitive Packet Routing

As we have a lower bound on the social cost, and an upper bound of the cost in any Nash
equilibrium, we can find an upper bound on the price of anarchy.

PoA ≤
knS + n

(∑q1
p=1 ap(p− 1)

)
+ 1

2q1kn(n− 1)

knS +
∑q1
p=1 ap(p− 1) + (q1 − 1)k(n− 1)

Note that for all n ≥ 1, k ≥ 1, we have that

n

(
q1∑
p=1

ap(p− 1)
)

+ 1
2q1kn(n− 1) ≥

(
q1∑
p=1

ap(p− 1)
)

+ (q1 − 1)k(n− 1) ≥ 0.

As k, n, S ≥ 1, the PoA is maximized when knS is minimal, which is the case when S = 1.
We obtain:

PoA ≤
kn+ n

(∑q1
p=1 ap(p− 1)

)
+ 1

2q1kn(n− 1)

kn+
∑q1
p=1 ap(p− 1) + (q1 − 1)k(n− 1)

=
n
(∑q1

p=1 pap

)
+ 1

2q1kn(n− 1)∑q1
p=1 pap + q1k(n− 1)

=
n
(∑q1

p=1 pap + q1k(n− 1)
)
− 1

2kq1n(n− 1)∑q1
p=1 pap + q1k(n− 1)

= n−
1
2q1kn(n− 1)∑q1

p=1 pap + q1k(n− 1)
.

Thus, it is left to minimize
(1

2q1kn(n− 1)
)
/
(∑q1

p=1 pap + q1k(n− 1)
)
. Note that for any q1,∑q1

p=1 pap is maximized when ap = 1 for p ∈ {1, . . . , q1 − 1} and aq1 = k − q1 + 1. Hence, for
any q1,

q1∑
p=1

pap ≤ 1
2q1(q1 − 1) + q1(k − q1 + 1) = q1(k − 1

2 (q1 − 1)).

Thus,

n−
1
2q1kn(n− 1)∑q1

p=1 pap + q1k(n− 1)
≤ n−

1
2q1kn(n− 1)

q1(k − 1
2 (q1 − 1)) + q1k(n− 1)

= n−
1
2kn(n− 1)

kn− 1
2 (q1 − 1)

.

As q1 ≥ 1, the PoA is clearly maximized when q1 = 1. We obtain:

PoA ≤ n−
1
2kn(n− 1)

kn− 1
2 (1− 1)

= n−
1
2kn(n− 1)

kn
= 1

2 (n+ 1),

which proves the theorem. J

B. Peis, B. Tauer, V. Timmermans, and L. Vargas Koch 13:21

s v... ...

...
...

GA1

GAn

Figure 13 Braess graph BG with player specific paths to individual sink.

E Proof of Theorem 16

Proof. We denote the arrival pattern of a player i in an optimal solution where player i
is the only player in the network by Ai := (ai,1, . . . , ai,qi

). Here ai,p denotes the number
of packets that arrive at time Si + p − 1. At time Si + qi − 1 the last packet of player i
arrives, i.e. player i has an arrival spread of qi := arg minp∈N>0{ai,q′ = 0,∀q′ > 0}, thus,∑qi

p=1 ai,p = ki. Again note that 1 ≤ ai,1 ≤ ai,2 ≤ . . . ≤ ai,qi−1. This holds true with a
simple following argumentation. If p packets arrive at time θ, p further packets can arrive at
time θ + 1 by following the first p packets.

Given a set of players N with (ki)i∈N and (qi)i∈N with ki ≥ qi, we can construct an
arrival pattern Ai := (ai,1, . . . , ai,qi

) for every player i realizing her ki and qi in the following
way:

ai,1 = · · · = ai,p =
⌊
ki − 1
qi − 1

⌋
, ai,p+1 = · · · = ai,qi−1 =

⌊
ki − 1
qi − 1

⌋
+ 1, ai,qi

= 1,

where p = qi − 1− ((ki − 1) mod (qi − 1)).
For every player i with arrival pattern Ai := (ai,p)1≤p≤qi

, we construct a corresponding
si-ti-graph GAi = (VAi , EAi) consisting of only parallel si-ti-edges, such that the arrival
pattern of the earliest arrival flow of GAi

matches Ai. In order to do so, we first define
ai,0 = 0. Then, we add max{ai,p − ai,p−1, 0} parallel edges of length S + p− 1 and capacity
one for all 1 ≤ p ≤ qi to graph GAi

for all i ∈ N .
We define K :=

∑
i∈N ki, and define BG(K) as in Section 2. We connect BK and GAi

by setting v ∈ VBG(K) equal to si ∈ VAi
for all i ∈ N as in Figure 13.

In a socially optimal solution, each player i ∈ N can enter their graph GAi
at time

zero, and thus arrive at sink ti according to arrival pattern Ai, resulting in a social cost∑
i∈N Ci(OPTi). In the worst Nash equilibrium, player i blocks graph BG(K) for qi

units of time, delaying all players j > i by qi time units. This results in a total cost of∑
i∈N

(
Ci(OPTi) +

∑n
j=i+1 qikj

)
. As this holds for all players i ∈ N , this gives us the

desired price of anarchy. J

F Example algorithm 1

I Example 20. For a better understanding of the algorithm we apply it to a small example.
We are given two players with a demand of four each, and we return a game that maximizes
the price of anarchy for the given demands. We start with q1 = q2 = 1. In the for loop of
Algorithm 1 pi and Pi are determined. We start with player 1: for increasing q1 from 1 to
2, we get a quotient of 7

3 , for increasing it to 3 we get 12
4 = 3 and for increasing it from 1

ATMOS 2018

13:22 Oligopolistic Competitive Packet Routing

s v

s1

s2

Figure 14 Example with price of anarchy of 30
14 .

to 4 we get 18
6 = 3. Thus, we obtain (p1, P1) = (3, 12

4). Similarly, for player 2 we obtain
(p2, P2) = (2, 1). Therefore, after the first for loop we choose j ← 1.

Since 12
4 > 4+4+4

4+4 we enter into the while loop. We increase q1 from 1 to 3. and update
the values of p1 and P1, (p1, P1)← (4, 6

2). Hence, again j ← 1.
Since 6

2 >
24
12 we enter the while loop a second time. We set q1 = 4 and update p1 and

P1. Since q1 cannot be increased, P1 = 0. Hence, j ← 2.
Since 1

1 >
30
14 is not correct, we do not enter the while loop again and return q = (4, 1).

This results in a price of anarchy of 30
14 . Note that this is larger than two and thus strictly

worse than in the single commodity case, where we established an upper bound of n. The
graph realizing this price of anarchy is depicted in Figure 14.

In the optimal solution, the arrival times of player 1 are 1, 2, 3, 4, and for player 2 we
obtain 1, 1, 1, 1, resulting in a total cost of 14. In the the worst Nash equilibrium, the arrival
times of player 1 are 1, 2, 3, 4, and the arrival times of player 2 are 5, 5, 5, 5, resulting in a
total cost of 30. Hence, the price of anarchy is indeed 30

14 .

	Introduction
	Preliminaries
	Existence of Nash equilibria
	Efficiency in single commodity games
	Efficiency in single source games
	Technical details of the Proof of Theorem 3
	Cycle free path decomposition
	Proof of Lemma 7
	Details of Theorem 9
	Proof of Theorem 14
	Example algorithm 1

