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Preface

The Tenth International Conference on Geographic Information Science, GIScience, was held
in Melbourne, Australia, 28–31 August 2018. Hosted at RMIT University in collaboration
with the University of Melbourne, GIScience 2018, the flagship conference in the field of
geographic information science continued the highly successful conference series, which started
in 2000.

The conference regularly brings together more than 300 international participants from
academia, industry, and government to discuss and advance the state-of-the-art in geographic
information science. August 28, 2018 was dedicated to Workshops and Tutorials. The main
conference took place from August 29 to 31, 2018, and consisted of two refereed paper tracks:
Full papers and short papers/extended abstracts. The latter track allowed authors to choose
between published short papers and unpublished extended abstracts; both types were treated
equally in the review process, and both were presented orally at the conference. This volume
of proceedings contains only the full papers and the short papers.

For GIScience 2018, we received 46 full paper submissions. Each full paper was read
by at least three members of the international program committee. 17 of the full paper
submissions made it through the selection process for presentation at the conference and
publication in this volume (37%). We also received a total of 113 submissions in the short
papers/extended abstracts track. These short papers and extended abstracts were reviewed
by at least two members of same program committee. We accepted a total of 89 short papers
and extended abstracts for presentation at the conference (75%). The authors of 56 of these
selected submissions chose the option of having a short paper, which are published in the
second part this volume.

Bringing the GIScience conference to Australia was also coupled with the hope of attracting
more participants from the Asia-Pacific region, which was fulfilled: This year’s conference
saw strong participation from scientists based in Asia, with 22% of accepted presentations
including at least one author who was affiliated with an institution in Asia – a significant
increase compared to prior events in this series. Of course the decision to bring the conference
to Australia came also with a price tag for the European and North American scientific
community. The chairs are thankful for the effort this community made.

The GIScience conference series has always had a focus on fundamental research themes
and questions. Papers advancing the field methodologically or theoretically are encouraged;
papers strictly dealing with applications are discouraged. GIScience 2018 welcomed papers
and proposals covering emerging topics and fundamental research findings across all sectors of
geographic information science, including (but not limited to) the role of spatial information
in geography, computer science, engineering, information science, linguistics, mathematics,
cognitive science, philosophy, psychology, social science, and geostatistics. In GIScience 2018
a number of papers have been related to the emerging topic of (Deep) Learning.

GIScience is a community-run conference series, backed by a steering committee. The
organizers of GIScience 2018 are grateful for the trust and advice by the committee. A
number of people have contributed to the organization of this conference, many of them in
chairing roles or on the program committees of the conference or its satellite events. This
year’s GIScience program committee had a record number of 127 volunteers from all over the
world. We would also like to take the opportunity to thank all those people usually unnamed
on websites and in proceedings: the staff managing registrations, the student volunteers
helping with a smooth event, and the proceedings editor, Subhrashanka Dey. The true
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Editors: Stephan Winter, Monika Sester, and Amy L. Griffin
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102:xii Preface

makers of a conference are, of course, the authors and participants of the conference.
From 2018 onwards, GIScience conference proceedings will be published in LIPIcs, the

Leibniz International Proceedings in Informatics series. LIPIcs volumes are peer-reviewed
and published according to the principle of open access, i.e., they are available online and
free of charge. Each article is published under a Creative Commons CC BY license (http:
//creativecommons.org/licenses/by/3.0/), where the authors retain their copyright.
Also, each article is assigned a DOI and a URN. The digital archiving of each volume is
done in cooperation with the Deutsche Nationalbibliothek/German National Library. We
hope that this more community-spirited format helps further with the growth and impact of
GIScience.

Stephan Winter, Monika Sester, and Amy Griffin
Program Committee Chairs, GIScience 2018

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


GIScience 2018 Program Committee

Ola Ahlqvist, Ohio State University, USA

Jared Aldstadt, SUNY Buffalo, USA

Natalia Andrienko, Fraunhofer Institute,
Germany

Jagannath Aryal, University of Tasmania,
Australia

Andrea Ballatore, University of London, UK

Kate Beard, University of Maine, USA

Scott Bell, University of Sasktchewan,
Canada

Itzhak Benenson, Tel Aviv University, Israel

David Bennett, University of Iowa, USA

Luke Bergmann, University of Washington,
USA

Michela Bertolotto, University College
Dublin, Ireland

Ling Bian, SUNY Buffalo, USA

Susanne Bleisch, University of Applied
Sciences of Northwestern Switzerland,
Switzerland

Boyan Brodaric, Geological Survey of
Canada, Canada

Dan Brown, University of Washington, USA

Chris Brunsdon, National University of
Ireland, Ireland

Bénédicte Bucher, IGN, France

Maike Buchin, Ruhr Universität Bochum,
Germany

Barbara Buttenfield, University of Colorado
at Boulder, USA

Jonathan Cinnamon, University of Exeter,
UK

Christophe Claramunt, Naval Academy
Research Institute, France

Eliseo Clementini, University of L’Aquila,
Italy

Arzu Coltekin, University of Zurich,
Switzerland

Tom Cova, University of Utah, USA

Clodoveu Davis, Universidade Federal de
Minas Gerais, Brazil

Sytze de Bruin, Wageningen University, The
Netherlands

Leila De Floriani, University of Maryland,
USA

Eric Delmelle, University of North Carolina
at Charlotte, USA

Urska Demsar, University of St Andrews,
UK

Somayeh Dodge, University of Minnesota,
USA

Joni Downs, University of South Florida,
USA

Sara Irina Fabrikant, University of Zurich,
Switzerland

Carson Farmer, University of Colorado at
Boulder, USA

Paolo Fogliaroni, Vienna University of
Technology, Austria

Mark Gahegan, University of Auckland, New
Zealand

Ioannis Giannopoulos, Vienna University of
Technology, Austria

Daniel Goldberg, Texas A&M University,
USA

Tony Grubesic, Arizona State University,
USA

Diansheng Guo, University of South
Carolina, USA

Torsten Hahmann, University of Maine, USA
10th International Conference on Geographic Information Science (GIScience 2018).
Editors: Stephan Winter, Monika Sester, and Amy L. Griffin

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


102:xiv Program Committee

Lars Harrie, Lund University, Sweden

Francis Harvey, Leibniz Institute for
Regional Geography, Germany

Jan-Henrik Haunert, Universität Bonn,
Germany

Stephen Hirtle, University of Pittsburgh,
USA

Hartwig Hochmair, University of Florida,
USA

Haosheng Huang, University of Zurich,
Switzerland

Qunying Huang, University of
Wisconsin-Madison, USA

Piotr Jankowski, San Diego State University,
USA

Krzysztof Janowicz, University of California
at Santa Barbara, USA

Bernhard Jenny, Monash University,
Australia

Bin Jiang, University of Gävle, Sweden

Peter Johnson, University of Waterloo,
Canada

Christopher Jones, Cardiff University, UK

Marinos Kavouras, National Technical
University of Athens, Greece

Carsten Keßler, Aalborg University
Copenhagen, Denmark

Peter Kiefer, ETH Zurich, Switzerland

Brian Klinkenberg, University of British
Columbia, Canada

Alexander Klippel, Pennsylvania State
University, USA

Margarita Kokla, National Technical
University of Athens, Greece

Werner Kuhn, University of California at
Santa Barbara, USA

Mei-Po Kwan, University of Illinois at
Urbana-Champaign, USA

Phaedon Kyriakidis, Cyprus University of
Technology, Cyprus

Shawn Laffan, University of New South
Wales, Australia

Nina Lam, Louisiana State University, USA

Patrick Laube, Zurich University of Applied
Sciences, Switzerland

Jiyeong Lee, University of Seoul, South
Korea

Agnieszka Leszczynski, University of
Auckland, New Zealand

Xia Li, Sun Yat-sen University, China

Xiang Li, East China Normal University,
China

Steve Liang, University of Calgary, Canada

Hui Lin, Chinese University of Hong Kong,
Hong Kong

Yan Liu, University of Queensland, Australia

Yu Liu, Peking University, China

Amy Lobben, University of Oregon, USA

Jed Long, University of St Andrews, UK

Feng Lu, Chinese Academy of Sciences,
China

Grant McKenzie, McGill University, Canada

Liqui Meng, Technical University of Munich,
Germany

Jeremy Mennis, Temple University, USA

Jennifer Miller, University of Texas at
Austin, USA

Harvey Miller, Ohio State University, USA

Mir Abolfazl Mostafavi, Laval University,
Canada

Alan Murray, University of California at
Santa Barbara, USA

Tomoki Nakaya, Tohoku University, Japan

Atsuyuki Okabe, University of Tokyo, Japan



Program Committee 102:xv

David O’Sullivan, University of California at
Berkeley, USA

Dimitris Papadias, Hong Kong University of
Science and Technology, Hong Kong

Edzer Pebesma, University of Muenster,
Germany

Karin Pfeffer, University of Amsterdam, The
Netherlands

Ross Purves, University of Zurich,
Switzerland

Martin Raubal, ETH Zurich, Switzerland

Tarmo Remmel, University of York, Canada

Anne Ruas, IFSTTAR, France

Simon Scheider, University Utrecht, The
Netherlands

Raja Sengupta, McGill University, Canada

Shih-Lung Shaw, University of Tennessee,
USA

Takeshi Shirabe, KTH Royal Institute of
Technology, Sweden

Alex Singleton, University of Liverpool, UK

Gaurav Sinha, Ohio University, USA

Seth Spielman, University of Colorado at
Boulder, USA

Emmanuel Stefanakis, University of New
Brunswick, Canada

Monica Stephens, SUNY Buffalo, USA

Kathleen Stewart, University of Maryland,
USA

Martin Swobodzinski, Portland State
University, USA

Gautam S. Thakur, Oak Ridge National
Laboratory, USA

Jim Thatcher, University of Washington,
USA

Jean-Claude Thill, University of North
Carolina at Charlotte, USA

Sabine Timpf, University of Augsburg,
Germany

Martin Tomko, University of Melbourne,
Australia

Guillaume Touya, IGN, France

Ming-Hsiang Tsou, San Diego State
University, USA

Nico Van de Weghe, Ghent University,
Belgium

Maria Vasardani, University of Melbourne,
Australia

Monica Wachowicz, University of New
Brunswick, Canada

Shaowen Wang, University of Illinois at
Urbana-Champaign, USA

Robert Weibel, University of Zurich,
Switzerland

Nancy Wiegand, University of
Wisconsin-Madison, USA

John Wilson, University of Southern
California, USA

Matthew Wilson, University of Kentucky,
USA

Michael Worboys, University of Greenwich,
UK

Ningchuan Xiao, Ohio State University, USA

Phil Yang, George Mason University, USA

Eunhye Yoo, SUNY Buffalo, USA

Bailang Yu, East China Normal University,
China

May Yuan, University of Texas at Dallas,
USA

Naijun Zhou, University of Maryland, USA

Alexander Zipf, University of Heidelberg,
Germany

GISc ience 2018





Early Detection of Herding Behaviour during
Emergency Evacuations
David Amores
Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
damores@student.unimelb.edu.au

Maria Vasardani
Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
mvasardani@unimelb.edu.au

Egemen Tanin
Computing and Information Systems, The University of Melbourne, Parkville, VIC 3010,
Australia
etanin@unimelb.edu.au

Abstract
Social scientists have observed a number of irrational behaviours during emergency evacuations,
caused by a range of possible cognitive biases. One such behaviour is herding — people follow-
ing and trusting others to guide them, when they do not know where the nearest exit is. This
behaviour may lead to safety under a knowledgeable leader, but can also lead to dead-ends. We
present a method for the automatic early detection of herding behaviour to avoid suboptimal
evacuations. The method comprises three steps: (i) people clusters identification during evac-
uation, (ii) collection of clusters’ spatio-temporal information to extract features for describing
cluster behaviour, and (iii) unsupervised learning classification of clusters’ behaviour into ’benign’
or ’harmful’ herding. Results using a set of different detection scores show accuracies higher than
baselines in identifying harmful behaviour; thus, laying the ground for timely irrational behaviour
detection to increase the performance of emergency evacuation systems.

2012 ACM Subject Classification Information systems → Location based services, Computing
methodologies → Spatial and physical reasoning
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1 Introduction

Certain cognitive biases may govern the way people react and move during emergency
evacuations and may result in irrational behaviours that can hinder operations and lead
to slower evacuation times, perhaps even endangering lives. An example of a common and
well-known behaviour is herding – “when under highly uncertain and stressful situations,
an individual tends to follow others almost blindly” [19]. This behaviour sometimes helps
people exit a building safely when the leader knows the way out (benign herding), but may
otherwise lead people to dead ends (harmful herding). Early identification of such behaviour
can aid in more timely, orderly, and ultimately more successful evacuations.

Considering these benefits, this work proposes an automatic method for the early detec-
tion of harmful herding behaviour, based on features extracted from the spatio-temporal
characteristics of people’s group (cluster) movements during emergency evacuations. Figure
1 depicts snapshots of a moving cluster of people during a building evacuation at different
times, which displays harmful herding behaviour. Figure 1b shows the point in time when
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(a) Group seemingly heading towards the exit. (b) Display of harmful herding behaviour.

Figure 1 Snapshots of group behaviour at two different time steps.

the group moves into a room instead of going for the exit. This is when a human observer
with knowledge of the building layout would identify this behaviour as erratic and alert
the people. The proposed method succeeds in analysing the group’s movement trajectory
and, more importantly, the group leader’s trajectory, to make an earlier detection. The
assumption is based on the herding behaviour’s definition — people delegating wayfinding
responsibility to the group’s leader. If the leader’s past trajectory displays erratic movement,
chances that the group will head straight to the nearest exit decrease.

Our method comprises three steps. First, clusters of people traveling together are
identified. Second, information about the identified clusters is collected, such as the cluster
and cluster leader’s moving trajectories, as well as the cluster’s distance from the nearest exit.
This information is compiled into a feature vector. Third, all feature vectors are classified as
either benign or harmful behaviour, using an unsupervised learning classification method.
The method is assessed against a ground truth, and also compared to human assessment.
The ground truth knows at all times if the ultimate destination of each cluster is the exit
or a dead end. The human assessment is performed by visually inspecting the cluster’s
trajectory and determining the point of wrong going (e.g., turning away from the exit). A
set of scores is defined and used to assess the performance of the suggested method when
detecting harmful behaviour.

Experiments based on simulated emergency evacuation scenarios show favorable results,
as the method outperforms baseline cases and visual inspection in early detection of harmful
behaviour. Using different cluster feature combinations, the results also allow for some
interesting observations. For example, considering only the actual distance between the
cluster and the nearest exit in fact hurts the classification, making it resemble a random one.
Instead, the previous moving history of a cluster, rather than its mere distance from an exit,
is a better indicator of harmful behaviour. Accordingly, the main contributions of this work
are: (1) The identification of spatio-temporal cluster features that can be trusted to describe
herding behaviour as either benign or harmful, and (2) a method that uses these features to
early detect harmful herding behaviour during emergency evacuations, in an automated way.

The remainder of this paper is organised as follows. Section 2 summarises related research
in behaviour detection including simulations, pattern recognition, and personalised evacuation
systems. Section 3 discusses the concepts and previously defined behaviours on which our
herding detection method is based. Section 4 presents the suggested methodology – clustering,
feature extraction, and unsupervised behaviour classification – as a proof of concept for
automatic herding behaviour detection. Section 5 discusses different experiments results
using various spatio-temporal cluster feature combinations. In Section 6 we present the main
findings and suggestions for future work.
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2 Related work

Research on crowd behaviour and herding is extensive. A frequent outcome in such research
is a simulation depicting more realistic behaviours. Movement patterns, such as hotspots,
that arise because of people’s biases are also analysed in both outdoor and indoor scenarios.
State-of-the-art evacuation systems can use personalised warning messaging and routing
directions. This section discusses literature in these areas.

2.1 Simulations displaying social behaviours
Most of the computer-related works that study herding behaviour have the goal of producing
simulations. A number of simulations that take into account the microscopic interactions
during an evacuation is proposed in the literature (e.g., [8]). Agent-based models are a
popular way of creating simulations that include social interactions between the agents.
Interactions such as negotiation, following, or collision avoidance can be coded to reproduce
common behaviours like herding [19], while cellular automata are frequently used in simulating
evacuations [30]. Behaviours such as “freezing by heating”, “faster is slower” and herding
behaviour are identified in simulations using a social force model [11]. Although such models
are successful in displaying social behaviours, including herding, their identification of such
behaviours is done in a visual and manual manner. That is, there is a human checking for
instances of behaviour, and papers usually include an image of the seen behaviour. Our
method goes a step further by making the behaviour detection automatic.

2.2 Movement and behaviour detection
A number of methods are used for analysis and detection of movement and behaviour patterns.
For example, trajectory prediction models using mobile data have been proposed in normal
circumstances [17], and during disasters [23]. Such prediction is done with extensive prior
knowledge about a person’s movement habits. For example, they rely on social networking
data to know a person’s usual locations. Our model relies on real time and short trajectory
knowledge for prediction, and focuses on specifically identifying irrational behaviours.

Hotspot detection is a useful mechanism for alerting stakeholders about people’s concen-
trations. Many hotspot detection mechanisms have been developed for indoor evacuations
[9] and crowd disasters [4]. While hotspot detection is useful, detection of other behaviours
is rather scarce. The current work specifically targets the detection of harmful herding
behaviour.

2.3 Personalised alert and evacuation assistants
Before the wide adoption of mobile technologies, alert systems targeted a large number of
persons through mass media. An overview of past research regarding the warning stage of a
disaster can be found in [7]. An overview of how warning response, adoption, and timing
affects people’s behaviours during disasters is given in [24]. With the rise of microblogging
services, such as Twitter, further research was conducted in message personalisation. The
proposed method aims at the wider use and integration of personalised alert messages
produced by observing the real time behaviour of people during emergency evacuations.

Personalised warning messages and assistance is a possibility due to improved research
on video tracking technologies and the use of mobile phones. A study in [3] underscores
the research needed to send localised warning messages to people’s cell phones during an
imminent hazard. Furthermore, mobile phone sensors provide grounds for context-aware
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indoor navigation. A routing system is proposed in [28] that exploits cell phone sensors in
order to have context knowledge in real-time, for example blocked exits. A robot-assisted
evacuation method is proposed in [25] improving evacuation times and is tested in a simulated
shopping mall environment. These approaches fail to take into account people’s beliefs and
biases, which may affect their successful adoption. The work in this paper takes a first step
into examining people’s behaviours, and extracts characteristics that can detect potentially
harmful herding caused by cognitive biases. Some relevant work has looked into the role of
leaders during emergencies [29]. The authors argue for the optimal number and position of
evacuation assistants. However, they only take into account formally defined leaders, rather
than leaders that naturally arise in groups of people during emergency evacuations. The
latter type of leaders and their behaviour is examined in this work.

3 Background

This section discusses the concepts inherent to herding behaviour, and describes certain
methods used in each of the three steps of our methodology: people cluster identification
in evacuations, feature extraction to describe cluster behaviour, and a learning model for
cluster classification.

3.1 The problem with herding behaviour
Herding behaviour is a cognitive bias examined in early psychology and sociology research
[18, 5] comprising different contexts of everyday life. In the context of evacuations, herding
behaviour is exhibited when people follow others, without knowing with certainty where the
group is heading to. Although herding can successfully lead people towards a safe place, it
can also lead them to prevent successful evacuations, as evidenced by past studies in bushfires
[1] and indoor evacuations [9]. A study in [10] considers a balance between individualistic
behaviour and herding behaviour to be optimal for indoor evacuations. This research focuses
on identifying harmful herding behaviour. For language consistency, we distinguish benign
herding behaviour – when people follow others successfully to safety – from harmful herding
behaviour – when the group fails to find an exit.

3.2 Moving people clustering
The first step in our method is cluster identification during evacuation. We borrow ideas
from previous works that have studied crowd clustering [21, 20] and groups of points moving
together [14]. Clustering methods often use Euclidean distance for assigning members in
a cluster. Nevertheless, several applications, including this work, require non-traditional
distance measures, such as graph distance or similarity measures. The suggested method
clusters people in a floor setting; therefore, people separated by a wall should not be assigned
to the same cluster, even if their Euclidean distance is short. Spectral clustering takes a
similarity matrix as input for identifying clusters [15]. Such a similarity matrix can be
computed from any pair-wise distance metric of the instances – persons in our case. The
way the similarity matrix is built in this work is explained in Section 4.1.

3.3 Feature extraction for conveying herding behaviour
The second step involves the collection of spatio-temporal information from clusters previously
defined, to be encoded into a feature vector. The set of these features is used to describe the
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harming herding behaviour that a cluster might be displaying, and is one of this work’s major
contributions. Previous work in activity recognition and anomaly detection from trajectories
provides inspiration for this model. As in many learning problems, feature engineering is a
crucial step towards an effective model. Additionally, motion information representation is
the basis in spatiotemporal analysis [13]. Consequently, several approaches encode trajectory
information (e.g. distance between objects, acceleration) into their feature vector [32, 22].

The aim of this work is to produce a feature vector that describes herding behaviour.
Relevant characteristics are:

Characteristic 1. Forming groups.
Characteristic 2. Moving towards or away from an exit.
Characteristic 3. Delegating wayfinding to the leader and then moving collectively.

Characteristic 1 is achieved by the clustering step. Characteristics 2 is encoded into the
feature vector by calculating the distance change from the cluster towards or away from
exits. For satisfying characteristic 3, the trajectory from the cluster’s leader is analysed from
previous time steps. How these features are formally obtained is explained in Section 4.

3.4 Learning model
The proposed approach uses an unsupervised learning method to identify the clusters heading
towards a dead end. Machine learning methods are now a common practice for categorising
a set of instances. Each instance comprises a set of features and may contain continuous or
discrete values. As such, learning methods are used for the detection of differing behaviours
or anomalies. Previous works for categorising trajectories and behaviours have used semi-
supervised [22] and unsupervised [32] learning models by means of different clustering
algorithms such as Gaussian mixture, or Latent Dirichlet Allocation (LDA).

The proposed method compares two different and widely used unsupervised learning
algorithms: k-means clustering and hierarchical clustering. K-means clustering finds a
centroid per cluster and uses a distance based metric to classify points based on the proximity
to the centroid. Hierarchical clustering performs better on non-linear and high-dimensional
data. Our method has high dimensionality as it uses up to 55 different features.

3.5 Data sources and simulation
The proposed method assumes known coordinate positions of each person for the duration
of the emergency evacuation. As real data of this type are scarce, a simulation instead is
used, while current complementary research efforts are developing technologies for real-time
monitoring of evacuees [6]. Also, in order to focus on examining herding behaviour, the
effects of indoor landmarks on way finding, or the limits of maximum evacuation times
and multi-level building complexities are left for future consideration. The simulation is
built based on the general guidelines provided in [19]. In that work, the authors construct
a simulation that displays different “nonadaptive crowd behaviours”, including herding
behaviour. They build an agent-based model in which agents display social interactions, such
as negotiation or people-following. They define a set of possible actions and different types
of profiles. The simulation used in this paper uses a subset of those actions and profiles for
displaying the expected behaviour (herding). The following set of possible actions is used:
(i) Random walk - heads towards a random direction in sight, (ii) Seek - if the exit is
known, heads to the exit; otherwise, keep looking for the exit by going towards doors, and
(iii) Target following - follow the nearest group of people.
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(a) Floor layout. Black means
walls, white empty space.

(b) Grid on top of floor layout. (c) Graph G representing the
floor layout.

Figure 2 A 7x7 floor layout discretization.

Table 1 Similarity matrix of sample pair distances.

p1 p2 p3
p1 0 -4 -9
p2 -4 0 -5
p3 -9 -5 0

Accordingly, three profiles are used for agents. The exact probabilities are not provided
in [19], so they are based on evacuation behaviour findings in [31] and [16]. Each profile
contains the probabilities for the actions it can take (probabilities must sum up to 1).

Adult: random_walk = 0.2, seek = 0.4, target_following = 0.4
Child: random_walk = 0.3, seek = 0.2, target_following = 0.5
Elderly: random_walk = 0.0, seek = 0.7, target_following = 0.3

4 Method

The methodology used to detect harmful herding behaviour comprises three steps. The
purpose of detecting herding behaviour is to know if people may be headed towards a
dead-end, or taking a much longer evacuation route. In this case, the behaviour belongs to a
group of people rather than to individuals. As such, the method first identifies clusters at
each time step. A feature vector is extracted from each of these clusters and an unsupervised
learning method is used to predict the ones displaying herding behaviour. The following
subsections describe each step in the methodology.

4.1 Clustering
The floor layout is discretised into a grid and represented by a graph G. Each grid cell that
is not a wall is a node of G. Figure 2a shows a sample 7x7 floor layout, figure 2b shows a
grid on top of it, and figure 2c shows the respective graph G. Black dots represent people,
and each vertex in G is connected to the nodes up, down, left and right.

At each time step, each person is located at a node of G (as in Figure 2c) and the
distances between each pair of persons is computed into a similarity matrix. The sample
persons in Figure 2 are located at (4, 5), (2, 3), and (5, 1), and we call them p1, p2, and p3
respectively. The similarity matrix for the sample 3 persons is shown in Table 1.

The similarity matrix contains the distance of each pair of points multiplied by −1, to
represent a similarity rather than dissimilarity. Computing shortest paths in a graph at
each time step can be time consuming. Therefore, the paths are pre-computed and stored
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in a hash table PATHS in memory, such that for pair p1 and p2 we can obtain its graph
distance by calling PATHS(p1, p2). An additional variable, EXITS stores distances from
each person to the nearest exit (e.g., EXITS(p1)).

The similarity matrix is then input to the spectral clustering algorithm for cluster
identification. The clustering step represents virtually the whole method’s time complexity
as O(n3), while next steps run in linear time or less. When clustering is performed at every
time step, it might produce temporal errors. For example, people passing each other in
opposite directions could temporarily be close together but shouldn’t be considered part of
the same cluster. To address this, we use a parameter τ that represents the number of time
steps required for a group of people to be considered as ’traveling together’.

Over time, clusters may add members, lose members, split, or even completely dissolve.
Therefore, identifying a cluster over time requires some flexibility about its members. Thus,
we define the equivalence between cluster C1 from time step t and cluster C2 from time step
t+1, if |C1∩C2| ≥ 2 =⇒ C1 ≡ C2, and we define the age of cluster C as TC = |Ct, ..., Ct+n|
where Ci ≡ Ci+1∀i ∈ {i|t ≤ i ≤ t + n}. With that, the age constraint for cluster C to be
considered herding is TC ≥ τ . For the experiments described in Section 5, a visual inspection
of the moving clusters showed a τ value of 5 ensures a group of people are moving together.
This paper doesn’t cover the effect that varying values of τ can have on the discovery of
moving clusters. For more thorough techniques on this area the reader is referred to [12].

4.2 Behaviour Definition and Feature Vector

Once the clusters of people traveling together are identified, a cluster feature vector is
extracted from each. The method relies on the group’s leader past trajectory as one of the
most important features for behaviour description. So before listing the feature candidates,
a formal spatio-temporal definition for ’leader’ is provided.

Leader identification

In plain terms, the leader is the person guiding the group. However, that definition is not
enough for identifying the leader in spatio-temporal data. A simple definition of cluster
leader is used where the leader is considered the most salient point in the cluster’s moving
orientation, as depicted in Figure 3b. More elaborate methods for leader identification fall
out of the scope of this study, but the interested reader is directed to [2].

To obtain the cluster’s orientation, a 12-direction discretised space is used (Figure
3a). The discretised angle of point m, is ∠m. Then, given a cluster C with n members
m0, ...,mn, the orientation of C is defined as the mode of the discretised angles of its members:
∠C = Mo(∠m0, ...,∠mn). Once ∠C is computed, a plane rotation of ∠C is performed, as
shown in Figure 3c, and every member mi is projected into the x-axis. From there, leader lp
is the member with the p-largest projection in the x-axis.

Feature candidates

In order to comply with the characteristics of herding behaviour listed in Section 3.3, three
kinds of feature candidates (FC) are extracted from cluster C with members m0, ...,mn:

F C1 - Cluster’s distance to exit (dist_to_exit) – The average shortest distance to
the closest exit for each member m of C. Distances from m to the nearest exit are stored
in the EXITS hash table. So dist_to_exit(C) determines this feature’s value.

GISc ience 2018



1:8 Early Detection of Herding Behaviour during Emergency Evacuations

(a) 12-direction discretised
space.

(b) Cluster movement. Darker
dots are points at time t, lighter
ones are the same points at time
t − 1.

(c) Projection of cluster mem-
bers into a rotated x-axis for
finding the leader.

Figure 3 Graphical definitions of orientation and cluster leader.

F C2 - Cluster’s distance change towards exit (dist_change_i) – The change in
the average shortest distance from the i previous time steps to the current one. If the
change is negative it means the cluster is getting closer to the exit. This is computed
by checking the positions of the members in the previous time step and using the stored
distances in the EXITS hash table.
F C3 - Leader’s trajectory (leader_l_away_steps_i) – This field refers to the number
of steps the group leader l has taken away from the exit in the last i time steps. For
instance, leader_1_away_steps_5 (i.e., l = 1 and i = 5) counts how many of the previous
5 steps leader l took away from the exit. The value would range from 0 to 5 in this
example, and from 0 to i in general.

At every time step, clusters are identified and features extracted. The set of features
to use can be the full set described, or a subset of it. The experiments in Section 5 use
different subsets of the features explained here. Every feature set is stored and used in the
unsupervised learning method explained in the next subsection.

4.3 Unsupervised Learning
The final step of the method is applying a learning algorithm for classifying clusters displaying
benign or harmful herding behaviour. Thus, two classes are defined: benign and harmful. As
mentioned in Section 3.4, two unsupervised learning algorithms are used: k-means (KM) and
hierarchical clustering (HC). Additionally, three baselines are used for thorough comparison:

Zero rule: Classifies every instance as the most popular one. In this case, it will classify
everything as harmful.
Random: Classifies each instance randomly as either harmful or benign.
Random with distribution: Classifies similar to the Random baseline but uses prior
knowledge about the distribution of harmful and benign instances.

Comparing to a "dumb rule" classifier, such as Zero rule, ensures the proposed method
meets minimum requirements, while comparing to the random baselines ensures it does not
perform randomly. Comparisons with baselines ascertain credibility and robustness.

4.4 Evaluation Method
To evaluate the suggested method, every instance is associated with a label – benign or
harmful – describing its behaviour. An instance refers to a cluster from its identification
until its dissolution. Figure 4 shows a cluster in different stages of its lifespan.
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(a) Identification. (b) Harmful herding. (c) Dissolution.

Figure 4 Three stages in the lifespan of a cluster of 6 persons: (a) the group is identified as such,
(b) the human annotator identifies the group is taking the wrong turn, (c) the cluster dissolves after
an exit is not found.

The ground truth holds every instance’s label based on the ultimate cluster’s destination.
That is, if the cluster ends up in a dead-end or clearly goes in the wrong direction, it is
labeled as harmful, whereas if it ends up exiting the building or closer to the exit, it is
labeled as benign. The suggested method is evaluated on its ability to detect harmful herding
behaviour but also on detection timeliness, as it is expected to make detections early on.
Therefore, three checkpoints along the lifespan of a cluster are defined (Figure 4):

Checkpoint 1 (CP1) – At cluster identification. This is when the cluster is identified
by the clustering method defined in Section 4.1 (Figure 4a).
Checkpoint 2 (CP2) – At human detection point. That is, when the human tester
first realises that the cluster is headed towards the wrong direction (Figure 4b).
Checkpoint 3 (CP3) – At cluster dissolution. This is when the clustering method
defined in Section 4.1 stops identifying the former cluster members as one (Figure 4c).

Then, to assess detection timeliness, five scores – called detection scores – are defined
using the checkpoints:

Early detection (ED) – Number of harmful instances detected before CP1.
Detection (D) – Number of harmful instances detected between CP1 and CP2.
Late detection (LD) – Number of harmful instances detected between CP2 and CP3.
No detection (ND) – Number of harmful instances not detected at all.
False warnings (FW ) – Number of benign instances detected as harmful at any time.

Additionally, unified scores, allowing a comparison between the method’s detection
times and the visual inspection (VI), are defined:

Before VI (BV I) – The number of harmful instances detected before CP3 (faster
than VI), plus the number of benign instances not identified as harmful. Formally,
BV I = ED+D+ (TB −FW ), where TB is the total number of benign instances in the
ground truth.
After VI (AV I) – The number of harmful instances detected after CP3 (slower than VI),
plus the non-detected instances, plus the false warnings. Formally, AV I = LD+ND+FW

It is worth noting that false warnings tend to be sensitive, as a single harmful detection in
a whole benign trajectory would yield a false warning. For that reason, a tolerance variable
is introduced. Each of the detection scores checks for at least one harmful prediction. Using
the tolerance variable t, the detection scores have to check for at least t harmful predictions,
before classifying it as harmful.

The manual labeling is performed visually by a human observer. Although not optimal,
this labeling allows for performing a proof-of-concept evaluation method against human
judgment. In the future, a more thorough labeling mechanism such as domain expert labeling,
or labeling from multiple annotators can be used.

GISc ience 2018
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Figure 5 Initial setup of the simulation.

5 Experiments

Data for the experiments are generated by running the simulation described in Section 3.5.
Location data for each agent at each time step are recorded in a text file. The text file is
used as the input to the suggested method. The simulation is realised using the GAMA1

simulation software. In the simulation, 50 agents are placed on a 50x50 grid. The layout of
the grid resembles a building layout with walls and exit doors. Figure 5 shows the initial
setting for the simulation to run.

Having obtained the simulation data, the main objective of these experiments is to test
which features in the cluster feature vector describe best the herding behaviour. Feature sets
are built using feature candidates (FC1−3) described in Section 4.2, as follows:

Feature set 1 (FS1) – The information this feature set contains is the cluster’s distance to
the exit (FC1), the cluster’s previous movements (FC2 with i = 5), and the trajectories
of 3 leaders (FC3 with l = 3 and i = 20).
Feature set 2 (FS2) – In this feature set, distance to the exit (FC1) is not used, for
checking its relevance. Considered are: cluster movement (FC2 with i = 5) and leader
trajectory (FC3 with l = 1 and i = 20).
Feature set 3 (FS3) – Leader information (FC3) is not considered, to check its relevance.
Considered are only distance to exit (FC1) and cluster movement (FC2 with i = 5).

The values for the number l of leaders and number i of steps to check from past trajectory
were chosen based on the behaviour definition and by performing several preliminary tests of
the method with a number of combinations. Three experiments are performed, summarised
in Table 2. Every experiment runs the classification step using both k-means (KM) and
hierarchical clustering (HC):

Experiment 1 sets the tolerance value to 1, the number of instances to 31 and all three
feature sets are compared.
Experiment 2 is similar to Experiment 1, but using a tolerance value of 2.
Experiment 3 is used to check whether the algorithm would benefit from having more
instances to cluster by increasing the number N of instances and using the best performing
feature set – FS2 as seen later – with tolerance t = 1.

1 http://gama-platform.org/
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Table 2 Parameters used in every experiment.

Experiment 1 Experiment 2 Experiment 3
tolerance = 1 tolerance = 2 tolerance = 1

F S1 F S2 F S3 F S1 F S2 F S3 F S2

N = 31 N = 31 N = 21 N = 31 N = 52

Table 3 Results of Experiment 1, using tolerance t = 1. Showing detection scores (ED, D,
LD, ND), false warnings (FW), and unified scores (BVI, AVI) of k-means (KM) and hierarchical
clustering (HC) using different feature sets (F Si). Baselines are shown beside them for comparison

F S1 F S2 F S3 Baselines
KM HC KM HC KM HC ZR R RD

ED 48% 52% 57% 76% 100% 100% 100% 86% 81%
D 24% 33% 43% 24% 0% 0% 0% 14% 19%
LD 19% 10% 0% 0% 0% 0% 0% 0% 0%
ND 10% 5% 0% 0% 0% 0% 0% 0% 0%
FW 36% 55% 36% 55% 100% 100% 100% 100% 100%
BVI 69% 72% 88% 81% 66% 66% 66% 66% 66%
AVI 31% 28% 12% 19% 34% 34% 34% 34% 34%

6 Results Analysis

Tables 3 and 4 show the complete results of Experiment 1 and 2, respectively. The tables
contain detection and unified scores (Section 4.4) for a thorough comparison. The tables
present the results of k-means and hierarchical clustering for all three feature sets (FS1, FS2,
FS3). The three baselines defined in Section 4.3 – Zero Rule (ZR), Random (R), Random
with distribution (Rd) – are placed next to the results for comparison.

Ideally, a method would detect every harmful herding behaviour early on (ED = 100%).
Even though the baselines have a perfect or near-perfect ED score — since ZR classifies
everything as harming (ED = 100%) — they also have a 100% false warning rate (FW ),
which renders these baselines unreliable. Hence, the consolidated BV I score is a better
indicator of overall performance, as it penalises either low detection, or high false warning
rates. Figures 6 and 7 show the BV I score in Experiments 1 and 3, respectively, while the
main findings of the analysis are as follows:

Leader trajectory is the best herding predictor. Overall, the best performing feature set
is FS2 with either k-means, or hierarchical clustering with a BV I = 88% and BV I = 81%
with t = 1 (Figure 6) respectively, and BV I = 81% and BV I = 84% with t = 2. These
algorithms all perform well above the baselines. These positive results suggest the features
chosen, namely the leader trajectory and the recent cluster movement, were appropriate.
When comparing Experiments 1 and 2, as tolerance increases, the FW score decreases as
expected, but the overall BV I is not improved.

Distance to exit is not meaningful. Low results of FS3 suggest the distance to the exit
(the feature not present in FS2) is not a trusting feature, as it makes the classifier act
randomly. This is probably the reason for the lower performance of FS1 compared to FS2, as
it contains the dist_to_exit feature. This observation is reasonable, given that long distance
from the exit does not necessarily mean the group is lost or not heading towards the exit.

GISc ience 2018
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Table 4 Results of Experiment 2, using tolerance t = 2. Showing detection scores (ED, D,
LD, ND), false warnings (FW), and unified scores (BVI, AVI) of k-means (KM) and hierarchical
clustering (HC) using different feature sets (F Si). Baselines are shown beside them for comparison.

F S1 F S2 F S3 Baselines
KM HC KM HC KM HC ZR R RD

ED 33% 38% 29% 43% 62% 62% 62% 52% 57%
D 24% 29% 57% 52% 33% 33% 33% 38% 33%
LD 29% 24% 14% 5% 5% 5% 5% 10% 2%
ND 14% 10% 0% 0% 0% 0% 0% 0% 0%
FW 36% 36% 27% 36% 100% 100% 100% 100% 100%
BVI 59% 66% 81% 84% 62% 62% 62% 59% 59%
AVI 41% 34% 19% 16% 38% 38% 38% 41% 41%

Figure 6 Experiment 1 results summary. BV I score is displayed comparing the suggested method
to the baselines.

Increasing number of instances improves performance. Figure 7 shows the results of
Experiment 3, depicting how the scores change given an increasing number N of cluster
instances. BV I score increases as N increases (except for k-means in N = 31), implying
that the suggested method benefits from a higher number of instances. FS2 is used in this
experiment as it was the best performing feature set in the previous experiments.

7 Conclusions and future work

This paper presents a method for automatic, early detection of harmful herding behaviour
using spatio-temporal information from clusters of people. The method comprises three
steps. First, groups of people moving together are identified using clustering algorithms with
added constraints. Second, relevant spatio-temporal information from the identified clusters
is collected. Second, the extracted features are combined to spatially and temporally describe
a herding behaviour. To achieve this, the position changes of the cluster and the cluster
leader’s movement trajectory are examined. The method assumes the leader’s trajectory to
be a most relevant feature for identifying the behaviour. Third, the observed clusters are
classified as displaying either benign or harmful herding behaviour, using an unsupervised
learning method.

The experimental results show promise towards advancing the understanding of herding
behaviour effects. Seven different scores are defined to assess the method’s ability to detect
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Figure 7 Experiment 3 results. F S2 is used with an increasing number N of instances.

harmful behaviours and compare it to a human observer. In every experiment run, both
algorithms (k-means and hierarchical clustering) are superior to the three baselines used.
Different combinations of features were tested. The major findings are:
1. Features regarding leader trajectory and recent distance changes from the cluster to the

exit best predict harmful herding behaviour, yielding above 80% of the BV I unified score
in the experimens.

2. Distance to the exit (without considering movement) harms the prediction when added
into the feature set, making it classify randomly.

3. Even though increasing the method’s tolerance does not produce better results overall,
it does decrease the amount of false warnings. This is useful in systems where issuing
warnings is expensive, so additional confidence is needed.

4. The method benefits from large cluster instances in the data, which means that it scales
well in environments with big crowds that need to evacuate in an emergency situation.
Higher values of N , however, mean more time-consuming manual labeling for evaluation.

The harmful herding behaviour identification method can be further improved. Different
graphs can be used, such as the visibility graph [26] or a bigraph [27] in the clustering step.
The features extracted from the clusters can be improved by looking into more in-depth
analysis of who the leader of a group is, rather than identifying the topmost one as such. A
supervised learning method for behaviour classification can be compared to its unsupervised
counterpart. An approach that would replace both learning approaches is a rules-based one
where, given thorough domain knowledge, strict rules can be placed for the prediction of
the harmful herding behaviour. Pertaining to the evaluation method, perhaps the most
immediate step forward is the use of a real evacuation scenario datasets. Finally, herding
is only one of several behaviours elicited by cognitive biases during disasters. Other biases
such as the normalcy bias, confirmation bias, planning fallacy [1], may lead to equally
harming behaviours during emergency evacuations. Consequently, future work may focus
on identifying other behaviours, or even providing a bigger unified framework for irrational
behaviour detection.
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Abstract
The amount of available spatial data has significantly increased in the last years so that traditional
analysis tools have become inappropriate to effectively manage them. Therefore, many attempts
have been made in order to define extensions of existing MapReduce tools, such as Hadoop
or Spark, with spatial capabilities in terms of data types and algorithms. Such extensions are
mainly based on the partitioning techniques implemented for textual data where the dimension
is given in terms of the number of occupied bytes. However, spatial data are characterized by
other features which describe their dimension, such as the number of vertices or the MBR size of
geometries, which greatly affect the performance of operations, like the spatial join, during data
analysis. The result is that the use of traditional partitioning techniques prevents to completely
exploit the benefit of the parallel execution provided by a MapReduce environment. This paper
extensively analyses the problem considering the spatial join operation as use case, performing
both a theoretical and an experimental analysis for it. Moreover, it provides a solution based
on a different partitioning technique, which splits complex or extensive geometries. Finally, we
validate the proposed solution by means of some experiments on synthetic and real datasets.
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(a) (b)

Figure 1 Example of unbalanced datasets between which a join has to be performed. (a) contains
few geometries with a big extent described with a restricted number of vertices, while (b) contains
many geometries with a small extent represented using several vertices.

1 Introduction

In recent years the amount of spatial data available to users have increased tremendously and
the demand of resources for performing geo-spatial analysis on them cannot be satisfied any
more by traditional GIS systems. As a consequence of this new scenario, in the last decade
many efforts have been devoted to the extension of systems for big data processing based
on the MapReduce paradigm, like Hadoop [15] or Spark [16], in order to make them able
to deal with geo-spatial data. For instance, SpatialHadoop [7] is the result of one of these
projects, it is an extension of Apache Hadoop which provides a native support for spatial
data, in terms of spatial data types, operations and indexes. In particular, it provides various
implementations of the spatial join, which is one of the most frequently used operation for
analyzing spatial datasets and discovering connections between geo-spatial objects [2].

Various spatial join variants are available in literature [10] and some adaptations to the
MapReduce context have been provided [8]. In particular, SpatialHadoop implements several
spatial join algorithms which share the use of indexes for increasing their performance and
avoiding a brute force approach that simply subdivides the Cartesian product of the two input
datasets between tasks. As regards to the indexing techniques, all kind of indexes provided
by SpatialHadoop are organized into two levels: (i) first data are physically partitioned in
different blocks (usually called splits or partitions), producing a first level of index called
global index, then (ii) in each block a specific index is built that works only on the data of
the partition, producing a second level of index called local index. This indexing pattern
directly derives from the way usually applied for organizing data inside the HDFS (Hadoop
Distributed File System). In HDFS, a dataset is partitioned into splits whose size usually
corresponds to the HDFS block size and each split represents the input for a single map
task. This organization has been originally developed for processing large amount of mono-
dimensional (textual) data where the execution time is directly affected by the number of
bytes they occupy on the file system. This choice is justified by the observation that the
amount of work to be performed on textual data usually depends on the data size (or number
of records), thus partitioning data in blocks of the same size and assigning each block to a
map task, produces a balanced work distribution among workers. This reasoning has been
applied also to spatial data, since the physical partitioning induced by the global index uses
again considerations based on the size in bytes of the dataset. However, geo-spatial objects
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are also embedded in a 2D or a 3D reference space and their extension in these spaces is
another dimension that can have an impact on the workload of many spatial operations.
Notice that the portion of space occupied by a geo-spatial object on the Earth surface can be
completely independent from the size in bytes of its physical representation as a file record.
On the contrary the number of bytes may partially represent the complexity of a shape, in
terms of number of vertices, but not its extent. During the execution of a spatial join, the
average extent of the geo-spatial objects in both datasets affects their mutual selectivity (i.e.,
the ratio between the effective pairs produced by the join and the total number of possible
pairs given by the Cartesian product) and thus it has an impact on the workload of the
tasks devoted to its computation. The average extent of the geometries in a dataset can be
approximated by means of the average area of the MBR (Minimum Bounding Rectangle)
containing them and this parameter can be easily computed during the index construction.

The impact of the average geometry extent on the spatial join becomes particularly
relevant when the two datasets are very unbalanced in terms of extent and size. Let us
consider the case in which one dataset contains few simple geo-spatial objects with a large
extent (possibly covering almost the whole reference space), while the other one is instead
huge and contains a large number of geo-spatial objects with a small extent. The first dataset
may be possibly stored in a single split, since only few vertices are required for describing
the shapes of all objects, while the second dataset requires more splits to accommodate the
numerous objects it contains. As a first example, let us consider the case illustrated in Fig. 1,
where dataset Ds contains only seven polygons representing the Australian States (Fig. 1.a)
while dataset Dr contains several complex linestrings representing the main road elements of
the Australian transportation network (Fig. 1.b). A generic partitioning of the two datasets
which is based only on their size in bytes will produce only one partition for Ds, since the
whole set of geometries can fit in one split, while several different partitions will be built for
Dr. In this case, a spatial join operation on them (Ds onint Dr) can be divided into several
tasks, but each one of them will work on a split of Dr and on the single global split of Ds,
thus the Cartesian product is computed and no pruning effect is obtained by using the index.
This means for example that all geometries in the cell with label c in the Fig. 1.b will be
tested for intersection with all the states of Australia. Clearly, an efficient use of a local index
can improve the performance and avoid some useless tests, but it will not affect the number
tasks to be instantiated. Moreover, the problem worsens as the extent of the geometries in
Ds enlarges, covering at the end the whole space.

The aim of this paper is to formalize and evaluate the problem discussed above and
further explained in Sect. 1.1, called here parallel execution of unbalanced spatial join, in
order to identify the characteristics that really represents the complexity of spatial data,
making them “big”. In particular, Sect. 2 provides a formalization of the problem and a
discussion of the limits of the current spatial join algorithms available in SpatialHadoop when
applied to unbalanced cases. Sect. 2.4 illustrates by means of some experiments the behavior
of spatial join algorithms when applied on synthetic datasets with increasing unbalanced
characteristics. Then, Sect. 3 proposes a new approach for dealing with unbalanced spatial
join that requires the implementation of an alternative kind of repartition which is based on
the geometry extent instead of on the file size. In Sect. 4 some additional experiments show
the effectiveness of the proposed approach when applied both to synthetic and real datasets
in the execution of unbalanced spatial joins. Finally, Sect. 6 summarizes the obtained results
and proposed some future work.
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Table 1 Some metadata about two real-world datasets representing the taxonomy of the soil
usage (cv_land) inside the Basilicata region and its extent (tot_reg), respectively. The average
number of vertices and the average extent area refer to each single geometry in the dataset.

Dataset size #splits #obj #vertavg areaavg (squared meters)
cv_land 1.5 (Gb) 12 913,428 70 10,550 (1e4)
tot_reg 263 (Kb) 1 1 8,000 10,589,998,917 (1e10)

(a) (b) (c)

Figure 2 (a) Dataset cv_land with its grid. (b) A zoom on one cell of the cv_land grid. (c)
Dataset tot_reg with its grid.

1.1 Motivating Example

The problem discussed in this paper originated form a real-wold case regarding a collection
of datasets about a region in Southern Italy, called Basilicata. In particular, we consider
two datasets: the first one, called cv_land, contains several geometries representing the
taxonomy of land usage inside the region, while the second one, called tot_reg, contains one
object representing the whole territory of Basilicata. Tab. 1 reports some metadata of the
two datasets: they greatly differ on the number of objects, their complexity (average number
of vertices in each geometry), and their extents (average area of each geometry). The aim
of the original task was to perform a qualitative evaluation by verifying the satisfaction of
some spatial integrity constraints. In particular, one test has to check if the set of geometries
belonging to cv_land represents a geometric partition of the whole territory of Basilicata. As
shown in [12], the execution of this check by means of a sequence of SQL queries takes several
days when executed in a PostgreSQL+PostGIS environment. Therefore, the introduction
of a parallel execution has become soon necessary. One of the required query in the above
cited sequence coincides with the spatial join between the two datasets. Given two datasets
D1 and D2, the spatial join determines the pairs (d1, d2) ∈ D1 ×D2 with an intersecting
extent. This operation is usually performed exploiting a plane-sweep like algorithm, in order
to reduce the number of required comparisons. Clearly, the case considered in this paper is
particularly challenging, since as the extent of a geometry increases w.r.t. the other one, the
number of comparisons increases. Similarly, the complexity of each comparison increases as
the number of vertices describing each geometry becomes greater.

Fig. 2 illustrates the two datasets with the partitioning induced by the grid index of
SpatialHadoop; the number of splits only depends on the dataset size in bytes, so cv_land
is subdivided into 12 splits (Fig. 2.a), while tot_reg is contained into 1 split (Fig. 2.c).
Moreover, datasets cv_land contains a great number of objects (see a zoom in Fig. 2.b),
while the complexity of tot_reg in given by the average number of vertices in each geometry.
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Table 2 Comparison between the different spatial join algorithms provided by SpatialHadoop.
The number of produced pairs is 913,428. The last two algorithms make use of indexes, but their
performance are not greatly increased w.r.t. the first algorithm which works on non-indexed data.

Algorithm # maps Effective time Heap usage HDFS reads HDFS writes
(min) (MB) (MB) (MB)

Djni 12 92.57 21.87 1.57 243.64
Djgi 18 88.73 30.90 1.66 243.64
Djre 18 80.06 24.77 1.66 243.64

Tab. 2 reports some data about the execution of the spatial join using the three main
algorithms provided by SpatialHadoop, the distributed join with no index (Djni), the
distributed join with grid index (Djgi) and distributed join with repartition (Djre), which
will be briefly discussed in Sect. 2.3. Notice that the time required to perform the join is
very high and the execution does not benefit so much from the use of index.

2 Problem Statement

This section formalizes the problem presented in Sect. 1 by discussing in details how data is
traditionally partitioned in MapReduce environments (Sect. 2.1) and how such techniques are
adapted in SpatialHadoop for implementing spatial indexes (Sect. 2.2). Finally, we introduce
the problem of performing a spatial join and how this operation can be effected by the use of
a spatial index (Sect. 2.3), anticipating some limits of a size-based partitioning technique
that will be discussed in more details in Sect. 2.4.

2.1 Data Partitioning in MapReduce
Hadoop divides the input of a MapReduce job into fixed-size pieces called splits and creates
one map task for each split. Each map task executes the user-defined (map) function on each
record in its split. The main idea behind the MapReduce paradigm is that the time required
to process each split individually is smaller than the time required to process the whole input.
Therefore, the more such computation on each individual split can be performed in parallel,
the more the process performance increases. The split size is generally set equal to the size
of an HDFS (Hadoop Distributed File System) block, which is 128 Mbytes by default.

The partitioning of data into splits is a crucial operation for obtaining well balanced
map tasks [3, 14, 13]. In particular, if the splits can be analyzed in parallel, the whole job
is better balanced when the splits are small, since a faster machine will be able to process
proportionally more splits during the map execution than a slower machine, while unbalanced
tasks can frustrate the benefit of the parallelism, since a single heavy task can delay the end
of the whole job. This observation tends to produce the conclusion that the smaller are the
mappers the more the effective execution time of the job can be reduced; however, if the
splits are too small, the overhead of managing the splits and creating map tasks begins to
dominate the total job execution time. Thus, a tradeoff should be defined and the reference
size of 128 Mbytes is the usual choice. Moreover, the partitioning of data is usually applied
randomly and this might produce balanced tasks for uniformly distributed datasets, but not
in general. In order to address this problem, when spatial data are analyzed, the introduction
of auxiliary structures (indexes) is an option. Using a spatial index implies that a criteria
based on spatial properties (i.e., closeness) will be used for grouping the records in the same
split. The general structure of a spatial index is presented in the following subsection.
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2.2 Spatial Indexes in SpatialHadoop

As discussed in the Sect. 1, SpatialHadoop has two level of indexes [5]: a global and a local
one. The global index determines how data is partitioned among nodes, while the local index
determines how data is stored inside each block. The construction of a global index g on a
input dataset D causes that D is stored as a set of data files each one containing the records
spatially belonging to one cell (or partition) of the grid g. More specifically, given a dataset
representing the input data, a directory named dataset.〈index〉 will be created containing
several files: _master.〈index〉, part-00000, part-00001, part-00002, and so on, where
〈index〉 denotes the kind of global index (e.g., grid, quadtree, rtree). File _master.〈index〉
represents the global index and it has one row for each partition containing the boundaries of
the partition and the partition file name (e.g., -179.32, -54.93, 6.92, 71.28, part-00000). All
the other files are data files containing the data records. For a grid index, each partition file
is simply a text file containing one record for each row, conversely for a R-tree it has a more
complex structure subdivided into two sections: the first one contains the tree structure in
binary format, while the second one contains the data records.

As discussed in [5] despite the particular kind of index, the number n of desired partitions
is computed considering only the file size and the HDFS block capacity which are both
fixed for all partitioning techniques. Subsequently, the space is subdivided into n partitions
and each record in the input dataset is assigned to one or more of them. Dependently on
the fact that the index admits replication or not, geometries crossing partition boundaries
can be assigned to more than one partition or to exactly one, respectively. The number of
partitions n used for performing the subdivision is crucial in the identification of the number
of mappers that will be executed in order to produce the result. As we will see in Sect. 2.4, if
the determination of such number is computed considering only the file size and the HDFS
capacity, we can obtain strange behaviours, as the one anticipated in Sect. 1.

2.3 Use of Spatial Indexes in Distributed Joins

SpatialHadoop provides five different alternatives of spatial join algorithm: distributed join
with no index (Djni), distributed join with grid-based index (Djgi), distributed join with
repartition (Djre), distributed join with direct repartition (Djdr), and the MapReduce
implementation of the partition-based spatial merge join (Sjmr). The main differences
between them are: (i) the use of indexed or not-indexed data, (ii) the possibility to repartition
one of the two datasets using the global index of the other, (iii) the execution of the intersection
tests on the map or on the reduce side. All operators share the use of a plane-sweep like
algorithm for checking the intersections between two list of geometries. The difference mainly
resides in the way the two lists are built by the various operators. In particular, as regards
to the map-side joins, the cardinalities of such lists and their composition directly depends
on the content and size of each partition.

Since in this paper we are interested in analyzing the impact of data partitioning (i.e.,
global index) in spatial operators, such as the spatial join, we concentrate only on the
map-side joins which exploit the use of indexes during the join computation. Therefore, in
the following section we start by considering the behaviour of Djni and Djgi in presence
of unbalanced datasets, then we evaluate the possible positive effects of a repartition of
the smaller dataset (in size) by evaluating the behaviour of Djre. However, in all these
algorithms, the extent of geometries and the geometry complexity (in terms of number of
vertices) are not considered during the partition process. In Djni the partition is performed
considering only the size in bytes and the constraint of splits capacity, thus records are
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grouped randomly in the necessary number of splits. In case of the Djgi, the datasets are
indexed (i.e., partitioned) considering again the split capacity constraint, so that partitions
have a homogeneous size in terms of bytes, but records are grouped according to their spatial
closeness, which is evaluated in the space the geometries are embedded in. In case of the
Djre, one dataset is indexed while the one (usually the smaller in size) is repartitioned using
the grid of the bigger one. The effect is that geometries of the smaller dataset are partitioned
using the spatial closeness principle, but producing splits with potentially less records (i.e.,
size less than 128 Mbytes) and consequently reducing the cost of the map tasks.

All these spatial join variants perform the join inside the map tasks: each map receives a
combined split built by a special reader that matches a split of the first dataset with a split
of the second one. Moreover, in Djgi and Djre a combined split is built combining only
pairs of input splits that intersect (through the use of a filter). Therefore, the number of map
tasks which will be instantiated is equal for Djgi to the number of intersecting partitions of
the two global indexes, while for Djre it is equal to the number of partitions of the bigger
datasets that intersect the smaller one. Given a combined split, each mapper initially split its
content into two lists (one for each dataset) and then executes a plane-sweep like algorithm
on them in order to identify the pairs of intersecting geometries.

As discussed in [1], the cost of this plane-sweep phase depends on three factors: (i) the
cardinality of the two lists (which depends on the partition size), (ii) the mutual dataset
selectivity (which depends on the average extent/MBR of the geometries in the two datasets),
and (iii) the average number of vertices of the geometries in the two datasets.

I Definition 1 (Plane-sweep cost). Given two lists of geometries ni ⊆ Di and nj ⊆ Dj

coming from two input datasets Di and Dj , whose geometries have an average number of
vertices equal to vi and vj , respectively, and a selectivity σ(A) computed w.r.t. a certain
reference space A, the complexity of the plain-sweep phase can be formulated as:

ps(ni, nj , vi, vj , A) = ni log(ni) + nj log(nj) + (vi + vj) log(vi + vj) · ni · nj · σ(A) (1)

where the first two components represent the sorting the two input lists, while the last
component is due to the intersection test between pairs of geometries with intersecting MBRs.
The selectivity σ(A) can be estimated by applying the following formula, proposed in [10]:

σ(A) = 1
A
·
(
areaavg

mbr(Di) + areaavg
mbr(Dj) + lenavg

x (Di)lenavg
y (Dj) + lenavg

x (Dj)lenavg
y (Di)

)
(2)

Eq. 2 requires that some estimates about the datasets content are available, in particular: the
average area of the MBR of the geometries belonging to D∗ (areaavg

mbr(D∗) and the average
length on the x axis and y axis of the same MBRs (lenavg

x (D∗), lenavg
y (D∗)).

Introducing the necessary coefficients of proportionality for each operation, Eq. 1 provides
an estimate of the cost of each mapper involved in the spatial join computation. Let us
analyze the case of a sequential execution (“one task” case) and compare it with the three
map-side spatial join algorithms provided by SpatialHadoop, Djni, Djgi and Djre. We can
conclude that the benefits induced by the application of one of the MapReduce spatial join
derive not only from the parallel execution of different portions of the whole job, but also as
a consequence of the non linear behavior of the plane-sweep algorithm.

I Observation 1 (Benefits of parallel execution of spatial join with Djni). Given two datasets
Di and Dj in the reference space of area A, with cardinality Ni and Nj and an average
number of vertices equal to Vi and Vj , respectively. The cost of a “one task” execution of the
spatial join can be estimated using Eq. 1. Conversely, by applying algorithm Djni having si
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and sj number of splits for Di and Dj respectively, we obtain from Eq. 1 the estimate of the
cost of each map task as follows, where a1 e a2 are the coefficients that are necessary for
taking into account the cost of comparing two MBRs during the ordering phase and the cost
of testing a geometry intersection during the last phase, respectively:

psDjni

(
Ni

si
,
Nj

sj
, Vi, Vj , A

)
= a1

Ni

si
log

(
Ni

si

)
+ a1

Nj

sj
log

(
Nj

sj

)
+

a2(Vi + Vj) log(Vi + Vj) · Ni

si
· Nj

sj
· σ(A)

Notice that σ(A) does not change w.r.t the “one task” case, since the geometries in each
split are randomly chosen, thus they cover the whole reference space. The cost of a map task
is obviously reduced compared to the single process, in particular: (i) the ordering phases
are reduced proportionally w.r.t. the input reduction with an additional cut of: a1Ni log(si)
(or a1Nj log(sj)), (ii) the intersection testing phase is reduced by a significant factor: si × sj ,
since the number of pairs considered each map task is a subset of the total amount of
geometries. The total cost of Djni is psDjni · (si × sj), where si × sj represents the number
of mappers produced by Djni. This is a greater cost compared to the “one task” case since
the ordering phase of a split of Di is replicated sj times. However, under the hypothesis that
we can execute in parallel all the map tasks, we can obtain a significant reduction of the
effective time. Indeed, in this case the effective time will coincide with the execution time of
the worst map task or to the average execution time of a map in a balanced situation.

I Observation 2 (Benefits of parallel execution of spatial join with Djgi and Djre). By
applying the Djgi algorithm on datasets Di and Dj , having both a grid index with a number
of cells si and sj , respectively, we can obtain the estimate of the cost of each map task by
computing psDjgi(Ni

si
,

Nj

sj
, Vi, Vj , Acell) from Eq. 1. Notice that in this case the selectivity

changes, since the geometries of a split are now spatially located only in a subset of the
reference space, i.e. the space occupied by an index cell, namely Acell (here the smallest cell
of the two indexes is considered). A similar consideration holds for Djre, even if in this case
only a grid index is present, suppose the one of Di, so sj becomes the number of cells of si

that intersect Dj .
The cost of each map task is reduced also for Djgi and Djre. In particular, while the

cost of the ordering phases is reduced as for Djni, the intersection testing phase is more
expensive since the selectivity is lower. This is the effect of the index that tends to balance
the work among the map tasks and to reduce their number. The total cost can be obtained
for Djgi by multiplying psDjgi by the factor si × σ(sj), where σ(sj) is the number of cells of
the index of Dj that are intersected by a cell of Di, and for Djre by the factor ρ(si), where
ρ(si) is the number of cells of Di that intersects Dj . In both cases it is in average less than
the cost of the “one task” execution.

By applying the formulas in Def. 1 and Obs. 1-2 to the example in Sect. 1.1, we obtain as
expected a lower cost for Djni, Djgi and Djre w.r.t. the “one task” case. However, we can
also observe that with one big geometry the index does not have a significant impact on the
execution time: both Djgi and Djre do not reduce the cost of join w.r.t Djni.

The following section shows the results of some experiments that have been performed
with the aim to test how the number of geometries, the number of vertices and the selectivity
can affect the effectiveness of the index partitioning in increasing the performance of a spatial
join in MapReduce. As we will see, these factors can contribute in different ways, and their
effect is not completely represented by the size in bytes of each split.
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Table 3 Metadata about the two datasets used for the experiments on MBR size. Notice that
#VertPerGeom is the number of vertices describing each of the #Geometries in the dataset.

Dataset Size #Splits #VertPerGeom #Geometries MBR ext
Di 1152 (MB) 9 1,000 2,156 1e-8
Dj 1 (MB) 1 1,000 40 1 → 1e-4

2.4 Experimental Analysis of the Problem
The previous section discusses the fact that a partitioning technique based only on the size
in bytes of the input dataset does not properly capture the complexity of a spatial join
operation, which instead depends on three factors (number of geometries, number of vertices
and selectivity) that can be independent from the input size. More specifically, given a
split s with a predefined size in Megabytes, its content can be very different: it can contain
many simple geometries with a restricted number of vertices, or it can contain few complex
geometries described by a huge number of vertices, again such geometries can have a very
different extent which does not depend on the number of vertices. While the number of
geometries contained in a split directly depends on the average number of vertices used to
describe a shape, the extent is an independent aspect. Therefore, this section presents two
kinds of experiments both performed by keeping constant the size in bytes of the two input
datasets: (i) the average extent (MBR) of the second dataset is progressively augmented,
producing a decrease of the selectivity (more join pairs), (ii) the number of vertices of the
second dataset is progressively augmented, producing also a decreasing in the number of
geometries contained inside a split.

2.4.1 Variation on the MBR Size
The first set of experiments tries to study the effect of the average geometry MBR size
(namely the selectivity) on the join performance. In particular, we consider two synthetic
datasets Di and Dj with uniform distribution, Di contains a huge number of geometries with
a small extent, and Dj contains few geometries with a big extent. During the experiments
the extent of geometries in Dj has been varied from 1 to 1e-4 w.r.t. to the overall dataset
extent, namely initially the geometries occupy all the reference space, and this occupation
is progressively decreased till a ratio of 1e-4. Tab. 3 reports some metadata about the two
datasets, such as the number of geometries and the number of vertices in each geometry.

We compute the spatial join between these datasets by considering the three algorithm
variants presented in Sect. 2.3. Fig. 3 reports the results of such experiments. As you can
notice, the time required to perform the spatial join depends linearly on the selectivity (i.e.,
the average MBR size of the geometries) as predicted by the formulas presented in Obs. 1.
Moreover, the performances of the three algorithms are very similar to each other and this
proves that a partitioning technique that takes care only of the size in bytes does not capture
the real complexity of the dataset. Indeed, given the same input size, in this experiment
the performances of the spatial join considerably worsen passing from a couple of minute to
more than one hour. While the time remains acceptable in the first cases (till an MBR area
of Dj equal to 1e-1), it becomes incredibly bad when the geometries of Dj occupy the whole
reference space. In this last case, none of the available partitioning techniques are able to
completely exploit the parallelism and the benefit of a MapReduce framework.

Coming back to the real-world case illustrated in Sect. 1.1, in Fig. 4 we consider a join
between the dataset tot_reg and a polygon with an increasing MBR and a constant number
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Figure 3 Effective time taken by the three con-
sidered spatial join algorithms by varying the MBR
size of dataset Dj from an area of 1e-4 to 1 w.r.t.
the area of the reference space.

tot_reg #Vert Join Djre
MBR PerGeom size (sec)
5e-2 1,000 61,440 106
1e-1 1,000 104,934 145
1.5e-1 1,000 179,188 220
2.2e-1 1,000 262,311 329

Figure 4 Effective time taken by the Djre
algorithm applied to the real-world case by
varying the MBR size of the dataset tot_reg.

Table 4 Metadata about the two datasets used for the experiments on the number of vertices.
#VertPerGeom is the number of vertices describing each of the #Geometries in the dataset.

Dataset Size #Splits #VertPerGeom #Geometries MBR ext
Di 1152 (MB) 9 1,000 2,156 1e-8
Dj 1 → 75 (MB) 1 1,000 → 50,000 40 1e-2

of vertices (i.e., 1,000). In particular, the average MBR is changed from a radius of 15Km to
a radius of 35Km, respectively. Again the time required for performing the join linerarly
depends on the MBR size, namely the resulting selectivity.

2.4.2 Variation on the Number of Vertices
The second set of experiments evaluates the effect of the number of vertices on the complexity
of the spatial join. In particular, we consider two datasets Di and Dj with a fixed size in
terms of occupied splits and containing geometries with a fixed extent. In order to check how
the number vertices affects the time required for performing the spatial join, we vary the
number of vertices of all geometries in Dj , while maintaining constant the number of occupied
splits, the number of geometries and their average MBR area. Tab. 4 shows some metadata
about the considered datasets. In particular, for Dj the number of vertices describing each
geometry is varied from 1,000 to 5,000.

Fig. 5 presents the result of these experiments, again the use of the partitioning induced
by the spatial index does not considerably increase the performance of the join: the difference
between the three algorithms is no more than few minutes and in some cases the execution
time is less for the join without index than for the other twos. In this case the number of
map tasks to be executed is the same for all three algorithms: Djni considers a number of
combined splits equal to the Cartesian product, namely 1× 9 splits, which is equal to the
number of combined splits computed by Djgi, since the 1 split of Dj intersects all splits
of Di. Similarly, for Djre the repartition does not discard any cell of Di; moreover, the
costs of performing a repartition phase is not compensated by its benefits, the number of
repartitioned geometries is so very small. The trend of the curves in Fig. 5 completely adheres
to the formulas presented in Obs. 1.
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Figure 5 Effective time taken by the three con-
sidered spatial join algorithms by varying the num-
ber of vertices of each geometry in dataset Dj from
1,000 to 50,000.

tot_reg Geom Join Djre
# vert MBR size (min)
1,000 1e-1 103,683 13
5,000 1e-1 103,704 60
10,000 1e-1 103,707 118
15,000 1e-1 103,710 174
20,000 1e-1 103,707 231
25,000 1e-1 103,708 288
30,000 1e-1 103,707 342
35,000 1e-1 103,707 408
40,000 1e-1 103,707 463
45,000 1e-1 103,707 519
50,000 1e-1 103,707 578

Figure 6 Effective time taken by the
Djre algorithms by varying the number
of vertices of each geometry in dataset
tot_reg from 1,000 to 50,000.

Referring to the real-wold case introduced in Sect. 1.1, we evaluate the performance of
Djre by varying the number of vertices in dataset tot_reg while maintaining constant the
characteristics of dataset cv_land. The results are reported in Fig. 6, again the time by the
spatial join increases with the number of vertices in each geometry.

3 Proposed Solution and Discussion

Considering the experimental results presented in the previous section, we can conclude
that the effective execution time of three spatial join algorithms, Djni, Djgi and Djre, are
affected by both the selectivity of the datasets, which directly depends on the MBR area
of the geometries they contain, and the average number of vertices of the same geometries.
Indeed, in the experiments the size in bytes of the input file remained unchanged, while the
selectivity and the number of vertices are varied, obtaining very different execution times.
However, the partitioning techniques provided by SpatialHadoop are only based on the size
in bytes of the input files, thus they cannot react to the variations of these parameters.

In order to avoid this problem we propose an alternative partitioning technique to be
applied during the existing index building phase. Given the grid to be used for grouping
the geometries of a dataset, the existing indexing phase scans the whole dataset and for
each geometry g detects the subset of cells S(g) that it intersects, then g will be inserted in
the split of each cell in S(g). This means that sometimes a geometry g can be replicated
in more than one split. If g is relatively small w.r.t. the index cells, then the replication is
not frequent, but when geometries are bigger, the repetition occurs more frequently. The
replication rate has not been considered in the cost estimation (see Eq. 1), since it can be
neglected in the considered experiments.

The proposed technique enriches the indexing phase with a splitting operation which
should affect the partitioning result in particular when the MBR area increases or the number
of vertices increases. In the first case, i.e. lower selectivity, we can split the geometries that
cross two or more index cells, so that the average area of their MBR is reduced and thus their
contribution to the join selectivity is reduced (see Eq. 2). Notice that in this case the number
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of tested geometries does not change (in the original approach the whole geometry will be
replicated in all combined splits), so the cost of a map task is reduced according to Eq. 1. In
the second case, i.e. higher number of vertices, we can split the geometries when the number
of their vertices exceed a threshold. In this way, a big geometry g can be substituted by a
set of smaller geometries {g1, ..., gn}, that represent a partition of g and have a number of
vertices smaller than the number of vertices of g.

In order to combine the two cases, we consider a new partitioning technique where the
dataset with the bigger (in terms of average area of their MBR) geometries are splitted
by considering the grid of the other dataset. This splitting phase reduces both parameters
discussed above, thus reducing the cost of the map tasks. The following proposition shows
the effective cost reduction that the splitting phase introduces.

I Observation 3 (Benefits of the splitting phase). Consider two datasets Di and Dj in a
reference space of area A, with cardinality Ni and Nj and an average number of vertices
equal to Vi and Vj , respectively, and such that Dj is the dataset having the bigger geometries
in terms of occupied area. The cost of the “one task” execution of the spatial join can be
estimated by Eq. 1. Conversely, if we consider the application of Djgi on Di and Dj in
presence of grid indexes having respectively a number of cells si and sj , and assuming that
the geometries in Dj have been splitted so that they are spatially contained in one cell of Di,
the cost of each map task can be estimated from Eq. 1 as follows:

psDjgi

(
Ni

si
,
αNj

sj
, Vi,

Vj

α
,Acell

)
= a1

Ni

si
log

(
Ni

si

)
+ a1

αNj

sj
log

(
αNj

sj

)
+

a2

(
Vi + Vj

α

)
log

(
Vi + Vj

α

)
· Ni

si
· αNj

sj
· σ(Acell) (3)

where α represents the average number of cells of Di that are intersected by a geometry
of Dj , namely the average number of small geometries obtained from each big geometry
in Dj after the splitting phase. Accordingly to [1], it can be estimated as follows: α =
dlenavg

x (Dj)/lencel
x (Di)e · dlenavg

y (Dj)/lencel
y (Di)e + β, where, considering the MBR of the

geometries belonging to Dj , lenavg
x (Dj) (lenavg

x (Dj)) is the average length on the x (y) axis of
these MBRs, while lencel

x (Di) (lencel
y (Di)) represents the average length on the x (y) axis of

the index cells of Di. β is an additional factor taking into account the displacement between
MBRs and cells, namely it is a function of the probability that the MBR of a geometry of
Dj crosses the boundaries of the cells of Di.

Notice that, as shown in Obs. 1, the cost of a map task is obviously reduced compared
to the “one task” case, in particular: (i) the ordering phases are reduced proportionally
w.r.t. the input reduction with an additional cut quantifiable in: a1Ni log(si) for Di (or
a1αNj(log(α)− log(sj)) for Dj), (ii) the intersection testing phase is also reduced in two ways:
by the reduction of the pairs of geometries to be considered, with a factor (α · σ(Dj)/sj),
and also by the reduction of the cost for testing the intersection between two geometries,
since the number of vertices is decreased by a factor α.

4 Validation of the Solution

This section presents some additional experiments that verify the theoretical behavior of the
algorithms when the new splitting technique described in Sect. 3 is applied. In particular,
we first consider the experiments related to the variation of the average MBR size (i.e.,
selectivity) and check the effect of splitting the geometries of Dj using the grid of the constant
dataset Di of size 9 splits. These results are reported in Tab. 5 where the first three columns
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Table 5 Comparison between the execution time of the three distributed join algorithms when
performed considering the original and the modified synthetic datasets with a variable MBR size.

Dj Avg MBR size Djni Djgi Djre
Orig Part %Decr. (sec) % Improv. (sec) % Improv. (sec) % Improv.
1e-1 2.27e-2 77.25% 491 5.66% 527 7.17% 527 5.66%
2e-1 3.08e-2 84.58% 941 6.71% 934 8.72% 945 3.94%
3e-1 3.66e-2 87.79% 1,223 15.20% 1,285 10.95% 1,280 15.31%
4e-1 4.35e-2 89.12% 1,752 8.58% 1,633 14.91% 1,705 10.33%
5e-1 4.40e-2 91.19% 2,008 13.86% 1,814 23.99% 1,747 26.17%
6e-1 4.93e-2 91.79% 2,553 13.35% 2,586 9.81% 2,259 24.11%
7e-1 5.75e-2 91.78% 3,009 12.78% 2,650 16.28% 2,665 15.67%
8e-1 6.58e-2 91.77% 3,573 11.49% 3,570 4.86% 3,311 13.21%
9e-1 7.41e-2 91.76% 4,352 5.83% 4,021 3.37% 3,629 12.71%
1e+0 8.21e-2 91.79% 4,558 14.22% 4,473 8.73% 4,746 7.60%

Average 10.77% 10.88% 13.47%

Table 6 Comparison between the execution times of the three distributed join algorithms when
performed on the original and the modified synthetic datasets with a variable number of vertices.

Dj #VertPerGeom Djre
Original Splitted %Reduction (sec) % Improvement
1,000 149 85% 303 5%
10,000 1,545 84% 397 20%
20,000 2,924 85% 753 57%
30,000 4,512 85% 1,239 72%
40,000 6,020 85% 2,123 78%
50,000 8,272 83% 3,194 84%

Average 85% 52%

contain: (a) the original MBR size, (b) the MBR size after the splitting and (c) the average
percentage of decrease in the MBR size. The area of the used grid cells is 8.21e-2, while
the average percentage of decrease in the MBR size increases as the average MBR area
of the original geometries increases. For each algorithm the table reports the execution
time on the splitted geometries and the percentage of improvements w.r.t. the original
situation. All three versions of the distributed join benefit from the partitioning with an
average improvement of around 10-13% with respect to the previous executions.

As second set of validation experiments we consider the case in which the geometry
MBR remains unchanged but we vary the number of vertices describing each geometry.
In particular, we consider only the case of Djre since the execution time of the various
algorithms are not much different from each other and Djre is on average the most efficient
one. These results are reported in Tab. 6 where the first three columns contain: (a) the
original number of vertices in each geometry, (b) the number of vertices after the splitting (c)
the average percentage of decrease in the number of vertices. The other two columns contain
the execution time of Djre on the splitted geometries and the percentage of improvement
w.r.t. the original situation. The results of these experiments confirms what verified in
Sect. 2.4, namely the not negligible effect of the number of vertices on the spatial join
execution time. Indeed, this time greatly decreased by decreasing the complexity of the
geometries in terms of the average number of vertices in each geometry.
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5 Related Work

A common strategy to reduce the cost of a spatial join is the filter-and-refine approach
which consists on a filter phase that traditionally works on the MBR (minimum bounding
rectangle) of the involved geometries, and a refining step which performs the actual test
on the filtered pairs. The filter phase can usually benefit from the use of a spatial index
while the identification of both the overlapping MBRs or geometries is performed using the
plane-sweep algorithm [10]. In [17] the authors analysed the problem of how to partition
spatial data in order to perform parallel spatial join. They promoted the use of spatial
locality in task decomposition in order to speed-up the join computation. This partitioning
reflects the way data is partitioned by SpatialHadoop during the construction of a global
index. However, it is not effective in the case considered in this paper, since we assume
the presence of some big and complex geometries which occupy the whole reference space.
In the context of parallel spatial join execution, some research has been done in order to
define partitioning techniques which produce balanced partitions even in presence of skewed
data [4, 9, 11]. This paper does not consider the effect of the data distribution (skewed or
uniform), but concentrates on the presence of big and complex geometries that do not allow
to completely exploit the parallelism induced by the MapReduce approach.

In [5] the author analysed the various partitioning techniques available in SpatialHadoop
and they experimentally studied the effect of such indexes on some operations, such as the
range query and the spatial join. The work mainly evaluates such partitioning techniques
based on four quality measures, but it assumed that the considered objects occupy a
small space w.r.t. the reference space, so it did not consider the problem treated in this
paper. The problem of processing big complex geometries together with small ones has
been investigated for the first time in [12], where the author detected a difference in the
performance of some Pigeon operations when performed on spatially equivalent datasets with
different configurations for what regards the extent and complexity of the involved geometries.
Pigeon [6] is an extension of Pig Latin for dealing with spatial data in SpatialHadoop.

6 Conclusion

This paper deals with the problem of identifying the characteristics that really represents the
complexity of spatial data, making them “big” w.r.t. the most common operations. These
characteristics have to play a central role in the definition of an effective partitioning technique
able to exploits all potentiality of a MapReduce environment, like Hadoop. Traditionally,
in such environments the partitioning of data is performed by subdividing the records in
the original datasets so that each obtained split has an upper bound size given in terms
of the number of occupied bytes. This kind of partitioning is used also in spatial-aware
MapReduce systems, like SpatialHadoop, where the data partitioning, even the one induced
by the construction of spatial indexes, is driven only by the data size in bytes. However,
spatial data is characterized by other kinds of dimensions, such as the number of vertices
(complexity) used to described a single geometry, or the average area of the MBR of the
geometries (extent). These characteristics usually affect the cost of spatial analysis operations,
such as the spatial join. Therefore, we can assume that what makes spatial data big is not
only their size in bytes, but also their complexity and their extent. In order to validate such
hypothesis, in this paper we analyse the behaviour of some distributed spatial join algorithms
provided by SpatialHadoop when varying the average MBR size and the number of vertices,
showing how such characteristics affect the performance of the spatial join and that they
are not correctly captured by a partitioning technique based only on the size in bytes of the



A. Belussi, D. Carra, S. Migliorini, M. Negri, and G. Pelagatti 2:15

input datasets. We propose the idea of a new partitioning technique which takes care of such
characteristics by also performing a splitting of the original geometries in order to reduce
their complexity and better exploit the parallelism induced by a MapReduce environment.
Further improvements will regard the identification of the grid which is more appropriate on
the base of the average MBR size of geometries and the average number of vertices.
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Abstract
There are several situations where the type of a street intersections can become very important,
especially in the case of navigation studies. The types of intersections affect the route complexity
and this has to be accounted for, e.g., already during the experimental design phase of a navigation
study. In this work we introduce a formal definition for intersection types and present a framework
that allows for extracting information about the intersections of our planet. We present a case
study that demonstrates the importance and necessity of being able to extract this information.
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1 Introduction

The street network of a city is a physical artifact embedded in the natural world. Most of the
times, it consists of highways (i.e., streets meant for cars only), roads (meant for cars and
pedestrians) and pathways (only for pedestrians). Sometimes these networks are following
strict human design guidelines and sometimes they are bounded by natural constraints. Along
with historical rationales, these constraints are the primary reasons that not all parts of a
city follow a gridded design structure (e.g., curvilinear). This means that beside commonly
encountered 3- and 4-way intersections, also more complex ones can exist.

But what are the main implications of this diversity of streets and intersections, and why
is it important to know how a city, a country or even a continent are structured? What can
we learn from this information and how can this information be useful?

In the following we will exemplify our work focusing on the area of navigation studies and
experimental design. Independently of the research discipline, when planning an experiment
there is a certain process that is followed in order to come up with a correct design. At the
very beginning, information for the various relevant variables is collected that eventually will
help to make the right choices.

In the case of navigation experiments, the relevant variables concern the subjects (e.g.,
gender or age), the type of navigation aid [13] and the timing of instructions [12], if any,
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and the environment (e.g., the route). When it comes to the environment, the relevant
factors that have to be considered are numerous [15] and decisions can be made by taking
into account possible interactions between the relevant subjects and the environment –
e.g., previous experience of the subjects with the environment. Besides factors such as
architectural differentiation and environmental landmarks [30], the types of intersections are
highly relevant since they contribute to the complexity of a wayfinding decision [15]. A typical
question during the design process is how the decision points along the designated route
should be selected in terms of number of choices. How many and what kind of crossroads
should the route encompass? Of course, the number of crossroads and their shape (e.g., T-
or Y-intersections) on an experimental route is strongly related to the underlying research
questions.

The aim of this work is to help answering this type of questions. We computed the
number and type of all intersections on Earth and developed a web application that can be
easily used to extract this precomputed information for any area in the world. Of course this
work is not limited to navigation and experimental design. Next to researchers of various
disciplines, industries related to the areas of transportation and urban planning can use our
work for their decision making processes. For instance, by comparing the intersections of a
street network between two areas, interesting correlations with other phenomena could be
made, allowing to draw conclusions regarding the impact of the intersection types.

As a data source for our work we resorted to OpenStreetMap (OSM), that is one of the
most commonly used source of volunteered geographical information (VGI). While approach
we present does not require any particular form of road network data, the wide and free
availability as well as the generally good quality of OSM [16] make it an adequate choice for
intersection analysis. OSM data was analyzed in a multitude of studies before, not only in
terms of quality and completeness [18], but also as a data source for answering questions
about various environments [9], to determine the distribution of landmarks and points of
interest [31, 28, 3], to build recommender systems [4] or as contextual enhancement for other
types of data, such as Twitter posts [17].

In terms of intersection analysis, most previous work focuses around the automatic
detection of roads and intersections from other sources of data, such as GPS traces [10, 7]
or satellite imagery [6]. A variety of techniques exist, where intersection types are either
implicitly learned using machine learning techniques (such as neural networks for satellite
image analysis) [27, 32], or considered directly within the model [25]. To the best of our
knowledge, in all of the automated detection methods the individual intersections are not
classified in any way except based on the number of roads that lead up to them.

Intersections also play a central role in many routing applications [24]. Not only do red
lights (commonly occurring at intersections) influence the driving time, behavior, and related
emissions [23, 2], but even the difference between a right or left turn at an intersection
incurs different penalties to route computations [20]. In addition, vehicular ad hoc networks
(VANETs, which are used for inter-car communications) optimally also take intersections
into consideration, as they provide data exchange points for cars driving on different routes
and cars are likely to stop there [5, 1].

2 Types of Intersections

While the terms junction and intersection are commonly used interchangeably to refer street
joints and crossings, they have slightly different meanings, with the term intersection referring
to a specific type of junctions. According to the Oxford Dictionary, a junction is a place



P. Fogliaroni, D. Bucher, N. Jankovic, and I. Giannopoulos 3:3

(a) T-intersection. (b) Y-intersection. (c) Cross-intersection. (d) X-intersection.

Figure 1 The most common types of prototypical named intersections.

where two or more roads or railway lines meet, while an intersection is a point at which two
or more things intersect, especially a road junction.

The term junction unambiguously relates to the mobility infrastructure domain and
denotes roads coming together but does not specify the exact nature of their connection
(intersect, touch, meet at a square, etc.). Conversely, the term intersection has a broader
scope – as it can refer to several domains. Yet, when it comes to the mobility infrastructure
domain it clearly refers to the cases where two or more roads intersect with each other.

Intersections are mostly studied in the areas of Architecture, Civil and Traffic Engineering,
as well as Urban Planning. Studies in these domains are concerned with intersection design and
construction to optimize traffic load, road safety, and traveling time (e.g., [29]). Intersections
are typically split into two main categories: at-grade and grade-separated (see, e.g., [8]).
At-grade intersections consist of roads located at the same level (grade), while the roads
creating a grade-separated intersection are at different levels (grades) and pass above or
below each other. Grade-separated intersections are mostly used in highways and motorways,
as they allow for a faster and smoother merging of car traffic but are not well suited for
pedestrian navigation.

Both categories can be more finely classified. Grade-separated intersections can be
divided into interchanges and grade-separations without ramps. Subcategories of at-grade
intersections include proper intersections, roundabouts, and staggered (or offset) intersections,
among others. Proper intersections are the most prototypical type of intersection for the
layman: several road segments converge to meet at the same point. Roundabouts are circular
intersections that cars can enter and exit smoothly and in which road traffic flows in a single
direction. In Staggered intersections several (minor) roads meet a main road at a slight
distance apart such that they do not all come together at the same point.

In the scope of this work we only take into consideration proper intersections and,
marginally, staggered intersections (that we regard as a composition of proper intersections).
The analysis of more more complex types of intersections such as, e.g., roundabouts will be
investigated in future work.

In the following we will introduce relevant terminology and discuss properties of proper
intersections. The most straightforward property to classify intersections is the number n
of street segments stemming out of it. We call such street segments the branches of the
intersection. An intersection I with n branches is called an n-way intersection and we denote
it by In. Obviously, we need at least two street segments to meet in order to form an
intersection. In this work we focus on the intersections which call for navigational decision
making: given one street segment that is used to approach an intersection, there have to be
at least two more street segments that can be used to leave that intersection (i.e., n ≥ 3).

A second discriminant that we use to classify an intersection is its shape. That is, the
angular arrangement of its branches. Typically, this is done by comparing the intersections
at hand to some others that are generally accepted as prototypical ones [33, 22, 26, 14]. The
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most common ones are reported in Figure 1: they are called T- and Y-intersections for n = 3;
cross- and X-intersections for n = 4. Every intersection with more than four branches (n > 4)
is typically referred to as a star-intersection.

There is evidence that these named intersection types are used very naturally by people
when communicating route instructions verbally [33, 22] or schematically [33, 26, 14]. However,
they suffer from two major drawbacks. First, these namings only exist for intersections with a
small number of branches (n ≤ 4). Second, they are often not precisely defined: for example,
while most people would agree that a cross-intersection splits a revolution into four right
angles, there might be a large disagreement on the skewness of an X-intersection.

For these reasons, we introduce the concept of regular intersection, whose branches divide
a revolution into uniform parts. More formally:

I Definition 1 (Regular n-way intersection). Let b0, · · · , bn−1 be the branches of an n-way
intersection enumerated in circular order . We define αi as the angle formed by the pair
(bi−1, bi mod n) for every i ∈ N such that 1 ≤ i ≤ n. We say that a n-way intersection is
regular if and only if α1 = α2 = · · · = αn = 360/n and we denote it by Rn.

In general, to further characterize an n-way intersection we compare it to its regular
counterpart, rather than to the aforementioned named intersection types. However, it has
to be noted that regular 3- and 4-way intersections can be interpreted as exact definitions
for Y- and cross-intersections, respectively. The arbitrary skewness of X-intersections makes
them unsuitable to be taken as an objective reference for comparison. T-intersections, on
the other hand, are well defined. For this reason, for 3-way intersections we also perform a
comparison to T- intersections.

Finally, we define the angular distance ∆(In, Rn) among a generic n-way intersection In

and its regular counterpart Rn as the minimum sum of angles that we have to rotate the
branches of In to perfectly match Rn, while preserving the circular order of In’s branches.
Note that there are n− 1 possible rotations that can be performed to match In to Rn (see
Sec 3.2 for more details).

3 Intersections Framework

In the following, we present our framework that was implemented for the classification
and analysis of intersections. As one of the goals was to make worldwide intersection data
available, the presented framework is based on OpenStreetMap data and is publicly available1.
The framework is able to periodically process this data and writes the resulting intersection
measures into a database, where they can be accessed through a web application.

3.1 Data Source
OpenStreetMap (OSM) is arguably one of the largest and most important volunteered
geographic information (VGI) projects. As VGI is often not only the cheapest source of
geographic information, but even the only one available in certain regions [16], it is an
agreeable data source for a global intersection analysis. It needs to be noted that even though
OSM data quality can be considered adequate for many purposes, its spatial distribution
is not uniform, but depends on factors such as the information of interest or social events
(e.g., an upcoming Football World Cup) in a region [18, 19, 11]. However, these quality

1 See http://intersection.geo.tuwien.ac.at.

http://intersection.geo.tuwien.ac.at
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Analysis Class Highway Tag Values Description

Road living_street, primary, secondary, ter-
tiary, unclassified, residential, ser-
vice, primary_link, secondary_link, ter-
tiary_link

All ways that can be traversed by both
cars and pedestrians, namely all nor-
mal roads.

Path Road highway tag values plus
path, steps, bridleway, footway, track,
pedestrian

All ways that can be used by pedestri-
ans. Including smaller tracks, hiking
routes, etc. where cars cannot drive.

Car Road highway tag values plus
motorway, motorway_link, trunk,
trunk_link

All ways that can be traversed by car.
This additionally includes highways
and motorways, where pedestrian ac-
cess is usually forbidden.

Table 1 Different highway tag values used within the intersection analysis framework.

issues often concern single newly built roads or geographical information unrelated to the
road network, which make up for a negligible amount of data with respect to a regional
intersection analysis.

The three primary data structures of OSM are nodes, ways and relations. Nodes represent
single points in space (i.e., they have a longitude and latitude), such as points of interest or
individual objects. Ways are ordered lists of nodes, and encode linear features (like roads or
rivers) and boundaries of areas (when the first and last node are equal). Finally, relations
describe relationships between multiple elements, e.g., a collection of ways which form a
scenic route, or turn restrictions, which state that you cannot cross from one way into another
at a certain intersection.

All the node, way and relation objects can have an arbitrary number of tags, which have
a simple key → value form (both key and value are arbitrary strings). The tags themselves
are not formally specified, but are chosen based on a consensus in the OSM community. For
example, the very common tag highway is assigned to way objects which can somehow be
used for travel, e.g., for walking or driving. It can take the values described in Table 12.
Note that we distinguish between three analysis classes, one with ways solely accessible
to pedestrians, and another two with ways accessible to cars (including resp. excluding
motorways). To find intersections in the OSM data, it suffices to look at ways that carry a
highway tag, and to determine which nodes are shared among several of these ways.

OSM data is available in different formats. As the whole uncompressed xml planet file is
around 850 GB at the time of this writing, we opted for the protocol buffer binary format
(PBF) instead, which is available as a 40 GB gzipped file3 and consists of around 4.3 billion
nodes and 470 million ways.

3.2 Data Processing
After uncompressing the PBF file, we first search for nodes that should be considered
intersections. As stated above, this corresponds to nodes which have more than two branches
(n ≥ 3). For each way in the OSM dataset that has one of the appropriate highway tag values

2 For a detailed description of the individual values, and also additional ones that are not used in this
framework, please consult the OSM documentation under wiki.openstreetmap.org/wiki/Key:highway.

3 For details see wiki.openstreetmap.org/wiki/PBF_Format.
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Figure 2 Computation of ∆(In, Rn), the sum of all angles that each branch bi has to be rotated
in order to produce a regular n-way intersection. Note that it suffices to align the regular intersection
with each branch (as is done for b0 in (c)), and take the minimal ∆ of all possible alignments.

(cf. Table 1), we iterate through all the nodes making up this way, and build a mapping that
stores all neighboring nodes of each node. To be able to distinguish the different analysis
classes later on, the highway tag value is additionally stored for each neighboring node.
In essence, we define intersections as a function mapping a center node p to a number n
of adjacent nodes pp,i, where for each pp,i in addition the highway tag value th,i of the
connecting way is stored:

In : p 7→ {(pp,i, th,i) | 0 ≤ i < n} (1)

As this is done for all nodes in the OSM dataset (irrespectively of n), in a second iteration, a
final set of intersections {I0, ..., Ik} has to be built by removing all nodes that dissatisfy the
minimal number of branches condition (i.e., |I(p)| < 3). This set of intersections contains all
the relevant OSM nodes for the purposes of the here presented framework. To compare each
intersection to its regular counterpart (in the case of a 3-way intersection additionally to a
perfect T-intersection), it is required to compute all angles between the different roads in a
next step.

Thus, for the remaining intersections, a second pass through the OSM data collects the
coordinates of the center node p itself, as well as the coordinates of all the neighboring
nodes pp,i that can be reached by traversing its branches bi. Using these coordinates, it is
possible to compute all angles between the branches and the meridian passing through the
center node. Figure 2 depicts a hypothetical 4-way intersection in black and, beneath it, the
regular 4-way intersection, where the angles between branches are always 90◦. In order to
compute the angular distance ∆(In, Rn) to the regular intersection, we rotate the regular
intersection n times, so that it always aligns perfectly with one of the branches bi. Figure 2c
shows one of the four possible alignments for a 4-way intersection. For each non-aligned
branch, αi denotes the required rotation to reach an alignment with the next “free” branch
of the regular intersection (in this respect, “free” simply means that no two branches of the
original intersection may be rotated to the same branch of the regular intersection). For any
alignment with a branch of the regular intersection, a ∆′ is computed as the sum of all αi.
The final ∆ takes the value of the minimal ∆′ over all n possible alignments. Note that this
is a globally minimal ∆, even if arbitrary rotations of the regular intersection were allowed
(and not just “snapping” to branches of the original intersection), as rotating the regular
intersection monotonically increases or decreases ∆, until another alignment is reached. As
such, all minima and maxima of ∆ must occur at an alignment with the regular intersection.
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All the intersections with their coordinates, the number of branches, as well as the
computed ∆(In, Rn) are finally written to a PostGIS database4. Since it is required to know
the analysis class of each intersection, an additional database field denotes if an intersection
is valid for road, path, and car, or only any subset thereof.

3.3 Data Service
We provide public access to the intersection data computed with our framework through a
web application that is accessible at intersection.geo.tuwien.ac.at.

The interface provides a map canvas with OSM as a basemap that can be used to freely
browse the whole globe. With the current release of the application, the user is provided
with a selection menu from where she can specify the type of intersections of interest (column
“Analysis Class” in Table 1). We plan to extend this in future releases to allow the selection
of combinations of the base intersection types.

We offer three possibilities to specify the region of interest: polygon drawing, viewport,
and name search. In the first case, the user can specify a region by drawing a polygon on the
map. With the canvas selection, the viewport currently shown on the map canvas is used to
perform the database query. Finally, it is possible to look for named entities via a search box
that provides a live interface to an OSM Nominatim5 server. After typing in the name of
the searched feature, the user can ask the interface to draw the corresponding polygon on
the map. Given the huge amount of intersection data available, we decided to limit the area
of the search region to not overload the server. In future releases this limitation might be
removed. Also, in order to promote interoperability, we plan to include the possibility of
specifying custom geometries expressed in different type formats (e.g., KML, geoJSON, etc.).

The intersection type and the region specified are used to submit a query that returns
a statistical summary for intersections of the given type in the provided region. This
summary contains the number of occurrences for each n-way intersection, the average ∆
from the corresponding regular intersection – for 3-ways, also the average ∆ from the regular
T intersection. Besides the statistical summary the user is also provided with a link to
download the whole intersection data set for the specified region and type as a CSV file.

At the time of writing the CSV file only contains information about the intersection
points that were computed from OSM nodes. Beside the geometric information (reported in
WKT) each point is associated the following attributes: the number of branches and the type
of intersection, and the angular distance ∆ to the corresponding regular intersection.

Note that the intersection classes defined in Table 1 are not disjoint. This results in
the same intersection occurring up to three times in our database, once for each category.
Imagine the case of an intersection where both roads and paths converge. For example, we
may have 3 roads and 1 path. This intersection appears twice in our dataset: as a path and as
a road. Since roads are accessible by both pedestrians and cars but paths are only accessible
by cars, we have a 4-way path intersection and a 3-way road intersection. A similar concept
applies to the categories of road and car intersections. The relation of the number of ways
(denoted as nclass) between the intersections that overlap is ncar ≥ nroad and npath ≥ nroad.

In our database we also keep trace of the ways that form intersection branches: their
geometry (also converted to OGC standard), the original OSM highway tag, and a relation to
the intersections that they generate. This information is not accessible through the current
version of the application, but will be made available in future releases.

4 PostgreSQL 9.6 with PostGIS 2.3.2, the processing application is implemented in Rust 1.23.0.
5 Nominatim is a search engine for OSM data, see wiki.openstreetmap.org/wiki/Nominatim.
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Figure 3 Distribution of the intersections as
the number of branches n varies.

Detroit Melbourne Vienna Zürich

3-way 46.76% 84.49% 75.16% 78.88%
4-way 52.84% 15.20% 23.74% 20.13%
5-way 0.36% 0.29% 0.93% 0.82%
6-way 0.04% 0.02% 0.13% 0.14%
7-way 0.002% 0.002% 0.02% 0.02%
8-way 0.002% - 0.01% 0.004%

10-way - - - 0.004%

Total 40929 191508 75644 26286

Table 2 Distribution of intersections over
number of ways for the four cities.

4 Use Case: Detroit, Melbourne, Vienna, and Zürich

In this section we present and discuss intersection data obtained with our framework for
four exemplary cities and showcase how this data can be used during the design process
of navigational experiments. In Section 4.1 we compare the four different cities, while in
Section 4.2 we focus on local differences within a single city.

4.1 Comparative Study
We used our framework to extract intersection data for Detroit (USA), Melbourne (Australia),
Vienna (Austria), and Zürich (Switzerland). While the framework allows for extracting
intersection data concerning different types of streets (cf. Section 3.1), for this case study we
focus on paths and roads (i.e., set of all walkable streets).

Table 2 reports the distribution (as percentages) of intersections as the number of branches
n varies. From this data we can derive several interesting insights. First and foremost it has
to be noted that for all the cities in exam almost the entirety of intersections are 3-ways
and 4-ways. This becomes even more evident by looking at the graphical representation
of the data reported in Figure 3. While this fact may seem trivial, it is still surprising the
cumulative percentage that these two intersection categories reach together – ranging from
98.9% for Vienna to 99.7% for Melbourne. This pattern seems to recur everywhere in the
world. Indeed, we found it in many other cities (Athens, Rome, Kathmandu, Washington
DC, Paris, and London, among others) that we analyzed with our framework in a preliminary
analysis for this work. This pattern consistently (only with minor differences) repeats across
different cities, independently of their very heterogeneous morphology, history, and age.

The second insight that we can derive from this data relates to the ratio between the
number of 3-way and 4-way intersections. In this respect, we notice that Melbourne, Vienna,
and Zürich present a very similar trend with the majority of intersections being 3-ways,
although with slightly different ratios between the number of 3- and 4-ways: approx. 5.5
for Melbourne, 3.2 for Vienna, and 3.9 for Zürich. Conversely, Detroit shows the opposite
trend, with the number of 4-ways slightly bigger than that of 3-ways. This may indicate, for
example, a more blocked structure of the city.

In the following we analyze the further discriminant introduced in this work to classify
intersections: the similarity to regular intersections (see Definition 1). As discussed in
Sections 2 and 3.2, we measure this by the angular distance ∆(In, Rn) between a generic
n-way intersection In and the corresponding regular intersection Rn. For the case of 3-ways,
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City Min P25 P50 P75 Max

Det ∼0% 0.58% 1.96% 15.98% 99.99%
Mel ∼0% 1.03% 4.31% 21.59% 99.65%
Vie ∼0% 1.51% 6.08% 22.16% 99.87%
Zur ∼0% 2.09% 7.54% 23.48% 99.76%

∆-range: [0°, 180°]

(a) 3-way to regular T, delta percentiles.

City Min P25 P50 P75 Max

Det ∼0% 0.23% 0.59% 2.11% 50.00%
Mel ∼0% 0.63% 2.37% 8.05% 83.69%
Vie ∼0% 0.91% 3.17% 9.69% 85.81%
Zur ∼0% 1.44% 4.45% 11.41% 64.12%

∆-range: [0°, 360°]

(b) 4-way to regular 4-way, delta percentiles.

Table 3 Distribution of 3-way (4a) and 4-way (4b) intersections for the four cities (normalized).

we compare against regular T intersection instead. Moreover, given that for the cities in
exam 3-ways and 4-ways combined cover almost the totality of the number of intersections,
we will only focus on those.

Tables 4a and 4b report descriptive statistics for 3-ways and 4-ways, respectively. The
numbers reported are percentages referring to the value range that the angular distances can
take on. This is called ∆-range and denotes the difference between the minimum (∆min) and
maximum (∆max) angular distances from a generic intersection to its regular counterpart.
Obviously, the minimum is always zero (∆min = 0°), which corresponds to a perfect match
with the regular intersection. Conversely, ∆max depends on the number of branches (n) of the
intersection at hand and corresponds to the angular distance of the (theoretical) worst-case
scenario where all the branches of an intersection collapse on top of each other:

∆max =
bn−1

2 c∑
i=1

(2iα) + ((n− 1) mod 2)π (2)

For an understanding of this formula imagine to align any branch of the regular intersection
to the first branch of the n-way at hand. Subsequently, take a pair of unmatched branches
from the generic intersection and rotate them (one clockwise and the other counterclockwise)
by α = 360

n to match the first pair of unmatched branches of the regular intersection. Now
repeat for the second pair of unmatched branches. In this case, we will have to rotate 2α in
order to find the first pair of unmatched branches of the regular intersection. Generalizing
this operation we obtain the formula in Equation 2. For 3-ways and 4-ways we have ∆-ranges
equal to [0°, 240°] and [0°, 360°], respectively. The ∆-range for 3-ways when compared against
the regular T intersection is equal to [0°, 180°].

Figures 4a and 4b plot in greater details the distribution of 3-ways and 4-ways as the
angular distance varies over the ∆-ranges for the regular T intersection and the regular
4-way, respectively. The figures show that the majority of the intersections are very similar
to their regular counterparts (which aligns nicely with Klippel’s set of wayfinding choremes
[22, 21]), with Detroit and Zürich representing extreme cases. The intersections of Detroit
are the most regular, with approximately 70% of its 3-ways and 90% of its 4-ways showing
an angular distance below 10% to the regular T intersection (i.e., 18°) and the regular 4-way
(i.e., 36°), respectively. Conversely, Zürich is the least regular, with approximately 55% of
its 3-ways and 70% of its 4-ways showing an angular distance below 10% to the regular T
intersection (i.e., 18°) and the regular 4-way (i.e., 36°), respectively. Melbourne and Vienna
are located in between these extremes, with Melbourne being slightly more regular than
Vienna with respect to both 3-ways and 4-ways.

These findings can be used, for example, during the design of navigational experiments
to select paths that adhere to the structure of the city where the experiments are to be
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(a) 3-way to regular T intersection.
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(b) 4-way to regular 4-way intersection.

Figure 4 Dsistribution of the angular distance (∆) for 3-ways (a) and 4-ways (b) with respect
to the regular T intersection and the regular 4-way intersection, respectively. The angular distance
(on the x-axis) is reported as a percentage of the different ∆-ranges for 3-ways (i.e., 0° − 180°) and
4-ways (i.e., 0° − 360°). The percentage on the y-axis refers to the number of intersections in each
bin with respect to the total number of intersections of that type (i.e., 3-way and 4-way). The
smaller the value of ∆, the higher the similarity to the corresponding regular intersection.

performed. In this way, we can avoid to select some atypical path that may lead to biased
results. Assume that for our hypothetical navigational experiment we need a path that
comprises 10 intersections. If we were to conduct the experiment with a path matching the
characteristics of Detroit, we should select a path in the real world or in a virtual environment
that encompasses, e.g., five 3-way and five 4-way intersections. Of the selected 3-ways (resp.
4-ways), three (resp. five) should present a maximum angular distance of 18° (resp. 36°)
from the regular T intersection (resp. the regular 4-way). Conversely, if we were to conduct
the same experiment with a path matching the characteristics of Zürich, our path should
encompass eight 3-way and two 4-way intersections. Of the selected 3-ways (resp. 4-ways),
four (resp. six) should present a maximum angular distance of 18° (resp. 36°) from the
regular T intersection (resp. the regular 4-way).

Moreover, the availability of intersection data for the entire world easily supports compar-
ative analysis that so far was difficult to control. Imagine to run the same spatial experiment
in different cities or areas of the globe. The availability of this data may allow for comparing
the different paths and, consequently, for relating and gaining insights on the possibly different
experimental results obtained in different locations.

4.2 Local Differences

In this section we discuss local differences within the city of Vienna. We used our framework
to run analysis on all 23 districts (DIST) and focus on the two with the highest variation,
district 8 and 10.

Table 5 reports the distribution (as percentage) of the intersections as the number of
branches n varies. This allows for easily comparing the statistics of the selected districts
against the statistics extracted for whole Vienna. Both the selected districts adhere to
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Figure 5 Distribution of the intersections
as the number of branches n varies.

Vienna DIST 8 DIST 10
3-way 75.16% 53.97% 76.46%
4-way 23.74% 44.63% 22.44%
5-way 0.93% 1.4% 1%
6-way 0.13% - 0.07%
7-way 0.02% - 0.03%
8-way 0.01% - -
Total 75644 428 7121

Table 5 Distribution of intersections over
number of ways for whole Vienna and the 2
districts in exam.

the overall distribution pattern that we discussed in Section 4.1, with almost the entirety
of intersections distributed between 3-ways and 4-ways. The graphical representation of
the data (see Figure 5) allows for glimpsing different local patterns for the two districts.
Specifically, district 10 exhibits a distribution almost identical to whole Vienna. In contrast,
district 8 exposes different distributions, with approximately 20% less 3-ways (resp. 20%
more 4-ways) than whole Vienna.

The distribution of 3-way and 4-way intersections can be seen in Figures 6a and 6b as
their normalized angular distance varies in the corresponding ∆-ranges – i.e., [0°, 180°] and
[0°, 360°], respectively. As for 3-ways, district 8 is the most dissimilar with respect to Vienna,
while district 10 exhibits only a small deviation from the distribution of the whole city. The
same pattern emerges also for 4-ways.

Assume that we want to replicate in Vienna the navigational experiment discussed at
the end of Section 4.1 for which we need to select a path encompassing 10 intersections. If
we were to conduct the experiment in district 10, according to the intersection distribution
reported in Figure 5, approximately 76% (resp. 22%) of these intersections should be 3-ways
(resp. 4-ways). Say, for example, that we choose a path consisting of eight 3-ways and two
4-ways. According to the distribution of ∆s in Figures 6a and 6b, of the selected 3-ways
(resp. 4-ways), five (resp. 2) should present a maximum angular distance of 18° (resp. 36°)
from the regular T intersection (resp. the regular 4-way).

If the experiment was to be conducted in district 8 we could either decide to stick to
the statistics of whole Vienna or to the statistics of the district. In the first case we would
end up with a selection similar to that of district 10. In the second case we would have to
choose differently. If we opt for the first alternative the findings that relate to the structure
of intersections could be considered as a step towards generalization to whole Vienna but
might apply more loosely to district 8. More generally, the statistical data provided by
our framework can be used to find out areas all over the world that expose an intersection
structure similar to that of a given area where, e.g., we performed an experiment. This
information can be used to replicate the experiment in any of these areas and identify
which of the insights we derive from the experiment results are invariant with respect to the
intersection structure of the path.
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(a) 3-way to regular T intersection.
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(b) 4-way to regular 4-way intersection.

Figure 6 Bar plot visualization of the distribution of the angular distance (∆) for 3-ways (a) and
4-ways (b) with respect to the regular T intersection and the regular 4-way intersection, respectively.
See Figure 4 for reading instructions.

5 Discussion and Conclusion

The framework presented in this work can be considered as an important asset during the
design of spatial experiments and to perform spatial analysis. As shown through the case
study in Section 4, the framework can be easily used to partially validate a selected route with
respect to generalization issues. Since local differences can be found in an urban environment
that do not adhere to the overall structure of a city, a country, or even a continent, the choice
of a route has to be considered very carefully. Furthermore, by identifying similarities of
the selected route at different scales (i.e., from district up to continent scale), one can go a
step further and carefully interpret the findings of the experiment (at least those related to
features of the intersection distributions) and draw conclusions concerning the reproducibility
and comparison with experiments performed in different areas. Of course looking only at the
intersections of a route is not sufficient, but necessary. This work can be considered as a
further step towards interpreting the results of an experiment concerning generalizability
aspects.

Next to the scenario used throughout this paper to exemplify how the results of this
work can be utilized, this type of quantitative data can also be useful for a multitude of
other purposes. For instance, machine learning approaches could profit from this framework,
generating relevant features that can help to describe the spatial phenomena of interest.
Another example would include work in the area of transportation, trying to model the access
and demand or relevant work in the area of urban planing. Furthermore this framework
could also easily be used as part of city modeling softwares, e.g., Esri CityEngine6, helping
to automatically generate look-alike urban environments.

In this paper we presented the raw intersection data that we generated from OSM data
through the procedure described in Section 3.2 and show an example of how this data can
be used for the design and comparison of navigational experiments. However, according
to the specific experiment at hand it might be necessary to clean the raw data in order to
accommodate geometrical and perceptual aspects. We identified two cases where the raw
data may need to be cleaned before usage. Both cases concern scenarios where two or more

6 See http://www.esri.com/software/cityengine.

http://www.esri.com/software/cityengine
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intersections are located very close to each other. If the intersections under consideration
are of the same type, this may denote a mapping issue: due to accuracy problems a single
intersection in the real world is actually reported as several in OSM. Alternatively, the
intersections might actually be correctly reported in OSM, but we may have a perception
issue: although we physically have several intersections, they are so close to each other that
a person could perceive them as a single intersection.

The other scenario concerns the case where intersections of different types are very close
to each other. Specifically, we identified a somewhat problematic pattern where a road
intersection is surrounded by a set of path intersections representing sidewalks and zebra
stripes. In such situations, we actually have a single intersection in the real world that is
identified as several by our framework. This issue is due to the fact that in OSM, sidewalks
can either be mapped as separate ways or denoted with an apposite tag on the corresponding
road. This means that we cannot know in advance how many times this scenario appears in
our data. For this reason we performed a simple buffer and cluster analysis on Vienna to find
out the amount of groups of intersections in our data that should actually be considered as a
single intersection. We used buffer of different sizes (ranging from 1m to 10m) to identify
clusters corresponding to both scenarios: intersections of same type and one road surrounded
by path intersections. For the first scenario we found that the number of clusters ranges
from 0.04% to 4.8% (resp. from 0.2% to 12.4%) of the road (reps. path) intersections, as we
increase the buffer radius from 1m to 10m. For the road-to-path scenario, the number of
clusters ranges 0 to 5.7% of the road and path intersections.

Finally, it has to be noted that the implementation of our framework does not compute
the data on the fly from OSM data. Rather, a snapshot of the OSM database is taken and
intersection data is generated from there. This means that the data provided on the website
might not be completely actual, although we do not expect huge discrepancies.

6 Outlook

Since in our work we focused on regular intersections, we omitted analyses of roundabouts.
In the underlying OSM data, roundabouts are modeled as multiple 3-way intersections.
Although this might look correct at a first glance, one can argue that roundabouts form a
category of its own, or even an n-way intersection, with n equals the number of ingoing and
outgoing branches. As this is an open question that needs further investigation and probably
a user study to understand how humans perceive roundabouts, we will focus on this problem
in the future. Since this framework is not only indented to be used for experimental design, a
possible solution could be to transfer the choice to the users of this framework, by providing
multiple options on how to handle roundabouts during runtime.

Also, in this work we did not perform any scale-based aggregation of the street geometries
(e.g., aggregating two lanes of a street into a single line). Therefore, the results presented in
this paper are at the finest level of details allowed by data source. Street aggregation will
also yield a reduction in the number of detected intersections as well as a simplification of
the resulting intersection network. Future work along this direction may potentially lead to
a hierarchical organization of the data that, in turn, may allow for further types of uses and
analyses of the intersection data.

In future work we will also focus deeper on network patterns. For instance, what is the
most common sequence of intersections for a given length (number of intersections)? What is
the typical distance between intersections or intersection types (segment length)? Being able
to extract this type of information will further improve the goals set in this paper, allowing
to draw even better conclusions and automatically create even more realistic look-alike cities.
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Abstract
“Near things are more similar than more distant things” states Tobler’s first law of geography.
This seems obvious and is part to much cognitive research into the perception of the environment.
The statement’s validity for assessments of geographical nearness purely from map symbols has
yet to be ascertained. This paper considers this issue through a theoretical framework grounded
in Gestalt concepts, behavioral ecological psychology and information psychology. It sets out to
consider how influential experience or training may be on the association of graphical proximity
with geographical nearness. A pilot study presents some initial findings. The findings regarding
the influence of experience or training are ambiguous, but point to the rapid acquisition of
affordances in the survey instruments as another factor for future research.
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1 How is geographical nearness related to graphical proximity

Tobler’s first law of geography states it plainly: near things are more similar than more
distant things [18, 19, 20]. It has become an anchor of a general understanding of space/time
phenomena and a primary reference in teaching and research. It expresses a truth about our
perceptions of the environment around us [15] that is a cardinal rule for evaluating geographic
information. But a question remains to be asked: How does it apply to people’s perception of
nearness using only map symbols? The answer is surprising: We do not know. There has been
just no internationally published research to-date that assesses how the graphical proximity
among map elements corresponds to geographical nearness in Tobler’s sense. This paper draws
on socio-cognitive approaches from psychology since the early 20th century that considers how
people rely on both cognitive and social faculties and knowledge in spatial comprehension.
It offers a theoretical foundation for the exploratory study of how people understand the
graphical proximity of spatial representations – geovisualizations, usually maps. This question
is relevant for GIScience and the many daily and emergency applications of geographical
information. Geovisualizations make up the dominant form for the representation of spatial
information of geography [11]. Improving map-based geovisualization tools and augmented
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4:2 Graphical Proximity and Geographical Nearness

Figure 1 Already recognized over 100 years ago in the first Gestalt studies our minds identify
without conscious effort graphic elements that are closer. This A/B situation of object pairs near/
further is used in the pilot study reported later in this paper

reality used for mobility and navigation presents multiple possibilities for improvements.
Errors and distortions are also commonplace. To show things and events [10] at all geographic
scales, from an aerial photo of an urban block to an animation showing wind speeds and
directions around the earth, we rely on graphical representations. Maps, with their evolving
meanings that reflect changes in technologies and media [3, 13, 4], remain GIScience’s most
common form of representation. The graphical proximity of things or events seems to
preattentively (perception before conscious knowledge) indicate a geographical nearness. But
does that perception and the following understanding come from intuitive understanding
alone? How do training and experience impact the perception of graphical proximity and its
translation into geographical nearness? A common understanding is that we see proximity
immediately and intuitively – which means even before we think about what we see our mind
assess the image and is aware of their proximity [26].

It is powerful and useful capacity of the human mind’s visual faculties. However, to
place the abstract question’s relevance more clearly for GIScience, how does the preattentive
perception of proximity among elements in a geovisualization reliably correspond to geographic
nearness? We learn perhaps much of this, but how much of this is nurture and how much is
nature? Indeed, the visual perception of the mind can be readily fooled. Illusions (such as
shown in Figure 2) highlight that our perception is continuously subject to biases. Cognitive
and social psychology have since the Gestalt psychology studies almost 100 years ago begun to
shed considerable insight into the perception of graphical phenomena. From these studies, we
know that proximity is a vital aspect of the mind’s faculty in preattentively comprehending
the world around us. This finding is evident from behavioral studies of visual perception.
However, the many studies have focused very little attention looking into how graphical
proximity corresponds to an understanding of geographical nearness.

Based on research into socio-cognitive processes of visual perception, this paper sets out
to offer a tentative framework and some initial empirical evidence for the relationship between
graphical proximity and geographical nearness to suggest the importance of distinguishing
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Figure 2 Example of preattentive vision capabilities prone to biases. We see that the upper
line is longer, but both lines are actually the same length. The Müller-Lyss illusion shown here
belongs to the many visual illusions studied over more than 100 years. This well-known illusion was
first published 1889 by Franz Müller-Lyer in Optische Urteilstäuschungen. Archiv für Physiologie
Supplemental pp. 263–270.

graphical perceptions of nearness from visual perceptions of nearness in GIScience research.
The focus of this paper is on the conceptual review with some preliminary study data
that offers a basis for further research and a test of an empirical Bayesian approach to
analyzing experimental data. This paper is an initial foray into a complex area that multiple
fields of science (psychology and neuroscience perhaps most commonly) have considered
over more than 100 years. The concepts for this paper are rooted distinctly in research
associated with behavioral psychology but follow concepts from informational psychology [5].
Presentation of these concepts make up a significant share of this paper and determine its
structure. The next section of the paper describes the theoretical background in work on
socio-cognitive studies of spatial perception and reviews research that refines the Gestalt
concept of proximity. The following section provides a detailed presentation of the methods
used in this study. The results of a small test are presented, analyzed and reviewed in
the next section. The conclusion summarizes the findings of this study and points to a
future avenue of research to better understand how people perceive graphical proximity in
geovisualizations and comprehend it as geographical nearness.

2 Some Background: Nearness, Proximity, Biases and Ecological
Psychology

Considering how people understand geographical nearness through representations that
render geographical things and events as graphical elements and compositions build on
psychologicalbehavioral research conducted over more than the past 100 years. Summarizing
the breadth and depth of that research lies plainly beyond the scope of this paper. It provides
a more limited literature review of relevant work in GIScience and cognitive psychology with
some pointers to older seminal research. Central concepts of Gestalt, behavioral, ecological
and informational psychology complement this work by taking up the concepts of affordance,
visual clustering/patterns in visual comprehension, and pre-attentive patterns in that broader
sense. Informational psychology takes this research and situates it in a contemporary
information processing framework. The emphasis of this article on the connection of a
theoretical framework to an empirical study also facilitates development in further studies.
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Figure 3 Figure 5 from Wertheimer’s 1923 paper shows one of the more simpler configurations
that illustrate the Gestalt concept of proximity. Thirty additional figures increase complexity and
broaden the focus to issues of patterns and isomorphism in his search for laws for the whole (Figure
available at http://psychclassics.yorku.ca/Wertheimer/Forms/forms.htm.

2.1 Tobler’s law review

The concept behind Tobler’s law is to develop a maximum of scientific utility from the
simplest as possible statement [20]. Much has been considered about the philosophical issues
implicit in this approach. For the intents of paper, drawing on research published by the
first Gestalt theorists, the emphasis on simplicity is seen to have considerable value in its
lucidity. As Tobler’s law of geographical nearness appears to find valence for many users of
geovisualizations, the parallel is relevant in seeking to evaluate the question how perceptions
of graphic poximity correspond to the understanding of geographical nearness. This research
focuses on understanding how people relate graphic proximity to geographical nearness in
the use of geovisualizations.

2.2 Gestalt principle of proximity review

To ground an empirical understanding of graphical proximity and geographical nearness,
graphical proximity, a central Gestalt concept, proximity, then in the positivist spirit
referred to as a law, but now seen more as a rule, requires some review. Widely known
work by Wertheimer, Koffka, and Köhler on Gestalt proximity belongs to the foundational
work on Gestalt theories. The concepts have since been studied and further elaborated in
neuropsychology [27]. Wertheimer’s seminal work on Gestalt concepts, begun in 1912 and
primarily published in the 1920s sought to define how visual perception is organized. His
1923 paper established several rules, including the gestalt law of proximity. In its standard
formulation, perceptual proximity led to the mental association that closer elements are more
similar than distant elements. I call it in this paper graphic proximity, as this and other Gestalt
factors interact. It also stands in conjunction with Gestalt rules regarding grouping and
similarity. Wertheimer is focussed in his paper on scaling empirically established observations
to more general laws about patterns and assertions about the whole’s relationship to the
part. These later points were already considered more tenuous, and many derivatives of this
work ensued soon after their publication. As they all bear the name Gestalt theory, without
detailed archaeology of their development and distinctions to clarify their development, an
overly complex and also contradictory body evolved.

Over time, neuroscientific and psychological behavioral research evolved from the original
Gestalt rules. These developments are relevant to the theoretical framework used in this
research. Although at first the search for general laws of form dominated Gestalt research,
after its original widespread acceptance of its insights, critiques from positivists, dialecticians,
and materialists regarding its mentalist and idealist tendencies led to Köhler’s explanation of
gestalt research as the isomorphism based on electromagnetic and thermodynamic theories [27].
The conception of an isomorphism between brain states and perception remained dominant
later in the 20th century, but more recently has since become far more sophisticated, although
it generally follows behavioralist traditions. Although Gestalt research was not of much
significance following World War II, due to the failure to establish clear and workable rules
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of visual perception, it remained significant in many professional fields. It became in various
interpretations a tractable framework, for example, to introduce visual design concepts or
holistic dimensions of cartography without embarking into the theosophic believes that came
to dominate modern art, e.g., as seen in the writings of Paul Klee and Wassily Kandinsky [2].

In behavioral psychology, Gestalt theory remains a conceptual basis for studies of visual
clustering and patterns, and in neuroscience, studies of preattentive patterns have influenced
recent developments of more advanced theories of visual perception [25]. Ann Treisman
has conducted many studies that examine how attention impacts grouping and binding
[22, 21]. Other neuroscience studies regarding these matters, for example [17], provide
empirical evidence that attention is not decisive in preattentive grouping. Colin Ware in
his information visualization research has built nonetheless on the preattentive concepts to
advance visual designs for tunable action maps that take human’s innate grouping of visual
elements in the environment to assist augmented reality navigation [26].

While the origins of these approaches to visualization go back to insights from the original
Gestalt theorists, it is worth pointing out that Gestalt research on behavioral matters was
also influential for later work of Daniel Kahneman’s and Amos Twersky’s that led to the
development of prospect theory [12, 24]. Its relevance can be seen in the influence of Gestalt
researchers work identifying visual illusions that reflect biases in vision (see Figure 1) and
their research into biases in cognitive decision making. Gestalt theory also was a starting
point for other influential studies. Research into cognitive mechanisms of visual perception
remains an active scientific field.

2.3 Gibson and ecological psychology
Among psychologists focused on visual perception following on Gestalt research, J. J. Gibson’s
lifetime work in this area has had perhaps the largest impact. While impossible in the
scope of this paper to consider its breadth and depth, it is relevant here to point out
how Gibson’s research starts with the behavioral insights of Gestalt research with a more
thorough experimental-based development of theories, here labeled ecological psychology,
which advanced the understanding of visual perception in a significant degree. J. J. Gibson’s
affordance concept has been widely used in GIScience and other fields [9, 8]. The nuanced
way it is conceived of in his ecological psychology is central to understanding how people
associate intuitively perceived graphical proximity with geographical nearness. In agreement
with Kahneman and Tversky’s behavioral psychology framework, its broadening of cognitive
considerations situates vision in a system which includes ambient, accessible information in
an ecological sense: “We are told that vision depends on the eye, which is connected to the
brain. I shall suggest that natural vision depends on the eyes in the head on a body supported
by the ground, the brain being only the central organ of a complete visual system.” (Gibson,
1984, p. xii]. While at the neuroscientific level of analysis cognitive processes of vision are
encapsulated by brain activity, this approach broadens the scope to consider both nurture and
nature factors. Vision, following Gibson, is an information-based process with vision central
to activities that implicitly and explicitly involve assessments of the perceivable opportunities
for action in the environment. Affordances are these opportunities. We have come to tend to
think of them concerning product design and unobtrusive, even invisible, the inclusion of
abilities for the pragmatic implementation [16]. Following Gibson’s ecological approach, they
are conceptual instantiations of specifying information that a viewer draws on to perceive and
comprehend an image. In an example related to geovisualization, a hypothetical map showing
the air freight volumes at the 50 largest airports of the world, would likely show the freight
volumes (after standardization of the data using the graphical variable size [1]) with outlines

GISc ience 2018



4:6 Graphical Proximity and Geographical Nearness

of national political borders including their names to facilitate speedy identification. This
symbolization provides an affordance for readers of the map. The projection chosen for this
map would be relevant as distortions common in the widely misused Web Mercator projection
could impact the geographic associations that readers make about distances and areas. In this
sense, the perception of geographic nearness through graphic proximity involves how people
preattentively see and how we passively and actively come to understand the affordances in
a geovisualization. Improved processes of intuitive visual perception coupled with a reduced
effort of making sense [23] make for useful geovisual affordances. How graphical proximity,
a fundamental Gestalt rule, affords the visual understanding of geographical nearness is
a good starting point for distinguishing nurture and nature factors in visual perception.
Developing an ecological understanding of visual biases and mental biases through the study
of affordances used in geovisualization can aid in understanding the influence of preattentive
and learned factors in the visual perception of geographic nearness in geovisualizations.
Graphics-based visualization, affordances on which geographic understanding of nearness is
based, should better be called geo-graphics in this sense.

2.4 Towards a theory of geo-graphical nearness
Building on these conceptual considerations regarding visual perception, the tentative the-
oretical framework advanced in this article is related to the research question about the
relationship between perceptions of graphical proximity and geographic nearness. Its formu-
lation in this first iteration, following Tobler’s reflections, begins with an acknowledgment
that theories are tools [7] that reflect the scientific, social and cultural contexts that they are
created in. Acquired geographical understanding that conflicts with mapped representations
is a different issue that rests on similar roots and concepts as this study focused on proximity/
nearness. In any case, considering how a geographical understanding of things or processes
achieved through understanding geovisualizations is different, from the understanding arrived
at through direct experience, remains a relevant and valuable topic. Biases in geo-graphical
understanding are complicated, lurking in all mental aspects of perception and comprehension.
This work, given its narrow empirical basis, might be seen as a first and tentative attempt to
identify biases and from their resolution advance GIScience in this areas. Since the data and
theoretical concepts reported here are underdefined, the methodological implementation in
the explorative study presented in section four of this paper relies on Bayesian statistics to
consider and evaluate possible relationships between graphical patterns and other factors.
The conceptual underpinnings build on information-based approach in psychology with a
similar methodological process approach that Bayesian statistics align with. Proximity, in this
sense, can be understood in the context of visual clustering, esp. Into patterns (Ware 2010,
p. 58). De Wit et al. (2015), working directly from an information psychological refinement
of Gibson’s work established in their empirical work with visual illusions that selective
attention influenced the use of specifying (task-specific) and non-specifying information in
the perception of visual illusions. In summary, concepts of Gestalt rules, empirical behavioral,
ecological and informational psychology ground concepts of affordance, visual clustering/
patterns in visual comprehension, and pre-attentive patterns to develop a socio-cognitive
understanding of visual perception and visual comprehension. Informational psychology
concepts move this understanding and situate the framework for understanding how people
perceive graphical proximity as geographical nearness to a cognitive information processing
framework. Reformulating the research question based on this theoretical framework, the
conceptual distinctions between perception and comprehension are relevant for examining
how training or experience leads to recognizable specifying information that viewers draw on
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in the perception of graphical proximity as geographical nearness. A simple assessment of
the validity of this connection in the pilot study seeks to establish whether a relationship
between training or experience to the perception of geographic nearness is evident.

3 Experimental Design and Methods

The explorative research for this paper relies on Bayesian methods. Bayesian methods have
found in GIScience interest and uptake for research in semantics, land use modeling, and
spatial statistics. This paper utilizes Bayesian methods with their strengths for explorative
research to operationalize the tentative theoretical framework presented in the previous
section, an application more often seen in psychology and other social sciences.

3.1 Bayesian Methodology Background
For this explorative research Bayesian methods are well suited in comparison to statistical
techniques relying on frequentist statistics. Bayesian methods are ideally suited to identify
and evaluate relationships in data as it produces results that reflect additional data. At the
risk of oversimplification, Bayes Theorem focuses on elaborating an understanding through the
evolving statistical testing of data that refines understanding of the phenomena. In statistical
terms, Bayesian methods produce posterior distributions that researchers have understood
speak to issues with polling, confidence intervals and p-values in classical frequentist statistics
[6]. The prior belief about the data P (A) is calculated with the normalization constant P (B)
and the conditional probability P (B|A), as in Bayes’ Rule:

P (A|B) = P (B|A) ∗ P (A)
P (B) (1)

In other words, Bayes’ Rule is the posterior probability equal the likelihood times the prior
divided by the normalization constant. The application is wide-reaching in helping develop
statistically grounded insights. For instance, this allows new observations, implemented as
measures, to be introduced and modify the prior known distribution assuming a meaningful
relationship between prior data and new data.

3.2 Explorative Study and Bayesian Methods Used
The use of Bayesian methods will be helpful in assessing the instruments and for further
refinement of this data. The data collected for the study comes from an online survey
developed with the software suite Lime Survey (limesurvey.org). It was analyzed using
classical and Bayesian methods available in the open software package JASP from the
University of Amsterdam (JASP-stats.org). Data were collected in October 2017 from
students in the Master’s level Critical Cartography seminar who had received an invitation
with the URL. 10 students, 5 male, 3 female and 2 unknown, completed the survey. The ages
of the participants ranged from 24 to 51, the mean age of the group was 30.4. The limits
of the sample size are significant. Nonetheless, given the focus of this article, the small n

remains helpful for a pilot study. The survey consists of five background questions and eight
A/B comparisons using pairs of images. Each A/B test consisted of two identical images
except for the location of two circles or diamonds in each. These symbols were placed in
different distance to each other. Participants were requested to determine in which image
the two circles were closer together without using additional aids. They were instructed at
the beginning of the survey that the time for them to indicate a response was relevant to the
study.
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4 Explorative Study Analysis and Critique

The images in the online survey instrument for an invited group of participants presented
pairs of images that varied in graphical complexity and geographical context. Some included
random graphic elements, others used outlines of countries, and some included both random
graphic elements and country outlines (see Figure 8). Following the central research question,
the survey focused on assessing differences in the times it took participants to identify the
closest graphic proximity between two elements from each pair of images while increasing
the number of other elements and adding a geographical dimension to the graphic. The
key instrument operationalized in the survey is if graphical proximity affords the visual
understanding of geographical nearness. The results can be analyzed with data on experience
and cartographic/GIS education. Additional questions about training and experience can
shed insights into these factors influence on the experimentally established behavior and help
understand ecological visual biases and mental biases.

Figure 4 Image pair used for the first comparison by study participants.

The presentation of the study commenced with an overview and presentation of some
summary statistics. Most of the ten survey participants had cartography/GIS courses
or experience. Two indicated have more than 3 years experience, and six had 2–3 years
experience. The other two respondents had no or 1 year of experience. As to be expected,
most of the students (5) had 2–3 courses in cartography/GIS; two had one course, and three
had had 3 or more courses. Correspondingly, the majority of participants recognized a set
of widely-used terms in cartography/GIS. Interesting is the ambiguity in the relationship
between experience and courses to the knowledge of these terms despite general indicated
knowledge of the terms. Of 14 terms, only the terms reliability and visual variables were
known by two of the respondents. Typography and raster were the only terms known by
7 of the participants. The contingency table analysis of these responses regarding years of
experience also showed no strong positive relationship. Curiously, the contingency table
analysis of the responses regarding the number of cartography/GIS courses taken pointed to
an increased lack of knowledge of these four terms among participants who had taken 1–2
courses in contrast to the students who had taken 1 or 3 or more courses.

The times taken by participants to identify the image out of two that showed the more
considerable distance between two circular or two diamond shaped elements is the key
attribute of the studies to consider. While the variance in the response time is noticeable,
generally, even with increasing complexity of the images to compare, the response time



F. Harvey 4:9

Figure 5 Graphic summarizing the Bayesian sequential analysis for figure pair one from JASP.
The result offers extreme support for the alternative hypothesis, increasing in reliability as each
response is calculated.

declines. The minimum response time for all eight image pairs drops from 9.4 to 5.6 seconds
and the maximum decreases from 40.68 to 16.81. The means and standard deviation values
also decline. These results suggest a learning effect having a substantial impact on the results.
This issue is significant and considered later in greater detail.

4.1 Analysis of the Pilot Study Data
A Bayesian binomial analysis was applied to the responses to establish whether participants
relied on guessing to complete the survey. The majority of responses were correct, but
some figure pair comparisons of up to two participants failed to identify the figure with the
closest pair of objects. First, though, the first pair of figures, which all participants identified
correctly (see Figure 4) offers a benchmark of Bayesian binomial statistic for assessing this
statistic for the figure pairs that were not consistently correctly interpreted. The very
high Bayes Factor+−−0 of 186.091 is substantial support for the alternative hypothesis that
participants were not guessing in their interpretations.

In image pair three, one person incorrectly misinterpreted the closer pair of elements or
incorrectly chose the image, which placed the two elements further apart. The Bayesian
sequential analysis of the Bayesian binomial statistic shows this in the chart and in the
Bayes Factor+–0 of 18.509. This lower Bayes Factor suggests this figure pair could be more
challenging to interpret.

The final Bayesian binomial analysis considers the responses to image pair 5. Analogous to
the analysis of figure pair 3, the sequential analysis chart shows how incorrect interpretations
of proximity have a negative impact and strength of the Bayes Factor.
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Figure 6 Image pair used for the third comparison, which include complex arbitrarily placed
graphic elements.

Figure 7 Bayesian sequential analysis chart for figure pair three. The result offers strong support
for the alternative hypothesis, increasing in reliability until the image with more distant elements
was selected by participant.
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Figure 8 Image pair used for the fifth comparison, which include complex arbitrarily placed
graphic elements.

Figure 9 Bayesian sequential analysis for figure pair five. The result offers moderate support for
the alternative hypothesis, the Bayes Factor increasing and decreasing in reliability as each response
is calculated.
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Table 1 Response time (in seconds) statistics for all participants from JASP.

Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8
Mean 22.90 44.30 30.52 26.80 23.38 13.70 11.38 10.78
Standard
Deviation 11.28 56.08 26.20 21.37 9.15 6.08 5.97 3.76

Minimum 9.49 9.19 10.68 8.65 14.44 6.50 6.43 5.60
Maximum 40.68 183.3 99.14 73.62 40.61 24.13 23.88 16.81

4.2 Impacts of training and experience

The Bayesian binomial analysis helps assess the reliability of the interpretations and the
presentation in the sequential analysis charts documents the strength of Bayesian analysis in
exploring data. With this small data set the effects are not especially pronounced, but in
future work with much larger data sets Bayesian analysis will be of great assistance. The
significantly reduced response times among all participants suggest that immediate learning
of the affordances available in the study instruments is of considerable impact.

4.3 Bayesian correlation

As a final set of Bayesian analysis, the Bayesian binomial analysis presented above suggests
that some image pairs were more complicated to interpret. Did they require more time to
analyze? Did training or experience impact the response times? Did immediate learning
of the affordances influence the response times despite increasing graphic and geographic
complexity in the image pairs? The results of the statistical analysis are inconclusive. The
standard deviations in table 1 above suggest that lack of clear associations between participant
response times and image pair complexity. The Bayes Factors from the Bayes Paired T-Tests
comparing response times from figure pairs with an imperfect identification of the image
with the closest pair of elements varied in direction and strength.

As pointed out at several points in this paper, but worth repeating and emphasizing
here, the sample size of 10 is a great limitation to considering the relevance of the study’s
results. The insights from the explorative analysis, however, clearly point to the need for
improvements in the methods and instruments beyond increases to the sample size, which
will be discussed in the next and final section of the paper.
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Figure 10 Sequential analysis of Bayes Factors chart comparing response times from image pair
three and image pair five.

Figure 11 Sequential analysis of Bayes Factors chart comparing response times from image pair
five and image pair seven.
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Figure 12 Figure pairs 1 - 4 used in the online survey (not to scale).
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Figure 13 Figure pairs 5 - 8 used in the online survey (not to scale).
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5 Conclusions and future research

The results of this explorative study suggest that an understanding of geographic nearness
from graphical proximity, and thus Tobler’s first law of geography, involves more than intuition
in work with geovisualizations. The theoretical framework used in this research seems robust
for this research which involves cognitive and social dimensions. The methods and instrument
need further development for continued research to better account for preattentive grouping
and acquisition of affordance while taking the study. The reduced response times identified
from the pilot study data can be explained by the acquisition and application of affordances
arising from learning how to make sense of the survey image pairs efficiently. Whether this
interpretation is true remains to be verified through future research.

It remains essential to gain a better understanding of the how people come to understand
graphical proximity and geographical nearness in geovisualizations. The starting point is
already there. The over 60 year old, but then prescient and still relevant, insight from Herbert
Bayer to refer to the special and often exceptional capabilities of graphics in geographic
communication by separating with a hyphen geo from graphic (geo-graphic) emphasizes how
graphic elements and their composition involve different visual perceptions than reading text
or even environmental perception. The theoretical framework resting on Gestalt concepts
and ecological psychology shown as the foundation for exploratory research presented in this
paper suggests geographical nearness is more than an intuitive deduction from graphical
proximity. Instead, the two modes of perception and comprehension intertwine in still to be
understood ways. The pilot study results suggest in agreement with Gibson that the human
mind learns very rapidly how to apply preattentive affordances to visual tasks. The evidence
collected for this study does not make clear to what degree training in spatial thinking may
be a significant factor in this learning and to what degree experience is a factor. Future
research should explore the degree to which developing and applying orthogonal and absolute
coordinate reference systems may influence the mind’s transformations of graphical proximity
to geographical nearness.

The development of these affordances may profit from considering research by Ann
Treisman and colleagues on patterns and pre-attentive perception or tunable mental images
[26, 21]. It seems possible that both training and experience lead to enhanced mental faculties
that tune the post-attentive process of visual perception using acquired patterns.

While open for continued study and refining the theoretical framework, these exploratory
results point that geo-graphic nearness understood from graphics is separate from the
geographical nearness concepts intrinsic to way-finding and environmental perception. A
conjecture about this difference to consider in future research seems straightforward: A geo-
graphic visualization provides fundamentally different affordances to the point of producing
biases and even distorting our environmental knowledge. In contrast, geographic concepts
seem probably based on stronger cognitive concepts. Learning seems essential to the capacity,
and hence social and cultural factors become relevant. A known place geographically close
to us, in, for example, the sense of measurable distance, maybe still be nearer yet in our
understanding of graphic proximity, e.g., topological maps of urban transportation including
Harry Beck’s famous map of the London Underground network. This difference is relevant
in many daily and emergency situations. The results from continued research into these
differences can lead to a better understanding of the socio-cognitive mechanisms how people
understand proximity/nearness. Future research should consider the relevance of these
mechanisms to help address accessibility issues for specific requirements and needs, e.g.,
people with disabilities or seniors. Another aspect for future research is consideration of
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temporal aspects in the use of graphic geovisualizations including a more realistic study
of the use of maps, e.g., the consideration of travel modes to gain more insight into map
reading activities pursued in relation to the reader’s goals and the functional support of a
map. Ware’s tunable action maps seem here to be a useful reference to consider also how
naive geographical concepts contradict common mapped presentations, e.g., the experience
that Reno is further west than Los Angeles.

The tentative findings are not conclusive and require improvements to the experimental
design that accounts for the tentative findings and methodological issues the preliminary
work raised. Improvements to the survey instruments used in this exploratory research need
to address several points. First, is a research design that allows the learning of the survey
instrument’s affordance to be measured. Second, the difference between types of image pairs
needs to be analyzed and accounted for in the statistical analysis. Third, the number of
participants needs to be significantly increased.

To summarize the study and its relevance to GIScience, people in the survey reported here
learned how graphical proximity corresponds to geo-graphical nearness, establishing specific
cognitive mechanisms in the context of improvements to the methodology regardless of the
defined task. While the graphic format and media are relevant, an acculturated, acquired
sense of distance in coordinate system representations, arising or enforced by graphical
presentations without geographic knowledge could lead to a misleading or even a false sense
of actual topographic distance between objects. Training and experience remain factors with
the fast learning of affordances to control for in future research. In developing this research,
the distinction graphical and geographical, which becomes in some cases problematic due
to information-based functional approaches to geospatial comprehension [14] offers a good
foundation for continuing this research and refining it empirically to understand contributing
factors and the specifics of visual biases that impact Tobler’s first law of geography.
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Abstract
While Points Of Interest (POIs), such as restaurants, hotels, and barber shops, are part of
urban areas irrespective of their specific locations, the names of these POIs often reveal valuable
information related to local culture, landmarks, influential families, figures, events, and so on.
Place names have long been studied by geographers, e.g., to understand their origins and relations
to family names. However, there is a lack of large-scale empirical studies that examine the
localness of place names and their changes with geographic distance. In addition to enhancing our
understanding of the coherence of geographic regions, such empirical studies are also significant
for geographic information retrieval where they can inform computational models and improve
the accuracy of place name disambiguation. In this work, we conduct an empirical study based on
112,071 POIs in seven US metropolitan areas extracted from an open Yelp dataset. We propose
to adopt term frequency and inverse document frequency in geographic contexts to identify local
terms used in POI names and to analyze their usages across different POI types. Our results
show an uneven usage of local terms across POI types, which is highly consistent among different
geographic regions. We also examine the decaying effect of POI name similarity with the increase
of distance among POIs. While our analysis focuses on urban POI names, the presented methods
can be generalized to other place types as well, such as mountain peaks and streets.

2012 ACM Subject Classification Information systems → Language models

Keywords and phrases Place names, points of interest, geographic information retrieval, se-
mantic similarity, geospatial semantics
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1 Introduction

People name the environment that surrounds them to communicate about it. Almost every
aspect of geographic space that can be described and depicted can be named. It has been
suggested that place names, or toponyms, play a key role in stabilizing the otherwise unwieldy
space into more manageable textual inscriptions [38, 25, 42]. From a perspective of space
and place [45], the creation of a place name signifies the important moment when people
explicitly integrate human experience with space.

Place names, made available via digital gazetteers, power GIS, geographic information
retrieval (GIR), and modern search engines and recommender systems more broadly [20, 13,
47]. After all, people communicate using place names not coordinates. Interestingly, and in
difference to human geography, most GIR research simply uses place names as identifiers
instead of examining how those names were formed and how similar they are to nearby
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names. This is understandable since we are often interested in questions such as What are
the best Italian restaurants within 10 minutes driving? instead of the specific names of these
restaurants or what they reveal about the history of a region, such as immigration trends.

Place names have long been studied in human geography with a traditional focus on
etymology and place taxonomies [52, 40]. For example, the place name Las Vegas means The
Meadows in Spanish and points to the former abundance of wild grasses and desert springs,
both of which were crucial information for travelers and led to the descriptive place name.
While such studies provide in-depth explanation of place names, they are often limited to
case-by-case examinations with qualitative descriptions. This could include studies focusing
on specific regions, names, places types, and so forth.

In contrast, this work is based on more than 110, 000 place names of different types
distributed across seven metropolitan areas within the US. Our focus is on uncovering term
usage patterns and their relations with geographic locations, e.g., as modeled by a decaying
influence or local names with increasing distance. There are several reasons for performing
such a large-scale, data-driven study. First, place names reveal many social and cultural
characteristics, and can help us understand various aspects of urban areas. Previous research
in human geography has considered place names, such as street names, as city-text embedded
in the cityscape [6, 7]. A systematic examination on these city-texts, can help expand
our knowledge of the studied regions. Second, large-scale empirical research examining
place names can aid in discovering common principles in place naming and relations to
environments. This can be distinguished from case-by-case place name studies in which the
discovered knowledge often cannot be generalized to other names or geographic areas. Third,
such studies can facilitate the development of computational models for places. We can
integrate the discovered common principles, socio-cultural characteristics, and local terms
into computational models, e.g., via an implemented knowledge base, to better support tasks
such as place name disambiguation [4, 27, 37, 17]. This last point is a key strength of this
work. Our results can act as a quantitative foundation for the localness of identifiers per
place, which will enable future research to push the envelop on place name disambiguation.
In fact, our previous Things and Strings place disambiguation method [22] has demonstrated
the usefulness and need for combining geographic and linguistic information.

The names of Points Of Interest (POIs), such as restaurants, hotels, grocery stores, and
auto repairs, are examined in this work. These POI names are from an open dataset released
by Yelp, a company that provides search services for local businesses. POIs play important
roles in supporting many aspects of our daily life [33, 36, 51]. One reason we select POI
names for this study is that these names reflect more of the diverse views of the general public,
since the business owners can decide on names themselves. This can be differentiated from
other place names, such as street names, which often result from political and administrative
decisions [7, 1, 41]. In addition, the names of POIs often contain local information, such
as city or state names, natural or man-made geographic features, vernacular names, local
families (e.g., a family-owned business), language patterns, local cultural differences, and
others. Figure 1 shows an example of searching for the word “Vol” in the city of Knoxville,
Tennessee, USA using Google Maps. It returns many places which use this term as part of
their names, as “Vol” is the local nickname of the popular football team “Volunteer”. The use
of American sports team names in toponyms was also noted in previous human geography
research [8]. In GIR and place name disambiguation, understanding the link between “Vol”
and the city of Knoxville can help locate related place names more accurately.

More specifically, we aim to answer the following questions in this work: 1) what are the
local terms that are used in POIs in different geographic areas? 2) how are these local terms
used in different types of POIs, such as restaurants, hotels, and barber shops? and 3) how



Y. Hu and K. Janowicz 5:3

Figure 1 An example of POIs in Knoxville, TN, USA that use “Vol” as part of their names.

do POI names change with geographic distance? The contributions of this paper are
as follows:

We propose adopting the technique of term frequency and inverse document frequency in
geographic contexts to identify local terms used in POIs in different metropolitan areas.
We find an uneven usage of local terms in the names of POIs across POI types, and such
an uneven usage is highly consistent across the seven studied metropolitan areas.
We test two types of models, count-based vector and word2vec, for understanding and
capturing the distance decay effect of the similarity of POI names.

The remainder of this paper is structured as follows. Section 2 reviews related work on
place names and toponym disambiguation. Section 3 describes the dataset used in this study
and an exploratory data analysis. Section 4 presents methods and experiments for identifying
local terms from POI names, examining their usages across POI types, and modeling the
distance decay effect of POI name similarity. Section 5 summarizes this work and discusses
future directions.

2 Related Work

Place names have attracted the interest of many researchers in geography. For decades,
geographers have been collecting and categorizing place names, studying their origins, and
understanding their meanings [50, 52, 35]. It has been argued that the act of assigning a name
to space plays a key role in producing the social construct of place [40]. As suggested by Carter
[10], place names transform space into knowledge that can be read. The social, cultural, and
political implications of place names have been widely studied [5, 6]. Examples include the
renaming of streets after the establishment of a new regime to memorize new stories [30, 41],
the use of street names to challenge racism [2, 3], and assigning more marketable names to
local businesses and hospitals [39, 24].

Digital gazetteers provide systematic organizations of place names (N), place types (T),
and spatial footprints (F) [16, 13]. As valuable knowledge bases, gazetteers provide important
functions for various applications by connecting the three core components. The key functions
of a gazetteer include lookup (N → F), type-lookup (N → T), and reverse-lookup (F(× T)
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→ N) [19]. The first case, for example, corresponds to a query for the spatial footprint of the
place name CMS Auto Care, the second to the place type, and the third to the place names
given the spatial footprint and a place type (e.g., Automotive). Research was conducted to
enrich gazetteers with (vague) place names and their fuzzy spatial footprints. Jones et al.
[21], for instance, used a search engine to harvest geographic entities (e.g., hotels) related to
vague place names (e.g., “Mid-Wales”), and utilized the locations of these harvested entities
to construct vague boundaries. Flickr photos present a natural link between textual tags and
locations, and have been used in many studies on identifying the boundaries of vague places
and regions [15, 26, 18, 28]. Twaroch and Jones [46] developed a Web-based platform, called
“People’s Place Names”, which invites local people to contribute vernacular place names.

In geographic information retrieval [20], place names are frequently discussed in the
context of place name disambiguation. Since different place names can refer to the same
place instance and the same place name can refer to different place instances, it is challenging
to determine which place instance was referred to by a name in text, e.g., the abstract of
a news article [4, 27]. Gazetteers have been used in many ways for supporting place name
disambiguation. Based on the related places in a gazetteer (e.g., higher-level administrative
units), researchers developed methods, such as co-occurrence models [37] and conceptual
density [9], to disambiguate place names. Based on the spatial footprints of place instances,
researchers designed heuristics for place name disambiguation, e.g., place names mentioned
in the same document generally share the same geographic context [29, 43]. The process of
recognizing and resolving place names from texts is called geoparsing [12, 23, 14, 49]. Place
names are also examined in studies on toponym matching and geo-data conflation [44].

Few existing studies, however, have empirically examined the term usage of place names
and their relations with geographic locations based on large datasets. Longley, Cheshire,
and colleagues [31, 11] investigated the geospatial distributions of surnames based on the
data from the Electoral Register for Great Britain and delineated surname regions. Their
study is related to our work, since family names are included in the names of some local
business. We perform an empirical study based on a large number of POI names in different
US metropolitan areas. Compared with the existing literature, this work is unique in that
it examines the local terms in POI names, explores the term usage patterns, and analyzes
the relations of POI names to geographic locations as well as their decay in this relationship
over distance.

3 Dataset

We first describe the data used in this empirical study, which is an open POI dataset
from Yelp (https://www.yelp.com/dataset). The original dataset contains POIs from 11
metropolitan areas in four countries: the US, Canada, the UK, and Germany. Considering
the language differences in POI names (e.g., German and English) and the barrier effects
of country borders, we focus on the seven metropolitan areas within the US, which contain
112, 071 POIs. Each POI data record has the POI name, city name, state name, latitude-
longitude coordinates, and other information, such as the number of reviews and average
rating. Figure 2 shows the general locations of the seven metropolitan areas and the
geographic distributions of the POIs in each of these areas.

We start by performing an exploratory analysis on the term usage frequency in the POI
names. It has been found that Zipf’s law exists in the usage of terms in natural language
texts [32], namely the frequency of a term is proportional to the inverse of its frequency rank
among all terms (Equation 1).

f ∝ 1
r

(1)

https://www.yelp.com/dataset
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Figure 2 The seven US metropolitan areas and their POIs used for this study.

where f is the frequency of a term and r is the rank of the term among all terms based
on frequency. According to Zipf’s law, a small number of terms are used highly frequently
while most others are used only occasionally. The names of POIs are different from natural
language texts in that they are typically not complete sentences but phrases. In this situation,
does Zipf’s law still hold in POI names?

To answer this question, we develop a Python script which reads through the names of
the POIs in the seven metropolitan areas, counts the frequencies of all terms contained in
each name, and ranks the terms based on their frequencies. We then use the ranks as the
horizontal coordinates and term frequencies as the vertical coordinates, and the result is
shown in Figure 3(a). As can be seen, there is a highly skewed distribution of term frequency
with a long tail, which suggests that a small number of terms are used much more frequently
than most other terms. In fact, Figure 3(a) shows almost a right angle fall-off since the
term frequency decreases rapidly with a small increase of the rank. The log-log plot of
the frequencies and ranks is shown in Figure 3(b), and we see almost a straight line. To
quantitatively measure the match of term usage in POI names to Zipf’s law, we fit a linear
regression model with log f = A+ b log r, and obtained an R-squared value of 0.962. Based
on this exploratory analysis, we conclude that the term usage in POI names also follow Zipf’s
law, even though POI names are usually not complete sentences. The top 10 most frequent
terms in POI names in this Yelp dataset are: the, and, of, center, pizza, grill, spa, bar, auto,
restaurant. These most frequent terms reflect the inherent characteristics of POI names and
POI types. It is worth noting that the most frequent terms in POI names may change across
countries, depending on the corresponding cultures and lifestyles.
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Figure 3 Term frequencies and their ranks in POI names: (a) original values; (b) log-log plot.

4 Data Analysis

In this section, we perform in-depth analyses on POI names. We organize this section into
three subsections based on the three core components of gazetteers [16]. Thus, the first
subsection focuses on place names, and aims to identify the local-specific terms used in
these POI names. The second subsection looks into the interaction between POI names and
place types, and examines the usage of local terms in different POI types. Finally, the third
subsection analyzes the change of POI names with geographic distance based on the spatial
footprints of the POIs.

4.1 Identifying local terms from POI names
In this first analysis, we attempt to answer the question: what are the local terms used in
the names of POIs in a geographic area? While not every POI name contains local specific
terms, some names are influenced by local factors, such as the “Vol” example discussed in
the Introduction. We consider local terms as those frequently used in a local geographic
area but less likely to be used in other areas. Identifying these local terms can help enhance
computational models for place name disambiguation. We make use of the technique, term
frequency and inverse document frequency (TF-IDF), a method commonly used in information
retrieval, and adapt it to the context of geography. Equation 2 shows the adapted version of
TF-IDF.

wij = tf ij × log |G|
|Gj |

(2)

where wij is the weight of a term j in geographic area i, tf ij is the frequency of term j in
area i, |G| is the total number of geographic areas in a study (which is seven in our case), and
|Gj | is the number of geographic areas that contain the term j. TF-IDF will highlight the
terms that are frequently used in a local area, while reducing the weights of those commonly
exist in POI names everywhere. In fact, the weights of the terms that occur in all seven
metropolitan areas will become zero based on Equation 2.

Before applying the adapted TF-IDF to the POI names, we perform several data pre-
processing steps. All POI names are converted to lowercase, and punctuations in POI names
are removed. We did not remove typical stop words, such as “the” and “of”, since the term
frequencies in POI names are not the same as other natural language texts, as shown in the
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Figure 4 Local terms identified based on the POI names in the seven US metropolitan areas.

exploratory analysis. Thus, typical stop words may not be stop words in the names of POIs.
We also performed one special step for this analysis by counting the exact same POI names
only once within a metropolitan area. The rationale behind this step is that term frequency
can be increased in two situations: 1) one term is used by many different POIs (e.g., the term
“Vol” is used in the names of many POIs); and 2) one word is used by the same POI business
which simply shows up many times in a metropolitan area (e.g., “walmart”). We would prefer
to keep the terms in the first situation, since those are endorsed by many different POIs and
are more likely to be valid local terms than those in the second situation. After removing
these repeating POI names, we group the names that belong to the same metropolitan areas
using the bag-of-words model. We then use the adapted TF-IDF to identify local terms.
Figure 4 shows the top 30 local terms identified for each of the seven metropolitan areas.

We can group the identified local terms into the following categories:
City names: This is the most common type. POI names in all seven metropolitan areas
contain city names, such as scottsdale, las vegas, charlotte, and cleveland.
State names: This is similar to city names. State names, such as arizona and wisconsin,
are used in POI names. There are also name abbreviations, such as az and wi.
Natural features: Examples include desert and canyon in Phoenix and Las Vegas areas,
prairie in Madision and Urbana-Champaign areas, and rivers in Pittsburgh area.
Sports teams: Examples include badger in Wisconsin and illini in Illinois.
Family names: A notable example is zimbrick in Madison, Wisconsin, which is a
regional car dealer started by John Zimbrick (http://www.zimbrickbuickgmceast.com/
Zimbrick-History).
Local cultures: Terms such as sin and casino are observed in the POI names in Las
Vegas, while the term steel is observed in the POI names in Pittsburgh area.

4.2 Examining local term usage in different POI types
The first analysis identified the local terms used in POI names in each geographic area.
However, do POIs in different types have similar probabilities in using local terms as part of
their names? In addition, are there regional differences in using local terms for names among
POI types? In this second analysis, we aim to answer these questions.

In order to examine the interaction between POI names and POI types, we need to first
divide the dataset based on POI types. Yelp has grouped their POIs into 23 root categories
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Figure 5 The percentages of POI names that contain local terms across POI types and different
metropolitan areas.

which include Restaurants, Shopping, Food, Hotels & Travel, and other categories. We make
use of these Yelp POI categories, and the POIs in each metropolitan area are divided into
subsets based on their categories. Yelp allows one POI to belong to multiple categories (e.g.,
one POI can be both Restaurants and Nightlife), and therefore the same POI is put into
more than one subset when multiple categories exist. Not all metropolitan areas contain
POIs in all 23 categories. In addition, one metropolitan area may contain only a small
number of POIs in a certain category, which can cause a biased result if those POIs are
directly used for analysis. Thus, we only examine the POI types which are shared by all
seven metropolitan areas and have at least one hundred POI instances in each area. Based
on these criteria, we are left with ten categories, which are Automotive, Beauty & Spas,
Food, Event Planning & Services, Hotels & Travel, Home Services, Local Services, Nightlife,
Restaurants, and Shopping. The TF-IDF weights from the first analysis are then re-used, and
we extract the top 100 terms that have the highest TF-IDF weights in each metropolitan
area and use them as the local terms. The percentage of POI names in each POI type that
contain local terms is calculated using Equation 3:

Pr ij = |LPij |/|Pij | (3)

where |LPij | is the number of POI names that contain any of the local terms in metropolitan
area i in POI type j, |Pij | is the total number of POI names in metropolitan area i in POI
type j, and Pr ij is the calculated percentage. The result is shown in Figure 5.

Two things can be observed in Figure 5. First, there is an uneven usage of local terms
across POI types. Overall, it seems people (business owners) are more likely to include local
terms in the names of hotels, event planning services, and automotive shops. In contrast,
local terms are less likely to be used in the names of restaurants, shopping places, and beauty
spas. This is understandable since we frequently see hotels (especially hotel chains) include
city names as part of their names to indicate locations, such as holiday inn charlotte center
city. Meanwhile, restaurant names may focus on describing food and cuisine styles to attract
customers. Second, the uneven usage of local terms is highly consistent across the seven
metropolitan areas. This result suggests that the identified local term usage patterns are not
specific to a particular region but can be generalized to other geographic areas.

To quantify the similarity and difference of local term usage in different POI types
across geographic regions, we employ Jensen-Shannon divergence (JSD), which measures
the similarity between two probability distributions. Equation 4 and 5 show the calculation
of Jensen-Shannon divergence, where KLD(P ||Q) is the Kullback–Leibler divergence. The
output of JSD is in [0, 1], with 0 indicating that the two distributions are highly similar and
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1 suggesting that the two distributions are largely different.

JSD(P ||Q) = 1
2KLD(P ||M) + 1

2KLD(Q||M) (4)

KLD(P ||Q) =
∑

i

P (i) ln P (i)
Q(i) (5)

JSD requires the input probabilities to sum to 1. To satisfy this criterion, we normalize
the initial percentage values using Equation 6:

NPri = Pri∑
j Prj

(6)

We then iterate through the seven metropolitan areas and calculate the pair-wise JSD, and
finally calculate the average JSD value (there are in total 21 values). The obtained average
JSD is 0.007, suggesting that the local term usage in different POI types are highly similar
across geographic regions. The findings in this subsection can help us select suitable POI
types in future for building computational models. For example, in the task of place name
disambiguation, we may choose to focus on the POI names of certain types, such as Hotels
and Automotive rather than Restaurant and BeautySpas, to extract more local terms which
can then be associated with the related place names.

4.3 Analyzing POI name change with geographic distance
In this third analysis, we examine the change of POI names with geographic distance. Many
phenomena follow Tobler’s First Law and show a distance decay effect. Do POI names, which
reflect many underlying social and cultural processes, also show such an effect? Here, we
look into the collective similarity of POI names between metropolitan areas, namely how the
POI names in one area are overall similar or dissimilar to the POI names in another area.
For instance, we may expect the Phoenix metropolitan area to have more similar POI names
compared with the Las Vegas metropolitan area than with the Cleveland metropolitan area.

One major challenge for this analysis is how to measure the collective similarity of POI
names between metropolitan areas. We propose two approaches to achieve this goal. The first
and a straightforward approach is to group POI names in the same metropolitan area into a
bag of words. This is similar to the TF-IDF approach discussed in our first analysis. However,
we use only term frequency here, since TF-IDF artificially exaggerates the importance of
local terms. While such an exaggeration is desired for local term extraction, it distorts the
true frequencies of terms in POI names and therefore is not used in this analysis. We also
do not remove the repeating POIs as we did in the first analysis. In short, we try to keep
the POI names and term frequencies as they are in the real world in order to objectively
model their change with geographic distance. The terms used in the POI names in each
metropolitan area are combined together into a vector. We will refer to this approach as
count-based vector. To formally define this approach, let r1 and r2 represent two geographic
regions, and each region contains a set of POIs. We derive the vector for a geographic region
by counting the frequencies of terms in POI names. A common vocabulary V is constructed
based on all the terms of the POI names in a dataset. Thus, the names of POIs in the two
regions, r1 and r2, can be collectively represented as two vectors:

< w11, w12, . . . , w1|V | > (7)
< w21, w22, . . . , w2|V | > (8)
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where |V | represents the size of the vocabulary, and wij represents the count of term j used
in the POI names in geographic region i.

While the count-based vector approach is straightforward, it does not capture the semantic
similarity between terms. For example, the terms kiku and sakana are both used for the
names of sushi restaurants in the dataset. The count-based vector will treat the two terms
as completely different with a similarity of zero. However, the fact that these two terms
both co-occur with sushi suggests there exists certain degree of similarity between them.
Word2vec [34] is a model that has been found to effectively capture the semantic similarity
between terms. It is a neural network model which learns embeddings (low dimension vectors)
for terms. In this work, we use the word2vec model to learn embeddings for metropolitan
areas based on POI names. The embeddings are learned by predicting the terms used in
POI names based on a given region (e.g., what terms are likely to be used for POI names if
the region is Phoenix, AZ ). The embeddings are condensed vectors, and the POI names in
r1 and r2 can be represented as the two vectors below:

< u11, u12, . . . , u1|d| > (9)
< u21, u22, . . . , u2|d| > (10)

where d is the dimensionality of the embeddings, which can be decided empirically. In this
analysis, we set d = 300 following the recommendation from the literature [34]. uij is a
weight value learned from the POI dataset. The word2vec model aims to minimize the
objective function in Equation 11:

J = − logσ
(
wT

o r
)
−

K∑
k=1

logσ
(
−wT

k r
)

(11)

where r is the embedding of one geographic region, wo is the embedding of a term that is
used for the POI names in region r, while wk is the embedding of a term not used in region
r (which serves as negative samples). σ is a sigmoid function: σ (x) = 1

1+ e−x .
With different geographic regions represented as vectors in the same dimension, cosine

similarity can be employed to measure the similarity of two vectors (Equation 12). s(r1, r2)
is then used as the collective similarity between regions r1 and r2.

s(r1, r2) =
∑d

j=1 w1jw2j√∑d
j=1 w

2
1j

√∑d
j=1 w

2
2j

(12)

We apply both the count-based approach and word2vec to the Yelp POI dataset to
derive vectors for the seven metropolitan areas. The center point of each metropolitan
area is derived by averaging the location coordinates of the POIs in that area. We then
employ Vincenty’s formulae [48], which is based on the assumption of an oblate spheroid,
to calculate the distance between two metropolitan areas. We then perform both Pearson’s
and Spearman’s correlation to examine the relation between the collective similarity of
POI names and the geographic distance of the corresponding metropolitan areas. Table 1
shows the correlation results. Overall, the collective similarity of POI names negatively and
significantly correlates with geographic distance based on the four correlation coefficients
in Table 1, which suggests that POI names indeed gradually become less similar with the
increase of geographic distance. We emphasize gradually here because either no change
or abrupt change can lead to no correlation between POI name similarity and geographic
distance. It is often natural to assume that place names at different locations are of course
different, but our experiment result suggests that place names are not randomly different
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Table 1 Pearson and Spearman correlation coefficients between the collective similarity of POI
names and geographic distance.

Count-based vector word2vec
Pearson -0.612 (p<0.01) -0.963 (p<0.001)
Spearman -0.626 (p<0.01) -0.917 (p<0.001)

Figure 6 Fitting the collective similarity of POI names with geographic distance: (a) count-based
vector; (b) word2vec.

but follows a distance decay pattern. The statistical significance of the result is especially
exciting given the fact that we have only 21 data points (21 region pairs from the seven
metropolitan areas) for this correlation analysis. Such a result suggests that there is indeed a
clear negative relation between POI name similarity and distance. In addition, it seems that
word2vec better captures the POI name changes with geographic distance, as demonstrated
by the higher correlation coefficients and stronger significances.

To further quantify the distance decay effect, we use a model s = A ∗ 1
dβ

to fit our data.
We first transform it into its logarithmic form:

log s = A+ β ∗ log d (13)

where s is the collective similarity of POI names between two metropolitan areas, A is a
constant, β is the slope, and d is the geographic distance between them. We fit a linear
regression model based on the logged values. Figure 6 shows the result. In the count-based
vector approach, we obtained an R-squared value 0.434 and a slope of −0.050. Using
word2vec, we obtained a R-squared value 0.828 and a slope of −0.090. More credibility
can be given to the result from word2vec since it better captures the semantic similarity
between terms in POI names. A slope of -0.090 indicates there is a clear distance decay
effect with the increase of geographic distance. Besides, it is interesting to see how the data
points clearly fall in two groups in Figure 6(b), which is consistent with their geographic
distributions shown in Figure 2 (a group of city pairs has closer geographic distances, while
the other group of city pairs has farther geographic distances). It would be interesting to
examine the POI names in more metropolitan areas to see if their POI names also follow the
general trend along the red line in Figure 6(b).

To further examine the result difference between the count-based vector and word2vec,
Figure 7 shows the matrices of the geographic distances and the collective similarities obtained
using the two approaches. It can be seen that the similarity pattern obtained using word2vec
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Figure 7 (a) The geographic distances between the seven metropolitan areas; (b) collective
similarities based on count-based vector; (c) collective similarities based on word2vec.

in sub figure (c) is closer to the distance pattern in sub figure (a) compared with the pattern
from the count-based vector in sub figure (b). This result is consistent with the distance
decay pattern observed in Figure 6.

5 Conclusions and future work

Place names are texts given by people to natural or man-made geographic features. The act
of assigning a name to space signifies the important moment of space and human experience
integration, and further enhances the social construct of place. Place names, as city-text,
reveal a considerable amount of information about the culture, lifestyle, community, and
many other aspects of a city. While place names have long intrigued geographers, existing
research often focuses on case-by-case qualitative descriptions related to the etymology or
taxonomy of place names, or only considers place names as identifiers without analyzing
their term usage and their relations with geographic distances.

This paper presents an empirical study on place names and their change with geographic
distance. This study is based on an open dataset from Yelp, and examines more than 110, 000
POIs, such as restaurants, hotels, and local services, in seven metropolitan areas in the
United States. We perform an exploratory analysis on the frequencies of terms used in POI
names, and find the term usage follows Zipf’s law. We further conduct three analyses focusing
on place names, place types, and spatial footprints respectively. We adapt the technique of
term frequency and inverse document frequency in geographic context to identify local terms,
and examine the term usage in the POI names in different types of POIs. We find an uneven
usage of local terms across POI types (e.g., auto repairs are more likely to use local terms
than restaurants), and such a usage pattern is highly consistent across different geographic
regions. Finally, we test two approaches, count-based vector and word2vec, to model the
collective similarity of POI names in different regions, and find a distance decay effect in the
collective similarity of POI names.

This work is only a first step towards quantitatively and systematically examining place
names and their relations with geographic distances. A number of topics can be explored in
the near future. First, all the analyses are conducted based on the seven metropolitan areas
available in the Yelp dataset. While a large number of POI names are examined, it would be
interesting to apply the analyses to more metropolitan areas in other regions (e.g., north
west and mid-south) as well as within local regions to further test the findings from this
work. Second, we have so far used whole terms for the analyses, and it would be interesting
to examine the parts or chunks of a term for measuring the collective similarity of place
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names. For example, the place names, Wauwatosa in Wisconsin, Wawatasso in Minnesota,
and Wahwahtaysee in Michigan, share similar chunks, and may have higher similarity values
when a chunk-based approach is used. Third, future research can be conducted on how to
integrate the information extracted from place names with existing computational models for
tasks such as place name disambiguation. While Wikipedia articles and other datasets have
been frequently used for training place-based models, there are situations when we have only
short Wikipedia descriptions or no description for places. Local information extracted from
place names can serve as additional resources to improve existing models.
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Abstract
Advances in location-aware technology have resulted in massive trajectory data. Origin-desti-
nation (OD) trajectories provide rich information on urban flow and transport demand. This
study describes a new method for detecting OD flows outliers and conducting hypothesis testing
between two OD flow datasets in terms of the variations of spatial extent, that is, spread. The
proposed method is based on data depth, which measures the centrality and outlyingness of a
point with respect to a given dataset in Rd. Based on the center-outward ordering property, the
proposed method analyzes the underlying characteristics of OD flows, such as location, outly-
ingness, and spread. The ability of the method to detect OD anomalies is compared with that
of the Mahalanobis distance approach, and an F-test is used to verify the difference in scale.
Empirical evaluation has demonstrated that our method effectively identifies OD flows outliers
in an interactive way. Furthermore, the method can provide new perspectives such as spatial
extent by considering the overall structure of data when comparing two different OD flows in
terms of scale.
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1 Introduction

With ubiquitous geolocation-aware sensors, knowledge discovery is greatly enhanced by
extracting and mining interesting patterns from spatiotemporal big data in various domains.
Massive movement data are collected to track people, animals, vehicles, and even natural
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phenomena. Such data help us better model moving objects and reveal hidden patterns that
are important to urban planning [17], understanding human mobility [30, 11], achieving the
sustainability of urban systems [1, 3] and the environment [4], and improving public security
and safety [2].

This paper a new method that identifies origination-destination (OD) flow anomalies
and conducts hypothesis testing between two sets of different OD flows. In this study, the
OD flow data represents a particular type of trajectory data, which records the origin and
destination of each movement while ignoring the exact trajectory route [9]. The method was
applied to OD flows derived from New York City taxi trip records, in which each record
contains the origin and destination of each trip, without intermediate locations of the actual
routes.

In recent years, researchers have investigated a variety of approaches to trajectory data
mining. Most contemporary trajectory mining methods can be classified into four categories:
clustering, classification, frequent/group pattern mining, and outlier detection [18, 33]. These
methods can be used independently or together for trajectory mining applications. This study
focuses on outlier detection of OD flows. Outlier detection aims to identify trajectories that
do not follow the typical flows of trajectory that characterize the connectivity between regions
[18]. Euclidean distance is employed by [7, 13] to find outlier patterns from trajectories.
Studies by [20, 14] question the Euclidean distance approach because of the loss of local
features and unavailability when external factors, such as topography, land cover or weather
condition, affect the trajectories. In their research, [20, 14] addresses this by using robust
distance measurements, e.g., Mahalanobis distance [20] and relative distance [14]. Instead of
using distance or density, anomalous trajectories are detected by exploiting comparisons of
the structural features of each trajectory segment [31] and an isolation tree of trajectories
[32]. Most of these methods are related to trajectory data analysis, and thus, it is reasonable
to extend the application of these approaches to the identification of OD flow anomalies.
To overcome the sensitivity of Euclidean distance-based approaches to non-normal data
distribution and the difficulty of selecting parameters for anomaly detection techniques based
on distance or density, this study employs robust statistics, such as data depth, to detect
OD flow outliers.

Flow mapping, a type of visual analytics, is a common approach to analyzing OD flow data.
Visual representations of massive movement data facilitate comprehensive exploration of
data, in turn enabling interpretation and understanding of complex flow trends. Aggregation
and generalization of movement data are frequently utilized to resolve visual clutter [9, 29].
While visual analytics can help to extract inherent patterns from massive data, it is difficult
to quantitatively compare two sets of different OD flows based on hypothesis testing. In
other words, it is complicated to comprehend how two OD flows differ and, more importantly,
the magnitude of the difference, using a test of statistical significance. Recently published
articles employ multidimensional spatial scan statistics [8] and local Ripley’s K-function [23]
to identify clusters of flow data based on statistical significance testing. In a similar vein,
this paper applies bivariate hypothesis testing methods based on data depth to understand
the difference between two OD flow datasets in the context of different spatial extents.

It is worth noting that flow mapping approaches frequently suffer from the modifiable
areal unit problem (MAUP). Essentially, MAUP reflects the influence of different aggregations
determined by location on the identification and representation of coherent patterns. Kernel-
based flow estimation and smoothing are used to overcome different spatial resolutions [9].
Instead of attempting to find the best areal unit by which to partition urban space and
aggregate the OD flows, this study adopted the established traffic analysis zones of New
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Figure 1 Robustness of halfspace depth for the univariate case.

York City as a base unit. That said, the proposed method can be adapted to other areal
units. In this study, New York City taxi trip data includes origins and destinations within
traffic analysis zones, while ignoring the intermediate locations of the actual routes. Note
that it is not necessary to reconstruct individual movements for flow estimation (see [5]).

In summary, this paper presents a new algorithm which conducts outlier detection as
well as hypothesis testing on OD flow data. Our approach investigates the central regions of
OD flows, based on data depth, to detect OD flow anomalies and conduct hypothesis testing
between two different OD flow datasets. We believe that our method for analyzing taxi trip
data has the potential to aid administrative authorities to better understand crowd patterns
for improving urban planning activities such as determining transportation investments.

The remainder of this paper is organized as follows: Section 2 overviews how to detect OD
flow outliers and conduct hypothesis testing between two different OD flow datasets using
the concept of data depth. Experimental design and the evaluation of the proposed method
are presented in Section 3. These results are discussed in Section 4. Section 5 concludes this
paper with a summary and future work perspectives.

2 Methods

2.1 Data Depth
Data depth measures the centrality of a point with regard to a given dataset in Rd. Originally
developed by [24], the notion of data depth (i.e., halfspace depth) generalizes the univariate
concept of ranking to multivariate data. Halfspace depth represents how deeply a point is
located within a given dataset by ordering all points according to their degree of centrality.

Generally, the halfspace depth (HD) of point x in Rd is defined as the minimum probability,
P on Rd, associated with any closed halfspace containing x [34].

HD(x;P ) = inf{P (H) : H is a closed halfspace, x ∈ H}, x ∈ Rd.

For the univariate case, all values less than or equal (greater than or equal) to x form
a closed halfspace. All values less (greater) than x are an open halfspace. The smallest
probability associated with two closed halfspaces developed by x is the halfspace depth
of point x. In Figure 1, the probability of values less than or equal to 4 is 2/7 and the
probability of values greater than or equal to 4 is 6/7. Thus, the halfspace depth of 4 is 2/7,
which is the minimum probability carried by any closed halfspace containing 4. Furthermore,
as the sample median, 14 has the largest halfspace depth. Note that the polluted point
inflates the standard error of the sample mean, thereby distorting the view of the data.

Similarly, the halfspace depth of x for the bivariate case is defined by the minimal number
of data points in any closed halfspace, which is determined by a hyperplane through x [21]. In
Figure 2, the solid line through x is rotated by 180◦. The halfspace depth of x is determined
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x

Figure 2 Halfspace depth for the bivariate case.

by the smallest portion of data separated by such a hyperplane. For example, the halfspace
depth of x is 3/13, as determined by the dotted line. However, the halfspace depth of x
determined by the solid line is 4/13. Therefore, the halfspace depth of x is 3/13, which is
the minimal number of data points in any closed halfspace through x.

The property of halfspace depth is a center-outward ordering of points in Rd and is
affine invariant [19]. These features make halfspace depth a useful tool in nonparametric
inference, which leads to various applications such as data classification and cluster analysis
[12, 10]. There are multiple approaches to calculating data depth, including halfspace depth
[21], projection depth [25], and simplicial depth [15]. While the computational complexity
of the projection approach is O(n2) (where n is the number of points), the computational
complexity of simplicial depth is O(n3). This can significantly increase computing time when
n is large. Thus, this paper uses the more efficient method proposed by [21], in which the
computational complexity for both approaches is O(n logn).

2.2 OD Flow Outlier Detection Based on Data Depth
The center-outward ordering in data depth is closely related to the detection of outliers. The
upper level sets of data depth in R2 form the central regions. The most central region can
be regarded as a median. Conversely, the lower level sets of data depth, which coincide with
larger distances from the center, can be regarded as outlyingness. This concept was utilized
by [22, 28] to generate bag plots, which are analogous to one-dimensional box plots based
on data depth. This paper uses the bag plot to identify the outliers of OD flows. Before
explaining the method of outlier detection, we first introduce a basic definition of OD flow.

I Definition 1. Origin-destination (OD) flow. The OD flow ODi = (oi, di, ci, tsi, tei) is the
number of trips (ci) from the origin ID (oi) to destination ID (di) of traffic analysis zones
between the start time (tsi) and the end time (tei), where tsi < tei.



M.-H. Jeong, J. Yin, and S. Wang 6:5

Based on this basic definition, Figure 3 depicts bag plots representing the OD flows
of New York City taxi data collected on May 21, 2014 and July 1, 2014 respectively. We
exploited taxi data on May 21, 2014 because the National September 11 Memorial Museum
and Pavilion was opened to the public on this date. We also randomly selected another
data set on July 1, 2014. In Figure 3a, the deepest depth of OD flows, depth median, is
represented by a star symbol. This point is surrounded by a dark blue bag, which contains
the half of OD flows. This region is regarded as a central region of OD flows. The OD flows in
the bag are the dominant patterns. Magnifying the bag by a factor of three, relative to depth
median, constructs a fence, as indicated by the light-blue area. The fence is comparable to
the whiskers of a one-dimensional boxplot. The OD flows outside the fence, represented by
red circles, are outliers. Every OD pair is represented by a point in Figure 3. The x-axis
indicates the counts of forward OD flows (e.g., the number of OD flows from origin ID 2 to
destination ID 10), and the y-axis indicates the counts of reverse OD flows (e.g., the number
of OD flows from origin ID 10 to destination ID 2) in Figure 3a.

The bag plot presents the data using the following attributes: location is represented by
the depth median; spread or the spatial extent of bag; correlation or the orientation of the
bag; and skewness, as represented by the shape of the bag and the fence [22]. In Figure 3a,
we observe that some forward OD flows have higher counts than their paired reverse OD
flows. We also note the relatively linear correlation between forward OD flows and reverse
OD flows and the skewness of forward (reverse) OD flows.

It is also possible to detect the outliers of OD flows of two different time stamps. In
Figure 3c, we visualize the OD flows recorded on two different days. Comparing the two
sets of OD flows not only indicates the central region of OD flows, it also distinguishes the
significantly different OD flows.

The OD flows in high activity areas of a city are more likely to have large trip volumes.
We use set operations to detect such outliers. We regard OD flows on July 1 as the control
dataset (control); OD flows on May 21 as test dataset (test); and the combination of two
OD flows as combination dataset (combination) in Figure 3. Then we can calculate the
intersection of three outliers sets (control ∩ test ∩ combination), which are represented as
rectangle symbols in Figure 3d.

In addition, it is interesting to detect the outliers of OD flows which are typical patterns
at time t1 but atypical behaviors at time t2. We define the union of points in the bag, the
central region, at time t1 and t2. Then we calculate the intersection of two sets, the outliers
of the combination set and the previous union set. These outliers are represented as triangle
symbols in Figure 3e. These outliers are typical OD flows at time t1, located in the central
regions in the bag plot. When we consider two OD flows together, they become unusual OD
flows, some have more trips and some have fewer trips, relative to the control dataset. Thus,
we can detect and treat outliers interactively based on data depth.

2.3 OD Flow Comparisons Based on Data Depth
Data depth can compare bivariate data from two independent groups. A t-test can be used
to compare means from two independent groups. For example, the t-test reveals whether the
means of two OD flows are different between two different temporal ranges. However, it is
also worth examining how groups differ in terms of scale, which is also referred to as spread.
Comparisons of central regions in data depth evaluate the marginal distribution, thereby
considering the overall structure of the data [26].

Let X and Y be the random variables having distributions F and G for two independent
groups. The quality index proposed by [16] is the probability that the depth of Y is greater
than or equal to depth of X.

GISc ience 2018
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(a) May 21 2014.
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(b) July 1 2014.
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(c) Combination of May 21 and July 1.
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(d) Detection of outliers with high volume of trips.
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(e) Relative outliers detection.

Figure 3 Outliers detection of OD flows using a bag plot.

Q(F,G) = P [D(X;F ) ≤ D(Y ;F )],

where P is the probability and D(X;F ) is the depth of randomly sampled observations
according to distribution F . The range of Q, as presented by [16], is [0, 1] and Q(F,G) = 0.5
if and only if F = G. If Q < 0.5 or if Q > 0.5, the scale increases or decreases from F to G.
Therefore, it is possible to detect differences in scale using a bootstrap method.
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Figure 4 Central regions of two OD flows: ◦ indicates the OD flows for Saturday, March 29 2014
and * indicates the OD flows for a list of Saturdays; blue line presents the central region of the OD
flows for the list of Saturdays and red dotted line presents the central region of the OD flows on
March 29.

Let X1, ..., Xa be a random sample from F , and Y1, ..., Yb be a random sample from G.
The estimate of Q(F,G) is calculated as shown below.

Q̂(F,G) = 1
b

b∑
i=1

R(Yi;Fa),

where R(Yi;Fa) indicates the proportion of Xj which has D(Xj ;Fa) ≤ D(Yi;Fa). Simil-
arly, the estimate of Q(G,F ) can be defined as follows:

Q̂(G,F ) = 1
a

a∑
i=1

R(Xi;Gb).

Bootstrap samples are obtained by resampling from the two groups (F and G). Under the
null hypothesis (H0 : Q(F,G) = Q(G,F )), the difference of the resulting bootstrap estimates
is Q∗(F,G) − Q∗(G,F ). Thus, if the confidence interval of Q(F,G) − Q(G,F ) does not
contain zero, we can reject the null hypothesis, H0 [16, 26].

For ease of understanding, Figure 4 presents the central regions of two OD flows. One
dataset is OD flows for Saturday, March 29, 2014, and the other dataset includes multiple
Saturdays, those of March 1, 8, 15, 22, and April 5. At 552,064 taxi trips, the day of March
29 had the highest number of taxi trips for the year of 2014. The dataset for the other five
Saturdays comprised 2,621,703 taxi trips. The bootstrap method reveals that the confidence
interval is 0.0247 and 0.0596. This confidence interval does not include zero, thus rejecting
the H0 null hypothesis. This indicates that scale range is significantly changed between two
OD flow datasets. Furthermore, the OD flows from the group of Saturdays are nested within
the OD flows corresponding to March 29. This additional perspective was based on data
depth comparisons.

The bootstrap method is a time consuming process. For this study, we generate 2, 000
bootstrap samples. To improve the efficiency of the bootstrap computation, we distributed
the work across multiple computing nodes and cores by implementing an embarrassingly
parallel R code.
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(a) 2,250 traffic analysis zones in New York City. (b) OD flows on July 1 2014.

Figure 5 Experimental data: New York City taxi data.

3 Experiments

3.1 Data
This study uses New York City taxi data collected in 2014 to evaluate the effectiveness
of the proposed approach. Figure 5a presents traffic analysis zones in New York City
which indicate the origin and the destination IDs of the OD flows. A traffic analysis zone
(TAZ) is the most commonly adopted basic geographic unit in transportation planning
models. The geographic areas of TAZ are delineated by transportation officials for tabulating
traffic-related data. The size of TAZ varies because it accounts the underlying popula-
tion in each zone, which consists of one or more census blocks, block groups, or census
tracts. The shapes of the TAZs in this study are derived from the cartographic bound-
ary shapefiles developed by the U.S. Census Bureau in conjunction with the 2010 census
(https://www2.census.gov/geo/tiger/TIGER2010/TAZ/2010/). Considering the TAZs are
particularly useful for journey-to-work and place-of-work statistics, we employed them as the
basic units for accounting the taxi trips. Figure 5b shows OD flows on July 1. Red lines
indicate the dominant OD flows.

As a case study, this paper examined OD flows recorded on weekdays and weekends in
June 2014. The weekday dataset includes taxi trajectories collected on June 3, 10, 17, and 24,
and represents 1,721,655 taxi trips. The weekend dataset includes taxi trajectories collected
on June 8, 15, 22, and 29, and describes 1,593,480 trips.

3.2 Workflow
The performance of the proposed method was compared with alternative methods. Trajectory
anomaly detection based on Mahalanobis distance [20] was used to evaluate the performance
of outliers detection by the proposed method. The Mahalanobis distance is distinguished
from Euclidean distance by its consideration of the correlations of the data, in this case, the
two OD flow datasets. According to [20], the anomaly detection threshold can be defined as
follows:

dM (ODt1 , µ[t0,t1)) ≥ 3 ·

√√√√ 1
N

∑
t∈[t0,t1)

(ODt − µ[t0,t1))2.
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(a) Bag plot on weekdays.
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(b) Bag plot on weekends.

Figure 6 Outliers detection of OD flows: X-axis indicates forward OD flows counts and Y-axis
indicates reverse OD flows counts.

where ODt1 is the current OD flow, and µ[t0,t1) is the median of all OD flows during [t0, t1).
In addition, we visualized the results in order to compare them and make the difference
easier to understand. The difference of scale was evaluated using standard statistics, such as
F-test, to compare the variance of two datasets.

For data cleaning process, this study used Hadoop with Pig. We developed a Hadoop
program to resolve large data volume, which was composed of 173 million taxi trip records,
remove trips with invalid OD coordinates, and assign each OD locations into the corresponding
traffic analysis zone. To implement the OD flow outliers detection, this study used R. The
computing environment used Amazon Web Service and the Bridges supercomputer at the
Pittsburgh Supercomputing Center. This study only evaluated OD flows more than 10 trips,
as the low trip number OD flows could have distorted the view of the data. All the code will
be released as open source (the link to the code is available upon request).

3.3 Case study: weekdays vs weekends
3.3.1 Outlier Detection
The bag plots presented OD flow outliers on weekdays and weekends in Figures 6a and 6b,
respectively. The outliers are detected by considering forward OD flows and reverse OD
flows together.

To find the difference between two datasets, we considered two forward OD flows together
with the bag plot. Then, we identified the outliers OD flows in Figure 7a. The outliers with
rectangle symbols indicate OD flows with large volumes of taxi trips during weekdays and
weekends. Figure 7b depicts these outliers superimposed on a map with red lines. The yellow
lines represent the other OD flows, excluding the large volume OD flows on weekdays and
weekends. This case clearly demonstrates that most OD flows occurred in three broad areas:
within Manhattan, between the center of Manhattan and the two major airports (J.F.K
International Airport and LaGuardia Airport), and between the two airports.

In addition, we investigated abnormal weekend OD flows that are typical weekday OD
flows. These abnormal weekend OD flows exhibited substantial variance in number of taxi
trips relative to their weekday counterparts. Figure 8a presents these OD flows outliers with
triangle symbols. In Figure 8b, red lines indicate the substantial increases in weekend trip
volumes. Conversely, blue lines indicate the decreases in trip volumes. Figure 8b reveals

GISc ience 2018
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(a) OD flows with high volume of trips. (b) OD flow map with high volume of trips.

Figure 7 Outliers with high volume of trips on weekdays and weekends: Rectangles in Figure 7a
coincide with red lines in Figure 7b.
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(a) Relative OD flows outliers. (b) OD flow map for relative OD flows outliers.

Figure 8 Relative OD flows outliers on weekdays and weekends: Triangles in Figure 8a coincide
with red and blue lines in Figure 8b.

that OD flows between the center of Manhattan and the two airports or between the two
airports were not significantly different during weekdays and weekends. However, we did
observe some meaningful decrease in OD flows during the weekends in business district, as
depicted by the blue lines in Figure 8b.

We also detected outlier OD flows using Mahalanobis distance. The results are presented
in Figure 9. Far fewer outlier OD flows were detected using Mahalanobis distance than
by our method. The Mahalanobis method only considers the forward OD flows of the two
datasets. It identified OD flow outliers with high volume of trips because Mahalanobis
distance considers the correlations between two OD flows. Thus, Mahalanobis distance is
more likely to identify outliers when two OD flows have large trip volumes. In fact, the
OD flows outliers from Mahalanobis distance are a subset of the outliers identified by our
method, as depicted in Figure 7b. Furthermore, the Mahalanobis distance approach could
not detect the outliers detected by our method in Figure 8 because the Mahalanobis distance
approach cannot compare two flows to evaluate significant increases or decreases.
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Figure 9 Outlier OD flows on weekdays and weekends based on Mahalanobis distance.

3.3.2 Scale Comparisons
We further investigated how two OD flows differ. Our approach is sensitive to the difference
in scale. Hypothesis testing of the differences between two central regions in Figure 10
inadvertently revealed that the confidence interval was -0.0277 and 0.0157, which includes
zero. Thus, it failed to reject the null hypothesis. The two central regions were similar in
terms of the spread.

Interestingly, the standard statistic F-test was significant, F (9530, 7637) = 1.1786, p ≤
0.05. The variances of two groups were significantly different. The result of F-test directly
opposed that of our method.

4 Discussion

The results demonstrate that the method effectively identifies outlier OD flows based on data
depth. It is also feasible to detect outlier OD flows by querying with conditional clauses,
such as which outlier OD flows always have high trip volumes during time t1 and time t2.

As an alternative, the state-of-the-art Mahalanobis distance approach detected similar
outlier OD flows. However, the number of outliers detected was different. This occurred
because the proposed method’s OD flows data had heavy tail distributions, which means
many of the OD flows with a long distance from the depth median depicted in Figure 8a.
Mahalanobis distance is known to be inadequate when the underlying data have heavy tail
distributions [27]. Thus, the presence of outliers may mask the detection of other outliers
in Mahalanobis distance approach. Furthermore, it can only detect OD flow outliers with
high numbers of trips during time t1 and time t2. It is difficult to detect OD flows outliers
that have different properties, such as substantial differences in the number of trips when
comparing between time t1 and time t2.

In terms of the difference in spread, our method used a bootstrap technique to compare
the central regions of data depth. This technique investigated the difference in scale as well
as the structure of data. It can provide information about how deeply points from group 1,
OD flows at t1, tend to be located within group 2, OD flows at t2. General statistics such as
F-test only provide their difference in variation and do not further specify how groups differ.

Interestingly, the F-test results revealed a statistically significant difference in terms of
variation of OD flows on weekdays and weekends. Our approach showed no statistically
significant differences. This contrast may be caused by the sensitivity of F-test to non-
normality [6], which increases the Type-I error rate. Conversely, data depth makes no
assumptions about the distributions of the underlying dataset.
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Figure 10 OD flows comparisons based on data depth: ◦ indicates the OD flows on weekdays
and * indicates the OD flows on weekends; blue line presents the central region of the OD flows for
the weekdays and red dotted line presents the central region of the OD flows on weekends.

5 Conclusions and Future Work

This paper describes a new method for identifying outlier OD flows and the difference in scale
between two different OD flows at t1 and t2. The new method is based on the concept of data
depth. Data depth is robust statistics, which is suitable to non-Gaussian distribution of the
underlying datasets. Compared with standard statistics, our method enhances understanding
of the differences and the magnitude of the differences between two OD flow datasets.

This study made no attempt to incorporate geographic contexts such as locational
circumstances or surrounding environment in understanding OD flows. Ultimately, further
research should focus on integrating the analysis of OD flows with appropriate geographic
contexts. Such research will lead to desirable knowledge discovery and better understanding
of movement dynamics.
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Abstract
Differing weights for salience subdimensions (e.g. visual or structural salience) have been sug-
gested since the early days of salience models in GIScience. Up until now, however, it remains
unclear whether weights found in studies are robust across environments, objects and observers.
In this study we examine the robustness of a survey-based salience model. Based on ratings of
No = 720 objects by Np = 250 different participants collected in-situ in two different European
cities (Regensburg and Augsburg) we conduct a heterogeneity analysis taking into account en-
vironment and sense of direction stratified by gender. We find, first, empirical evidence that
our model is invariant across environments, i.e. the strength of the relationships between the
subdimensions of salience does not differ significantly. The structural model coefficients found
can, hence, be used to calculate values for overall salience across different environments. Second,
we provide empirical evidence that invariance of our measurement model is partly not given with
respect to both, gender and sense of direction. These compositional invariance problems are a
strong indicator for personal aspects playing an important role.
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1 Introduction

Models of salience have seen increased interest over the last two decades (see [39, 33, 9, 4, 8,
5, 37, 22, 34, 32, 18, 11, 30]). These models are important for several different reasons: they
deepen the understanding of human perception and support the interpretation of spatial
situations and subsequent decision making; they are applicable to provide route instructions
enriched with salient objects for in- and outdoor environments, which is the preferred mode
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of route communication between humans (see e.g. [40, 43, 3, 26]). Finally, they may be used
to design environments which are conducive to wayfinding and navigation.

Given their practical utility several different ways of estimating the salience of objects
have been proposed over the years (see e.g. [33, 4, 37, 34, 41, 30]). There is, however, general
agreement that salience is not inherent to objects but ascribed to them by an observer,
where both, observer and observed, share the same environment (see [4]). Salience (and each
of its proposed subdimensions, e.g. visual salience) itself is, in statistical terms, a latent
variable, i.e. it cannot be directly observed, but must be measured using a combination of
variables. Subdimensions may differ depending on the selected model of salience (see section
2), e.g. in the model by Sorrows and Hirtle [39] the four subdimensions visual, cognitive,
structural salience and prototypicality were proposed. Using an extension of this salience
model Kattenbeck [19] proposes a set of measured variables for each of five subdimensions
and analyses the impact these have on each other and how these can be used to calculate
the overall salience of objects.

Survey-based methods are particularly useful with respect to this aspect because they
allow to collect data in-situ. This study uses the survey developed in [18] to present an
analysis of its measurement invariance. To this end, we collect a dataset of salience ratings in
Augsburg (Germany) and compare these ratings to those obtained in Regensburg, Germany
(see [19]). The main goal of this paper is to assess measurement invariance with respect
to environment, objects and observers of Kattenbeck’s measurement model of salience and
to analyze the observed heterogeneity taking environment and sense of direction (stratified
by gender) into account. The personal aspects were chosen for two reasons. First, there
is evidence that differences between genders regarding the preferred mode of orientation
exist (see [6] for an overview). Second, subdimensions of state of the art salience models (see
section 2) may be influenced by both, different levels (good vs. poor) and subdimensions
of sense of direction (allocentric vs. egocentric vs. cardinal directions): for example, visual
salience might be more important for those with poorer orientation skills because visual
dimensions do not require any knowledge of the structure of the space persons are navigating
in.

2 Related Work

The interest in diverging degrees of salience for different objects dates back to the 1960s
[25, 1]. Subdimensions of salience were, however, not distinguished before the turn of the
century. Sorrows and Hirtle [39] distinguish four subdimensions influencing salience:
1. visual salience, which describes visual characteristics of an object (e.g. salient color,

outstanding height),
2. cognitive salience, which focuses on the meaning of a landmark (e.g. through cultural or

historical importance),
3. structural salience, which is important because of its location in the structure of the

space and
4. prototypicality, which describes how typical an object is with respect to a category [36].

These subdimensions are not mutually exclusive. In contrast, a combination of all
subdimensions contributes to the overall salience ascribed to a single object. Many researchers
use the classification by Sorrows and Hirtle [39] to develop their own models to assess the
salience of objects. Raubal and Winter [33] define independent characteristics of landmark
salience of objects based on visual attraction, semantic attraction and structural attraction.
They do not consider prototypicality because extensive human subject testing would be
required to derive useful results [33]. The aspect of prototypicality, however, plays an
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Figure 1 A graphical representation of the Structural Equation Model (i.e. its structural model
part) presented in [19]. Table 4 provides the questions used as measured variables.

important role in the model presented in [8], where the usefulness of prototypes rather than
particular object properties was used to determine cognitively salient landmarks.

Raubal and Winter’s model [33] has been extended several times: Nothegger et al. [29]
extend and test the model on façades of buildings. Their proof of concept based on real
world data and human judgment shows that the model is a viable way to assess the salience
of landmarks. Winter [42] extends [33] by adding advance visibility as important factor for
landmark salience, i.e. a feature is more salient if it is identifiable earlier in a route than a
feature that can only be spotted at the very last moment.

Klippel and Winter [23] complement landmark research with an approach to formalize
structural salience. They describe objects as structurally salient if “their location is cognitively
or linguistically easy to conceptualize in route directions” [23, p. 347]. In their work they
propose taxonomic considerations of point-like objects with respect to their position along a
route.

A final extension to the original model stresses the importance of the observer. Caduff
and Timpf [4] provide a strong argument that the salience of landmarks is affected by the
perspective of the observer, the surrounding environment and the objects contained therein.
Salience is contingent on the current navigational context [4], i.e. an object’s salience does not
only depend on its individual attributes but also on its distinction with respect to attributes
of objects nearby [33]. Salience is, consequently, not an inherent property of an object but is
assigned to an object by the observer.

Based on these developments, Kattenbeck [20, p. 2] provides the following definition:

Given a local environment an observer is in, (overall) salience (OVSAL) is the
degree to which an object, persistent enough to be used in route instructions, draws
the average pedestrian observer’s attention. This degree is evoked by:
1. visual features of the object (visual salience - VIS),
2. the degree of prototypicality it shows (prototypicality - PRO),
3. how identifiable it is when approached (advance visibility - ADV),
4. the ease with which it may be integrated into a route description (structural salience

- STS) and
5. the degree as to which it can evoke prior knowledge (cognitive salience - COS).

GISc ience 2018
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Overall salience seems to be highly dependent on personal subdimensions (see also
[32, 11, 30, 38]), since VIS, PRO, COG and ADV depend on either perception or cognition
of the observer and only STS and, to a certain extent, ADV and VIS are influenced by the
physical environment. Taking the definition above as basis, Kattenbeck [18] reported data
collection based on a survey presented there (see table 4). The predictive capability of these
ratings was shown in [18, 19, 20] by means of PLS-based Structural Equation Models and
suggests highly intertwined subdimensions of salience.

The goal of the present study is to follow up on these survey-based methods of salience
measurement. This means, we collect an additional dataset applying the method described in
[19] in order to assess whether the model derived from the results presented there (see figure
1) shows invariance across different environments and user groups. We, therefore, use the
same statistical method as was used in [19], i.e. we apply PLS-based estimations (see section
4 for a short introduction on this method) of structural equation models to the new dataset
collected in Augsburg. We do this in order to gain a better understanding of the model of
salience, to determine if all necessary parameters have been included and to determine the
robustness of the model.

3 Data Collection Method

In this study we analyze two different datasets of salience ratings by individuals collected
while walking predetermined routes under guidance of an experimenter. For the first city,
Regensburg, which is a town in Southern Germany, the first author of this paper collected
data throughout his PhD [19]. As the goal of this study is the analysis of measurement
invariance, it was most important for the current study to gain a second dataset by collecting
the data for Augsburg in exactly the same manner as described there [19]. The data collection
method and the resulting dataset are detailed below. This data will be accessible via Data
in Brief https://www.journals.elsevier.com/data-in-brief by the end of 2018.

3.1 City 1: Regensburg, Germany
The Regensburg dataset is built from NrR = 55 routes with NoR = 362 objects (on average,
6 objects per route), which were rated by NpR = 112 participants (68 females, age range:
18-65 years, xageR=25.46 years). Experiments took 60 minutes on average (SD = 12 min,
range: 38-113 min). The data was collected between November 2014 and February 2015
(see [19] for more details). The methods employed to find a sample of objects and conduct
experiments were identical to those described for Augsburg below.

3.2 City 2: Augsburg, Germany
3.2.1 Selection of objects and routes
First, a sample of objects comparable to the one chosen for Regensburg had to be selected
in Augsburg. In accordance to [19] it included salient as well as non-salient objects and, in
addition, objects other than buildings (e.g. recycling bins, fountains or monuments) which
can be referred to in route instructions. Therefore, geographical coordinates of 480 locations
were generated randomly to gain a random sample of objects. The locations were inspected
on-site. If an object or building was located at the coordinate, it was added to the sample.
If neither a building nor any other object was located there the closest object in a randomly
drawn direction was chosen. In case an object was not accessible (e.g. railways) they were
excluded from the sample. Similarly, parked cars or other temporary objects were not added

https://www.journals.elsevier.com/data-in-brief
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to the sample. This resulted in a sample size of NoA = 352 objects for Augsburg. The
sampled objects were randomly combined into routes, such that the time required for a single
experiment was expected to be no more than 60 minutes. We aimed for an average of 6
objects per route. Taking these preconditions into account, NrA = 59 routes were derived for
Augsburg. The walking direction of each route was chosen randomly and each route was
assigned randomly to participants. As in [19] we aimed at two independent ratings for each
object.

3.2.2 Procedure
Data acquisition for Augsburg took place as part of course work for a seminar. Students
taking the class were carefully instructed such that they were able to carry out experiments
on their own. Participants were acquired via verbal announcements in university lectures
or directly by student experimenters. Two restrictions applied: First, participants had not
taken part in a prior experiment on pedestrian navigation. Second, special care was taken to
ensure that there was no relationship between participants and student experimenters to
avoid biases. A custom designed Android application facilitated the data collection in [19]
and this application was reused for our study in Augsburg. The experiments were conducted
between July 2017 and December 2017.

Each participant was guided on one of the routes by a student experimenter. Before
walking the route, participants were asked to complete a demographic data questionnaire also
comprising their personal interests. Participants completed, moreover, a German language
self-report sense of direction survey [27]. On completion of these questionnaires, a picture
of the first object to be rated was shown to the participants. Along the route, participants
had to identify each of the objects on their own. Once the object had been identified they
rated the object’s salience by answering the questions presented in table 4. Having finished
the survey, a picture of the upcoming object was displayed. Overall, NpA = 109 (age range:
19-65 years, xageA = 25.97 years, 38 females, 14% non-students) persons participated in
Augsburg. The experiments took 51 min on average (SD = 13 min, range: 23-83 min). These
values are comparable to those in Regensburg (see above). Unfortunately, due to issues with
the mobile Internet connection the answers of 15 participants were lost. As a consequence,
90 objects were rated by only one person.

4 Statistical Analysis

Structural Equation Modeling is a multivariate statistical analysis technique that is used to
analyze relationships between measured variables and latent constructs, i.e. between the five
constructs describing salience and the measured variables to describe them (such as shape,
age, length etc.). This section introduces PLS Path modeling as a statistical method and as
an adequate means of assessing measurement invariance. This is an important property of
a survey used to collect salience ratings: If given the survey measures the same construct
across different environments, user groups etc. and weights do not need to be updated for
different contexts.

4.1 PLS Path Modeling – A quick glance
In general, Structural Equation Models consist of two parts (see e.g. [12, p. 634f.]): The
structural model part describes the relationships among latent variables (constructs), whereas
the measurement model part establishes connections between each construct and the variables
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Figure 2 The model used for the analysis throughout this paper (see section 5.1 for the empirical
reason to use reflective measurement for visual salience).

used to measure its value (see figure 2). Constructs with outgoing arrows only are referred
to as exogenous, whereas those with incoming arrows are known as endogenous variables.
A set of measured variables (depicted as rectangles) is used to assess the value of each of
these latent variables, as they cannot be observed directly. Measured variables are related to
latent variables in one of two measurement modes [10]. Reflective measurement (indicated by
arrows pointing to measured variables) assumes that the unknown value of the latent variable
causes the observed values of the measured variables. In contrast, formative measurement
causes (arrow heads point to the construct) are thought of as causing the latent variable’s
value (see [2]).

Two methods to estimate structural equation models exist. The covariance-based approach
aims to maximize similarity between the model’s and the empirical covariance matrix. It is,
hence, based on the assumption of multivariate normality of the data. The variance-based
approach, which is called PLS Path Modeling [44, 45] is, in contrast, not based on any
distributional assumptions. It focuses, similar to other approaches involving regression, on
prediction, i.e. it maximizes the amount of variance explained in the endogenous construct(s)
[13, p. 140]. This predictive focus is particularly valuable in case of the analysis reported here,
where overall salience is the key target construct. When ratings of objects are collected in
different environments it is particularly interesting to see, whether the impact that different
latent variables have on each other is different. It is important to note that in traditional
PLS Path Modeling (for a discussion of consistent PLS Path Modeling see [7]) error terms
are not included on the latent variable level, i.e. latent variables are treated as composites
regardless of the measurement model specification (see [15] for details).

The statistical analysis proposed here comprises two steps: First, the measurement
invariance of the measurement model must be assessed. Second, the analysis of observed
heterogeneity is performed taking city and sense of direction (the latter also stratified by
gender) into account.

4.2 Assessing Measurement Model Invariance in PLS Path Modeling
Following the so-called MICOM-procedure suggested by Henseler et al. [16], measurement
model invariance is tested based on three different criteria. Configural invariance is a necessary
but insufficient condition for compositional invariance, which can be divided into partial and
full measurement invariance, respectively. These three components are explained below.
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4.2.1 Configural Invariance
Configural invariance can be achieved only in those cases where the same set of measured
variables has been used for all groups and preprocessing steps and settings during the
estimation process were identical (see [17, p. 142–143]). These preconditions were met
in terms of data collection as the survey used to collect data comprised the same set of
German language questions as presented in [19] (see table 4 for a translated version) and
the measured variables were used to serve as proxies for the same set of latent variables.
Moreover, SmartPLS software [35] was used for all comparisons. The weighting scheme
(path), maximum number of iterations (300) and the stop criterion (10−10) were kept equal
across group comparisons. The configural invariance is thus given for all comparisons reported
in this paper.

4.2.2 Compositional Invariance
Compositional variance can be divided into partial and full measurement invariance, both of
which have an immediate effect on the type of comparisons which are feasible. Therefore,
compositional invariance will be checked as a first step in each part of the analysis.

4.2.2.1 Partial Measurement Invariance

This criterion deals with latent variable score correlations (see [16] and [17, pp. 143–146]),
which are assessed by means of a permutation test. First, the weights are found for each
group. Second, latent variable scores are calculated for the whole dataset based on weights of
each group separately. Pairwise correlations between the resulting latent variable scores are
then established. Confidence intervals for correlations are found by permuting observations
across groups and re-assessing the latent variable scores and correlations at least 1 000 times.
This procedure provides statistical evidence whether the correlations of scores for the same
composites differ significantly from one. Throughout the analysis presented below, 5, 000
permutations were used in all cases.

4.2.2.2 Full Measurement Invariance

If both, configural invariance and partial measurement invariance are given, full measurement
model invariance can be achieved. It is given if and only if “the confidence intervals of
differences in mean values and logarithms of variances between the construct scores of the
first and second group include zero” [16, p. 416]. It is important to note, however, that full
measurement invariance will not be discussed throughout this analysis because we focus on
structural relationships between the latent variables.

5 Results

We use the results presented in [19] to base our analysis on the structural model depicted in
figure 1, including all formative causes for visual salience (see table 4).

The results are reported in the following order: We, first, assess differences between the
two cities. Based on these results, we, second, analyze structural model differences based
on the three subfactors (allocentric orientation, ego-centric orientation, orientation using
cardinal directions) proposed in [27]. A third step of the analysis will reveal whether an
interaction between gender and sense of direction yields group differences.
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Table 1 Outer weights for both cities (standard PLS algorithm). Significant differences (K = 5000
permutations) are indicated by bold-faced column headers.

age area intensity tone condition height length location material motion pattern shape signage size width

Augsburg .073 −.018 .109 .256 .005 .085 −.058 .315 −.225 .094 .157 .267 .142 .017 .300
Regensburg .240 .090 .266 .116 −.173 .010 −.010 .318 .017 .035 .097 .156 .194 .378 −.161

5.1 Comparing Two Cities
A permutation test revealed that compositional invariance was not given between the two
cities: Correlations of cognitive salience (COS), prototypicality (PRO) and visual salience
(VIS) differed significantly from one. With respect to COS (cor = .947, 90%-CI[.985]) the
indicator c_eas turned out to have particularly adverse properties: Its outer loading in
Augsburg is very small (λc2 = .105). As a consequence, the indicator was removed from the
model for the whole analysis, leaving COS as a 2 item construct. Furthermore, a closer look
into VIS (cor = .918, 90%-CI[.940]) revealed significant differences in outer weights between
both cities. While the Regensburg data suggests variable size to be most important (see [19]),
this causal indicator is rendered insignificant for Augsburg. Table 1 shows the outer weights
for both cities based on 5 000 permutations. Given these differences a redundancy analysis [14,
p.121–122] was conducted to check whether formative measurement is statistically adequate
for the Augsburg dataset. Based on the fact that the path coefficient did not meet the
threshold of (β = 0.80) suggested in [14] we decided to use the reflective indicators to measure
visual salience.

With respect to prototypicality, a very slight (cor = .996, 90%-CI[.997]), yet significant
difference in correlations from one was found. As no theoretical insights justify the deletion
of the construct (see [17] for this kind of advice), we decided to keep this construct but did
not take direct or total effects of this latent variable into account. It is, however, reported
for completeness reasons. As a consequence analyses reported in the remainder of this paper
will be based on the model shown in figure 2.

A reassessment of compositional invariance with c_eas being removed and reflectively
measured visual salience establishes partial compositional invariance. Thus, an analysis of
structural relationships on pooled data is statistically feasible.

When Regensburg and Augsburg are compared, no significant differences are found for
path coefficients nor total effects, i.e. the structural relationships are invariant across different
environments of data acquisition. Pooled data from both cities can, thus, be used for the
subsequent analyses reported in this paper.

5.2 Sense of direction
The pooled dataset was now used to compare good and poor orientation per one of the
factors allocentric, egocentric or cardinal direction. The construct correlations in table 2
indicate that partial compositional invariance was established for all groups and differences
in structural relationships can be assessed.

Based on the compositional invariance we uncovered the following significant differences,
where groups of spatial abilities were found according to [28]. This means, good and poor
groups were found based on raw values by age for the three subscales of sense of direction
(allocentric, egocentric, cardinal directions) proposed in [27]. For example, a person aged 35
years having a raw score of 7 or less for factor cardinal direction strategy is assigned to the
poor group, whereas persons with a raw score greater than 7 are assigned to the good group
(see [28, pp. 805 and 809]).
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Table 2 The mean correlations between bad and good groups based on 5 000 permutations.
Neither of these correlations differs significantly from zero (the smallest p-value found across groups
and latent variables was p = .132 ), i.e. partial measurement invariance is established between groups
and structural relationships can be assessed. Please note: PRO is given for the sake of completeness,
only, yet not taken into account (see section 5.1).

ADV COS OVSAL PRO STS VIS

allocentric 1.000 .999 1.000 .999 1.000 1.000
egocentric 1.000 .999 1.000 .999 1.000 1.000
cardinal 1.000 .999 1.000 .999 1.000 1.000

good allocentric vs. poor allocentric orientation The direct effect ADV → STS (βg =
.718, βb = .769, 90%-CI = [−.047; .047]) differs significantly between both groups,
suggesting that poorly allocentric oriented person’s rely more on visibility in advance
when judging structural salience than good allocentric oriented persons do.

good egocentric vs. poor egocentric orientation Both groups differ with respect to the
direct effect visual salience has on overall salience (βg = .561, βb = .643, 90%-CI
= [−.072; .070]), i.e. visual aspects turn out to be more important for persons with poor
egocentric orientation.

good cardinal vs. poor cardinal The direct effect V IS → OV SAL (βg = .573, βb = .655,
90%-CI = [−.073; .072]) differs between both groups as well as COS → OV SAL (βg =
.039, βb = −.041, 90%-CI = [−.060; .059]) does. These figures, again, indicate that visual
aspects are more important to poorly cardinally oriented persons and that cognitive
salience might have a negative impact for this group.

Taken together, these results indicate slight yet important differences between these groups.
There is, however, evidence in psychology suggesting that gender may be an important factor
with respect to orientation preferences (see [6] for a review).

5.3 Sense of Direction Stratified by Gender
We assessed the influence that gender has, first, between and, second, within groups. The
between comparison is used to shed light on whether gender is a sufficient explanation for
the SoD-related differences found, while the within part examines gender-related differences.
The sense of direction groups were, again, found according to [28] (see above, section 5.2).
Compositional invariance for both types of comparisons is presented in table 3. It reveals
that compositional invariance is not given for several group comparisons across sense of
direction factors.

5.3.1 Between sense of direction groups within gender
allocentric In contrast to the other factors, three out of four group comparisons show

compositional invariance. Comparing well oriented females to poorly oriented males does
not yield significant results and well oriented males do not differ from poorly oriented
males. In contrast, well allocentric oriented females differ from poorly oriented females.
Visibility in advance has a stronger direct effect on structural salience in the poor group
(ADV → STS (βgf = .720, βpf = .821, 90%-CI = [−.065; .065])); this turns out to be the
case for the impact visual salience has on overall salience (V IS → OV SAL (βgf = .554,
βpf = .689, 90%-CI = [−.104; .135])).
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Table 3 The construct correlations (4-digits, not rounded), where group comparisons showing
compositional invariance are bold-faced. Correlations significantly (α = .1 was applied to ensure
conservative results) different from 1 are shown in italics. PRO is given for the sake of completeness,
yet not taken into account (see section 5.1). The group sizes, i.e. the number of ratings in each
group, are given in parentheses once per group for each factor. Level of SoD and gender are denoted
as follows: g-f means good oriented females, p-m means poor oriented males etc.

Factor level of SoD and gender ADV COS OVSAL PRO STS VIS

allocentric

g-f (389) vs. g-m (295) .9998 9985 .9999 .9991 .9997 .9998
p-f (200) vs. p-m (309) .9996 .9987 .9999 .9981 .9997 .9998
p-f vs. g-m .9997 .9991 .9999 .9958 .9996 .9998
g-f vs. p-m .9997 .9982 .9999 .9994 .9998 .9998
g-f vs. p-f .9996 .9971 .9999 .9992 .9997 .9998
g-m vs. p-m .9997 .9993 .9999 .9972 .9997 .9998

egocentric

g-f(275) vs. g-m (167) .9996 .9960 .9999 .9984 .9997 .9997
p-f (314) vs. p-m (437) .9997 .9992 .9999 .9990 .9998 .9999
p-f vs. g-m .9996 .9977 .9999 .9981 .9996 .9997
g-f vs. p-m .9997 .9989 .9999 .9990 .9998 .9998
g-f vs. p-f .9997 .9976 .9999 .9993 .9998 .9998
g-m vs. p-m .9997 .9990 .9999 .9938 .9996 .9998

cardinal

g-f (247) vs. g-m (225) .9997 .9983 .9999 .9987 .9996 .9997
p-f (342) vs. p-m (379) .9997 .9988 .9999 .9988 .9998 .9998
p-f vs. g-m .9996 .9983 .9999 .9987 .9997 .9998
g-f vs. p-m .9997 .9987 .9999 .9988 .9998 .9998
g-f vs. p-f .9996 .9974 .9999 .9993 .9998 .9998
g-m vs. p-m .9997 .9982 .9999 .9987 .9996 .9997

egocentric Given the previous finding regarding the non-stratified egocentric group, the
results of the compositional invariance when comparing males and females between both
groups was unexpectedly not given for three out of four possible comparisons due to
correlational differences in visual salience. Visual salience has a higher total effect on
overall salience in poorly egocentric oriented females (βgm = .725, βpf = .855, 90%-CI
= [−.078; .079]). Moreover, the direct (βgm = .064, βpf = −.069, 90%-CI = [−.104; .103])
and total (βgm = .071, βpf = −.064, 90%-CI = [−.064; .065]) effects of cognitive salience
on overall salience are rendered significant. These are, however, in general very low.

cardinal Similar to the findings for the egocentric factor, only one group comparison is
feasible out of four when orientation abilities based on cardinal directions are considered.
The reason for this, however, is different: It is due to significant correlational differences
found for construct visibility in advance. Based on this result, poorly visual salience has
a higher impact on overall salience for poorly oriented males than is the case of good
oriented females (βgf = .506, βpm = .636, 90%-CI = [−.104; .104]). Vice versa, advance
visibility is more important for overalls salience in good cardinally oriented females than
poorly oriented males (direct effect ADV → OV SAL (βgf = .196, βpm = .072, 90%-CI
= [−.120; .117] and the total effect ADV → OV SAL (βgf = .382, βpm = .243, 90%-CI
= [−.099; .096]).
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5.3.2 Within sense of direction groups but across gender

allocentric Poorly allocentric oriented females turn out to differ significantly from the male
group with respect to two direct effects: Visibility in advance has a higher impact
on structural salience for females (βpf = .821, βpm = .726, 90%-CI = [−.064; .063]).
Furthermore, cognitive salience shows an adverse effect on structural salience in females
(βpf = −.010, βpm = .095, 90%-CI = [−.101; .102]). This effect is very small, though.
A group comparison by gender for the good group, however, is not feasible because
compositional invariance is not given.

egocentric For poorly egocentric oriented females the direct effects ADV → STS (βpf =
.766, βpm = .693, 90%-CI = [−.057; .058]), COS → OV SAL (βpf = −.069, βpm = .009,
90%-CI = [−.070; .074]), COS → STS (βpf = .029, βpm = .147, 90%-CI = [−.082; .082]),
V IS → ADV (βpf = .639, βpm = .705, 90%-CI = [−.064; .063]) must be distinguished
from poorly egocentric oriented males. These findings indicate that visual salience has a
larger impact on advance visibility for males as well as cognitive has on structural salience.
Similar to allocentric orientation visibility in advance shows a larger impact on structural
salience for females than for males. Similar to allocentric orientation compositional
invariance is not given for a good group comparison between gender.

cardinal Females showing a poor orientation based on cardinal directions differ from males
with respect to the direct effect V IS → ADV (βpf = .645, βpm = .710, 90%-CI
= [−.061; .063]): Visual salience has a higher impact on advance visibility for poorly
oriented males than for females and vice versa for well-oriented females as compared to
males (βgf = .684, βgm = .586, 90%-CI = [−.096; .097]).

6 Discussion

Our first goal is to assess measurement invariance; secondly, we are interested in differences
between groups of environments and participants. As measurement invariance is a precondi-
tion of a heterogeneity analysis, we will discuss both aspects with respect to the different
grouping variables.

6.1 Environment

The results suggest that the strength of the relationships (see figure 2) between the sub-
dimensions of salience does not differ significantly. The coefficients found can, hence, be
used to calculate values for overall salience across different environments. Having found no
heterogeneity among different cities is, however, in contrast to those models stressing the
importance of the environment (see e.g. [4, 11, 38]). Having said this, one must keep in
mind that the data were collected in European cities of Roman descent with a similar layout,
although the architectural differences between these two environments are substantial. These
differences are reflected in the formative measurement model for visual salience (see section
5.1 ): In Regensburg the variable size has the strongest impact, but is rendered insignificant
in Augsburg where shape is most important. This finding suggests that the differences
between environments are most important at the level of individual formatively measured
variables. The structural relationships based on reflective measurements, however, can be
used to calculate overall salience scores across different environments and can, consequently,
be used in mobile information systems.
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6.2 Sense of direction and gender
Although measurement invariance was not established for a number of group comparisons with
respect to these factors, we find evidence for the interaction between gender and orientation
ability. The effect visual salience has on overall salience is particularly affected. The results
suggest that a poorer orientation in females yields a larger importance of visual salience than
is the case for good oriented women. This indicates the importance of personal cognitive
factors. Individual aspect may also play an important role regarding the impact of cognitive
salience. The coefficients found for cognitive salience are, although significant, very small.
They show, moreover, a sign change in the poor allocentric oriented group, indicating an
adverse effect of cognitive on structural salience in females. One has to keep in mind, though,
that random measurement error may have an impact on these results because all but two
indicators were removed for this construct, i.e. the lower bound for a suitable number of
indicators according to reflective measurement theory is reached (see [21, pp. 178–179]).

We also find a gender-related effect in general. For example, we find evidence that visual
cues have a larger impact on overall salience for females than males – despite their equal
level of sense of direction. This finding may be related to the general difference in orientation
strategies (see [6]): The preference for egocentric orientation in females may invoke visual
cues more. This difference in strategies may also be important to explain the effect visual
salience shows on visibility in advance (larger for females than males in the good cardinal
group and vice versa for the poor cardinal group and the poor egocentric group) and visibility
in advance has on structural salience (larger for females in both, the poor egocentric and
poor allocentric group). These results are generally in line with those by Picucci et al. [31],
who report on gender differences based on spatial confidence and orientation strategies

These findings with respect to sense of direction and gender stress the importance of
personal factors in salience ratings. They reinforce the findings for indoor environments
by Lawton et al. [24]: Individual and gender related differences seem to exist in outdoor
environments, too. The importance of individual factors is fostered statistically by the
generally large number of group comparisons which do not show partial measurement
invariance. This statistical property indicates missing variables or constructs within the
model which need to be studied in the future.

7 Conclusions and Future Work

The main goals of this paper are to assess invariance with respect to environment, objects
and observers of Kattenbeck’s measurement model of salience. Based on this, we analyze
the observed heterogeneity, taking environment and sense of direction (stratified by gender)
into account. We are, therefore, interested in assessing whether the measurement model may
be re-used in different contexts, i.e. whether it provides a robust way of collecting salience
ratings. The results indicate that the structural model is invariant across environment,
i.e. the strength of the relationships between the subdimensions of salience does not differ
significantly. The coefficients found can, hence, be used to calculate values for overall salience
across different environments. We, moreover, provide empirical evidence that this is true
with respect to both, gender and sense of direction. The degree of influence found for visual
dimensions is, generally speaking, in line with what was to be expected: The impact of
visual dimensions seems to be different for women and men. Mobile information systems
should, thus, take these differences into account, when calculating route instructions. The
compositional invariance problems (configural invariance is given for all comparisons reported)
occurring throughout the analysis of personal factors can be regarded as an indicator for
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the importance of personal factors beyond gender and sense of direction. Taken together,
our results indicate that more studies on salience, especially on the impact of personal
characteristics, are needed and models have to be adapted so that they can incorporate
personal factors.

With respect to future work a next step will be to assess whether the found, often slight,
differences have an impact on wayfinding performance in real world scenarios. This will also
be examined with respect to the different salience yielded by different models, e.g. by a
comparison of wayfinding performance when salience values are based on the Raubal and
Winter model [33] vs. the survey-based ratings used in the current study. Furthermore, the
need to empirically measure personal preferences has become obvious and will be examined
in a future workshop. Thirdly, it will be interesting to learn more about differences in weights
subdimensions of salience show on each other and on overall salience, when, e.g. urban and
non-urban environments are compared or different languages and/or Non-European urban
settings are contrasted.
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A Appendix: Variables and Questions

Table 4 Table 4 was taken literally from [18, p. 10]: “A description of constructs (LV) and
measured variables (MV) used in this study. Column ToM indicates the type of measurement
employed for the MV, where R denotes reflective and F means formative measurement, respectively.
Please note: All questions were translated from German to English.” Please note: We used the
German language questions presented in [19] to conduct experiments in Augsburg.

LV Description MV Phrasing ToM

Salience
[OVSAL]

”The overall salience of
geographic features is defined
as a three-valued vector,
whereby the components
capture perceptual, cognitive,
and contextual aspects of
geographic objects" [4, p. 264].

ov_att To what extent does this object draw your attention? R

ov_por How suitable is this object to be used as a
point of reference? R

ov_mem How memorable is this object? R

Proto-
typicality
[PRO]

”[. . . ] that is, how
typically they represent
a category" [39, p. 43]

p_exa
To what extent is this object suitable as an example of
objects belonging to the category
you named?

R

p_img To what extent does this object represent
your impression of such objects? R

p_sim How often do you encounter similar objects? R

Visual
Salience
[VIS]

”the features of contrast with
surroundings, prominence of spatial
location, and visual characteristics
that make the landmark
particularly memorable" [39, p. 45].

v_loo To what extent does the appearance of
this object draw your attention? R

v_odd How unusual is the appearance of this object? R
v_eye How eye-catching is this object? R
v_rec How recognizable is this object? R

Please find below several visual attributes. For each
of these please indicate the extent to which the
named visual attribute contributes to an object’s salience
given its surroundings.

v_cin intensity of color F
v_mot motion (e.g. flashing, flow) F
v_col tone F
v_loc location (e.g. raised, very close to street) F
v_siz size F
v_sha shape F
v_con condition (e.g. new, dirty, etc.) F
v_sig signs attached F
v_hei height F
v_wid width F
v_len length F
v_are area F
v_pat pattern F
v_mat material (as far as identifiable) F

v_age To what extent is this object salient
as a result of how old it looks? F

Structural
Salience
[STS]

”Objects are called structurally
salient if their location is
cognitively or linguistically
easy to conceptualize in route
directions" [23, p. 347].

s_eas How easy is it for you to refer to this object in a
route description? R

s_lor How easy is it to describe this object’s location
as part of the current route? R

s_imp To what extent is this object located at an important
location within the current route? R

s_dir
To what extent may this object be suitable
to determine whether this is the appropriate
route or a change in course is required?

R

Advance
Visibility
[ADV]

The degree as to which an object
at a potential decision
point may be seen
from the direction it
is approached at (cf. [42]).

a_dis To what extent can one easily refer to this object
from afar? R

a_vis Given the current route, to what extent were you able
to see this object from a distance? R

a_per To what extent is this object generally perceptible
from afar? R

a_sui In the context of the current route to what extent
is this object suitable to explain the route? R

Cognitive
Salience
[COS]

”[. . . t]he processing of information
is based on prior
knowledge, while intentions
and strategies of the observer
are in control of the allocation
of attention. In our framework,
we will use the term
Cognitive Salience to refer to
the endogenous factors that
influence salience" [4, p. 255]

c_per To what extent do you have personal memories
concerned with this object? R

c_his To what extent does this object’s appearance
suggest it to be historic? R

c_wor To what extent do you regard this object to be
worthy of preservation? R

c_cus To what extent is the current use
of the object obvious? R

c_pus To what extent is the former use
of the object obvious? R

c_eas How easy is it for you to label this object? R
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Abstract
Dynamic maps which support panning, rotating and zooming are available on every smartphone
today. To label geographic features on these maps such that the user is presented with a consistent
map view even on map interaction is a challenge. We are presenting a map labeling scheme,
which allows to label maps at an interactive speed. For any possible map rotation the computed
labeling remains free of intersections between labels. It is not required to remove labels from the
map view to ensure this. The labeling scheme supports map panning and continuous zooming.
During zooming a label appears and disappears only once. When zooming out of the map a
label disappears only if it may overlap an equally or more important label in an arbitrary map
rotation. This guarantees that more important labels are preferred to less important labels on
small scale maps. We are presenting some extensions to the labeling that could be used for more
sophisticated labeling features such as area labels turning into point labels at smaller map scales.

The proposed labeling scheme relies on a preprocessing phase. In this phase for each label
the map scale where it is removed from the map view is computed. During the phase of map
presentation the precomputed label set must only be filtered, what can be done very fast. We are
presenting some hints that allow to efficiently compute the labeling in the preprocessing phase.
Using these a labeling of about 11 million labels can be computed in less than 20 minutes. We are
also presenting a datastructure to efficiently filter the precomputed label set in the interaction
phase.
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1 Introduction

If today someone wants to explore a place anywhere on earth, he uses map services like
Google Maps, Here Maps or others. In addition to a classical map these services allow not
only to view a static map but to interactively explore the map via zooming and panning of
the displayed region. This interactive approach allows to show a rough overview as well as a
detailed view of the interesting places on demand. In contrast to former static maps it is not
possible to label interactive maps by hand unless zooming is restricted to a set of fixed zoom
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Figure 1 Germany labeled in 3 different levels of detail at a coarse, medium and high level of
detail (© OpenStreetMap contributors).

levels. But even in this case it’s a lot of work to develop an appropriate labeling for the map
on each of the fixed map scales. So people started working on algorithms to automatically
perform the label selection and placement. In figure 1 you see a map of Germany in three
distinct levels of detail from coarse (in the top third) to detailed in the bottom third, labeled
with the proposed labeling scheme

In order to help the user to track the labeled features while continuously zooming or
panning the map some best practices were presented (e.g. [9, 3]). An essential one is that
two labels should not overlap each other to ensure readability of the presented map. Of
course each label should be placed close to the feature it labels. During map interaction
a well-known requirement is that a feature which is labeled on a specific scale should not
vanish except for moving out of the viewing range. When it comes to zooming, the label of a
less important feature, e.g. a street, should disappear before the label of a more important
feature, e.g. the town the street is located in. All of these requirements need to be considered
if a map is labeled, may it be by hand or automatically.

In navigation systems the panning and zooming of the map is often done by the system
itself. So the most appropriate view is presented to the user, e.g. a car driver. If the
driver needs to change roads, a detailed view is presented to him. He is presented with a
coarse map view if he travels long distances on a highway. What is special to the navigation
system setting is that the presented map often is not north oriented but oriented in the
current direction of travel. This leads to a special demand for the map labeling. Imagine
you are sitting in your car focused on traversing a road junction. When you looked at your
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navigation system most recently you saw some nearby towns labeled with their names. After
having passed the junction you look at the presented map again that has been rotated in the
meantime. Unfortunately you are now presented with a completely different set of labels.
This is because some of the former labels would intersect in the current orientation. Some
labels, which were overlapping before, can now be presented without overlapping. These
modifications in the presented labeling make it difficult for you to regain orientation again.

The scenario shows that a labeling in case of rotating maps especially in navigation
systems need to fulfill an additional requirement. A label that is presented to the user at a
specific rotation angle should not overlap with another label in any rotation angle. Of course
the requirements we described above for interactive maps also need to be fulfilled in this
particular use case.

In this paper we will present a new labeling scheme, which allows to compute labelings for
arbitrary map scales at interactive speed. The consistency requirements, our labeling scheme
guarantees to be fulfilled, are described in section 2. The scheme is based on a preprocessing
phase and a filtering step during run-time. It is described below in section 3. In section 4
we describe some extensions to the model, which allow to add more sophisticated labeling
features. We implemented the approach and extended the well-known OpenLayers web based
map visualization framework. Some details and practical considerations are presented in
section 5. Section 6 concludes the paper and sketches some further research topics.

Let us shortly create a common understanding of the basic terms we are using in the
context of map interaction before describing some related work. A map may show a specific
geographic region, for example Germany, Europe or the whole planet. If the map shows only
the most important details, we are talking about a coarse or low level of detail. In contrast
a fine grained map shows a lot of smaller features, i.e. a high level of detail (see figure 1
for an example). In practice the level of detail is interrelated to the map scale of the map
visualization. So a map of a high scale (e.g. 1:1,000) shows a higher level of detail than a
map of small scale, e.g. 1:1,000,000). Given an interactive map at a small scale, showing
Germany for example, we may zoom into the map, i.e. increase the map scale while shrinking
the view area, to get a more detailed view of our capital Berlin.

1.1 Related Work
Some of the first and well-known approaches to systematically describe general principles
of static map labeling were done by Eduard Imhof in the 1980s [9]. He distinguishes three
general types of features that can be labeled on a map: area, line and point features. For
these features he describes best practices for the placement of associated labels to gain best
visibility and readability of a map. His observation are the basis of the work at hand.

In the 1990s the problem to automatically label dynamic maps at an interactive speed
arose. Kreveld et al. in 1997 published some models about how to select a suitable subset of
settlements for interactive display [10]. In particular their approach of computing a ranking
of the settlements that allows to efficiently obtain a solution using filtering can be found in
the labeling scheme we are presenting here.

In 2006 Been et al. proposed some general consistency desiderata for dynamic map
labelings [3]. Those criteria can be considered almost standard in the field of automatic
labeling of dynamic maps. They also describe a framework to automatically derive map
labelings fulfilling these criteria at interactive speed for map interactions like panning and
zooming. Their approach can be considered a direct parent of the approach we are describing
in the paper at hand. In the cited paper Been et al. also provide a nice overview of the
research on this topic before 2006.

GISc ience 2018



8:4 Labeling Maps with Label Disks

While Been at al. only consider zooming and panning interaction, Gemsa et al. [7, 8]
are considering map rotation. Starting with a given map labeling they defined a model to
efficiently derive a subset of labels that can be visible at a specific rotation angle without
overlapping each other. Their approach covers map rotation only in particular they do not
target the problem of presenting a consistent labeling at several levels of details.

From the algorithmic side there is some previous works of our working group targeting the
efficient computation of the so called elimination sequences of growing disks [5, 2, 6]. Given a
set of points pi ∈ R2 (or Rd) with associated radii ri. Each of the points induces a disk (or a
hyperball) with radius ri · t. Starting at t = 0, t increases continuously and the less prioritized
disk is eliminated if two disks touch. The goal is to efficiently compute the elimination
sequence and the elimination times for each of the disks. In these two papers a total order
for the growing disks is assumed but the results (algorithms and complexity analysis) nicely
transfer to other priority functions which only have constant evaluation time. Ahn et al.
in 2017 introduced another algorithmic approach that further decreases the computational
complexity in [1]. If no order on the disks is given, the problem of computing optimal
elimination sequences is NP-hard [3]. Some used mixed-integer programming to compute
optimal solutions for these cases [4, 15]. But because of the computational complexity of the
problem, in practice they were able to compute solutions only for instances of a few hundred
points.

1.2 Contribution

We propose a labeling scheme for dynamic maps, which allows panning, rotating and zooming
interaction. It provides consistent labelings at an interactive speed using a computationally
challenging preprocessing phase that allows to use efficient and fast filtering techniques during
the interaction phase. The scheme is based on the described works of Kreveld et al. and Been
at al. . We go beyond the work of Kreveld et al. by additionally taking into account some
consistency requirements during zooming operations. Those criteria are inspired by the ones
proposed by Been at al. but are exceeding their work by respecting some sort of hierarchy
of the geographic objects. In contrast to the work of Been at al. we are also considering
rotation as a possible map interaction.

Our results can be extended to some more sophisticated labeling scenarios like area or
line labels that turn to point labels while zooming out of the map. This idea is based on an
observation of Imhof in [9], namely that area and line labels turn into point labels on smaller
map scales.

The labeling scheme incorporates a preprocessing step and allows to use simple filtering
and spatial search during the interaction phase to compute a consistent labeling at an adequate
speed. The preprocessing of the data can be done efficiently by a proposed algorithm with a
running time of O(∆2n(log n + ∆2)) where ∆ is the maximum ratio between two distinct
label radii (see [2]). To get an appropriate subset of labels out of the precomputed label
ranking we use a priority search tree in combination with a 2-dimensional kd-tree. The
implementation is open source and can be found on GitHub [11].

In an associated student project, we extended the well-known OpenLayers web framework
[13] to present the capability of our new approach in practice. The so called Tile Rotating
Universal Map Projection Presentation is open source and available online [14].
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2 Consistency requirements

Based on the consistency desiderata defined by Been at al. in [3] we define the following
requirements for interactive maps which allow panning, rotating and zooming of the map
view:

(D1) During monotonous zooming labels should not appear and disappear more than once.
This requirement covers the user expectation that during zooming an object is visible
until it is no longer important enough (when zooming out). When zooming in it ensures
that a label can vanish if the labeled object covers the whole view or the labeled point
for example got replaced by an area or line feature label at larger scales.

(D2) Labels should not change position or size abruptly on map interaction. This is because
abrupt label changes during map interaction may distract the user and make it difficult
to track the position of the labeled objects.

(D3) During panning and rotation labels are not allowed to appear or disappear except for
moving in and out of the view area. This implies that labels might be partly visible if the
label disk is is not fully contained in the view area. Especially in navigation systems the
map rotation changes automatically, for example when it is linked to a driving direction.
The requirement ensures that always the same set of labels is visible even if the map
rotation changed since the last time the user looked at the map. This allows the user to
keep orientation with a low cognitive load.

(D4) The label placement and selection is a function of scale and the view area. It does not
depend on the interaction history. Given this requirement, the map at a specific map
setting looks like a static map labeling. So users might directly recognize the places if
they look at the map.

Based on the work of Kreveld et al. [10] we add another constraint targeting the fact
that there is some inherent order of precedence for geographic features to be labeled.

(D5) During zooming a label disappears only if it is in conflict with an equally or more
important label. For example a megacity label is preferred to a label of a small rural
settlement. So if those two labels are in conflict, the megacity label should be shown
instead of the settlement label. Also on small map scales a street name is less important
than the label of the city in which the street is located. During the label selection process
these precedences need to be taken into account. Our label selection process additionally
respects what Kreveld et al. called the relative importance of an object. For example a
town might have a high relative importance if it is in the middle of nowhere compared to
a city that is located directly beside a megacity with millions of inhabitants. The relative
importance manifests itself in the fact that the label of the town is shown longer than
the city label while zooming out of the map.

Now that we have defined the consistency requirements we want our labeling to fulfill, we
will continue describing our model in the following section.

3 The Framework

Formally we are considering a set of point of interest locations P = {p1, . . . , pn}. For each
point pi we are considering its label li that may be a label string, an icon or the like. We
also assume to have a priority function that decides for two points p and q if p is prioritized
over q or vice versa or none of both. The problem we are faced with is the following: Given a

GISc ience 2018



8:6 Labeling Maps with Label Disks

Label string
Label

(multiline)

Figure 2 Example of point of interest labels with label strings (left) centered above the labeled
feature and icons centered at the labeled feature and centered above the labeled feature (right -
[16]). The associated label disks are depicted by the surrounding dashed circle.

specific view area, scale and rotation angle select a subset of points such that a visualization
of the corresponding labels fulfills the requirements as defined in section 2. In the following
we will describe a labeling model at first and a label selection process that allows to efficiently
retrieve such a point set. In our case efficiently means that the label selection process can
be subdivided into two phases. In a first phase the label set is preprocessed such that in
a second interaction phase the actual label selection reduces to a simple and fast filtering.
This allows to efficiently query the data set for a consistent labeling during the interactive
visualization phase.

3.1 The label model
In order to fulfill the consistency criteria as defined in section 2 we define a label disk for each
of the points to be labeled. The label disk is centered at the corresponding point location
and has a specific radius r depending on the label size, i.e. the label length, the font and font
size or the icon and icon size. We require a point label to be completely contained within the
corresponding label disk in each rotation angle but we do not care about its actual placement.
In order to fulfill requirement (D2) and (D4) the label placement must be a function of
scale and rotation angle. It must ensure that the label does not change its position and size
abruptly during map interaction. Except for these restrictions, the concrete label placement
within the label disk is unconstrained. A fairly simple example for such a placement function,
which fits the idea of the model well, is depicted in figure 2. There you see a point label that
is horizontally aligned and centered above the labeled feature. During rotation the label
remains horizontally aligned and keeps its absolute size on zooming. Icons can be placed
e.g. centered at their location or centered above the location like in case of the text label as
described before. Of course many other placements are also possible.

Using these label disks, we define a consistent labeling to be a subset of the labels such
that the corresponding label disks are non-overlapping. Because each label is completely
contained within its corresponding label disk by definition, this ensures that none of the labels
are overlapping in any rotation of the map view. So we ensured that during rotation none of
the labels need to disappear to avoid label overlap. In figure 3 you can see a visualization of
Germany labeled with our scheme in two different rotation angles.

To ensure consistency during panning we come back to a concept Been et al. called an
“inverted sequence” in their approach in [3]. The intuitive label selection and placement
method is to first select the subset of labels in the view area and placing the corresponding
labels afterwards. As Been et al. argued in their paper it is hard to achieve interactive
speed and consistency with this approach. What we suggest here is to first pick a consistent
labeling globally. From this restricted label set we finally display the labels intersecting our
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Figure 3 A labeling of Germany in two different orientations (© OpenStreetMap contributors).
The basic label set contains all human settlements extracted from the OpenStreetMap dataset [12].

view area. This selection process ensures that the only way labels appear or disappear on
panning is by moving in and out of the view area.

In summary until now our label model requirement (D3) is fulfilled, i.e. labels only
appear and disappear by moving in and out of the view area. The requirements (D2) and
(partially) (D4) are fulfilled by an appropriate label placement function. For the latter we
did not yet define the dependency to the map scale but we are going to make up for it right
now.

The map interaction we haven’t considered yet is zooming. Zooming out of the map by
decreasing the map scale naturally leads to decreasing the level of detail of the map, i.e. less
details get visible and labeled on the map. To support this we define the label disk radii
to be dependent on the map scale. Instead of the label radius ri we define the disk radius
of pi to be ri · 1

s where s is the current map scale. You see that decreasing the map scale
s enlarges the label disks so a consistent labeling contains less labels – the level of detail
decreases. By using these scale dependent label disks, the selection of a consistent labeling
gets a function of scale as required in (D4).

The defined label model now allows to have a consistent map view for map interactions at
arbitrary map scales. What we have not yet taken into account are the consistency criteria
concerning the zooming process itself. As defined in the consistency requirements (D1) and
(D5) for the zooming we have some requirements telling us that labels should not appear
and disappear more than once during monotonous zooming. Additionally we require a label
to be removed from the view only if it conflicts with a more or equally prioritized label. We
will target this in the following section.

3.2 The label selection
In the previous section we defined a labeling model that ensured some requirements to
be fulfilled when panning and rotating on an arbitrary map scale. We now want to focus
on the process of selecting consistent labelings such that the remaining requirements are
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Figure 4 Label cones and two planes (brown, light green) that correspond to label selections at
different map scales.

fulfilled. These are concerning the process of zooming in and out of the map, i.e. increasing
or decreasing the map scale. There are two requirements left: (D1): ’During monotonous
zooming a label should not appear and disappear more than once’ and (D5): ’During
zooming a label disappears only if it is occluded by an equally or more important point label’

For the sake of simplicity we only consider the process of zooming out of the map, i.e.
decreasing the map scale. It is straightforward to transfer the following observations to the
process of zooming in. Furthermore we will look at the label disks only and not rely on the
actual label placement but assume that this is done in a suitable way as described in the
previous section.

In order to find a proper consistent labeling for a target map scale S we use the following
process: Starting with a sufficient large s we know that all the corresponding label disks are
free of intersections. We continuously decrease s until two of the label disks touch. Now
the priority function comes into play. If one of the corresponding points is prioritized over
the other, we remove the less prioritized one. Otherwise we remove one of the two. We
continue with the process until s = S, i.e. our target scale is reached. In the case that we
are free to decide which of two equally important point labels to remove, the decision we
make influences the further process and so the quality of the labeling. We will come back to
this point in the conclusion and further research section.

The process immediately ensures requirement (D5) to be fulfilled as a label is removed
only if its label disk is in conflict with a label disk of an equally or more important label.
Requirement (D1) is also fulfilled by design of the label selection as a label never reenters
the process after being removed once.

As you can see the label selection process always leads to the same label “elimination
sequence” if we assume the label set to be unchanging and the breaking of the ties to happen
deterministically. Each label can be assigned a specific map scale where it is removed from
the label set during the process. This opens space for our promised precomputation phase.
Because the label elimination sequence and the elimination scales for the labels do not change,
we can compute them separately in advance. Having computed them for a set of labels we
can derive a consistent labeling as follows. For a given map scale S we choose the subset
of labels having an associated elimination scale smaller than S and restrict the subset to
those labels intersecting the view area. This allows to retrieve a consistent labeling at an
interactive speed.
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Figure 5 Labeling of a map using a map labeling with popup scales at a larger (left) and smaller
map scale (right) where the “Berlin” label popped up (© OpenStreetMap contributors).

Looking at the process from a more abstract point of view we are presented with the
following so called space-scale cube: The labels are located in a 2-dimensional plane for
example when using the Mercator projection. Using 1

s as a third dimension, we see that each
label is associated to a cone (see figure 4). The elimination scale of a label determines the
height of the cone and the label cones do not intersect. In this view a labeling of a map on
a specific scale S corresponds to the intersection of the label cones with the plane at the
height oh 1

S . In the referenced drawing you see two planes corresponding to two different
map scales in brown and bright green. The intersection of a cone with the plane corresponds
to the label disks of the label at the specific map scale.

4 Extending the model

The labeling model we developed in the previous section opens up opportunities to some
extensions. In the following we will discuss some of these.

What we did not take into account yet is the point where a label occurs while zooming
out of the map. In the basic labeling model we described before, all the labels are visible at
the largest map scale A straightforward approach to extend the labeling model is to introduce
a “popup scale” for a label. It means that the label becomes visible at this specific map scale.
At larger map scales the label does not exist and also does not occlude any of the existing
labels. This concept for example allows to add a label of a city on coarser map views only
such that the label does not occlude details of the city while being in a zoomed in map view.
This extension does not violate the requirement (D1) as the label only appears once during
a monotonous zooming operation. An example of a labeling of Berlin is depicted in figure 5.

Having in mind the concept of popup scales as described above, we introduce another
extension. As Imhof pointed out in [9] line or area feature labels turn into point labels on
smaller map scales. For example a church might be displayed as an area on larger map scales
but on a coarser map view its area degenerates to a single point. Analogously the label needs
to turn from an area label to a simple point feature label. In figure 6 you see a map in two
different map scales where the area of Berlin is labeled as an area on the left hand side while
it is labeled as a point object on a smaller map scale (right). The same can be applied to line
segment labels. By using the concept of popup times we are able to include this fact into our
point labeling scheme. Simply setting the popup time for the point label to the map scale
where the area turns into a point in the visualization allows us to support this visualization
feature.

Obviously the labeling scheme is not focused on maximizing the number of labels visible
but on visibility and readability of the map with low cognitive load. For example for simple
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Figure 6 Labeling of an area using an area label (left) and a point label at smaller map scale
(right)(© OpenStreetMap contributors).

horizontally aligned labels a lot of the available disk space remains unused. To further
increase the number of labeled objects one can think of a multilayer approach as follows.
Each label which is removed while zooming out is moved to a second label layer, which is
overlayed by the main labeling layer. In this second layer labels might use another font type,
color or opacity to make clear it is a background layer. Technically the second layer uses the
same labeling model, i.e. none of the disks of labels in the second layer overlap. For each
label the elimination scale in the first layer is the popup scale in the second layer. So for
each of the layers the consistency requirements are fulfilled but the labels of the different
layers might overlap in the visualization. In figure 7 you see an example of a labeling with
two layers.

Now that we described the labeling scheme from theoretical point of view and discussed
some extensions to the model, we will briefly have a look at the practical details of our work.

5 Computing labelings in practice

As described in the previous section the labeling computation subdivides into two phases. In
a preprocessing phase an elimination order or label ranking is computed. The general process
and some optimizations to do the precompution more efficiently are discussed in the following
section 5.1. When it comes to the visualization and interaction phase the precomputed
elimination order needs to be filtered efficiently. Section 5.2 describes an approach to do
this by using a combination of a priority search tree and a 2-dimensional kd-tree. To finally
visualize the label set we extended the OpenLayers visualization framework. The changes we
made are described in section 5.3.

5.1 Preprocessing
A basic algorithm to compute the elimination order is given in the following bottom up
approach. For each label pi we compute the next upcoming label disk collision, i.e. the
collision at the largest scale si. For the collision at the largest scale we decide which label to
remove and start over again with the shrinked label set until only one label is left. This basic
algorithm has a computation complexity of O(n3) as we need for each label to check the
remaining labels for conflicts in a total of n− 1 iterations. The crucial observation is that
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Figure 7 Labeling of Stuttgart that uses a second label layer (filled gray font) to increase the
number of labeled points. In this particular rotation the labels “Stuttgart” and “Stuttgart-Ost”
in the first layer are occluding the label of “Uhlandshöhe“ in the second layer (© OpenStreetMap
contributors).

a label may collide with the most far away label if the disk radii are suitable chosen. This
observation forces us to really check each other label when checking for the next collision.

In the following we describe some observations which allow to speed up the algorithm.
This is a brief sketch of two of our previous results published in [5] and [2].

A first observation allowing us to reduce the computational complexity is that in each
iteration we only need to enforce that the globally next collision needs to be correct. All
other computed next collisions might not be correct but the overall sequence of eliminations
nevertheless is computed correctly. We see that a collision may be computed twice from
each of the two colliding labels. In fact it is sufficient if only the label with the larger radius
correctly computes a collision. A second observation guiding to a more efficient algorithm
affects two subsequent iterations. Consider an iteration at scale s and a label disk which
cover less than half the distance to the nearest neighbor of the associated label. We can
argue that we do not need to search for the next collision of this labels until its label disk
covers half the distance to the corresponding nearest neighbor. In the meantime some labels
might be removed from the label set shrinking the set of labels we need to check for possible
conflicts. These two observations allow us to conclude the following: When searching for a
next collision of a label we only have to consider a subset of the labels. The maximum size
of this particular subset depends on ∆ = rmax

rmin
, i.e. the ratio between the largest and the

smallest of all radii r in the instance.
Furthermore we observe that many predicted collisions remain the same in two subsequent

iterations. So we only need to compute them once. We proved that it is sufficient to maintain
the computed collisions in a priority queue. When removing a label we only need to recompute
the next collision for a subset of direct neighbors of this label.

The described improvements heavily depend on efficient implementations of two spatial
operations: “Finding the nearest neighbor in a point set for a query point” and “Finding all
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Table 1 Peak memory consumption (space) and execution times (time) for the precomputation
of real-world data sets from the OpenStreetMap project [12].

#items time space
Dataset [103] [mm:ss] [MB]
Germany 1, 308 2 : 05 1, 715
Europe 6, 468 12 : 23 7, 947
Planet 11, 006 19 : 33 13, 852

points within a distance of d around a query point”.
We implemented the preprocessing algorithm with its various optimizations for point

sets with a total order. This allows us to decide the priority function in constant time. In
our implementation we used Delaunay triangulations to implement the spatial queries. Our
implementation allowed us to compute label rankings for millions of labels in a reasonable
time (see table 1). These fast computation times enabled us to recompute labelings for
quickly changing point sets, which for example are containing live traffic information.

5.2 Label Selection
In the interaction phase we are provided with a set of labels and the corresponding elimination
scales, i.e. a location, a scale value and the label information. For a given query consisting of
a range given in maximum and minimum latitude and longitude coordinate and a map scale
we need to report all label points located in the region with an elimination scale smaller than
the requested scale. To efficiently answer such queries we use an approach that combines
a priority search tree with a 2-dimensional kd-tree. The data structure is a 2-dimensional
search tree of the label positions. The tree fulfills the min heap property on the associated
elimination map scales.

The root node of the tree contains the label with minimum elimination scale. The
remaining labels are split into two equally sized subsets according to their longitude coordinate.
For each of the subsets a subtree is constructed rooted at the label with the minimum
elimination scale and the remaining labels are split according to their latitude coordinate.
The left subtree contains all the labels with smaller coordinate and the right subtree all the
labels with larger coordinate. In the third layer the labels are again split according to their
longitude coordinate and so forth. To each of the tree nodes we also append the value of the
coordinate value, which separates the labels in the two subtrees.

Now at query time we traverse the data structure starting at the root node. If the current
node has an elimination scale which is less or equal to the requested map scale we need to
further explore the subtree. If the current node is contained within the query rectangle the
label is to be reported. We need to further explore the left subtree only if the split value
of the node is larger than the corresponding minimum value of the requested range. If the
maximum of the corresponding query dimension is larger than the split value, we need to
explore the right subtree.

5.3 Visualization
To evaluate the labeling result and to provide them to the public there was a student project
associated with the research project. An extension to the well-known OpenLayers framework
for web based map visualization [13] was developed. Screenshots of the testing instance can
be seen in the figures 1 and 3. We created a REST based web service that allows to query a



F. Krumpe 8:13

precomputed label set for the active labels in the given display setting, i.e. displayed map
range and the current map scale. On the client side the modified OpenLayers framework uses
map tiles without point of interest labels and adds a layer displaying our label set on top of
it. The labels are placed centered at the label position and remain horizontally aligned when
the map is rotated by the user. One of the harder parts in implementing the framework
extensions was to present the continuous zooming capability of our approach. Therefore we
needed to modify some parts of the original framework. First we needed to interpolate the
map scale between the fix zoom levels, which are provided by the framework itself, in order
to visualize the correct subset of labels. Second we had to adopt the framework such that
during the zooming between the levels a refresh of the label layer was triggered.

We also implemented a caching mechanism for the labeling data that allowed to reduce
the number of required server requests. This mechanism shows an important property of our
labeling scheme. When requesting the labeling for a specific map setting, we in fact enlarge
the requested query range and increase the requested map scale. The provided labeling
now contains additional labels that do not need to be displayed in the current setting. But
the required labeling is a subset of the provided one and we can filter out the additional
labels by simply skipping elements with a larger elimination scale or those which are not
contained within the displayed region. The crucial point is that provided label set allows
us to directly handle small zooming or panning interactions locally without the need to
immediately request new data from the server.

6 Conclusion

We introduced a new model for labeling interactive maps, which allows panning, zooming
as well as rotating the map. The labeling ensures some consistency criteria to be fulfilled.
During continuous zooming a label appears and disappears at most once. If a label disappears
while zooming out, it is because there exists a map rotation where it overlaps a label of equal
or higher importance. When panning or rotating a map a label only appears or disappears if
moving out of the view area.

The labeling model depends on a precomputation phase that allows to efficiently derive
labelings for arbitrary map scales in an interaction phase using filtering. The precomputation
can be done in less than 20 minutes for labelings with around 10 million labels on a standard
desktop computer if a total order on the labels is given. This allows to quickly recompute
labelings for example to add traffic information labels.

In an interactive visualization phase the labeling computation is a filtering step only. An
algorithm to efficiently do that even for large datasets was introduced. The resulting label
set has some nice property namely that a labeling for smaller map scales is a subset of the
current label set. So labelings for smaller map scales can be derived by filtering the current
label set. This idea was also sketched in the paper at hand.

Further research should target the computation of labelings for point sets which do not
have a total order but some kind of hierarchy levels the points of interest are belonging to. A
top level might for example contain all the megacities. The next levels of decreasing priority
might contain other city, town, street and point of interest labels and so forth. In such
instances heuristics might be used to solve conflicts between labels of the same hierarchy
level. The outcome of such heuristics could be compared with optimal results, e.g. computed
by a linear program solver.

Regarding the quality of the computed labeling it is of interest to compare the computed
labeling with a maximum subset of labels whose associated disks are free of intersections at
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this particular scale. This would be suitable to show the influence of the zooming consistency
requirement to the quality of the labeling, i.e. the number of labels.

Further development of our visualization might contain the labeling of area and line
features that turn into point labels on smaller map scales. An initial approach how to do
that was sketched in the section about extensions to the label model.
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Abstract
We describe a method and system design for improved data discovery in an integrated network
of open geospatial data that supports collaborative policy development between governments
and local constituents. Metadata about civic data (such as thematic categories, user-generated
tags, geo-references, or attribute schemata) primarily rely on technical vocabularies that reflect
scientific or organizational hierarchies. By contrast, public consumers of data often search for
information using colloquial terminology that does not align with official metadata vocabularies.
For example, citizens searching for data about bicycle collisions in an area are unlikely to use
the search terms with which organizations like Departments of Transportation describe relevant
data. Users may also search with broad terms, such as “traffic safety”, and will then not discover
data tagged with narrower official terms, such as “vehicular crash”. This mismatch raises the
question of how to bridge the users’ ways of talking and searching with the language of technical
metadata. In similar situations, it has been beneficial to augment official metadata with semantic
annotations that expand the discoverability and relevance recommendations of data, supporting
more inclusive access. Adopting this strategy, we develop a method for automated semantic
annotation, which aggregates similar thematic and geographic information. A novelty of our
approach is the development and application of a crosscutting base vocabulary that supports
the description of geospatial themes. The resulting annotation method is integrated into a novel
open access collaboration platform (Esri’s ArcGIS Hub) that supports public dissemination of
civic data and is in use by thousands of government agencies. Our semantic annotation method
improves data discovery for users across organizational repositories and has the potential to
facilitate the coordination of community and organizational work, improving the transparency
and efficacy of government policies.
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1 Introduction

In recent decades, great strides have been made to encourage data creators and providers to
make the findings of their research or results of their activities publicly accessible. Researchers
receiving grant funding now face mandates to preserve and expose data resulting from their
research [9]. Parallels can be drawn between the mounting movement surrounding open
access in academia and similar movements well underway in the civic arena surrounding
shared municipal data; all levels of government, from Federal agencies to city governments,
have started exposing data [14]. Open data, also known as open Public Sector Information,
contribute to citizens’ rights to public access of government information. Open data policies
at various levels of government have stimulated and guided the publication of both spatial
and non-spatial government data [15]. The resulting creative downstream use of civic datasets
is staggering, ranging from mobilization of grassroots citizen initiatives to uptake by private
application developers [7]. By making civic data about a range of topics, from departmental
budgets to bicycle collisions, consumable through APIs, governments such as the City of Los
Angeles1 have become better connected to their citizenry.

However, simply making data accessible online does not guarantee their discoverability
[1]. The likelihood of discovering thematically relevant geospatial data is still quite low;
this is due to two key geospatial issues. The first issue is that data produced by co-located
and adjacent governments are often described differently. Thus, discovering spatial data
about bicycle collisions provided by neighboring governments, such as Arlington and Fairfax,
VA along with state data, for example, is not trivial. This is because data, such as bicycle
collision statistics, are described in a heterogeneous way by neighboring municipalities and by
various levels of government. A second issue is that civic data are not described using terms
that public consumers use. Governments may collect and provide traffic collision statistics,
while consumers may want to assess community safety for cyclists.

It is unrealistic to imagine all providers of civic data conforming to a single metadata
standard or providing suites of additional colloquial keywords to resolve these issues. In fact,
the multiplicity of inward-looking open data policies at various levels of government make this
untenable [15]. Instead, we ask how semantic mappings can bridge the gap between terms
used in peoples’ daily lives and terms from technical governmental metadata, thus improving
the recall and precision of open civic data. Our approach bridges data provider and data
user terms by developing a crosscutting base vocabulary that expands core geospatial themes
and can be used to better describe civic data. We demonstrate the value of our approach by
applying the vocabulary to automatically annotate data on a novel open access platform.

The contributions of this work are as follows:
A system for harvesting provider-contributed data descriptions
A base vocabulary of core geospatial themes mapping provider to consumer descriptions
A protocol for semantically annotating data with core geospatial themes for consumers

The remainder of this paper is organized as follows. Section 2 provides background on
the studied open data platform. Section 3 surveys challenges of and approaches focused on
improving data discovery. Section 4 discusses the method developed to enrich tags during
metadata harvesting. Section 5 describes the resulting implementation. Section 6 discusses
the results of the work and presents a research outlook.

1 http://geohub.lacity.org/

http://geohub.lacity.org/
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2 Background

In order to validate the method design and evaluate results, this work integrates semantic
annotation into an open access collaboration platform, Esri’s ArcGIS Hub2. This platform
exposes organizational data via ArcGIS, which is a geospatial data management, visualization,
and analytics system used by governments, industry, academia, and other organizations to
support planning and operations. ArcGIS integrates desktop software with cloud-hosted
tools and data services for distributed information access that can be shared privately or
with the public. Using ArcGIS Online, members of organizations and the public can create,
edit, and share maps and other data. This global system organizes a content-rich catalog of
information across a breadth of scientific themes and operational domains.

ArcGIS Hub is a new open access platform that supports and organizes civic engagement
and direct collaboration between governments and their constituents. ArcGIS Hub extends
the ArcGIS Online system with new capabilities for open data sharing, configurable metadata
catalogs, integration with regional and national metadata registries such as Data.gov3, and
analysis tools for the public to visualize and share perspectives on data relationships.

Governments and other enterprises can use ArcGIS Hub to create custom websites for
open data sharing that allow the public to easily search, access and download data. ArcGIS
Hub’s primary audience are the general public: people and groups outside of the organizations
sharing the data. While ArcGIS Hub integrates with proprietary software, it also serves as
a standalone platform that enables anonymous, public access to datasets from any other
platform or data provider; it is not necessary to have any authentication credentials in order
to discover or use open access data shared through ArcGIS Hub.

As of early 2018, over 100,000 datasets had been made available through ArcGIS Hub
by more than 5,000 governments, academic institutions, and other organizations. These
datasets are discoverable by search term, specified by user keyword, and by area of interest,
which can be specified by map interface. The current state of search in ArcGIS Hub is based
on keyword matching, which matches user queries against dataset titles, descriptions, and
tags. A limitation of this type of search however, is that it fails to capture broader or related
contexts of the query, only returning content that has a title, description, or tags containing
the input term. For example, a search for “bicycle” would not return related content, such
as “pedestrian”, or broader content, such as “transport”.

Civic data providers are primarily focused on making their data available and secondarily
focused on making their data discoverable to public consumers, often only providing descrip-
tions or tags when required and often using domain-specific terms. This creates semantic
and schematic barriers to data discovery, resulting in a gulf between terms that users and
terms that providers use to describe and search for the same data. Resulting challenges to
discoverability and current approaches to address them are the focus of the next section.

3 Challenges and Approaches

Data shared through public repositories satisfy basic accessibility requirements, but are often
siloed and difficult to discover. A recent report from the Open Research Data Task Force
[13] found that the two main challenges to using open data are: 1) finding data to use and
2) (re)using them. While this is especially true of academic data scattered across diverse

2 http://hub.arcgis.com/
3 https://www.data.gov/
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domain repositories, it is also true of civic data. The current silos for civic data are not
simply organizational, but semantic and schematic, rooted in the technical vocabularies
used to categorize and structure data [4]. The main challenges to reusing civic data are the
domain-specific terms used to describe data and their attribute schemata [13].

Innovations from the arenas of academia, government, and industry demonstrate contrast-
ing, yet complementary, approaches to addressing discoverability challenges [9]; advances in
each arena also inform this work. Recent innovations in discoverability have resulted from
the implementation of linked data technologies, which allow for data to be self-describing [2].
The uptake of linked data technologies has resulted in an ever-expanding graph of shared
knowledge4, replete with reusable ontologies from many domains. Linked data technologies
address key semantic and schematic challenges, aiding in many arenas such as in the discovery
of scientific data for reuse and discovery across integrated civic data streams [1, 11].

3.1 Semantic Challenges
The first challenge to civic data discovery is semantic. Semantic heterogeneity is understood
to result from differing mental models of phenomena as well as from differences in naming
conventions; naming heterogeneity can be overcome with term mappings using thesauri, but
cognitive heterogeneity is understood to be a more difficult problem to solve in the absence
of a minimum set of common definitions [5]. Our work focuses on overcoming heterogeneous
naming of semantically similar content, resulting from divergent metadata standards.

The rigor and quality of data classification and tagging schemes can vary greatly by data
provider. In the case of highly curated data, such as Federal data layers shared through Esri’s
Living Atlas of the World,5 tags for each dataset have high agreement and control, grouping
the data into one of several predefined themes: demographics, transportation, landscape,
oceans. . . Similarly, data conforming to the ISO 19115 metadata standard6 adhere to a highly
controlled vocabulary describing what the contents are about by keyword: agriculture, biota,
economy, health. . . However, as of early 2018, only 66,000 (about 8 percent) of the 760,000
items in the ArcGIS Hub catalog had formal metadata.

Metadata files in ArcGIS Hub are also not indexed for search; instead, keyword search in
Esri’s ArcGIS Hub is based on search by regular expression against the titles, descriptions,
and tags of content. Organizations contributing data supply their own tags and descriptions,
which results in varying levels of quality. Relatively few tags are based on a controlled
vocabulary and descriptions of data have varying levels of completeness. This results in a
situation where search for “bicycle collisions” returns results for Washington D.C. where data
have been assigned the tags of “transportation” and “collision”, but not for the neighboring
city of Alexandria, VA where the data have been tagged with “transit” and “accident”.

3.2 Schematic Challenges
The second challenge to civic data discovery is schematic. Schematic heterogeneity is
understood to result from variations of conceptual schemata within or across disciplines; it
can be overcome by schema integration [5].

Governmental organizations such as law enforcement agencies that report traffic accidents,
including bicycle collisions, adhere to such integrated specifications, in this case the Model

4 http://lod-cloud.net/
5 https://livingatlas.arcgis.com/en
6 https://www2.usgs.gov/science/about/thesaurus-full.php
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Minimum Uniform Crash Criteria (MMUCC)7 developed by the National Highway Traffic
Safety Administration (NHTSA). This data model provides a reporting schema; local agencies
can adapt it as needed, but it defines a minimum set of uniform fields that can be identified
across municipal crash datasets. These criteria specify attribute names (i.e. “County
Name”), definitions, and expected data types (i.e. “GLC Code”). Another well-adopted data
model developed with interoperability in mind is the Local Government Information Model8.
Similarly, it defines feature datasets (i.e. “Facilities Streets”), feature classes (i.e. “street
lane width”), and attribute fields (i.e. “lane width, type: small integer”).

Where common data models are used, it is possible to easily reuse, and even combine,
datasets. However, the majority of data discoverable through Esri’s ArcGIS Hub do not
conform to any common data models. Attribute fields are defined ad-hoc and are also not
indexed for search unless specified separately as tags.

3.3 Linked Data Approaches
The need for improved access to civic data parallels that for academic data. Just as research
groups, or even academic domains, publish and reuse data according to different standards
across various repositories, governmental agencies and municipalities also adhere to a variety
of standards with varying levels of quality. The rise of Internet of Things (IoT) technology,
which is enabling the evolution of “smart cities”, has also created new sets of challenges
related to the volume, velocity, and variety of civic data streams. The challenges that have
made heterogeneous civic data difficult to integrate and harmonize in the past have been
successfully met by semantic annotation of data streams, which enables their alignment [3].

Rather than semantically annotating civic data after the fact, some governments have
adopted linked open data principles as a standard for data sharing; “smart cities” such as
London9 and Dublin10 have launched campaigns to expose operational city service data
streams in an open, consumable format [7]. Esri Ireland for example now serves national
geospatial information as linked data, consumable through an API [6]. In a linked data
framework, it is not only easier for both humans and machines to consume civic data, but it
is also easier to combine data from multiple sources, for example across levels of government.

One reason for this is that semantically annotated data can be dereferenced, resolving
issues of uncertainty concerning attribute values or terms. For example, the United Nations
Sustainable Development Goals ontology resolves terminological ambiguity while tracking
progress toward shared goals on a multinational scale [11]. The outcomes of such successful
linked data approaches motivated us to develop a similar method for semantically annotating
civic data in order to improve user search. This method is the focus of the next section.

4 Methods

In order to improve the discoverability of civic data, we have developed and implemented
a base vocabulary and a semantic annotation system. Semantic annotation augments
official metadata with relevant tags supplied by a vocabulary, thus expanding the relevance
recommendations of data. The method taken to develop and implement an automated
semantic annotation system is summarized in the following steps:

7 https://www.nhtsa.gov/mmucc
8 http://solutions.arcgis.com/local-government/help/local-government-information-model/
9 http://connected-data.london/
10 http://smartdublin.ie/
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Figure 1 ArcGIS Hub categories reflect existing themes assigned to datasets manually as tags.

1. Formalize base vocabulary for core geospatial themes
2. Extend vocabulary by reusing existing concept hierarchies
3. Augment existing metadata with extended tag hierarchies
4. Evaluate system performance for search

4.1 Formalizing the Base Vocabulary
A key contribution of this work is the development and formalization of a compact base
vocabulary that maps prototypical themes of government departments to aspects of users’ lives.
This vocabulary addresses two geospatial problems: 1) it makes data shared by governments
that are co-located or adjacent discoverable; and 2) it makes descriptions of the phenomena
that data are about semantically relevant to public users. The base vocabulary categories
shown in Figure 1 were developed in collaboration with civic stakeholders, municipal staff,
research organizations, and Esri’s Local Government Team11. The vocabulary holistically
organizes data and tools, allowing them to be referenced.

While these categories reflect typical organizational structures of civic government, they
also capture core geospatial themes that communities want to track and measure. These
categories are currently used as search facets for data in ArcGIS Hub. While they may
structurally reflect issues that communities prioritize, they may not reflect the terms that
community members may use when searching for this data. They also may not reflect the
terms that a given organization uses to describe its data.

In order to formalize ArcGIS Hub Categories, we began by building a thesaurus of concepts
modeled in Protégé12, an open source ontology editing software. We opted for a pragmatic
adoption of the Simple Knowledge Organization System (SKOS) to model these concepts
for a number of reasons: SKOS supports flexible modeling of hierarchical relationships; it is

11 http://www.esri.com/software/arcgis/arcgis-for-local-government
12 https://protege.stanford.edu/

http://www.esri.com/software/arcgis/arcgis-for-local-government
https://protege.stanford.edu/
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used widely across numerous domains; and it is often used in term expansion activities13.
For these reasons, we were able to reuse authoritative and dereferenceable concepts already
published to the Semantic Web by organizations also using SKOS.

Some data available through ArcGIS Hub, such as layers exposed through Esri’s Living
Atlas of the World, have already been classified and tagged with ArcGIS Hub Categories.
These include broader categories like “healthy” and narrower categories like “disease”.

However, user-specified terms are not reflected in the ArcGIS Hub Categories. Analysis of
the ArcGIS Hub query log revealed that users of Esri’s ArcGIS Hub tend to search for data
using terms that relate to their own colloquial conceptualizations of theme and geography.
In a sample of 470,796 queries performed in 2015, only 12,257 (or 2.6 percent) used any form
of the predefined categorical Hub keywords, (i.e. “healthy”, “transportation”, . . . ). This
means that the majority of themes present in user searches likely take another form. This
could mean that users are searching with synonyms of these keywords (i.e. “well-being”),
or narrower concepts (i.e. “bicycle”), which would not yield results. Similarly, in the same
sample of queries, only 64,353 (or 27.3 percent) use geographic references, like coordinates,
addresses, place types, or zip codes in their searches. Similarly, geographic concepts that
reflect place hierarchy (i.e. “Ronald Reagan National Airport is in Arlington County, VA”) or
proximity (i.e. “Reagan Airport is next to East Potomac Park”) are not reflected in results.

4.2 Extending the Base Vocabulary
We imported existing concepts matching the Hub category tags from Library of Congress
Subject Headings (LCSH)14, Princeton WordNet 3.115, and the USGS Thesaurus16. Reusing
these three vocabularies to describe civic data is novel, as they have been developed and
traditionally used to describe library resources and scientific data. These vocabularies provide
sufficient terminological coverage for extending the Hub categories shown in Figure 2.

LCSH are a controlled and well-defined set of terms used for resource classification. In
addition to providing a stable identifier, LCSH concepts also adhere to a SKOS scheme and
provide broader, narrower, and related concepts for each term. For example, “agriculture” in
LCSH has useful variants “farming” and “husbandry”, narrower terms like “agronomy”, and
related terms like “food supply” and “land use, rural”. LCSH is designed to be used as a
thesaurus; its subject headings provide bibliographic access to related subject matter.

Similarly, WordNet terms are also available in in a SKOS scheme and are consumable as
RDF, a linked data model. WordNet is a lexical database that combines the capabilities of a
dictionary and a thesaurus for the English language. Concepts matching Esri Hub categories
were retrieved from WordNet synsets, which are sets of synonyms with translations. For
example, the synset for “agriculture” in WordNet includes “husbandry” and “farming” along
with multilingual translations for each. Designed to support cognitive science applications,
WordNet is suitable for information retrieval, text classification, and translation tasks [10].

A final source of Hub concept extension comes from the United States Geological Survey
(USGS) Thesaurus, which is currently under development. As such, it provides identifiers
without dereferencing; despite this, it is a rich source of authoritative scientific definitions and
related terms in a SKOS scheme. For instance, it provides examples of the term agriculture
used in the topics of “farming” and “horticulture”. The USGS Thesaurus is designed to aid
public interpretation of science web resources and topics.

13 https://www.w3.org/TR/skos-ucr/
14 http://id.loc.gov
15 http://wordnet-rdf.princeton.edu
16 https://www2.usgs.gov/science/about/thesaurus-full.php
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Figure 2 Extension of ArcGIS Hub terms to related categories in existing vocabularies.

Other sources were experimented with but ultimately were not implemented. Schema.org17
was considered for thematic and geographic expansion, but was rejected as its top-level
concepts are too broad, while narrowing too quickly. Geonames and DBPedia were also
investigated, but have not yet been implemented; concepts from these sources may be included
in the near future, as both are rich sources of colloquial place-types and themes found in
users’ daily lives. It will be possible to extend the base vocabulary following the method
developed in this work as other candidate vocabularies are considered.

To further expand ArcGIS Hub terms, we undertook additional mappings from existing
categories to community standards, including INSPIRE18, FGDC19, and ISO 19115 data
specifications. INSPIRE provides 34 spatial data themes, which specify common data
models and code lists. INSPIRE themes aim to support the creation of a European Union
spatial data infrastructure. These themes include “hydrography”, “transport networks”, and
“protected sites”. Similarly, the National Geospatial Data Asset (NGDA) provides a set of 16
themes with appointed lead agencies and the aim of supporting data interoperability. These
themes include “climate and weather”, “land use-land cover”, and “soils”. Finally, ISO 19115
provides a set of 19 themes, including terms like “biota”, “health”, and “oceans”. Each of
these community standards function as a controlled vocabulary for describing spatial data
resources in their respective metadata contexts; their terms overlap to varying extents.

Pragmatically, we were interested in areas of term overlap, as mapping these standardized
community terms to the expanded set of ArcGIS Hub terms establishes semantic links
between thematically related resources. Various agencies conform to these standards when
describing their data. Federal agencies, such as the U.S. Geological Survey, use NGDA themes
to describe resources shared through ArcGIS Hub. The FGDC for example maintains a
keyword thesaurus with these terms and points to it as a best-practices resource for publishing

17 http://schema.org/docs/schemas.html
18 https://inspire.ec.europa.eu/data-specifications/2892
19 https://www.fgdc.gov/what-we-do/manage-federal-geospatial-resources/

a-16-portfolio-management/themes

http://schema.org/docs/schemas.html
https://inspire.ec.europa.eu/data-specifications/2892
https://www.fgdc.gov/what-we-do/manage-federal-geospatial-resources/a-16-portfolio-management/themes
https://www.fgdc.gov/what-we-do/manage-federal-geospatial-resources/a-16-portfolio-management/themes
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Figure 3 SPARQL query template (left) and expanded terms (right) for term “agriculture”.

datasets to open data clearinghouses; it states that “the more robust your theme keyword
list, the more likely it can be located by others (and yourself)”. While this is true in principle,
describing data with controlled keywords alone will not make data readily discoverable for
public consumers of data who often search for data using colloquial terminology.

In order to augment official metadata, the controlled vocabularies for INSPIRE, NGDA,
and ISO 19115 were incorporated into the expanded ArcGIS Hub terms. We designated
mappings between related terms from each controlled vocabulary in Protégé using the SKOS
predicate related. Thus, a term like “transportation” has: related terms from INSPIRE
(“Transport networks”), NGDA (“Transportation”), ISO 19115 (“Transportation”); broader
and narrower terms from LCSH and USGS Thesaurus (“public transit”); and synonyms
and translations from WordNet (“ES - transporte”). Each of these tags becomes a triple
statement pointing to externally defined resources.

4.3 Augmenting Existing Metadata

We exported the base vocabulary from Protégé as triple statements in Terse RDF Triple
Language (Turtle)20 syntax and imported them into a Fuseki21 triplestore, set up as a public
endpoint. The vocabulary is stored as a graph that can be queried using SPARQL syntax,
which allows for queries across multiple endpoints. Figure 3 shows an example of a query
template in Fuseki returning query results in JSON to be integrated as auxiliary metadata.

ArcGIS Hub includes a search index of aggregated dataset records from all data providers.
When organizations like governments indicate their data is public, ArcGIS Hub compiles
multiple metadata sources into a custom search index to support multiple content search
and discovery services.

20 https://www.w3.org/TeamSubmission/turtle/
21 https://jena.apache.org/documentation/
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Figure 4 Semantic annotations added to metadata, supporting search through query expansion.

The search index process, shown in Figure 4, includes three phases: harvesting, valid-
ation, and enrichment. During harvesting of a dataset, Hub collects metadata from the
ArcGIS Online item information, associated formal metadata, the feature service and feature
layer definition, and data attribute aggregate statistics. Validation includes heuristics to
measure metadata completeness, support for secure connections with HTTPS, and query
responsiveness, which determines if the data are actually accessible. During the enrichment
phase, a dataset is decomposed into relevant keywords which are then sent to the semantic
query service to retrieve new semantic tags that are then attached to the dataset metadata.

For example, Flood Zone data from Evansville, Indiana are tagged “Evansville, Vander-
burgh County, Flood Zones, IN, environmental”. Using each of the terms from each of the
tags results in a superset of synonyms, translations, broader terms, and narrower terms,
shown in Figure 5. These terms are each added to the dataset record in the search index
using an internal semantic annotation service. The semantic annotation service is an internal
API that hosts the base vocabulary as as a queryable API using the Apache Jena Fuseki
server. This server supports defined requests to build a set of tags that expand the dataset
metadata for broad, narrow, translated, and similar terms.

At query time, these additional terms can be used to match user queries such as “human
health”, or “impact assessment” that may not have another similar word match in the dataset
metadata collection but will now have results based on matching these new, additional
semantic tags. The semantic tags also include translations such as “air pasang” (Indonesian)
or “nousuvesi” (Finnish). Beyond similar terms, there are broader terms such as “Natural
disasters”, and “Water” and narrower terms such as “Flood damage prevention” and “Forest
influences” that can be used to recommend new search terms to the user for refining their
search results.
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4.4 Evaluating system performance for search
In practice, search for data is now semantically aided; related content, such as synonymous
terms, can be retrieved when inferred as thematically related. For example, a search for
traffic accidents can now return other content related to a broader concept of ‘transportation’
as pedestrian fatalities. While only a small fraction of data (about 8 percent) in ArcGIS
Hub initially included formal metadata, semantic annotations added related metadata in the
form of related terms, supporting data discoverability and integration.

In order to evaluate the contributions of our approach, we consider that semantically
enabled search wasn’t previously possible: this informs our baseline criteria. Search efficacy
is measured accordingly using several methods: conversion rates through usage analytics
tracking, usability testing, and relevance judgment evaluation.

Usage analytics tracking measures all user interactions with the ArcGIS Hub web applic-
ation. This includes search inputs, filter interactions and result selection. We define several
conversion funnels corresponding to expected user outcomes, which include downloading the
data, creating an information product such as a web map or a Story Map, or bookmarking
a view of the data for later use. These conversions indicate that a good search result was
returned. We can then compare conversion results with and without semantic annotation.

Usability testing includes defining a workflow that human test subjects perform while
being monitored by researchers. Listening to stream of consciousness verbal evaluations
and observing interface interactions denotes perceptions of different search modalities and
outcomes. This testing may be performed in-house or in collaboration with stakeholders.

Lastly, relevance judgment evaluation asks a similar set of users to evaluate the quality of
search results as: perfect, relevant, partially relevant, or irrelevant. The scores for each result
are tallied and compared with the optimal result and rank ordering to define the quality of
the search relevance, due to semantic annotations or without semantic annotations.

The results of these evaluation measures are forthcoming at this time of writing.

5 Results

Governments, academic institutions and other organizations publish open data to encourage
the creative reuse of information for new purposes. ArcGIS Hub allows these organizations
to create websites that enable search and discovery of their authoritative data, as well as
recommend data shared through other groups. The Bureau of Transportation’s Geospatial
Statistics site is shown as one such example in Figure 6. Visitors can perform simple searches
through their web browser or mobile device, or request information through new digital
media chatbots on Facebook and Amazon Alexa.

Extending dataset metadata with semantic annotations expands the discoverability of
information through colloquial and multilingual search associations. Figure 4 illustrated how
search queries use the semantic search index to parse and retrieve relevant datasets.

To use the semantic search API, Hub implements a REST HTTP API for structured
queries from web browsers, mobile apps, and custom embeds; it uses a JSON-Schema self-
documenting hypermedia API and includes search index attribute filters and facets. An API
search query is first split into relevant parameters for keywords, time, location, and provider.
The keywords are compared with the semantic annotation tags for similarity matches; the
time, location and provider are used as filters. The result includes a relevance-ranked list of
datasets as well as aggregate facets of topics, data types, and providers for further filtering.

The semantic annotations augment the search relevance matches by comparing search
keywords with terms that may not have existed in the original metadata document, but
describe the dataset with alternative labels that match these queries. Figure 5 shows an
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Figure 5 Search queries are parsed and compared with semantic annotations to expand matches
and provide additional facets.

example of expanded semantic tags that are compared for relevance ranking, including
multilingual terms, as well as the broader and narrower aggregate terms that can be used in
search interface facets.

5.1 Building Data Networks

Semantic annotation supports additional use cases beyond metadata querying. ArcGIS Hub
includes a global catalog of data from governments of various administrative levels: local
council and departmental, metropolitan, provincial, regional, national, and multinational
organizations. Each government follows a varying set of metadata and keyword standards
that may not overlap with other governments, even if the organizations are geographically
adjacent or coincident. This can make integration of data across municipal boundaries
problematic, resulting in lost productivity or detriments to operations and safety.

Semantic annotations support data integration by organizing datasets into common
thematic groupings, which increase the discovery and utilization of similar datasets across
municipal data providers. By way of example, consider several civic datasets provided
by neighboring municipalities such as road networks, public schools, moving violations
(e.g. vehicle speeding citations), and reported crashes between vehicles, bicycles or people.
Additionally, there are regional and national datasets provided by agencies that also include
transit networks (bus stops and train stations): FARS (Fatality Analysis Reporting System).

In order to track progress toward thematic community initiatives, such as “Vision Zero”,
discovery of relevant data must be possible across all levels of government. Vision Zero is a
strategy to eliminate all traffic fatalities and severe injuries, while increasing safe, healthy,
equitable mobility for all. Potential Federal data sources for tracking a “Vision Zero” Initiative
are shown in Figure 6. However, without semantic annotation, there is uncertainty as to
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Figure 6 U.S. Department of Transportation traffic related datasets sorted by relevance.

whether a search for traffic data will return relevant results across other Hub sites at a state,
county, or municipal level.

ArcGIS Hub builds the search index that includes each of the four example local municipal
datasets from each municipality. This includes the original metadata and the additional
semantic annotations on the datasets that associate them with related thematic groupings.
Searching just the category term has mixed, or missing, results from some provider catalogs.
Figure 7 compares search results across the GIS catalogs of the District of Columbia, State
of Maryland, and County of Arlington, exposed through ArcGIS Hub.

By comparison, when colloquial terms are used, there are similar results from all local
providers. Figure 8 compares search results across the same GIS catalogs for related terms.

6 Discussion and Outlook

The work presented in this paper improves data discovery through the application of semantic
annotations to civic data, which facilitate transparency and coordination of work; semantic
search enables the exploration and discovery of relationships among organizations’ data that
were previously unknown.

Several areas of research are continuing from this work. We plan to expand and refine
the base vocabulary to better support bi-directional term expansion. This will allow users
to discover new datasets by improving traversal of the base vocabulary’s relations, like
broad and narrow terms, for both thematic and geographic concepts. We anticipate that
alignment with new ontologies, such as the U.N.’s Sustainable Development Goals Ontology,
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Figure 7 Comparing searches for “transportation” before adding semantic annotations.

Figure 8 Comparing searches for related term “roads” after adding semantic annotations.

and application of our methods in related domains, such as academic libraries, will continue
to improve data discovery across organizational repositories.

On a larger scale, the lessons learned from our research can be applied to new domains
and extended along the following dimensions.

The Sustainable Development Goals (SDGs) are the results of an ambitious global
initiative to improve the health and well-being of people and communities. They consist of
17 goals, 169 targets and 232 data indicators that will measure and monitor progress towards
the SDG. These targets and indicators include a semantic graph that relate to socioeconomic
terms, municipal planning, and other related governance sectors. Work is ongoing with
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several national mapping agencies and the United Nations to integrate their semantic graphs
with the base vocabulary presented in this paper.

We are also applying the methods developed in this paper to data discovery in the
context of digital research libraries. While libraries have long been the traditional brokers of
knowledge, today’s queries are largely mediated by commercial digital search engines [12].
Yet, libraries are taking on new roles, facilitating discovery, and often co-production, of
knowledge [8]. Semantically annotated data can be more easily discovered and retrieved via
queries that traverse knowledge graphs, regardless of the endpoints where they are hosted.
Academic libraries are poised to serve as a semantically-neutral meeting ground where domain
data can be aggregated and made spatially and thematically discoverable, similar to ArcGIS
Hub.
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Abstract
Given a set of spatial objects of different features (e.g., mall, hospital) and a spatial relation
(e.g., geographic proximity), the problem of local co-location pattern detection (LCPD) pairs
co-location patterns and localities such that the co-location patterns tend to exist inside the
paired localities. A co-location pattern is a set of spatial features, the objects of which are often
related to each other. Local co-location patterns are common in many fields, such as public
security, and public health. For example, assault crimes and drunk driving events co-locate near
bars. The problem is computationally challenging because of the exponential number of potential
co-location patterns and candidate localities. The related work applies data-unaware or cluster-
ing heuristics to partition the study area, which results in incomplete enumeration of possible
localities. In this study, we formally defined the LCPD problem where the candidate locality was
defined using minimum orthogonal bounding rectangles (MOBRs). Then, we proposed a Quadru-
plet & Grid Filter-Refine (QGFR) algorithm that leveraged an MOBR enumeration lemma, and
a novel upper bound on the participation index to efficiently prune the search space. The experi-
mental evaluation showed that the QGFR algorithm reduced the computation cost substantially.
One case study using the North American Atlas-Hydrography and U.S. Major City Datasets was
conducted to discover local co-location patterns which would be missed if the entire dataset was
analyzed or methods proposed by the related work were applied.

2012 ACM Subject Classification Information systems → Geographic information systems, In-
formation systems → Data mining

Keywords and phrases Co-location pattern, Participation index, Spatial heterogeneity

Digital Object Identifier 10.4230/LIPIcs.GIScience.2018.10

1 Introduction

Given instances of different spatial features (e.g., mall, hospital) and a spatial relation (e.g.,
geographic proximity), the problem of local co-location pattern detection (LCPD) pairs
co-location patterns and localities such that the co-location patterns tend to exist inside the
paired localities. A co-location pattern is a set of spatial features, the instances of which are
often related to each other. The LCPD problem is one of the variants of co-location pattern
detection problem, which focuses on detecting co-location patterns globally in the entire
dataset [9]. Intuitively, if a co-location pattern is infrequent relative to all input instances,
it may be neglected in the entire dataset, but more easily found in a subset of the dataset
around its spatial footprint. The uneven distribution of spatial features in the space, i.e.,
spatial heterogeneity, is common, so the local existence of co-location patterns in an area is

© Yan Li and Shashi Shekhar;
licensed under Creative Commons License CC-BY

10th International Conference on Geographic Information Science (GIScience 2018).
Editors: Stephan Winter, Amy Griffin, and Monika Sester; Article No. 10; pp. 10:1–10:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lixx4266@umn.edu
mailto:shekhar@umn.edu
http://dx.doi.org/10.4230/LIPIcs.GIScience.2018.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


10:2 Local Co-location Pattern Detection

not unusual. For example, high NOx emissions from buses may occur with certain engine
events only around the bus depot where the route starts, since the engines have not warmed
enough to perform efficiently. Other examples include high NOx emission and elevation
change in rural areas as illustrated in the Volkswagen emissions scandal [8], and assault
crimes and drunk driving events near bars [10]. Because of its societal importance, LCPD
has attracted growing attention recently.

In this paper, we will focus on detecting local co-location patterns with the locality
defined using minimum orthogonal bounding rectangles (MOBRs). An MOBR is a rectangle
with sides parallel to the coordinate system. It is widely used as an approximation of
complex shapes by minimally enclosing them [13]. However, the enumeration of MOBRs
is computationally challenging. Given a set of spatial objects in a 2-dimensional space, the
number of the set’s subsets is exponentially related to its cardinality. Each of the subsets
has an MOBR, so the number of MOBRs is also exponentially related to the number of the
input objects. Moreover, the relationship between the participation index, a widely adopted
metric for co-location patterns [9], in any pair of localities cannot be determined without
considering the distribution of spatial objects within them.

The related work on the LCPD problem falls into two categories. The first line of research
applies data-unaware space-partitioning heuristics (e.g. Quadtree, grid), which ignores the
spatial distribution of data and may break up potential localities. The second class defines
localities using clusters of spatial objects or co-location instances, but neglects other localities
without a cluster.

Contributions. To detect local co-location patterns in all rectangular localities with sides
parallel to the coordinate system, we first formally define the LCPD problem. Then, we
present a Quadruplet & Grid Filter-Refine algorithm that leverages an MOBR enumeration
lemma, and a novel upper bound on the participation index. The experimental evaluation
shows that the proposed algorithm reduces the computation cost substantially. One case
studies on North American Atlas-Hydrography and U.S. Major City Datasets was conducted
to discover local co-location patterns which would be missed if the entire dataset was analyzed
or methods proposed by the related work were applied.

This paper is organized as follows: In §2, we explain the basic concepts and formally
define our local co-location pattern detection problem. §3 reviews the related literature. §4
presents our algorithms for solving the problem, whose evaluation is given in §5. §6 concludes
the paper and presents our future work.

2 Basic Concepts and Problem Statement

2.1 Basic Concepts

Huang et al. define the input, output and the interest measures for detecting co-location
patterns globally through data in [9].

Each spatial object, composed of a boolean feature (e.g., mall, hospital) and a spatial
location, can be related to others through a spatial relation (e.g., neighborhood). A co-
location pattern is a set of features. An instance of a co-location pattern is a set of objects
of every distinct feature in the pattern which can form a clique given the input relation. In
the dataset shown in Figure 1, there are 20 objects of feature fA (circle) and 18 objects
of feature fB (triangle), and the related objects are linked. Only one co-location pattern,
{fA, fB}, exists, and it has 8 instances.
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study area

spatial feature:
𝑓"
𝑓#
spatial relation

a potential 
locality (𝑟)

Figure 1 A local co-location pattern < {fA, fB}, r >.

The participation ratio of a feature fi in a co-location pattern C, pr(C, fi), is the
fraction of objects of the feature participating in instances of the pattern. The participation
index of the pattern, pi(C), is the minimal participation ratio of the features in the pattern.
In Figure 1, for the co-location pattern C = {fA, fB}, pr(C, fA) = 8

20 and pr(C, fB) = 7
18 ,

so pi(C) = 7
18 .

By extending these concepts, we introduce the following ones for the LCPD problem.
The study area is defined as the minimum orthogonal bounding rectangle (MOBR)

of all input objects, whose subsets are localities. A local co-location pattern is a pair
of a co-location pattern (C) and a locality (r), in the form of < C, r >. Its instances and
interest measure are the corresponding values of its co-location pattern in its locality. A
locality where objects of features in a co-location pattern tend to be related to each other
(determined by a participation index threshold) is called the pattern’s prevalence locality.

In Figure 1, for a local co-location pattern Cr =< {fA, fB}, r >, there are 5 instances,
while pr(Cr, fA) = 5

5 , pr(Cr, fB) = 5
6 , and pi(Cr) = 5

6 . If the participation index threshold
is 0.5, r is a prevalence locality of the pattern {fA, fB}.

2.2 Problem Statement
Based on the above concepts, we can formally define the LCPD problem as follows:
Input:

A set of spatial objects.
A spatial relation on the objects.
A participation index threshold θ.
A co-location instance number threshold γ.

Output: Local co-location patterns with participation index ≥ θ and the number of instances
≥ γ.

GISc ience 2018
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Power set defined rectangles

Proposed workData-aware partitioning

Data-unaware 
heuristics [3, 11]

Defining localities with 
clustering [6, 7, 10]

YesNo

YesNo

Figure 2 The related work.

Objective: Computational efficiency.
Constraints:

Correctness and completeness of the result set.
The co-location instance number threshold γ ≥ 2.
The locality of a local co-location pattern is the MOBR of its co-location instances.

If given the objects and relation in Figure 1, as well as thresholds θ = 0.5 and γ = 3,
< {fA, fB}, r > is one of the eligible results with a participation index of 5

6 and 5 instances.
The co-location instance number threshold is set to prevent the problem from degradation.
A locality containing only one co-location instance may be a prevalence locality, but it is
meaningless.

The MOBRs of a set of co-location instances, which are the localities detected by the
algorithms, can be regarded as the representatives of the infinite number of arbitrarily
rectangles with sides parallel to the coordinate system according to the following lemma.

I Lemma 1. Given any arbitrarily rectangular prevalence locality of a co-location pattern
with sides parallel to the coordinate system, the MOBR of the pattern’s instances within it is
also a prevalence locality of the pattern.

Proof. For any feature f in a co-location pattern C, let nr and nMOBR denote the number
of objects of f in an arbitrary rectangular prevalence locality r of C and the MOBR of
C’s instances in r, while mr and mMOBR denote the number of those participating in C’s
instances. Thus, pr(< C, r >, f) = mr

nr
, while pr(< C,MOBR >, f) = mMOBR

nMOBR
. According

to the definition of MOBR, and that MOBR ∈ r, we have mr = mMOBR, nr ≥ nMOBR,
so mr

nr
≤ mMOBR

nMOBR
. Now that mMOBR

nMOBR
≥ mr

nr
≥ pi(< C, r >) ≥ θ, the MOBR is a prevalence

locality as well. J

3 Related Work and Limitations

In order to solve the LCPD problem, many methods have been proposed, which can be
generalized into two steps. The first step is partitioning the study area into potential localities
based on certain heuristics, which is followed by checking the eligibility of the localities.
Based on whether the heuristics are data-aware, these methods belong to two classes (the
right branch in Figure 2).

A good example using data-unaware heuristics is [3] in which Celik et al. use a QuadTree
structure to divide the study area into localities, but it requires sophisticated domain
knowledge to predefine localities. In another example, a grid is used to divide the study area
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into cells, and arbitrary subgraphs of the cells’ neighbor graph are regarded as localities [12].
Both approaches share the same limitation with others using data-unaware heuristics, that
is, the partitioning scheme employed is independent of the spatial distribution of the data,
which may break up potential localities [10].

The other class of methods using data-aware heuristics defines localities with clusters
of spatial objects or co-location instances. In [7], localities grow from initial localities with
high objects concentration. Mohan et al. define localities as areas delineated by neighbor
graphs of spatial objects [10]. Deng et al. explore footprints of co-location instance clusters
with an adaptive density threshold as localities [6]. These methods are not complete because
localities without object or co-location instance concentrations may be eligible as well.

Our proposed work, on the other hand, detects local co-location patterns in all rectangular
localities with sides parallel to the coordinate system, so the method will enumerate the
MOBRs determined by all subsets of co-location instances (the elements in co-location
instances’ power set). Consider the dataset shown in Figure 1 as an example. If the
participation index threshold is set as 0.6, the co-location pattern {fA, fB} is not a eligible
pattern globally through the data, because its participation index is 7

18 . However, our
proposed work will find a prevalence locality for the pattern (green dash rectangles in Figure
3a), where the participation index is 5

6 . Contrarily, The participation index in the locality
determined by the cluster of co-location instances shown in Figure 3b is 3

7 , while Figure 3c
and 3d present the localities with the highest possible participation index if the study area is
partitioned using the Quadtree and grid in them, where the participation index is 3

7 in both
cases. None of the currently available results in eligible patterns, so it is obvious that the
proposed work will detect more complete results than the relate work.

4 Approach

We begin this section by introducing a baseline algorithm for the LCPD problem. Then,
we present two refinements: a Quadruplet (Quad) algorithm as well as a Quadruplet &
Grid Filter-Refine (QGFR) algorithm, to reduce the computational cost without impairing
correctness and completeness.

The pseudo-code of the general algorithm framework is shown in Algorithm 1. In this
framework, all possible co-location patterns of the features associated with the input objects
are enumerated in line 2-11. The instances of each co-location pattern are generated as the
input of an MOBR-generating function MOBRGenerator (line 4), and the MOBRs obtained
from this function are enumerated to detect the prevalance ones (line 4-10). Consider the
dataset in Figure 1 as an example. In this case, F has two elements: fA and fB , so there is
only one possible co-location pattern, {fA, fB}, whose 7 instances are saved in CI (line 3).
The locality r is one of the MOBRs to be enumerated. There are 5 instances within it, and
the participation index is 5

6 . Both metrics will be compared with the thresholds to determine
whether < {fA, fB}, r > is an eligible result.

In this study, we focus on reducing the number of MOBRs enumerated for each co-location
pattern (i.e., improving function MOBRGenerator(·)), but adopt Apriori-like algorithms to
reduce the number of possible co-location patterns [9, 6], and the state-of-the-art algorithms
to generate co-location instances [9, 14].

4.1 Baseline Algorithm
As already mentioned, we focus on localities defined as the MOBRs of subsets of co-location
instances. In the function MOBRGenerator(·) of the baseline algorithm, we will enumerate
all arbitrary subsets of the input co-location instances, and generate an MOBR for each of

GISc ience 2018
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(a) Proposed work. (b) Data-aware heuristic using clustering.

Quadtree

(c) Data-unaware heuristic using Quadtree.

grid

(d) Data-unaware heuristic using a grid.

Figure 3 Comparison between related work. (Better in color.)

them. If each co-location pattern has nci instances on average, there will be 2nci subsets,
resulting in 2nci MOBRs. Thus, the computational complexity of this baseline algorithm is
O(k2nci), where k is the number of possible co-location patterns.

4.2 Quad-Element Algorithm
Our first improvement is based on an MOBR enumeration lemma:

I Lemma 2. Given a set s of n points in a two-dimensional plane, the set of MOBRs for
arbitrary subsets of s is the same as the set of MOBRs for arbitrary subsets with cardinality
≤ 4 of s.

Proof. Assume that there exists an MOBR for a subset (sub) with cardinality > 4 that is
not an MOBR for a subset with cardinality ≤ 4.

Let xmin, xmax, ymin, ymax denote the minimum and maximum of the x, y coordinates of
the points in sub. There must exist points a, b, c, and d (which may be the same) in sub such
that xa = xmin, xb = xmax, yc = ymin, yd = ymax. Thus, the MOBR for sub is the same as
that for {a, b, c, d}, which is a subset of s with cardinality ≤ 4, resulting in a contradiction
with the assumption. J
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Algorithm 1 General algorithm framework.
Require:

Obj: A set of objects;
R: A spatial relation over objects in Obj;
θ: Participation index threshold;
γ: Co-location instance number threshold.

Ensure: Local co-location patterns with participation index ≥ θ and the number of instances
≥ γ.

1: F ← all spatial features in Obj;
2: for all possible patterns C of F do
3: CI ← co-location instances of C;
4: for all mobr ∈ MOBRGenerator(CI) do
5: p← the participation index of C in mobr;
6: n← the number of C’s instances in mobr;
7: if p ≥ θ and n ≥ γ then
8: Add < cp,mobr > to the result.
9: end if
10: end for
11: end for

Lemma 2 indicates that the enumeration cost of a co-location pattern’s MOBRs can be
reduced from 2n to n4 without affecting completeness. By changing the function MOBR-
Generator(·) to generate the MOBRs of subsets with cardinality ≤ 4 of CI we can get the
Quadruplet (Quad) algorithm with computational complexity of O(kn4

ci).

4.3 Quadruplet & Grid Filter-Refine Algorithm
Our definition of localities determines that a small displacement of any co-location instance
that defines a locality’s boundary will create a new locality, so there are lots of localities
overlapping each other. If we can classify them into groups according to the areas they share,
and apply a filter on each group instead of on individuals, the number of localities to be
enumerated can be reduced further. Based on this idea, we proposed the second improvement:
the Quadruplet & Grid Filter-Refine (QGFR) Algorithm.

The pseudo-code of the function MOBRGenerator(·) in the QGFR algorithm is shown
in Algorithm 2. Because a grid-based filter is applied, three new parameters are added,
namely, a threshold of the participation index, a threshold of the number of co-location
instances, and the cell size of the grid covering the entire study area. The first step of the
function is saving the active cells of the input co-location pattern C (i.e., the cells overlapping
C’s instances) in AC (line 2). A cell overlapping a co-location instance means that the
intersection of the cell and the MOBR of this instance is nonempty. For example, Cells 1,
2, and 3 in Figure 4 are active cells of the pattern {fA, fB}. After getting the active cells,
we will use their MOBRs (cMOBR) as an approximation of the MOBRs of C’s instances
(iMOBR). The cells in a cMOBR are classified into two parts. The cells adjacent to the
cMOBR’s boundary are named as bounding cells, while the others are the bounded cells. In
Figure 4, a cMOBR is delineated by a red solid rectangle, while its bounding and bounded
cells are filled with a hash pattern and a solid color respectively. The boundary of each
iMOBR has the following property:

GISc ience 2018
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bounded cell
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Figure 4 Grid cells and MOBRs (better in color).

I Lemma 3. The boundary of any iMOBR must be within the bounding cells of one and
only one cMOBR.

The proof of this lemma is straightforward. If the boundary of an iMOBR is not within
the bounding cells of a cMOBR, at least one of its four edges does not pass active cells,
which is impossible. If two cMOBRs share the same bounding cells containing an iMOBR’s
boundary, they must be the same. Therefore, we define that an iMOBR is in a cMOBR if its
boundary is within the bounding cells of the cMOBR. For example, an iMOBR delineated by
a dash rectangle in Figure 4 is in the plotted cMOBR. Because each iMOBR is in a unique
cMOBR, by enumerating the iMOBRs in each cMOBR, we can enumerate all iMOBRs just
once. In the pseudo-code, we enumerate all cMOBRs using Lemma 2 (line 3-10).

To eliminate the cMOBRs in which no iMOBR is eligible, we introduce an upper bound
(MaxPI bound), η(< C, cMOBR >), for the participation index of a local co-location pattern
composed of a co-location pattern C and any iMOBR in a cMOBR of C. The MaxPI bound
is based on an upper bound for the participation ratio, which can be stated as:

I Lemma 4. The upper bound, ζ(< C, cMOBR >, f), for the participation ratio of a feature
f in a local co-location pattern composed of a pattern C and any iMOBR in a cMOBR of C
is

ζ(< C, cMOBR >, f) = po(C, f, cMOBR)
o(f, bounded) + po(C, f,bounding)

∀ iMOBR in cMOBR.

Table 1 describes the notation used in the above formula.

Table 1 Symbols used in Lemma 4.

Number of objects of f in a locality r

Participating in C Not participating in C All
po(C, f, r) npo(C, f, r) o(f, r)

where r can take values of “all cells” (cMOBR), “bounding cells” (bounding), or “bounded
cells” (bounded) of the cMOBR, or the “actual iMOBR” (iMOBR), or the “intersection of
iMOBR and bounding cells” (extra). The proof is as follows:
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Proof.

pr(< C, iMOBR >, f) = po(f, C, iMOBR)
o(f, iMOBR) = po(f, C,bounded) + po(f, C, extra)

o(f, bounded) + o(f, extra)

= po(f, C,bounded) + po(f, C, extra)
o(f, bounded) + po(f, C, extra) + npo(f, C, extra) .

Because npo(f, C, extra) ≥ 0,

pr(< C, iMOBR >, f) ≤ po(f, C,bounded) + po(f, C, extra)
o(f, bounded) + po(f, C, extra) .

Because extra ∈ bounding, 0 ≤ po(f, C, extra) ≤ po(f, C,bounding). Meanwhile,
po(f,C,bounded)

o(f,bounded) ≤ 1. Thus,

pr(< C, iMOBR >, f) ≤ po(f, C,bounded) + po(f, C,bounding)
o(f, bounded) + po(f, C,bounding)

= po(f, C, cMOBR)
o(f, bounded) + po(f, C,bounding) . J

Based on the definition of the participation index, we can define the MaxPI bound as
the smallest upper bound of the participation ratio of any feature in the local co-location
pattern, i.e.,

η(< C, cMOBR >) = minfi∈C(ζ(< C, cMOBR >, fi)).

Given a participation index threshold θ, if η(< C, cMOBR >) < θ, there will not be any
eligible iMOBR in this cMOBR. In the pseudo-code, the MaxPI bound of C in every one
of its cMOBRs, together with the number of instances, is compared with the thresholds to
determine whether enumerating the iMOBRs in the current cMOBR is necessary.

Algorithm 2 Function MOBRGenerator in QGFR algorithm.
Require:

CI: A set of instances of a co-location pattern C;
θ: Participation index threshold;
γ: Co-location instance number threshold;
l: The size of each grid cell.

Ensure: MOBRs of CI’s subsets.
1: function MOBRGenerator(CI, θ, γ, l)
2: AC ← active cells of C;
3: for all subAC(with cardinality ≤ 4) ⊆ AC do
4: cmobr ← the MOBR of subAC;
5: η ← MaxPI(C, cmobr);
6: n← the number of C’s instances in cmobr;
7: if η ≥ θ and n ≥ γ then
8: Add iMOBRs in cmobr to the result.
9: end if
10: end for
11: end function

Assuming that each co-location pattern has nac active cells on average, and the number
of iMOBRs in each cMOBR is q, the computational complexity is O(kn4

acq). If q can be
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Table 2 Parameters for the experiments.

Symbol Meaning
ncp Number of core co-location patterns
ncc Core co-location patterns’ cardinality
nci Number of instances of each pattern
ni Number of input objects
nf Number of input features

Grid size Cell’s edge length of the grid used in the QGRF algorithm

treated as a constant, because nac is much less than nci in most cases, the computational cost
of the QGFR algorithm is much lower than that of the Quad. Because we have proved that
in this algorithm all MOBRs of co-location instances are evaluated once and only eligible
results are returned, we maintain the correctness and completeness of the algorithm through
the performance improvement.

5 Experimental Evaluation and Case Studies

In this section, we evaluate the baseline, Quad, and QGFR algorithm using synthetic data
and a Chicago crime dataset [4], followed by one case study using the North American Atlas -
Hydrography dataset from the U.S. Geological Survey [11] and the dataset of the U.S. major
cities from Esri.

5.1 Experiments
The goal of the experiments was twofold: (a) evaluate the effect of the performance refinements
of the proposed Quad algorithm and QGFR algorithm compared with the baseline algorithm.
(b) determine the robustness of the QGFR algorithm given different inputs.

According to our analysis in §4, the computational complexity of the three algorithms
are O(k2nci), O(kn4

ci), and O(kn4
acq) respectively, where nci is the number of co-location

instances per pattern, nac is the number of active cells per pattern, k is the number of
co-location patterns, and q is the average number of iMOBR in each cMOBR. To evaluate
the performance refinements, we studied the following two questions: (1) What is the effect
of the number of co-location instances? (2) What is the effect of the number of co-location
patterns? To determine the robustness, we asked how well the QGFR algorithm performed
under different size of grid cells.

To answer these questions, we designed experiments as shown in Figure 5. The synthetic
and the real-world data (a Chicago crime dataset) were generated with controlled parameters.
In the simulation, three algorithms were executed with the grid cell size as a parameter.
The performance was evaluated and compared using the run time of each algorithm. The
platform for the simulation was Microsoft .NET Framework 4.5 on a computer with Intel(R)
Core(TM) i7-4770 3.40 GHz CPU and 32 GB RAM. The parameters in the experiments are
shown in Table 2.

5.1.1 Synthetic data generation
A point distribution with co-location patterns is often modeled as an aggregated point process
[9, 2, 6]. Commonly used point processes include the Poisson cluster process [1] and Matérn’s
cluster process [5]. In order to ensure the existence of local co-location patterns, we made
two changes on the steps used in [2], including:
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Candidate algorithms:
1. Baseline;
2. Quadruplet;
3. Quad & Grid Filter-refine.

Parameters:
𝑛"#, n&& , n"'

Computational 
time cost

Synthetic data 
generation

SimulationReal-world data 
preparation

Parameters:
𝑛(, n'

Parameters:
Grid size.

Figure 5 Experiment design.

Randomly select a rectangular region in the study area as a prevalence locality for each
co-location pattern.
In each co-location pattern’s prevalence locality, ensure that at least 4 instances of the
pattern are generated, and that no noise object of the features in the pattern is generated.

Because the subsets of a co-location pattern are also co-location patterns, when generating
the synthetic data, we named the patterns which were not subsets of other patterns core
patterns. The study area size was set to 10000 × 10000. The spatial relation was a
neighborhood with a radius of 10. The number of noise objects of each feature was set to
4× nci.

5.1.2 Experimental results
Effect of the number of co-location instances. The experiments were conducted with both
synthetic and real-world data. The synthetic data was generated by fixing ncp = 2 and
ncc = 3, but changing nci, whose results were shown in Figure 6a. The computational cost
of the baseline algorithm, as expected, increased exponentially with nci, and was much
larger than that of the two proposed algorithms, so its run time was not included when
nci = 50, 75, or 100. The run time of the Quad algorithm was much longer than that of
the QGFR algorithm, and it also increased faster than the latter with increasing nci. The
experiment with the Chicago crime dataset was conducted by fixing nf = 3 but varying ni.
By increasing the number of input objects in a fixed study area, we increased the number
co-location instances indirectly. The results (Figure 6b) also shown that the advantage of
the QGFR algorithm increased as the number of input objects grew.

Effect of the number of co-location patterns. Since the number of co-location patterns
is determined by both the number of core co-location patterns and their cardinalities, we
conducted two controlled experiments with synthetic data and one with the Chicago crime
dataset on them. Figure 7a and Figure 7b presented the results of experiments with the
synthetic data. In Figure 7a ncc = 3 and nci = 50 but ncp changed, while in Figure 7b
ncp = 2 and nci = 50 but ncc changed. Figure 7c shown the results using the real-world
data, where the number co-location pattern was increased by increasing the number of input
features. In all the cases, the growing number of co-location patterns increased the advantage
of the QGFR algorithm over the Quad algorithm.
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Figure 6 Effect of the number of co-location instances.
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Figure 7 Effect of the number of co-location patterns

Effect of the size of grid cells. The sensitivity analysis was done through two controlled
experiments where the same synthetic and real-world data but different grid cell size were
used. The parameters for the synthetic data were ncp = 2, ncc = 3, nci = 50 and those for
real-world data were ni = 485, nf = 4. According to the results shown in Figure 8, the
QGFR algorithm was robust with changes in the grid cell size, since the fluctuation of its
run time was small when the grid cell size changed. When the grid cell size was small, the
number of active cells was not much smaller than the number of co-location instances, so the
performance would be improved if a larger cell size was used. As the grid cell size increased,
more iMOBRs resided in a single grid cell, so the performance improvement brought about
by the MaxPI bound was weakened.

5.2 Case Study using North American Atlas-Hydrography and U.S.
Major City Datasets

We conducted a case study using the North American Atlas - Hydrography dataset from the
U.S. Geological Survey and the data of the U.S. major cities from Esri. Other inputs included
a spatial relation specified by a neighborhood radius of 50 kilometers, a participation index
threshold θ = 0.6, and a instance number threshold γ = 20. There were 2610 cities which
represent cities in the U.S. with population of more than 10 thousand in the dataset. The
number of lakes was 394. The participation index of the co-location pattern {city, lake} was
0.33, which meant major cities were not globally co-located with lakes in the U.S. However,
our proposed QGFR algorithm detected some prevalence localities, two of which were shown
in Figure 9 with the zoom-in maps. In the east locality, there were 163 cities, 109 of which
were co-located with lakes, while 39 out of 41 lakes were near cities, so the participation
index was about 0.67. This locality could be detected by the related work as well, because if
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Figure 8 Effect of the size of grid cells.

#
##

#

####
####
##
#

#

###
###

#

#
# #

#

#

#

##

#

#

#

#
##
#

##

#

#

#

##

#

#####

#

#

#

#

#

#
#

##
#
####

#

#

#

#####

#
###

#

#

####

##

#

#

#

#
####

#

#

#

######

#
##

#
#

#

##
#

#

#

#

#
## # #

#
##

##
#

#
##### ###

#

##
#

#
#

#####
# #####

#

####
#
#

#

#

#

#

###

#

### #
#

#

# # #
#

#

######
#

#

#

###### ####

#
#

#

# #

#

#

#

#
#

#
#

#

###

#

#

#

#

# #
##

#

#
#

#

#

#
#

#
#

#
#

#
##

#
#

#

#

##

#

#

#
##

#

###

#

#

#
#

#

#
#
#

#

#
#
#

#

##

#
#

#
##

#

#

#

#

###

##

##
#

#

#
#

###

#

#

#
#

#
#

#
#

#

#

####
## ##

#

##
###

#

#

###

#

#
##

#

#

#

#

#
#

# #

##

#

#

#

##
#
##

#

#

#

#
#

#

#
#

#

##

#

#

#

#

#

#

#

#

#

#
#

##

# ##

#
#
##

#

#####

#

##
##

#

#

#

#

#

#
#
#
##
#

#

###

##

#
#

#

#

#

### ###

##

#
#
#
#
#### ##

#

#

#
#

#
##

#

#
#

#

####

#

#

#

#

#

#

#

#

#
#
#

#
##

##

#

#

#

#

# #
#

#

#

#

#
##

#

##

#

#
#

#

#

# # #

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#
#
#

#
## # ##
#
#

#

#

#

# #
#

##

#
##

# #

##
#
###
###
####
#
###
#
#
#

#

###
#
######

#

###
#
#
#

#

#
#
#

#

##

#

#

#

##

#

####
##

#

#

#

##

#

#
#

#

#
##
####

#

#

#
#
####
#########
##
#

#

#

#

##

##
##

#
#

#

#

#

#

#
#
#

#

#
##

###### #
####
# ## #

#

##
#

#
#

#

#
#

##
#

######
# ###

#

#

#

#

#

#
#####

#

##
#

##

#

#
#

##

####
###

##

####

#

####
#
#

#

##

#

###
#

#
#

####

#

#

#
#

#

#

##
#

#

#

#

# #

#
#
#
##

##
#

## #
#

##### ##

#

#

##

##

#

#

###

#

##

#
#
###
#
## #

#

#

#

#
#

#

###
#
###
#
##
#

#

#

#

#

#

#

#

# # #

#
#

#

#
#
#

#

#
#

#
#
#

##

#

#

#

##

#

#
#

#

#

#

#

#

## ## #

#

#
#

##

#

#

#
# #

##

#
#

####

###

#

#

#

#

#

#

#

70°0'0"W80°0'0"W90°0'0"W100°0'0"W110°0'0"W120°0'0"W
50°0'0"N

40°0'0"N

30°0'0"N

20°0'0"N
#

#

#
#

##

#

#

#

#

#

#

#

#

#

#

#

##

#

#

#

#

#

#

#

#

##
#

#
# #

#

#
#

#

#
#
##

#

#

#

#
#

# #

#

#

#

#

#

#

#

#

#

#
#

##

#
#

#

#
#

#

#

#
#
#

##

# #
#

###
#

#
#
#

#

#

##
###

#

##
#

##
##

#

# ##

#

#
#
##

#

#
##

#

#

#

Legend
City

# City Near Lake

Lake Near City

Lake

#

#

#

####

##

#
#

#
##
#
##

#######

##

###

#
#

##
#

#

Figure 9 Case study with the hydrography and city data. Two prevalence localities of co-location
pattern {city, lake} are delineated by rectangles and shown in the zoom-in maps. (Better with
color.)

we defined the density as the number of instances of a feature in a unit area, the density
of both input objects and co-location instances was high (the ratio between the density
of the co-location instances in the locality and that in the whole country was about 4.22).
Contrarily, in the west locality, there were 35 out of 50 cities co-located with 7 out of 11
lakes, resulting in the participation index as about 0.63. In this locality, the density of the
input objects and co-location instances was almost the same as that in the whole country
(the ratio between the density of the co-location instances in the locality and that in the
whole country was about 1.03), which meant that the locality could not be identified by the
related work using clustering to define localities. The findings indicated that the co-location
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pattern of major cities and lakes existed not only in the southeast of the U.S where lakes
concentrated but also in the west where it was drier and lakes were more valuable of the
cities.

6 Conclusion and Future Work

In this paper, we formally defined the local co-location pattern detection problem, and
proposed two algorithms that can efficiently solve it. The effectiveness and efficiency of the
algorithms were proved theoretically and validated experimentally on synthetic and real
datasets. In addition, we presented the results of one case study using the North American
Atlas-Hydrography and U.S. Major City Datasets.

During the study, we noticed that the distribution of spatial events (e.g., the auto-
correlation between events of the same feature) may affect the results. Our future research
will take this into consideration. In addition, the distribution of events related to humans
may be strongly affected by road networks especially in urban areas. Defining regions as
subsets of road networks may result in richer and more meaningful results. We plan to
explore this idea in our future work.
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Abstract
As Floating Car Data are becoming increasingly available, in recent years many research works
focused on leveraging them to infer road map geometry, topology and attributes. In this paper,
we present an algorithm, relying on supervised learning to detect and localize traffic signals
based on the spatial distribution of vehicle stop points. Our main contribution is to provide
a single framework to address both problems. The proposed method has been experimented
with a one-month dataset of real-world GPS traces, collected on the road network of Mitaka
(Japan). The results show that this method provides accurate results in terms of localization
and performs advantageously compared to the OpenStreetMap database in exhaustivity. Among
many potential applications, the output predictions may be used as a prior map and/or combined
with other sources of data to guide autonomous vehicles.
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1 Introduction

As one of the main supports for citizen mobility, roads are deservedly considered as a major
cartographic theme in maps. Therefore, it is not surprising that most national mapping
agencies allocate considerable amount of resources to keep road network databases as detailed,
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accurate and up-to-date as possible [14, 4]. This is generally done by stereorestitution on aerial
orthoimages [17], completed with field surveys to get details that cannot be captured in the
images. Recently, automatic detection of roads has dramatically improved, especially when
combined with machine learning algorithms [28], and now achieves very good performance
even on satellite images. However, if the whole process tends to get less expensive and less
time-consuming, it still suffers from a major drawback: road map timeliness is inevitably
limited by the frequency of aerial image release [7].

Nowadays, with the spread of connected terminal devices equipped with a Global Posi-
tioning System (GPS) receiver, an increasing number of vehicle trajectories are becoming
available. Map inference, which aims at leveraging this new source of data to extract geo-
graphic information [3], is becoming popular and tends to complement, if not completely
replace, traditional survey techniques. Among their main assets, GPS traces are recorded
on a daily basis, which allows for short-delay update capabilities. Indeed, aerial picture
campaigns are typically conducted every several years, notwithstanding an additional delay
for image preprocessing and orthorectification. This substantial delay might be critical in
applications relying on highly up-to-date reference networks, such as emergency routing or
disaster mitigation.

Contrarily, with GPS traces analysis, modifications are potentially detectable as soon as
enough traces are recorded on a suspicious point to ensure the statistical robustness of the
notification. Ultimately, with connected devices, it is foreseeable that data will be recorded
and processed by online algorithms, resulting in a much more reactive system that is capable
of detecting ephemeral events (e.g., road works, detour or accidents) in quasi real-time.
Moreover, data can be continuously recorded while drivers are commuting for example, which
makes this solution much less expensive than aerial campaigns and field surveys. More
anecdotally, since we may assume that for any consistent algorithm, the estimation is getting
closer to the reality as the number of traces increases, the dataset sampling itself serves a
logic of public utility: the most important itineraries are the most traveled, therefore those
where road map inference is the most reliable.

Initially restricted to the construction of road geometry and topology, map inference is
now getting attention for enriching pre-existing networks with attributes (number of lanes,
speed limitations...) or infrastructure (traffic signals, speed bumps, bus stops...) [24, 18].
Most of these features are not accessible through aerial images, and utilizing GPS traces
seems unavoidable. Moreover, aerial images may not be accessible in developing countries,
or available only at prohibitive cost. Instead, access to data stemming from local fleets or
collaborative transport smartphone applications, are producing large sets of GPS traces.
This surrogate source of data may be used with map inference techniques to provide a cheap
alternative solution for map construction.

An exhaustive and detailed knowledge of road infrastructure is a prerequisite to many
applications. For example, autonomous cars are expected to appear on the market in the
near future. Reliability and robustness of the information used by such vehicles to make
decisions is a big concern. It is usually more reliable to know in advance the location and
the type of object that should be detected and confirm detection with embedded sensors.
Additionally, driving-assistance devices conception, road safety, eco-driving, urban traffic
flow simulation or even accurate routing time computation are as many other examples of
fields or applications where the knowledge of a road network needs to be completed with
attributes and infrastructure [4, 26, 1].

In parallel, machine learning techniques are becoming all-pervasive in fields requiring
to process a large amount of data, or simply when theoretical background is insufficient to
build reliable predictive models. With this kind of approach, expert knowledge is no longer
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required, and algorithms are trained on labeled data. However, machine learning is a relevant
solution only if the two following conditions are met: firstly we must have an extensive and
representative training dataset, and secondly, we must have a natural definition of cost that
quantifies how close the generated road map is compared to the training data ground truth.
A few years ago, some authors such as Liu et al. [14], have introduced numerical measures
to assess the quality of maps produced by GPS traces, hence opening the way for a full
machine learning resolution of the problem [3]. In this vein, Zhang and Sester [27] combined
fuzzy logic and k-means clustering for incrementally inferring maps, while Fathi and Krumm
[10] proposed to train an Adaboost classifier to recognize road intersections, based on the
probability density function of trace headings. Similarly, Van Winden et al. [25] found that
Support Vector Machines (SVM) and regression trees are the most adequate algorithms
for speed limit inference. In some more sophisticated algorithms, traces are combined with
external sources of data to get better results, for example in [12] where Twitter data and
SVM are used for an automatic mining of street names. We believe that statistical learning
is especially adapted to this problem, and that it guarantees the portability of the approach
to other cities, countries and environments.

Among traffic control devices, traffic signals are unarguably the most effective to regulate
jammed intersections [23]. They have a crucial impact both on traffic flow at the city scale
and on the perceptions of individual drivers. Surprisingly, very few research works address
the problem of utilizing a collection of probe vehicle traces coupled with machine learning
algorithms to detect traffic signals. The most related research work is certainly the one of M.
Munoz-Organero et al. [19], who used machine learning algorithms to detect in real-time
several kinds of road infrastructures, based on an analysis of speed and acceleration signals,
estimated from GPS positions. Despite providing very good results, the performance scores
clearly exhibits some limitation on traffic signal detection, compared to the cases of street
crossings, and roundabouts. Besides when the only source of measurement is a GPS receiver,
speed-based analysis is only possible provided that the GPS positioning is accurate enough
(for example if equipped with a Doppler speed measurement, when used in differential mode,
or in open areas) and sampling frequency is high (over 1 point per second or so). Furthermore,
a natural extension of [19] would be to use all vehicles which traveled at a specific location to
detect infrastructure. In this work, we propose a method to detect and then localize traffic
signals through a random forest classification and regression using the spatial distribution of
stop points along the road.

We must notice that localization is an important aspect of the problem. Even though we
know that an intersection is controlled by a system of traffic lights, the positions of stop lines
on each individual streets remain uncertain, and this is especially true since road network
abstraction and generalization may introduce an additional component of uncertainty.

The remaining of the paper is structured as follows: the dataset and its preparation are
briefly described in the next section, while our methodology to create instances, train and
validate the model is detailed in section 3. Section 4 provides the results and discusses them.
Eventually, section 5 concludes the paper.

2 Data and preparation

2.1 Study area
The experimentation was conducted in Mitaka (Japan), a commuter town located approxim-
ately 20 km west of central Tokyo, and covering an extent of 16 square kilometers. This choice
was motivated by the fact that Mitaka contains a wide variety of urban aspects, ranging
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Figure 1 Mitaka city and OpenStreetMap traffic signal database.

from dense downtown to inter-urban residential districts, including motorway environments
and parks as well. Mitaka city is illustrated on figure 1, where traffic signal controlled
intersections are depicted in red.

We extracted a routable road map from the national reference. The topological graph
of a road map is often organized in such a way that a node is always located close to each
traffic signal, even when no physical intersection is involved (e.g., traffic signal associated
to pedestrian crossing in the middle of a road link). For this reason, we decided to remove
degree-2 nodes, so that it may practically be assumed that digital road network has been
created without any knowledge of traffic signal locations.

2.2 Ground truth data acquisition
As an application of machine learning, it is necessary to collect ground truth data, namely the
positions of all traffic signals in Mitaka, to train and then validate the algorithm. Throughout
this paper, a stop line is defined as the position along the road, where the front vehicle in
queue is expected to stop while waiting for the signal to turn green.

We started from a base reference extracted from OpenStreetMap (figure 1). This source of
data is not complete, and each point corresponds to an entire crossing controlled by a system
of traffic lights, but no information is provided regarding the number of streets actually
controlled by an individual signal, nor are the positions of stop lines on these streets. Using
OSM basis and multiple sources of orthoimages (produced at different dates), positions of
stop lines have been manually digitized, and then orthogonally projected onto the road
network, as depicted here after on figure 2. At the end of this process, a total of 669 stop
line positions have been digitized, which corresponds to 253 crossings controlled by traffic
signals. Out of them, 177 (70%) are reported in OSM database. For each stop line, we also
recorded a binary attribute to indicate which direction of flow is subject to stop at the traffic
signal. It takes the value 0 if the stop line is directed to vehicles traveling from source node
to target node, otherwise it is set equal to 1 (source and target node is arbitrarily defined by
the road network database provider).
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Figure 2 Ground truth data acquisition on orthoimages and reference road network.

Eventually, since orthoimages might suffer from local distortions, we had to check that
our ground truth dataset is accurate enough for our application. A positional accuracy
control was carried out by uniformly sampling 30 stop lines at random and surveying them
with a single phase low-cost GPS receiver [16]. This operation enabled to guarantee (with
95% confidence index) that stop line positions have been digitized with a sub-meter accuracy
(root mean square error below 90 cm).

2.3 Floating Car Data
For this experimentation, we used GPS Floating Car Data (FCD) provided by NAVITIME
JAPAN1, a private company developing navigation technologies and providing various kinds
of web application services such as route navigation, travel guidance, and other useful
information services for moving people.

The sample dataset is covering the entire Japan and has been recorded over a one-month
time span, in October 2015. Pedestrian trajectories have been priorly removed so that it
contains only vehicle navigation data. We extracted all GPS records intersecting the Mitaka
polygon shape. Each record (nominally one per second) contains the following entries: a
user identification number, a route identification number, geographic coordinates (in decimal
degrees) and a timestamp. A route is a set of records on an individual subtrip (i.e. during
a GPS receiver session). Due to privacy issues, driver identification number is modified
every day at midnight. Entries containing −1 in timestamp or coordinates (i.e. about 2% of
records, corresponding to GPS signal lost or logging failure) have been removed. Coordinates
(as well as network and traffic signal ground truth) have been converted into UTM 54N
cartographic projection system. For convenience purposes, we also transformed timestamps
into an integer number of epochs. This made computing traveled distances and elapsed time
between records much easier.

Similarly to most studies related to GPS probe vehicles, map-matching, which consists in
reconstructing the path traveled by a vehicle on a network, is an important pre-processing
step and has two, possibly combined, main advantages: providing a mapping function between
GPS positions and network links (which is necessary in our application case for updating the
network) and enhancing positional accuracy. The latter is particularly important in urban
environment, where GPS satellite signal is likely to be partially impeded by buildings. We
used an algorithm based on Hidden Markov Models, developed by Newson and Krumm [20].

1 http://corporate.navitime.co.jp/en
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Since all traces are located on the same area, it is worthwhile to compute shortest path
distances between every couple of nodes just once, then storing results in a look-up table,
before map-matching all trajectories in a batch. Following this approach enabled to speed-up
the process, and reach a pace of 10 traces map-matched per second (approximately 1500
faster than the naive solution requiring to process shortest paths online). However, for a
road network containing a number n of nodes, since the time and space complexities of the
look-up table computation are growing like O(n2), it inevitably becomes necessary to find
alternative solutions when the area of interest is large. One of them might be to use sparse
matrix notation with hashtable data structure, and save only distances which are shorter
than a predefined threshold.

Root mean square error of displacements induced by map-matching is equal to 8.3 m,
which gives some insight regarding the average quality of GPS receivers. Overall, 99% of
records have been map-matched (excluding outlier points). Eventually, we removed all traces
map-matched with Chūō expressway, which runs the south-eastern part of Mitaka and,
needless to say, does not contain any traffic light.

At the end of the pre-processing phase, a total of 11870 traces are remaining in the
dataset, which represents slightly above 7 million records, about 42000 km and 3122 hours
of driving data. The median trip runs 3 km and lasts 10 minutes. 95% of the dataset is
recorded at a frequency higher than 0.2 Hz.

3 Methodology

In this section, we describe our methodology to build training and validation instances
from GPS trajectories, then after a brief review of Random Forest algorithm, we present an
extension to aggregate individual predictions, and infer the presence of traffic signals at the
level of crossings.

3.1 Instance computation
In most machine learning problems, there is a natural definition of an instance. For example,
in image recognition tasks, each individual image is an instance, and we may easily assume
that they are independent to each other. In our application case, there is no such definition,
since we are looking for objects located at unknown positions on a topological network.
However, considering that most traffic signals are located near intersections, we decided to
compute instances based on road segments starting from nodes. This choice was motivated by
the fact that it results in mutually independent instances, hence facilitating split process into
training and validation datasets. In turn, our algorithm will inevitably fail to detect traffic
signals located far from road intersections. Since, it may be assumed that this represents a
small proportion of all traffic signals, we believe that this choice would not have too much
negative impact. Note that, as depicted on figure 3, each network edge is generating two
instances (one starting from each node). Hence the total number of instances generated
equals at most twice the number of edges in the road network (in fact, some of them might
be empty of traces, consequently the actual number of instances is generally smaller). We
will refer to this segment as a frame hereafter.

In order to get homogenous instances, frames have been set to a fixed length L. If an
edge is longer than L, then only a portion of length L (starting from the node) is considered.
On the opposite, if it is shorter than L, the frame is padded with zeroes (X5 and X6 on
figure 3). The numerical value of L was set to 100 m, since there is no evidence to think
that events located further than 100 m from a traffic signal, might be of any help for the
detection.
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Figure 3 Left: frames generation (red dashed arrows) on the road network. Each frame is
computed based on GPS traces moving towards the intersection node (i.e. in the opposite direction
of the arrows). Right: selection of traces (see text for details).

We are interested in vehicles moving towards the intersection node, then only GPS traces
globally moving towards the node are added up to the frame. More formally, the last record
of the trace on the edge must be located closer from the intersection node than the first
record (with respect to a distance metrics computed as a curvilinear abscissa along the edge
geometry). Additionally, we required that the distance between both these extremal records
is at least half of the edge length. For example, on the right part of figure 3, only traces 2
and 4 (solid lines) are taken into account in the frame generated from intersection n1 (trace
1 is too short, while trace 3 is moving in the opposite direction). For the instance generated
from node n2, traces 1, 2 and 4 are discarded. Once traces moving towards a given node
have been identified, we can extract sequences of GPS records corresponding to vehicle stops.

I Definition 1 (Stop sequence). Given a sequence of timestamped GPS points and two
parameters: a maximal speed value vmax ∈ R+ and a minimal time duration τmin ∈ R+∗,
we define a stop sequence as a sub-sequence of consecutive records S = {(xi, ti) | p 6 i 6 q}
verifying the two following inequalities:

tq − tp > τmin and ∀ i ∈ Jp, q − 1K
|xi+1 − xi|
ti+1 − ti

6 vmax

where x is the curvilinear abscissa of GPS records along the edge. Simply put, for being
qualified as a stop sequence, a portion of trajectory must be slow enough for a sufficiently
long period of time. Also, note that p and q must be chosen in such a way that it is impossible
to add new records to the sequence without breaking the inequalities stated above.

I Definition 2 (Stop point). For a given stop sequence, a stop point is defined as the mean
position of points in the sequence, associated with the total duration of stop.

For each instance, stop points have been extracted from the selected traces according to
definitions 1 and 2 with the following parameters: vmax = 0.5 m.s−1 and τmin = 5 seconds.

Since the number of stop points is unpredictable, it is not a reasonable solution to train a
classifier with a predefined number of stop points. Indeed, this solution would fatally imply
that no prediction can be made on instances with too few stop points (for example in remote
parts of the road map). Reversely, if too many stop points occurred on a given instance,
there is no alternative but randomly selecting the appropriate number of stops to make it
fit the model of classifier. A practical solution to this issue, is to estimate the distribution
of stop durations along the road curvilinear abscissa with an adapted version of the kernel
distribution estimation (KDE) method [22].
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Figure 4 Weighted kernel density estimation of stop points. Orange vertical dashed line stands for
the position of the stop line associated to a traffic signal (controlling the entrance on an intersection
located on the left of the graphics). Vehicles are moving from the right to the left.

Let K be a positive, real-valued symmetric function whose integral sums up to 1. Function
K is called a kernel. Let xi ∈ [0, L] be a set of N stop point locations, associated to stop
duration times ti ∈ N (for reasons that will be detailed further, we assume that timestamps
are precise up to the second, which means that stop durations may be considered as integers).
We define the weighted kernel density estimation as :

∀ x ∈ [0, L] : f̂h(x) = 1
Nh

N∑
i=1

tiK
(x− xi

h

)
Note that this definition is slightly different from the standard KDE method, insofar as

each kernel function centered in xi is weighted by the corresponding stop duration ti. As a
consequence, f̂ is not normalized:∫ L

0
f̂h(x)dx '

∫ +∞

−∞
f̂h(x)dx = 1

N

N∑
i=1

ti

∫ +∞

−∞
K(x− xi)dx = 1

N

N∑
i=1

ti = E[t]

where E[t] is the expected stop time of all vehicles in the frame (this holds provided that
the bandwidth parameter h is small in front of the instance dimension L). Similarly, as
illusted on figure 4, the integral of f̂h over a given segment [x1, x2] is equal to a theoretical
amount of time vehicles are expected to stop between curvilinear abscissa x1 and x2. Four
examples of stop time distributions are depicted on figure 5 below.

Following a methodology inspired by [9], the resulting function is sampled at n evenly
spaced locations to form the explanatory variable vector X ∈ Rn. Eventually, target variables
are computed. Binary classification variable Y1 ∈ {0, 1} denotes the presence of a traffic
signal in the instance. If Y1 = 1, regression variable Y2 ∈ [0, L] specifies the stop line location,
measured as its distance to the intersection node (stop line abscissa on figure 4).

From a practical viewpoint, since we assumed stop durations are integer values, f̂h may
be computed with any standard KDE library, simply by oversampling data in such a way that
each point xi is present a number ti of times. Besides, given that in efficient implementations
of KDE, computation is done with Fast Fourier Transform algorithm, it makes sense to
set the numerical value of n as a power of 2. In our application case, we took n = 64.
Though it may be demonstrated that the mean integrated squared error is minimal with
Epanechnikov kernel, the choice of the kernel function is not critical. Therefore we used a
gaussian kernel. The bandwidth parameter has been set independently for each instance,
according to Silverman’s rule [22], which is optimal for normally distributed observations.
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Figure 5 Examples of stop time distributions: the top two instances are positive (dashed line
indicates traffic signal position), while the bottom two are negative. When the edge is shorter than
100 m, the thick dashed line denotes the end of the edge segment.

3.2 Training and validation
Given a set D of training instances in X ×Y , where X ⊆ Rn and Y = {0, 1} denote input and
output spaces, respectively, and a new feature vector Xu ∈ X , whose label Yu is unknown, the
task of a classifier is to estimate the probability of a traffic signal presence P(Yu = 1|Xu,D).
Xu is classified as positive whenever the estimated value is greater than 0.5. For regression
problems, Y = R, and the objective is to estimate the conditional expectation E[Yu|Xu,D].

Introduced by Breiman [6] two decades ago, Random Forests (RF) algorithm is a statistic-
ally robust version of decision trees, relying on ensemble method concept to reduce prediction
variance of individual decision trees. Given a collection of T decision trees whose posterior
probability estimate is Pt, the overall posterior estimation is calculated as an average of
predictions made by each individual tree:

P(Y |X) = 1
T

T∑
t=1

Pt(Y |X)

This makes Random Forests a simple, fast and efficient classification and regression tool,
often considered as robust to over-fitting and particularly useful in high-dimensional problems
where one has no strong reason to believe that all features will be helpful for discriminating
instances. Moreover, in his foundation paper, Breiman introduced as well parameters setting
empirical rules, which makes the tuning process quite straight-forward. For more detailed
information about RF, we recommend the complete and extensive works of Louppe [15] for
the theoretical background or Criminisi et al. [8] for a presentation of some of its capabilities
in a wide range of practical problems.

The final dataset contains 4611 instances, including 662 (14%) positive samples. While
the entire dataset is not overwhelmingly labeled as negative, this significant imbalance in
favor of negative instances may markedly penalize the training process [2]. To overcome this
issue, we tried different strategies: down-sampling (randomly suppressing negative samples
until dataset is balanced) and up-sampling (replicating positive samples: this second strategy
has the advantage of keeping all the information available from the data, at the expense
of increasing correlation between individual samples). We also tried SMOTE algorithm [5],
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which is similar to up-sampling, but instead of replicating the minority class examples, new
examples are generated by interpolation between randomly sampled neighbor instances of
this class. We used T = 500 trees, and at each split

√
n = 8 features are taken into account.

The model was validated by 10-fold cross validation, i.e. by training the algorithm on 90 %
of the data, and validating it with the remaining 10 %, and repeating this process 10 times.

3.3 Inference on crossings
Given an intersection between a number n of incoming streets, each of them being classified
by RF with a probability pi of containing a traffic signal. We know that since the aggregated
prediction relies on non-independent trees, and aggregation is calculated with a sum instead
of a product, the values pi are not strictly speaking probabilities. However, using the belief
theory and Dempster-Shafer combination rule, it can be demonstrated through recurrence
on n that the total belief towards the presence of a traffic signal on the intersection is:

π(p1, p2...pn) =
n∏

i=1
pi ×

( n∏
i=1

pi +
n∏

i=1
(1− pi)

)−1

The intersection is then classified as controlled by a traffic signal when π > 1
2 . Using

this combination rule, we may aggregate predictions on individual streets into a unique
probability on the entire crossing, trading granularity for precision.

4 Results and discussion

The whole experimental process has been implemented in R with randomForest package [13]
and launched on an Intel Core(TM) i7-3770 processor (3.40 GHz RAM 8 Go). We computed
the following performance scores: specificity (or 1 - false positive rate, which corresponds to
the recall), sensitivity (or true positive rate), area under receiver operating curve (AUC),
training time (for a single fold, i.e. on 90% of the data), and overall accuracy.

Table 1 Detection performance scores for different way of balancing data.

Scores Down-sampling Up-sampling Imbalanced SMOTE
Specificity (%) 87.10 95.97 97.23 95.87
Sensitivity (%) 83.25 63.34 57.18 63.98
Accuracy (%) 86.57 91.49 91.73 91.49
AUC (%) 91.38 91.52 91.26 91.25
Training time (s) 1.35 6.98 3.83 7.18
Number of instances 1191 7108 4149 7108
OOB error rate (%) 14.46 2.00 8.23 2.36

Note that RF algorithm provides a practically unbiased error estimate during training
phase (without validation dataset), called out-of-bag (OOB) estimate. Indeed, since training
data are bootstrapped before used to grow decision trees, for a sufficiently large number of
training data, it can be demonstrated that on average, each sample is not seen by a fraction
(1− 1/n)n ∼ e−1 of trees. As a direct implication, each instance may be used as a training
data for 63 % of trees, and passed through validation with the 37 % remaining trees.

From table 1, we observe that, as expected, the time complexity of the training process is
roughly proportional to the number of training samples. Besides, area under curve (and then
the overall performance) does not seem to depend upon the method selected for balancing the
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Figure 6 Left: Receiver Operating Characteristics (ROC) curve of the classifier with 95%
confidence bands (computed with bootstrap method). Right: probability density and cumulative
distribution functions of regression errors.

data. Everything happens just as if the four classifiers above correspond to different selection
threshold of the same classifier model. Therefore, in the remaining of this section, we will
only use down-sampling since it decreases the number of instances to process, resulting
in a minimal computation time. It is worth noticing, that while OOB estimate is often
acknowledged as being quite reliable, it completely fails to provide realistic error estimate on
up-sampling and SMOTE experiments. This may be explained by the fact that with these
two balance procedures, two identical (or at least very similar) sample data may be in and
out-of-bag, which amounts to validating a model with samples partially contained in training
dataset.

Figure 6 depicts detection and localization performances for the down-sampling version
of the algorithm. Area Under Curve index of the classifier is equal to 91.8 (±1.5) % which is
considered as a fairly good result. Though specificity is not so high (compared to the number
of potential false positive that might be detected on a typical road network), the ROC curve
is remaining close to the no false positive vertical line even for decent value of true positive
rate. This observation instills confidence in the possibility of building a semi-automatic
process, achieving a satisfying recall, and entailing only few manual corrections. However, on
the other side of the ROC curve, it seems difficult to get all traffic signals, without spending
a lot of time separating true and false positive detections. From a more practical viewpoint,
it is also worth noticing that our recall may be compared with OSM (with the substantial
advantage that our algorithm performs detection on each individual traffic signal, not only
on the entire crossing).

Table 2 Localization performance scores. RMSE: root mean square error.

Scores Mean error Median error Mode of errors RMSE
Estimate (m) 6.22 3.82 2.65 9.51
Std. deviation (m) ±0.4 ±0.3 ±0.3 ±0.8
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Figure 7 Out-Of-Bag (OOB) error estimate convergence versus number of trees T .

Besides, as depicted on the cumulative distribution function of regression errors, 82 % of
errors are below 10 m, 60 % below 5 m, and 14 % as precise as 1 m. The root mean square
error equals 9.51 (±0.8) m, (which is to be put in perspective to the 20 m of the standard
deviation of the explained variable before regression), while mean, median and mode values
are much lower, indicating that the distribution is significantly right-skewed. This calls for a
more general discussion over what detection means. It might be more reasonable to count
outliers as undetected (a stop line detected with 50 m inaccuracy cannot be legitimately
considered as detected), as a result, the recall would decrease slightly by 4 % and as a reward,
the RMSE of localization drops to 6 m, and mean error to 4 m.

Similarly to many ensemble method algorithms, RF is robust to overfitting, and while
there is no guidelines for selecting an adequate number of trees, it is admitted that an
excessive number is not harmful to the prediction (at the expense of an additional burden in
computation time at training and inference steps). Figure 7 depicts the evolution of the OOB
error estimate as trees are grown in the model. It may be observed that the convergence of
predictions has been reached with approximately 100 trees.

Detailed inspection of the results revealed that many false detections occurred on places
where very few vehicles traveled, which implies that the algorithm has not reached convergence
as far as the number of vehicles is concerned. With a more extensive dataset we could
certainly get better results. It would be interesting, in future works, to study the impact of
the number of traces on the prediction scores.

A limitation of our work is that, as stated in section 3.1, our choice of frame, located near
the intersection node, makes it impossible to detect traffic signals located in the middle of
edges. Indeed, a relatively important number of errors occurred on traffic signals activated by
pedestrians push button. An interesting proposition to solve this issue would be to up-sample
the network by creating artificially dummy nodes evenly spaced on long edges. This approach
may be successful to capture the remaining traffic signals. Another strong limitation of this
work is that only information extracted from GPS traces upstream of the intersection is used
to create the features, although the behavior of drivers downstream of a traffic signal may
exhibit some very specific pattern that could help discriminate from stop signs at jammed
intersections.

Based on the posterior probability values estimated by the RF, and combining them with
the method proposed in section 3.3, we classified crossings into two categories, depending
on whether they are controlled by a system of traffic lights. This made sensitivity and



Y. Méneroux et al. 11:13

specificity increase to 87.9 % and 96.2 %, respectively, which is more than 8 % improvement
in comparison to the per individual traffic light detection. This compares advantageously
to OSM traffic signal database, particularly in terms of recall. Yet, specificity is not high
enough to ensure fully automatic process without human supervision or post-processing
corrections. Future research will try to leverage this correlation to improve results, even at
the level of individual traffic signals. This can be done through relational learning techniques
[21] and probabilistic graphical models [11], especially since we have a natural definition of
network: the road map.

Apart from tuning more thoroughly the model parameters and the choice of features
(additional data would preclude from over-fitting), among the main perspectives of improve-
ment, we may attempt to use functional data analysis to decompose time distribution on
an ad hoc basis of functions (e.g., wavelets, Karhunen-Loève transform...), in an attempt to
minimize correlation between features. Extracting some other physical parameters such as
speeds, accelerations, jerks... may also help discriminating traffic signals, as well as localizing
it more precisely. This is possible, provided that GPS data speed profiles are smooth enough.
Eventually, we may consider building spatio-temporal feature vectors, with a bi-dimensional
kernel density estimation, where one dimension is the stop time and the second dimension is
the stop position along the road axis.

5 Conclusion

Floating Car Data have been used so far in a wide variety of applications to infer the road
network and its attributes. However, to the best of our knowledge, the method proposed in
this paper is the first attempt to use multiple probe vehicle GPS traces along with statistical
learning techniques to detect and localize traffic signals. Learning on a weighted-time
distribution of stop points can reach up to 85 % detection scores, and approximately 5 m
in positional accuracy. These results are promising for the future development but it is not
yet sufficient at the moment to be used as a fully automatic detection system. Nonetheless,
this algorithm might find some applications as it is, as a semi-automatic map inference
algorithm with human post-process corrections, or when combined with other sources of
data (e.g., sensors, embedded cameras, aerial images...) to provide a refined estimation with
multi-source data fusion techniques. Future works will aim at improving detection scores
by extracting more features from the data, and at extending this approach to other kinds
of infrastructure elements. In the long run, one of the main prospects for this research is
unquestionably autonomous cars, which, in addition to self-driving, would be self-mapping
their environment and sharing information in a completely autonomous loop.
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Abstract
There has long been interest in the skeleton of a spatial object in GIScience. The reasons for this
are many, as it has proven to be an extremely useful summary and explanatory representation
of complex objects. While much research has focused on issues of computational complexity and
efficiency in extracting the skeletal and medial axis representations as well as interpreting the
final product, little attention has been paid to fundamental assumptions about the underlying
object. This paper discusses the implied assumption of homogeneity associated with methods
for deriving a skeleton. Further, it is demonstrated that addressing heterogeneity complicates
both the interpretation and identification of a meaningful skeleton. The heterogeneous skeleton
is introduced and formalized, along with a method for its identification. Application results are
presented to illustrate the heterogeneous skeleton and provides comparative contrast to homo-
geneity assumptions.
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1 Introduction

An area, polygon and/or region is often the byproduct of political, administrative or man-
agement delineation, but such an object can also be used to represent in situ phenomena
and attributes. Irrespective of its origin, summary, explanation and characterization of the
spatial extent of an area-based object can be very important. One approach for summary
representation has been through the use of the skeleton, or medial axis among other names.
Okabe et al. [16] note the ability of the skeleton to characterize the shape of a polygon. In
cartography, the skeleton may be used for effective label placement, contributing to visual
appeal and enhanced communication of a display and/or map. Bruck et al. [5] and Matisziw
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Figure 1 Skeleton for a rectangle region.

Figure 2 Heterogeneous attribute for the rectangle region.

and Murray [14] have demonstrated important spatial properties of the skeleton, as have
others.

The skeleton is a line-based object that is represented by the locus of all points equidistant
to at least two nearest locations on the polygon boundary it describes. Figure 1 depicts the
skeleton (colored blue) for a rectangle region (colored black). Interestingly, definition of the
skeleton has focused only on the polygon boundary, devoid of any other spatial attributes.
In particular, one might consider an attribute distributed within a polygon as an important
influencing factor, if such information is available. It may be that only the total value of an
attribute for a polygon is known, and not its actual spatial distribution within the polygon.
We know the total attribute value within the rectangle region in Figure 1 to be 58,217.
Clearly in such a case, the standard definition based on polygon boundary makes sense.
However, if the spatial attribute distribution within a polygon is indeed known, then this
should influence the shape of the skeleton if it is to reflect both boundary and attribute
information. Figure 2 depicts the spatial variability of the attribute in the rectangle region
(Figure 1), where darker colors correspond to higher attribute values (greater population).
The 58,217 people in this region are not uniformly distributed, but rather are non-uniform,
with a high of 40 people in the left top corner cell and a low of one in right bottom corner
cell. One can characterize the skeleton based only on polygon boundary as homogeneous,
whereas a skeleton based on boundary and spatially varying attribute(s) within the polygon
would be better described as heterogeneous. Figure 3 depicts the heterogeneous skeleton for
the rectangle region, accounting simultaneously for both boundary and attribute variability.

In this paper we introduce the heterogeneous skeleton to simultaneously reflect boundary
and attribute variability of a polygon. The idea is to provide enhanced summary and
characterization, taking advantage of the greatest amount of information possible. The



A.T. Murray, X. Feng, and A. Shokoufandeh 12:3

Figure 3 Skeleton accounting for boundary and spatial attribute variability in rectangle region.

next section provides background on the skeleton. This is followed by technical details of
homogeneous and heterogeneous skeletons. An approach for deriving the heterogeneous
skeleton is given. Application results demonstrating the utility of the heterogeneous skeleton
are then provided. The paper ends with discussion and concluding comments.

2 Background

The skeleton was identified as an efficient model for two-dimensional closed shape representa-
tion by Blum [2], and later generalized by Millman [15] and Yodmin [23]. The skeleton was
also extended to curves defined by bi-tangent spheres known as the symmetry set [12, 3].
Assuming the exisitance of a radial function at every skeletal point, the skeleton transform is
an invertible function, in that it is possible to reconstruct a shape as the union of overlapping
bi-tangent spheres centered at skeletal points [10]. The skeleton also provides a concise repres-
entation for the interior of the shape, and as such is subject to both geometric and mechanical
operations, including interior deformations and wrappings. It also provides a basis for shape
characterization at multiple spatial scales, enabling efficient geometric processing. In terms
of applications, the skeleton has played critical roles in GIScience, including topography,
cartography, analytics and network modeling. For example, the structure of watersheds
can be characterized by a “flooding” propagation from sources that are constrained by
surface topography. This flooding operator is similar to Blum’s grassfire operator and is
estimated using a similar computational approach [20]. In digital modeling, the skeleton has
been used for extracting and characterizing elongated geographic structures, such as roads
and rivers [1]. In cartography and mapping skeletons have been used to estimate tightly
coupled level heights of contour curves to regenerate terrain models [13], but also for label
placement/layout. In sensor network optimization, planning the routing for static nodes in a
geometric space is a critical problem [11]. Bruck et al. [5] used skeletons to optimize routing.
Matisziw and Murray [14] showed that the skeleton represents locations in continuous space
having the most desirable siting properties. The skeletal representation has also been used
in the context of two- and three-dimensional shape representation and recognition [13, 19].
For these problems, the skeletal representation is computed directly for the object boundary
curves or surfaces and contains the topological information about shape in terms of the local
descriptors, which are held at each node in the skeletal representation [9]. These local shape
descriptors contain information to aid shape retrieval, matching, and analysis [7, 18].

The (homogeneous) skeleton represents a line-based object center, and was characterized
above as being the locus of all points equidistant to at least two nearest locations on the
polygon boundary. Consider the polygon shown in Figure 4. The challenge is to identify
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Figure 4 A polygon-based region, Φ.

a line-based object that is a summary of this polygon. The skeleton represents one such
approach.

A set theoretic model for the skeleton can be structured. Assume we have a simple
polygon object, Φ. Further, this polygon can be converted to its polyline representation, ϕ.
Both objects are now used in the characterization of the skeleton:

S =
{
p ∈ R2|∀r ∈ R,

(
δ(p, r) ⊂ Φ

)
∧
(
|δ(p, r) ∩ ϕ| ≥ 2

)}
(1)

where p is a point in two-dimensional space, r is a distance (Euclidean), and δ(p, r) is a
polyline object (circle) of distance r from point p. The skeleton results from an infinite
collection of instances of p and r, where δ(p, r) is contained in Φ and δ(p, r) intersects ϕ in
two or more tangent points. Further discussion of the skeleton can be found in Okabe et al.
[16] and Matisziw and Murray [14].

Given this formal specification of the skeleton, it may be derived using a number of
methods. There are different approaches that have been well documented for skeleton
extraction of two- and three-dimensional objects. They can be grouped into three major
categories based on their principles and object representation:
1. Voronoi - Algorithms based on the Voronoi diagram or continuous geometric approaches

of point clouds, polygonal, or polyhedral representations of object boundaries. Based
on properties of the Voronoi diagram, Voronoi edges or planes can be used to construct
symmetry structures, or the skeleton.

2. Thinning - Algorithms that rely on the continuous evolution of object boundaries. For
example, the object boundary is shrunk with the spread of fire starting at the boundary,
the so called grassfire algorithm. The skeleton is formed at the location of singularities,
referred to as the “quench points” where fires from different parts of the boundary meet.

3. Distance transformation - Algorithms using the principle of digital morphological erosion
or location of singularities, e.g., local maxima, on a digital distance transform field.

Figure 5 illustrates the associated skeleton for polygon Φ shown in Figure 4. As noted
previously, the skeleton is the byproduct of evaluation that considers only polygon boundary.
As a result, there are no attribute oriented influences in the structure of the skeleton.
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Figure 5 Homogeneous skeleton of polygon Φ.

3 Heterogeneous Skeleton

A polygon region that has associated attribute detail about variability within it represents
a rich source of information. While a standard assumption is to assume that a polygon
attribute is uniformly distributed across the area it delineates, when ancillary information
exists regarding the actual spatial distribution of an attribute, this is particularly valuable.
The skeleton, S, defined using (1) assumes homogeneity and is derived solely on the basis of
polygon boundary ϕ. Yet, more may be known about attribute variability, and this has the
potential to provide greater spatial richness to a line-based summary. As an example, Figure
6 indicates population density for the study region. Darker shades indicate higher population
density, and it is clearly not uniform across the polygon. Extending the skeleton/medial
axis to account for both geographic boundary as well as heterogeneity in the distribution of
attributes across Φ is important.
This means then that one must be able to explain and account for attribute variability. In
continuous space the function g() defines the attribute value for any point q ∈ R2.

Using set theory notation, we introduce the heterogeneous skeleton as:

W =
{
ρ? ∈ R2

∣∣∣ ∀p ∈ R2, r ∈ R,
(
δ(p, r) ⊂ Φ

)
∧
(
|δ(p, r)| ∩ ϕ ≥ 2

)
∧min

ρ?

∫∫
q∈δ(p,r)

g(q)γ(ρ?, q)dq
}

(2)

where γ(ρ?, q) is the distance between ρ? and q. Building on the homogeneous skeleton, S,
definition in (1), the heterogeneous skeleton in (2) adds the additional condition that the
inscribed circle, δ(p, r), serves as an object for which the best representative point is sought.
This representative point then helps to define the proposed skeleton variant.

The subproblem communicated in (2) is:

min
ρ?

∫∫
q∈δ(p,r)

g(q)γ(ρ?, q)dq (3)
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Figure 6 The attribute variability within region Φ.

This is actually a continuous space optimization problem (see Church and Murray [6]). A
discrete variant of (3) is what Rogerson [17] and others refer to as the weighted median center.
With demand in δ(p, r) distributed according to the function g(), the distance γ(ρ?, q) from
point q to the optimal median center ρ? reflects the weighted distance. That is, we seek the
optimal ρ? for each inscribed circle, δ(p, r), such that the total weighted (attribute) distance
is minimized. It therefore is the most efficient or most representative center point for δ(p, r).
The collection of optimal ρ? for all points p ∈ R2 satisfying (2) results in the heterogeneous
skeleton.

Often the attribute function g() is approximated in some way (Yao and Murray [22]),
where δ(p, r) is delineated into smaller reporting units or cells. The index i, i ∈ {1, . . . , n},
is used to refer to discrete points/units in δ(p, r), where (xi, yi) are the coordinates of unit
i. Naturally, gi represents the observed attribute value for unit i. If the coordinates of ρ?
are (X,Y ), then these are the subproblem decision variables. The weighted median center is
therefore the following problem:

min
(X,Y )

n∑
i=1

gi
√

(xi −X)2 + (yi − Y )2 (4)

The distance function, γ(), in this case is the Euclidean metric. As noted in Wesolowsky [21]
and Church and Murray [6], (4) is nothing other than the Weber problem and can be solved
using the Weizfeld algorithm.

With the problem description and details, an approach to solve (2) is possible. Pseudo
code for the solution process is as follows:

Effectively, the proposed approach must first identify each inscribed circle, as done for S
in (1). However, the point to include on the heterogeneous skeleton, denoted as W in (2), is
defined based upon the weighted median center criteria, (4). Depending on the structure of
polygon Φ, as the number of ρ? defining W increases, the associated heterogeneous skeleton
results.
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Algorithm 1 Overview of heterogeneous skeleton derivation.
for δ(p, r) in Φ do

δ(p, r) ⊂ Φ
|δ(p, r) ∩ φ| ≥ 2
Find ρ?, or rather (X,Y ) using (4)

end for

Figure 7 Heterogeneous skeleton (boundary and attribute variability).

4 Results

The models were implemented in the Python platform using arcpy, pysal and sympy libraries,
amoung others, on a Windows 10 Enterprise server with an Intel Xeon E5-2650 v3 (2.3GHz)
64 bit CPU and 64 GB of RAM. ArcGIS was utilized for data creation, management,
manipulation, analysis, and visualization. Reported findings required only seconds or minutes
to derive.

The heterogeneous skeleton is shown in Figure 7 for the study region (Figures 4 and
6). In comparision to the homogeneous skeleton (Figure 5), there is much variability in the
line-based object in terms of precisely where the skeletal line segments are located. The reason
for this is highlighted in Figure 8, where an inscribed circle is depicted, δ(p, r) and helps
to form the derived skeleton. The unweighted median center is shown using the symbol •.
This is the feature which is used to define the homogeneous skeleton, S, in equation (1). In
contrast, the weighted median center, (4), is shown using the symbol ?. That is what is being
used to define the heterogeneous skeleton, W , in equation (2). Accordingly, the two skeletons
are different based upon their resulting line segments. This happens because of the added
influence of attribute and its spatial variability, i.e., the higher population density areas are
effectively pulling the skeleton to create a shape and location that is more representative of
the distribution of the underlying attribute.

One final question to consider is how distinct the heterogeneous and the classic homogen-
eous skeletons are. While visual inspection and comparison highlights significant differences,
aspects of quantification are possible. One distinction can be made in terms of how far apart
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Figure 8 Inscribed circle with associated attribute variability.

the unweighted and weighted median center are from each oth0er for each inscribed circle
used in defining the skeleton. In this case, the distance between the homogeneous center and
the corresponding heterogeneous center ranges from 3.43 to 3,593.07 ft in this case. The
mean distance is 1220.54 ft, with a standard deviation 939.55 ft. As the region is nearly 100
square miles, such differences are highly significant.

5 Discussion and Conclusions

There are a number of issues worth further investigation associated with the heterogeneous
skeleton. First, a polygon may have many possible associated heterogeneous skeletons, one
for each one of its attributes. For example, if there are m attributes referenced using j ∈
{1, . . . ,m}, then any unit i would have m unique attribute values gij . As a result, depending
on the spatial variability of the attribute, one could anticipate m unique heterogeneous
skeletons that reflect attribute variation along with the influence of boundary footprint.
Figure 9 illustrates a second attribute for polygon Φ, with a decidedly different pattern of
spatial variability. Figure 10 indicates the associated skeleton in this case. As is evident
through visual inspection, the skeleton in Figure 10 is much different from the case where
population is considered (Figure 7). Thus, many different heterogeneous skeletons may be
possible depending on associated spaital attributes.

The derivation of the heterogeneous skeleton detailed here was based on the notion of
inscribed circles, δ(p, r). Here, the main motivation was to maintain a connection to the
original construction of skeletal representation. This also ensures that one can account for
boundary and attribute variability. While this is theoretically sound, other definitions of
the heterogeneous skeleton too may be appropriate and meaningful. It is conceivable that
approaches based on modified diffrential grassfire operators or distance transform may be
mathematically intuitive or computationally more efficient [8, 4].

The paper introduced the heterogeneous skeleton to help simultaneously characterize
boundary and attribute variability of a polygon-based region. The classic definition of a
skeleton was reviewed, highlighting the focus on the defining boundary only. Taking into
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Figure 9 Second regional attribute.

Figure 10 Second regional attribute.

account attribute information in the formalization of the skeleton has many potential benefits
given the wide array of already established application areas. In particular, the heterogeneous
skeleton represents an approach for summarizing multi-dimensional information that includes
both spatial detail as well as locational attributes. The work here represents an initial
attempt to define and derive the heterogeneous skeleton.
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Abstract
Green spaces in urban areas offer great possibilities of recreation, provided that they are easily
accessible. Therefore, an ideal city should offer large green spaces close to where its residents
live. Although there are several measures for the assessment of urban green spaces, the existing
measures usually focus either on the total size of green spaces or on their accessibility. Hence, in
this paper, we present a new methodology for assessing green-space provision and accessibility in
an integrated way. The core of our methodology is an algorithm based on linear programming that
computes an optimal assignment between residential areas and green spaces. In a basic setting,
it assigns a green space of a prescribed size exclusively to each resident such that the average
distance between residents and assigned green spaces is minimized. We contribute a detailed
presentation on how to engineer an assignment-based method such that it yields reasonable
results (e.g., by considering distances in the road network) and becomes efficient enough for the
analysis of large metropolitan areas (e.g., we were able to process an instance of Berlin with
about 130 000 polygons representing green spaces, 18 000 polygons representing residential areas,
and 6 million road segments). Furthermore, we show that the optimal assignments resulting from
our method enable a subsequent analysis that reveals both interesting global properties of a city
as well as spatial patterns. For example, our method allows us to identify neighborhoods with a
shortage of green spaces, which will help spatial planners in their decision making.
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1 Introduction

The existence as well as the spatial distribution of green spaces in a city have a large impact
on the quality of life. Therefore, spatial planners are interested in quantitative measures
for the assessment of cities with respect to their green spaces. Different indicators have
been suggested for this purpose. In particular, indicators for green-space accessibility and
green-space provision have been described [9]. We argue, however, that the one cannot
reasonably be assessed without the other. If, for example, a small green-space exists in the
center of a city, it may be accessible for many residents but not at all sufficient to satisfy
their demand. Large green spaces at the boundary of a city that are difficult to access, on the
other hand, may lead to a positive assessment with respect to green-space provision, although
they are of limited use for the city’s residents. Therefore, we introduce a new methodology
to analyze green-space accessibility and green-space provision in an integrated way.

Our basic idea is to assign a certain amount of green space exclusively to each resident,
meaning that each green space can supply only a limited number of residents and, thus, is
assumed to have a certain capacity. We compute the assignments such that a prescribed
per-capita demand is satisfied for each resident and the average distance in a road network
between residents and assigned green spaces is minimized. We use this average distance to
assigned green spaces (i.e., the objective value of the solution) as a global quality measure and
approximation for the accessibility of the green spaces. For the sake of simplicity, we do not
require each resident to be assigned to a single green space but consider the population of a
residential area as a quantity that can be split into arbitrary fractions which can be assigned
to different green spaces. Such assignments are modeled as a flow from the residential areas
via the road network to the green spaces.

Although we consider the average distance to assigned green spaces particularly interesting,
we will introduce a more general objective function that allows us to distinguish different
types of green spaces and residential areas of different demands. Besides, we will show that
the solutions that we obtain provide interesting information on spatial patterns within a
city. In particular, since the result of our method depends on several parameters, such
as the per-capita demand, we are interested in studying the influence of these parameters
on an optimal assignment. A green space far away from any residential area, for example,
will be assigned to no resident unless the per-capita demand is set to a very high value.
Hence, we can measure the importance of a green space by identifying the smallest per-capita
demand for which it is used in the assignment. By visualizing the green spaces with colors
representing those values, we obtain a map that highlights important green spaces.

To put our general idea to practice, several design decisions have to be made and technical
obstacles have to be overcome. For example, the data set has to be reasonably selected
to include all relevant green spaces. Furthermore, green spaces and residential areas are
usually given as sets of isolated polygons with no direct connection to the segments of a road
data set and, thus, additional links have to be established. The number of residents a green
space can satisfy does not only depend on the size of the green space but also on its type
(e.g., parks have higher recreational values than forests) and, therefore, needs to be modeled
adequately. Moreover, since the polygons representing residential areas and green spaces may
be too large and complex to reasonably argue about the distances between them, it may be
necessary to partition the polygons into smaller units. All of these aspects are considered in
our method in the sense that it offers parameters that should be set by domain experts (e.g.,
spatial planners). We discuss in detail how these parameters are considered in our method.
However, we use rather basic methods and parameter settings in our experiments.
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In algorithmic terms, we adapt the transportation problem [13], which has been studied
frequently to decide how to ship a commodity from a set of suppliers to a set of consumers [8].
For assessing green spaces, however, it has not been applied yet. The transportation problem
can be solved with specialized algorithms [5] or via linear programming (LP) [6]. We choose
the latter since it can be implemented easily with a mathematical solver and since an LP
formulation can be extended easily, for example, to incorporate additional constraints.

The rest of the paper is structured as follows. After discussing related work (Section 2),
we introduce a generic network flow model that constitutes the core of our methodology
(Section 3). We further present how to deploy this model overcoming several technical
obstacles (Section 4) and how to use it for the analysis of green spaces (Section 5). We finally
conclude the paper with a short outlook on future work (Section 6).

2 Related Work

Urban green spaces affect the quality of life in a variety of manners. In different fields,
researchers stressed the significance of green space to cities considering socio-cultural (e.g., [17,
18]), medical (e.g., [2, 3]), ecological (e.g., [14, 15]), or economic aspects (e.g., [12, 19]).
Consequently, there is an increasing interest in measuring and assessing the green-space
supply of an urban area (e.g., [7, 10, 19]).

Baycan-Levent et al. [1] make clear that assessing the green space of a city is a complex
problem. They perform an analysis on several criteria considering various aspects mentioned
above. With their approach, only the green spaces of an urban area themselves are assessed
without taking the residential areas into account: The sheer existence of a high-quality green
space improves the rating for a city regardless of whether its residents are able to access it.
But, especially for benefits arising from visiting a green space its accessibility is crucial.

Comber et al. [4] examine the green-space supply of a city with respect to its residential
areas. They perform a road-network analysis in order to determine the accessibility of urban
green spaces. With respect to the road network, they consider the percentage of citizens
living within a certain radius of green spaces exceeding a minimum size. Their approach
lacks the complexity of the analysis of Baycan-Levent et al. and a more differentiated global
view on the situation in the city. Comber et al. detect for residential areas whether a green
space of adequate size is within a certain distance d or not. If not, no further differentiation
takes place: For their assessment methodology, it does not matter whether residents have
to walk slightly more than d to the next suitable green space or several times the distance.
In order to handle this problem, Comber et al. repeat their analysis for various settings
concerning the distance to and the minimum size of the considered green spaces.

Sister et al. [16] use a road-network analysis in order to examine park pressure, the ratio
of the number of people assigned to a park to its area. They use mean park pressure in
order to assess the green-space supply of a city. Their method uses Voronoi diagrams for
assigning residents. Considering the average, a positive overall rating may hide a park with
immense pressure as parks in this model have unlimited capacity. Furthermore, with Voronoi
diagrams, each resident is assigned to the closest green space. Sister et al. are aware of
this simplification but pursued their strategy since proximity plays an important role to
residents for the selection of a park to visit. Nevertheless, this assumption leads to distorted
assessments. With this measure, the assessment of the green-space supply of a city can be
improved by abolishing small green spaces close to residential areas in order to assign the
residents to a different (slightly more distant) and, above all, more capacious green space.
Improving the green-space supply by abolishing existing green spaces without replacement is
counter-intuitive and, thus, on the downside of this approach.
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In a recent work, Grunewald et al. [9] suggested indicators considering both green-space
accessibility and provision. For accessibility, they compute the share of inhabitants living
within a certain distance from green space. Concerning provision, they examine the green-
space area per capita both globally and in walking distance from residential areas. A city with
green spaces accessible for many but of insufficient capacity, e.g. in high-density residential
areas, earns a high rating with respect to accessibility; A city with large green spaces
accessible only for few, e.g. on the outskirts, gets a high provision rating. A combination
of both leads to a high overall rating although the city’s inhabitants are not satisfied. The
problem is that Grunewald et al. rather accumulate than combine accessibility and provision
criteria. In this paper, we consider green-space provision and accessibility in an integrated
manner.

3 Methodology

In this section, we describe the core of our methodology. We first describe the underlying
concepts and ideas informally (Section 3.1). Then, we present a formal model implementing
these ideas (Section 3.2). This model is rather generic and allows different instantiations
that can be adapted for versatile purposes. Finally, we describe a specialization of the model
that assumes that residents prefer nearby green spaces (Section 3.3).

3.1 Basic Concepts and Ideas
As discussed in Section 2, several approaches have been suggested to measure and assess the
supply of green space in urban areas. One of the simplest approaches is certainly computing
the area of green space that is available per resident. However, this measure does not take
any information about the structure of the urban area into account. Green spaces far away
from residential areas contribute in the same way as green spaces easily accessible by the
residents. Hence, as an alternative one may consider the average distance between residential
areas and their nearest green space. This, however, ignores the restricted capacity of green
spaces. For example, small parks in the city center may not serve all residents, but the
typically larger green spaces outside the city boundaries may also be needed to satisfy the
demand of the residents. Moreover, while both approaches break down the assessment of
green space into an easily comparable number, both do not support a differentiated, spatial
analysis on the distribution of green space. However, for urban planning this is precisely
essential to answer questions about the importance and accessibility of particular green
spaces as well as about the supply of green space to individual residential areas.

We introduce a methodology that interweaves both measures and overcomes their short-
comings. We assume that for each residential area we are given its number of residents and
for each green space we are given its capacity, i.e., the maximum number of people that
can be served by this area. Intuitively, larger spaces may serve more people than smaller
spaces, but this number may also rely on other criteria such as the type of the green space
(e.g., a park may serve more people than a forest of the same size). The overall idea of our
methodology is to assign the residents of the residential areas to the green spaces such that
the average happiness of the residents is maximized, while the capacities of the green spaces
are respected. We model happiness by rating for each residential area and each green space
how much the residents of the residential area prefer that particular green space. This rating
typically relies on the distance between the residential area and the green space, but other
factors such as the demography of the residential area and the type of the green space may
be taken into account. We say a high rating causes high happiness and, altogether, aim for
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Figure 1 Assignment Model. Residential areas are represented by red vertices and green
spaces by green vertices. (a) Illustration of a generic assignment model. (b) Service network
N = (V ∪ R ∪ G, E ∪ F ) based on the road network H = (V, E) (black vertices and fat edges), the
residential areas R and the green spaces G. (c) Flow zr,g is transmitted from the residential area r

to the green space g through the road network on the shortest path P . The flow creates the value
given in Equation (7).

an assignment that maximizes the average happiness of all residents. The strength of the
model lies in the possibility of applying a detailed spatial analysis on the result; we perform
such an analysis in Section 5.2.

3.2 Generic Assignment Model

We now describe how we model the problem formally. We assume that we are given an
urban area that consists of a set R of residential areas and a set G of green spaces. Each
residential area r ∈ R has a number I(r) of residents and each green space g ∈ G has a
number C(g) of residents that can be served; we call C(g) the capacity of g. We aim to find
an assignment such that no green-space capacity is exceeded and the average happiness of
the residents is maximized. We formalize this as follows. For a residential area r and a green
space g we interpret the triple (r, g, i) such that i residents of r are assigned to g. We call
A ⊆ R×G× R+ an assignment for (R,G) if it maintains the supply and capacities of the
residential areas and green spaces, respectively. That is, we require

∑
(r,g,i)∈A i ≤ I(r) for all

r ∈ R and
∑

(r,g,i)∈A i ≤ C(g) for all g ∈ G. However, not every assignment is equally good,
but its quality may be affected by multiple criteria such as distances, the type of the green
spaces, the mobility of the residents of a residential area, etc. Therefore, we introduce the
rating function h : R×G→ [0, 1] that describes the preferences of the residents. The higher
the value of h(r, g), the more the residents of r prefer the green space g. Altogether, we
aim to find an assignment A such that the total happiness

∑
(r,g,i)∈A h(r, g) · i is maximized;

we call that problem GreenSpaceAssignment. For any assignment A we assume that it
only contains triples that contribute to the objective, i.e., there is no (r, g, i) ∈ A such that
h(r, g) = 0. We note that there might be residents that are not assigned to any green space;
we say that these are unsatisfied, while all others are satisfied.

From a computational point of view, GreenSpaceAssignment can be easily reduced to
finding a maximum flow in a complete bipartite graph formed by R and G; see Figure 1(a).
For the convenience of the reader we present the corresponding LP formulation at this point.
For each pair (r, g) ∈ R×G we introduce a variable xr,g. We interpret xr,g as the number of
residents of r assigned to g. Subject to
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∑
g∈G

xr,g ≤ I(r) for all r ∈ R (1) and
∑
r∈R

xr,g ≤ C(g) for all g ∈ G (2)

we maximize
∑
r∈R

∑
g∈G xr,g · h(r, g). The assignment is A = {(r, g, xr,g) | r ∈ R ∧ g ∈ G}.

In Section 3.3 we describe one possible variant of this highly general model in more detail
in order to demonstrate its application. In Section 6 we sketch further variants.

3.3 Network-Based Assignment Model

We now introduce a specialization of our model in which green spaces are assessed by their
attractiveness and their accessibility. We assume that residents prefer nearby and attractive
green spaces and are not willing to use green spaces that are further away than a certain
distance dmax; we call this distance the scope of the residents. Further, we assume that the
mobility of the residents may vary from residential area to residential area. To model the
mobility of residents and the attractiveness of green spaces, we introduce for each residential
area r ∈ R and each green space g ∈ G the weights αr and βg, respectively. A higher value
corresponds with a higher mobility of the residents in r and a higher attractiveness of g,
respectively. To assess the accessibility of a green space g from a residential area r, we
take the distance d(r, g) between r and g into account. We obtain this distance from the
road network of the considered urban area. For a residential area r we then rate the green
space g by h(r, g) = αr + βg − d(r,g)

dmax
. We note that h(r, g) may become negative. However,

in this case no resident of r is assigned to g because we consider a maximization problem.
Consequently, a negative value corresponds with setting h(r, g) = 0.

GreenSpaceAssignment can be solved using the LP formulation above. While this
works out for small and medium sized cities, it easily exceeds the storage of a modern server
system for large cities because it uses a quadratic number of variables. Instead, we introduce
a specialized formulation based on the given road network. This formulation uses a number
of variables that is linear in the number of green spaces, residential areas and the size of the
road network. This allows us to consider metropolitan cities.

We assume that we are given the road network as a directed geometric graph H = (V,E).
From H we derive the service network N = (V ∪R ∪G,E ∪ F ) by adding a vertex for each
residential area and each green space; see Fig. 1(b). These vertices are connected to the
remaining graph by means of the additional edges in F . More precisely, there is an edge
rv ∈ F with r ∈ R and v ∈ V if and only if v is an access point of the residential area r.
Similarly, there is an edge ug ∈ F with g ∈ G and u ∈ V if and only if u is an access point
of the green space g. A vertex of the road network is an access point of a region if a resident
may access the region via this point; in Section 4 we describe a simple tool to compute access
points of residential areas and green spaces.

We set the length d of the edges in N as follows. For an edge e ∈ E we define its length
d(e) as its geodesic length in the road network. For edges rv ∈ F incident to a residential
area r we define d(rv) = αr. Finally, for edges ug ∈ F incident to a green space g we define
d(ug) = βg. Depending on the application we may define d differently, e.g., as travel time.

We are now ready to introduce our LP formulation for this specialized model. For each
edge e ∈ E ∪ F we model a flow on e with a variable xe. This represents the number of
residents using edge e. We introduce the following linear constraints.
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∑
rv∈F

xrv ≤ I(r) for all residential areas r ∈ R (3)∑
uv∈E∪F

xuv =
∑

vw∈E∪F
xvw for all road network vertices v ∈ V (4)∑

ug∈F
xug ≤ C(g) for all green spaces g ∈ G (5)

Subject to these constraints we maximize the following objective∑
r∈R

∑
rv∈F

αr · xrv +
∑
g∈G

∑
ug∈F

βg · xug −
∑
uv∈E

d(u, v)
dmax

· xuv (6)

The first constraint states that for each residential area r the flow on the outgoing edges does
not exceed the number of residents of r. The second constraint preserves the flow within the
road network, i.e., flow entering a road network vertex v ∈ V also needs to leave v on its
outgoing edges. Finally, the last constraint ensures that the flow on the incoming edges of a
green space does not exceed the capacity of the green space. Put differently, the number of
residents that are assigned to a green space does not exceed the capacity of the green space.

The intuition behind the objective can be explained as follows. Consider the flow zr,g of
a residential area r that is absorbed by a green space g. As the number of residents using
the same edge in N is not limited, we can assume without loss of generality that the flow
zr,g is not split anywhere in the flow network. Since each edge uv ∈ E has cost −d(u,v)

dmax
and

since we consider a maximization problem, the flow from r uses a shortest path P in the
road network to reach g; see Figure 1(c). Hence, the flow has value

αr · zr,g + βg · zr,g −
∑
uv∈P

d(u, v)
dmax

· zr,g = h(r, g) · zr,g. (7)

Consequently, the value of the flow in total is
∑
r∈R

∑
g∈G h(r, g) · zr,g, which corresponds

with the objective of GreenSpaceAssignment.

4 Deployment

We now describe the deployment of the network-based model (Section 3.3) in experiments
and practical applications. This is just one way to apply our methodology, but it easily can
be adapted to other scenarios. We assume that we are given the residential areas R and the
green spaces G of an urban area as simple polygons. Each residential area has a number of
residents. The road network is given as a graph H = (V,E) with geometric embedding. We
apply two phases. In the first phase, we preprocess the data in 5 steps obtaining an instance
of GreenSpaceAssignment. In the second phase, we solve that instance.

First Phase – Preprocessing

Step 1. Since the polygons representing green spaces may be too large and complex to
reasonably argue about the distances between them and polygons representing residential
areas, it may be necessary to partition these polygons into smaller units. We use an approach
by Haunert and Meulemans [11]. They decompose a simple polygon into a minimum number
of simple polygons such that each of the resulting polygons is sufficiently compact, with
respect to a measure of dilation from graph theory. We obtain a new set of green spaces
formed by these compact polygons that replaces the green spaces in G.
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Step 2. We determine the access points of the green spaces and the residential areas. To
that end, we buffer each polygon; in our experiments we use an offset of 100 m. Hence, roads
closely passing by the original polygon intersect the buffered polygon. Each vertex of the
road network in the buffered polygon then is an access point of the original polygon.

Step 3. We construct the service network based on the road network H. We add the
residential areas in R and green spaces in G as vertices to the road network. For each
residential area r ∈ R and each access point v of r, we introduce the edge rv. Similarly, we
introduce for each green space g ∈ G and each access point u of g the edge ug. We denote
the set of edges incident to vertices representing residential areas and green spaces by F .
Altogether, we obtain the service network N = (V ∪R ∪G,E ∪ F ).

Step 4. To reduce the graph’s complexity, we iteratively remove any degree-2 vertex by
replacing its two edges with a single edge connecting its neighbors; the length of the new
edge is derived from the two incident edges. Since we do not use the geometric embedding of
H in the subsequent steps, this is a valid operation to speed up shortest path queries.

Step 5. In our model, we assume that residents only use shortest paths. Hence, for
each vertex of the service network we compute whether it lies on a shortest path between a
residential area and a green space. If this is not the case, we remove the vertex from the
road network. Otherwise, we annotate the vertex with the smallest distance between it and
any residential area; we call this distance the accessibility of the vertex. We use this distance
in the second phase to prune the network.

Second Phase – Linear Programming

In this phase, we process the instance of GreenSpaceAssignment that we have created in
the previous phase. To that end, we systematically explore different choices of capacities of
green spaces as well as different scopes. More precisely, we assume that there is a demand γ
of green space made by each resident; we call γ the per-capita demand. The capacity of a
green space is then area of green space

per-capita demand . In our experiments, we not only consider one choice of
γ but a set Γ of per-capita demands. Similarly, for the scope we consider a set D of distances.
For each pair (γ, d) ∈ Γ×D we solve GreenSpaceAssignment on the respective instance.
That is, we set the capacities of each green space g to area of g

per-capita demand . Applying dmax := d,
we then use the LP formulation to solve GreenSpaceAssignment on the corresponding
instance. In the LP formulation, we only consider vertices whose accessibility does not exceed
dmax. As result we obtain for each pair (γ, d) the average distance between a resident’s
residential area and the assigned green space. Besides, for each residential area, we obtain
the number of residents that were assigned to a green space. Analogously, for each green
space, we obtain the number of residents assigned to this area.

Further, for each per-capita demand γ ∈ Γ we compute the smallest scope Dγ ∈ R for
which all residents are satisfied. We compute this distance using a simple parametric search.

5 Experiments

In this section, we describe our experimental evaluation that we use to assess our methodology.
We emphasize that the aim of this evaluation is not primarily to find new insights into the
structure of specific cities but to demonstrate that the methodology works in general and
yields a manifold tool set to analyze the supply of green spaces.
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5.1 Data and Experimental Setup
In our evaluation, we have considered 53 urban areas in Germany. As data basis, we use the
Urban Atlas 20121. For a selection of cities, this atlas provides detailed information about
land use in the urban area. It particularly distinguishes between the city and its surroundings.
For each city, we extract its residential areas as simple polygons excluding its surroundings.
In this atlas, a residential area typically represents one housing block separated from others
by roads. The data basis further provides for each residential area an estimated number
of residents resulting from downscaling census data. Similarly, we extract green spaces as
simple polygons for each city including its surroundings. In contrast to residential areas,
green spaces may describe vast regions constituting large parts of the urban area. For our
experiments, we only take green spaces tagged with forest, green urban area, or sports and
leisure facility. Columns 1–3 of Figure 2 give an overview of the analyzed urban areas. The
number of residents ranges from 33 thousand to 2.4 million; the cities have 285 thousand
residents on average. The area of considered green spaces ranges from 8.6 km2 to 6560 km2;
on average there are 659 km2 of green space in the urban area. In addition, Column 3 yields
information about the area of green space that is available per resident.

The road network is taken from OpenStreetMap2. We have chosen the extent of the road
network such that any shortest path between residential areas and green spaces is included.

We configure the second phase of our approach as follows. To keep the evaluation simple,
we choose αr = 1 for any residential area r ∈ R and βg = 0 for any green space g ∈ G.
Hence, for any resident it yields the same gain to leave the according residential area, but
there is no reward for entering specific green spaces. This particularly implies that any
resident reaches any green space within the globally defined scope, but no resident may
exceed that distance. In order to define the capacities and scopes as described in Section 4,
we define the per-capita demands as Γ = {50 · i | 1 ≤ i ≤ 20} ∪ {1, 10} in m2 and the
scopes as D = {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60,∞} in km. As
described above, we solve GreenSpaceAssignment for all pairs (γ, d) ∈ Γ×D. Further,
for each γ ∈ Γ, we compute the smallest scope Dγ such that all residents are satisfied.

We solve the LP formulations using Gurobi 7.0.23. For the LP formulations, we use
continuous variables instead of integer variables. Hence, residents may be distributed on
multiple areas. Since we are not interested in the specific assignment of a resident to a
green space but aim to maximize the average happiness of the residents, this is a reasonable
assumption improving the running time of the applied solver.

The experiments were performed on an Intel® Xeon® CPU E5-1620 processor. The
machine is clocked at 3.6 GHz and has 32 GB RAM. The first phase of our approach is
implemented in Python utilizing QGIS 2.18.144. The second phase is written in Java.

5.2 Evaluation
In this section, we sketch different analysis techniques that can be used to assess the
green-space supply of urban areas. To that end, we use the following measures.

For each residential area its largest satisfiable per-capita demand: the largest per-capita
demand γ ∈ Γ such that every resident of that residential area is satisfied.

1 ©European Union, Copernicus Land Monitoring Service 2018, European Environment Agency (EEA).
http://www.land.copernicus.eu

2 http://www.openstreetmap.org
3 http://www.gurobi.com
4 http://www.qgis.org
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Figure 2 Results for 53 urban areas in Germany. The first three columns give some basic
information about the urban areas while the two last columns summarize our results.

For each green space its smallest relevant per-capita demand: the smallest per-capita
demand γ ∈ Γ such that the green space is used in the assignment.

For each γ ∈ Γ the smallest scope satisfying all residents: smallest scope such that all
residents of all residential areas are satisfied.

For each γ ∈ Γ the average distance to assigned green spaces: the average distance to
assign all residents to green spaces considering an infinitely large scope.
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Figure 3 Green space supply of Bonn, Germany. An interactive illustration for every scope and
every considered city is found on http://www.geoinfo.uni-bonn.de/urbanarea.
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Green Space Supply of a Single Urban Area

In this section, we discuss the analysis of a single urban area. To that end, we exemplarily
consider the urban area of the city of Bonn; see Figure 3. As a medium-sized city in Germany
its extent can be printed using a reasonable resolution. Using a tool with the possibility of
zooming into the map the analysis may also be done on larger cities.5

Figure 3 shows the urban area of Bonn with respect to the scopes 1500, 8000 and 20 000
in meters. For each scope we have drawn all residential areas as well as all the green spaces
to which residents are assigned; all other green spaces are omitted. Consequently, with
increasing scope, more green spaces are shown.

Furthermore, we color each green space with respect to its smallest relevant per-capita
demand; see Figure 3. The higher the saturation of the color of a green space, the lower
is the smallest relevant per-capita demand. Hence, the saturation of the color shows the
importance of a specific green space. Similarly, we paint each residential area with respect to
its largest satisfiable per-capita demand. The lighter the gray of the residential area is, the
lower is the highest per-capita demand for which all residents can be satisfied. Hence, light
grays indicate residential areas with poor access to green spaces while dark grays indicate
residential areas with easy access to green spaces.

We observe that for the scope of 1500 m there are two regions in Bonn that have full
access to green spaces only for small per-capita demands; see light gray regions in Figure 3.
With increasing scope the green space supply is apparently improved because the residents
begin to reach green spaces further away from the city. However, for the comparatively large
scope of 8000 m, there are still residential areas that are only completely satisfied for small
per-capita demands. We particularly note that our methodology is robust against small
green spaces in the city center. They only impact some nearby residential areas, but do
not influence the overall impression that the city center lacks green space supply. Further,
the maps indicate that the green spaces on the south side of the city play a particularly
important role as local recreation areas.

Comparing the Green Space Supply of Multiple Urban Areas

In our evaluation, we consider 53 cities of different size. Column 4 of Figure 2 shows the
smallest scope that is sufficient to satisfy all residents of the considered urban area. The
result of a specific urban area can be interpreted as the robustness of its green-space supply,
which we motivate as follows. For 39 urban areas even a per-capita demand of 1000 m2 can
be realized without leaving a resident unsatisfied. Hence, their green-space supply is hardly
affected even for high per-capita demands. In contrast, there are 14 urban areas whose
green-space supply collapses for smaller per-capita demands.

Considering the 39 urban areas in more detail, further differences of large extent are
observable. There are 8 urban areas (e.g., Aschaffenburg, Bamberg and Bayreuth) whose
scope does not exceed 10 km even if each resident requires 1000 m2. In contrast, for 16 of the
39 urban areas a scope of at least 20 km is necessary to satisfy all residents with per-capita
demand of 1000 m2; with 48 km Berlin requires the largest scope among those cities.

Considering the 14 urban areas whose green-space supply collapses for per-capita demands
smaller than 1000 m2, we observe that there are urban areas whose green-space supply already
collapses for rather small per-capita demands up to 250 m2. For example, for Neumünster and

5 Illustrations for all considered scopes and cities are found at http://www.geoinfo.uni-bonn.de/
urbanarea.

http://www.geoinfo.uni-bonn.de/urbanarea
http://www.geoinfo.uni-bonn.de/urbanarea
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Mönchengladbach a per-capita demand of 150 m2 is not realizable without leaving residents
unsatisfied. In these cases, the small scopes indicate that the diameter of the considered
surrounding area is not sufficient. In contrast, there are urban areas whose green-space supply
collapses only for higher values. For Hamburg, for example, all residents can be satisfied
up to a per-capita demand of 950 m2. However, this requires a scope of 74 km. Hence, the
robustness of its green-space supply is dearly bought by a large scope.

Column 5 of Figure 2 shows the average distance to assigned green spaces with respect to
the per-capita demands; in case that not all residents can be satisfied the average distance is
not presented. The result of a specific urban area can be interpreted as the accessibility of its
green-space supply, which we motivate as follows. With increasing per-capita demand, the
average distance increases depending on the green-space supply of the urban area. For cities
with large nearby green spaces, the average distance increases more slowly than the average
distance for cities with small nearby green spaces. Hence, for the latter, the local green-space
supply becomes easily insufficient for satisfying all residents. For the urban area of Marburg,
for example, the average distance to assigned green spaces increases slower than the average
distance for the urban area of Wiesbaden. We emphasize that both regions have a similar
population size and a similar total area of green space. Still, on average, the residents of
Marburg need to cover smaller distances than the residents of Wiesbaden, which implies that
the green spaces of Marburg are more easily accessible than the green spaces of Wiesbaden.

Running Time

A typical interactive scenario using our methodology could be as follows. The first phase is
applied only once in order to create the service network at the very beginning of the scenario.
Once the service network is created, its structure is not changed anymore, but the user
gains the possibility of assigning to each residential area and green space attributes (e.g.,
number of residents, preferences, mobility, etc.). Instead of doing this only once, the user may
repeatedly change the attributes to interactively explore the influence of single residential
areas and green spaces. Each time, the second phase is executed. Hence, the performance of
the repetitively executed second phase is clearly more crucial than the performance of the
first phase. With this in mind, we have therefore focused on the second phase.

For the first phase, we put together standard algorithms without engineering their
performance. For the urban area of Berlin (with 130 000 polygons representing green spaces,
18 000 polygons representing residential areas, and 6 million road segments our largest
instance) the first phase takes about 3 minutes.

Solving the LP formulations used by far the greatest portion of the running time of the
second phase. In our experiments, we measured the running time for solving |C| · |D| = 484
LP formulations per region. Solving a single LP formulation, which we call a run, takes 46
seconds in maximum and 5 seconds on average. Over 95 % of all runs took at most 14 seconds.
About 89 % of the runs took at most 10 seconds. These running times indicate that our
approach does not allow real-time animations, but is usable in interactive systems where the
user can update the assignment on demand. Apart from interactive systems, our approach
can also be used for the systematic and automatic evaluation of green spaces. Accumulating
the running times of all runs of a single urban area yields 3.3 hours in maximum and 40
seconds on average. In total, 35 hours were necessary to process for all 53 cities.
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Summary

The presented evaluation demonstrates the strength of our methodology, which stands out
by the following features.

Detailed spatial analysis of single urban areas.
Simultaneous evaluation of single residential areas and large regions with intuitive maps.
Easy identification of local recreation areas.
Robustness against small residential areas and green spaces.
Sophisticated analysis of multiple urban areas with respect to different measures.
Practical running times for interactive scenarios and the analysis of multiple urban areas.

We emphasize that domain experts from urban development confirmed the great use of this
tool. They particularly highlighted the possibility of spatially analyzing single urban areas.

6 Conclusion & Outlook

We have presented a highly general model for the evaluation of green spaces of urban areas.
It is based on the idea of assigning residents to green spaces maximizing the overall happiness
of the residents while capacity constraints for green spaces are respected. We have described
a specialization of the model and its deployment in detail. It utilizes the underlying road
network for computing the assignment. The advantage of this specialization is the better
performance obtained by the linear number of variables. This provides the possibility of
considering metropolitan cities such as Berlin. In an exemplary evaluation, we demonstrated
that the presented methodology can be used for analyzing a single urban area specifically as
well as large sets of urban areas in general. Our approach not only yields abstract parameters
describing the green-space supply, but it supports a spatial analysis based on the level of
single residential areas and green spaces. A discussion panel with domain experts from urban
development yielded that our approach will be of great use for urban planning to easily assess
existing green-space supply as well as to plan future land usage. Especially, the methodology
is of great use in interactive scenarios for urban planning. By means of our approach, an
urban planner may interactively explore the influence of potential residential areas and green
spaces using maps such as in Figure 3. They may change the importance of green spaces,
the preference of residential areas, or even introduce new regions. Each time, our model
is updated and the result is visualized. Thus, the user can easily assess the impact of the
changes made.

In Section 3.3, we have described one specialization of the generic assignment model.
However, the generality of our model provides many different variants. Among others, the
following specializations and research questions arise.

We kept our experiments simple to evaluate the core of our methodology. In practice, it
lends itself to use a more complex parameterization reflecting reality more accurately like
using travel times instead of geodesic distances in the road network. Further, one may
differentiate the mobility of residents and the attractiveness of green spaces by adapting
the weights αr and βg, respectively. Additionally, introducing further types of recreational
areas such as lakes, rivers and open spaces promises a detailed evaluation.
An interesting followup question is to analyze the utilization of the road network in detail.
Which roads are used more than others? May these insights help in traffic planning,
especially for weekends? A closer look at the computed flow may give insights.
The network-based model anonymizes the assignment in the sense that we can not keep
track of single residents, but we only obtain how many residents per residential area are
assigned to specific green spaces. In some cases, however, it may be useful to analyze the
exact assignment. In that case, one may use the generic model of Section 3.2.
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Our approach may also be used to evaluate the accessibility of public services. For
example, the coverage of hospitals, medical practices, schools, playgrounds, etc., can be
analyzed with our approach as well. In particular, depending on the accuracy of the given
data, residential areas may be differentiated by their type of demands.

Altogether, we have presented a generic tool for the assessment of green spaces in urban
areas. It can be easily adapted for different applications. For future work, we are planning
to apply our methodology on concrete use cases in urban planning.
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Abstract
In this paper, we introduce Continuous Obstructed Detour (COD) Queries, a novel query type
in spatial databases. COD queries continuously return the nearest point of interests (POIs) such
as a restaurant, an ATM machine and a pharmacy with respect to the current location and
the fixed destination of a moving pedestrian in presence of obstacles like a fence, a lake or a
private building. The path towards a destination is typically not predetermined and the nearest
POIs can change over time with the change of a pedestrian’s current location towards a fixed
destination. The distance to a POI is measured as the summation of the obstructed distance from
the pedestrian’s current location to the POI and the obstructed distance from the POI to the
pedestrian’s destination. Evaluating the query for every change of a pedestrian’s location would
incur extremely high processing overhead. We develop an efficient solution for COD queries and
verify the effectiveness and efficiency of our solution in experiments.
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1 Introduction

Efficient processing of location-based queries in the presence obstacles like a river, a fence or
a private property has become an important research area in recent years. Obstructed space
is different from road networks and the Euclidean space, which ignore the obstacles in the
space. It is not possible to adapt the query processing algorithms for the Euclidean space
or road network settings to the obstructed space as the presence of obstacles brings new
challenges for processing location-based queries in real time. Considering the importance of
the applications of obstructed location-based queries for pedestrians, in the last few years,
researchers have developed solutions [1, 5, 16, 20] for variant location-based queries in the
obstructed space that were previously addressed in the Euclidean space or road networks.
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Figure 1 An Example of a Continuous Detour Query for k = 2.

We introduce a Continuous Obstructed Detour (COD) query that allows a moving
pedestrian continuously monitor the POI with the smallest obstructed detour distance, which
is measured as the summation of distances from the user’s current location to the POI, and
from the POI to the user’s destination by avoiding the obstacles. For example, a tourist
enjoying a scenic view may not follow a predetermined walking path and instead want to visit
a restaurant or a souvenir shop before arriving at the hotel. A pedestrian roaming around
the city may want to buy a medicine from a pharmacy before she goes to her usual bus stop
to home. In both scenarios, users have fixed destinations but do not have a predetermined
path to reach the destination, and need to visit a POI before reaching the destinations.

A COD query can be extended to a COkD query that continuously returns k POIs
with the k smallest detour distances for a moving user heading towards a fixed destination.
Figure 1 shows an example of a continuous detour query for k = 2 in both Euclidean
and obstructed space. The Euclidean distance is measured as the length of the direct line
connecting two locations. In Figure 1(a), when a user is at lc, POIs p1 and p2 are the 1st
and 2nd nearest detour POIs based on the Euclidean distances. When the user moves to
lc
′, the answer changes, and p3 and p4 become the 1st and 2nd nearest detour POIs based

on the Euclidean distances. In Figure 1(b), the obstacles are shown using rectangles. The
obstructed distance is the length of the shortest path between two locations without crossing
any obstacle. Figure 1(b) shows that p2 and p1 are the 1st and 2nd obstructed nearest detour
POIs when the user is at lc. When the user moves to lc′, the answer changes, and p15 and p3
become the 1st and 2nd obstructed nearest detour POIs.

The COkD query cannot be modeled and processed as a continuous obstructed nearest
neighbor (POI) query because of the presence of a destination. Although the obstructed
distance of a POI to the destination is constant, it differs for multiple POIs, and the obstructed
nearest detour POI is determined with respect to both current location and destination of
the moving pedestrian. Hence, the solution [10] for moving k nearest neighbor (kNN) queries
in the obstructed space is not applicable for COkD queries.

Since the path to reach the destination is not predefined, for a COkD query, the obstructed
nearest detour POIs need to be re-evaluated in real time with respect to every changed
location and the destination location of the moving user. Thus, a COkD query can be
processed with the repeated evaluation of obstructed k detour (OkD) queries, where an OkD
query returns k obstructed nearest detour POIs with respect to a user’s current location
and destination. Researchers have proposed obstructed k group nearest neighbor (OkGNN)
algorithms [15, 16] that return k POIs having k smallest obstructed aggregate distances
with respect to multiple query locations. An OkGNN query is same as an obstructed k

detour (OkD) query when the number of query location is two. However, the straightforward
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application of the OkD algorithm for processing a COkD query is not feasible as it would incur
extremely high processing overhead, specially in the obstructed space as the computation of
the number of obstructed distance increases with the increase of the number of the query
re-evaluation. The search for the obstructed nearest detour POIs independently using OkD
queries accesses the same POIs and obstacles multiple times. Thus, the major challenges for
processing a COkD query efficiently is to reduce the frequency of the query re-evaluation
and the retrieval of the same POIs and obstacles from the database.

To address the challenges for a COkD query, we develop a safe region [10, 13] based
solution that avoids the re-evaluation of the query as much as possible. The key idea of
our safe region based approach is to retrieve the obstructed nearest detour POIs from a
database with respect to a user’s current location and destination, and then identify the
regions, obstructed integrated safe region (OISR) and obstructed safe regions (OSRs) with
respect to the retrieved POIs. We exploit geometric properties to compute such regions.
If a user resides in the OISR, the user’s movement does not change the order of already
retrieved k obstructed nearest detour POIs. Thus, the computation of an OISR avoids the
re-computation of the query answer. If a user leaves an OISR, we compute obstructed safe
regions (OSRs) with respect to the retrieved POIs to check whether new POIs are required to
be retrieved from the database. Computation of OSRs allows us to avoid the retrieval of the
same POIs multiple times, which in turn decreases the number of same obstacles retrieved
for computing the obstructed distances of the POIs.

To further improve the efficiency of our approach, we propose two algorithms: a single
point retrieval method (SPRM) and a multiple point retrieval method (MPRM), to retrieve
new POIs from the database when a moving user leaves the current safe region. The aim of
SPRM and MPRM is to refine the POI search space, i.e., reduce the number of the retrieval
of new POIs, for identifying k obstructed nearest detour POIs with respect to the current
location lc and destination d of a moving user. A smaller number of retrieved POIs reduces
the computational overhead and I/O cost for retrieving obstacles from the database.

The key difference between SPRM and MPRM is that SPRM incrementally retrieves
obstructed nearest detour POIs with respect to the first location and the destination of
the moving user (e.g., lc and d in Figure 1), whereas for MPRM the obstructed nearest
detour POIs are retrieved with respect to few of the current locations and destination of the
moving user (e.g., lc and d, and lc′ and d in Figure 1). SPRM does not retrieve the same
POI multiple times but may retrieve additional POIs, whereas MPRM reduces the retrieval
of additional POIs in return of increasing the number of obstructed distance computations
with respect to multiple locations (e.g., lc and lc′ in Figure 1).

We summarize our key contributions below:

We introduce and formulate COkD queries in spatial databases that allow pedestrians to
monitor the nearest detour POIs in the presence of obstacles.

We develop an efficient safe-region based solution for processing COkD queries. To the
best of our knowledge, we are the first to address the problem of COkD queries.

We develop two algorithms, SPRM and MPRM, to refine the POI search space and
retrieve new POIs in the refined search space.

We perform extensive experiments using a real data set to show the efficiency and
effectiveness of our proposed solution.

GISc ience 2018
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Table 1 A List of Symbols.

Notation Description Notation Description

k The number of required nearest detour POIs x The number of auxiliary POIs
lc The current location d The destination
lf The location from where a user starts to move oi An obstacle
ls The location used to compute safe regions O The set of obstacles
z The (k + x)th nearest POI of ls P The set of all POIs
pi A POI L The list (set) of (k + x) obstructed nearest detour POIs
A The set of k obstructed nearest detour POIs for lc and d Tp POI R-tree
de(p, q) Euclidean distance between p and q d∆(p, q) Obstructed distance between p and q

se(a, b, c) Summation of de(a, b) and de(b, c) se∆(a, b, c) Summation of de(a, b) and d∆(b, c)
s∆(a, b, c) Summation of d∆(a, b) and d∆(b, c) To Obstacle R-tree

2 Problem Formulation

In a COkD query, initially, a moving user provides her current location lc, a destination d and
the number k of desired nearest (detour) POIs. Later the moving user periodically updates
her current location lc. The obstructed space may include obstacles like buildings, parks,
lakes, etc. An obstructed path is calculated as the shortest path between two points in the
obstructed space, where a path does not intersect the interior of an obstacle. The obstructed
distance between two points is the length of the obstructed path between those points. The
obstructed detour distance s∆(lc, pi, d) of a POI pi is measured as the summation of the
obstructed distances from pi to lc and pi to d. Similar to existing work in the obstructed
space [16, 15], the POIs and obstacles are indexed using two separate R-trees [7], POI R-tree
and obstacle R-tree in the database. Table 1 summarizes the symbols used in the paper.

A COkD query is formally defined as follows.

I Definition 1. A Continuous Obstructed k Detour Query: Given a set of POIs P
and a set of obstacles O, the current location lc of a moving user, a destination d, and the
required number of the obstructed nearest detour POIs k, a COkD query returns A, a set of k
obstructed nearest detour POIs that have k smallest obstructed detour distances with respect
to every instance of lc and d, i.e., s∆(lc, pi, d) ≤ s∆(lc, pj , d) for pi ∈ A and pj ∈ P −A.

3 Related Work

Efficient approaches have been proposed in the literature for variants of spatial queries in
the obstructed space. Processing spatial queries in the presence of obstacles has been first
addressed in [19]. In [6, 17, 19], the authors developed algorithms to find the nearest POIs
with respect to a static location in the obstructed space. In [5], the authors developed an
algorithm to process continuous obstructed nearest neighbor queries. In [4] and [1], the
authors developed solutions for efficient processing of obstructed reverse nearest neighbor
queries and obstructed optimal sequenced route queries, respectively. In [20], the authors
addressed obstructed range nearest neighbor queries. Obstructed group nearest neighbor
(OGNN) queries that return a POI with the minimum obstructed aggregate distance have
been addressed in [15, 16]. An OGNN query transforms to an obstructed detour query if the
number of query location is two (i.e., a user’s current location and destination). This paper
focuses on the COkD query, which is different from all of the above mentioned queries.

In [19], the authors proposed the first algorithm to compute the obstructed distance
between two locations. Instead of directly applying the obstructed distance computation
algorithm between two locations, in [16], the authors developed an algorithm to efficiently
compute multiple obstructed distances with respect to a single point without retrieving same
obstacles multiple times. To compute the obstructed detour distance, we need to compute
two obstructed distances from a common POI, and thus, we use the algorithm in [16].
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Continuous nearest neighbor queries [3, 11] and continuous detour queries [12, 14, 18]
have been addressed in road networks that ignore the presence of the obstacles. In [12], the
authors proposed an incremental approach using a shortest path tree to process continuous
detour queries in the road network. In [14, 18], the authors developed a solution for detour
queries with an assumption that a user travels in a predetermined path towards a destination.
In COkD queries, a pedestrian’s path towards a destination is not known before and can be
obstructed by the obstacles.

Researchers have already shown that computing safe regions can significantly reduce
the query processing overhead for processing moving nearest neighbor queries [8, 10, 13].
However, none of these approaches take the destination into account, and thus, the computed
safe regions are not applicable for a COkD query, where a pedestrian moves towards a fixed
destination.

4 Safe Regions

We develop a safe region based approach for processing COkD queries. The underlying idea
is to identify the safe regions based on already retrieved POIs, obstructed integrated safe
region (OISR) and the intersection of obstructed safe regions (OSRs), where the query answer
does not change and any new POI does not need to be retrieved from the database for a
moving user, respectively. These regions can help us to reduce the computational overhead
and the retrieval of same POIs multiple times from the database. The larger the safe regions,
the smaller is the number of times POIs need to be retrieved from the database. Considering
this issue, we retrieve auxiliary POIs in addition to the required number (k) of POIs with an
intuition that additional POIs can reduce the processing overhead. The number of auxiliary
POIs x is decided in experiments.

Suppose that L is a set of ordered k + x obstructed nearest detour POIs that have been
retrieved from the database with respect to a moving user’s location ls and a fixed destination
d for x ≥ 0. An OSR of a retrieved POI represents the area, where a user’s movement cannot
incur another POI that has not yet been retrieved from the database to have a smaller
obstructed detour distance than the retrieved POI. Thus, additional POIs are not retrieved
from the database if a user moves inside the intersection of the OSRs of the retrieved POIs.
An OISR represents an area where the current COkD answer for a moving user does not
change. To compute the OISR, in addition to OSRs we need to know the obstructed fixed
rank region (OFRR) that represents the area where a user’s movement does not change the
relative ranking (based on the obstructed detour distance) of the retrieved POIs in L.

In Sections 4.1 and 4.2, we show how the presence of a fixed destination d makes the
computation of OSRs and OFRR different from the existing OSR and OFRR computation
techniques for obstructed nearest neighbor queries [10]. In Section 4.3, we combine OSRs
and OFRR to compute an OISR.

4.1 Obstructed Safe Region (OSR)
Let z represent the POI that has the (k + x)th smallest obstructed detour distance with
respect to ls and d. Based on the retrieved k + x obstructed nearest POIs with respect to ls
and d, we first define the obstructed known region: a set of points that have equal or smaller
obstructed detour distances than that of z with respect to ls and d. Figure 2(a) shows an
obstructed known region for k = 2 and x = 1, where p1, p2, and p3 have been retrieved as
k + x obstructed nearest detour POIs with respect to lf and d. Note that lf is the location
from where a user starts to move, and ls is the location used to compute safe regions. Thus,
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Figure 2 (a) Known Region, and (b)-(c) OSRs.

the first time when a safe region is computed, both lf and ls point to the same location. In
all figures, we only show lf and we assume that the safe regions are computed for the first
time and ls points to lf .

Let po be a POI located outside the obstructed known region that has not yet been
retrieved from the database. For a POI pi in the obstructed known region, the obstructed
safe region with respect to pi, denoted by OSR∆(ls, pi), is defined as follows:

OSR∆(ls, pi) = {l|s∆(l, pi, d) ≤ s∆(l, po, d)}
= {l|d∆(l, pi) + d∆(pi, d) ≤ d∆(l, po) + d∆(po, d)} (1)

Here l refers to a point location. Thus OSR∆(ls, pi) is a set of points, where each point l
satisfies s∆(l, pi, d) ≤ s∆(l, po, d).

From the definition of the known region, d∆(ls, po) + d∆(po, d) ≥ d∆(ls, z) + d∆(z, d).
Rearranging we have, d∆(ls, po) ≥ d∆(ls, z) + d∆(z, d) − d∆(po, d). On the other hand,
according to the triangular inequality, d∆(ls, l) + d∆(l, po) ≥ d∆(ls, po). By rearranging
and replacing d∆(ls, po) with its tighter bound, we have the tighter bound of d∆(l, po) as
d∆(ls, z) + d∆(z, d)− d∆(po, d)− d∆(ls, l).

In Equation 1, if we can guarantee that (d∆(l, pi) + d∆(pi, d)) is less than or equal to a
tighter bound of (d∆(l, po) + d∆(po, d)), i.e., d∆(ls, z) + d∆(z, d)− d∆(ls, l), then d∆(l, pi) +
d∆(pi, d) ≤ d∆(l, po) + d∆(po, d) is satisfied. Thus, we can redefine OSR∆(ls, pi) as follows:

OSR∆(ls, pi)
= {l|d∆(l, pi) + d∆(pi, d) ≤ d∆(ls, z) + d∆(z, d)− d∆(ls, l)}
= {l|d∆(l, pi) + d∆(ls, l) ≤ d∆(ls, z) + d∆(z, d)− d∆(pi, d)} (2)

Figures 2(b) and 2(c) show OSRs for p1 and p2, respectively for the same example shown
in Figure 2(a). According to Equation 2, if a moving user’s current location lc satisfies
d∆(ls, lc) + d∆(lc, pi) ≤ d∆(ls, z) + d∆(z, d)− d∆(pi, d), then the user is inside the OSR of
pi, OSR∆(ls, pi), and any POI po outside the obstructed known region cannot have a detour
distance smaller than that of pi with respect to lc and d. If the user’s current location lc
is inside the intersection of the OSRs for all (k + x) POIs in the obstructed known region,
i.e.,

⋂k+x
i=1 OSR∆(ls, pi), then it is guaranteed that any POI po outside the obstructed known

region cannot have a detour distance smaller than those for (k + x) POIs in the obstructed
known region with respect to lc and d.

4.2 Obstructed Fixed Rank Region (OFRR)
The OFRR represents an area where the ranking of k obstructed nearest detour POIs in L
does not change. We compute an OFRR using the concept of a dominant region. In [10],
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Figure 3 (a)-(b) Dominant Regions, (b) Approximate OFRR (c), and (d) OFRR (Shaded Areas).

for a moving obstructed nearest POI query, an obstructed dominant region of POI pi over
POI pj is defined as β∆(pi, pj) = {l|d∆(l, pi) <= d∆(l, pj)}. We modify the definition of a
dominant region for a COkD query as follows:

β∆(pi, pj) = {l|s∆(l, pi, d) <= s∆(l, pj , d)} (3)

For a COkD query, an OFRR for an ordered POI set L can be computed as follows:

OFRR(L) =
|L|−1⋂
i=1

β∆(pi, pi+1) (4)

To reduce the complexity of the computation of OFRRs, we first approximate a dominant
region of POI pi over POI pj as βe∆′(pi, pj) = {l|se∆(l, pi, d) <= se∆(l, pj , d)}.

Using the approximate dominant regions, we compute the approximate OFRR (AOFRR)
for L as follows:

AOFRR(L) =
|L|−1⋂
i=1

βe∆
′(pi, pi+1) (5)

We continue with the same example shown in Figure 2(a). Figures 3(a) and 3(b) show the
approximate dominant region of p1 over p2, βe∆′(p1, p2) and the approximate dominant
region of p2 over p3, βe∆′(p2, p3), respectively.

After computing the AOFRR(L) using Equation 5, we identify the non visible region
inside AOFRR(L) for every POI in L. Let NV Ri be a non visible region for a POI pi and
NV R be the union of non visible regions with respect to all POIs in L. Thus, an OFRR for
an ordered POI set L can be computed from the approximated OFRR as follows:

OFRR(L) = AOFRR(L)−NV R (6)

Figures 3(c) and 3(d) show AOFRR(L) and OFRR(L), respectively, where L = {p1, p2, p3}.
AOFRR(L) (shaded area) in Figure 3(c) is computed as the intersection areas between the
shaded areas, βe∆′(p1, p2) and βe∆′(p2, p3), in Figures 3(a) and 3(b), respectively. OFRR(L)
in Figure 3(d) is computed by removing the nonvisible regions of p1, p2, and p3 from
AOFRR(L), i.e., OFRR(L) ⊆ AOFRR(L).

4.3 Obstructed Integrated Safe Region (OISR)
The obstructed integrated safe region, denoted by OISR, is the area, where a user’s movement
does not change the COkD query answer. It is the intersection of OSR and OFRR. Formally
the OISR can be defined as follows:

OISR(ls, L) = OFRR(L) ∩
k⋂
i=1

OSR∆(ls, pi) (7)
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The shaded area in Figure 4 shows the OISR for the same example shown in Figure 2(a).
However, computing intersections of safe regions for every POI is expensive. The following
theorem shows that the intersection of OFRR(L) and OSR∆(ls, pk) is enough to generate
OISR(ls, L).

I Theorem 2. Given a set of retrieved ordered POIs L with respect to a moving user’s
locations ls and d, the obstructed safe region OSR∆(ls, pi) for every ith nearest POI pi of
ls in L, the obstructed fixed rank region OFRR(L), then OFRR(L) ∩

⋂k
i=1OSR∆(ls, pi) =

OFRR(L) ∩OSR∆(ls, pk).

Proof. Suppose lc is a location in OFRR(L) ∩
⋂k
i=1OSR∆(ls, pi). Since lc is a location

inside OFRR(L), for i ∈ [1..k − 1], the following equation also holds:

d∆(lc, pi) + d∆(pi, d) ≤ d∆(lc, pk) + d∆(pk, d) (8)

Since lc ∈ OSR∆(ls, pi), from Equation 2, we have

d∆(lc, pi) + d∆(pi, d) ≤ d∆(ls, z) + d∆(z, d)− d∆(ls, lc) (9)

Now if Equation 9 holds for location lc and i = k, then according to Equation 8,
Equation 9 also holds for lc and i ∈ [1..k − 1]. Thus, OFRR(L) ∩

⋂k
i=1OSR∆(ls, pi) =

OFRR(L) ∩OSR∆(ls, pk). J

5 Algorithms

In this section, we present our COkD query processing algorithm (Algorithm 1) using safe
regions computed in Section 4. The input to the algorithms are a current location lc, a
destination d, the number of required nearest detour POIs k, and the number of auxiliary
POIs x. The output of the algorithm is the set of k obstructed nearest detour POIs A. Both
lc of a moving user and A are updated periodically. The algorithm uses a priority queue Qp
and lists L and L′ to process a COkD query. Qp is used to store already accessed R-tree
nodes and POIs. L is a set of ordered k + x obstructed detour POIs with respect to lc and d.
The list L′ includes POIs that are not in L but have been retrieved from the database for
finding k + x obstructed nearest detour POIs.

Algorithm 1 starts with initializing lf and ls as lc, where lf is a moving user’s start location
and ls is a location used to compute the last safe regions. Then the algorithm retrieves k+ x

obstructed nearest detour POIs with respect to lf and d using the function RetrievePOIs in
L (Line 2), adds first k obstructed nearest detour POIs in L to A (Line 3), and sends A to the
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Algorithm 1 COkD_Process.

Input: lc, d, k, x
Output:A

1: lf , ls ← lc
2: L← RetrievePOIs(lf , d, k, x)
3: A← FindAnswer(lc, d, k)
4: Send(A)
5: for every update of lc do
6: flagOISR,L← CheckOISR(ls, lc, d, k, x, L)
7: if flagOISR = 1 then
8: Send(A)
9: else
10: flagOSR← CheckOSRs(ls, lc, d, k, x, L)
11: if flagOSR = 0 then
12: L← RetrieveNextPOIs(lf , lc, d, k, x, L)
13: ls ← lc
14: end if
15: A← FindAnswer(lc, d, k)
16: Send(A)
17: end if
18: end for

user (Line 4). The function RetrievePOIs incrementally retrieves Euclidean nearest detour
POIs with respect to lc and d from the database until k + x obstructed nearest detour POIs
for lc and d have been identified. After every update of the current location lc, the algorithm
checks whether the current location lc is in OISR(ls, L) using the function CheckOISR.
The function returns 1 if lc ∈ OISR, 0 otherwise. The steps of the function CheckOISR
are discussed in Section 5.1.

If the function CheckOISR returns 1 (i.e., lc ∈ OISR), then Algorithm 1 sends A to
the user without any further computation (Lines 7-8). On the other hand, if the function
CheckOISR returns 0 (i.e., lc /∈ OISR), then Algorithm 1 checks whether lc is in the
intersection of OSRs of POIs {p1, p2, . . . , pk} in L using the function CheckOSRs (Line
10). The function checks the condition stated in the last line of Equation in 2 to determine
whether lc ∈ OSR(pi) of a POI pi. If the condition is false for the OSR of any POI in
{p1, p2, . . . , pk}, the function returns 0. If the condition is true for all POIs, then the function
returns 1, i.e., l is in the intersection of OSRs of POIs {p1, p2, . . . , pk} in L.

If flagOSR = 1, then the algorithm does not need to retrieve any new POI. If flagOSR =
0, then the algorithm retrieves k + x nearest detour POIs in L with respect to lc and d

using the function RetrieveNextPOIs (Line 12). For the function RetrieveNextPOIs, we
develop two efficient methods: SPRM (Section 5.2) and MPRM (Section 5.3) with the aim
to minimize the number of the retrieval of POIs for finding k + x nearest detour POIs with
respect to lc and d. After retrieving new POIs using the function RetrieveNextPOIs, ls is
updated as lc (Line 13). Finally, Algorithm 1 adds first k obstructed nearest detour POIs in
L to A from L and sends A to the user (Lines 15-16).
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Algorithm 2 CheckOISR.

Input: ls, lc, d, k, x, L
Output: flagOISR and L

1: NV R← ComputeNV R(L, ls, d)
2: if lc ∈ NV R then
3: return 0, L
4: end if
5: flag, L← CheckPOIOrder(L, lc, d)
6: if flag = 1 then
7: return 0, L
8: else
9: return lc ∈ OSR(pk), L

10: end if

5.1 Function CheckOISR

The steps of this function is shown in Algorithm 2. The inputs to the algorithm are ls, lc, d,
k, x, and L. The outputs are a flag flagOISR and the L. From Equation 7, we know that
OISR(ls, L) is the intersection of OFRR(L) and OSR(pk). The function first computes non
visible region NV R as the union of non visible regions with respect to all POIs in L (Line 1).
if the direct path between a location and a POI is obstructed then the location is non-visible
from the POI. Thus any location of a non visible region for a POI does not have a direct
path to that POI. Figure 5 shows an example of non visible region (represented with two
lines ab and ce) for POI p1 with respect to obstacle O1 by ignoring the presence of other
obstacles. Non visible regions can be computed using a visibility graph [2, 9]. The vertices
of a visibility graph represent POIs and corner points of the obstacles, and there is an edge
between two vertices if the direct path between those vertices is not obstructed. To reduce
the computational overhead, after computing a non visible region NV Ri for a POI pi, it is
stored and reused in the query evaluation process unless any new obstacle is retrieved.

Since OFRR(L) can be computed as AOFRR(L)−NV R (Equation 6), if lc in NV R then
lc is not in OFRR(L). Again from Equation 7, OISR(ls, L) = OFRR(L) ∩ OSR∆(ls, pk).
Thus, if lc in NV R then lc is also not in OISR(ls, L). In such a scenario, Algorithm 2
returns flagOISR as 0 and L without any modification (Lines 2-4).

Otherwise, using the function CheckPOIOrder, Algorithm 2 computes obstructed detour
distances of POIs in L with respect to lc and d, and sorts the POIs in L, if the order of
POIs based on computed obstructed detour distances changes (Line 5). If the order is
changed, flag is set to 1 and Algorithm 2 returns flagOISR as 0 and updated L (Lines
6-7). Otherwise, Algorithm 2 checks whether lc ∈ OSR(pk) using the condition stated in the
last line of Equation in 2 and returns flagOISR as 1 or 0 and L without any modification,
if the condition stated in the last line of Equation in 2 is satisfied or not, respectively.

5.2 SPRM
POIs are indexed using an R-tree in the database. To identify (k + x) obstructed nearest
detour POIs for lc and d, SPRM incrementally retrieves Euclidean detour POIs with respect
to lf and d, where from lf the user starts to move towards a destination d. A priority queue
Qp stores already accessed R-tree nodes and POIs in order of the minimum Euclidean detour
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Table 2 Experiment Settings.

Parameter Range Default value Parameter Range Default value

k 1-20 10 x 1-20 12
Query Range R 500-3000 units 1500 units |P |/|O| Ratio 50-350 200

distances with respect to lf and d. To avoid the retrieval of the same POIs multiple times
and reduce I/O access, SPRM does not start the search for the POIs from the root node of
the R-tree while incrementally retrieving the POIs with respect to lf and d.

The POI search space that has been already traversed is an ellipse with foci at lf and
d and the major axis having the length equal to the Euclidean detour distance of the last
retrieved POI with respect to lf and d from Qp. SPRM determines the current (k + x)th
smallest obstructed detour distance of lc and d based on the already retrieved POIs. The
ellipse expands with the retrieval of new POIs from Qp. With the retrieval of a new POI,
SPRM updates the current (k + x)th smallest obstructed detour distance of lc and d if it
becomes smaller. The search ends when the minimum Euclidean detour distance of lc and
d from the boundary of the ellipse becomes greater than or equal to the current (k + x)th
smallest obstructed detour distance of lc and d.

5.3 MPRM
Since SPRM expands the POI search space (i.e., ellipse) with respect to fixed locations lf
and d, some retrieved POIs may never become part of the COkD answer with respect to the
updated location lc and d. To avoid the retrieval of those additional POIs, MPRM retrieves
new POIs with respect to lc and d instead of lf and d. Similar to SPRM, MPRM does not
start the search from the root of the POI R-tree node and reuses the already traversed nodes
of the POI R-tree. However, MPRM incurs additional processing overhead for computing
the minimum Euclidean detour distances with respect to lc and d for the nodes/POIs stored
in Qp.

MPRM sorts the already retrieved POIs according to the obstructed detour distance
with respect to lc and d. Then MPRM resorts the elements in Qp based on their Euclidean
detour distances with respect to lc and d. The algorithm continues to retrieve the next
Euclidean nearest detour POI p with respect to lc and d from Qp as long as the Euclidean
detour distance of p with respect to lc and d is smaller than the current (k + x)th smallest
obstructed detour distance of lc and d based on already retrieved POIs.

6 Experiments

We present the performance of our safe region based approach using both SPRM and MPRM
and compare them with a naive approach (NA) that independently finds k obstructed nearest
detour POIs for every location update of a moving user using the OkD algorithm proposed
in [16] (please see Section 3) for details. We use both real and synthetic data sets. The total
space is normalized into 10, 000× 10, 000 square units. The real dataset of Germany consists
of 36334 Minimum Bounding Rectangles (MBRs) of railway lines (rrlines) and 76999 MBRs
of hypsography data (hypos). In this dataset, end points of hypos represent POIs, and rrlines
are the obstacles. Though we use MBRs to represent obstacles, our approach is applicable
for obstacles of any shape. We also use the real datasets of rivers and lakes in Greece as
obstacles, and generate synthetic POIs using uniform random distribution. We denote the
synthetic dataset (Greece dataset) by ‘S’ and Germany dataset by ‘G’.

GISc ience 2018



14:12 Continuous Obstructed Detour Queries

0.0

10.0

20.0

30.0

 4  12  20

C
o

m
p

u
ta

ti
o

n
al

 T
im

e 
(s

)

k

MPRM (G)
SPRM (G)

NA (G)

0.50

1.50

2.50

 4  12  20

I/O
s 

(o
bs

) *
 1

04

k

MPRM (G)
SPRM (G)

NA (G)

0.00

1.00

2.00

 4  12  20

I/O
s 

(P
O

I) 
* 

10
4

k

MPRM (G)
SPRM (G)

NA (G)

(a) (b) (c)

0.00

2.00

4.00

6.00

8.00

 4  12  20

C
o

m
p

u
ta

ti
o

n
al

 T
im

e 
(s

)

k

MPRM (S)
SPRM (S)

NA (S)

0.02

0.06

0.10

0.14

 4  12  20
I/O

s 
(o

bs
) *

 1
04

k

MPRM (S)
SPRM (S)

NA (S)

0.02

0.06

0.10

0.14

 4  12  20

I/O
s 

(P
O

I) 
* 

10
4

k

MPRM (S)
SPRM (S)

NA (S)

(d) (e) (f)

Figure 6 Effect of the number of required POIs k.

We use a 2.4 GHz Intel i5 CPU and 16 GB main memory. Table 2 shows the range and
default values of our experiment parameters. To observe the effect of a parameter in an
experiment, we set other parameters to their default values.

For every experiment, we consider 200 sample COkD queries and takes the average
performance in terms of the computational time and I/O costs for retrieving POIs and
obstacles from the database. For every COkD query sample, we randomly generate lf and d
according to the specified range in the experiment. Then we randomly generate lcs in the
following way: a user moves towards the direction of d but the followed path may not be
the shortest one for arriving at d. Though the distance between two lcs is kept fixed, the
number of lcs may vary for two paths having lf and d in the same query range (e.g., 3000
units). Therefore, we show the average computational time and I/Os required per lc for a
path as the cost of a COkD query sample.

6.1 Effect of the Number of Required POIs k

Figure 6 shows that the required computational time and I/Os are higher for the naive
approach than those for our safe region based approach for varying k. From Figures 6(a)
and 6(d), we observe that the computational time increases rapidly for the naive approach
than our safe region based approach for higher values of k. This is because with the increase
of k, for both SPRM and MPRM, the safe regions become larger and the probability for lc
to remain inside OISR increases, which avoids the re-computation of COkD answer. On the
other hand, the naive approach requires to evaluate the obstructed nearest detour POIs for
every update of lc and the time required for the evaluation increases for the higher values
of k.

Figures 6(b), 6(e), 6(c) and 6(f) show that the I/O cost for both POIs and obstacles
increases with the increase of k, which is expected because the number of POIs and obstacles
retrieved from the database increase with the increase of k.
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Figure 7 Effect of the number of auxiliary POIs x.

6.2 Effect of the Number of Auxiliary POIs x

Figure 7 shows that the computational time and I/O cost for the naive approach is higher
than our approach but remain same irrespective of values of x because the naive approach
does not retrieve auxiliary POIs. On the other hand, we observe that for MPRM the
performance improves with the increase of x upto a certain threshold then again degrades.
The reason is as follows. With the increase of x, the area of safe region becomes larger and
the query processing overhead decreases, but after certain threshold with the increase of x,
the cost for computing the non visible regions diminishes the gain achieved from the large
safe regions. For SPRM, we observe that the performance degrades with the increase of x.
This is because for SPRM, POIs are always retrieved with respect to lf , and the retrieval of
POIs that are not required increases with the increase of x.

6.3 Effect of the Query Range R

In this experiment, we vary R from 500 meter to 3000 meter by considering the typical
travelling distance of a pedestrian. Figure 8 shows that SPRM performs better than MPRM,
which can be explained from the underlying structure of SPRM and MPRM. It is expected
that set of nearest detour POIs remain same for several timestamps, and the number of
POIs and obstacles retrieved with respect to lc and d is small. On the other hand, MPRM
needs to compute obstructed detour distances for every element in Qp with respect to lc.
Therefore, SPRM performs better than MPRM.

The performance of both naive and safe region based approaches degrades with the
increase of R. Since the distance between consecutive lcs increases with the increase of R, the
probability that lc falls outside the safe region also increases and more POIs and obstacles
need to be retrieved from the database.

6.4 Effect of POI-Obstacle Ratio |P |/|O|
Figure 9 shows the comparative performance between the naive approach and the safe region
based approach for varying the ratio of the number of POIs and the number of obstacles
|P |/|O|. Increase of |P |/|O| ratio means that the sample space contains more POIs than
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Figure 8 Effect of the query range R.
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Figure 9 Effect of POI-obstacle ratio [P ]/[O].

obstacles. With the increase of |P |/|O|, the I/O cost for POIs increases for both SPRM
and MPRM, which is expected. For SPRM, the I/O cost of obstacles decreases because
less number of obstacles are retrieved with respect to fixed locations lf and d. However, for
MPRM, the I/O cost of obstacles increases because detour obstructed distances of POIs are
computed with respect to different locations.

7 Conclusion

We have introduced and formulated COkD queries. We have proposed the first approach
based on safe regions for efficient processing of COkD queries. We have further improved the
efficiency of our approach by developing two POI retrieval algorithms: SPRM and MPRM.
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We have performed experiments using both real and synthetic datasets. The results show
that our approach for COkD queries with SPRM requires on average 67.3% less processing
time, 62% less I/Os for obstacles and 72.6% less I/Os for POIs than the naive approach that
applies the existing OkD query processing algorithm to evaluate for COkD queries. On the
other hand, our approach with MPRM requires on average 69.2% less processing time, 67%
less I/Os for obstacles and 72% less I/Os for POIs than the naive approach.
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Abstract
The energy transition towards alternative energy sources requires new power transmission lines
to connect these additional energy production plants with electricity distribution centers. For
this reason, Multi Criteria Decision Analysis (MCDA) offers a useful approach to determine the
optimal path of future transmission lines with minimum impact on the environment, on the
landscape, and on affected citizens. As objections could deteriorate such a project and in turn
increase costs, transparent communication regarding the planning procedure is required that
fosters citizens’ acceptance. In this context, GIS-based information on the criteria taken into
account and for modeling possible power transmission lines is essential. However, planners often
forget that the underlying multi criteria decision model and the used data might lead to biased
results. Therefore, this study empirically investigates the effect of various MCDA parameters by
applying a sensitivity analysis on a multi criteria decision model. The output of this analysis
is evaluated combining a Cluster Analysis, a Principal Component Analysis, and a Multivariate
Analysis of Variance. Our results indicate that the variability of different corridor alternatives
can be increased by using different MCDA parameter combinations. In particular, we found
that applying continuous boundary models on areas leads to more distinct corridor alternat-
ives than using a sharp-edged model, and better reflects actual planning practice for protecting
areas against transmission lines. Comparing the results of two study areas, we conclude that
our decision model behaved similarly across both sites and, hence, that the proposed procedure
for enhancing the decision model is applicable to other study areas with comparable topograph-
ies. These results can help decision-makers and transmission line planners in simplifying and
improving their decision models in order to increase credibility, legitimacy, and thus practical
applicability.
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1 Introduction

Multi Criteria Decision Analysis (MCDA) has been successfully applied in a large number of
research projects to identify the optimal solution across a variety of conflicting criteria [12].
Regardless whether the underlying problem is spatial or not, the principle is the same, as
different alternatives are compared by their utility to solve the given problem. Therefore,
a decision-maker assigns each factor that contributes to the decision a value describing
the utility to solve the underlying problem. Each factor is then weighted according to
the decision-maker’s preferences and summed up to the total utility by applying a set of
decision rules [11]. Ideally, these decision rules should be based on consensus among all
decision-makers to minimize the potential for post-decision regret [2].

When applying prescriptive MCDA on spatial problems, Geographic Information Systems
(GIS) can be used as Decision Support Systems (DSS) to support decision-makers in identifying
the best decision to take [19]. In particular, a large variety of visualization techniques has been
successfully applied to support decision-making either when comparing sensitivities on maps
or charts [15], or when determining pareto-optimal solutions [5, 20, 25]. Spatial decisions
are taken, for example, for allocating an object to the optimal location, for evaluating the
land use suitability, or for assessing a phenomenon’s impact on the environment [19]. One
field that strongly considers location-based factors is the planning of energy systems. The
ongoing energy transition towards alternative energy sources incites national governments
and companies to build new renewable energy power plants for various reasons, i.e., reliability
of supply, providing cheap energy, reducing dependency, and reducing environmental impacts
[24]. Consequently, the grid must be extended to connect a growing number of electricity
producers with the consumers [16].

However, public acceptance of grid expansion projects is generally low [16], as transmission
lines evoke opposition particularly when they are sited in rural landscapes [17]. Furthermore,
land owners fear depreciation of their land value [4]. This low acceptance leads to high
social resistance, which in turn raises objections, causes delays, and increases costs – all of
them barriers against necessary grid expansions [1]. In order to increase acceptance, various
methods have been applied or proposed so far. First, involving citizens in the decision-
making process is known to foster acceptance [7]. Second, a transparent dialogue between
grid operators and affected citizens can be enhanced by supporting communication with
immersive virtual reality [21]. Both approaches move in the same direction, as acceptance
might be increased through greater degrees of transparency in communicating the planning
process to citizens. Moreover, the use of realistic virtual reality environments can support
decision-makers in imagining how a transmission line could be blended into the landscape.

In this context GIS can support transparent communication and there are various
examples of GIS-based DSS for determining the optimal path for transmission lines [3, 14].
The approach mostly used hereby is explained in section 2.3, which uses spatial costs to
determine how feasible an area is for building a power line on its surface. However, the
suggested corridors and paths resulting from such a DSS might be biased, as the underlying
data or decision model limits the number of possible solutions and what the solutions actually
reflect. With regard to transmission line planning particularly the spatial resistance against
the construction of transmission lines (according to the law, etc.) and distances to spatially
protected areas (e.g., nature protected areas or certain settlement zones) need to be reflected
adequately. Therefore, we developed a 3D DSS and modified a standard MCDA model in a
way that these aspects are taken into account. Moreover, a sensitivity analysis was conducted
to proof the quality of our MCDA model.
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As the effects of raster-based MCDA have been explored in prior work, we specifically
investigated if a sensitivity analysis shows whether our modified MCDA model causes a
systematic trend in computing the resulting suitability maps. By identifying such a trend, the
corresponding parameters or parameter levels could be considered to be grouped to simplify
the decision model. We further focused on the extent to which the single parameter levels
contribute to the typical characteristics of a suitability map. In this respect, we assumed that
in an initial procedural step decision-makers might appreciate to compare route alternatives
that are clearly distinguishable. Therefore, we wanted to determine the most influential
parameter levels that contribute to a wide variability of the resulting suitability maps. By
doing so, stakeholders can focus their discussions on factors that essentially contribute to a
specific alternative. To this end, we explore the utility of a Cluster Analysis in combination
with a Principal Component Analysis and a Multivariate Analysis of Variance (MANOVA)
for improving a decision model.

In this paper, we present the results of the sensitivity analysis and discuss how this
approach supports simplifying and improving the MCDA model. Overall, we contribute to
calibrating MCDA models so that they can actually assist in real world spatial planning
processes to make transmission line planning faster, more reliable, and more accepted by
affected citizens.

2 Method

2.1 Study areas
In accordance with our project partners Swissgrid and Austrian Power Grid we focused on
the two study areas Innertkirchen – Mettlen in central Switzerland and Kärnten in southern
Austria. Both areas have a similar topography, as the main settlement areas are located on a
flatland on approx. 500 meters above sea level, each partially surrounded by Alpine foothills
and crossed by rivers and lakes. In these areas, the legal requirements outlined in [9] oblige
to successively reduce the area of interest for transmission lines. Therefore, we decided to
use a general decision modeling approach similar to [14], which narrows down the area of
interest in four steps: 1) from a large-scale planning area to 2) a corridor with a width of
a few hundreds of meters to 3) a path and finally, to 4) the exact pylons’ positions. The
geodata were then represented in an interactive, online 3D Decision Support System (3D
DSS).

2.2 Data preparation
In order to build a decision model, we analyzed the criteria that must be considered by law
[9] and identified 33 spatially explicit factors with a legal influence against the construction
of a transmission line (see tab. 1). These factors were grouped into the three categories
environmental protection, urban planning, and technical implementability. Each of the 33
factors used in our decision model was assigned a main objective [11] based on the importance
of the underlying legal source [8] (see tab. 1).

Based on this decision model, we collected the appropriate data from publicly accessible
data portals and stored them in a database. In case a dataset was represented by point or
line features, a buffer distance was assigned according to the legal requirements or expert’s
opinion. We further integrated two factors that foster building of new paths in areas
already characterized by transmission lines, highways, or railway lines. These factors allow a
decision-maker to assess bundling with existing linear infrastructure as more or less important.
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Table 1 Factors used in the decision model, sorted by category and main objective.

Category Influencing factor Main objective with code Ω

Environmental
protection

Biosphere reserve

Preserve ecosystems: primary Ω5

Dry grassland
Flood plains: high importance
Inventory of protected landscapes
Mire landscapes
Mires
Bird protection area

Preserve ecosystems: secondary Ω6

Flood plains: low importance
Forest
Natural reserves
Protection areas according to hunting laws
National parks Preserve landscape: primary Ω1UNESCO World Heritage Site
Geotopes Preserve landscape: secondary Ω2

Technical
implementa-
bility

Natural hazard areas Decrease risks Ω10

Groundwater zone
Ensure implementability Ω8Inappropriate relief

Water bodies

Urban
planning

Infrastructure facilities Avoid infrastructure facilities Ω7

Airports Decrease risks Ω10

Urban sprawl caused due to the grid Increase bundling Ω9Urban sprawl caused due to traffic routes
Arable land Preserve landscape: secondary Ω2

Areas within noise threshold of 40 dBA

Preserve living space: primary Ω3
Residential / work / mixed areas
Residential areas
Cultural heritage: high importance

Preserve living space: secondary Ω4

Cultural heritage: low importance
Historic areas
Historic traffic routes
Public areas
Recreational areas
Tourism areas

Moreover, we extended our decision model with a factor that includes all areas unsuitable
for constructing a transmission line. In particular, the results of a preliminary study showed
that construction costs for a transmission line strongly increase for areas over 1300 meters
and for areas with a slope greater than 55°.

2.3 Representing spatial resistances adequately
In collaboration with our project partners, we defined an MCDA model to compute the
cost surface. In general, the corridor suitability maps and the transmission line paths were
computed by combining MCDA with a Least Cost Path (LCP) analysis [10]. First, MCDA
was applied on overlapping raster lattices with the same direction, origin, and cell size of
100 meters to obtain a cost surface [19]. Based on this cost surface, the LCP algorithm
determined suitable corridors and the optimal transmission line path.
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Further, decision-makers were deemed capable of making decisions about resistances and
weights to distinguish between an interest-based assessment and the relative importance of a
decision. Whereas the former represents a factor’s friction against constructing a transmission
line on top of the corresponding area, the latter represents the subjective importance the
decision-maker assigns to this decision. Decision-makers used the direct rating method [11]
to define a resistance on a Likert 5-point acceptability scale and a weight on a Likert 3-point
priority scale [23]. In collaboration with the legal departments of various federal authorities
we then restricted the resistance range of all factors that must comply with the hierarchy
of laws [8]. For example, as wetlands are protected by the Swiss constitution, the range of
possible resistances was restricted to ‘unacceptable’ and ‘totally unacceptable’. By this, we
expected to comply with factual premises in order to obtain realistic results.

In general, the total resistance tx can be calculated for each location x by multiplying
the resistance with the weight, as shown in the following equation:

tx =
n∑

i=1
ri,x · wi (1)

where ri,x represents the resistance of factor i at location x and wi the weight of factor i.
However, this equation required modification for lack of consideration of special characteristics
concerning the meaning of the resistance, the weight’s effect on the total resistance, the
behavior of overlapping pixels, and the influence of the boundary model. As such, these four
modifications are explained subsequently.

Modification 1: utility function First, decision-makers might not perceive the differences
between the levels of a given Likert scale equally. Strictly speaking, ‘totally unacceptable’
does not necessarily translate to ‘twice as bad as unacceptable’, even though the relative
difference between the levels on the Likert scale are equal. In practice, the utility function
is determined by applying different techniques when interviewing a decision-maker [11].
Therefore, we empirically defined four distinct utility functions for stretching or narrowing
the relative distances between the levels on the Likert scale. By doing so, we expected the
highest probability to determine whether different curve shapes, thus, utility functions have
a significant effect on the result or not. Therefore, the modified resistance uc,i,x resulting
from applying the subsequent utility functions replaces ri,x of eq. 1 and is defined as follows
for the range from 1 to 5:

∀ [5 ≥ r ≥ 1]→ u1,i,x (ri,x) = ri,x (2)

∀ [5 ≥ r ≥ 1]→ u2,i,x (ri,x) = 0.575√
|ri,x − 3|+ 1

· 3(ri,x − 3) + 3 (3)

∀ [5 ≥ r ≥ 1]→ u3,i,x (ri,x) =
√

6 · ri,x − 5 (4)

∀ [5 ≥ r ≥ 1]→ u4,i,x (ri,x) = ri,x
2

6 − 5
6 (5)

The utility function described by eq. 2 is linear and does not apply any corrections on
the chosen resistance. In contrast, eq. 3 enhances the effect of the resistances the more they
differ from the mid neutral value. Finally, eq. 4 applies a logarithmic correction whereas eq. 5
uses an exponential correction for increasing aversion against constructing a transmission
line. All utility functions are shown in fig. 1.

GISc ience 2018



15:6 Enhanced Multi Criteria Decision Analysis for Planning Power Transmission Lines

Modification 2: weighting model Due to its unipolar character, the application of eq. 1
leads to higher total resistances the higher the weights are. As decision-makers assessed the
suitability of a factor on a bipolar range from ‘totally acceptable’ to ‘totally unacceptable’,
they would expect lower total costs when applying a high weight on a low resistance instead
of a low weight. Consequently, three weighting models were defined that enhance the effect
of the chosen resistance r the higher the weight is. Additionally, we defined that our models
must not overlap that is, a weight of 1 on the most extreme resistance (either 1 or 5) always
leads to a more pronounced total value than applying a higher weight on a less pronounced
resistance. Furthermore, we specified that the effect of the weighting model should, on the
one hand, not be too extreme and, on the other hand, balanced between accepting and
dismissing resistances. Thus, the modified weight hb,i resulting from applying the subsequent
empirically defined weighting models, replaces wi of eq. 1:

∀ [5 ≥ r ≥ 3]→ h1,i (wi) = 7
√
wi and ∀ [3 > r ≥ 1]→ h1,i (wi) =

√
1
wi

(6)

∀ [5 ≥ r ≥ 3]→ h2,i (wi) = 10
√
wi and ∀ [3 > r ≥ 1]→ h2,i (wi) =

√
1
wi

(7)

∀ [5 ≥ r ≥ 1]→ h3,i (ri,x, wi) = r + sgn (r) · (wi − 1)
4 (8)

The weighting models of eq. 6 and eq. 7 are similar because they only differ in the chosen
order of the root. Since the chosen weights must equally affect the decision of supporting
or avoiding the construction of a transmission line, it follows that they had to be defined
differently for negative and for positive resistances. In contrast, eq. 8 simply adds or subtracts
0.25 or 0.5 to or from the resistance, depending on the resistance’s sign and on the weight.

Modification 3: MCDA method The situation may arise that an area A defined in one
dataset partially or completely overlaps with an area B of another dataset. A reason for this
could be that A or parts of it may be listed in different protection inventories. As inventories
are often based on different laws, it becomes more difficult to construct a transmission line
in an area that is part of different inventories, as it is protected by various laws. From this
perspective, the question arises whether the increase in difficulty should be considered to
be linear and depend on the number of according protection inventories or not. Hence, the
modified resistance uc,i,x and the modified weight hb,i were included in eq. 1 and therefore
defined the three MCDA methods ta,x in terms of the way overlapping pixels should be
treated by using the following equations:

t1,x =
n∑

i=1
uc,i,x · hb,i (9)

t2,x =
∑n

i=1 uc,i,x · hb,i

ln px + 1 ∀px ≥ 1 (10)

t3,x = max
i∈{1,...,n}

(uc,i,x · hb,i) (11)
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Figure 1 The four utility functions used to
modify the resistances.

Figure 2 The sharp-edged (left) and
the continuous (right) boundary model.

where px is the number of overlapping pixels at location x. The approach used in eq. 9 is
defined as Simple Additive Weighting [6] as it simply weights the factors and sums them up
to a total resistance. In contrast, eq. 10 is an adaption of eq. 9 as it diminishes the effect
of overlapping pixels by applying a logarithmic correction, aiming at reducing a potential
overrating of overlapping pixels. Last, the Maximum Value Method described by eq. 11
chooses the maximum value of all overlapping pixels, as it is supposed to represent the
strictest protection law.

Modification 4: boundary model Malczewski’s theory of fuzzy sets [19] states that fuzzy
values define the grade of membership to a specific factor, leading to fuzzy boundaries. If
we take Tobler’s First Law of Geography [22] into account and assume that the effect of
a factor is not uniquely defined over distance, we recognize a similarity to the fuzzy sets
explained above. Because protective effects do not often end at a protection area’s border,
we used an approach that protects an area beyond its borders by continuously decreasing
the cell resistance with increasing distance from the cell center (see the right panel of fig. 2).
As an effect, the borders become fuzzy and adjacent borders may overlap (which might be
corrected for instance by applying eq. 10). Consequently, protective effects are increased
because the extended protection area presses – figuratively speaking – the transmission line
away from the protection area. This approach complies with the current legal understanding,
as greater levels of protection should be afforded to valuable locations. Furthermore, it is
directly applicable to human perception, as [13] demonstrated that the visual impact of a
transmission tower mainly depends on distance.

Consequently, we wanted to identify the distances that experts assign to each factor
for protecting the corresponding areas according to the continuous boundary model. For
this, we conducted three preliminary studies with a total of 28 participants, consisting of
transmission line planning experts (n=18), representatives of federal authorities (n=7), and
NGO representatives (n=3). For each of the decision model’s 33 influencing factors, experts
defined the distance over which protective effects should influence the result. Furthermore,
they could decide if the decreased shape should be defined linearly, logarithmically, or
exponentially. This was followed by a statistical evaluation of the results and setting of the
median as additional protective distance for the continuous boundary model. For each factor,
we chose the linear decreasing curve, as it was always the most frequently chosen.
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2.4 Sensitivity analysis
Contrary to the common approach to sensitivity analysis, in which the input factors’ un-
certainties are used to model the output variability, we set up a full factorial design to
analyze the effect of all possible combinations between the different factor levels. Thus,
the overall model consists of the 2 boundary models (fig. 2), 3 MCDA methods (eq.
9-11), 4 utility functions (eq. 2-5), and 3 weighting models (eq. 6-8), which results in
72 possible combinations. For computational reasons, the subsequent simplifications had
to be applied. First, we aggregated the geometries of the decision model’s 33 influencing
factors according to their main objective set in the decision model. By doing this, we reduced
the model’s complexity to 10 factors, each representing areas with the same main objective.
Moreover, we decreased complexity by limiting the number of Likert scale levels to 1 (low)
and 3 (high) – for resistances as well as for weights.

According to the main objectives set in the decision model (see tab. 1), we only chose
reasonable combinations by omitting combinations in which the resistance of the secondary
protection objective was higher than the primary protection objective. If the resistances were
equal, we only chose combinations in which the primary objective’s weight was at least as
high as those of the secondary objective. Similar to the approach chosen by [18], we then
computed the following output files for every possible remaining combination for further
analysis:

corridor suitability maps, including the optimal path (see fig. 3)
length over which a specific objective is violated (see tab. 4)

To compute the data, we used 48 CPUs on an Intel® Xeon® CPU E5-2680 v4 @ 2.40GHz
server with 132 GB RAM by using Python’s multiprocessing library. Generating the maps of
all possible and reasonable settings took between 1 to 3 seconds for each map. This equated
to approx. 8 days of computing time with a storage volume of approx. 4.0 TB per study area.
Running the simulation for the study area in Innertkirchen – Mettlen generated n=3’871’389
records, while n=3’190’344 valid results could be generated for the study area Kärnten.

2.5 How the results were evaluated
The output parameters listed in section 2.4 including the rasters emerging from the simulation
process were then sorted and statistically evaluated according to one of the 72 MCDA
parameter combinations. Next, a moving average algorithm computed the mean of all rasters
with the same parametrization. These 72 averaged maps were then compared to each other
by determining Pearson’s correlation coefficient R. The resulting correlation matrix was
used to categorize the 72 parameter combinations into clusters of similar maps. For this,
the Partitioning Around Medoids (PAM) method was applied because it defines differences
by real Euclidean distances. This is similar to the model used to compute the maps, as
location-based differences are represented by distances.

In order to support the evaluation, we determined the effect and the significance of
the MCDA parameters’ decomposed factor levels by conducting a Multivariate Analysis of
Variance (MANOVA). For this, we first decomposed the 72 compound parameter combinations
into 22 basic factor levels (see regressors in tab. 2). Since these represent explanatory variables,
we used them as regressors for building the MANOVA regression model. As the variation in
the suitability maps results from different parameter settings, we determined the model’s
principal components by applying Principal Component Analysis (PCA) on 3 items with
orthogonal rotation. Although we determined that in both study areas eight components
had eigenvalues over Kaiser’s criterion of 1, we decided to use 3 principal components
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Table 2 Regressors used in MANOVA that represent the decomposed parameter settings in order
to determine the influence of the underlying factor levels.

Regressor Refers to What the decomposed parameter might affect
β1 fig. 2 Does the MCDA model have an influence?
β2 fig. 2 left Does the sharp-edged boundary model have an influence?
β3 fig. 2 right Does the continuous boundary model have an influence?
β4 eq. 9-11 Does the MCDA method have an influence in general?
β5/β6/β7 eq. 9/10/11 Does the MCDA method 1/2/3 have an influence?
β8 eq. 2-5 Does the utility function have an influence in general?
β9/β10/β11/β12 eq. 2/3/4/5 Does the utility function 1/2/3/4 have an influence?
β13 eq. 6-8 Does the weighting model have an influence in general?
β14/β15/β16 eq. 6/7/8 Does the weighting model 1/2/3 have an influence?
β17 interaction Do the boundary model and the MCDA method interact?
β18 interaction Do the boundary model and the utility function interact?
β19 interaction Do the boundary model and the weighting model interact?
β20 interaction Do the MCDA method and the utility function interact?
β21 interaction Do the MCDA method and the weighting model interact?
β22 interaction Do the utility function and the weighting model interact?

in our multivariate model because inflexions on the scree plot indicated that the highest
decrease of the principal components’ eigenvalues occur at the 4th component. The 3
principal components explained 93.8% (Innertkirchen – Mettlen) and 88.9% (Kärnten) of the
variance. Furthermore, Bartlett’s test of sphericity, χ2 (2556, N = 72) = 35341.61, p < .001
(Innertkirchen – Mettlen) and χ2 (2556, N = 72) = 31764.79, p < .001 (Kärnten), indicated
that correlations between items were sufficiently large for PCA. We therefore defined the
factor loadings of the principal components as dependent variables, which should be predicted
by the regressors. After conducting the MANOVA, we used the resulting Pillai’s trace as a
metric for evaluating the parameters’ effect on the suitability maps.

3 Results

Surpisingly, the cluster analysis revealed a similar decision pattern in both study areas, as
shown in the dendrograms in fig. 4. However, the dendrogram of the study area Innertkirchen
– Mettlen was higher than the one of Kärnten, thus, the used parametrization model leads
to more distinct patterns when used in Innertkirchen – Mettlen. This is also supported by
analyzing the results of the PCA, as the two primary components explain 90.3% of the factor
loading variability in Innertkirchen – Mettlen, whereas only 77.8% of the factor loading
variability could be explained in Kärnten. By applying PAM, the k-medoids algorithm
proposed as a means of grouping the suitability maps of Innertkirchen – Mettlen into 3
clusters, whereas 8 clusters were proposed for grouping the suitability maps of Kärnten (see
fig. 3).

Our results reveal that the relative importance of the underlying parameters used for
computing the corridor suitability maps is structured hierarchically. By ranking the regressors
based on the averaged Pillai’s traces among both study areas – as listed in tab. 3 – we
could determine that the selection of the boundary model is most important, followed by the
MCDA method, the weighting model, and last, the utility function. We will therefore detail
the results using the same order.
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Figure 3 Suitability maps (opacity: 20%) of both study areas showing the optimal corridors for a
new transmission line. According to the dendrograms of fig. 4 and read from left to right, the results
are grouped into the clusters proposed by the k-medoids algorithm. Visualized with Google Earth.
Yellow areas are suitable for constructing a transmission line, whereas purple areas are less suitable.

In general, the suitability maps in the study area Kärnten demonstrate higher average
Pillai’s traces and one significant regressor more than in Innertkirchen – Mettlen. This is
because the effect of contributing to a diversification of the resulting maps must be higher
the more clusters are suggested for this study area. Factors entailing the boundary model
contribute most to the explanation of the model’s principal components, as Pillai’s traces lie
between 67.6% and 99.3% with p<.001. Indeed, the application of different boundary models
affects different solutions on a large scale. Furthermore, the dendrograms demonstrate that
the choice between the sharp-edged and the continuous boundary model is most important, as
this decision branched the dendrogram at the maximum height of approx. 37 for Innertkirchen
– Mettlen and 17 for Kärnten.

Second, the MCDA methods contribute to the explanation of the principal components
with a Pillai’s trace between 47.0% and 96.2%. However, methods 1 (β5) and 2 (β6) explain
the outcome of the resulting corridor alternatives better than method 3 (β7). A reason for
this might be that method 3 does not account for overlapping resistances, which in turn,
results in less diversified corridor alternatives as the cost surface is flattened out. Moreover,
the dendrograms illustrate a branching of MCDA method 3 between a relatively large height
of 7 to 16. They also reveal that distinct clusters can be created when MCDA method
3 is applied on a continuous shape model. In contrast, the use of MCDA method 3 on a
sharp-edged model branches the dendrogram at height 6, which does not necessarily affect
separate clusters. Branching between MCDA methods 1 and 2 occurs at a very low height
around 1 to 2 and is thus not relevant.

Third, the distinction between the different weighting models explains the model’s
principal components with a Pillai’s trace between 22.0% and 98.5%. Certainly, the general
distinction between the models (β13) seems to be important as the corresponding Pillai’s
trace is very high. However, the variance among the weighting models is large, as β14 has a
Pillai’s trace of 49.4% to 82.5%, whereas β15 has 22.0% and β16 was insignificant. Generally,
if MCDA methods 1 (eq. 9) or 2 (eq. 10) are used, the weighting model leads to a clear
branching, although on a low height around 2. In contrast, the weighting model had no
branching effect when it was applied on the Maximum Value Method (eq. 11), as it neglects
the influence of overlapping factors.
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Figure 4 Clustering dendrogram of the study areas Innertkirchen – Mettlen (left) and Kärnten
(right), normalized to the same absolute height. The numbers 1-4 represent the factor levels listed
in tab. 2.

Fourth, the variation of the utility functions had the weakest effect with a Pillai’s trace
between 18.2% and 90.4%. β10 and β12 modeled the principal components best with average
Pillai’s traces of 81.0% and 79.5%. However, β9 and β11 ranked lower and could explain the
underlying principal components only to 49.7% and 28.2%. A distinct branching could only
be determined for β10, however, on a very low dendrogram height of approximately 1.

However, the corresponding regressor β9 and even β10 were not determined to be significant
by applying the MANOVA. In contrast, utility functions u1,i,x(ri,x) (β8) and u4,i,x(ri,x) (β11)
were significant with a Pillai’s trace of 56.3% and 44.2% (both p<.001). The general result of
distinguishing between the utility functions used, as shown by β8, had an effect on explaining
the model by 22.3%. However, we could not determine any significant interaction between
the boundary model, the MCDA method, the utility function, and the weighting model, as
β17 to β22 were insignificant.

Another method to compare the goodness of the data model is to calculate to what
extent the main objectives of the decision model have been violated. As shown in tab. 4, the
primary objectives (Ω1, Ω3, and Ω5) have been respected, which resulted in a low violation
whereas areas corresponding to a secondary objective have been crossed more often.

4 Discussion

We set out to investigate the utility of a cluster analysis for improving a decision model. We
therefore discuss in the following subsections, how our results are applicable in practice in
order to simplify and improve a given decision model.

4.1 How the results help to simplify the decision model
Given that the considered principal components explain the variance of a defined model
sufficiently, a MANOVA yields the strength of underlying factors that contribute to the
explanation of the principal components. Thus, insignificant results indicate factors that
can be excluded from the decision model. If the decision model aims at being universally
applicable to different study areas, only factors significant across all study areas should be
considered. In this study, only weighting model 1 (eq. 6, represented by β14), could be used
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Table 3 Effect of all significant regressors used in the MANOVA, split by study area. The right
panel lists the averaged Pillai’s traces and the according ranks of each regressor (see tab. 2).

Innertkirchen – Mettlen Kärnten Averaged Results
Regressor Pillai Sig. Regressor Pillai Sig. Rank Regressor Pillai
β2 .967 p <.001 β2 .993 p <.001 1 β2 .980
β13 .925 p <.001 β13 .985 p <.001 2 β13 .955
β3 .915 p <.001 β3 .977 p <.001 3 β3 .946
β5 .825 p <.001 β5 .962 p <.001 4 β5 .894
β10 .716 p <.001 β12 .929 p <.001 5 β6 .817
β6 .712 p <.001 β1 .924 p <.001 6 β10 .810
β1 .676 p <.001 β6 .921 p <.001 7 β1 .800
β12 .662 p <.001 β10 .904 p <.001 8 β12 .795
β14 .494 p <.001 β14 .825 p <.001 9 β14 .660
β7 .484 p <.001 β9 .746 p <.001 10 β9 .497
β8 .263 p <.001 β7 .470 p <.001 11 β7 .477
β9 .247 p <.01 β11 .425 p <.001 12 β11 .282
β11 .140 p <.05 β15 .220 p <.01 13 β8 .223

β8 .182 p <.05 14 β15 .220

as β15 and β16 were insignificant across both study areas. It is further questionable whether
factors with a small Pillai’s trace should be considered in the decision model. However,
this would beg the question, from which value on a contribution should be specified to be
sufficient. Thus, this question could be a line of interesting future research.

Although decision-makers might expect different outcomes based on every chosen para-
meterization, our results indicate that the solution space is limited. Even if solutions may
differ slightly, it is still desirable for transmission line planners to obtain corridor alternatives
that are clearly different from each other. For this, the applied procedure could help to
determine the factors with the highest effect on the resulting corridor. The importance of
these factors can be discussed within a group of decision-makers in order to improve the
decision model based on a conjoint solution. Being able to explain which factors contribute
most and adapting them in a participatory approach might lead to a fostering of transparency,
which in turn will increase the acceptance of the model.

Especially when considering the MCDA methods used, the results concerning the weighting
model would probably have been more distinct if we refused using MCDA model 3, as its
results were categorized into a separate cluster. In addition, even though MCDA model 3
leads to more direct connections between start and end point, it intersects more protected
areas when compared to the application of the remaining MCDA methods. As the branching
between MCDA methods 1 and 2 occurs at a low height of around 1 to 2, we conclude that
this distinction is not of high importance. Thus, Simple Additive Weighting as described in
eq. 9 would be the easiest and most accessible solution to conduct an MCDA.

4.2 How the results help to improve the decision model
The statistical evaluation performed indicates that the factors contained by the decision
model are structured hierarchically. Thus, factors contribute differently to the variability of
the suitability maps. By knowing the Pillai’s trace, the decision model could be improved by
multiplying each factor with a value that inverts its effect on explaining the model. In this
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Table 4 Percent of the average path length over which the according objective (Ωi that correspond
to tab. 1) does not comply with. The values were averaged across both study areas.

Parameter Level Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10

Boundary
model

1 .00 .46 .11 .16 .08 .37 .01 .09 .50 .00
2 .00 .37 .08 .13 .09 .42 .00 .17 .61 .00

MCDA
method

1 .00 .41 .09 .14 .08 .40 .01 .13 .56 .00
2 .00 .41 .09 .13 .08 .40 .01 .13 .56 .00
3 .00 .43 .11 .18 .10 .41 .00 .15 .59 .00

Utility
function

1 .00 .42 .10 .15 .09 .40 .01 .13 .56 .00
2 .00 .40 .11 .14 .10 .39 .01 .15 .57 .00
3 .00 .43 .09 .16 .08 .40 .01 .12 .56 .00
4 .00 .42 .10 .15 .09 .40 .01 .13 .56 .00

Weighting
model

1 .00 .41 .10 .15 .09 .40 .01 .13 .57 .00
2 .00 .41 .10 .14 .09 .39 .01 .14 .56 .00
3 .00 .43 .09 .15 .08 .40 .01 .12 .57 .00

way, the weight of factors with a low contribution could be increased and vice versa. If we
took the only significant weighting model eq. 6 and aimed at standardizing the effect of all
factors, the weighting model might be extended by the subsequent equation, where i is the
total number of factors and pi the factor’s Pillai’s trace, which is used as a swing weight [2]:

∀ x ≥ 0→ h1,i (wi, pi) =
7
√
wi

i · pi
and ∀ x < 0→ h1,i (wi, pi) = 1

√
wi · i · pi

(12)

Furthermore, we could not detect any significant interactions between the factor levels used;
neither by increasing the number of considered principal components to 8, as considered by
using Kaiser’s criterion. Thus, we conclude that the factor levels used are independent, which
emphasizes the unbiased nature of the decision model. In turn, this unbiased decision model
may support decision-making, as decision-makers can independently choose a parametrization
without accounting for the effect that a factor might have on another.

Another point that helps to improve the model can be deduced from the dendrograms.
As large branching heights result in distinct clusters, the ideal choice of distinct factors might
improve outcome variability. However, as the rules applied to generate the maps remained
unchanged across both study areas, we assume that the underlying data model influences the
amount of variability. Thus, decision-makers should pay attention when carefully deciding,
which data model represents the reality best. The results listed in tab. 4 point in the same
direction, as large and continuous areas were crossed more often than small and dispersed
areas. We therefore propose that both the size and the spatial distribution of the underlying
geodata should also be considered when defining the data model. A reflected setting of the
data model might thus help to improve the quality of the subsequent analysis.

5 Conclusion

This study investigated to what extent a multi criteria decision model leads to biased results
when determining the suitability for constructing new transmission lines at a specific place.
We first defined a decision model consisting of 33 spatially explicit factors, each representing
an area that emits a resistance against constructing a transmission line on it. Besides
these factors, we modified a standard MCDA model by defining four modeling parameters
that might alter the location and the course of the resulting transmission line corridor and
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path. We then followed this by conducting a sensitivity analysis by computing all suitability
maps resulting from combining all parameter levels with each other. Then, we averaged the
resulting corridors by the 72 possible parameter settings. A cluster analysis was subsequently
conducted to determine mutual corridor courses, thus, the decision model’s bias. Finally, we
applied a MANOVA to identify the parameters’ influence for explaining the decision model
based on its principal components.

Our results demonstrate that the decision, whether a sharp-edged or a continuous boundary
model should be applied, is of highest importance, as the resulting corridors significantly
differ from each other. Concerning the MCDA method chosen, Simple Additive Weighting
and the Maxium Value Model led to the highest diversity, whereas the latter should be
handled with caution, as the model considered the spatial structure of the given data worst.
Our analysis further revealed that a logarithmic weighting model and a utility function
enhancing the effects of low and high resistances led to more distinct corridor alternatives
than using linear models. Moreover, our proposed procedure for enhancing the decision
model led to similar results across both investigated study areas. Consequently, it also might
be applicable to other study areas to simplify and to improve other MCDA models.

Contrary to prior work that commonly used AHP/ANP, MAUT/MAVT, or PROMETHEE
for determining the factors’ weights, we propose to adapt them based on the results obtained
by statistically evaluating the results of a sensitivity analysis using the described analysis
method. The proposed method aims at adjusting the subjectively assigned weight by including
an additional swing weight for each factor. As the swing weights represent the statistically
determined influence of the corresponding factors, the bias given by the data and decision
model can be diminished, thus, enlarging the solution space for other corridor alternatives.
We assume that acceptance can be increased by first knowing the DSS’s behavior in generating
alternative suitability maps and then improving it based on the results obtained by the
proposed approach. Future work could, for example, explore whether the proposed weighting
adaption effectively results in a higher diversity of generated alternatives, also by performing
a sensitivity analysis with continuous, normally distributed weights around an expected value.
Moreover, settings of resistances and weights pursuing the same objective could be combined
to scenarios, which in turn could be integrated into an analysis approach to determine the
combined effect of the geodata, the scenarios, and the MCDA parameters. It remains to be
further investigated how planning experts assess the goodness, usability, and practicability
of the proposed approach.

References

1 Antonella Battaglini, Nadejda Komendantova, Patricia Brtnik, and Anthony Patt. Percep-
tion of barriers for expansion of electricity grids in the European Union. Energy Policy,
47:254–259, 2012. doi:10.1016/j.enpol.2012.04.065.

2 Valerie Belton and Theodor Stewart. Multiple Criteria Decision Analysis: An Integrated
Approach. Springer Science & Business Media, Dordrecht, Netherlands, 2002.

3 Kjetil Bevanger, Gundula Bartzke, Henrik Brøseth, Espen Lie Dahl, Jan Ove Gjershaug,
Frank Hanssen, Karl-Otto Jacobsen, Oddmund Kleven, Pål Kvaløy, Roel May, Roger Meås,
Torgeir Nygård, Steinar Refsnæs, Sigbjørn Stokke, and Jørn Thomassen. Optimal design
and routing of power lines; ecological, technical and economic perspectives (OPTIPOL).
Final Report 1012, Norwegian Institute for Nature Research, Trondheim, Norway, 2014.

4 Nicholas L. Cain and Hal T. Nelson. What drives opposition to high-voltage transmission
lines? Land Use Policy, 33:204–213, 2013.

http://dx.doi.org/10.1016/j.enpol.2012.04.065


J. Schito, U. Wissen Hayek, and M. Raubal 15:15

5 Shahar Chen, David Amid, Ofer M. Shir, Lior Limonad, David Boaz, Ateret Anaby-Tavor,
and Tobias Schreck. Self-organizing maps for multi-objective pareto frontiers. In 2013
IEEE Pacific Visualization Symposium, pages 153–160, 2013.

6 Charles W. Churchman, Russell L. Ackoff, and Nicolas M. Smith. An approximate measure
of value. Journal of the Operations Research Society of America, 2(2):172–187, 1954.

7 Ana Roxana Ciupuliga and Eefje Cuppen. The role of dialogue in fostering acceptance
of transmission lines: the case of a France–Spain interconnection project. Energy Policy,
60:224–233, sep 2013. doi:10.1016/j.enpol.2013.05.028.

8 Michael Clegg, Katherine Ellena, David Ennis, and Chad Vickery. Ther Hierarchy of Laws:
Understanding and Implementing the Legal Frameworks that Govern Election. International
Foundation for Electoral Systems, Arlington, USA, 2016.

9 DETEC. Sectoral Plan for Transmission Lines (SÜL), dec 2001.
10 David H. Douglas. Least-cost Path in GIS Using an Accumulated Cost Surface and

Slopelines. Cartographica: The International Journal for Geographic Information and Geo-
visualization, 31(3):37–51, 1994. 00117. doi:10.3138/D327-0323-2JUT-016M.

11 Franz Eisenführ, Martin Weber, and Thomas Langer. Rational Decision Making. Springer,
Berlin, 2010.

12 José Figueira, Salvatore Greco, and Matthias Ehrgott. Multiple Criteria Decision Analysis:
State of the Art Surveys. Springer Science & Business Media, 2005.

13 Stefano Grassi, Roman Friedli, Michel Grangier, and Martin Raubal. A GIS-Based Process
for Calculating Visibility Impact from Buildings During Transmission Line Routing. In
Joaquín Huerta, Sven Schade, and Carlos Granell, editors, Connecting a Digital Europe
Through Location and Place, Lecture Notes in Geoinformation and Cartography, pages
383–402. Springer International Publishing, jan 2014.

14 Gayle Houston and Christy Johnson. EPRI-GTC Overhead Electric Transmission Line
Siting Methodology. Technical Report 1013080, Electric Power Research Institute and
Georgia Transmission Corporation, Palo Alto (CA) and Tucker (GA), USA, 2006.

15 Piotr Jankowski, Natalia Andrienko, and Gennady Andrienko. Map-centred exploratory
approach to multiple criteria spatial decision making. International Journal of Geographical
Information Science, 15(2):101–127, 2001. doi:10.1080/13658810010005525.

16 Joshu Jullier. More acceptance for power lines in Switzerland: An evaluation of the accept-
ance increasing factors for transmission lines in Switzerland. Master’s thesis, ETH Zurich,
Zurich, Switzerland, 2016. doi:10.3929/ethz-b-000240496.

17 Pascal Lienert, Bernadette Sütterlin, and Michael Siegrist. The influence of high-voltage
power lines on the feelings evoked by different Swiss surroundings. Energy Research &
Social Science, 23(Supplement C):46–59, jan 2017. doi:10.1016/j.erss.2016.11.010.

18 Arika Ligmann-Zielinska and Piotr Jankowski. Spatially-explicit integrated uncertainty
and sensitivity analysis of criteria weights in multicriteria land suitability evaluation. En-
vironmental Modelling & Software, 57:235–247, 2014.

19 Jacek Malczewski and Claus Rinner. Multicriteria Decision Analysis in Geographic Inform-
ation Science. Advances in Geographic Information Science. Springer, Berlin, 2015.

20 Stephan Pajer, Marc Streit, Thomas Torsney-Weir, Florian Spechtenhauser, Torsten Möller,
and Harald Piringer. Weightlifter: Visual weight space exploration for multi-criteria de-
cision making. IEEE transactions on visualization and computer graphics, 23(1):611–620,
2017. doi:10.1109/TVCG.2016.2598589.

21 Arne Spieker. Stakeholder Dialogues and Virtual Reality for the German Energiewende.
Journal of Dispute Resolution, 2018(1), jan 2018.

22 Waldo R. Tobler. A computer movie simulating urban growth in the Detroit region. Eco-
nomic geography, pages 234–240, 1970.

23 Wade M. Vagias. Likert-type Scale Response Anchors, 2006.

GISc ience 2018

http://dx.doi.org/10.1016/j.enpol.2013.05.028
http://dx.doi.org/10.3138/D327-0323-2JUT-016M
http://dx.doi.org/10.1080/13658810010005525
http://dx.doi.org/10.3929/ethz-b-000240496
http://dx.doi.org/10.1016/j.erss.2016.11.010
http://dx.doi.org/10.1109/TVCG.2016.2598589


15:16 Enhanced Multi Criteria Decision Analysis for Planning Power Transmission Lines

24 Geert Verbong and Frank Geels. The ongoing energy transition: Lessons from a socio-
technical, multi-level analysis of the Dutch electricity system (1960–2004). Energy Policy,
35(2):1025–1037, feb 2007. doi:10.1016/j.enpol.2006.02.010.

25 Xun Zhao, Yanhong Wu, Weiwei Cui, Xinnan Du, Yuan Chen, Yong Wang, Dik Lun Lee,
and Huamin Qu. SkyLens: Visual Analysis of Skyline on Multi-Dimensional Data. IEEE
Transactions on Visualization and Computer Graphics, 24(1):246–255, 2018.

http://dx.doi.org/10.1016/j.enpol.2006.02.010


FUTURES-AMR: Towards an Adaptive Mesh
Refinement Framework for Geosimulations
Ashwin Shashidharan
Department of Computer Science, North Carolina State University, Raleigh, USA
ashdharan@ncsu.edu

Ranga Raju Vatsavai
Department of Computer Science, North Carolina State University, Raleigh, USA
rrvatsav@ncsu.edu

Derek B. Van Berkel
Center for Geospatial Analytics, North Carolina State University, Raleigh, USA
dbvanber@ncsu.edu

Ross K. Meentemeyer
Center for Geospatial Analytics, North Carolina State University, Raleigh, USA
rkmeente@ncsu.edu

Abstract
Adaptive Mesh Refinement (AMR) is a computational technique used to reduce the amount of
computation and memory required in scientific simulations. Geosimulations are scientific simula-
tions using geographic data, routinely used to predict outcomes of urbanization in urban studies.
However, the lack of support for AMR techniques with geosimulations limits exploring predic-
tion outcomes at multiple resolutions. In this paper, we propose an adaptive mesh refinement
framework FUTURES-AMR, based on static user-defined policies to enable multi-resolution geo-
simulations. We develop a prototype for the cellular automaton based urban growth simulation
FUTURES by exploiting static and dynamic mesh refinement techniques in conjunction with
the Patch Growing Algorithm (PGA). While, the static refinement technique supports a stat-
ically defined fixed resolution mesh simulation at a location, the dynamic refinement technique
supports dynamically refining the resolution based on simulation outcomes at runtime. Further,
we develop two approaches - asynchronous AMR and synchronous AMR, suitable for parallel
execution in a distributed computing environment with varying support for solution integration
of the multi-resolution results. Finally, using the FUTURES-AMR framework with different
policies in an urban study, we demonstrate reduced execution time, and low memory overhead
for a multi-resolution simulation.

2012 ACM Subject Classification Computing methodologies → Distributed simulation, Com-
puting methodologies → Multiscale systems, Applied computing → Environmental sciences

Keywords and phrases Adaptive mesh refinement, Geosimulation, Distributed system, Multi-
resolution, Urban geography
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1 Introduction

Over the past decade, advancements in remote sensing technologies and classification tech-
niques have increased the availability of high-resolution datasets relevant to urban simulation.
High resolution LiDAR derived DEMs, land cover classifications, and the increasing amount
of vector-based spatial layers promise to deliver a better understanding of urbanization for
forecasting urban development. However, in practice, computational constraints impact
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the resolution of input data, or the extent of the study region used in an urban simulation.
Particularly, memory and I/O constraints limit studies leveraging high-resolution data to
small study extents, while study of large extents are often only possible with low-resolution
data. Although an urban simulation may require high-resolution data only in a small region
of the study (as shown in Fig. 1b), current urban simulation frameworks do not support
selectively varying the resolution of a simulation for different regions (as shown in Fig. 1c
and Fig. 1d) at runtime. Further, if new urbanization is highly likely only on a small portion
of the study extent, modifying the urban growth simulation to use high-resolution data over
the complete study extent is highly inefficient.

Adaptive mesh refinement (AMR) is a technique that can support multi-resolution
simulations using high-resolution data in regions where it is necessary. For urban growth
simulations in large study extents, adaptive mesh refinement at runtime would allow focusing
computational resources for simulating emerging urban patterns in regions of interest (ROIs).
An AMR approach using high-resolution data would account for more prominent local effects
like topographic features and land cover classes to simulate accurate urbanization patterns.
Additionally, using low-resolution data for simulation in regions of less importance would
reduce memory overhead and enable faster simulation. In effect, such an approach would
eliminate the computational overhead of a high-resolution simulation over the global extent
of a study region, while generating fine spatial patterns where necessary.

Although an AMR approach promises significant computational savings, AMR techniques
developed thus far only support refinement and coarsening criteria for solving partial differ-
ential equations (PDEs) in a scientific simulation. In particular, these are not applicable to
geosimulations which use cellular automaton (CA) based models to generate urbanization
outcomes. Thus, the first challenge is the development of new refinement and coarsening
criteria to support AMR with geosimulations like urban growth. In particular, geosimula-
tions require a mesh placement strategy that specifies the location, extent and spacing of a
mesh (resolution), and a mesh generation strategy for use with different datatypes in the
simulation. In turn, the choice of a mesh generation strategy impacts the integration strategy
for synchronizing the results generated at different resolutions.

In this paper, we address this research gap and develop a distributed AMR framework,
FUTURES-AMR that supports multi-resolution geosimulations. Specifically, the framework
supports refinement and coarsening requests using multi-resolution data in regions of interest
(ROIs) for two scenarios: (i) static refinement in ROIs specified by an end user; (ii) dynamic
refinement based on a combination of static policies and the simulation outcomes at runtime.
For both scenarios, we allow end users to specify static policies that define refinement and
coarsening criteria for the AMR simulation. Finally, we develop two approaches - asynchronous
AMR and synchronous AMR with different load balancing and solution integration strategies
in a master-worker style distributed system architecture.

The rest of the paper is organized as follows: in Sect. 2, we summarize existing research
for AMR simulation. In Sect. 3, we provide an overview of Adaptive Mesh Refinement as used
in numerical analysis. In Sect. 4, we describe our distributed system architecture for AMR
in the asynchronous and synchronous AMR approaches, and how we adapt the FUTURES
geosimulation in our AMR framework. In Sect. 5, we describe our experimental setup and
present results from executing FUTURES-AMR in two different geographic regions with
user-defined policies. Finally, we conclude in Sect. 6, with future work in Sect. 7.
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Figure 1 Illustration of the proposed FUTURES-AMR framework – The study extent shown in
the classified image has 60% non-urban pixels. Refinement using 10m resolution data, and coarsening
using 90m resolution data are requested on 5% and 40% of the total non-urban pixels in the study
area, respectively. The default simulation at 30m resolution executes on the remaining 55% of
non-urban pixels.

2 Related Work

Adaptive mesh refinement (AMR) is a technique that can be used with both structured and
unstructured meshes. AMR techniques support dynamically adjusting the cell spacing on
a mesh to achieve an accurate numerical solution. Structured adaptive mesh refinement
(SAMR) was first proposed by Berger et al. [4] to solve partial differential equations (PDE)
in shock hydrodynamics. This technique which relies on partitioning the problem space into
different regions with varying spatial resolutions is achieved by imposing varying resolution
grids in space. Further, each region is assumed to be rectangular in shape with a grid
hierarchy to represent the relationships between different regions. As the solution progresses,
nested grids or new grids are generated refining the problem in these regions. In case of
time-dependent equations, these refinements can be applied to compute solutions at finer
temporal resolutions as well.

Initially developed to solve simulations using hyperbolic conservation laws [4, 3], AMR
approaches have since been extended to solve parabolic and elliptic equations. These numerical
solvers find widespread use across various domains such as Computational Fluid Dynamics [4,
3], Astrophysics [9] and Climate Modeling [18]. General-purpose AMR frameworks have also
been developed that support developing applications not specifically designed for a domain.
BoxLib [2], Chombo [6] and SAMRAI [24] are examples of such frameworks with numerical
solvers and APIs for developing codes for new applications. A comprehensive listing of the
different frameworks for AMR refinement and their applications can be found in a survey by
Dubey et al. [8].

AMR frameworks typically define a grid hierarchy management scheme to handle the
coarse and fine regions. Block representation schemes have been devised which represent
regions as grids using lower and upper coordinates of a bounding box [4, 2, 6, 24]. Similarly,
tree representations exist that define coarse and fine regions in terms of parent-child relations
and their splitting criteria [10, 20, 12]. These representations have implications on the
number of cells to refine, the data distribution strategy for parallel computation, memory
requirements and storage overhead. Exclusive computational geometry libraries also exist
which support creation of structured and unstructured meshes for scientific simulations.
CGAL [15], Silo [19], PARAMESH [12] are examples of libraries with geometry algorithms
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and mesh generation and management routines for use in scientific applications. However,
these libraries lack support for numerical solvers and AMR refinement operations. PETSc [1]
and Hypre [14] are libraries with parallel numerical solvers. Even so, combining individual
libraries to port existing serial code and develop a parallel AMR application requires parallel
programming expertise and significant rework.

Owing to the numerical complexity of solving partial differential equations (PDEs),
most AMR related research has focused on developing data structures and algorithms to
support parallel and distributed computation [7]. These frameworks are designed with
one of the two popular load balancing strategies for AMR: patch-based and domain-based
(or tree-based). In the patch-based approach [4, 23], load balancing distributes regions
for refinement over a set of processors using a binning, greedy or round-robin technique.
Although, a patch-based approach offers a simple load balancing strategy to balance overall
computational work at a processor, data movement for synchronizing results across refinement
levels is unavoidable and could lead to significant communication overhead. On the other
hand, domain-based approaches attempt to optimize communication overhead by assigning
coarsening or refinement operations for a sub-region to a processor where its parent region
resides [10, 20, 12]. However, domain-based approaches suffer from scalability issues at higher
levels of refinement as dynamic reconfiguration of the workload necessitates data migration
to maintain the load and avoid synchronization between nested levels at each processor. A
comprehensive comparison of the parallelization techniques for dynamic load balancing can
be found in a survey by Rantakokko et al. [21]. The results of the survey indicate that no
single partitioning scheme performs best across all types of applications and systems. Finally,
AMR frameworks typically also define techniques to integrate results at the boundary of
coarse-fine interfaces. Refluxing and circulation integration techniques, which combine results
from interpolation of low resolution data at coarser levels and aggregation of data at finer
levels are used to update PDE solutions at the boundaries.

General-purpose parallel AMR frameworks attempt to reduce the programming effort to
develop parallel structured AMR applications. While most of these frameworks are distributed
memory implementations [9, 6, 24], AMRCLAW [5] is a shared memory implementation.
Parallel AMR frameworks facilitate development of parallel AMR applications by handling
data organization and distribution, load balancing and data communication as part of the
framework [17]. Along with numerical solvers for PDEs, these frameworks abstract the
implementation details such as the data type, parallel communication patterns and data
placement strategies from the user. AMR frameworks [16, 11] also exist that compute
solutions in irregularly shaped regions of the sub-domain without assuming a logically
rectangular structure. However, similar to structured AMR frameworks these are only
suitable for scientific applications using partial differential equations. Finally, we are not
aware of AMR frameworks developed to support geosimulations.

3 Adaptive Mesh Refinement

To compute a numerical solution for PDEs, an adaptive mesh refinement technique starts
by imposing a coarse grid (or mesh) over the complete problem domain. The grid defines
the cell spacing, or resolution for computation in the domain. Imposing a finer grid in the
domain introduces more grid points while, a coarse grid presents fewer points at which,
solutions for the equation must be calculated. Thus, the computational complexity to solve
a PDE depends on the grid spacing of the domain. An adaptive mesh refinement technique
superimposes fine grids only in certain sub-domains (or regions) of the problem (also known
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as regridding). These are identified by estimating the accuracy or error of the computed
solution. Finer grids are recursively imposed in the region till the error or accuracy of the
computed solution is acceptable (i.e., below or above a threshold), or a maximum level of
refinement is reached. Specifying a maximum level of refinement avoids infinite recursion
in the regridding step. Thus, in an AMR based solution, a coarse grid is applied on the
complete problem domain, but recursively refined in regions till a suitably accurate solution
is obtained.

In regions superimposed with finer grids, AMR uses interpolation to resolve the initial
values at the fine grid points from the coarse grid points. Subsequently, the solutions of
the equations at the finer grids points are computed, and results at the fine grid points are
aggregated to update the solution at the coarse grid points. Along the fine-coarse grain
region boundaries, the AMR integration approach uses a flux conservation or circular integral
control technique to update values at the coarse grid points. Thus, a solution at the initial
coarse resolution (or default resolution) for the complete domain is obtained using AMR.

4 FUTURES-AMR

In our framework, we modify the Berger-Oliger-Collela approach [4] to support adaptive
mesh refinement for a geosimulation. We make two major modifications in the four step
Berger-Oliger-Collela approach. Firstly, we substitute the problem of solving PDEs at
different intervals in a domain with an urban growth simulation using a Patch Growing
Algorithm (PGA) [13] in a geographic region. Secondly, we modify the error-based AMR
refinement criteria for PDE solvers with AMR refinement criteria based on user-defined
policies for a region. Thus, in our FUTURES-AMR framework, the FUTURES urban
simulation executes the PGA at different resolutions based on refinement criteria expressed
in user-defined policies.

We also make a few assumptions about supported geosimulations in this framework.
First, a geosimulation executing in this framework is assumed to be a cellular automaton
consisting of a grid of cells with transition rules such as defined by a PGA. Second, each cell
has a fixed spatial resolution representing a fixed area on the landscape. A geosimulation
begins at this fixed resolution over the complete landscape. Third, the transition rules
of the CA-based geosimulation for patch growth must be specified, or generalizable for
use at different resolutions. Based on these assumptions and modifications, we define the
FUTURES-AMR algorithm as follows:

I Step 1. Start a geosimulation with a coarse default resolution over the complete study
extent.

I Step 2. Evaluate static policies as part of PGA to identify regions that need higher/lower
resolution data.

I Step 3. Superimpose finer grids for refinement or coarser grids for coarsening in these
regions. Subsequently, execute PGA till either the PGA halting criteria is met or higher
resolution data is unavailable.

I Step 4. Integrate multi-resolution simulation outcomes from refinement and coarsening in
different regions with the default resolution result in the global extent.

We design two simulation approaches namely, asynchronous AMR and synchronous AMR
that vary in their implementation of Step 4. We describe these approaches and their varying
support for policies in Section 4.3 and 4.4. We begin with a brief description of the PGA for
the proposed framework.
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4.1 Patch Growing Algorithm (PGA)
In the simulation of an urban landscape, new urban patches are developed by executing a
Patch Growing Algorithm at suitable development sites in the landscape. One standard
method [13] is to determine a suitable seed and execute a neighbor discovery process to
determine new cells for urban patch growth. The PGA generates new patches that characterize
the spatial changes due to urbanization in terms of patch shape and patch size starting at
the seed location. However, the algorithm depends on a fine grid to capture these patterns
at a fine granularity. In general, wider spacing of grid points results in lower data resolution
representing the landscape and hence, higher inaccuracy in patterns of the generated patches.
These solutions may be acceptable in certain regions of a landscape, e.g. in a sparsely
populated remote rural region, but not in a dense urban region like a central business district
(CBD). Thus, to support varying mesh spacing depending on the requirement in a region, we
modify the PGA to generate refinement and coarsening requests at runtime.

4.1.1 Refinement/Coarsening
In FUTURES-AMR, a refinement or coarsening request is generated in response to user-
defined policies in a region. These policies (see Section 4.2) define a refinement or coarsening
criteria in a region for use during the simulation. A refinement criterion imposes a finer grid
in a buffer region surrounding the seed site. In turn, the simulation executes the PGA using
high-resolution data (resolution higher than the default resolution) in this region. Besides
fine grids, coarse grids may also be specified for patch growth using PGA. In case of coarse
grids, the simulation uses low-resolution data (resolution lower than the default resolution)
in this region for the PGA. In case of both, fine and coarse grids, further refinement may be
triggered to meet the PGA halting criteria until a higher resolution of data is unavailable.
Thus, the simulation proceeds in discrete time-steps executing the PGA at default resolution,
or by refining, or coarsening select regions in the geographic extent. The simulation result
at the end of each time-step is a collection of coarsening results, refinement results and the
simulation result at the default resolution. We formally define a refinement and coarsening
request as follows:

X(L, E, r)← P1 ∧ P2 ∧ . . . ∧ Pn (1)

where X is either a refinement or coarsening request, L is the geolocation of the request, E

is the extent to refine or coarsen from L, r is the resolution to use with the request, and
P1 . . . Pn are user-defined policies in the extent E.

4.2 Policy Specification
In our AMR framework, we support user-defined static policies specified as input to the
simulation. These policies serve as refinement and coarsening criteria for a simulation to
perform static or dynamic refinement. If a geosimulation is unable to satisfy urbanization
conditions using low-resolution data, refinement is triggered. Similarly, satisfying development
conditions by coarsening with low-resolution is also supported. We formally define a policy
as follows:

P ← A1 ∧A2 ∧ . . . ∧An (2)

where, Ai is a spatial or non-spatial attribute, and P is a user-defined policy expressed as a
conjunction of such attributes.



A. Shashidharan, R. R. Vatsavai, D. B. Van Berkel, and R. K. Meenteemeyer 16:7

4.2.1 Static Refinement
Static refinement is a technique used to a priori superimpose meshes in regions of interest.
In these regions, the mesh resolution is adjusted once, which is then maintained throughout
the simulation. In case of geosimulations, as described in Section 4.1, coarsening may also be
acceptable in certain regions of the landscape. Thus, in the FUTURES-AMR framework
static policies specified a priori support both, refinement and coarsening criteria in a region.
Static policies specify such regions where simulations with a different resolution must be
carried out. For example:
P1: A spatial refinement policy specifies a polygon feature and resolution of data (1m/10m)

to simulate patterns of urban development.
P2: A spatial coarsening policy specifies a polygon feature and resolution of data (90m/270m)

to simulate patterns of urban development.

4.2.2 Dynamic Refinement
Dynamic refinement is carried out in response to conditions arising during a simulation. In
case of dynamic refinement, fine meshes are superimposed in regions based on a combination
of simulation outcomes and a refinement criteria satisfied at runtime. The same is applicable
to coarsening as well. In the FUTURES-AMR framework, refinement criteria for patch
growth is defined using static policies. For example:
P1: A patch growth refinement policy specifies high-resolution data (1m/10m) to develop

urban patches smaller than a given size within a distance from a central business district.
P2: A patch growth coarsening policy specifies low-resolution data (90m/270m) to develop

urban patches greater than a given size beyond a distance from a central business district.
P3: A data-driven policy specifies the resolution of data (1m/10m/90m/270m) to develop

urban patches based on site development potential determined at runtime.

In the simulation, during PGA execution, these policies are evaluated at runtime to
determine if dynamic refinement is necessary. A data-driven policy (e.g., P3) serves to resolve
potential conflicts in case of multiple user-defined policies. If dynamic refinement is triggered,
PGA iteratively refines the mesh to simulate urbanization till the refinement criteria is met.
Thus, in dynamic refinement, the PGA adaptively adheres to the structure of the patch
being developed at higher resolutions.

4.3 Asynchronous AMR
The asynchronous approach in our AMR framework is designed to support experimentation
of policies at different resolutions in a study area. To be able to compare outcomes due
to a user-defined policy, the approach executes the simulation, both in the presence and
absence of policies, and generates results at different resolutions. In particular, the approach
executes the PGA at multiple resolutions only in regions with user-defined policies, avoiding
the execution overhead of a multi-resolution simulation over the complete study extent.
Further, the emerging spatial structures in a time-step at different resolutions are retained
as-is, eliminating additional I/O required to aggregate the results generated at different
resolutions.

4.3.1 Solution Integration
In the asynchronous AMR approach, the results from adaptive mesh refinement are not
integrated with the solution computed at the default resolution. Such an approach preserves
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Figure 2 Asynchronous AMR (Phase 1) – Each worker executes a simulation generating coarsening
and refinement requests at each time-step of the simulation. The master receives and aggregates
these requests from the workers at every time-step for processing in Phase 2.
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Figure 3 Asynchronous AMR (Phase 2) – The workers execute the refinement and coarsening
requests from Phase 1 as assigned by the master.

the patch specificity obtained from multi-resolution simulations of different regions. GIS
overlay techniques can be used to visualize the result layers from refinement and coarsening
in different regions along with the global output raster.

4.3.2 Load Balancing
In the asynchronous approach, refinement and coarsening requests are processed independent
of the simulation at the default resolution. Refinement and coarsening requests triggered
by the simulation execute asynchronously without blocking the simulation. The approach
ensures maximum resource utilization throughout the simulation.

We implement a master-worker approach for distributed asynchronous AMR simulations.
In Phase 1 of this approach (Fig. 2), we begin by assigning each worker a geographic partition
for simulation. Each worker executes a simulation on its partition generating new refinement
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and coarsening requests. At the end of every time-step, the worker relays these requests to
the master. Finally, once a worker completes all time-steps of the simulation on its assigned
partition, the master schedules a new partition at the worker, if any.

Phase 2 (Fig. 3) begins when all partitions in the study have been processed. In Phase
2, the master schedules the refinement and coarsening requests received from the workers
during Phase 1. Similar to Phase 1, each worker receives a refinement or coarsening request
till all requests at the master have been processed. Finally, if further refinement becomes
necessary while processing a request at a worker, it is executed at the same worker.

4.4 Synchronous AMR
The synchronous AMR approach propagates the effects of static policies in each time-step of
the geosimulation to the subsequent time-step of the simulation. In this approach, spatial
structures that emerge due to a policy at a particular time-step are input to the next
time-step, i.e., the spatial effects of policies are temporally preserved as well. Specifically,
the simulation outcomes from refinement and coarsening requests at different resolutions
are integrated with the global solution for the region at every time-step. Thus, using the
synchronous AMR approach, a user can explore long-term effects of static policies in a region.

4.4.1 Solution Integration
We devise a simple integration approach to merge solutions at the default resolution of the
simulation for the global extent. In regions where coarsening occurs, we interpolate the
low-resolution simulation result to the default resolution, and perform map algebra addition
to combine it with the global output raster. Similarly, for refinement, we first aggregate the
simulation result and perform map algebra addition on the global output raster. Thus, the
refinement and coarsening results at different resolutions, in different regions, are integrated
in every time-step at the default resolution of the global solution.

Effect of datatype on integration: In case of urbanization outcomes represented by a
boolean datatype, we use average, mode or near resampling techniques to merge multi-
resolution results at the default resolution (Fig. 9). In case of development pressure represen-
ted by a real datatype (e.g., in FUTURES [13]) we adopt one of the two approaches:
(i) recalculate the development pressure over the complete study area after integrating the

simulated urbanization results over the global extent or,
(ii) use the result from the highest data resolution simulation in regions with multiple

solutions.

4.4.2 Load Balancing
Once again, in the synchronous approach, the master begins by assigning different partitions
for simulation at the workers. In every time-step, the workers build and maintain a list of
coarsening and refinement requests. Subsequently, these requests are processed at the worker,
i.e., a refinement or coarsening request is scheduled for execution at the same worker after
the completion of a time-step. Any further refinement required is also carried out at the same
worker. Additionally, as part of synchronization, integration of results (see Section 4.4.1) is
carried out before the next time-step. Once the solution integration is complete, the worker
resumes the simulation on its assigned partition at default resolution for the next time-step.
This process is repeated in every time-step for all partitions the study area. Thus, in the
synchronous AMR approach, all spatial and temporal interactions are preserved.
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5 Experimental Evaluation

In this section, we describe the experimental setup of our proposed AMR framework. Figure 5
shows the two sub-county zones in the Raleigh-Durham (RDU) region used in our experiments.
We carry out our experiments on a system with a hardware spec of 2.5 GHz Intel Core
i7 processor and 16 GB memory, and software support for GDAL 2.0 and OpenMPI 1.10.
Further, we setup our experiments to use three cores for MPI execution.

Experiment 1: Simulation overhead at different resolutions

In our first experiment, we measure the memory requirement and execution time for a
simulation using a fixed input resolution. We setup the study area shown in Fig. 5 to execute
20 time-steps of the simulation in our experiment. We perform three simulation runs, varying
the input resolution in each run to use 10m, 30m and 90m input resolution, respectively.
Table 1 presents the simulation overhead and Figure 6 illustrates the output maps generated
using different input resolution.
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Table 1 Simulation Execution Time and Memory Requirement at different input resolutions.

Execution Time (in seconds) Memory Requirement (MB)
10m 30m 90m 10m 30m 90m

91.7944 9.2878 1.1584 997 118 12

 Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics,
CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User

(a) Satellite Image. (b) 10m. (c) 30m. (d) 90m.

Figure 6 Durham subdivision - Ridges of Parkwood. Fig. 6a is a satellite image from 2017.
Fig. 6b, 6c, 6d illustrate urbanization in the year 2030 at 10m, 30m, 90m resolution data, respectively.

Table 2 Simulation Execution Time and Memory Requirement with varying ROI extents.

Extent of ROI Execution Time (in seconds) Memory Requirement (MB)
(in 30m pixels) 10m 90m 10m 90m

30 x 30 0.12 0.12 16 15
60 x 60 0.17 0.16 25 21

200 x 200 0.53 0.41 63 39
300 x 300 0.84 0.63 96 48
400 x 400 1.78 1.14 128 55
500 x 500 3.13 1.67 193 61
600 x 600 4.3 2.42 248 64

We observe that both, the execution time and memory requirement increase with use of
high-resolution data. Specifically, there is a 9-10x increase in both, the memory requirement
and execution time, when the spatial resolution of the simulation is increased by a factor
of 3. We use this as a baseline for comparison of the computational improvements in the
synchronous and asynchronous approaches in our FUTURES-AMR framework.

Experiment 2: Static Refinement using static policies

In the FUTURES-AMR framework, static refinement supports superimposing finer or coarser
meshes in particular regions of interest (ROIs). A static policy for refinement or coarsening
defines the exact location and extent of these ROIs for high-resolution or low-resolution
simulation. In our second experiment, we measure the overhead to execute refinement (10m)
and coarsening (90m) requests with varying ROI extents to test how varying policies would
impact computational efficiencies.

We observe that as the size of the ROI increases, execution time and memory requirement
for executing a refinement and coarsening request increases. However, the refinement overhead
is significantly lesser when compared to using high-resolution 10m data for the simulation over
the complete study extent (shown in Table 1). Specifically, in the worst case, a refinement
request by a default 30m resolution simulation, increases the the total execution time by
4.3 seconds and peak memory requirement of the simulation by 248MB. Thus, by using the
FUTURES-AMR framework for processing refinement and coarsening requests, we incur
significantly low computational costs for a multi-resolution simulation.
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Figure 7 The figure illustrates three policies with varying buffer zones based on two central
business districts (Hillsborough in Zone 1 and Durham in Zone 2). In the inner zone, urban
development using PGA triggers refinement requests (10m resolution) for patches with patchSize
> 15 (patchSize is the total number of 30m pixels to simulate in an urban patch). In the outer
zone, urban development using PGA triggers coarsening requests (90m resolution) for patches with
patchSize > 30. In the middle zone, urban development using PGA always uses 30m resolution data.

Table 3 Asynchronous AMR - Simulation Execution Time and Number of Requests.

Policy
Resolution Number of Requests

Time
10m 30m Zone 1 Zone 2

Refinement Coarsening Refinement Coarsening (in s)
d2city < 150 > 350 83 50 6 31 53.57

patchSize > 15 > 30
d2city < 250 > 400 549 13 26 24 133.68

patchSize > 15 > 30
d2city < 350 > 450 683 0 60 16 153.39

patchSize > 15 > 30

Experiment 3: Dynamic Refinement using static policies

In our third experiment, we use static policies as illustrated in Figure 7 for dynamic refinement.
We run three experiments, where each experiment uses a different policy to simulate urban
growth. We begin the simulation using coarse 30m resolution data, switching to high or
low-resolution data for patch growth as determined by policy evaluation at runtime. The
policies in our experiment specify two attributes for variable resolution simulation:
(i) distance of the patch from a central business district (d2city);
(ii) the size of the patch (patchSize).

The attributes are used to define threshold values for coarsening and refinement criteria. In
dynamic refinement, the parameter values generated during the simulation are compared
against these threshold values to trigger coarsening or refinement. Further, unlike static
refinement, additional refinement is triggered if PGA halting criteria is not met. Table 3
and 4 present the measured execution times in the asynchronous and synchronous AMR
approaches in our framework with the three policies. Both, d2city and patchSize in Tables 3
and 4 are expressed in terms of number of 30m pixels.

The results indicate that the execution time varies based on the number of requests,
which are different between the approaches. Moreover, the execution time for processing
different policies vary based on the number of requests. In particular, we observe that total
execution time increases with increasing number of requests. Thus, user-defined policies must
be carefully selected to limit the adverse impact on the total execution time. Nevertheless,
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Table 4 Synchronous AMR - Simulation Execution Time and Number of Requests.

Policy
Resolution Number of Requests

Time
10m 30m Zone 1 Zone 2

Refinement Coarsening Refinement Coarsening (in s)
d2city < 150 > 350 84 51 7 35 85.37

patchSize > 15 > 30
d2city < 250 > 400 639 13 33 26 297.53

patchSize > 15 > 30
d2city < 350 > 450 784 0 63 20 347.35

patchSize > 15 > 30

(a) 90m. (b) 30m. (c) 10m. (d) 30m.

Figure 8 Asynchronous AMR - Fig. 8a illustrates an output map of a coarsening request at 90m
resolution. Fig. 8b illustrates the output map for the region in Fig. 8a at the default 30m resolution.
Fig. 8c illustrates an output map of a refinement request at 10m resolution. Fig. 8d illustrates the
output map for the region in Fig. 8c at the default 30m resolution.

(a) 30m. (b) 10m. (c) 30m.

Figure 9 Synchronous AMR - Fig. 9a illustrates an output map at the default 30m resolution.
Fig. 9b illustrates the output map for the region in Fig. 9a for a refinement request at a 10m
resolution. Fig. 9c illustrates the composite output map generated by the simulation at the default
30m resolution by combining Fig. 9b and Fig. 9a in the synchronous approach.

the FUTURES-AMR multi-resolution framework demonstrates memory scalability, incurring
a maximum additional memory overhead of 248MB as seen in Experiment 2. We also observe
that total execution time in the synchronous AMR approach is higher than the asynchronous
AMR approach. This increase in execution time is a result of the solution integration
approach in the synchronous mode, where results from the multi-resolution simulations at
different locations are merged into the final output raster of the study in every time-step. As
the asynchronous AMR approach does not merge output results, it performs faster. Finally,
in Fig. 8 and Fig. 9, using a few select regions from our study area, we illustrate the effects
of user-defined policies on the simulation results generated in the two approaches.
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6 Conclusion

FUTURES-AMR has been developed as a computing framework to support multi-resolution
geosimulations for use in urban planning and development. In this paper, we described a gen-
eric framework for executing a distributed multi-resolution geosimulation and demonstrated
its use with the FUTURES geosimulation. We developed static refinement and dynamic
refinement techniques with support for expert defined and data-driven polices, along with
two new approaches - synchronous and asynchronous AMR for distributed execution of a
geosimulation. The results from evaluating the impact of three different user-defined policies
on the quality and computational requirements demonstrate the framework’s ability to
execute a multi-resolution geosimulation with minimal execution time and memory overhead.
Thus, in conclusion, the FUTURES-AMR framework, with its support for selective refinement
in ROIs is suitable for urban studies using high-resolution data in large study extents.

7 Future Work

Urban development policies are designed in response to urbanization outcomes witnessed in
previous years. They have a definitive timeframe associated with them, and often, success or
failure of a policy leads to new or modified policies. However, currently, the FUTURES-AMR
framework only supports static policies specified a priori. To support dynamic policies
in different regions over time, our AMR framework can be integrated with computational
steering features that support modification of simulation input at runtime. In future work,
we propose to modify our computational steering framework, tFUTURES [22] to allow users
to provide dynamic policies as steering input to the simulation.
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Abstract
With recent advancements in deep convolutional neural networks, researchers in geographic in-
formation science gained access to powerful models to address challenging problems such as
extracting objects from satellite imagery. However, as the underlying techniques are essentially
borrowed from other research fields, e.g., computer vision or machine translation, they are often
not spatially explicit. In this paper, we demonstrate how utilizing the rich information embedded
in spatial contexts (SC) can substantially improve the classification of place types from images
of their facades and interiors. By experimenting with different types of spatial contexts, namely
spatial relatedness, spatial co-location, and spatial sequence pattern, we improve the accuracy
of state-of-the-art models such as ResNet – which are known to outperform humans on the Im-
ageNet dataset – by over 40%. Our study raises awareness for leveraging spatial contexts and
domain knowledge in general in advancing deep learning models, thereby also demonstrating that
theory-driven and data-driven approaches are mutually beneficial.

2012 ACM Subject Classification Computing methodologies → Computer vision tasks, Com-
puting methodologies → Neural networks, Theory of computation → Bayesian analysis

Keywords and phrases Spatial context, Image classification, Place types, Convolutional neural
network, Recurrent neural network
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1 Introduction

Recent advancements in computer vision models and algorithms have quickly permeated
many research domains including GIScience. In remote sensing, computer vision methods
facilitate researchers to utilize satellite images to detect geographic features and classify
land use [5, 26]. In urban planning, researchers collect Google Street View images and
apply computer vision algorithms to study urban change [22]. In cartography, pixel-wise
segmentation has been adopted to extract lane boundary from satellite imagery [32] and
deep convolutional neural network (CNN) has been utilized to recognize multi-digit house
numbers from Google Street View images [10]. These recent breakthroughs in computer
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vision are achieved, in equal parts, due to advances in deep neural networks as well as the
ever-increasing availability of extensive training datasets. For example, the classification
error in the latest image classification challenge using the ImageNet dataset is down to
about 0.023.1

However, such impressive results do not imply that these models have reached a level
in which no further improvement is necessary or meaningful. On the contrary, such deep
learning models which primarily depend on visual signals are susceptible to error. In fact,
studies have shown that deep (convolutional) neural networks suffer from a lack of robustness
to adversarial examples and a tendency towards biases [25]. Researchers have discovered that,
by incorporating adversarial perturbations of inputs that are indistinguishable by humans,
the most advanced deep learning models which have achieved high accuracy on test sets can
be easily fooled [6, 11, 28]. In addition, deep learning models are also vulnerable to biased
patterns learned from the available data and these biases usually resemble many unpleasant
human behaviors in our society. For instance, modern neural information processing systems
such as neural network language models and deep convolutional neural networks have been
criticized for amplifying racial and gender biases [3, 4, 25, 33]. Such biases, which can
be attributed to a discrepancy between the distribution of prototypical examples and the
distribution of more complex real world systems [16], have already caused some public debates.
To give a provocative example, almost three years after users revealed that Google erroneously
labeled photos of black people as “gorillas”, no robust solutions have been established besides
simply removing such labels for now.2

The above-mentioned drawbacks are being addressed by improvements to the available
training data as well as the used methods [23, 3]. In our work, we follow this line of thought to
help improve image classification. In our case, these images depict the facades or interiors of
different types of places, such as restaurants, hotels, and libraries. Classifying images by place
types is a hard problem in that more often than not the training image data is inadequate to
provide a full visual representation of different place types. Solely relying on visual signals,
as most deep convolutional neural networks do, falls short in modeling the feature space
as a result. To give an intuitive example, facades of restaurants may vary substantially
based on the type of restaurant, the target customers, and the surrounding. Their facade
may be partially occluded by trees or cars, may be photographed from different angles and
at different times of the day, and the image may contain parts of other buildings. Put
differently, the principle of spatial heterogeneity implies that there is considerable variation
between places of the same type.

To address this problem and improve classification accuracy, we propose to go beyond
visual stimuli by incorporating spatial contextual information to help offset the visual
representational inadequacy. Although data availability is less of an issue nowadays, the biased
pattern in the data poses a real challenge, especially as models such as deep convolutional
neural networks take a very long time to train. Instead of fine-tuning the parameters (weights)
by collecting and labeling more unbiased data, which are very resource-consuming, we take
advantage of external information, namely spatial context. There are many different ways
one can model such context; in this work, we focus on the types of nearby places. We explore
and compare the value of three different kinds of spatial context, namely spatial relatedness,
spatial co-location, and spatial sequence pattern.

We combine these context models with state-of-the-art deep convolutional neural network
models using search re-ranking algorithms and Bayesian methods. The result shows that,

1 http://image-net.org/challenges/LSVRC/2017/results#loc
2 https://www.wired.com/story/when-it-comes-to-gorillas-google-photos-remains-blind/
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by considering more complex spatial contexts, we can improve the classification accuracy
for different place types. In fact, our results demonstrate that a spatially explicit model
[9], i.e., taking nearby places into account when predicting the place type from an image,
improves the accuracy of leading image classification models by at least 40%. Aside from this
substantial increase in accuracy, we believe that our work also contributes to the broader
and ongoing discussion about the role of and need for theory, i.e., domain knowledge, in
machine learning. Finally, and as indicated in the title, our spatial context (SC ) models,
can be added to any of the popular CNN-based computer vision models such as AlexNet,
ResNet, and DenseNet – abbreviated to xNet here.

The remainder of this paper is organized as follows. Section 2 provides an overview of
existing work on spatial context and methods for incorporating spatial information into
image classification models. Section 3 presents the image classification tasks and provides
information about the convolutional neural network models used in our study. Section 4
explains in detail three different levels of spatial context and ways to combine them in image
classification models. Section 5 presents the results. Finally, Section 6 concludes the research
and points to future directions.

2 Related Work

There is a large body of work that utilizes spatial context to improve existing methods and
provide deeper insights into the rich semantics of contextual information more broadly. For
instance, spatial context has been recognized as a complementary source of information in
computational linguistics. By training word embeddings for different place types derived
from OpenStreetMap (OSM) and Google Places, Cocos and Callison-Burch [7] suggested that
spatial context provides useful information about semantic relatedness. In Points of Interest
(POI) recommendation, spatial context has been used to provide latent representations of POI,
to facilitate the prediction of future visitors [8], and to recommend similar places [34]. By
implementing an information theoretic and distance-lagged augmented spatial context, Yan
et al. [30] demonstrated that high-dimensional place type embeddings learned using spatial
contexts can reproduce human-level similarity judgments with high accuracy. The study
showed that such a spatially explicit Place2Vec model substantially outperforms Word2Vec-
based models that utilize a linguistic-style of context. Liu et al. [21] used spatial contexts to
measure traffic interactions in urban area. In object detection, Heitz and Koller [13] leveraged
spatial contexts in a probabilistic model to improve detection result. Likewise, by embracing
the idea that spatial context provides valuable extrinsic signals, our work analyzes different
kinds of spatial contexts and tests their ability to improve image classification of place types.

Existing work on image classification has realized the importance of including a geographic
component. One direction of research focused on enriching images with geospatial data.
Baatz et al. [1] took advantage of digital elevation models to help geo-localize images in
mountainous terrain. Lin et al. [20] made use of land cover survey data and learned the
complex translation relationship between ground level images and overhead imagery to extend
the reach of image geo-localization. Instead of estimating a precise geo-tag, Lee et al. [19]
trained deep convolutional neural networks to enrich a photo with geographic attributes such
as elevation and population density. Another direction of research (which is more similar to
our study) focused on utilizing geographic information to facilitate image classification. In
order to better understand scenes and improve object region recognition, Yu and Luo [31]
exploited information from seasons and location proximity of images using a probabilistic
graphical model. Berg et al. [2] combined one-vs-most image classifiers with spatiotemporal
class priors to address the problem of distinguishing images of highly similar bird species.
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Tang et al. [29] encoded geographic features extracted from GPS information of images into
convolutional neural networks to improve classification results.

Our work differs from the existing work in that we explicitly exploit the distributional
semantics found in spatial context [30] to improve image classification. Following the linguistic
mantra that one shall know a word by the company it keeps, we argue that one can know
a place type by its neighborhood’s types. This raises the interesting question of how such
a neighborhood should be defined. We will demonstrate different ways in which spatial
contextual signals and visual signals can be combined. We will assess to what extent different
kinds of spatial context, namely spatial relatedness, spatial co-location, and spatial sequence
pattern, can provide such neighborhood information to benefit image classification.

3 Image Classification

In this section, we first describe the image classification task and the data we use. The task is
similar to scene classification but we are specifically interested in classifying different business
venues as opposed to natural environment. Then we explain four different deep convolutional
neural networks that solely leverages the visual signals of images. These convolutional neural
network models are later used as baselines for our experiment.

3.1 Classification Task
Our task is to classify images into one of the several candidate place types. Because we want
to utilize the spatial context in which the image was taken, we need to make sure each image
has a geographic identifier, e.g. geographic coordinates, so that we are able to determine its
neighboring place and their types. In order to classify place types of images, we consider
the scene categories provided by Zhou et al. [35] as they also provide pretrained models
(Places365-CNN) that we can directly use.3 Without losing generality, we select 15 place
types as our candidate class labels. The full list of class labels and their alignment with the
categories in Places365-CNN is shown in Table 1. For each candidate class, we selected 50
images taken in 8 states4 within the US by using Google Maps, Google Street View, and
Yelp. These images include both indoor and outdoor views of each place type. Please note
that classifying place types from facade and interior images is a hard problem and even the
most sophisticated models only distinguish a relatively small number of place types so far
which is nowhere near the approximately 420 types provided by sources such as Foursquare.
Places365, for instance, offers 365 classes but many of these are scenes or landscape features,
such as waves, and not POI type, such as cinemas, in the classical sense.

3.2 Convolutional Neural Network Models
To establish baselines for our study, we selected several state-of-the-art image classification
models, namely deep convolutional neural networks. Unlike traditional image classification
pipelines, CNNs extract features from images automatically based on the error messages that
are backpropagated through the network, thus fewer heuristics and less manual labor are
needed. Contrary to densely connected feedforward neural networks, CNN adopts parameter
sharing to extract common patterns which help capture translation invariance and creates
sparse connections which result in fewer parameters and being less prone to overfitting.

3 https://github.com/CSAILVision/places365/blob/master/categories_places365.txt
4 Arizona, Illinois, Nevada, North Carolina, Ohio, Pennsylvania, South Carolina, and Wisconsin

https://github.com/CSAILVision/places365/blob/master/categories_places365.txt
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Table 1 Class label alignment between Yelp and the Place365 model.

Class label Places365-CNN category
Amusement Parks amusement_park

Bakeries bakery
Bookstores bookstore
Churches church
Cinema movie_theater

Dance Clubs discotheque
Drugstores drugstore, pharmacy
Hospitals hospital, hospital_room
Hotels hotel, hotel_room
Jewelry jewelry_shop
Libraries library
Museums museum, natural_history_museum, science_museum

Restaurants fastfood_restaurant, restaurant, restaurant_kitchen, restaurant_patio
Shoe Stores shoe_shop

Stadiums & Arenas stadium

The architecture of CNNs has been revised numerous times and has become increasingly
sophisticated since its first appearance about 30 years ago. These improvements in architecture
have made CNN more powerful as can be seen in the ImageNet challenge. Some of the
notable architectures include: LeNet [18], AlexNet [17], VGG [24], Inception [27], ResNet
[12], and DenseNet [15]. We selected AlexNet, ResNet with 18 layers (ResNet18), ResNet
with 50 layers (ResNet50), and DenseNet with 161 layers (DenseNet161). AlexNet is among
the first deep neural networks that increased the classification accuracy on ImageNet by
a significant amount compared with traditional classification approaches. By using skip
connections to create residual blocks in the network, ResNet makes it easy to learn identity
functions that help with the vanishing and exploding gradient problems when the network
goes deeper. In DenseNet, a dense connectivity pattern is created by connecting every two
layers so that the error signal can be directly propagated to earlier layers, parameter and
computational efficiency can be increased, and low complexity features can be maintained
[15]. These models were trained on 1.8 million images from the Places365-CNN dataset. We
used the pretrained weights for these models.

4 Spatial Contextual Information

In this section, we introduce three different kinds of spatial contexts and explore ways in
which we can combine them with the CNN models in order to improve image classification.
The first type of spatial context is spatial relatedness, which measures the extend to which
different place types relate with each other. The second type of spatial context is spatial
co-location, which considers what place types tend to co-occur in space and the frequency
they cluster with each other. The third type of spatial context is spatial sequence pattern
which considers both spatial relatedness and spatial co-location. In addition, spatial sequence
pattern considers the interaction between context place types and the inverse relationship
between distance and contextual influence. We use POIs provided by Yelp as dataset.5

5 https://www.yelp.com/dataset
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4.1 Spatial Relatedness

Since the output of CNN is the probability score for each class label, it is possible to interpret
our task as a ranking problem: given an image, rank the candidate class labels based upon
the visual signal and spatial context signal. For the visual signal, we can obtain the ranking
scores (probability scores) from the CNN architectures mentioned in Section 3. Since the
original CNN models has 365 labels, we renormalize the probability scores for each candidate
place type by the sum of the 15 candidate ranking scores so that they sum up to 1. This
renormalization procedure is also applied to the other two spatial context methods explained
in Section 4.2 and Section 4.3. We will refer to the renormalized scores as CNN scores in this
study. For the spatial context signal, the ranking scores are calculated using the place type
embeddings proposed in [30]. These embeddings capture the semantics of different place
types and can be used to measure their similarity and relatedness. In this regard, the task is
equivalent to a re-ranking problem, which adjusts the initial ranking provided by the visual
signal using auxiliary knowledge, namely the spatial context signal. Intuitively, the extent
to which the visual signals from the images match with different place types and the level
of relevance of the surrounding place types with respect to candidate place types jointly
determine the final result.

Inspired by search re-ranking algorithms in information retrieval, we use a Linear Bimodal
Fusion (LBF) method (here essentially a 2-component convex combination), which linearly
combines the ranking scores provided by the CNN model and the spatial relatedness scores,
as shown in Equation 1.

si = ωvsvi + ωrsri (1)

where si, svi , and sri are the LBF score, CNN score, and spatial relatedness score for place
type i respectively, ωv and ωr are the weights for the CNN component and spatial relatedness
component, and ωv+ωr = 1. The weights here are decided based on the relative performance
of individual components. Specifically, the weight is determined using Equation 2.

ωv = accv

accv + accr
(2)

where accv and accr are the accuracies for CNN and spatial relatedness measurements for
the image classification task. Intuitively, this means that we have higher confidence if the
component performs better on its own and want to reflect such confidence using the weight
in the LBF score.

In order to calculate the spatial relatedness scores, we use cosine similarity to measure
the extend to which each candidate class embedding is related with the spatial context
embedding of an image in a high dimensional geospatial semantic feature space. Following
the suggestions in [30], we use a concatenated vector of 350 dimensions (i.e., 70D vectors for
each of 5 distance bins) as the place type embeddings. The candidate class embeddings can
be retrieved directly. Then we search for the nearest n POIs based on the image location,
determine the place types of these n POIs, and calculate the average of these place type
embeddings as the final spatial context embeddings for images. The cosine similarity score
smi is calculated between the spatial context embedding of an image and the embedding
of each candidate place type class i. Because smi ranges from -1 to 1, we use min-max
normalization to scale the values to [0, 1]. Finally, we apply the same renormalization as for
the CNN score to turn the normalized score sm′

i into probability score, i.e. spatial relatedness
score sri .
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Combining these normalizations together with Equation 1 and Equation 2, we are able to
derive that 0 ≤ si ≤ 1 and

∑N
i=1 si = 1 where N = 15 in our case. This means that the LBF

score si can be considered a probability score.

4.2 Spatial Co-location
The spatial relatedness approach follows the assumption that relatedness implies likelihood
which is reasonable in cases where similar place types cluster together, such as restaurant,
bar, and hotel. However, in cases of high spatial heterogeneity, this assumption will fall short
of correctly capturing the true likelihood. An example would be places of dissimilar types
that co-occur, e.g., grocery stores and gas stations. Moreover, the LBF method can only
capture a linear relationship between the two signals.

Following Berg et al.[2], we also test a Bayesian approach in which we assume there is a
complex latent distribution of the data that facilitates our classification task. Intuitively,
the CNN score gives us the probability of each candidate class t given the image I, i.e.,
P (t|I), and the spatial context informs us of the probability of each candidate class given its
neighbors c1, c2, c3, ..., cn, denoted as C, around the image location, i.e., P (t|C). We would
like to obtain the posterior probability of each candidate class given both the image and
its spatial context, i.e., P (t|I, C). Using Bayes’ theorem, the posterior probability can be
written as:

P (t|I, C) = P (I, C|t)P (t)
P (I, C) (3)

For variables I, C, and t, we construct their dependencies using a simple probabilistic
graphical model, i.e., Bayesian network, which assumes that both the image I and the spatial
context C are dependent on the place type t, which intuitively makes sense in that different
place types will result in different images and different place types of their neighbors. We
know that given information about the image I we are able to update our beliefs, i.e., the
probability distributions, about the place type t. In addition, the changes in our beliefs about
the place type t can influence the probability distributions of the spatial context C. However,
if place type t is observed, the influence cannot flow between I and C, thus we are able to
derive the conditional independence of I and C given t. So Equation 3 can be rewritten as:

P (t|I, C) = P (I|t)P (C|t)P (t)
P (I, C)

= P (t|I)P (I)
P (t)

P (t|C)P (C)
P (t)

P (t)
P (I, C)

∝ P (t|I)
P (t) P (t|C) (4)

in which we have dropped all the factors that are not dependent on t as they can be considered
as normalizing constants for our probabilities. It follows that the posterior probability
P (t|I, C) can be computed using the CNN probability score P (t|I), the spatial context prior
P (t|C), and the candidate class prior P (t). Instead of estimating the distribution of spatial
context priors, we take advantage of the spatial co-location patterns and calculate the prior
probabilities using the Yelp POI data directly. As mentioned earlier, the spatial context
C is composed of multiple individual context neighbors c1, c2, c3, ..., cn; hence, we need to
calculate P (t|c1, c2, c3, ..., cn). In order to simplify our calculation, we impose a bag-of-words
assumption as well as a Naive Bayes assumption in the spatial co-location patterns. The
bag-of-words assumption simplifies the model by assuming that the position (or the order) in
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which different context POIs occur does not play a role. The Naive Bayes assumption implies
that the only relationship is the pair-wise interaction between the candidate place type t
and an individual neighbor’s place type ci and there is no interaction between neighboring
places wrt. their types, i.e. (ci |= cj |t) for all ci, cj . Using spatial co-location, we are able to
calculate the conditional probability using place type co-location counts P (ci|t) = count(ci,t)

count(t)
where count(ci, t) is the frequency that neighbor type ci and candidate type t co-locate
within a certain distance limit and count(t) is the frequency of candidate type t in the study
area. Combining all these components, we can derive:

P (t|C) = P (t|c1, c2, ..., cn)

=
P (t)

∏n
i=1 P (ci|t)

P (c1, c2, c3, ..., cn)

= P (t)
P (c1, c2, c3, ..., cn)

∏n
i=1 count(ci, t)
count(t)n (5)

Using Equation 4 and Equation 5, we can derive the final formula for calculating P (t|I, C)
shown in Equation 6. For the sake of numerical stability, we calculate the log probability
logP (t|I, C) using the natural logarithm. Since the natural logarithm is a monotonically
increasing function, it will not affect the final ranking of the classification results.

logP (t|I, C) ∝ log
(
P (t|I)
P (t) P (t|C)

)
= log

(
P (t|I)

P (c1, c2, c3, ..., cn)

∏n
i=1 count(ci, t)
count(t)n

)
∝ logP (t|I) +

n∑
i=1

log(count(ci, t))− nlog(count(t)) (6)

where we also drop P (c1, c2, c3, ..., cn) as it does not depend on t, so it will not affect the
result ranking. The log posterior probability is then used to generate the final ranking of
candidate place types and produce the classification results.

4.3 Spatial Sequence Pattern
The spatial co-location approach follows the bag-of-words assumption that the position of
spatial context POIs does not matter and the Naive Bayes assumption that the context
neighbors are independent of each other. However, in many cases this assumption is too
strong. In fact, numerous methods, such as Kriging and multiple-point geostatistics, have
been devised to model geospatial proximity patterns and complex spatial interaction patterns.
However, incorporating these complex spatial patterns in a multidimensional space would
adversely affect the model complexity and make the distribution in Section 4.2 intractable.
In order to strike the right balance between the complexity of model and the integrity of
spatial context pattern, we propose to capture the spatial sequence pattern in our model by
collapsing the 2D geographic space into a 1D sequence.

Specifically, we use the Long Short-Term Memory (LSTM) network model, a variant of
recurrent neural network (RNN), in our study. Recurrent neural networks are frequently
used models to capture the patterns in sequence or time series data. In theory, the naive
recurrent neural networks can capture long term dependencies in the sequence, however,
due to the vanishing and exploding gradient problem, they fail to do so in practice. LSTM
is explicitly designed to solve the problem by maintaining a cell state and controlling the
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Figure 1 Structure of the LSTM.

input and output flow using forget gate, input gate, and output gate [14]. We use LSTM
as a generative model in order to capture the latent distribution of place types using the
spatial sequence pattern. In the training stage, the input is a sequence of context place
types c1, c2, c3, ..., cn and the output is the place type t of the POI from which the context is
created. The input sequence is ordered in a way so that the previous one is further away
from the output than the next one in the collapsed 1D space. Image one would drive around
a neighborhood before reaching a destination. For each of the POIs encountered during the
route, one would update the beliefs about the neighborhood by considering the current POI
and all previously seen POIs. Upon arriving at the destination, one would have a reasonable
chance of guessing this final POI’s type. The structure of the LSTM model is shown in
Figure 1. We apply a dropout after the LSTM layer to avoid overfitting. After training
the LSTM model on Yelp’s POI dataset, we are able to obtain the spatial context prior
P (t|c1, c2, c3, ..., cn) based on the spatial sequence pattern around the image locations in our
test data. We specifically removed the image locations and their context in the training data.
Similar to the spatial co-location approach, we use Bayesian inference and log probability to
calculate the final result:

logP (t|I, C) ∝ log
(
P (t|I)
P (t) P (t|C)

)
= logP (t|I) + logP (t|c1, c2, c3, ..., cn)− logP (t) (7)

where the candidate class prior P (t) can be computed using the Yelp data. Since we use LSTM
as a generative model, in the prediction phase, sampling strategies, such as greedy search,
beam search, and random sampling, can be applied based on the distribution provided
by the output of the LSTM prediction. However, we only generate the next prediction
instead of a sequence, so we do not apply these sampling strategies. Instead, we make use of
the hyperparameter temperature τ to adjust the probability scores returned by the LSTM
model before combining them with the CNN model in a Bayesian manner. Including the
hyperparameter τ , the softmax function in the LSTM model can be written as:

P (ti|C) =
exp( logitiτ )∑N
j=1 exp(

logitj
τ )

(8)

where logiti is the logit output provided by LSTM before applying the softmax function and
N = 15 in our case. Intuitively, when the temperature τ is high, i.e., τ →∞, the probability
distribution will become diffuse and P (ti|C) will have almost the same value for different ti;
when τ is low, i.e., τ → 0+, the distribution becomes peaky and the largest logiti stands
out to have a probability close to 1. This idea is closely related to the exploration and
exploitation trade-off in many machine learning problems. The value of τ will affect the
probability scores P (ti|C) but not the ranking of these probabilities.
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In this study, we propose two ways to model the 2D geographic space as a 1D sequence.
The first one is a distance-based ordering approach. For any given POI, we search for nearby
POIs within a certain distance from it, choose the closest n POIs, and rearrange them by
distance with descending order, thereby forming a 1D array. This distance-based method is
isotropic in that it does not differentiate between directions while creating the sequence. The
second method is a space filling curve-based approach. We utilize Morton order here which
is also used in geohashing to encode coordinates into an indexing string that can preserve
the locality of spatial locations. We use Morton order to encode the geographic locations of
every POI and order them in a sequence based upon their encodings, i.e., indexing sequence.
After obtaining the sequence, for each POI, we use the previous n POI in the sequence as
the context sequence. Other space filling curves could be used in future work.

Because each POI can have multiple place types associated with it, e.g., restaurant and
beer garden, the sequence of place types is usually not unique for the same sequence of POIs.
As our LSTM input is a sequence of place types, we compute the Cartesian product of all
POI type sets in the sequence of nearby places:

Tc1 × Tc2 × Tc3 × ...× Tcn = {(tc1 , tc2 , tc3 , ..., tcn)|∀i = 1, 2, 3, ..., n, tci ∈ Tci} (9)

where Tci
is the set of place types associated with POI ci in the context sequence. In

practice, however, we randomly sample a fixed number of place type sequences from each
of the Cartesian product for the POI context sequence as the potential combinations grow
exponentially with increasing context size.

5 Experiment and Result

In this section, we explain our experimental setup for the models described above, describe
the metrics used to compare the model performance for place type image classification, and
present the results and findings.

5.1 Implementation Details

For all three types of spatial context, we use 10 as the maximum number of context POIs
and a distance limit of 1000m for the context POI search. For the spatial sequence pattern
approach, we use a fixed sample size of 50 to sample from the Cartesian product of all POI
type sets in the sequence. 6 We use a one-layer LSTM with 64 hidden units. We train our
LSTM model using the recommended Root Mean Square Propagation (RMSProp) optimizer
with a learning rate of 0.005. A dropout ratio of 0.2 is applied in the LSTM and we run
100 epochs. The same settings are used for all LSTM trainings in our experiment. The
total number of POI in the dataset is 115,532, yielding more than 5 million unique training
sequences.

For evaluation, we use three different metrics, namely Mean Reciprocal Rank (MRR),
Accuracy@1, and Accuracy@5. Another common metric for image classification would also
be Mean Average Precision (MAP), but since there is only one true label per type in our
task, we use MMR instead.

6 The median for types per place in Yelp is 3.
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Figure 2 From left to right, MRR result using distance-based sequence, random sequence, and
Morton code-based sequence with varying temperatures

5.2 Results

We run the 750 test images we collected, i.e., 50 images per each of 15 types, on the four CNN
baseline models (AlexNet, ResNet18, ResNet50, and DenseNet161) as well as the combined
models using our three different types of spatial context.7 In addition to the two methods
for converting geographic space into 1D sequences in the spatial sequence pattern approach,
we also test one model using random sequences with the same context count and distance
limits. We did so to study whether results obtained using the LSTM would benefit from
distance-based spatial contexts. A higher result for the spatial sequence based LSTM over
the random LSTM would indicate that the network indeed picked up on the distance signal.

The hyperparameter τ can be adjusted; a value of 0.5 has been proposed as a good choice
before. In order to test this and find the optimal temperature value, we run the combined
model using spatial sequence patterns with three types of sequencing approaches, namely
random sequence, distance-based sequence, and Morton order-based sequence.

We test temperature values ranging from 0.01 to 2 with a step of 0.01. We combine
the spatial sequence pattern models with all CNN models. The MRR result with respect
to temperature are shown in Figure 2. Although there are a slight variations, the MRR
curves all reach their peaks around a τ value of 0.5. This confirms the suggestion from the
literature. Figure 3 shows selected example predictions. The results for MRR, Accuracy@1,
and Accuracy@5 using the baseline models as well as our proposed, spatially explicit models
are shown in Table 2, Table 3, and Table 4.8

As we can see, by incorporating spatial context in the image classification model, we are
able to improve the classification result in general. However, integrating spatial relatedness
using the LBF method does not seem to affect the result. This essentially confirms our
aforementioned assumption that relatedness does not always imply likelihood. The benefit of
incorporating spatial relatedness in cases of spatial homogeneity are likely to be offset by
cases of hight spatial heterogeneity in which spatial relatedness may have an negative effect
as dissimilar places co-occur.

7 Transfer learning could be applied to fine tune the CNN models first, but we only have limited images
and our hypothesis is that spatial context can be used as a powerful complement or alternative to the
visual component for image classification.

8 The baseline models are not comparable with a random classifier which would yield an expected accuracy
of 1/15 in this case, because the baseline CNN models have 365 unique labels and we choose 15 labels
in our experiment.
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Figure 3 From left to right, images of a restaurant, a hotel, and a museum from Yelp, Google
Street View, and Google Maps respectively. The first image is incorrectly classified as library using
all 4 CNN models and it is correctly classified as restaurant using the spatial sequence pattern
(distance) models. The second image is classified as hospital and library by the original CNN models
and is classified as hotel by the spatial sequence pattern (distance) models. For the third image the
correct label museum is in the third position in the label rankings of all 4 CNN models while, using
the spatial sequence pattern (distance) models, ResNet18 and ResNet50 can correctly label it and in
the label rankings of AlexNet and DenseNet161 museum is in the second position.

Table 2 MRR result using baseline models and proposed combination models using different
types of spatial context and sequences

MRR AlexNet ResNet18 ResNet50 DenseNet161
Baseline 0.27 0.28 0.31 0.31

Relatedness 0.27 0.28 0.31 0.32
Co-location 0.30 0.31 0.31 0.32

Sequence Pattern (Random) 0.38 0.40 0.42 0.42
Sequence Pattern (Distance) 0.41 0.42 0.44 0.44

Sequence Pattern (Morton order) 0.39 0.42 0.43 0.43

The Accuracy@1 measurement is improved by incorporating spatial co-location component
in the models. This confirms our previous reasoning that considering the external signal,
namely spatial contexts, and assuming a complex latent distribution of the data in a Bayesian
manner improve image classification. However, for MRR the improvement is marginal and
for Accuracy@5 there even is a decrease after incorporating the spatial co-location component
because this type of spatial context falls short of taking into account the intricate interactions
of different context neighbors. This shortcoming is not clear when only looking at the first
few results in the ranking returned by the combined models, but it becomes clearer in later
results in the ranking output, thus resulting in a decrease for Accuracy@5 and only a slight
increase in the MRR measurement.

The Bayesian combination model using spatial sequence patterns shows better overall
results compared with the baseline models, the spatial relatedness model, and the spatial
co-location model. This is because the spatial sequence patterns capture spatial interactions
between the neighboring POIs that are neglected by the other models. From the result we
can see that using a distance-based sequence is better than using a random sequence. To
prevent confusion and to understand why the random model still performs relatively well, it
is important to remember that this model utilizes spatial context. However, it does not utilize
the distance signal within this context but merely the presence of neighboring POI. The
results show that a richer spatially explicit context, one that comes with a notion of distance
decay, indeed improves classification results. Interestingly, the sequence using Morton order,
which is widely used in geohashing techniques, does not further improve the result compared
to the distance-based sequence. There may be multiple reasons for this. First, we may have
reached a ceiling of possible improvements by incorporating spatial contexts. Second, our
Morton order implementation takes the 10 places that precede the target place in the index.
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Table 3 Accuracy@1 result using baseline models and proposed combination models using
different types of spatial context and sequences

Accuracy@1 AlexNet ResNet18 ResNet50 DenseNet161
Baseline 0.07 0.07 0.09 0.09

Relatedness 0.07 0.07 0.09 0.09
Co-location 0.15 0.17 0.17 0.17

Sequence Pattern (Random) 0.18 0.18 0.19 0.20
Sequence Pattern (Distance) 0.20 0.20 0.22 0.22

Sequence Pattern (Morton order) 0.19 0.20 0.22 0.22

Table 4 Accuracy@5 result using baseline models and proposed combination models using
different types of spatial context and sequences

Accuracy@5 AlexNet ResNet18 ResNet50 DenseNet161
Baseline 0.50 0.56 0.59 0.60

Relatedness 0.52 0.56 0.58 0.59
Co-location 0.42 0.44 0.45 0.44

Sequence Pattern (Random) 0.65 0.69 0.73 0.73
Sequence Pattern (Distance) 0.67 0.70 0.73 0.75

Sequence Pattern (Morton order) 0.65 0.70 0.72 0.71

This may result in directional effects. Finally, all space filling curves essentially introduce
different ways to preserve local neighborhoods; utilizing another technique such as Hilbert
curves may yield different results. Given that the Morton order-based sequence in many
cases yield results of equal quality to the distance-based sequences, further work is needed to
test the aforementioned ideas.

Summing up, the results demonstrate that incorporating a (distance-based) spatial context
improves the MRR of state-of-the-art image classification systems by over 40%. The results
for Accuracy@1 are more than doubled which is of particular importance for humans as
this measure only considers the first ranked result.

6 Conclusion and Future Work

In this work, we demonstrated that utilizing spatial contexts for classifying places based on
images of their facades and interiors leads to substantial improvements, e.g., increasing MRR
by over 40% and doubling Accuracy@1, compared to applying state-of-the-art computer
vision models such as ResNet50 and DenseNet161 alone. These advances are especially
significant as the classification of places based on their images remains a hard problem. One
could argue that our proposal requires additional information, namely about the types of
nearby places. However, such data are readily available for POI, and only a few nearby places
are needed. Secondly, and as a task for future work, one could also modify our methods
to work in a drive-by-typing mode in which previously seen places are classified, and these
classification results together with their associated classification uncertainty are used to
improve estimation of the currently seen place, thereby relaxing the need for POI datasets. In
the future, we would like to apply transfer learning and experiment with other ways to encode
spatial contexts, e.g., by testing different space-filling curves. We plan to develop models to
directly capture 2D spatial patterns rather than using a 1D sequence as a proxy and test
whether spatial contexts also aid in recognizing objects beyond places and their facades.
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Abstract
Innovation in distributed ledger technologies–blockchains and smart contracts–has been lauded
as a game-changer for environmental governance and transparency. Here we critically consider
how problems related to spatial representation and uncertainty complicate the picture, focusing
on two cases. The first regards the impact of uncertainty on the transfer of spatial assets, and
the second regards its impact on smart contract code that relies on software oracles that report
sensor measurements of the physical world. Cryptogovernance of the environment will require
substantial research on both these fronts if it is to become a reality.
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1 Introduction

Distributed ledger technologies, such as blockchains, have generated tremendous interest of
late, because of their ability to support peer-to-peer transactions of digital assets. The first and
still most notable public blockchain is the distributed ledger of Bitcoin transactions [10]. Yet,
the discussion of distributed ledgers needs to go beyond this particular example. Blockchain
technology is based on a distributed consensus algorithm–such as proof of work–which ensures
that the ledgers cannot be corrupted by bad actors. As a consequence, the transactions in
such distributed ledgers are trustless, meaning that the system works to verify transactions
between participants who might not trust or even know each other.

Chapron, in his Utopian vision of cryptogovernance [3], makes a number of strong claims
about the benefits of distributed ledgers with respect to “wins” for ownership, traceability,
incentives, and governance of the environment. Despite sharing enthusiasm for technological
advancement, we take a more skeptical view toward benefits of distributed ledgers and
environmental cryptogovernance. In this paper, we initiate the discussion of the potential
pitfalls of automated smart contracts supported by distributed ledgers relating to the physical
environment. Our spatial perspective can take at least two aspects – through spatial assets
being the subject of transactions, or the spatial context (of one or multiple transaction parties)
acting as the enabler of the transaction. We highlight why distributed ledgers cannot be
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decoupled from the particular characteristics of environmental and land assets, the limitations
of the technology that is used to sense the environment, and societal needs and degree of
digital literacy.

2 A Brief Introduction to Distributed Ledgers and Smart Contracts

The consensus algorithms underpinning transactions in blockchain are the foundation of
the technology. They need to be highly robust so as not to be easily corruptible [7]. For
example, in the case of Bitcoin, no one has yet successfully corrupted the public ledger of
transactions. This removes the need for a third-party notary to mediate transactions and
enables the distributed characteristic of the ledger. For a standard blockchain, the kinds of
transactions supported are fixed to a particular type. For example, for Bitcoin the ledger
records the transfer of Bitcoin currency from one account to another.

The innovation of smart contracts has expanded the potential of blockchains by intro-
ducing a method of encoding scripts or programmable code onto distributed ledgers [13, 2].
These scripts must execute only once certain conditions are met. Any arbitrarily complex
combination of computable rules can be defined to test that certain conditions are met.

Once the conditions are met, the contract will automatically execute the transaction. The
main limitation is that whatever is being transfered must be tokenizable in digital form. For
assets that are easily digitized and tokenized, such as money, the potential of the technology
is clear. For rules, regulations, and laws that can be formalized into unambiguous algorithms
a smart contract can, in theory, fully automate complex chained management and transaction
of assets, thus replacing the need for third-party actors or escrow to complete the process.

There has been of late an emergence of proposals to apply blockchain and smart contract
technology to problems that require digital representations of the spatial attributes of real
world objects, either to support the transaction of physical and environmental assets or to de-
tect spatio-temporal events that trigger execution of smart contract code. Recently proposed
spatial applications of blockchain technology include the internet of things [4], transport
networks and smart cities [17, 11], land registration and administration [1], governance of
the environment [3], and timber supply chain tracking [5].

When the transfer concerns only digital representations of physical assets (such as land
parcels), however, a number complications arise. Unsurprisingly, questions around uncertainty
in the spatial representation of the physical objects arise–a fact that has been long-studied in
geographic information science [6, 12]. This is the first aspect of distributed ledgers discussed
in this paper and one that – we believe – has not been considered critically enough.

Recall the conditions that have to be met for a contract to be executed. Some smart
contract conditions can be assured through so-called oracles, linking the virtual world of the
ledger to the physical world through sensors. This is the second aspect where space may
comes into play. Consider spatial (co-)presence as a condition (a catalyzer) of a transaction
to occur, ascertained by e.g., GPS sensing. Imagine that two parties have to physically meet
at a certain location as a condition for a transfer to occur.

It is noteworthy that up until now, nearly all of these proposed applications of smart
contracts are still at the conceptual stage. As a result, supporters have been able to largely
gloss over detailed discussion of spatial representation and uncertainty. A few start-up
companies are currently working on proof-of-location systems, but these remain at the early
stages1. In this paper we focus on two cases in order to probe further into these issues. In

1 Cf. https://www.foam.space, https://platin.io.

https://www.foam.space
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Figure 1 An illustration of the scenario described in the text of Farmer A selling land to Farmer B.

the first case, we critique claims made about the use of blockchains and smart contracts to
programmatically enact environmental policy and land transfers (Section 4). In the second
case, we explore the idea of blockchain oracles and the role that spatial representation and
uncertainty plays in how they might operate (Section 5).

3 Land transaction scenario

Let’s imagine Farmer A who is willing to sell a piece of his paddock to Farmer B using a
distributed ledger, sensing technology and an automated legal framework. The farmers meet
to agree on the boundary of the piece of land transferred from A to B and to be merged with
B’s current land (Fig. 1). They walk along the boundary, identify and measure the position
of the new corners (metes) of their shared boundary with a GPS on their smartphones.
The title to this land is then automatically transferred to B using a smart contract. Funds
are transferred electronically from B to A, and a state land tax is automatically levied, in
proportion to the areas of land transferred.

The following complications arise:
1. Ownership problem. The neighbor C of A and B questions the position of one of the

metes, claiming it infringes on his land and shifts the current boundary.
2. Traceability problem. The areas of A’s and B’s lands do not add up after land

transfer, due to measurement uncertainty and consequently the digital representation
of the physical asset. The taxable land area of both (actually, all three farmers) has
changed, and moreover, A and B now digitally encroach on the protected buffer zone
around the waterway on their southern boundary.

3. Error propagation. The uncertain numeric representation of the new boundary triggers
an automated response from the titling database, and stops the legal transfer due to the
computational, automated interpretation of the legal code and regulations.

4. Incentives problem. In the absence of a trusted third party, it may be problematic
to assure that the transfer occurred under mutual agreement, without coercion. This
is particularly true for subdivisible assets (such as land), where a new identity and
demarcation must be established. A chartered surveyor or similar professional currently
assures this function.
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5. Digital divide An advanced technology that relies on the promise of decentralized,
ad-hoc information repositories requires an extensive investment of trust from the users.
The lack of a physical artifact issued by a central authority and endowed by legitimacy
may undermine this trust, in particular in societies affected by the digital divide [8] and
with low digital literacy. Paradoxically, these may be the ones that would profit most
from the decentralized system removed from governmental control.

6. Governance problem. The ability to ensure common good and protection for areas of
special value must be preserved. Limiting what authorities must do may be an appealing
argument in some situations, but the question is whether reform, rather than replacement,
is not more desirable. The tragedy of the commons may well ensue in situations where
the majority of people in a certain area have individual interests (e.g., logging) that are
in conflict with a common good.

4 Is environmental cryptogovernance desirable?

The above scenario describes a common set of issues that land surveyors and public notaries
help to resolve routinely. Currently, the land transfer system in most countries relies on a
centralized authority, certified workforce of highly regulated surveyors, and a certain leeway
in the interpretation of the digital representation of the physical asset.

We now review the consequences of a purely digital, decentralized ledger system for
transferring sensitive physical assets with fiat vs bona-fide boundaries [12].

4.1 Distributed ledgers and contracts about land
A distributed ledger is a record-keeping system for transactions where a centralized registrar
(authority) is not necessary, and the authority certifying the enduring nature of the transfer
of ownership is assured by peers and a consensus algorithm.

For the transfer of a physical asset, the asset itself must be well identifiable (by a unique
identifier) and distinguishable (from other assets). This may apply to transfer of diamonds
or timber logs, but is more complex when it comes to land transfer, in particular when it
comes to the ability to distinguish the extent of the asset. Administrative boundaries, as well
as many parcel boundaries are social constructs, demarcated by agreement or authority (fiat
boundaries). Yet, the number of legal cases and conflicts over fictitious lines demarcating
property worldwide attests to the problems with the distinguishable property of these assets.

Many land assets and protected areas are bound by bona-fide boundaries, such as natural
coastlines or rivers. Similarly, wetlands change in extent between the dry and wet season.
These bona-fide boundaries may be highly indeterminate and a purely peer-based contract
and title transfer system may result in increasing legal uncertainty with respect to land
use rights and restrictions, or the inability to ensure protection of natural areas of national
importance.

4.2 Crowdsourced sensing and spatial demarcation
The demarcation of boundaries, as well as the measurement of the location of the spatial
context is always impacted by uncertainty [6]. This demarcation of the asset has often
been left to protected professions (i.e., chartered surveyors, or notaries), thus controlling
for adequate training and certifying that proper methodological approaches and equipment
is used to demarcate the boundaries, and assuring the legal status of the professional as a
trusted third party (further ascertaining that both parties are present and agreed about the
identity and the demarcation of the asset to be transferred).
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With recent improvements in consumer-grade sensing and their ubiquity (GPS sensors
in smartphones), these professions have been touted obsolete despite concerns about low
quality sensing [9]. Indeed, if no disagreement ensues, two parties could very well agree on
their shared boundaries (Farmers A and B), and identify them by GPS coordinates. Yet, a
third party may often be impacted by such decisions, if the topological correctness of the
partition is to be assured (the boundary of C must follow those of A and B).

5 Blockchain oracles and spatial uncertainty

We now return to the second aspect of how space becomes an important consideration in
smart contracts. Blockchain oracles are software or hardware services that are external
to the blockchain and which are queried by smart contract code to test whether certain
conditions in the real world have occurred [16]. This may include temperature sensors, rain
gauges, proximity sensors, or GPS sensors. Consider a web service that provides access to
real-time environmental sensor network measurements. This service may be monitored by
smart contract code designed to regulate and impose fines to polluters. Another example
would be an oracle that relies on sensors to verify the location of physical objects in space in
order to verify the movement of goods or autonomous transport vehicles – a payment may
be conditioned on certain goods reaching the client.

Issues regarding spatial uncertainty and representation remain largely unexamined in the
initial discussions around blockchain oracles. Decentralized ledgers may still need to operate
in an environment where certain conditions are mandated – such as both the buyer and
the seller walking the boundary of the sold land parcel together, or at least meeting at the
same location. How to assure that such conditions are met in a legally indisputable manner
remains a concern, especially as the sensor information from consumer-grade devices could
be easily questioned in legal proceedings. The need for blockchain oracles therefore will lead
to a number of difficult research challenges to which the GIScience community – with its
foundational work on spatial uncertainty and representation as well as environmental sensor
networks and spatial change detection – can readily contribute [15].

6 Conclusion

We have chosen a land transfer scenario to illustrate that blockchain technology itself is not a
panacea for problems of environmental governance, and will lead to unanticipated collateral
effects. While distributed ledgers and smart contracts may create new possibilities for the
management of digital assets, their applicability is also limited by aspects of environmental
governance that deal with concepts that can not be simply tokenized and reduced to
unambiguous digital representations. In addition to the spatial representation of land
assets, biodiversity and non-point source pollution are two complex areas of environmental
regulation which can not be interpreted through a simple automated set of rules with binary
outcomes [14].

We therefore urge for strong caution and do not believe that “time is ripe for ‘cryp-
togovernance’,” [3] at least in the foreseeable future. In particular when it comes to the
relationship of people with their living environment, their land ownership and the conser-
vation of common-good natural assets, strong institutional frameworks, legal certainty and
awareness of the fluid relationship between land and people are necessary. Research to
develop a stronger understanding of the relationship between spatial representation and the
workings of distributed ledger technologies is warranted, and a necessary prerequisite (among
others) to any widespread adoption of environmental cryptogovernance.
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Abstract
Mobility of people with disabilities is one of the most important challenges for their social in-
tegration. There have been significant effort to develop assistive technologies to guide the PWD
during their mobility in recent years. However, these technologies have limitations when it comes
to the navigation and guidance of these people through accessible routes. This is specifically
problematic in indoor environments where detection, location and tracking of people, and other
dynamic objects that may limit the mobility of these people, are very challenging. Thus, many
researches have leveraged the use of sensors to track users and dynamic objects in indoor envir-
onments. However, in most of the described methods, the sensors are manually deployed. Due to
the complexity of indoor environments, the diversity of sensors and their sensing models, as well
as the diversity of the profiles of people with disabilities and their needs during their mobility, the
optimal deployment of a sensor network is a challenging task. There exist several optimization
methods to maximize coverage and minimize the number of sensors while maintaining the min-
imum connectivity between the sensor nodes in a network. Most of the current sensor network
optimization methods oversimplify the environment and do not consider the complexity of 3D
indoor environments. In this paper, we propose a novel 3D local optimization algorithm based
on a geometric spatial data structure that takes into account some of these complexities for the
purpose of helping PWD in their mobility in 3D indoor environments such as shopping centers,
museums and other public buildings.
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1 Introduction

Social participation of people with disabilities (PWD) is one of the challenging problems in
our society. According the United Nation’s convention for PWD “persons with disabilities
may include those who have long-term physical, mental, intellectual or sensory impairments
which in interaction with various barriers may hinder their full and effective participation in
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society on an equal basis with others” [6]. According to a recent publication by Statistics
Canada (2013), 13.7% of the population aged over 15 years live with a type of disability.

Based on the International Classification of Functioning (ICF) and the Disability Creation
Process (DCP) model [5], social participation of PWD results from the interactions between
their personal characteristics and the physical and social environmental factors. Most of the
urban infrastructures and services are designed for people without any disability and do not
consider the specific needs of PWD. This significantly limits the mobility of PWD and their
social participation (e.g., going to work, the market, the museum, etc.). Mobility is a life
habit that significantly influences other human life habits [5], and depending on the context,
mobility may include movements such as postural transfers (e.g., from a chair to a bed) or
moving from a point to another during diverse daily activities (walking, working or playing,
driving a car, and using public transportation).

With the expansion of urban development and the construction of complex city infrastruc-
tures such as road networks, public buildings, shopping malls, airports, and museums, there
is an increasing need for assistive navigation technologies to help PWD in their mobility.
Efficient navigation in such environments require accurate and up-to-date information on the
accessibility of those environments including information on possible obstacles and facilitators
for the mobility of PWD. For this purpose, sensor networks provide interesting potentials to
locate and track the dynamics of indoor environments and provide timely information to
PWD during their navigation.

In recent years, a variety of sensor types has been developed and used for monitoring
and measuring dynamic environments. For instance, in a mobility context, the majority of
sensors have been used for positioning and tracking of people and moving objects. Tracking
sensors are generally embedded in the environment and constitute a sensor network. These
sensors must be deployed in the environment and have the best configuration to maximize
the coverage and guarantee their connectivity and minimize the cost (optimal number of
sensors and their types). There exist several optimization methods to maximize coverage and
minimize the number of sensors while maintain the minimum connectivity between the sensor
nodes in a network. Most of the current sensor network optimization methods oversimplify
the environment and do not consider the complexity of 3D indoor environments. In this
paper, we propose a novel 3D local optimization algorithm based on a geometric spatial data
structure that takes into account some of these complexities for the purpose of helping PWD
in their mobility in 3D indoor environments such as shopping centers, museums and other
public buildings.

The remainder of this paper is organized as follows: Section 2 presents a brief literature
review on sensor network deployment in indoor environments for mobility purposes and
highlights their strengths and limitations. In section 3, the methodology of the proposed local
deployment approach will be elaborated with consideration of indoor complex environment
models and mobility applications. Then in section 4, an experiment will be conducted in an
indoor environment. Finally, the results will be discussed in the last section.

2 Related works

Optimal deployment of a sensor network in a complex indoor environment is a challenging task.
This complexity becomes even more challenging if we consider the diversity of sensor types
and their sensing models as well as the specificity of the requirements for each application.
With network deployment optimization methods, we try to maximize the coverage of the
network and minimize the cost of the network and energy consumption for each node while
maintaining a minimum connectivity between nodes in a wireless sensor network (WSN) [2].
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The WSN coverage problem has been studied intensively in the last decade. A sensor
coverage can be either target-based or area-based. In some WSN applications, detecting
target points such as buildings, doors, flags and boxes are desired, while in area-based
coverage, the aim is to detect mobile targets such as intruders in a given area [7]. Covering
target points, instead of the whole area, is addressed in the target-based coverage problem,
whose purpose is to cover the maximum number of target points. In the area-based coverage
problem, which is used in this research, the objective is to obtain the maximum region
covered by sensors, which is usually evaluated as the ratio of the covered area to the whole
area [8].

Several methods have been proposed for optimal deployment of sensor networks based
on the maximum coverage criteria [3]. These methods are either global or local and can
be deterministic or stochastic. Particle Swarm Optimization (PSO) algorithms [9], and
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [2] are among global approaches
for sensor network deployment optimization. These methods apply a global objective function
that is optimized for the whole network. In local algorithms such as Virtual force-based
methods [11], and Voronoi algorithms [10], the optimization is done locally by changing the
position of sensors with respect to the local context and the configuration of the neighboring
algorithms. Both global and local algorithms can be considered as stochastic or deterministic
depending on the definition of the sensing model of the sensors.

Most of the sensor network optimization methods use 2D raster representations of the
environment [2] or voxel representation for 3D environments [4], which limit their precision
and efficiency. This is because raster and voxel representations need a regular partition of
the whole space even for homogeneous areas (i.e. the unoccupied pixels or voxels). Moreover,
the raster-based models cannot be used to represent precisely indoor environments as they
are constrained by their resolutions.

Voronoi based algorithms have attracted much attention in the research community
interested in optimal sensor networks deployment, specially for its interesting spatial and
topological properties for defining and manging sensor networks. For instance, [3] have
proposed a local context-aware sensor network deployment algorithm based on 2D Voronoi
diagrams for urban environments. In the latter work, Voronoi diagram is also used to define
a movement strategy for sensors to heal the coverage holes of a sensor network where the
environment was represented using a 2.5D digital surface model (DSM). In [1], a sensor
coverage estimation method has been proposed based on precise 3D vector representation of
the environment. Here in this paper, we propose to take advantage of 3D Voronoi diagrams
and the vector-based representation of the indoor environment to develop a local sensor
network optimization algorithm for indoor environments in order to support the navigation
of PWD.

2.1 Methodology
For the deployment of a sensor network in an indoor environment, we propose a local
context aware optimization algorithm based on 3D Voronoi diagrams. For this purpose,
we assume that sensors can be deployed mainly on the walls and ceilings. Building floors
are considered as target areas to be covered where navigation activities are expected. As
mentioned previously, the sensing model (binary or probabilistic), sensor orientation (omni-
directional or directional) and other sensor characteristics such as observation angle and
distance ranges, should also be defined. In this paper, we consider an omni-directional sensor
model for our sensor network.

In addition to sensor characteristics, the 3D indoor environment needs to be represented
in details for optimal sensor network deployment. We also need to consider the presence
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of other objects embedded in the indoor environment that may affect coverage information
(e.g., presence of a column or other permanent obstacles in the environment). Hence, we
need a data structure that supports precise representation of the indoor environment and
allows semantic specification of all its components. For modeling 3D indoor environments,
we consider to benefit from the potentials of 3D IndoorGML for the representation of such
environments.

3D IndoorGML is an extension of CityGML (Level of details (LoD) 4) that provides
semantical, topological, and spatial information of objects and services. Like CityGML
LoD4, IndoorGML is an open standardized data model of interior space of 3D buildings that
includes core modules, appearance modules, and thematic modules. The main structure
of IndoorGML divides the indoor space into multi-spaces called cells, and the intersected
area of two neighboring cells is called boundary surface. IndoorGML uses two related spaces
to model indoor environments: (1) primal space is the geometrical representation of cells
and boundary surfaces, (2) dual space is the Node Relationship Graph representation of
cells and boundary surfaces, which respectively corresponds to nodes and edges. Generally,
IndoorGML contains connection spaces (e.g., doors), anchor spaces (e.g., building exits),
general spaces (e.g., rooms) and transition spaces (e.g., passages). In contrast, CityGML
includes boundary surfaces, rooms, openings, and closure surfaces (e.g., the space between
the kitchen and the living room is a virtual surface called closure surface).

Algorithm 1: 3D Voronoi deployment algorithm.
input : n omni-directional cameras Si(xi, yi, zi)
output : (Xi, Yi, Zi) optimal solutions
objective :Maximizing the coverage of cameras network

Initialize: Random distribution of the cameras on deployment planes
(walls/ceilings) Compute initial sensor network coverage ;

while stop_criterion do
3D_Voronoi(Si,...,Sn);
for i← 1 to n do

Movement strategy(Si);
{

1- choose the farthest vertex in the same direction of path segments;
2- project the movement vector on sensor deployed plane;
3- if movement vector has intersection with obstacle, keep a given distance
between sensors and obstacle;

}
Update sensor network coverage (Si);
{
1- choose the movement amount based on the coverage improvement
}

end
end

The objective of sensors deployment in such environment is the maximization of the
covered areas of path segments that include floors with the height of a typical pedestrian
who navigates in the indoor environment. Our aim with placing sensors in such environment
is to inform the PWD of the dynamics of those environments and also to guide them safely
towards their final destination.
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(a) Initial sensors positions with
3D Voronoi diagram. (b) Optimal sensors positions.

(c) Initial coverage area. (d) Optimal coverage area.

Figure 1 Deployment of 4 cameras in an indoor environment with obstacles.

The proposed algorithm for deployment of sensors (the cameras in this research) is inspired
from a local 2D Voronoi approach presented in [10]. This method uses a Voronoi diagram for
the representation of a sensor network and the relations between sensors. We extend that
method to 3D space and use a 3D Voronoi diagram for the representation of sensors and
their topological relations in the sensor network. Thus, in the proposed algorithm, we first
create the 3D Voronoi structure using sensors as the generators of the 3D cells in algorithm
1. In each iteration, we move the sensors towards the farthest vertex of their Voronoi cell to
reduce the overlapping coverages and to better cover the target areas. It should be noted
that the motion of each sensor needs to be done on the wall or ceiling. Therefore, the motion
vector of each sensor is projected on the sensor position plane and the sensor is moved in this
direction towards its new position. In the case of the presence of a permanent obstacle in the
moving direction we need to keep the sensor away from the obstacle with a given distance so
that its sensing field is maximized.

3 Experiment and results

In this experiment, we assume that four cameras are deployed in a semi-complex indoor
environment where the ceiling is composed of two sections with different heights. We assume
that the cameras have a spherical sensing model with a defined range of view. Each camera
has an initial position (x, y, z) and is located on the ceiling or walls.

The environment model represents a semi-complex three-dimensional indoor environment
and contains a few static obstacles (Figure 1a). The 3D indoor model is stored using
IndoorGML and the geometric information can be easily extracted and analyzed if needed.
In our case study, the indoor environment model consists of 8 segments (faces) and includes
two obstacles. The goal of this experiment is to reach the maximum coverage of the floor that
can be used as a part of path for the mobility of a PWD (e.g., a person using a wheelchair)
from an initial configuration of cameras (Figure 1c). Then, the objective function is defined
in a way that the floor is covered with a height corresponding to the height of a person using
a wheelchair for her/his mobility (Figures 1b and 1d).
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4 Conclusions

Navigation of PWD is a complex task in indoor environments. These people need assistive
technologies to help them in their mobility and to guide them through their path by
providing them directions and information on the accessibility of their path. Wireless sensor
networks provide interesting opportunities to help these people with their navigation in indoor
environments. However, optimal deployment of a sensor network in a 3D indoor environment
is a very challenging problem given the complexity of the indoor environments and the
presence of diverse obstacles as well as the diversity of sensors and their sensing models. Here
in this paper, we have presented a new local optimization algorithm integrating 3D Voronoi
diagrams for sensor network representation and 3D IndoorGML for the representation of
the 3D indoor environments. We have defined an iterative algorithm for sensors movement
that allows the improvement of the overall coverage of the sensor network. Finally we have
presented a concept proving experiment with promising results. This work is part of an
ongoing research project. We plan to carry out more comprehensive experiments in the near
future to test and improve the proposed algorithm.
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Abstract
In order to extract and map location information from natural language descriptions, a first step
is to identify different language elements within the descriptions. In this paper, we describe a
method and discuss the challenges faced in creating an annotated set of geospatial natural lan-
guage descriptions using manual tagging, with the purpose of supporting validation and machine
learning approaches to annotation and text interpretation.
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1 Introduction and Background

To progress research on the interpretation of geospatial natural language, methods for
automated tagging of spatial language are required [5, 9]. In this paper, we discuss the
challenges that we encountered when trying to create manually tagged annotated data set
that addresses the shortcomings of previous data sets, using two experiments. A number
of researchers have addressed the problem of annotating geospatial natural language. For
example, Stock and Yousaf [10] annotated a wide range of language elements, including
adverb and parts of objects as well as relatum, locatum and spatial relation, mainly by
extending POS tags in a rule-based approach. Kordjamshidi et al [5] restrict their attention
to trajector, landmark and spatial prepositions, although they acknowledge that other parts
of speech can be used to express spatial relations. GUM Space specifies a broad range of
tags including locatum, relatum, spatial modality [3]. SpatialML uses mark-up language
to tag elements [7] including places, coordinate, orientations, form of reference, direction,
distance and frame. Work by Zwarts [12] and Kracht [6] address spatial prepositions, with a
focus on directional prepositions and location. Much of the previous work is either limited to
very simple elements [5]; adopts a complex tag structure [3] or assumes a particular syntactic
(grammatical) structure [5, 10]. We propose an annotation scheme that addresses these
limitations in that it focuses on semantics rather than syntax.
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2 Methodology

We conduct our exploration of the challenges of creating an annotated data set using two
experiments. The first one compares the tagging conducted by pairs of human annotators
and discusses discrepancies and issues involved in manual tagging. The second one discusses
variations between individual human respondents in matching natural language descriptions
to spatial relations, highlighting the lack of consensus.

2.1 Experiment 1: Creating an Annotated Data Set

The selection of an annotation scheme was based on three criteria: 1. What must be
individually identified in order to support effective geocoding of the text? This is difficult
to evaluate conclusively, as it depends upon the geocoding approach, and some aspects of
spatial language are still not well understood. This criterion influences not only which items
we tag, but also which items we identify as separate elements. For example, it is not useful
to separate next to into two separate tags, because the meaning depends on the combination
of the words, and the meaning of to in particular is dependent on the presence of next. In
contrast, adverbs like right, or directly, have their own meanings which are similar regardless
of the preposition they appears with, although the meaning may be influenced by the latter.
2. Can some of the tags or their subcategories be reliably determined automatically? If
a particular semantic tag can be reliably identified through an automated approach, then
there is little point in annotating in manually. The reliability of an automated approach
is a question of degree, but we use the yardstick that if the set of words of interest can
be defined by a clear set of specific words, none of which are homonyms, then they might
reliably be identified automatically. In practice this is rare, because for example, even though
the set of prepositions is a closed word class, since we are interested in semantic tags rather
than syntactic, and prepositions normally encode spatial relations, there are examples of
spatial relations that are not prepositions (e.g.in line with). 3. What is practical to expect
people to reliably annotate? This involves both volume and simplicity. A set of tags that is
too complex will be difficult for manual annotators to deal with. The set of tags must be
manageable in quantity, and simple enough to understand without specialist knowledge.

In Experiment 1, we develop a generic spatial annotation framework based on the semantic
roles of tokens in a sentence. To this end, 1000 sentences were randomly selected from the
combined set of three data sources: The Nottingham Corpus of Spatial Language[9], The
Landcare Research National Soils Database 1 and The Where Am I survey, in which natural
language descriptions were elicited from human respondents, as described in [8]. Table 1
identifies, describes and explains the annotation scheme that was used. Four annotators
were given an expanded version of Table 1 with a simple explanation of terms and examples.
The purpose of the work was explained to them in simple terms, and they were given access
to the tagging app. Each annotator was then asked to annotate 10 expressions using the
tagging app, after which the authors examined the expressions and gave feedback on any
issues, before the annotator began annotating in earnest. Each expression was tagged twice
by two different annotators.

1 https://soils.landcareresearch.co.nz/index.php/soil-data/national-soils-data-
repository-and-the-national-soils-database/

https://soils.landcareresearch.co.nz/index.php/soil-data/national-soils-data-repository-and-the-national-soils-database/
https://soils.landcareresearch.co.nz/index.php/soil-data/national-soils-data-repository-and-the-national-soils-database/
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Table 1 Tag labels and descriptions.

Title Explanation

Trajector
The object whose location is being described. The important role of the
trajector in spatial language has been discussed by a number of researchers
and is also known as locatum [3] or figure [11].

Landmark
The object that is used as a reference point in the description. The landmark
also plays an important and well documented role in spatial language, and is
similar to the relatum and ground identified by other researchers[11].

Spatial Rela-
tion

The word or words that indicate how two objects are positioned relative to
other. The importance of spatial relations has also been well recognised, and
they have been widely researched [1, 4, 12]. In syntactic terms, spatial relations
are most often represented using prepositions, but not always.

Location and
movement
verb (lmv)

A verb that describes the manner in which one object is positioned relative to
the other. The location and movement verb is a subset of the verb syntactic
category[11].The road crosses behind the church.

Spatial quali-
fier

A word of set of words that adds more information to the spatial relation and
or the location and movement verb. Spatial qualifiers have not been widely
recognized as an important carrier of spatial information as yet, and may
be represented with a range of different parts of speech, including adverbs,
adjectives and nouns.The road goes right beside the church

Spatial spe-
cifier

A word of set of words that describes particular subparts of a feature.E.g.The
north of the country. Spatial specifiers have also not been widely studied in
specific terms, with work instead focusing on general issues of mereology [2].

2.2 Experiment 2: Matching of Expressions to Spatial Relations
In the second experiment, we used data collected in earlier work [10]. In this work, respondents
were shown expressions one at a time, and asked to match each expression to one of a series
of diagrams that illustrated spatial relations. After viewing the expression and the set of
available spatial relation diagrams, each annotator was asked to select values on a Likert
scale that included only the positive side of the scale, to indicate his or her opinion about
how closely each of the selected spatial relation diagrams matched the expression: Strongly
Agree, Agree, Agree Somewhat. Only the positive half of the scale was used because users
were invited to only select diagrams that they thought reflected the expressions (i.e. if they
did not agree, the respective diagram would not be selected). Weights were allocated to
each response for a given spatial relation diagram-expression pair, using 1, 0.75 and 0.5 for
Strongly agree, Agree and Agree Somewhat respectively. The score for each expression and
its geometric configuration was calculated using this formula:

GCOScoreexpression,diagram =
∑n

k=0(responsekweightk)/n (1)

In which response k represents the number of responses with weight k, and n defines the
total number of responses for expression k. Full details of the methodology can be found
in[10].

3 Results

In order to evaluate the reliability of the manual annotation process in Experiment 1,
we calculate inter-annotator agreement among the four annotators. Since expressions were
randomly allocated to annotator, any combination of pairs of specific annotators may annotate
a given expression. Inter-annotator agreement was calculated by comparing the words in
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Figure 1 Study 1. Mean inter-annotator agreement by tag type.

Figure 2 a-c Annotator performance through the time.

a given expression that were given a particular tag by each annotator. Since many of the
expressions were complex and contained more than one of some tags, we calculate agreement
by proportion of overlap between the words annotated with a particular tag by each user,
rather than by a simple true/false agreement. Formula 2 expresses this measurement of
agreement between annotators for a single expression: For a given tag, MEk denotes the
number of mutual elements (words or multi-word tagged values) that both annotators agree
on, and maxk denotes the maximum number of elements that are tagged by either annotator.
The total agreement score for the expression is then average of agreement across the populated
tags. For example, if user 1 specifies Australia, New Zealand and Canada as landmarks and
user 2 specifies Canada and USA as landmarks MEk for the landmarks would be 1, because
just Canada is mutual and the maxk would be three as the maximum number of landmarks
by either annotator. The agreement score is calculated for all the tags in an expression, and
the average is calculated to determine the agreement across the entire expression.

AgreementScore = Average(
∑

(MEk/maxk)) (2)

Figure 1 shows the mean inter-annotator agreement for individual tags, as well as overall
and also the percentage of tags of each type that were annotated in the 1000 expressions. We
used this formula, to have an accurate calculation of each separate tag. We also explore the
role of annotator experience in the manual tagging process, and evaluate whether annotator
performance improves over time. For each annotator, we calculated inter-annotator agreement
for the first, second and third 50 expressions tagged by three annotators through the time
to see whether their performance changed by time or not. Only 3 annotators are shown
because the remaining did not annotate sufficient expressions. Figures 2a to c show the
results. We then calculated the inter-annotator agreement of different subsets of annotators,
to determine whether some annotators were more successful than others in tagging, either
overall of for specific tags. The results (Figure 3) show some inconsistency. It is, however,
clear that Annotator 2’s contribution is important, with her exclusion resulting in overall
deterioration.
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Figure 3 Inter-annotator agreement
excluding each annotator in turn.

Figure 4 a,b Study 2. GCO score for second three
expression.

Turning to Experiment 2, the results highlight the lack of agreement among individual
respondents regarding the spatial relation diagram that best reflects a given expression. The
respondents in Experiment 2 were also non experts in geographic information science. Figures
4 a and b each show the spread of responses for three example expressions. In contrast to
Experiment 1, Experiment 2 used short, simple spatial expressions, and the graph shows the
frequency (after weights have been applied as described in Section 2) of selection of each
spatial relation for a given expression. Two expressions in 4b show a number of small peaks,
with no clearly dominant relation selected by the respondents. Across the entire data set, a
similar pattern was observed, with lack of consensus among respondents in selecting spatial
relations to match many expressions.

4 Discussion and Conclusion

The results clearly show that it is not straightforward to create a manually annotated data
set of natural language descriptions with a broad set of language elements that is based
on semantics rather than syntax. Obviously, for an annotated data set for use in machine
learning and validation, we would like the agreement to be very strong. Considerations of
the level of experience of the annotators and the examination of the influence of specific
annotators on particular tags did not result in noticeable improvement. The challenges that
were encountered can be summarised as follows: Firstly, it is not unusual for the same place
name, geographic feature or moving object to be both a trajector and a landmark, and
secondly, the landmark/trajector status of a word may be ambiguous. The following example
illustrates both of these cases. In the expression the church stands beside the post office near
the bridge, the structure of the expression could be:

“trajector+(lmv)+spatial-relation+landmark+spatial relation+landmark”
“trajector+(lmv)+spatial-relation+(trajector and landmark)+spatial relation+landmark”
In the first case, church is a trajector for both the church landmark and the bridge

landmark, and in the second case post office is the trajector for the bridge landmark, as well
as the landmark for the church trajector. The annotation scheme used in this paper allowed
each word to be tagged only as a trajector or a landmark, but not both. The creation of a
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tag that indicates a dual role may be a possible methods for addressing this. Resolution of
ambiguity is a more difficult problem to solve, and even the most expert and experienced
annotators may disagree. A final observation from the results is that, spatial qualifiers and
spatial specifiers had only fair inter-annotator agreement (lower than other tags), and while
this may be in part due to confusion about when to use each, when questioned, Annotator 2
was able to accurately explain when the spatial specifier tag was used and claimed to find it
easy to understand. Confusion in the tagging process was sometimes caused by considerations
of grammar, rather than meaning.

In this paper, we have described a semantic annotation scheme that is designed to
be both useful and practical, and the methodology used to create an annotated data set.
We analysed and presented some of the challenges encountered in the process, and the
fundamental difficulties resulting from ambiguity and individual discrepancies in the use of
spatial language that make it difficult to define a single, reliable annotated data set at a
semantic level. In future work, we intend to do more analysis and test different annotation
strategies like single tag per annotator, to see if there is any improvement in the results
achieved.
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Abstract
With the increasing number of indoor navigation applications, it is essential to have clear and
complete conceptual model (in the form of UML class diagram) for IndoorGML. The current
version of IndoorGML standard has an incomplete class diagram (incomplete w.r.t. attributes,
of which some are appearing in the XML/GML schema), and that provides confusion for the users
of the standard. Furthermore, there are some issues related to unclear association names, unclear
class names, classes that related to the Primal space and the Dual space, code lists not specific
per type (which should have their own code list values), untyped relationships to external object
classes, and semantically overlapping classes. In this paper, we propose an enhancement for
IndoorGML conceptual model (UML class diagram) to avoid the misunderstanding. We propose
a conceptual model that maps the classes of the standard in a better way. This conceptual
model is the basis for 1) a database schema when storing IndoorGML data, 2) the XML schema
when exchanging IndoorGML data, and 3) when developing IndoorGML applications with an
intuitive and clear GUI. Furthermore, the proposed conceptual model provides constraints for
more meaningful model and to define more sharply what is considered valid data. This paper
briefly reports these preliminary results on the UML conceptual model.
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Figure 1 Indoor navigation path.

1 Introduction

Over recent years, the research area of navigation has become very active with an extensive
variety of applications. Navigation is essential but also complex human activity. While
initially navigation systems have been established for outdoor environments (such as for cars
on the road), presently they have subsequently developed to be an essential field of interest
for indoors (Makri et al. [11]). According to (Klepeis et al. [8]) around 87% of the people
in the USA spend most of their lives inside buildings and the movement of the user of the
indoor environment has been affected by the massive size of the indoor environment. The
public buildings in our cities such as airports, train stations, hospitals, offices and university
buildings, confront users with difficulties to find their destinations, and thus various research
has been carried out that has resulted in many navigation models as shown in Figure 1.
In this paper we concentrate on IndoorGML, adopted as a standard by Open Geospatial
Consortium (OGC).

IndoorGML delivers a framework for indoor navigation systems to offer a description
of the indoor space and provide Geography Markup Language (GML) syntax for encoding
geoinformation (Zlatanova et al. [15], Kang and Li [6]). IndoorGML consists of two parts,
first the core data model which describes geometry and topology connectivity, and second, a
data navigation model that provides semantics for the navigation process (Lee et al [10]).
The main purpose is to establish a methodology to classify spaces (rooms, corridors, etc.) and
their indoor characteristics rather than represent architectural elements (Li, [9]). However,
the current version on IndoorGML has incomplete UML model and that affects the quality
of applications that depend on it. In this paper we propose an enhancement for the new
version of the standard. We have also discussed alternatives in several cases and provided
arguments pro and con each option and based on this selected best option. We classify some
critical aspects that we have considered in this process:

Complete attributes and code list for all classes.
Better representation for the Primal space and Dual space.
Clear terminology (vocabulary).
Introducing geometry as attribute of classes (making the model more clear).
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The methodology of this research is based on the following research phases: 1. Analyzing
current version of IndoorGML and finding missing and weak parts, 2. Proposing options
for solutions, 3. Discussion the pros and cons of the various options, 4. Selection the best
option and make this part of improved IndoorGML proposal, 5. (Future work) develop
technical model and populate with real data (to assess the conceptual model of IndoorGML)
and further fine tune model when needed, 6. (Future work) bring our proposal into the
standardization process within OGC (and collect opinion of the members of the IndoorGML
team). The output of this investigation will be provided as input to OGC for an enhancement
of the future version of the standard.

In Section 2, we discuss the research and developments related to IndoorGML in general
and the UML model of IndoorGML, while in Section 3 we propose the enhanced UML model
for IndoorGML. Finally, Section 4 concludes this paper.

2 Background

IndoorGML is an OGC standard that presents an elaboration of the indoor space and GML
syntax for encoding geoinformation for the purpose of navigation (Zlatanova et al., [14]).
IndoorGML defines a model to represent the geometry, topology and semantics of the indoor
spaces which are used for the components of navigation network. The indoor and outdoor
spaces differ from each other in many characteristics. Based on the indoor requirements
for the spatial applications, the standard have to be reviewed with respect to the type of
indoor applications. There are two categories indoor spatial applications: 1) managing the
building components and facilities, and 2) using the indoor space. The first category mainly
focuses on the architecture elements of the building such as walls and roofs (this discipline is
called FM, facility management). The second category deals with the usage and localization
properties of the indoor space, which refers to representing spaces such as rooms, corridors,
and constraints elements such as doors. IndoorGML defines a framework to locate static or
mobile objects (agents), and provide spatial information services (navigation) by using their
positions in indoor space. IndoorGML represents the spatial character of the indoor spaces
and provides information about their connectivity (Lee et al., [10]).

The indoor navigation research community broadly re-uses concepts such as Dual and
Primal Space and automatic derivation of Dual Space that are part of IndoorGML (Diakite
et al., [3]). Thus, research and developments depend on the standard to build applications
based on the spatial framework of the standard. In that regard, software tools, e.g. an editor
and a viewer have been developed by (Hwang et al., [4]) to support related studies. Concerns
have been expressed about representation in 2D and 3D and the link between indoor and
outdoor. (Kim and Lee, [7]) have proposed a semi-automatic approach to create IndoorGML
data from images. In the same direction, (Mirvahabi and Abbaspour, [12]) have proposed an
automated method to extract IndoorGML data from OpenStreetMap. (Diakite et al., [3])
have proposed a concept study for space subdivision to distinguish two significant aspects:
the occupancy of the indoor space that influences the notation of indoor cells, and the
description of criteria to support the automation of the space subdivision process. (Diakite
and Zlatanova, [1]) have introduced an approach that creates the geometrical and topological
valid IfcSpace classes in an IFC model, which can then be utilized for deriving a navigation
network. Also, (Ryu et al., [13], Iida et al., [5]) have tried to enhance some characteristics of
the current standards such as introduce attributes to support visually impaired people.

However, none of these researches have addressed the issues that relates to the UML
model of IndoorGML. For navigation, it is important to include the access rights and/or
restrictions of a user (group). When, developed a combined IndoorGML-LADM, we were
confronted with the incompleteness of IndoorGML conceptual model (Alattas et al., [2]).
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The current IndoorGML UML model contains the classes and their relationships as
shown Figure 2. It has four different type of classes (GML, IndoorCore, IndoorNavi, and
Not implemented). Most of the classes do not have attributes: no attribute names, no
attribute data types. Further, the associations that link the classes has names that bring
some confusion to the user. The GeneralSpace and the TransferSpace classes have attributes
that contain the same code list values. But, if code lists are values equal, it is unclear what
has to separate the code lists. The SpaceLayer class has a relationship with the CellSpace,
State, and Transition classes and that create misunderstanding for the user of the standard
(as it is not directly clear from the model that CellSpace/ State represents primal space
and that Transition represents dual space). Furthermore, including AbstractFeature class
is not the best way for illustration, because it has many relationships with other classes.
Furthermore the type of the link is a generalization with lines in the illustration to nearly all
other classes: spaghetti drawing. The standard represents the geometry data as separate
classes and that allows mixing of the geometries to different objects (which could have been
sharper typed). In addition, having geometry as separated classes in the illustration of the
model increases the number of boxes and lines (i.e. creates spaghetti feeling). Therefore,
in this paper we carry out a deeper study on several issues that relate to the UML class
diagram and provide an enhancement for the new version of the standard.

3 Proposed UML Model for IndoorGML

In this section we present the proposed improvements, refinements and changes to the
IndoorGML conceptual model. The current UML classes of IndoorGML are represented in
pink color and the proposed UML classes are presented in light blue color.

3.1 From Classes to Attributes

Solid, Surface, Point, and Curve are geometry classes (as defined in ISO 19107) in the
current version of IndoorGML with associations to classes that have geometric representation.
Although this approach might be beneficial for keeping consistency, it is rather unclear
for implementation. Therefore, we propose to convert the classes into attributes. The
CellSpace class will have two additional attributes to represent the geometry data types
as shown in Figure 3. The 3DGeometry attributes will have the GM_Solid value, and the
2DGeometry attributes will have the GM_Surface value. The CellSpace class will have a
constraint that only one of the attributes (3DGeometry or 2DGeometry) has to be filled
to ensure that the user correctly using the standard. The CellSpaceBoundary will have
two additional attributes, first 3DGeometry attribute that has the value GM_Surface, and,
second 2DGeometry attribute that has the value GM_Curve. The CellSpaceBoundary class
will have a constraint that only one of the attributes (3DGeometry or 2DGeometry) has to be
filled based on the type of geometry that has been used in the CellSpace class. Because the
geometry of the CellSpace can (conceptually) be derived from the geometry of the associated
boundaries, this is indicated with a forward slash before attribute name; e.g. /2DGeometry.

The Point Geometry type will be added as an attribute to the NodeInDualSpace class
and the RouteNode class (for intermediate point) as an attribute that call Location and
has the value GM_Point as shown in Figure 4. The curve geometry type will be added to
EdgeInDualSpace class and RouteSegment class (for route parts) as an attribute that call
Geometry and has the value GM_Curve as shown in Figure 5.
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Figure 2 The current UML model of IndoorGML.

Figure 3 Additional geometry attributes for CellSpace class and CellSpaceBoundary and their
constraints.

3.2 ExternalObject Class

The current UML model contains ExternalObject class that has an association with Cell-
Space class and CellSpaceBoundary as shown in Figure 1. We propose that the current
ExternalObject class to have two external object classes. The new two classes will have
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Figure 4 New attributes for NodeInDualSpace class and RouteNode class.

Figure 5 New attribute for EdgeInDualSpace class and RouteSegment class.

Figure 6 The proposed ExternalObject classes.

associations with the current ExternalObject class (as superclass), the new subclasses are
also more precise typed. The CellSpace class will have an association with a new class that
call “ExternalCellSpaceObjec” and it is responsible for providing the object reference of
the Space from the ExternalObject class. Also, the CellSpaceBoundary class will have an
association with a new class that is called “ExternalCellSpaceBoundaryObject” and it is
responsible for providing the object reference of the boundary from the ExternalObject class.
This method will bring more flexibility to the representation space and boundary as shown
in Figure 6. Also, the type of the class of the ExternalObject has been changed from Feature
type to the Stereotype «BluePrint», because this class represents a reference that not include
in the model.

3.3 Association Multiplicity of CellSpace and CellSpaceBoundary
The association multiplicity between CellSpace and CellSpaceBoundary in the current version
of the standard shows that each CellSpace has many Boundaries, and each CellSpaceBoundary
has zero or one CellSpace as shown in Figure 1. However, in reality each CellSpaceBoundary
could have one or two (or zero if boundary not used) CellSpace as shown in Figure 6.
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Figure 7 CellSpaceBoundary could have one or two CellSpace.

Figure 8 Proposed terms for State and Transition classes.

Furthermore, in case of so called functional areas or virtual spaces, the neighbor cells do
share a one boundary. The multiplicity has been modified as shown in Figure 7.

3.4 The terms State and Transition
We propose to change the terms State and Transition into the more intuitive terms Node and
Edge. In addition, we suggest adding the Dual terms to each class and that will make them
understandable for the user that they are belong to the Dual space. The term State has been
changed to NodeInDualSpace and the term Transition has been changed to EdgeInDualSpace
as shown in Figure 8.

3.5 Code Lists
The current version of the standard has the same code list values for GeneralSpace class and
TransferSpace class (gml:CodeType). We have changed that by adding different names for
the code list as shown in Figure 9 (in total 7 different code lists).

The GeneralSpace class has three attributes (function, usage, and class) and each attribute
has a code list value, with example code list values as shown in Figure 10. The Usage attributes
has a code list values that represent the user groups of the space such as student group,
employee group, and visitor group.

The ConnectionSpace class is a subclass of the TransferSpace and it has three attributes
(function, usage, and class) and each attribute has a code list value as shown in Figure 11.

The AnchorSpace class is a subclass of the TransferSpace and it has three attributes
(function, usage, and class) and each attribute has a code list value as shown in Figure 12.

The SpaceLayer class has six attributes (usage, terminationDate, function, creationDate,
and class). The class attribute has a code list type value which is the SpaceLayerClassType
as shown in Figure 13. Note that the values of an enumeration type are fixed (and con not
be extended as for code lists).
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Figure 9 New code list names for GeneralSpace and TransferSpace classes.

Figure 10 Code list for the attributes of the GeneralSpace class (with example values).

Figure 11 Code list for the attributes of the ConnectionSpace class.

Figure 12 Code list for the attributes of the AnchorSpace class.

Figure 13 Code list values for the attributes of the SpaceLayer class.
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Figure 14 Enumeration values for the attributes of the InterLayerConnection class.

The InterLayerConnection class has two attributes (typeOfTopoExpression and comment).
The typeOfTopoExpression attributes has an enumeration value which is the typeOfTopoEx-
pressionCodeType and it consists of two enumeration values (typeOfTopoExpressionCodeE-
numerationType and typeOfTopoExpressionCodeOtherType), however, we propose to replace
these 3 «enumeration» types with a single «codeList» that has the name TopoExpressionType
as shown in Figure 14.

3.6 Classes and Associations

The current UML model contains an association between SpaceLayer class and NodeIn-
DualSpace (State) class and EdgeInDualSpace (Transition) class have been defined as
Composition association as shown in Figure 1. However, instead of connecting these two
classes to the SpaceLayer, we have proposed a new feature class call DualSpaceNetworkLayer
that will be as a collecting class for the Node and the Edge of the Dual space. We want to
emphasize that the layers can be for both: the Primal and Dual Spaces. The SpaceLayer
class will have an association with the CellSpace class and the SpaceLayer will be collecting
class for the spaces of the primal space. The name of MultiLayerGraph class has changed
to MultiLayerNetwork because a graph does not need to have geometry and in the case of
IndoorGML there is a need for geometries at least for the Nodes. The MultiLayerNetwork will
has association with the NodeInDualSpace and EdgeInDualSpace instead of the association
with the SpaceLayer because it deals with the Dual space as shown in Figure 15.

Also, the current UML model of IndoorGML standard has defined names for the associ-
ations between the classes such as duality, edges, nodes, geometry, and partialBoundaryBy
which bring a lot of confusing during the generating of the XML schema as shown in Figure 1
as these association (role) names are very close to the names of the involved classes (and
add little/no value). The propose UML model does not include all the defined names of the
associations to avoid confusing as shown in Figure 16. Additional, the TransferSpace class
and CellSpaceBoundary has parameter attributes that have the type (virtual, real) to allow
aggregation and subdivision of CellSpaces. Furthermore, the TransitionSpace class has been
removed from the UML class diagram because it is difficult to semantically distinguish this
from the ConnectionSpace class.
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Figure 15 New DualSpaceNetworkLayer class and their associations with the NodeInDualSpace
class and EdgeInDualSpace class.

4 Conclusion

In this paper, we proposed an enhancement for the UML class diagram of IndoorGML
standard. We suggested the following improvements for the conceptual model (as input for
the revision of the standard within OGC, See Section four for more details):

The ExternalObject class has two subclasses (ExternalCellSpaceObject and ExternalCell-
SpaceBoundaryObject). The CellSpace has an association with the ExternalCellSpaceO-
bject and the CellSpaceBoundary have an association with ExternalCellSpaceBoundary-
Object to improve the concept behind the ExternalObject class.
Association multiplicity of CellSpace and CellSpaceBoundary is corrected.
The terms State and Transition are changed into NodeInDualSpace and EdgeInDualSpace
because they better represent the nature of these classes and improve the perception.
The geometry classes are converted into attributes of the classes that need them to ensure
better understanding during the implementation from the user.
GeneralSpace class and TransferSpace class have different names for the code list and we
have created code list classes to define the values for each attribute.
DualSpaceNetworkLayer is introduced as a collecting class for the node and the edge of
the dual space. The SpaceLayer has an association with the CellSpace class only and is a
collecting class for the spaces of the primal space.
TransferSpace class and CellSpaceBoundary have additional attributes that have the
value (virtual, real) to allow aggregation and subdivision of CellSpaces.

This paper comes as a proposal for IndoorGML to include the above-mentioned suggestions.
Additional investigation is required to define attributes for all classes. This paper reflects the
initial developments of a more complete and enhanced conceptual model for IndoorGML. The
future work includes additional investigations to define more attributes for the classes as well
as development of prototype implementations such as SQL implementation, XML encoding,
and Application with GUI. All of them will be based on same conceptual IndoorGML model.
Furthermore, we will bring our proposal into the standardization process within OGC. This
is expected to validate the proposed model extension further and accelerate the development
of indoor navigation applications.
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Figure 16 Proposed conceptual model of IndoorGML.
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Abstract
The paper brings the focus on to multi-disciplinary approach of presenting climate analysis stud-
ies, taking help of interdisciplinary fields to structure the information. The system CLIMSYS
provides the crucial element of spatially enabling climate data processing. Even though climate
change is a matter of great scientific relevance and of broad general interest, there are some prob-
lems related to its communication. Its a fact that finding practical, workable and cost-efficient
solutions to the problems posed by climate change is now a world priority and one which links
government and non-government organizations in a way not seen before. An approach that should
suffice is to create an accessible intelligent system that houses prior knowledge and curates the
incoming data to deliver meaningful results. The objective of the proposed research is to develop
a generalized system for climate data analysis that facilitates open sharing, central implement-
ation, integrated components, knowledge creation, data format understanding, inferencing and
ultimately optimal solution delivery, by the way of geospatial enablement.
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1 Introduction

The focus is growing sharper than ever on climate research activities. Now is the time to
respond with a global system about generalized climate modeling at any scale and expert
decision support. With the advent of sensors for monitoring, data collections for any event
are at unprecedented levels. For example, in climate data processing the major hurdles are
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that the different research groups globally are processing their data in silos, most of the time
repeating same processes at each location, creating similar metadata each time, duplicating
data, thereby falling behind the rushing stream of more incoming data. The solution could
be addressed through integrating data source, spatial data platform, data understanding,
knowledge base, inferencing and visualization into a single, well-connected online real-time
system. Such a spatial decision support system (DSS) with expert knowledge bases will not
only serve the critical research of climate modeling but do so to any research relying on
real-time data capture and analysis with spatial domain of data being the unique enabler[8].

The objective of the proposed research is to develop a generalized system for climate
data analysis that facilitates open sharing, central implementation, integrated components,
knowledge creation, data format understanding, inferencing and ultimately optimal solution
delivery, all through open-source development. It should enable a climate scientist located
anywhere to utilize data sources, create algorithms, models and output layers of climate
information. The core of the system development will be to design optimal knowledge
base (KB) and expert system (ES) for climatic scenarios. The research questions to be
answered through this research are: i) how to build open source spatial ontologies for climate
phenomenon using causative factors ii) how to connect ontologies for climate to intelligent
inferencing logics iii) how to build specialized knowledge bases for a generalized climate
modeling DSS iv) how to apply the system to automate procedures such as climate extreme
indices and downscaling urban climate extremes v) how to integrate sensor web(SW), other
data sources and spatial data infrastructure(SDI) with open source technologies.

2 Background Literature Review

Several studies [5, 2] over the years and recently [9, 1] have heavily stressed the need for
developing a system capable of encapsulating the entire essence of climate studies in one
platform which can be open, shareable, knowledgeable, and contributable globally. CLIMSYS
aims to address these challenges through developing a framework that houses data, metadata,
understanding of the data, knowledge to be applied on the data, and output from the data.
CLIMSYS would enable a distributed spatial framework that targets to deliver climate based
decisions to start with but would be capable of administering spatial functionalities to a
variety of social needs.

Climate data are dramatically increasing in volume and complexity, just as the users of
these data in the scientific community and the public are rapidly increasing in number. A new
paradigm of more open, user-friendly data access is needed to ensure that society can reduce
vulnerability to climate variability and change, while at the same time exploiting opportunities
that will occur. The burgeoning types and volume of climate data alone constitute a major
challenge to the climate research community and its funding bodies. Institutional capacity
must exist to produce, format, document, and share all these data, while, at the same
time, a much larger community of diverse users clamors to access, understand, and use
climate data [8]. Fig 1 shows the interoperability issues, due to multi-input types, in the
engineering processes due to the application of many sets of domain data that stresses the
multidisciplinary nature of the problem. The engineering process is based on reusing the
existing knowledge representation models.

Research to action has been the clarion call from several climate critiques, wherein
the papers have concluded that scientists need to relay the valuable work they are doing
through impactful interfaces[3]. Through the present paper we want to convey that such an
interface is imminently possible through the integration of sensor web and SDIs on top of
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Figure 1 Input Parameters of Climate Data and Methods Adopted.

pertinent expert knowledge bases. We can now delve into the background of SDIs and sensor
web. Considerable research and development has been carried out in SDI in recent years.
Some are trying to develop high-level middleware services and domain-specific services for
problem-solving and scientific discovery in infrastructures [4]. For example, the Group on
Earth Observation (GEO) Model Web initiative proposes to provide environmental models
as services and integrating distributed models in infrastructures. With these systems it is
seen that they tend to be case-specific and restricted. Also the design is not broad enough to
accommodate increasing number of formats. Hence CLIMSYS is to be designed to be more
generalized, integrable with multiple domains and formats and the biggest addition will be
the availability of pluggable KBs that infuse better understanding of the data. With the
integration with sensor web CLIMSYS will provide long term benefits.

3 Methodology

CLIMSYS utilizes a distributed SDI including data models, applications and services based
on OGC standards and their benchmarking and evaluation are the objectives of this proposed
research. The initial architecture as shown in Fig 2a for the shared data concept has
been implemented to categorize and modularize input domains, sensor-web module, data
understanding module, expert KB, inferencing, and output. In Fig 2b the GIS graphical
user interface(GUI) has been expanded to show the implementation of GEONODE structure.
It handles the spatial database and spatial analysis. GeoNode provides the distributed
SDI environment (Fig 2b). The concept of plug-ins to interact amongst themselves from
one framework to another makes the integration of SDI and sensor web possible. The
web-enablement in Fig 3a is where the architecture to capture geospatial elements and
transmitting over the web is taken care of by webGIS standards and the open interfaces are
utilized for latching on to the sensor network through a set of GML Clients. Therefore, a
consistent set of encoding and interface standards are mandatory for adapting and integrating
sensor networks into an SDI application. In CLIMSYS, we present how the reused models
were interconnected, starting from the analysis of the interoperability needs of the existing
and planned data sources, the use of a core ontology as integration strategy, and the modeling
of concepts that carry out the interconnection among the reused models. The work then must
solve the key interoperability issues using visualization tools and representative scenarios.
Experiments on an information recovery study stress the potential of the proposed ontology,
its limitations, and future challenges in the modeling process. We expect to contribute with
ideas about an ontology engineering process for semantic interoperability of multidisciplinary
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Figure 2 a) CLIMSYS Proposed Architecture b) GeoNode and database functionalities.

domains (Fig 3a, b), as well as to present experiences from applying this process. As can be
ascertained from Fig 1, the disparity in data formats in sensor web (Fig 3a) needs proper
ontology to understand the data contents and semantic context (Fig 3b). The joining of
sub-systems happens at corresponding levels like input module with data layer of sensor web
and database backend of GeoNode, understanding module and expert module interface with
web service layer of sensor web and middleware of GeoNode. The Output module intefaces
with the application layer and front end of GeoNode.

4 Results

The joining of geospatial datasets and knowledge bases has been done to utilize the complete
set of information available in each of them. There are many open source geospatial datasets
available such as GeoNames, Open Street Map, Natural Earth and to get a comprehensive
dataset with the union of all available information it is important that such datasets are
linked optimally without redundancy or loss of information. The multi-interfacing that is
captured by Fig 2a allows for spatial interface, input, storage, incremental upgrades, and
output communication. The interfaces use Java apps with Python codes. The Geonode
architecture has PostGIS and PostGresql backend, and HTML frontend (Fig 2b). The HTML
frontend of GeoNode displays the global basemap (Fig 4) and the sensed data[6, 7] input
and processed by CLIMSYS is layered on top of the basemap. By clicking on the place-name
(Czech Republic) the temperature data and snowing data for the region (Jan-Mar 2018) are
displayed.

5 Discussions and Conclusions

A gamut of information about the environment - land, air, water, weather, climate and
natural and man-made risks can be harnessed by seamless and rapid access to sensors. In
addition, sensors are critical components of building, transportation, utility and industry
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Figure 3 a) The layers for integration of sensor web with SDI b) Ontological snapshot of an
environmental process for system development.

Figure 4 Integrated sensor data for temperature(left box) and snowing(right box) in Czech
Republic over GeoNode basemap.

infrastructure. The ability to harness and render this information in a location context is a
major challenge. Until recently though, there were no facilitating standards to make it easier
to discover, access and integrate this information. Therefore, a consistent set of encoding
and interface standards are mandatory for adapting and integrating sensor networks into an
SDI application. Both, SDI (web mapping) standards and sensor web enablement standards
from OGC, have to meet at a common ground and connect together. The integration of
sensor web and SDI in open source domain could be achieved possibly by setting up one to
one correspondence between their services through functions calling and methods calling.

CLIMSYS can deliver an integrated sensor web and SDI which can solve a lot of challenges
that stand-alone, disconnected, case-specific, and customized systems lack. The next level of
capability for both SDI and sensor web would be to evolve into a new realm of a location
enabled and semantically enriched Geospatial Web or Geosemantic Web but additionally
with spatial analytics capabilities. The SDI has the capacity to integrate with distributed
computing and database platforms and enable the Geospatial Web with capabilities of data
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democratization. Hence in conclusion, it is of pressing importance to geospatial studies to
integrate SDI with Sensor Web. The integration can be done through merging the common
OGC interfaces of SDI and Sensor Web. Through CLIMSYS, Sensor Web and SDI are going
to keep expanding in the next decade. Sensors are going to be so ubiquitous that similar to
the world wide web the addition of vast number of sensors will keep happening like new data
sources of present internet. The concept of CLIMSYS has to keep evolving to help overall
development.
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Abstract
Textual and socio-economical regional features can be integrated and merged by linearly com-
bining the between-regions corresponding dissimilarities. The scheme accommodates for various
squared Euclidean socio-economical and textual dissimilarities (such as chi2 or cosine dissimilar-
ities derived from document-term matrix or topic modelling). Also, spatial configuration of the
regions can be represented by a weighted unoriented network whose vertex weights match the rel-
ative importance of regions. Association between the network and the dissimilarities expresses in
the multivariate spatial autocorrelation index δ, generalizing Moran’s I, whose local version can
be cartographied. Our case study bears on the Wikipedia notices and socio-economic profiles for
the 2251 Swiss municipalities, whose weights (socio-economical or textual) can be freely chosen.
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1 Introduction

Spatial analysis deals with notions of “where” (the spatial configuration of regions), “what”
(the regional features) and “how much” (the relative importance of regions, as given by their
surface, the population size or terms size). The aim of this contribution is to propose a
formalism and a case study showing how to directly incorporate textual information,
in the frequent situation where each region is described by a text. In a nutshell, both socio-
economic and textual features can be encoded in a dissimilarity matrix between regions,
and linearly combined in a flexible way, producing new dissimilarities mixing both kind of
features. The latter can be further used for multidimensional scaling, or distance-based
clustering.

Socio-economic features can be spatially auto-correlated, and so are the textual features.
Section 2 presents a general formalism for assessing and testing spatial autocorrelation and
its local indicators, able to deal with multivariate features. Its application requires the
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dissimilarities to be squared Euclidean, which leaves open many possibilities and variants, in
particular regarding the information retrieval processing of the document-term matrix.

The formalism also represents the spatial configuration of the regions as an unoriented
weighted network, where the node weights represent the importance of regions, and the edge
weights is a measure of accessibility, larger between spatially close regions. Requiring the
sum of the edge weights associated to a region to equal the regional weight is natural and
mathematically convenient. Among various possible choices, we adopt here the diffusive
weighted specification, yielding a family of weight-compatible networks index by a single
parameter t > 0, the diffusion time. The regional weights themselves can be chosen as
proportional to the residential population, or proportional to the document sizes, and this
choice has a deep impact on the behaviour of the quantities under consideration, as illustrated
in the case study presented in section 3.

2 Formalism and definition

We consider a set of n regions, characterized by textual descriptions, as well as by socio-
economic features. The former are typically specified by a n× v document-term matrix Xtext,
giving, after the usual textual pre-processing, the number of occurrences of term w = 1, . . . , v
in the document describing region i = 1, . . . , n. The latter are specified by a n× p matrix
Xse contains the p socio-economic features of interest, such as the proportions of inhabitants
belonging to specific ages, nationalities, professional types, the proportions of buildings of a
given type, etc.

Regions differ by their importance, as specified by relative weights fi > 0 with
∑n
i=1 fi = 1.

Regional weights can be chosen as reflecting the document sizes ftext
i , or the population share

fse
i as in standard socio-economic geographic analysis. Finally, the spatial configuration of
the n connected regions is specified by a binary n× n adjacency matrix A = (aij).

2.1 A general framework for spatial autocorrelation
Dissimilarities between regional features may, on average, be smaller between spatially
close regions, and this precisely constitutes the issue of spatial autocorrelation. A general
framework, permitting to attribute differing weights to regions, whose spatial proximity is
modelled by a weighted unoriented network, and whose features can be multivariate, relies
on two ingredients :
1. a n× n symmetric joint probability matrix E = (eij), referred to as the exchange matrix,

giving the probability to select a pair ij of regions, the idea being that eij is proportional
to the relative weights fi and fj of the regions, and decreasing with their spatial distance.

2. a n× n symmetric dissimilarity matrix D = (Dij), where Dij = ‖~xi − ~xj‖2 is a squared
Euclidean distance between suitably normalized multivariate regional features ~xi and ~xj .

In addition, and crucially, the exchange matrix is required to be weight compatible, that is its
margins yield the regional weights, that is ei• =

∑n
j=1 eij = fi, where fi can be interpreted

as the probability to select region i.
The global inertia, respectively local inertia, measures the average dissimilarity between

randomly selected regions, respectively between neighbours. Their comparison provides an
autocorrelation index δ which constitutes a multivariate generalization of Moran’s I. They
read, in order,

∆ = 1
2

n∑
i,j=1

fifjDij ∆loc = 1
2

n∑
i,j=1

eijDij δ = ∆ − ∆loc

∆ (1)
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The values of δ range in [−1, 1], and its standardized value z = (δ −E0(δ))/
√

Var0(δ) can
be tested in the normal approximation [2, 3].

Regional dissimilarities Dij can, as in spatial econometrics and quantitative geography,
reflect their socio-economic profiles, but also, and more originally, the textual content of their
description, or a mixture of both. All the involved similarities should be squared Euclidean,
and this constitutes a necessary and sufficient condition for the application of the formalism.
For comparison sake, they should also be preliminary standardized as Dij ← Dij/∆.

Local multivariate indicators of spatial autocorrelation. Local multivariate indicators of
spatial autocorrelation [1], measuring the average scalar product of the deviations at a region
and at its neighbours, can be constructed as

δi = (WB)ii
∆ with W = diag(1/f)E and B = −1

2HDH
′ , where H = I−1f ′ (2)

and satisfy
∑
i fiδi = δ. Here W is the row-standardized n×n matrix of spatial weights, and

constitutes the transition matrix of a reversible Markov chain with stationary distribution f .
Also, B = (Bij) is the n× n matrix of scalar products Bij = (~xi − x̄)′(~xj − x̄) corresponding
to the dissimilarities Dij = ‖~xi − ~xj‖2, where x̄ =

∑
i fi~xi.

Spatial configuration: weighted spatial network. In practice, the weight compatible ex-
change E matrix, specifying the spatial configuration of regions under the form of weighted
spatial network, must be constructed from the given regional weights f (which may be taken
as ftext or fse) and the adjacency matrix A. That is, E ≡ E(f,A), and among differing
possibilities, we adopt here the diffusive kernel construction, which essentially consists in
considering a time-continuous Markov process whose infinitesimal generator is given by the
Laplacian of the adjacency matrix (e.g. [11, 9]). Imposing weight-compatibility E1 = f , as
detailed in [2, 3, 4] yields a time-dependent exchange matrix E(t) = E(f,A, t) with limits
limt→0 e

(t)
ij = fiδij (reducible network made of n disconnected regions) and limt→∞ e

(t)
ij = fifj

(complete weighted network, free of distance-deterrence effects).

Socio-economic dissimilarities between regions. Socio-economic dissimilarities between
regions can be obtained as Dij = (xi − xj)2, for numerical univariate features x, or as
generalized chi-squared dissimilarities Dij =

∑m
l=1 ρl(qθil − qθjl)2 for categorical features with

m modalities, where ρl is the proportion of modality l, qil the ratio of observed cross-counts
to their expected value under independence, and θ > 0 a distortion factor overweighting
for θ > 1 (respectively θ < 1) the contribution of high (respectively low) region-modality
associations. In any case, all those dissimilarities are squared Euclidean, and so are their
p-variate mixtures Dse

ij =
∑p
k=1 αkD

(k)
ij , where D(k) is the standardized dissimilarity for the

k-variable, and αk ≥ 0 the freely adjustable corresponding contribution, thus allowing the
generation of flexible socio-economic dissimilarities adapted for particular contexts.

Textual dissimilarities between regions. Each region is described by a document, such as
historical or geographical notices; or political or administrative documents; or, in our case
study, Wikipedia English articles on Swiss municipalities. After usual textual preprocessing
(see e.g. [10]), the resulting document-term matrix Xtext, serves in turn to the generation of
textual dissimilarities between regions :

as straightforward chi-square dissimilarities on N , possibly generalized (see above)
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Figure 1 Left: logarithmic scatter plot of the weights f se versus f text illustrates the disparity
between population and textual weights. Right: Lorentz curve associated to the Gini coefficient
G = 0.63 between f se and f text.

Figure 2 Local indicators of spatial autocorrelation δi(t) of equation (2) for the Swiss municipalities
at diffusive time t = 1. Top left to right: dissimilarities are respectively Dse, Dχ2

θ=1 , and (Dse +
Dχ2

θ=1 )/2, with f se as the reference weight. Bottom left to right: the resulting local indicators with
the same dissimilarities and reference weight f text. A large δi indicates strong and parallel feature
deviations between municipality i and its neighbours. The notable pattern differences between top
and bottom maps reveals the influence of the weight choice.

from topic modelling (see e.g. [5]) on N , yielding in turn membership probabilities (of
documents relatively to the topics), on which generalized "topic" chi-square dissimilarities
can again be computed.

Socio-economic and textual dissimilarities can be combined as mixtures λDse + (1− λ)Dtext,
where λ ∈ (0, 1), which are still squared Euclidean. They can serve at implementing soft
k-means clusterings detailed in [6, 7], and extended to textual content in [8].

3 Case study
We illustrate our general approach for spatial autocorrelation upon the n = 2251 Swiss
municipalities in 2016, exploring the balance between socio-economical and textual features.

Socio-economic dissimilarities of Swiss municipalities: the p = 6 socio-economical features
Xse bearing on sex, age, nationality and civil status of the permanent population (defining
the socio-economic weights fse), as well as the count of houses and buildings, constitute
census values provided by the FSO. After standardization, their corresponding chi-squared
dissimilarities contribute in equal parts to the overall socio-economic dissimilarity Dse =
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Figure 3 Spatial autocorrelation δ(t) of equation (1) measured for all Swiss municipalities,
at diffusive times t = 1, . . . , 99, for various dissimilarities, with weights f se proportional to the
population (left) and f text proportional to the number of terms (right).

(Dsex +Dage +Dnationality +Dcivil status +Dhouse +Dbuilding)/6 .

Textual dissimilarities of Swiss municipalities: for each municipality, we use the Wikipedia
pages obtained through the Federal Statistical Office (FSO) number. They are further geo-
referenced and textually pre-processed (see [8] for more details). Two dissimilarities will be
investigated (see section 2): Dχ2

k , resulting from topic modelling with k = 3, 9, 25 topics, and
Dχ2

θ , the generalized chi-squared dissimilarity on the original document-term matrix.

Combination of Socio-economic dissimilarities and Textual dissimilarities: the autocorre-
lation index δ(t) and its standardized value z(t) are depicted in figure 2 for differing diffusion
times t > 0, after preliminary choice of the weights f , well contrasted (figure 1), and whose
large influence on the analysis is apparent.

Figure 2 depicts the disparate values of the local indicators δi(t = 1), whose range is much
larger for the chi2 textual document-term dissimilarities under socio-economic weights, and
whose values can be negative, indicating a strong spatial contrast yet to be fully understood.
Finally, figure 3 depicts the contrasted behavior of δ(t) and z(t) for various diffusion times,
various dissimilarity choices, and for the two set of weights. Although differing by order of
magnitudes, the associated spatial autocorrelations are always significant at level 5% (that
is |z(t)| > u.95 = 1.96), with the exception of Dsex and Dage for f = ftext, and Dχ2

θ=1 for
f = fse, which loose their significance for t large.

The “spatial+feature” clustering. The “spatial+feature” clustering method introduced in
[6, 7] and extended to textual content in [8] attempts to create clusters containing nodes
both strongly connected (as in network clustering) and similar regarding their features (as
in distance-based clustering), and does so by running an iterative procedure, decreasing at
each step the free energy F [Z] (a generalized negative log-likelihood) of the soft membership
matrix Z = (zig), given the probability that region i belongs to group g = 1, . . . ,m. Starting
from an initial membership Z0, the iteration converges to a final membership Z∞, which
constitutes a local minimum of the free energy, and constitutes a generalized soft k-means
procedure (spherical Gaussian mixtures) taking into account the spatial configuration of the
objects to be clustered.

Figure 4 depicts the final clustering, made hard by assigning each region i to group
G[i] = arg maxg∈{1,...,m} z∞ig , with m = 9 groups. In all four cases, the initial membership Z0

GISc ience 2018
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Figure 4 Hard assignment of the final soft attribution Z∞ for all Swiss municipalities at diffusive
time t = 1, for m = 9 groups, and decrease of the free energy. Left: socio-economic dissimilarities
Dse with parameters β = 8, α = 0.1 (see [7, 8]), and weights f se (top) and f text (bottom). Right:
mixed dissimilarities (Dse +Dχ2

θ=1 )/2 with parameters β = 1.4, α = 0.1, and weights f se (top) and
f text (bottom).

consists of an official attribution of the n = 2251 Swiss municipalities in m = 9 urban-rural
categories, provided by FSO, and updated in 2017 [12].

In guise of conclusion. As illustrated by the case study, the proposed formalism sets up a
general methodology able to incorporate directly textual content in the characterization of
regions, on equal footing with more usual geographical information such as socio-economic
features. A crucial step is the systematic use of squared Euclidean dissimilarities, which
can be freely linearly combined. The regional weights can also be chosen as reflecting the
population or area regional importance; or, more originally, the regional textual importance –
a choice better adapted for e.g. destination image and impressions in tourism studies.
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Abstract
The increase of high-resolution spatial data and methodological developments in recent years has
enabled a detailed analysis of individuals’ experience in space and over time. However, despite
the increasing availability of data and technological advances, such individual-level analysis is not
always possible in practice because of its computing requirements. To overcome this limitation,
there has been a considerable amount of research on the use of high-performance, public cloud
computing platforms for spatial analysis and simulation. In this paper, we aim to evaluate the
efficiency of spatial analysis in cloud computing platforms. We compared the computing speed
for calculating the Moran’s I index between a local machine and spot instances on clouds, and
our results demonstrated that there could be significant improvements in terms of computing
time when the analysis was performed parallel on clouds.
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1 Introduction

The widespread use of social media and location-based services has produced a large amount
of geospatial data [4]. Much of these data are made up of point data, such as OpenStreetMap’s
PoI and geotagged Twitter posts. Therefore, spatial analysis on point-based data is also
widely used for practical and scientific purposes. Point data that involve millions of points
are becoming common, and they cause a problem of storage space and memory shortage
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Table 1 Test environments for the Moran’s I index.

Environment Processor Number of cores RAM

Local machine 3.4GHz 3 6GB
Spot instance (t2xlarge) 2.3GHz–2.4GHz 4 16GB
Spot instance (m44xlarge) 2.3GHz–2.4GHz 16 64GB

of the computer due to the data scale. There is certainly a need for a new approach for
analysing big geospatial data that are difficult to be handled by existing techniques [5].

Cloud computing is one of the alternatives for the analysis of big geospatial data. Many
attempts have been made to solve the problem using cloud computing platforms, as it can
provide a better analysis environment in terms of cost effectiveness, stability, and computing
efficiency. The use of cloud services for spatial analysis is cost effective, because it allows users
to lease hardware resources only when they are required. It can be more stable than running
own high-performance servers because the cloud computing service providers maintain and
manage the facilities. In this short paper, our purpose is to confirm the efficiency of spatial
data analysis in cloud computing platforms. To achieve this goal, we compare the time taken
for calculating the Moran’s I index on a local machine with those on virtual machines (or
spot instances). We use the statistical software R for the experiments, but due to the fact
that R utilises only one of the machines’ cores for its computation, the existing functions are
adjusted to make the calculation parallel.

2 Background

2.1 Cloud computing with R

Cloud computing is a term that encompasses the hardware and system software in the data
center that provide applications and services that are delivered as services over the Internet.
These services have long been called Software as a Service (SaaS), and data centers, hardware
and software are what we call the cloud. With the advent of cloud computing, developers are
free to increase capital expenditures and operational costs, and use unprecedented, low-cost,
resilient resources to deliver services [1].

Amazon Elastic Compute Cloud (EC2) is part of Amazon Web Services (AWS) and
provides virtual computing environments called instances. There are many different types
of instances available in EC2, each of which has a different combination of CPU, memory,
storage, and networking capacity. Users can choose an instance based on their purpose—
general purpose, computing optimisation, memory optimisation, accelerated computing, and
storage optimisation. The use of such cloud computing platforms can be more cost effective
than constructing a physical computing environment.

There are, however, limitations in using R on cloud services. Most cloud service providers
increase the computing performance of spot instances by increasing the number of cores.
However, since R can use only one core by default, the increasing number of cores on
instances does not affect the computing performance of spatial analysis. To illustrate this
point, we selected two spot instances from EC2 and compared the computing time between
the instances and between a local machine and them (Table 1).
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Table 2 Computing time for single-core and multi-core environments.

Environment Single-core (in seconds) Multi-core (in seconds)

Local machine 26342.72 12655.43
Spot instance (t2xlarge) 37503.21 11889.89
Spot instance (m44xlarge) 36976.54 6458.94

2.2 Parallel computing with R
There have been many attempts to solve the problems caused by the size of spatial data
in geography using the cloud platforms and parallel computing. Parallel computing is a
technique for decomposing and concurrently manipulating data, or concurrently executing
process components to complete a task [7]. A common method of parallel computing is to
decompose a data set into smaller units, distribute it to multiple operators, and then collect
and reconstruct the results after analysis [2].

In this work, we calculate the Moran’s I index using Monte Carlo simulations, and each
trial runs independently. This can be considered an application of embarrassingly-parallel,
which means no interactions or communications exist between the operations during the
parallel computing process [3]. We have modified the existing Moran’s I function in R using
the parallel package to enable this sort of parallel computing, and use it in each of the
described computing environments to compare the efficiency.

3 Methods and results

This paper uses Moran’s I to compare the computational efficiency of spatial analysis on
cloud services. Moran’s I is an index for describing spatial autocorrelation of point patterns
[6]. Theoretically, the range of Moran’s I is from -1 to 1, with positive autocorrelation closer
to 1, and negative autocorrelation closer to -1.

The Moran’s I index is calculated for hypothetical data that contain 300–500 sets of
coordinates and values. The coordinates and the values were generated from a uniform
distribution, and the number of repetitions in the Monte Carlo simulation was set to 1,000.
Each simulation was repeated 30 times. Table 2 presents the total computing time in each
environment, and Figure 1 shows how the average computing time changes with the number
of points (i.e., data size).

As shown in Table 2, the local machine took slightly over 26,000 seconds, while both spot
instances, t2xlarge and m44xlarge took about 37,000 seconds. In addition, m44xlarge
shows about four times more computational efficiency than t2xlarge in terms of catalog
performance. These results seem to be derived from the performance enhancements of
single-core and cloud computing services—a feature of R mentioned above.

On the other hand, in the case of parallel computing, it was confirmed that the computing
time using parallel computing is less than that of the local machine. Also, as the size of data
increases, the gap tends to increase more and more. However, when comparing t2xlarge
and m44xlarge, there is less difference compared to actual performance difference. This is
probably a problem of the parallel computing process. Parallel computing, when compared
to a single-core computing, requires at least two additional processes, distribution of data
and aggregation of results, and this might cause the difference in time.

Table 3 shows the minimum, mean, and maximum values for each environment, and it
indicatese a similar conclusion to that from Figure 1. When comparing the mean values, the
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Figure 1 Computing time by the number of points.

t2xlarge instance does not show a significant difference in the computing time with the
local machine, but the m44xlarge instance has shortened the time from 1.5 to 2 times for
the same number of points. However, when comparing the maximum values, the time taken
for analysis fluctuates, possibly due to the instability of the system. When the calculation is
repeatedly performed, the differences between the mean and the maximum values become
clearly apparent.

4 Conclusions

As we have demonstrated, the use of single-core programs for big data analysis is limited,
because it takes a considerable amount of time to operate or does not properly reflect the
evolving computing environment. In particular, spatial analysis using spatial data requires a
new approach, because the number of data increases and the computing resources required
for analysis increase exponentially. Therefore, the need for high-performance computing
technology that is capable of rapidly computing and processing large-scale data has begun
to be emphasised.

This paper attempts to verify cloud computing as an alternative method to solve the
above problems from the empirical point of view. Cloud computing platforms provide a
better analysis environment in three ways. First, it is more economical to lease the hardware
of the desired performance at the user’s desired time through cloud computing than to build
the high-performance resource at the initial cost. In general, users are tempted to perform
high-performance analysis because their computing resources are time-sensitive and their
replacement cycle is short. Second, cloud services meet the stability of analytics in the sense
that the service providers take the responsibility for maintaining and servicing data. Finally,



C. Choi et al. 24:5

Table 3 Computing time by the number of points.

Environment Number of points
300 400 500 600

Local machine
Max 0.94819 0.13022 0.16920 2.27118
Mean 0.74900 1.11907 1.53280 2.10250
Min 0.65706 0.92256 1.37751 1.86864

Spot instance (t2xlarge)
Max 0.73618 1.08571 1.51585 2.04415
Mean 0.72592 1.05769 1.49446 2.02816
Min 0.70898 1.04644 1.47618 2.01196

Spot instance (m44xlarge)
Max 0.61105 0.74626 0.92479 1.36301
Mean 0.50443 0.63304 0.77270 0.98782
Min 0.48263 0.60369 0.73902 0.94593

multi-core analysis on cloud computing platforms ensures the efficiency of analysis. In this
paper, we demonstrated that the time for calculating Moran’s I can be significantly improved
(i.e., reduced) when parallel computing is used on cloud services.

In this study, a parallel processing structure of SIMD (Single Instruction Stream) method
is used for the calculation. This means that the same operation is simultaneously performed
on the data set assigned to each operator. When using multiple instruction streams (MIMD),
different operations can be performed simultaneously on an allocated data set, resulting in
more efficiency in parallel computing. In the future, it will be possible to verify the most
effective approach to spatial analysis when various parallel processing structures are used.
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Abstract
This paper explores the usefulness of Twitter data to detect traffic events and their geographical
locations in India through machine learning and NLP. We develop a classification module that
can identify tweets relevant for traffic authorities with 0.80 recall accuracy using a Naive Bayes
classifier. The proposed model also handles vernacular geographical aspects while retrieving
place information from unstructured texts using a multi-layered georeferencing module. This
work shows Mumbai has a wide spread use of Twitter for traffic information dissemination with
substantial geographical information contributed by the users.
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1 Introduction

Retrieving geographical information pertaining to events is important for planning and
decision making processes, for instance in identifying locations that demand special attention.
With the emergence of user-generated content (UGC), it is now possible to detect various
urban events and their geographical locations more ubiquitously. Events may be related to,
for example, urban mobility [6], natural disasters [13, 3] or environmental conditions [17].
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UGC derived from social-media platforms are often unstructured and pose challenges if we
are to relate vague and ambiguous references in natural language to specific locations [7].
This paper introduces a framework to deal with such challenges while detecting traffic events
for managing urban resources and transportation infrastructure.

Currently traffic information is collected through static, and physical sensors e.g., loop
detectors or CCTV cameras installed at different locations in a city [8]. Since these sensors are
static, they provide limited spatial coverage and come with high installation and maintenance
costs. In order to address these issues, this paper leverages the concept of citizens as sensors
[5] where the citizens contribute information (in)voluntarily, which can be used to characterize
traffic events.

We use Twitter to both analyze traffic in real time and gain insights into patterns over
time. Our contributions are as follows.

Unlike previous works [6, 9] we leverage ungeotagged tweets to extract the locations of
traffic events through text analysis.
We assess the usefulness of UGC (e.g., Twitter) to detect traffic events in India where many
of the metro cities are highly congested [15] with limited physical traffic infrastructure.
We develop a hybrid multi-layered geoparser that can retrieve traffic event locations
from unstructured texts tweeted in India where place names are often mentioned in local
languages.

In Section 2 we briefly review the state of the art. Section 3 and 4 explain the framework and
its evaluation, before Sections 5 and 6 discuss some limitation of our approach and propose
directions for future work.

2 Related work

Twitter is a ubiquitous UGC source where people post information, reactions and opinions
about a vast array of topics [2]. In the past Twitter has been used to detect traffic events,
however, mostly identifying traffic related information from geotagged tweets. For example,
D’Andrea and colleagues developed a model that could detect traffic related tweets in real
time in Italy using Support Vector Machine (SVM) with an accuracy of 95.75% [1]. They
used a balanced data set with 665 instances each in training and testing. Kurniawan and
colleagues developed a real-time tweet classification model using geotagged tweets in order
to provide traffic related information in Indonesia [9]. Similarly Salas and others developed a
SVM based supervised model to detect incidents in London using Twitter data [14]. They
used a balanced data set for training and testing. In these papers traffic events and their
locations are assumed to be the location in the tweet metadata.

Wanichayapong and colleagues developed a model to classify tweets as traffic or non-traffic
related through syntactic analysis in Thailand. They also classified traffic related tweets in
point and link category depending on the location of the traffic events [16]. They achieved
76.85% accuracy for point category and 93.23% accuracy for link category. Gu and others
presented a real-time traffic incident detection model which was evaluated in Philadelphia
and Pittsburgh in the USA. They developed the model based on a semi-Naive Bayes classifier
and achieved 90.5% accuracy [6]. Since most of tweets are not explicitly georeferenced,
various models have been proposed to extract locations from tweet content and metadata
[4]. For example, Gelernter and Balaji proposed a hybrid model to georeference tweets in
New Zealand [4]. In a slightly different work Pereira and others used text analysis to predict
incident durations from the authoritative structured text [12].
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In this work we propose a model that goes beyond existing traffic detection models
that leverage geotagged tweets. Instead, we use ungeotagged tweets to understand traffic
conditions through a hybrid multi-layered geoparser (c.f [4]) by applying a mixture of spatial
rules and localized spatial references evaluated in Indian context.

3 Methodology

We propose a hierarchical model that can detect tweets relevant to traffic and then extract
spatial information from the tweet to provide more information about the traffic event. The
methodology is divided into three stages.

3.1 Data collection
To evaluate the model a data set has been collected in Mumbai 2 using a keyword traffic
from 1st January to 28th February, 2017. Manual annotation was performed to label whether
a tweet was related to traffic. Since all the tweets contain the keyword traffic, a number of
criteria were set during the annotation process. A tweet is labelled as a relevant tweet if
it contains information about a traffic event along with either a spatial reference (where)
or a temporal reference (when) or a cause (why). Through this process, 2614 tweets were
annotated over two months in Mumbai where the count of traffic related tweets was 755.
Another manual annotation was performed to extract the place names mentioned in the traffic
related tweets to use them as ground truth to evaluate the performance of the georeferencing
module (c.f Section 3.3). A tweet may have more than one place name. In that case all the
unique place names are annotated.

3.2 Tweet classification
After preprocessing (to eliminate emoticons and non-ASCII characters and trim white space
from tweet content) three different classifiers were tested. Those were rule-based (PART),
tree-based (Decision Tree (DT)), and a probabilistic classifier (Naive Bayes (NB)).

To create the features to train the classifiers the tweet text is converted to a numerical
form where each word is assigned a weight based on its term frequency-inverse document
frequency (tf-idf) as follows.

tf = Tt (1)

idf = log[N/(1 + Dt)] (2)

tf − idf = tf ∗ idf (3)

Where Tt is the total count of term ’t’ in tweet ’D’. ’N’ is the total number of tweets in
the corpus and Dt is the total number of tweets containing the term ’t’.

2 https://www.numbeo.com/traffic/rankings.jsp, last accessed April, 2018
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3.3 Georeferencing module
In the third stage a 3-tier tweet georeferencing module (GM) was developed that can retrieve
geographical information from the traffic relevant tweets. Initially a pre-trained supervised
geoparser e.g., StanfordNLP [11] was used (1st tier). However, due to lack of training on the
local data set (as in Mumbai) two more rule-based layers have been implemented. In the first
rule-based layer (2nd tier) if a token is a proper noun (NNP) or a common noun (NN) and if
it is preceded by a spatial preposition then the token is deemed to be a place name. We used
17 spatial prepositions e.g., towards, from, to, at, on, near. The second rule-based layer (3rd
tier) considers vernacular place names in Mumbai (e.g., naka: toll plaza, marg: road, bhavan:
building, chowpatty: fishermen’s colony) and various spatial object types in English (e.g.,
building, park, flyover). Any NNP or NN token that is followed by one of these vernacular
names or an object type is deemed to be a place name. We extracted 84 vernacular names
and object types.

Once the spatial references are retrieved place names are resolved by assigning coordinates
using OpenStreetmap (OSM). To disambiguate place names Maharashtra (the local state
name) was used as a spatial context (c.f [10]).

4 Evaluation and results

4.1 Detecting traffic related tweets
The models are evaluated using 3-fold cross validation. While detecting traffic related tweets,
a NB classifier performs best with 0.80 recall and 0.52 precision, while a rule-based model
(PART) yields 0.67 precision and 0.57 recall and the DT model gives precision 0.65 and recall
0.57. For non-traffic tweets a NB classifier yields 0.89 precision whereas a PART and DT
yield 0.88 and 0.87 recall respectively.

4.2 Performance of tweet georeferencing module
As the texts in tweets are often unstructured – involve abbreviation and typos, while
measuring the accuracy of georeferencing module, first a complete match was performed. If
the retrieved place name in tweetk does not completely match with any of the annotated
place names in the same tweet, then a fuzzy matching was performed. If the cosine similarity
(CoSim) between the retrieved place name and the annotated place name is greater than a
threshold (0.4) then the retrieved place name is considered as a true positive.

When using the StanfordNLP alone without the second and third tiers (rule base) over
two months of traffic related tweets, the georeferencing module yields precision of 0.60 and
recall 0.34. However, using all the tiers the georeferencing module yields 0.71 precision
and 0.61 recall. Using all the three tiers total 451 places are resolved from the retrieved
place names out of 767 resolved places from the annotated ones (Fig 1). As can be seen the
proposed model effectively retrieves locations that are subject to traffic events with 58.88%
places being successfully resolved (Fig 1).

5 Discussion

Currently the model uses tweets that contain only the keywords traffic, but in future more
keywords will be incorporated. The georeferencing module presented in this work sometimes
fails to detect place names consisting of two tokens followed by a vernacular name or object
type. For example, teen Haath Naka has been recognized as Haath Naka, which is detected
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Figure 1 (a) Locations of the traffic events resolved from correctly retrieved tweets i,e true
positives (tp) and location of annotated events that could not be retrieved i,e false negatives (fn);
(b) Retrieved locations of the traffic events that completely match with the annotated place names
(cm), fuzzy match (fm) and annotated places that could not be retrieved (nm) by the model.

Table 1 Spatial granularity in the text.

Tweet Place Type Geometry Type
@MumbaiPolice heavy traffic at bkc near
income tax office...

Building
(income tax office) Point

Traffic movement on S V Road at
Andheri and Jogeshwari is lot better today.

Road name (S V Road),
Region
(Andheri, Jogeshwari)

Polyline,
Polygon

through fuzzy matching. We also observed that people use geographical information at
different granularities while tweeting about traffic events (Table 1).

Similar to the earlier works while classifying the tweets, a k-fold cross validation has
been used to evaluate the tweet classification model over two months data. It has been
observed while tweeting people in Mumbai react in two ways, either they report or share
traffic events or they request respective authority (e.g., @MumbaiPolice) to resolve a traffic
issue. An extension of this work will investigate if the model performs equally well on a data
set collected separately in a different time period.

Although in this research a small number of tweets have been analyzed based on only a
single keyword, the approach is scalable and adaptive to more traffic related keywords and
more tweets. In terms of the size of the data set past studies have also showed promising
results with small data sets [1, 14]. The main focus of this paper was on detecting traffic
relevant tweets and their respective locations. However, it is also important to identify
the reasons behind the traffic events, which requires more complex syntactic and semantic
analysis of the text.

6 Conclusions

In this paper a traffic event detection model has been introduced. The model can be useful
both in real-time as well as in historical manner and can detect tweets relevant to traffic
authorities, urban planners and daily commuters to understand the traffic events and their
geographical locations both for short-term and long-term planning. In this research we showed
Twitter has potential for detecting traffic events in Indian cities if we build a georeferencing
model capable of dealing with unstructured, vague and vernacular text in natural language.
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An important limitation of our work is that India is a multi-lingual country and our analysis
focused on English. Nonetheless, vernacular terms are often used while communicating about
an event with a spatial reference in English. Here the implemented multi-layered geoparser
shows its effectiveness in resolving 58.88% of local places that are subject to have traffic
events, which was not possible using a pre-trained NER due to lack of local traffic related
corpora.

Future work will consider tweets with more traffic related keywords and explore temporal
patterns of tweeting behavior reacting to traffic events. Although the study is performed in
India, but the same approach can be useful to other places.
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Abstract
This paper extends previous work concerning intersection classification by including a new set of
statistics that enable to describe the structure of a city at a higher level of detail. Namely, we
suggest to analyze sequences of intersections of different types. We start with sequences of length
two and present a probabilistic model to derive statistics for longer sequences. We validate the
results by comparing them with real frequencies. Finally, we discuss how this work can contribute
to the generation of virtual cities as well as to spatial configuration search.
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1 Introduction

Modeling the structure of a city is a long-term goal in the GIScience community, as well as
in other communities such as Urban Planning, Transportation Planning, Civil Engineering,
and Spatial Cognition. Indeed, developing a formal model for describing the structure of a
city can be beneficial for a variety of scenarios. For example, to look for structurally similar
areas in different cities or different areas of the same city, to generate virtual look-alike cities
(i.e., virtual environments exposing a similar structure to a reference city), or to (re)design a
street network to minimize the probability of traffic congestion.

The structure of a city can be regarded as consisting of topological and metrical in-
formation. In this work we introduce an approach for capturing a topological aspect of the
structure that will be complemented in future work with distance and directional information
to obtain a complete structural representation.

In [8] a novel approach was introduced that approaches the problem by analyzing the
intersections making up the street network of a city. The paper presents a classification for
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intersections and introduces and formally defines so-called regular intersections that are used
as a baseline for comparing real intersections. The introduced model is utilized to derive
statistics about and compare four cities as well different districts of the same city.

We extend the previous work by introducing a novel metric for the representation of
urban structures. Building on top on the intersection data provided in [8] we draft a model
to predict sequences of consecutive intersections. We start by counting the occurrences of
sequences of two intersections and we present a probabilistic model to infer the frequencies
of longer sequences. We validate the model by comparing the inferred frequencies with real
data for sequences of 3 and 4 intersections.

Finally, we envision how this model can be used in future work to automatically generate
virtual look-alike environments that expose a similar structure with respect to a reference
city and to find structurally similar areas in different cities or in different parts of the same
city.

2 Related Work

While our work takes on different disciplines such as spatial cognition, network analysis,
graph theory, and space syntax, at the best of our knowledge this is a novel approach to the
problem of understanding the structure of a city.

Probably the most famous work about the analysis of urban spaces is the work from
Lynch [12]. In this work, Lynch analyzes properties of cities that affect the perceptual and
cognitive aspects. He argues that the environmental image of a city consists of three main
components: identity, structure, and meaning. The structure of a city is described as the
spatial relations occurring among the city objects as well as between those and the observer.

Spatial networks (see [1] for a detailed survey) are spatially embedded graphs representing
spatial features and connections among them. A typical example of spatial networks are street
networks where intersections are reported as nodes of the graph and street segments as its
edges. In [14] an open source toolbox for ArcGIS is introduced that allows for computing five
types of network centrality measures on spatial networks: reach, gravity index, betweenness,
closeness, and straightness (see [14] for details about these metrics).

Graph theory provides the mathematical foundation to topological analysis (see [4] for
an extensive discussion on the topic). Network analysis and other spatial studies typically
model the domain of investigation by means of a graph or a hypergraph and employ typical
graph properties (e.g., node degree, and reachability) and operations (e.g. shortest path,
connected components) to perform the necessary analyses.

Finally, space syntax [11, 10] is a set of theories aiming at identifying how urban structure
affects social structure. Theories of space syntax typically represent the urban space as
a graph, using different abstractions for nodes and edges. In simple terms, space syntax
approaches model spatial environments with a dual graph where nodes represent empty
space (e.g., streets in a street network) and edges represents some sort of connection among
them (e.g., intersections). One of the earliest approaches [11] to space syntax is based on
the concepts of axial line and convex space. However, it has been argued [2] that the lack
of formality in the original definition of these concepts does not allow for an automatic
generation of a so-called axial map. Another popular approach to space syntax resorts to
the concept of isovist: the set of all points visible from a given vantage point in space and
with respect to an environment [3].
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2.1 Types of Intersections
In [8] an intersection is classified according to two main metrics. First, the number n of
street segments stemming out of an intersections (i.e., its branches). An intersection with n
branches is called an n-way intersection.

Second, the angular arrangement of the branches of an n-way intersection In. This is
described as the angular distance ∆(In, Rn) between In and the corresponding regular n-way
intersection Rn: an intersection whose branches split a revolution (2π) into n equal angles,
each of width 2π

n . ∆(In, Rn) is the minimum sum of angles that we have to rotate the
branches of In to perfectly match Rn, while preserving the circular order of In’s branches.

Finally, intersections are classified according to the type of transportation mode they
allow. Path-intersections allow only for pedestrian transit; road-intersections are passable by
both pedestrians and cars; car-intersections only allow cars.

3 Predicting Route Sequences

3.1 Modeling
In [8] statistics about the intersections of a city have been derived: the type of intersections
(3-way, 4-way, ...) and their angular distance to the corresponding regular intersection.
Assume to represent the street network of a city as a graph G = (V,E) whose nodes V
represent intersections and whose edges E represent street segments among them. Then, the
type of an intersection denotes the degree of a node and the corresponding statistics provide
a first approximate description of the graph and, thus, of the city structure.

In order to fully characterize the city structure we shall compute more information. In
this paper we focus only on topological information. More specifically, we focus on the
prediction of intersection sequences as we route through the street network.

Say π =< t1, ..., tn > is the shortest path between two nodes in the graph, where ti
denotes the type of node that is traversed – i.e., its degree or branching factor – and (ti, ti+1)
is an edge of the graph – i.e., a street segment connecting two consecutive intersections.
So, for example π =< 3, 4, 5 > denotes a path starting at a 3-way node, passing through
another 4-way node and terminating in a 5-way node. We say that π is a sequence of three
consecutive intersections. In short we denote this as a 3-sequence of type [3,4,5]. Paths
can overlap but cannot be identical – i.e., two paths πi and πj can share proper sub-paths.
So, the number of paths starting at a node is equal to its degree. In this work we consider
undirected graphs – i.e., we do not account for traffic direction – and want to efficiently
compute the number of occurrences of n-sequences of any possible type [x1, x2, ..., xn].

Assume that we know the number of occurrences of 2-sequences of all possible types.
See Figure 1a for the transitional probabilities of the city of Vienna obtained by counting.
Then we can derive the statistics for all n-sequences with n > 2 by probabilistic reasoning.
Assume that P ([x1, x2]) is the probability that a 2-sequence of type [x1, x2] occurs. Such a
2-sequence can only be followed by another 2-sequence starting at a node with degree x2
– this is illustrated in Figure 1b. Then the probability P ([x1, x2, x3]) that a 3-sequence of
type [x1, x2, x3] occurs is equal to the probability that a 2-sequence of type [x1, x2] occurs
times the probability that a 2-sequence of type [x2, x3] occurs rescaled over the possible
2-sequences that start on a node of type x2. This can be generalized as follows:

P ([x1, x2, . . . , xn]) = P ([x1, x2]) ·
∏
i∈C

P (Si) + P (Si) ·

1−
∑
j∈Ai

P (Sj)

 (1)
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Figure 1 The left graph illustrates the transition probabilities (computed for the city of Vienna,
Austria) from one type of intersection to another. We omitted the transitions with zero probability.
The right figure illustrates an example where the probabilities have to be reassigned after the first
transition is known since the options to continue are constrained.

Table 1 Distribution of 2-sequences (a) and 3-sequences (b, c) of intersections.

(a) distribution of 2-sequences.

Type Count Percentage

[3,3] 3778 0.4243
[3,4] 1554 0.1745
[3,5] 131 0.0147
[3,6] 6 0.0006
[4,4] 1558 0.1749
[4,5] 83 0.0093
[4,6] 4 0.0004
[4,7] 3 0.0003
[5,5] 6 0.0006

Total count: 8904

(b) distribution of 3-sequences.

Type Count Percentage Predicted

[3,3,3] 3952 0.2525 0.2494
[3,3,4] 1404 0.0897 0.1026
[3,3,5] 121 0.0077 0.0086
[3,3,6] 4 0.0002 0.0003
[3,4,3] 1998 0.1276 0.0499
[3,4,4] 1550 0.0990 0.0501
[3,4,5] 98 0.0062 0.0026
[3,4,6] 2 0.0001 0.0001
[3,4,7] 2 0.0001 0.0001
[3,5,3] 234 0.0149 0.0004
[3,5,4] 146 0.0093 0.0002
[3,5,5] 13 0.0008 0.0002
[3,6,3] 12 0.0007 0.000001
[3,6,4] 11 0.0007 0.000001

Total count: 15650

(c) distribution of 3-sequences.

Type Count Percentage Predicted

[4,3,4] 693 0.0442 0.0422
[4,3,5] 58 0.0037 0.0035
[4,3,6] 2 0.0001 0.0001
[4,4,4] 1709 0.1092 0.0502
[4,4,5] 57 0.0036 0.0026
[4,4,6] 5 0.0003 0.0001
[4,4,7] 2 0.0001 0.0001
[4,5,4] 75 0.0047 0.0001
[4,5,5] 2 0.0001 0.00001
[4,6,4] 3 0.0001 0.0000004
[4,7,4] 5 0.0003 0.0000002
[5,3,5] 6 0.0003 0.0002
[5,4,5] 6 0.0003 0.0001
[6,4,6] 2 0.0001 0.0000003

Total count: 15650

where Si denotes a generic 2-sequence, C is the set of 2-sequences that have to be concatenated
to [x1, x2] to obtain the n-sequence [x1, x2, . . . , xn] and SB is the set of admissible 2-sequences
that can follow the generic i-sequence [x1, x2, . . . , xi]. We show in Section 3.2 that probabilistic
inference through the formula given in Equation 1 is reliable.

Since we can infer the probability of any n-sequence with n > 2, we only have to compute
the probabilities for 2-sequences. This can be done straightforwardly by checking all the
edges E in the graph. Since, in the worst case the number of edges is quadratic with the
number of vertices, this can be done in O(|V |2). In practice, since we are dealing with graphs
representing street networks we expect the number of edges to be much lower than that.

3.2 Validation
To validate the model presented in Section 3.1 we analyzed1 a subset of the OpenStreetMap2
dataset of the city of Vienna: districts 1, 3, 4, 5, 6, 7, 8, and 9 that, together, form a
connected region. More specifically, we used the intersection dataset computed in [8]. We
only considered intersections of type Road and we focused on pedestrian navigation (i.e., we

1 The analysis has been performed on a PostGIS database.
2 http://www.openstreetmap.org/

http://www.openstreetmap.org/
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Figure 2 Validation of predicted distributions computed with Equation 1 for intersection sequences
of length 3 (a) and 4 (b).

assumed that each street segment to be traversable in both directions).
We counted the occurrences of n-sequences of intersections, with n ∈ {2, 3, 4}. The result

of this operation for n = 2 (reported in Tables 1a) has been used in equation 1 to generate
predictions about the distribution of n-sequences of length n = 3 and n = 4. Note that,
since we assumed that each street segment is traversable in both directions, the results for
pairs [x, y] and [y, x] are the same and we only report them once. Tables 1b and 1c show the
prediction and the actual count for each type of 3-sequence. A graphical representation is
reported in Figure 2a. The results for the case of 4-sequences is only reported in graphical
form in Figure 2b.

3.3 Discussion and Outlook
The results produced by the introduced model look very promising (see Figure 2) and can be
already utilized for a variety of applications.

The data we derived can be put together in a graph representation. This would allow
for looking for structurally similar areas in different regions by applying graph matching
algorithm – e.g, the algorithms presented in [15] or in [6]. The first [15] is one of the
first algorithms conceived for subgraph isomorphism and is still today one of the most used
techniques. It enumerates all (sub)graph matchings employing a tree search with backtracking
and forward checking. It basically creates the matching incrementally; at each step it tries
to match a new node. If the matching fails it backtracks to the last matched subgraph. The
forward checking is used to prune the search space by looking at node adjacency. The more
recent algorithm presented in [6] is based on a depth-first search strategy, also employing
a set of forward-checking rules to prune the search space. For a survey on graph-matching
techniques, please refer [5].

We plan to extend the work presented in this paper by also including spatial relations
and semantics. The former include other quantitative measurements such as the angles
formed by consecutive intersections (as already computed in [8]) or the distance between
two intersections. Similarly, one can also include qualitative spatial relations such as relative
direction, orientation, and visibility as done, for example, in [9].

Semantics can be included in different ways. For example, one may extend the model by
considering not only intersections but also point of interests of a given types (e.g., recreational
and sightseeing features). Extending the representation in such a way would allow for semantic
similarity analysis and search among different regions.
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We argue that the statistics derived in this paper, extended with more information as
described in the paragraphs above, provide the base for the generation of virtual look-alike
environments. The idea is that of incrementally generating a (mostly3) planar graph that fits
to the different statistics that we generated: intersection type (3-way, 4-way,...) and shape
(angular distance to regular intersections), length of intersection sequences (2-sequences,
3-sequences,...) and type of intersection sequences (3-3, 3-4, ...). A simple solution would
be to resort to a brute-force procedure that deploys in the plane a number of intersections
of type 3-way, 4-way, and so on according to the given statistics and then tries all possible
combination of connecting those. Clearly, this is computationally very expensive and may
become unfeasible already for small graphs. More feasible approaches would resort to the
adaptation of random graph generation techniques [7, 13]. These techniques are capable of
generating a graph uniformly at random, so they have to be adapted to fit the statistical
distributions derived with our model.
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Abstract
We propose a variation of the conventional spatial multi-criteria evaluation workflow for suitability
analysis that allows efficient on-the fly scenario development for decision-making. Our approach
proposes to reconstruct the conventional MCE workflow in order to exclude computationally
expensive geoprocessing from the iterative scenario development. We then introduce a procedure
that replaces costly iterations of spatial operations with one off-line preprocessing step followed by
iterations of much less computationally expensive database queries. We illustrate our approach for
deconstructed and inverted multi-criteria analysis with a case study aiming at selecting suitable
sites for wind turbines in the Swiss alps.
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1 Introduction

Spatial multi-criteria evaluation (MCE) is a formalized procedure for spatial decision prob-
lems [7], and represents one of the key applications of GIS. MCE applications include land
suitability evaluation [4] or selecting suitable sites for wind farms [6]. Many of these applica-
tions have contributed to the GIScience theory by introducing computational techniques for
improving the MCE workflow, proposing optimization approaches, performing sensitivity
studies, handling uncertainties, as well as visualizing multi-faceted MCE results [3, 8, 2].

MCE is typically data-rich and computationally expensive, which can make it impractical
for decision-making processes requiring iterative scenario development. Therefore we propose
a variation of the conventional MCE that specifically aims at optimizing the workflow in such
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a way that decision makers can exploit the full depth of MCE results for efficient on-the fly
scenario development. We achieve this by (a) proposing a deconstructed and rearranged MCE
workflow where computationally expensive steps can be precomputed and hence excluded
from the interactive and iterative scenario development, and (b) proposing a procedure for
inverse criteria evaluation that reduces the computational costs for adjusting MCE criteria
in scenario development to a feasible minimum. The work emerges from an applied research
project on selecting suitable sites for wind turbines in the Swiss Alps.

Conventional MCE typically follows a standardized workflow (Figure 1): selecting the
criteria (e.g. “not within a given distance to power lines”), defining a model for translating
them into spatial relations (line buffer with radius bl), parameterizing the criteria (bl < 110m),
computing the respective spatial operations, standardizing and weighting the value scores (0
or 1 for not-suitable/suitable), aggregating the value scores (overlay operation), and finally
interpret and validate the results, e.g. using sensitivity analysis [8]. There are several types
of spatial criteria in MCE. Many criteria valuate locations by spatial properties, e.g. slope or
soil type. This paper, however, focuses on criteria that valuate locations by properties of
their neighborhoods. This is typically done with some form of a distance relation expressed
by a buffer, e.g. “within 200m of a main road”. The latter type of criteria can then further
be separated into selection (“suitable locations must be within 200m of a main road”) and
exclusion criteria (“suitable location must not be within 150m of a power line”).

MCE is primarily a planning and decision-making tool, so not surprisingly, participatory
concepts are increasingly used [5, 9]. The input of decision makers is also required when
potentially conflicting interests have to be balanced in multi-objective evaluation [8]. At the
same time, MCE is typically data-rich, which means it requires time-consuming computing
and produces a wealth of data. These two aspects both hinder interactive decision-making
[4]. The adjustment of a single parameter of a neighborhood criterion (e.g. increasing the
exclusion distance to power lines from 110m to 150m) may trigger costly recomputing of
spatial buffers and overlay operations. Under such conditions, efficient on-the-fly scenario
development for decision-making is challenging.

The overarching objective of our work is developing a MCE workflow for neighborhood
criteria that allows for fast and simple on-the-fly scenario development for interactive planning
sessions with decision makers or for on-line decision-making tools. This leads to the following
research question: How can the conventional MCE workflow be modified such that adjusting
criteria parameters does not require computationally expensive spatial operations?

2 Deconstructed and inverted MCE (di-MCE)

We propose a variation of the classic MCE workflow based on two key ideas. First, we
deconstruct the MCE procedure into its constituent operations and re-assemble them in such
a way that fast and efficient scenario development becomes feasible. For those operations that
have to be repeated frequently in scenario development, we propose secondly a procedure
that inverts the perspective of the spatial criteria evaluation. Costly spatial operations are
precomputed and for the scenario development phase replaced by more efficient SQL queries.
We subsequently refer to deconstructed and inverted MCE, in short di-MCE.
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Figure 1 Comparison of conventional MCE with di-MCE. In the conventional case, the iteration
loop for scenario development includes adjusting criteria parameters and recomputing the criteria,
which can be costly and impractical. di-MCE, instead, suggests re-assembling the workflow such
that computationally expensive steps are excluded and outside the decision-making iteration loop.

Deconstructing MCE. The idea of deconstructing1 the MCE workflow lies in disaggregating
the data analysis process into its constituent steps and excluding the computationally
expensive steps from the iterative scenario development phase. In our experience, most MCE
studies feature some criteria that are more spatially restricting than others and most often
also non-negotiable. These could, for example, be a maximal slope or a minimal wind speed
for positioning a wind turbine. We hence propose analyzing the complete set of criteria
and isolating those that most reduce the resulting suitable space. Instead of including the
entire set of criteria into the scenario development iterations, we propose precomputing such
restrictive criteria and thereby excluding them from scenario development (Figure 1). Note
that in di-MCE the computationally expensive evaluation of restrictive criteria is excluded
from the iterative scenario development loop. This results in two MCE phases, where the
first (off-line) phase results in the intermediate result of the potentially suitable space (Spot).
Ideally, Spot only covers a small fraction of the entire study area (Figure 2). For Spot we then
propose an inverse criteria evaluation approach, where the computationally expensive steps
can again be precomputed, and separated from the interactive and iterative decision-making.

Inverse criteria evaluation. Neighborhood criteria in conventional MCE typically focus on
the spatial features that support or limit the suitability of the solution space. That means,
suitability criteria are implemented using buffers that expand from supporting or limiting
features (note the direction of the arrows in the left Figure 2). We propose inverting the
perspective and focusing instead on Spot identified in the previous step, and then evaluating
spatial relations directed towards the supporting or limiting features (now note the opposite
direction of the arrows in the right Figure 2).

Allowing for this inverse perspective, we tessellate the Spot and for each tessellated unit
compute a nearest neighbor distance d to the nearest feature of every remaining criterion.
Note that for simplicity we chose a regular raster data structure for tessellating Spot, resulting
in candidate cells ci. However, our approach also works for irregularly tessellated spaces,
e.g., based on land-use parcels. This step translates the topological relation (“within buffer
of width b”) into a numeric attribute of a candidate cell. Again, for simplicity, we focus so
far on simple distance relations to supporting or limiting features, acknowledging that more
complex distance functions could be used.

1 The term deconstructed is inspired from cookery, proposing the deconstruction of classics, e.g. as in
“Deconstructed Pavlova”, the antipodean pastry classic.
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Figure 2 Conventional MCE adds distance buffers to points (p), lines (l), and areal features
(a) with buffer parameters bp, bl, and ba, resulting in the overall suitable area Ssuit (dark grey).
di-MCE precomputes distances (d(p,n), d(l,n), and d(a,n)) from Spot – tesselated into candidate cells
ci – to the nearest point, line, or area. In the example, c1 is suitable, but c2 is not. Crisp buffers
can be dissolved into vague criteria.

Combining all computed distances for all spatial units of Spot results in the cell attribute
table (CAT). In unfavorable criteria constellations, this transformation can be computationally
expensive. However, the distances have to be computed only once, which can be done in
advance. The inversion transforms the structure of intermediate MCE results. The spatial
criteria do no longer come in the form of buffer vector data or raster cost-surfaces, but as
numeric data in a table. This in turn means, that adjusting parameters does not require
costly recomputing of geoprocessing operations (such as buffer, overlay, or map algebra
operations) but only adjusting SQL queries on attribute tables. In short, we precompute the
computationally expensive spatial operations for all candidate cells and then make use of
SQL queries for the final site selection in the iterative scenario development – the dark grey
cells in Figure 2. Going back to Figure 1 the deconstruction idea becomes evident again. The
computationally expensive calculation of the distances is precomputed and hence excluded
from the scenario development. Hence, the parametrization of all negotiable criteria can
happen after the costly spatial processing.

The inversion furthermore allows for an efficient inclusion of multi-criteria trade-offs and
vagueness. First, the balancing of objectives, even conflicting objectives, can be implemented
into CAT queries, using sophisticated SQL functions combining multiple attributes. The
nearest neighbor distance values in the CAT secondly allow also for a straightforward inclusion
of vagueness into criteria evaluation. Membership functions can be applied to nearest neighbor
distances, dissolving unrealistically crisp buffer boundaries into gradual memberships.

3 Case study: Positioning wind turbines

We illustrate our approach with the very research project that highlighted to us the short-
comings of conventional MCE. The study aimed at finding suitable areas for positioning wind
turbines in a region of the Swiss alps. The criteria covered technical requirements (maximal
slope, accessibility for construction), economic requirements (e.g. minimal wind speed of 4.5
m
s ), and a set of regulatory requirements given through a federal guideline [1]. A subset of
the approximately 50 criteria and their parameterization for two types of wind turbines T1
and T2 is given in Table 1. Note that most criteria are of the neighborhood type.
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ID slope wind forest protArea mainRoad minorRoad railway powerLine buildings settlement b.vague suitKat
240 10.0 58.4 106.2 463.3 129.4 302.7 131.4 177.2 142.4 303.4 1.00 S2
241 10.0 58.4 130.9 480.9 105.3 306.5 155.6 200.8 117.4 306.2 1.00 S2
242 11.0 58.4 155.6 498.6 81.2 312.3 179.8 223.9 92.4 309.3 1.00 S2
243 12.0 58.4 180.2 516.3 57.2 319.9 204.0 247.0 67.5 314.2 0.85 S2
244 13.0 61.0 204.9 534.0 33.1 311.5 228.3 270.4 42.5 321.0 0.35 N
245 12.0 61.0 229.6 552.0 9.1 290.0 252.5 294.1 17.9 329.5 0.00 N
246 11.0 61.0 254.4 570.6 -9999.0 269.1 276.5 317.8 -9999.0 339.7 0.00 N
247 11.0 61.0 259.0 589.6 2.1 249.0 300.5 340.8 -9999.0 351.3 0.00 N
248 11.0 63.0 235.7 609.1 26.1 229.9 324.6 364.0 8.7 364.3 0.00 N
249 12.0 63.0 212.7 628.6 50.2 211.9 348.6 386.9 33.7 378.5 0.17 N
250 12.0 63.0 190.2 648.1 74.2 195.5 372.7 409.7 41.6 393.8 0.33 N
251 11.0 63.0 168.3 634.3 98.3 181.1 396.7 432.7 41.3 410.1 0.33 N
252 12.0 64.5 147.5 610.7 122.3 169.1 420.5 455.9 45.7 427.1 0.41 N
253 11.0 64.5 128.2 587.2 146.4 160.1 444.4 479.3 60.0 445.0 0.70 S1

Figure 3 Excerpt from the results of the wind turbine project. The map features a number of
spatial layers required for evaluating the suitability criteria, e.g. streets (black), railways (red),
settlement areas (grey), and buildings (black). For a small horizontal transect of cells c240 to c253

the computed nearest neighbor distances dnn are displayed in the cell attribute table below. Note,
-9999.0 as in c246 codes the case when the candidate cell touches the feature (e.g. mainRoad).

Table 1 Eight out of approx. 50 criteria for positioning two types of wind turbines T1 and T2.

Criterion T1 T2 Criterion T1 T2

forest not within not within mainRoad d > 17 d > 33
protArea not within not within minorRoad d > 17 d > 33
buildings d > 50 d > 50 railway d > 17 d > 33
settlement d > 100 d > 100 powerLine d > 110 d > 190

The available wind field, a slope threshold and an accessibility criterion were identified
as restricting criteria and consequently used for computing the potentially suitable space
(Spot). The map in Figure 3 illustrates a small space depicting a subset of all criteria (streets,
railways, settlement areas, building, forest) as well as the precomputed potentially suitable
space (Spot). In correspondence with Figure 2 (Spot) was tesselated into 25m ∗ 25m cells,
the blue layer in the background indicates the areas with enough wind. Finally, the overall
suitable area Ssuit is depicted with orange and green cells (suitability categories S1 and S2).

The map also features a short transect of candidate cells c240 to c253 for which the table
below the map shows a subset of the CAT. Whereas for slope and wind the actual values
of the respective field variable are given (which were used for computing (Spot), all other
attributes are nearest neighbor distances dnn to supporting or limiting spatial features. The
last two columns illustrate the use of vagueness and the final suitability category. The
distances in the table can now be directly compared with the criteria parameters in Table 1.

The case study can illustrate the advantages of di-MCE. Consider the criterion “sites for
wind turbines must not be within a defined distance to power lines”. This parameter is clearly
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a function of the size of the turbine, Table 1 indicates d > 110m for the smaller type T1, and
d > 190 for the larger T2. Assuming the scenario for a new turbine type of intermediate
size, the suitability for each candidate cell can easily be recalculated from the precomputed
distance value in the CAT, without costly repetition of spatial operations. The column
b.vague in Figure 3 finally illustrates the inclusion of vagueness. To this end, the criterion
“distance to buildings” has been dissolved into a vagueness value using a membership function
(0 for db < 25, 1 for db > 75, and a linear function in between).

4 Discussion and conclusions

The goal of our work is re-structuring the MCE workflow in such a way that on-the-fly
scenario development becomes feasible. This explicitly does not mean reducing the overall
computing load of MCE. Depending on the criteria constellation, the proposed inverse criteria
evaluation may even add to the overall computation cost. However, with our deconstructed
and re-assembled workflow, the crucial step of adjusting criteria parameters appears in
the sequence of operations after the costly spatial operations, making iterative scenario
development perfectly feasible. Replacing spatial operations on vector or raster data with
queries on attribute tables offers the additional benefit of the straightforward integration
of vague criteria and the balancing of conflicting objectives. Once the nearest neighbor
distances are computed, SQL queries allow for very flexible transformation and combination
of multiple criteria.

Our approach is most suited for MCE projects with (i) frequent stakeholder interaction, (ii)
a set of criteria with one or two criteria being rather restrictive and non-negotiable, and (iii)
a predominant use of distance-based neighborhood criteria. In our wind turbine site selection
case study all three preliminaries were given. We argue, however, that the majority of MCE
studies comply with at least some of these preliminaries, hence offering at least partially to
benefit from the advantages of di-MCE. In the wind turbine case study we only considered
simple distance-based nearest neighbor criteria. More complex neighborhood functions could
be conceptualized and implemented within di-MCE. We are currently working on more
complex neighborhood functions, comparable to focal and zonal map algebra operations (e.g.
%-forest cover within distance d around a candidate cell).
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Abstract
Providing personalized information on the accessibility of urban places for people with disabilities
can significantly increase their social participation. This information should be adapted with
respect to their needs at the specific time and space. Location-based technologies are considered
as proper services to provide such information and encourage mobility of these people in urban
areas. However, generally these services focus on the spatial conditions of the accessibility and
ignore users’ capabilities and time dependent constraints. This is much more challenging for
people with disabilities given the diversity of their physical capabilities and preferences. To
address this issue, we propose an approach to measure the space-time accessibility of urban
areas considering environmental characteristics, users’ capabilities, and time constraints. The
proposed approach is unique and it highlights time constraint that is rooted in time geography
theory. Unlike the classical time geography, which suggests a uniform travel velocity, we consider
a variable travel velocity in the proposed approach, which is more relevant to the mobility of
people with disabilities. To implement the proposed method, a Fuzzy approach is applied to
evaluate the wheelchair speeds for the segments of a pedestrian network. The proposed approach
is implemented in Saint-Roch, Quebec City for a case study and the results are presented and
discussed.
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1 Introduction

The last two decades have seen a growing trend towards the space-time accessibility measures
that allow geo-visualization of human activity patterns and evaluation of the accessibility for
people through space and time [10]. Spatial accessibility is the result of interaction between
the individual and the environment [2]. For people with disabilities, this is significant as it
is in accordance with the definition of the handicap process; a path can be accessible for
some while it can be inaccessible for others even if the environment is the same. People
with disabilities schedule their activities considering not only spatial conditions but also
temporal constraints as well as their capabilities. Hence, in order to assess the accessibility
of urban areas, three main elements including environmental factors, personal factors, and
the individual travel time budget should be taken into account (Figure 1).
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Figure 1 The main elements of space-time accessibility measure.

Figure 2 Time geographical concepts [10].

Time-geography concepts introduced by [3] are efficient tools to model the participation
of people with different capabilities through space and time. Although this theory has a
conceptual attraction and strength, very few studies have been reported on its applicability
for the real world situations. This is mainly because of the difficulties of the abstraction,
modeling and implementation of the real world complexities into the GIS [6]. Time geography
theory relies on the concepts such as space-time prism, space-time paths, and potential
path areas. The space–time prism is the package of all possible space–time paths between
specified locations and times, which emphasizes on the individual ability to participate in
the activities. The spatial footprint of the space-time prism is the potential path area, which
is the geometric region in the space that is accessible for a moving object (for more details
please refer to [8]). These concepts are visualized in Figure 2. As shown in this figure,
the classical time-geography concepts suggest a uniform travel velocity, which is does not
represent all the complexities of the real-world situation. For example, the travel velocity of
people with disabilities and specifically wheelchair users mostly confined to the characteristics
of the environment (e.g. surface quality) and their capabilities. Indeed, the accessibility level
of segment (ALS), the wheelchair speed (WS), and ultimately the needed travel time (TT) of
segments change from an individual to others. Therefore, these principles should be adapted
for visualizing the potential travel areas (PTA) of wheelchair users. In this paper, the notion
of travel area is used for an area representing a set of points reachable for a wheelchair
user within a specified time, which corresponds to the potential path of traditional time
geography.Although in recent years few authors have slightly adapted the time geography
concepts to make it more suitable for the reflection of real-world situations [4, 5, 11, 10, 9, 7],
no researches took into account the capability of people with disabilities to generate them
PTA at the specified time budget. In order to address this issue, we aim to generate such
areas considering time intervals for traveling of manual wheelchair users.

Following the introduction section, the paper begins with elaborating the proposed
methodology in section 2. Section 3 explains the assessment of spatial accessibility of
pedestrian network, which is the central part of the space-time accessibility measure process.
In section 4, we employ the proposed methodology in the study area for two wheelchair
users who have different level of capabilities. In this part, the spatial accessibility maps and
the potential travel area through the time intervals are generated. The paper is included in
section 5.
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Figure 3 An overview of the proposed methodology.

2 Methodology

In reality, the WS -specially the speed of manual wheelchairs - depends on both the char-
acteristics of the path (e.g. the surface quality and the slope) and the user capabilities.
This principle should be reflected in the space-time accessibility evaluation process. Indeed,
to measure the space-time accessibility, three fundamental data are required including (1)
the characteristics of the travel environment; (2) the user capabilities regarding different
characteristics of the environment; and (3) the WS of different ALS. In this paper, we propose
a framework to measure the space-time accessibility of urban areas for manual wheelchair
users. To fulfill the proposed methodology, first, we calculate the spatial ALS in the given
network (i.e. study area) based on the user capabilities. To evaluate the user capabilities,
the perceived ability (i.e. confidence) of a person is measured while performing a given task.
Indeed, the user confidence is identified as a stronger predictor of performance than the skill
itself [12]. The spatial ALS is evaluated for segments of pedestrian network by aggregating
the user confidences with respect to different characteristics of the segments. To realize,
If-Then rules approach in a fuzzy environment is employed. The details of this process are
given in the following section. Following that, the WS of network’s segments are calculated
based on the calculated ALSs (i.e WS = f(ALS)). Finally, the TTs and consequently the
PTAs are generated within the different time intervals. Figure 3 depicts the overview of the
proposed methodology.

3 Evaluation of the spatial accessibility as the fundamental part of
the methodology

In order to evaluate the spatial ALS, a cost value for a segment representing the ALS should
be calculated. This value is computed by aggregating the user confidences with respect to the
different properties of that segment. These properties are mostly determined by crisp values
such 5% as the slope of a segment. However, in many cases the precise quantitative values
are often inadequate to describing real-life situations and people use a more qualitative way
to characterize environmental factors that affect mobility (e.g. narrow sidewalks). In our
study, the fuzzy logic approach [13] is utilized to meet these requirements. To carry out the
fuzzy logic approach, first, the transformation from the crisp values into a non-crisp fuzzy
environment is conducted. This process is called fuzzification, which is performed by defining
membership functions. A membership function is a mathematical function which maps the
association of a value to a set between 0 and 1. Thus, the values of the segments’ properties
are transferred into fuzzy set classes using predefined membership functions [1]. Following
the fuzzification process, the user confidence values should be associated to the defined fuzzy
subsets. For example, high level of confidence might be associated to the gentle slope. In this
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Figure 4 The spatial accessibility map for an individual.

paper, five fuzzy sets are considered to indicate the user’s confidence level including Very
Low (VL), Low (L), Medium (M), High (H), and Very High (VH). These values are measured
regarding three characteristics of the network’s segments including Slope (S), Width (W),
and Surface Quality (SuQ). The If-Then rules are subsequently defined to aggregate the user
confidences and, consequently, calculate the ALS as the output variable. For example:

If(theS.ConisV L)and(theSuQ.ConisL)Then(thesegmentisNA)
where S.Con refers to the user confidence with respect to slope values and SuQ.Con refers

to the the user confidence with respect to the surface quality values of a segment. Once
the rules are defined and the aggregation step is performed, the ALS can be derived. To
realize, a defuzzification technique is applied to produce exact numerical values from the
fuzzy values based on the defined membership functions and defined rules. The output values
are determined the ALS through four categories of Not Accessible (NA), Low Accessible
(LA), Accessible (A), and Very Accessible (VA).

4 Experiments and results

Following the evaluation of the spatial ALS, The proposed methodology calculates the WS,
TT, and ultimately PTA. This process is simulated for an individual who wants to travel
within Saint-Roch, Quebec City. The required inputs including a graph of pedestrian network
-containing nodes, edges, and their attribute tables- is collected from several data sources
including collections of Ville de Québec, 2015 and web portal of Ville de Québec (i.e. S, W,
SeL, and SuQ). The confidence values regarding different parameters of network (Table 1),
and the WS-ALS function as s-functions (Figure 5) are simulated.The evaluation of the spatial
ALS is carried out using the fuzzy approach for a part of study area. The results of this step are
visualized as accessibility map in a web-based GIS tool, which is called MobiliSIG (Figure 4).
Following this, the WSs for each segment based on their spatial ALS are extracted from the
defined functions and ultimately the TTs of each segment for each subject are calculated.
In other words, the extracted values of WSs from ALS-WS functions are used to calculate
the required time for each segment (i.e.Time = f(SegmentLength, Wheelchairspeed)). The
travel times are used as the weights of segments to calculate the time of network vertices.
Figure 6 shows a simulation of ALS-WS function an individual. To understand the whole
process, we illustrate the input and output data for couple of segments shown by Table 2.

Finally, the potential travel areas is generated from a given origin using the time geography
concepts, which contains fundamental information about the overall directionality of the



A. Gharebaghi and M.A. Mostafavi 28:5

Table 1 The confidence values regarding different parameters of network.

# Slope Width Surface Quality
Segment Attribute Gentle Moderate Steep Narrow Moderate Wide Good Fair Poor
User Confidence 90 65 20 15 70 100 90 60 35

Figure 5 A simulation of ALS-WS function.

Table 2 The input and results for couple of segment examples.

Segment Id 1 2 3 4 5 6 7 8

Input Segment Attribute

Length (m) 100 250 50 200 150 150 50 100
S (%) 3 8 -2 4 3 2 -7 -4
W (m) 1.5 1 2 1.5 15 1.5 1.3 1.7
SuQ Good Bad Good Fair Fair Good Bad Fair

Results
ALS 0.8 0.25 0.85 0.5 0.68 0.68 0.35 0.7
WS (m/s) 2.4 0.75 2.55 1.5 2.04 2.04 1.05 2.1
TT (min) 0.7 5.6 0.3 2.2 1.2 1.2 0.8 0.8

Figure 6 The potential travel area for a wheelchair user in 5s time intervals.

network and are useful for the assessment of space – time accessibility (Figure 6). In this
figure, a network potential travel area is calculated in 5s time intervals. The contour lines
indicate the feasible traveling parts of network in the time intervals. This knowledge on
time-space accessibility would provide insights on how wheelchair users can schedule their
daily activities using accessible paths and in the given time budget.

5 Conclusion

In this paper, we proposed an approach to measure the space-time accessibility of urban areas
for manual wheelchair users. The originality of the method is in its focus on the people with
limited mobility while considering time constraints. The approach was carried out in two
steps including spatial accessibility evaluation of the pedestrian network segments, and the
travel time evaluation of the segments. To perform the first step, we accounted the segments’
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properties (i.e. the slope, the width, and the surface quality) and the users’ confidences. In
this process, we were benefited from the fuzzy logic approach and defined the if-then rules
to aggregate the users’ confidences regarding the segments’ properties. Then, the required
travel time was evaluated based on the spatial accessibility levels of segments. The process
was carried out for each segment employing the time geography theory. Unlike the classical
time geography concepts, we considered the variable travel speeds for the manual wheelchairs.
Finally the spatial accessibility map and the potential travel areas in the different time
intervals were generated. The process was implemented in our study area – Saint-Roch,
Quebec City – for a case study.The achievements of this research would be employed in the
location-based services designed for people with disabilities to provide insights on how these
people schedule their daily activities by accessible paths and in their time budget.
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Abstract
The characterization of urban structures using morphological indicators is the subject of many
applications in the domains of urban planning and transport, but also in less traditional discip-
lines, such as urban archeology. When reading actual urban plans, it may be possible to identify
relics of ancient cities, and to characterize them with the help of appropriate indicators. In this
context, we propose a method for the characterization of the spacing between urban elements
based on the analysis of their spatial periodicity. The purpose of this method is to detect specific
distances in the actual urban structure, potentially characteristic of ancient measurement units.
This method is implemented in a GIS software, to facilitate its use by historians and archeologists,
and is illustrated by an application on the ancient roman city of Amida (Diyarbakir, Turkey).
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1 Introduction

The characterization of urban morphology has been the subject of many contributions over
the last 50 years. Numerous indicators have been proposed in different fields of application
to characterize urban structures, based on the analysis of their constituent elements (e.g.
road networks, or buildings). For example, in the domains of urban planning and transports,
several indicators have been developed to characterize urban networks [4] [2]. In the field of
cartography, indicators have also been proposed to orchestrate operations of cartographic
generalization according to specific urban patterns [5]. If lots of indicators are available, some
authors [6] consider that many of them are not appropriate to characterize urban structures,
especially because they are not expressed in spatial units, which can be problematic in terms
of interpretation or comparison between cities. In the domain of urban archeology, the use of
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indicators easily interpretable is an issue to characterize ancient urban structures. In this
article, we propose a method for the characterization of urban structures based on the analysis
of the spatial periodicity of urban elements in a particular orientation. The proposed method
aims at determining specific spacings between urban elements (or topographic elements
considered as a limit), potentially characteristic of ancient measurement units, which provide
evidences of the persistence of ancient urban structures in the actual city plan. The proposed
method, implemented in a GIS software, is applied on the city plan of Diyarbakir, to reveal
and characterize relics of the ancient roman city of Amida.

2 Spatial periodicity analysis methods

The analysis of the distances between urban elements can provide pertinent information to
characterize actual or ancient urban structures. For example, indicators of urban morphology
can be constructed using the average distance between intersected streets along a road. In
this article, we focus on the analysis of the most occurrent spacing between urban elements
in a given orientation. These urban elements are not necessarily streets, but they can also
be building walls or cadastral boundaries for example. To determine the most occurrent
spacing between urban elements, the proposed methodology is established in two steps: (1)
definition of a reference orientation of the studied urban elements, (2) analysis of the spatial
periodicity of the elements inscribed in the specified orientation.

2.1 Orientation of urban elements
The definition of the orientation of geographic features can be a difficult task according to
the geometric primitives and the level of complexity of the analysis. Indeed, for polylines,
the orientation is generally defined according to the azimuth inscribed between the first and
the last vertex of the geometry. However, in particular configurations, this simple definition
of orientation does not necessarily reflect the heterogeneity of internal orientations of the
polyline, which may be indicative of underlying urban structures. For polygons, the definition
of the orientation is more complex and several measures can be proposed to determine it [3].
For example, the orientation of buildings can be defined using the longest side of the polygon,
or the smallest bounding box. As a consequence, these different definitions of orientation
can also generate inconsistencies for complex shapes. To overcome these problems for the
definition of the orientation of urban elements, we propose to perform a disaggregation of
polyline and polygon geometries into a set of segments, whose orientations will be measured
separately. Once the geometry of urban elements is disaggragated into a set of segments,
a selection of the segments following a particular orientation is performed. The reference
orientation is computed with an angular tolerance, generally between 1° and 2°.

2.2 Analysis of spatial periodicity using the “paper band” method
When the orientation is defined, the most occurrent spacing between elements of a urban
structure is determined by analyzing the spatial periodicity using the so-called “paper band”
method. This method derives its name from the work of archaeologists who aimed at defining
the most frequent spacing between urban elements with the help of a band of paper that
they slid according to a defined orientation.

Methodology The “paper band” method works as exposed thereafter and in figure 1:
Retrieving of a set of aligned segments according to a given orientation (a)
Band initialization perpendicularly to segments, and pointing of intersected segments (b)
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Figure 1 Measurement procedure using the paper band method.

Band translation at the following segment, and pointing of intersected segments (c)
Band translation at the following segment, and pointing of intersected segments (d)
...
Stop translation at the last segment and measurement of the most frequent distance (e)

Goals and issues. This method can be used to determine specific spacings between urban
elements in a particular (or dominant) direction. In the field of urban archeology, the detected
spacings can correspond to ancient measurement units fossilized in the actual urban structure.
Nevertheless, the manual application of the “paper band” method remains problematic when
dealing with large volumes of data, such as entire urban plans. Indeed, this method is
redundant and time-consuming, and in addition, it is exposed to inaccuracies related to
human intervention, which can be detrimental for a good restitution of specific spacings.
Therefore, an implementation of this method in a GIS tool is proposed to facilitate the
automation of these tasks.

3 GIS Implementation

In order to automate the periodicity analysis method presented in the previous section, an
extension of the QGIS GIS software has been developed. The QGIS GIS software has been
selected because of its large community of users and its rich documentation, as well as its
facility to implement plug-ins using the QGIS Python API and the PyQT library for the
development of user interfaces. The developed plug-in, called “paper band”, automates the
study of the spatial periodicity of a set of input segments, according to a given orientation.

Input parameters. The parameters necessary for the analysis of spatial periodicity are: the
input segment layer; the orientation (in degres); the angular tolerance (in degres); the number
of bands (i.e. the resolution of the analysis); the maximum spacing between elements.

For example, in the figure 2, the analysis relates to the buildings having walls oriented
between 9° and 11° (10° with an angular tolerance of +/- 1°). The analysis is carried out
using 20 bands, and the maximum allowed spacing between walls is 100 meters.

Output results. Once the extension is executed, a layer of points is generated, corresponding
to the intersections between search bands and segments of the input layer, as exposed in
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Figure 2 User interface of the “paper band” plug-in.

Figure 3 Impact of the resolution of the analysis (with 20 or 80 bands).

figure 3. The distances between intersected points are iteratively computed for each band,
and the most occurrent spacing is determined.

Figure 3 illustrates the impact of the resolution (i.e. the number of bands configured)
on the input segments used for the periodicity analysis. If a high resolution may be time
consuming, a too low resolution can ignore numerous reliable elements for the periodicity
analysis, which could affect final results. One solution is to perform the analysis using various
resolutions to study the sensibility of the spacings between elements according to the chosen
resolution.

As a result, the plug-in finally generates a diagram representing the distribution of
distances between urban elements (figure 4). A spreadsheet containing the computed
distances is also generated. For instance, in figure 4, it is found that the most frequent
spacing is about 10 meters.

4 Application to the characterization of the ancient city of Amida

The proposed method for the characterization of the spacing between urban elements is
applied on the urban structure of the city of Diyarbakir, which is built on the site of the
ancient roman city of Amida.

Study area. The city of Diyarbakir is the main kurdish city of southeastern Turkey. Its site
is established on the ancient roman city of Amida, which presents the characteristics of an
ideal roman city: the city presents a quadripartite plan, and is surrounded by a wall. Indeed,
in a roman city, the urban structure is built on two axes: the quardo (oriented North-South)
and the daecumanus (oriented East-West).
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Figure 4 Graphic representation of spatial periodicity.

Figure 5 Aerial photography (a) and the two urban structures (b) of the city of Diyarbakir.

Assumptions. The date of the founding of the roman city of Amida remains controversial
[1]. Indeed, a first foundation would date from the time of the Sévères (green plan on figure
5b), and a second would date from Constance II (red plan on figure 5b). Each of these
two foundations remain in the actual city plan, through two characteristic structures, one
oriented North-South, and the other one with an angle of about 10°.

Despite its successive occupations (e.g. Byzantines or Ottoman Empire), the city of
Diyarbakir retains the relics of these two plans in its current urban structure. So, it
seems possible to identify ancient urban structures inherited from the antiquity through
the constituent elements of the current city, such as streets, walls, monuments, or parcel
alignments for example.

Objectives. In order to confirm the assumptions concerning the existence of two different
structures in the current city plan of Diyarbakir, we seek to characterize the spacings between
their constituent urban elements. In this paper, we only focus on the characterization of
the inherited urban structure from the roman city of Amida funded during Constance II
(oriented in a North-South direction). More particularly, the analysis of the spacing between
urban elements will seek to reveal the use of roman measurement units.

So, the analysis of the spatial periodicity was carried out using the cadastral plan of the
city of Diyarbakir, using an orientation of 0°, with a tolerance of +/- 2°. The analysis was
performed with a resolution of 80 bands.

GISc ience 2018



29:6 Spatial Periodicity Analysis of Urban Elements

First results. The results show that the distribution of spacings between urban elements
has two peaks: one between 3 and 4 meters and the second between 8 and 10 meters. The
first measure could correspond to the distance of streets and secondary roads, which were
about 3.5 meters in roman period, but it could also correspond to an old unit of measure
called the “roman perch”, equivalent to 2.964 meters or 10 roman feet. This unit of measure
could also explain the second peak of the distribution, which would be equivalent here to 30
roman feet, since this measurement was used for the sizing of rooms in the roman period.
These results are obviously preliminary, and need to be established on other orientations,
and to be enriched with the help of other urban elements, such as excavated buildings for
example.

5 Conclusion and further works

This article has presented a method of morphological characterization of urban structures,
by analyzing the spatial periodicity between its constituent elements. The proposed method,
known as the “paper band” method, is used to determine the most occurrent spacing
between the elements of a urban structure, according to a specific orientation. This method
is particularly relevant in the field of urban archeology, in order to characterize spacings
corresponding to ancient measurement units. More generally, the proposed method provides
additional metrics to characterize spatial distances in urban structures. The application of
this method on the cadastral plan of the city of Diyarbakir offered opportunities to illustrate
the persistence of the roman city of Amida in the actual urban structure, by revealing
characteristic distances corresponding to ancient roman feet. This work obviously remains
to be extended, especially by studying spatial periodicity on complementary elements, such
as buildings for example, and in a larger range of orientations. To conclude, this study is
all the more justified because the city of Diyarbakir is currently the subject of important
destructions of its buildings, which are as many relics of the ancient roman city of Amida.
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Abstract
As maps are visual representations of spatial context to communicate geographic information,
analysis of gaze behavior is promising to improve map design. In this research we investigate
the impact of map task complexity and different legend types on the visual attention of a user.
With an eye tracking experiment we could show that the complexity of two map tasks can be
measured and compared based on AOI sequences analysis. This knowledge can help to improve
map design for static maps or in the context of interactive systems, create better map interfaces,
that adapt to the user’s current task.
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1 Introduction

Maps are visual representations of spatial context that communicate geographic information
and allow for spatial problem analysis [13]. The design of “better” maps is a key goal in
cartography. However, the definition of “better” is vague and has been a topic of research for
a long time. In his book, MacEachren provides an overview of how maps work at different
levels and how design choices interact with the processing of information from a map [10].

Visual attention is a valuable source of information for cartographic design both when
evaluating a map design or adapting the interface [5]. Tracking and analyzing visual attention
on maps through eye tracking experiments has been proposed and used in cartography for
quite some time (see [9], for an overview). Compared to other methods for evaluating a
map design, such as a “think aloud protocol”, eye tracking does not introduce additional
cognitive load or affect the task. Research questions that have been addressed by eye tracking
experiments range from testing the differences between expert and novice map users [12],
evaluating cartographic design decisions [1], or analyzing task complexity and cognitive
processes [11].
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Figure 1 The three maps used in the experiment (legend excluded). The magenta circles on the
maps indicate the cities that were subject of the tasks. These circles were not visible during the
experiment. The map material is based on the economic map from the Swiss World Atlas1.

Depending on the purpose of the analysis, different measures are commonly used for the
analysis of gaze data collected during the interaction with maps. Some measures, such as
average fixation duration [2], are not related to the map content and may provide general
insights about the cognitive state of the user. Content-related measures, on the other hand,
enable an analysis of which elements of the map or interface the user has paid attention
to [8], thus allowing for a more detailed evaluation of the map or interface. For instance,
Cöltekin et al. [3] used sequence analyses on Areas of Interest (AOI) to study individual and
group differences for a geovisual analytics tasks on two different map interfaces.

In this short paper, we suggest to use compressed string analysis of eye tracking data to
evaluate the impact of task complexity and different legend types on the visual attention of
a user. The two gaze based legend types described in [6] and a traditional legend were tested
on three different map extents. This result can help to improve map design or in the context
of interactive systems, create better map interfaces, that adapt to the user’s current task.

In this research we investigate whether the complexity of two map tasks can be measured
and compared based on fixation sequences. In order to address this research question, we
choose to analyze the mean fixation duration and perform a sequence analysis based on
AOIs. The short paper is structured as follows: We first explain the experiment including
an introduction to the task, the map and the legends used. Furthermore, we explain the
procedure and the AOIs used. In the results section we report on average fixation duration
and gaze sequences. Finally we discuss the results and provide an outlook on future work.

2 Experiment

We intended to test the search behavior and interaction with a map legend while performing
a common comparison task. For this we chose three maps (Figure 1) with varying symbol
density and the three legend types, one traditional and two that adapt to the users’ gaze
as described in previous work [6]. This results in a 3× 3 within-subjects design, with three
maps and three legend types. Each participant performed the task on each of the three maps
extents once. Map extents, legend type and ordering were counterbalanced based on a Latin
square. In the following, we explain the task in more detail.

2.1 Task, Map and Legend
The task of the user was to inspect two cities (A and B) on the map, and determine and
name the industries that differ between the two. Visual inspection of the legend was required
in order to interpret the meaning of the differing symbols. Before starting the actual task,
the location of the two cities was presented to the participant in order to avoid search and
only measure task-related gaze behavior. Panning and zooming was not possible.
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Table 1 Number of symbols shown for the two cities that needed to be compared on the three
maps. These numbers are taken as a measure for task complexity: the comparison task on Map 1
was less complex than that on Map 2, which in turn was less complex than that on Map 3.

in City A in City B
in City A but
not in City B

in City B but
not in City A

total different

Map 1 2 4 0 2 6 2 high 5.7°
Map 2 5 5 2 2 10 4 high 9.1°
Map 3 4 6 2 4 10 6 low 34.3°

Number of symbols Visual angle 
between Ci�es

symbol 
density

Map 1 A B A B A B A B L B L B L B
Map 2 A B A B A L B A B A L A B A B A B A L B A L B A B A B A B A L B
Map 3 B A B A B L A B A L A B A L A B A B A B A L B L B L B A B L B A B A L B

Sequence

 Start

Figure 2 Example sequences of one participant’s dwells on three different AOIs: the two cities
whose symbol sets had be be compared (A, B) and the legend (L).

We expected the chosen approach to result in a very structured and predefined way of
solving the task: first the participant looks at city A then at city B in search for symbols that
differ. After finding at least one, the participant will search within the legend to determine
its meaning. This structured approach allows us to break down the analysis to a sequence
analysis on only three different AOIs (Figure 2).

As with this study we focus more on task difficulty and not on the design of the map
itself, we employed an economic map from the Swiss World Atlas which had been designed by
experienced cartographers to teach geography in schools1. We can identify four characteristics
that among others, increase the search space and thus contribute to a higher task difficulty:

Total number of symbols in a map extent
Number of symbols per city
Number of symbols that differ between two cities
Distance between the cities

Based on this, we chose three map extents for our experiment (Figure 1). Map 1 and 2
feature a higher density of symbols compared to Map 3. The distance between the relevant
cities is the shortest in Map 1, however, still exceeds the area that can be inspected with one
fixation, followed by Map 2 and Map 3. Table 1 shows that the cities contained three to six
symbols each, and that two to six differed between them. For instance, Map 1 has only two
symbols that differ between the two cities. Furthermore, these symbols are all in city B. We
assume that this makes the task the easiest on Map 1, followed by Map 2 and Map 3 as with
them more map features differ.

The design of the legend was from the original map and a total of 26 symbols were shown
(Figure 3). We tested a traditional legend and the two gaze based legend types described in
our previous work [6] namely fixed adaptive, where the content of the legend is adapted to
highlight the symbols that where visible within the last fixation on the map and dynamic
adaptive which also adapts its placement to appear always at the bottom right position of
the current field of view.

1 https://schweizerweltatlas.ch/en/
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A B

Figure 3 A shows a part of Map 1 with the AOI for the legend in green, the AOIs for City
A in cyan and for City B in magenta. The scan path is highlighted in red and fixations in yellow.
Figure 2 shows the result as a sequence (see first row). B shows the cities and symbols that need
to be compared in detail.

In our previous experiment we could show that with the gaze-based legends, participants
spent less task time on the legend compared to the traditional legend [6]. Here, however, we
are interested in analyzing the impact of task difficulty on the gaze sequence and on usage of
the legend.

2.2 Participants and Setup
18 participants (7 female) took part in our experiment with most of them having a professional
background in Geomatics or Cartography. Their average age was 31.9 (SD = 4.4).

During the study, we collected gaze data using a Tobii TX 300 eye tracker. Additionally,
we used a chin rest to keep the distance between participants and display (23′′, 1920× 1080
px) constant (60 cm). Before each run we performed a 9-point calibration.

2.3 Procedure
After filling out a demographic questionnaire, participants proceeded with a test run to
familiarize themselves with the given legend type. Next, a preview map without the symbols
was provided to show the locations of the two cities in question. When the participant
indicated that she was ready, the actual task began, however, there was no time constrain to
fulfill the task. These steps were repeated three times to test all different maps and legend
types. This assured that each possible combination of map × legend was tested six times.

2.4 Area of Interest
As we are mainly interested in which sequence visual attention was spent on the map and
the legend, for each task, we annotated the following three AOIs: Legend, City A and City
B. In case of cities, the size of the AOIs comprised the city name and all related symbols
(Figure 3). For the legend, the AOI was dynamically adapted to the size (and placement) of
the legend which requires to track fixations in real time. Based on the gaze data coming at
300 Hz from the eye tracker, we used our online implementation of the I-DT algorithm first
introduced in [4] to calculate fixations (80 px dispersion and 200 ms window size).

For deriving sequences from the gaze data, we denoted the fixations to AOIs in order of
appearance. Consecutive fixations on the same AOI are handled as one visit, called dwell.



F. Göbel, P. Kiefer, I. Giannopoulos, and M.Raubal 30:5

0
5

10
15
20
25
30
35
40
45

Av
er

ga
e 

Le
ng

th
 o

f t
he

 S
eq

ue
nc

e

Sequence Length

0

2

4

6

8

10

12

Nu
m

be
r 

of
 D

w
el

ls
 o

n 
th

e 
Le

ge
nd

Dwells on Legend

0

50

100

150

200

250

300

350

400

Av
er

ag
e 

Fi
xa
�o

n 
Du

ra
�o

n 
(m

s)

Average Fixa�on Dura�on

Map 1
Map 2
Map 3

Map 1
Map 2
Map 3

Map 1
Map 2
Map 3

A B C

Figure 4 Results for mean fixation duration A , average length of sequences B , and average
dwells on the legend C independent of legend type. Error bars indicate the 95% confidence interval.

3 Results

First, we calculated the average fixation duration (Figure 4 A ). This is a measure commonly
related to the task difficulty [7]. However, independent of the used legend type, a one-way
ANOVA (F(2,51) = .06, p = .940) could not show a statistical significant difference between
the three Maps.

From Figure 4 B we can see that in general, sequence length (i.e. number of dwells
on an AOI) is shorter for Map 1 (15.1, SD = 8.1) followed by Map 2 (33.5, SD = 6.0)
and Map 3 (39.0, SD = 5.1). A one-way ANOVA (F(2,51) = 22.110, p < .001) confirmed
statistically significant differences between the Maps. All following results are Bonferroni
adjusted (α = 0.017). Post hoc analysis with a Tukey test resulted in a significant difference
between Map 1 and Map 2 (p < .001), and Map 1 (p < .001) and Map 3 but not between
Map 2 and Map 3 (textitp = .318). Furthermore, a one-way ANOVA showed no significant
effect of legend types onto the length of the gaze sequence (Map 1: F(2,15) = 1.261, p = .312;
Map 2: F(2,15) = .400, p = .678; Map 3: F(2,15) = 3.530, p = .055).

We also counted the number of dwells on the legend (Figure 4 C ). As this data was
not normally distributed we used a Kruskal-Wallis H which confirmed statistical differences
(χ2 = 29.832, p < .001). Following the results of the Mann Whitney U post-hoc tests
shows that participants dwelt significantly less often on the legend on Map 1 (mean = 3.94,
SD = 3.67) compared to Map 2 (mean = 6.44, SD = 3.05, U = 47.0, p < .001) and Map 3
(mean = 10.22, SD = 3.84, U = 16.0, p < .001). Also the result between Map 2 and 3 is
significant (U = 56.0, p < .001). If we compare these values with the number of different
symbols in Table 1, we can see a correlation between number of symbols that differ between
the two cities and participants’ dwells on the legend. The ratio is between 0.51 and 0.62.
Again, a Kruskal-Wallis H was applied to calculate the effect of legend types onto the number
of dwells on the legend. However, legend type has no statistically significant effect with
Map 1 (χ2 = 4.258, p = .119), but it has on Map 2 (χ2 = 5.984, p = .050) and on Map 3
(χ2 = 7.645, p = .022).

Furthermore, we analyzed the sequences before the legend was visited the first time. In
average 5.8 switches between City A and City B have occurred before the gaze shifted to the
legend. However, we could neither find statistical significance between the different maps
(χ2 = .917, p = .632) nor did the legend (χ2 = 7.743, p = .021) seem to have an impact.

4 Discussion and Future Work

Although we could not find any significant differences in the fixation duration, evaluation of
the sequence length indicates that more differences of symbols, which we take as an indicator
for task difficulty, result in more focus switches between cities and legend. Furthermore, we
could show that the number of dwells on the legend goes in line with the number of different

GISc ience 2018
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symbols between two cities. The fact that the number of dwells on the legend was always
higher than the number of different symbols is particularly interesting, as this suggests,
participants mostly evaluated one symbol at a time, when visiting a legend and needed some
more to reassure their answer.

One reason could be that the symbols consist of arbitrary shapes and colors (Figure 1). It
could be that more decisive or iconic symbols are easier to remember and require less re-visits
of the legend. Future work has to inspect AOI sequences in more detail. For instance, can
correlation between sequences of different participants contribute to find common patterns for
certain tasks? This knowledge can help to create better maps or in the context of interactive
systems, create better map interfaces, that adapt to the user’s current task.
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Abstract
In the big data era, the successful sharing and integration of data from various resources becomes
an essential requirement. As statistical data serves as the foundation for professional domains to
report the phenomena in the reality according to the selected administration units, its import-
ance has been well recognized. However, statistical data is typically collected and published by
different responsible agencies, hence the heterogeneity of how the data is designed, prepared and
disseminated becomes an obstacle impeding the automatic and interoperable use in multidisciplin-
ary applications. From a standardization perspective, this research proposes an identifier-based
framework for modeling the spatial, temporal and thematic aspects of cross-domain statistical
data, such that any piece of distributed statistical information can be correctly and automatic-
ally interpreted without any ambiguity for further analysis and exploration. The results indicate
the proposed mechanism successfully enables a comprehensive management of indicators from
different resources and enhances the easier data retrieval and correct use across different domains.
Meanwhile, the interface design exemplifies an innovated improvement on the presentation and
interpretation of statistical information. The proposed solution can be readily implemented for
building a transparent sharing environment for the National Spatial Data Infrastructure (NSDI).
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1 Introduction

The recent trends of open data and big data analytics have brought a new wave of information
revolution, where a tremendous number of cross-domain data is available for uses in the
Internet. Since the data may be acquired from various domains and stakeholders, it comes
no surprise that users have to deal with unfamiliar or even unknown data structure produced
by other domains [5]. In other words, big data are highly heterogeneous [1]. Despite the
technology breakthrough in terms of Internet speed and storage has been remarkable, the
lack of a comprehensive design, identification and encoding strategy of distributed data is
impeding the successful sharing and interpretation of cross-domain applications. Failure to
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Figure 1 Top four of the most meticulous level of TGSC framework.

overcome such barriers absolutely limits the feasibility of correct decision making and any
further exploration. It is therefore necessary to examine how to improve the interoperability
of distributed data and enhance the application intelligence of cross-domain data.
Statistics plays an indispensable role in the sustainable development for a nation. Often
managed with respect to a particular level of administrative units, statistical data is typically
recorded by tables or illustrated by choropleth maps. Various domains follow this space-
partitioned framework to establish and update domain statistical data according to a
selected frequency. The effective integration of cross-domain statistical data enables a better
understanding about continuously changing reality and correct assessment of future action
plans. Every country has their own space-partitioned framework for statistical units. For
example, a 7-level system named Taiwan Geographical Statistical Classification (TGSC)
was established in 2012 as the common references for domain agencies to publish different
granularities of statistical data to suffice different application needs (Figure 1). With the
development of GIS, the distribution of statistical data evolves from tables with fixed schema
[3], Web-based GIS platform (http://datashine.org.uk) to open data [2]. The correct use
of statistical data, regardless of the technology being used, requires an in-depth knowledge
about the data being used and professional skill for correctly manipulating the GIS software.
This requirement becomes a major obstacle after the statistical data is widely and easily
available to novice users. Ignorance about the meaning behind the acquired data may easily
lead to wrong decisions. Worst of all, users may not even notice they are making mistakes.
An interoperable solution for correctly handling and integrating cross-domain statistical data
is thus necessary. This paper proposes an identifier-based mechanism for the standardized
representation of distributed cross-domain statistical data. It aims to not only simplify the
interpretation and processing of statistical data, but also smartly enriches the service content
with related indicators and visual aids.

2 Method

A necessary presumption when using statistical data shared by other domains is to correctly
interpret its meaning. Four major approaches are adopted in this research to facilitate an
interoperable sharing mechanism for overcome current exchange barriers and enrich the
capability of decision making:

2.1 Standardized identifier framework
As statistical data typically uses quantitative measures to describe the phenomena for a
selected geographic location (Where) from a particular theme consideration (What) at a
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Figure 2 Standardized identifier framework.

Figure 3 Theme code structure.

Table 1 Statistical method code list.

given time (When), therefore these three aspects should be unambiguously modeled by
unique identifiers to avoid confusion. We proposed to subdivide the attributes into two major
parts, one for spatial identification and another for the temporal and thematic description of
the statistical indicators (Figure 2). Every row consists of only one unique spatial attribute
and a number of temporal/thematic attributes. The TGSC identifiers are directly used for
representing the spatial identifiers and can be linked to its geometric representation. The
theme codes from different domains are organized following a tree structure, so that every
theme is given a unique identifier (Figure 3). The theme code is further extended to include
the concept of the indicator (Table 1), such that 4010101001TC represents the indicator
for the total count of household. The design of temporal coding system takes the time
mode, time resolution, time instance and time range into consideration to ensure all temporal
information can be unambiguously represented, interpreted and compared. Table 2 shows
two examples. By definition, the population data of every month refer to the status at the
end of the month, so we use “TI” to denote this is a time instant, “4010101002” and “TC”
to indicate the data is about population and total count, and “02_201701_E” to imply the
time is the last day of January, 2017. The number of deaths, on the other hand, is referred
to the statistics of a period of time, so it is represented as “TP”.
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Table 2 Examples of standardized code.

Population in Jan. 2017 Number of deaths in 2008
Time interpretation Statistics at the end day of the month Accumulated in a period

Time mode Time instant Time period
Standardized Code TI_4010101002_TC_02_201701_E TP_4010402001_TC_01_2010_0

Table 3 Examples of related auxiliary indicators.

Original indicator Related auxiliary indicators

Statistical concept Total population
(4010101002_TC)

Average population of 2nd

dissemination area (4010101002_L4L2AVG)
Standard deviation of total population of 2nd

dissemination area (4010101002_L4L2STD)

Domain knowledge Crude mortality rate
(4010406001_TH)

Mid-year population(4010101002_TC)
Number of deaths(4010402001_TC)

2.2 Auxiliary indicators
For a chosen indicator, auxiliary indicators are developed for aiding the interpretation of
statistical results, e.g., quality measures and spatial variation. Auxiliary indicators are
automatically calculated according to the concept of the selected indicator. For example,
standard deviation is automatically calculated for every indicator based on average concept;
the Spatial Dispersion Index (SDI) proposed by Weng and Tsai in 2006[4] is calculated
for every indicator based on the concept of total count. Every auxiliary indicator is also
modeled by unique and standardized codes. The package of the chosen indicator and related
auxiliary indicators enriches users’ understanding about the different aspects of the acquire
data without revealing the raw data. Domain providers can therefore flexibly package a
set of related indicators either based on the statistical theories (e.g., average and standard
deviation) or domain knowledge. Table 3 shows examples about how these two types of
related indicators are designed and recorded.

2.3 Management mechanism
With the rules embedded in the coding system, the retrieval of data meeting specific
requests can be easily completed by transforming the standardized identifiers. Two types of
transformation rules respectively based on spatial and temporal perspectives are developed.
The search for statistical data at finer or coarser levels is as easy as using the spatial
transformation rule to replace the spatial identifier, while the search of time series data
can be also easily completed by using temporal transformation rule to replace the temporal
identifier. By registering the tables and the indicators in the data catalog, the search of
requested data can be readily completed. Even if the requested data is not directly available,
it still can be calculated if its formula is predefined and the required parameters are available
(Figure 4).

2.4 Visualization technique
Users are prompted with an integrated interface that can simultaneously illustrate a number
of related indicators with maps, tables or charts. The traditional choropleth maps are
augmented by new visual aids like highlighted boundaries or spyglasses to make users aware
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Figure 4 Searching mechanism.

Figure 5 Subpart of mortality rate data in 2010.

Table 4 Query procedure.

Step 1

SELECT Table
FROM registration table
WHERE Attribute = ‘TP_4010406001_TH_01_2010_0’ AND Scope = ‘67000’
AND LevelCodeVersion = ‘U0202A’ AND Time = ‘2010’
Query result: Table = ‘U0202A_67000_4010406_2008T2010’

Step 2
Acquire the 2nd dissemination area of mortality rate in Tainan in 2010
SELECT TP_4010406001_TH_01_2010_0
FROM U0202A_67000_4010406_2008T2010

of the possible quality or geographic distribution issue that may otherwise not directly
observable. According to users’ selected indicators, the developed mechanism analyzes
the results of auxiliary indicators and automatically prompts users with meaningful visual
illustration.

3 Result

The yearly mortality data for the city of Tainan is chosen as the test data. Figure 5 shows a
subpart of the data for the year of 2010. The search for a particular indicator starts with
locating the table that includes the requested indicator from the registration table. As the ex-
ample of table 4 shows, the specified constraints include “TP_4010406001_TH_01_2010_0”
(the standardized code for the mortality rate in the year of 2010), “67000”(the spatial code of
the Tainan city),” U0202A”(the level of 2nd dissemination area) and “2010”(time constraint).
After locating the table ( “U0202A_67000_4010406_2008T2010”), the system proceed to
retrieve the requested data in step 2. Any statistical data stored in the database can be
found in a similar way. For example, the data for one year earlier can be found by using the
transformation rules to change the constraint to “TP_4010406001_TH_01_2009_0” and
time constraint to “2009”.

Assume that the data of the year 2011 is not directly available, it can be calculated
according to the predefined formula by filling in the time constraint. As figure 6 shows, the
formula for mortality rate requires the number of deaths (TP_4010402001_01_Year_0) and
the mid-year population (TI_4010101002_TC_01_Year_M). The requested indicator of
“TP_4010406001_TH_01_Year_0” can then be calculated accordingly (Table 5). Even
if the data of the number of deaths and the mid-year population is provided by different
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Figure 6 Use standardized codes to represent crude mortality rate.

Table 5 Function of calculating crude mortality rate.

CalculateMortalityRate=(TP_4010402001_TC_01_2011_0/TI_4010101002_TC_01_2011_M)×1000
GenerateMortalityRate(‘67000’,‘U0202A’, ‘2011’)

Figure 7 Historical mortality rate of 2nd dissemination area.

Figure 8 The package of related statistical indicators.

responsible agencies, the search mechanism can still easily find the required data as long as
they are willing to comply with the rules of standardized identifiers.

After acquiring the requested time-series data, the interface is designed simultaneously
illustrate multiple aspects of indicators for easier visual inspection. Figure 7 shows the
interface can show the mortality rate for the 2nd dissemination area for a single year and the
historical status after users select a particular dissemination area.

In addition to the mortality rate data, auxiliary indicators related to mortality rate
according to statistical model and domain demands are also available. The related auxiliary
indicators include the standard deviation within the next level of spatial unit (TP_4010406001
_L4L1STD_01_2010_0), SDI of deaths (TP_4010402001_SDI_01_2010_0), etc (Figure 8).
Higher standard deviation usually implies a higher spatial variation within the dissemination
area. The geometric center and SDI index number allow users to assess the geographic
distribution of features within the dissemination area.

Based on the analysis of the auxiliary indicators, users can easily identify dissemination
areas that require special attention. In figure 9, polygons with highlighted boundary imply
the 2nd dissemination area with high spatial variation on mortality rate based on the analysis
of its corresponding 1st dissemination area. Users can use the Spyglass tool to visually inspect
the detailed geographic distribution.

4 Conclusion

In the cross-domain data sharing environment, the proposed standardized is capable of
enabling the enrichment and interpretation of individual domain of statistical data, as well
as the transformation, integration and visualization of cross-domain statistical data. Every
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Figure 9 Different levels of statistical data with spyglass interface.

individual piece of distributed statistical data in the proposed mechanism is standardized
and self-described, which enables users to develop automatic processing mechanisms and
reduce the tedious efforts for conquering the heterogeneity among different domains. In
addition to the requested data, users are automatically provided with multiple auxiliary
indicators based on the consideration of statistical theory or domain knowledge. In addition
to the traditional illustration strategies of table and choropleth maps, users are prompted
an innovated interface with awareness capabilities of explaining the illustrated results based
on the auxiliary indicators. Based on the consensus identifier framework, the result can be
further extended for distributing statistical data in the Internet in the future, e.g., data
request via API-based service or Resource Description Framework (RDF).
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Abstract
It is often said that the real estate market is divided geographically in such a manner that the
value of attributes of real estate properties is different for each area. This study proposes a new
approach to the investigation of the geographical segmentation of the real estate market. We
develop a price model with many regional explanatory variables, and implement the generalized
fused lasso - a regression method for promoting sparsity - to extract the areas where the valuation
standard is the same. The proposed method is applied to rental data of apartments in the Tokyo
metropolitan area, and we find that the geographical segmentation displays hierarchal patterns.
Specifically, we observe that the market is divided by wards, railway lines and stations, and
neighbourhoods.
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1 Introduction

The real estate market is segmented by many aspects, including consumer types, property
types, and environmental factors. Above all, location plays a major part in market segment-
ation. People who prefer to live urban areas highly value accessibility to the city centre and
proximity to convenient urban amenities, while people who prefer to live in suburbs value
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property size and proximity to green spaces. As a result, the value of attributes of real estate
properties is different in each area.

Geographic market segmentation in the real estate market has attracted much research
interest, and attempts have been made to understand the area where valuation standards
are the same (see Goodman and Thibodeau (2003) [1]). Previous studies presume a division
structure according to specific geographical units, such as school districts, postal districts,
and census tracts. However, since the real estate market has a hierarchical division structure
from municipality to neighbourhood levels, they might have failed to extract the actual
condition of geographic segmentation.

This study proposes a new approach to the investigation of the geographical segmentation
of the real estate market. We construct a real estate price model with many regional explan-
atory variables that depend on different spatial resolutions, and implement the generalized
fused lasso - a regression method for promoting sparsity - to extract areas where the valuation
standard is the same. The proposed method is applied to the rent data of apartments in the
Tokyo metropolitan area to confirm the applicability of the proposed approach.

2 Generalized Fused Lasso

The generalized fused lasso is one method of sparse modelling, which is the solution of a
constrained optimisation problem that selects the substantial parameters from among many
candidates.

2.1 Lasso
Lasso [2] is a method that minimises the residual sum of squares subject to a constraint on
the sum of the absolute values of regression coefficients (excluding the intercept). Hence,
lasso gives a solution to the constrained optimisation problem

min
β
‖y −Xβ‖2

2 subject to ‖β‖1 ≤ t (1)

where y is n× 1 vector of the observations, X is an n× k matrix of explanatory variables, β
is a k × 1 regression coefficient vector, and t is the positive lasso regularisation parameter.
Equation (1) is equivalent to

min
β

[
1
2 ‖y −Xβ‖

2
2 + λ ‖β‖

]
(2)

where λ is a Lagrange multiplier. The optimal values of λ or t are usually determined through
cross-validation.

2.2 Generalized fused lasso
Fused lasso [3] is a method to investigate the presence or absence of a difference between
consecutive parameters. The optimisation problem of fused lasso imposes a new condition
on the differences between consecutive parameters;

min
β

1
2

yi −
k∑

j=1
βjx

(j)
i

2

+ λ
k∑

j=1
|βj+1 − βj |+ γλ

k∑
j=1
|βj |

 (3)

where yi, x(j)
i , and βj are components of y, X, and β respectively. The hyperparameter γ

determines the weight between the two regularisation terms.
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Table 1 Summary of variables.

Variable name Mean Standard Maximum Minimum
deviation

Rent per square meter (yen / m2) 3123.34 804.19 6999.50 1000
Apartment age (year) 21.63 11.99 69.17 0
Area of property (m2) 36.33 19.03 440 10

Walking time to the nearest station (min) 6.75 4.18 60 0
Floor number 3.77 2.58 15 1

Number of rooms 1.41 0.66 8 1

Fused lasso estimates parameters whose difference to consecutive parameters tends to be
zero; it can estimate common parameters. Generalised fused lasso [3] is a generalised form
of fused lasso, in that it imposes constraints on differences between arbitrary neighbouring
parameters. It is given by

min
β

1
2

yi −
k∑

j=1
βjx

(j)
i

2

+ λ
∑

(m,n)∈E

|βm − βn|+ γλ
k∑

j=1
|βj |

 (4)

where E is a set of combinations of neighbouring parameters.

2.3 The Application of generalised fused lasso in geographical analysis
Generalised fused lasso can be applied to geographical analysis. Wang and Rodriguez (2014)
[4] estimate the regional divisions of incidence rate of pediatric cancer, for example. The
regularisation term that is imposed on the difference between parameters of neighbouring
districts enable the authors to estimate a common parameter for them if the difference is not
significant.

This study applies generalised fused lasso to the apartment rent data in the Tokyo
metropolitan area to investigate the regions where the pricing of real estate properties is
the same among neighbouring districts. By setting the explanatory variables that represent
regions to different spatial resolutions (i.e. from a municipality level to a neighbourhood
level), the analysis could identify the geographical segmentation of the market that was
different to previously determined regional divisions

3 Analysis of the Rental Apartment Market in the Tokyo
Metropolitan Area

3.1 Apartment rental data
This study utilises apartment rent data in the Tokyo metropolitan area for the years 2015
and 2016. It was collected by At Home Co., Ltd. High-rise condominiums whose number
of floors exceed 15 are excluded as their rents have a different pricing structure compared
other apartments. Consequently, the total number of records used in this study is 270,605.
The data have many property attributes; the natural logarithm of rent per square meter is
used as the dependent variable, and the other attributes shown in Tables 1 and 2 are set as
explanatory variables.

GISc ience 2018



32:4 Geographical Segmentation of Rental Apartment Market in Tokyo

Table 2 Description of dummy variables.

Dummy name Description Number of variables

Railway line All railway lines are included, except dummies 59
dummy that are the same as some nearest station dummies

Nearest station All nearest stations that appear in data are included 474
dummy Reference: Heiwajima station

Cho dummy All chos that appear in data are included 293
Reference: Nansa-3

3.2 Apartment rent model
This study sets the following apartment rent model.

First, the five explanatory variables of apartment age, area of property, walking time
to the nearest station, floor number, and number of rooms are used to estimate the ward
(municipality)-level parameters. The Tokyo metropolitan area, which is the target area, of
consists of 23 wards. As such, 23 parameters are estimated for these five factors.

Next, another three different levels of location factors that affect the market are considered
in this study: railway lines, nearest railway stations, and “cho” (neighbourhood). These
location factors are represented by dummy variables in this model.

The apartment rent model is given by

yi =β0 +
∑

pw∈Pward

∑
w∈W ard

βward
pww xward

ipww +
∑

l∈Line

βline
i dline

il

+
∑

s∈Station

βstation
s dstation

is +
∑

c∈Cho

βcho
c dcho

ic + εi (5)

where β0 denotes the intercept of the regression, βward
pww denotes the ward-level regression

coefficient for the explanatory variable pw in ward w, βline
i denotes the regression coefficient

of the railway line dummy variable l, βstation
s denotes the regression coefficient of the nearest

station dummy variable s, βcho
c denotes the regression coefficient of the cho dummy variable

c, Pward denotes a set of ward-level explanatory variables, Ward denotes a set of wards in
the target area, Line denotes a set of railway lines, Station denotes a set of railway stations,
and Cho denotes a set of chos. Note that a station and a cho whose average rent per square
meter are selected as the reference and dummy variables respectively, are not set for that
station and cho.

The regularisation terms that impose weights on the differences between parameters of
adjacent regions are set for ward-level parameters and parameters of cho dummies. If the
differences between parameters of adjacent wards and chos are not significant, the common
parameters would be estimated. The optimisation problem for this analysis is given by

min
β

[
1
2

∑
i∈T rans

(
yi −

∑
p∈P

βpxip

)2
+ λ

∑
pw∈Pward

∑
(a,b)∈Neighborward

|βward
pwa − βward

pwb |

+ λ
∑

(c,d)∈Neighborcho

|βcho
c − βcho

d |+ γλ
∑
p∈P

|βp|
]

(6)

where Trans is the set of all properties, Neighborward is a set of 55 combinations of adjacent
wards, Neighborcho is a set of 5006 combinations of adjacent chos, and λ and γ are the
regularization parameters.

When solving Equation (6), numeric explanatory variables are standardised.
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Figure 1 Parameters of property areas. Figure 2 Parameters of floor numbers.

3.3 Results

Four settings of 0.001, 0.1, 1, and 10 for γ are tested, and the estimation with minimum
AIC (Akaike’s Information Criterion) value is selected. Consequently, when γ = 1, the model
with 673 parameters was adopted. The adjusted coefficient of determination was 0.758.

Figures from 1 to 6 show the estimated parameters. Figures 1 and 2 indicate the
parameters of property areas and floor numbers. The shaded parts represent the areas with
common parameters. They indicate that similar valuations for apartment attributes occur in
some wards. Figures 3 and 4 illustrate that the railway lines and stations in the south-western
area are valued higher than those in the north-eastern area. Above all, the apartment rents
in Minato and Shibuya wards are high in central Tokyo.

Cho is set as the smallest geographical unit in this study. Figure 5 shows that many
parameters are estimated to be zero. The proposed approach suceeds in selecting substantial
parameters from many among candidates and reveals that apartment rents are locally
homogeneous in most of areas. However, many non-zero parameters are estimated in the
Minato and Shibuya wards. Figure 6 shows the Hiroo and Shirokane districts. The thick
green lines indicate the ranges where the estimated parameters of cho dummies are the same.
The Hiroo and Shirokane districts are famous for being two of the most exclusive residential
districts in Tokyo. The results confirm that the cho-level local geographical segmentation
occurs in these areas. Rent formation around Hiroo station is fragmented; different levels of
rent are formed depending on the direction of properties from the station.

4 Conclusion

This study proposed a new approach to investigate the geographic segmentation of the real
estate market. The approach consists of the price model with many regional parameters to
represent the difference of price formation by region. Parameter estimation was performed
by generalized fused lasso to extract substantial parameters (impose sparsity) and to search
for common parameters in adjacent regions. The applicability of the approach is examined
by the analysis of geographical segmentations of the rental apartment market in the Tokyo
metropolitan area.

The estimated results confirmed the applicability of the proposed approach and revealed
the following facts. Several adjacent wards had the same valuations for apartment attributes,
the valuation on railway lines and stations was high in the south-western area, and cho-level
geographic segmentation was observed, especially in the Minato and Shibuya wards.
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Figure 3 Parameters of railway lines.

2

Figure 4 Parameters of railway stations.

Figure 5 Parameters for chos. Figure 6 Parameters for chos around Hiroo
and Shirokane.
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Abstract
Recently, indoor space construction information has been actively carried out primarily in large
buildings and in underground facilities. However, the building of this data was done by only
a handful of people, and it was a time- and money-intensive task. Therefore, the technology
of automatically extracting a wall and constructing a 3D model from architectural floor plans
was developed. Complete automation is still limited by accuracy issues, and only a few sets
of floor plan data to which the technology can be applied exist. In addition, it is difficult
to extract complicated walls and their thickness to build the wall-junction structure of indoor
spatial information, which requires significant topological information in the automation process.
In this paper, we propose an automatic method of extracting the wall from an architectural floor
plan suitable for the restoration of the indoor spatial information according to the indoor spatial
information standard.
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1 Introduction

Currently, indoor spatial information is constructed for large facilities such as subways and
shopping malls. However, according to [10], indoor space construction work uses a mixture
of manual and automatic methods, and requires adequate financial resources and time. It
is difficult to construct indoor spatial information for general buildings and facilities. To
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Figure 1 U-net.

overcome this, many studies automatically vectorize walls using 2D scanned floor plan images.
In these studies, CAD files in DWG format, which are printed on paper, lose some of their
attributes, and topological data are used. To express and restore these data from floor
plans, studies have developed a standard format of indoor spatial data. OGC has introduced
CityGML and IndoorGML, which are indoor spatial information presentation standards.
Among them, CityGML has been developed for 3-dimensional modeling of urban space, while
IndoorGML was proposed for indoor spatial information representation. According to [6],
IndoorGML supports modeling of various viewpoints of indoor space using multi-layer and
space division concepts, and it is essential to construct the node-link structure of space in
order to compensate for the limitations of CityGML [5]. Therefore, the authors extracted
the topological information of the wall and its thickness according to the indoor spatial
information standard in this study. Lastly, the data used was provided by Korea ’s building
information integration system.

2 Related Work

Wall detection studies are based on image processing and consist of four steps. First,
preprocessing is performed, where the noise of the drawing is removed. Noise, which is an
auxiliary part of the data, includes numerical lines, titles, legends, etc. In the past, various
filters were used to remove noise by [2], and simple neural networks have also been tested.
Second, OCR is also a very important part of pre-processing, recognizing characters and
replenishing the information contained in the floor plan or removing characters that may
interfere with wall detection. The third step is the vectorizing process. Most algorithms deal
with only straight or arc-shaped walls. Typically, [7] constructed attribute and topological
information using nodes and semantic data, and only nodal points of a right angle were
considered. [8] automatically generated vector drawings by applying various filters using the
vertical and horizontal characteristics of the wall. [9] assumed that all the walls are straight
and divided the space into rectangles of various sizes and shapes, and combined them to
represent the walls, thus all the walls are represented by straight lines. The fourth is symbol
recognition and is excluded from the scope of this study. At this time, it is more difficult to
detect free-form walls than straight-line walls. In addition, the wall detection study shows a
significant difference in performance, depending on which data are used in [1]

3 Method & Result

3.1 preprocessing with image segmentation
This study is divided into preprocessing, segmentation, and vectorization steps of the drawing,
and preprocessing is accomplished using a deep neural network. The network used is U-net,
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Figure 2 Drawing and label.

Figure 3 Skeleton, width of wall and node.

which is efficient for data augmentation; it uses context information efficiently and exhibits
very accurate localization performance. U-net was selected due to its advantage of high speed
and very high performance with very little data according to [3]. Since annotating floor plan
data is time-consuming, few data were used. U-net was determined to be suitable for this
study, and its structure is described in figure 1. To train U-net, labels 0-2 were applied to
the floor plan as shown in 2. (0: wall, 1: node, 2: background)

3.2 recovering topological information
The thickness of the walls was obtained by the method of [4], and thinning was performed
using the Zhang-Suen algorithm with the same data. In [11], the Zhang-Suen algorithm
preserves the topological information of the wall because it provides information on the
connectivity clearly, and each node of the skeleton obtained through thinning can be used as
a candidate for real nodes existing on the wall. Results are described in 3.

3.3 building adjacency matrix
However, the number of extracted nodes from the skeleton tends to be overestimated
compared to the actual intersections of the wall entities. Therefore, the nodes nearest to each
junction were extracted separately from preprocessing as the positions of actual junctions.
An adjacency matrix was constructed between junction and link, and a depth-first search
was performed to simplify the graph in 4. Finally, the wall thickness value assigned to the
pixels facing the detected wall was input to construct the vector data.
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Figure 4 Node-link simplification.

Figure 5 Whole process.

Finally, the wall thickness value assigned to the pixels facing the detected wall is input to
construct the vector data.

4 Conclusion

In this study, we designed an automation process that can extract information from printed
architectural floor plans with missing geometric and topological information as vectors.
For this purpose, image preprocessing using U-net was performed, and characters, various
numerical lines, and other shapes were removed. Next, in addition to extraction of the wall
thickness, skeletonization was performed to obtain connectivity information of walls and
nodes as candidates of real junctions. Although the skeletonization result is composed of the
skeleton link and nodes, it is difficult to identify them as the precise junction of the building.
Therefore, the junctions extracted during preprocessing are considered as a guideline of the
real edge of the drawing, and an adjacency matrix was created. Lastly, the thickness of the
wall was added to the graph, and the link-node connectivity information of the floor plan
was finally recovered. This process is described in 5. This study aimed to deal with walls
placed at arbitrary angles that are not covered by existing research and is characterized by
restoring wall thickness using image processing and an adjacency matrix.
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5 Future Work

In this study, we constructed an adjacency matrix using links and nodes and utilized it to
determine the direction of the walls and connectivity. However, the position of each node
may be horizontally or vertically mispositioned. As a result, there is a disadvantage in that
the rooms recovered by our method do not form rectangles (i.e., do not have four right
angles). Therefore, in order to create a room in the graph with the same shape as in the
actual building, it is necessary to locate each node at the correct position. In addition, in the
process of inputting the thickness of the wall as an attribute of the link and the problem of
changing the wall thickness while using the mode of the near pixels must be solved in future
work.
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Abstract
Social media has considerable potential as a source of passive citizen science observations of the
natural environment, including wildlife monitoring. Here we compare and combine two main
strategies for using social media postings to predict species distributions: (i) identifying postings
that explicitly mention the target species name and (ii) using a text classifier that exploits all
tags to construct a model of the locations where the species occurs. We find that the first
strategy has high precision but suffers from low recall, with the second strategy achieving a
better overall performance. We furthermore show that even better performance is achieved with
a meta classifier that combines data on the presence or absence of species name tags with the
predictions from the text classifier.
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1 Introduction

The value of social media to assist in mapping and predicting geospatial phenomena has been
demonstrated in areas including the occurrence of disease, social unrest, natural disasters,
levels of wellbeing and characteristics of the man-made and natural environment [7, 8].
In the fields of environmental monitoring and wildlife observation there is clearly strong
potential for exploiting social media, reflected in the fact that searching for named species on
photo-sharing websites such as Flickr often reveals thousands of results, many of which are
associated with coordinates and almost all with time stamps. It can be envisaged that these
observations could complement the many effective citizen science campaigns that record
aspects of the natural environment and assist environmental scientists in understanding the
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occurrence and behaviour of animals and plants [4]. Although many mentions of species
names in social media might not correspond to records of actual occurrences, several studies
have confirmed the validity of significant numbers of species observations in social media
[1, 2]. While these studies highlight the potential value of such data, little progress has been
made to date on developing reliable automated methods for exploiting all the textual content
of social media postings for tasks such as mapping species distributions.

Here we present the results of experiments to predict species distribution based on
geocoded social media postings from the Flickr website. As a baseline approach we study
the performance of a method that predicts the occurrence of a species in a given region if
there is at least one photograph on Flickr from that region which has been tagged with the
name of the species (using either its common name or scientific name). This method is then
compared with a standard machine learning based text classification approach, in which all
Flickr tags are used, and in which a species may be predicted to occur in a region even if
no photographs in that region have been tagged with its name. For the text classifier, we
follow the method from [6]. In particular, we show that the best results are obtained by a
meta-classifier, which combines the prediction of the text classifier with information about
the occurrence of the species name in or near the given region. These results clearly show
that better distribution models can be found by taking explicit account of the occurrence of
the species name as a tag, in combination with exploiting all other tags.

2 Related Work

An overview of the potential for exploiting social media in conservation and biodiversity was
provided by Di Mini et al [3], who conducted a study of the use of social media platforms for
posting observations of nature. The most commonly used platforms were, in order of level
of sharing of nature related content: Facebook, Instagram, Twitter, Youtube, Flickr and
LinkedIn. The potential of Flickr for mapping wildlife observations was illustrated by Barve
[1] who mapped geotagged postings that included the scientific or common names for the
Monarch Butterfly and the Snowy Owl, although that study did not conduct any systematic
evaluation of the quality of the retrieved data. Daume [2] performed a manual evaluation of
a sample of Twitter postings that named three invasive species (using associated photos for
validation). They identified factors correlated with valid observations, such as the presence
of a linked photo and tags that describe the environment (e.g. ‘leaves’ and ‘tree’). The
present work exploits such associated tags in predicting species distribution. An approach
to validating individual observations in Flickr was described by ElQadi et al [5] who used
Google’s reverse image-search service to find photos similar to those in Flickr postings. The
tags of the Google photos were then compared with those in Flickr in an attempt to filter
out non-wildlife images. In our work we learn an association between all Flickr tags and the
presence of particular species at a location.

The methods presented here build on the work of [6] which exploited weighted values
of all tags to train an SVM (support vector machine) classifier to predict the presence of
various environmental phenomena including species. In looking at species distribution no
distinction was made in [6] between whether the species name was present or not and the
focus was on the additional value that Flickr tags provide relative to scientific data such as
climate and landcover.

3 Methodology

The objective of this paper is to find a method that can use Flickr tags for predicting the
occurrence of wildlife species. To this end, we split the target spatial area into grid cells
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C = {c1, ..., cxm} and associate each cell with all the georeferenced Flickr tags that occur
within the cell. Following [6], we use Positive Pointwise Mutual Information (PPMI) to
weight how strongly tag t is associated with cell c. In particular, PPMI compares the actual
number of occurrences with the expected number of occurrences (given how many tags
occur overall in c and how common the tag t is). Let f(t,c) be the number of times tag
t (from the set of all tags T ) occurs in the cell c. Then the weight PPMI(t,c) is given by
max

(
0, log

(
P (t,c)

P (c)P (t)

))
where:

P (t, c) = f(t, c)
N

P (t) =
∑

c′∈C f(t, c′)
N

P (c) =
∑

t′∈T f(t′, c)
N

N =
∑
t′∈T

∑
c′∈C

f(t′, c′)

Each cell c is now represented as a sparse vector Vp, encoding the PPMI weight of all the
tags in c. We assume that a training set K ⊂ C is available which contains cells with known
ground truth species observations and a testing set U ⊂ C \K containing cells whose species
presence our method will try to estimate.

Our method of estimating the presence of a particular species s in cell c involves learning
two classifiers SV M1 and SV M2. The aim of the first classifier SV M1 is to make initial
predictions for the cells in the testing set U using the feature vector representation Vp. To
give a higher confidence to tags that correspond to the name of the species, we combined the
output of SV M1 (i.e. classifier confidence score value) with information about the presence
or absence of the Common Name or the Scientific Name of that species in the cell c or
the neighboring cells. In particular, the cell c is now represented as a feature vector Vm

which contains three features: the confidence value predicted by SV M1, the presence of the
species actual name in c as a binary feature (being 1 if the c contains the actual name and
0 otherwise), and the percentage of neighbours that contain the species name (again as a
common or scientific name) as tag. The second classifier SV M2 is learned using the feature
vector Vm to give the final estimation.

4 Experimental Evaluation

4.1 Data Acquisition

In this work we use two datasets: the ground truth species distribution from the National
Biodiversity Network Atlas (NBN Atlas)3 and the geocoded social media postings from the
photo sharing website Flickr4. The NBN is a collaborative project committed to making
biodiversity information available via the NBN Atlas. This dataset covers the UK and Ireland.
We used the Flickr API to collect approximately 12 million georeferenced Flickr photographs
within the UK and Ireland in September 2015. However, our analysis in this paper will focus
only on the tags associated with these photographs. The NBN Atlas dataset contains a total
of 302 birds with at least 1000 observations, of which 200 have a name that occurs in at least
100 Flickr photographs. Among these, we have considered a random sample of 50 birds for
our experiments. Note that even species with a large number of occurrences may possibly
only occur in a few cells.

3 NBN Atlas occurrence download at http://nbnatlas.org. Accessed 19 April 2018.
4 http://www.flickr.com
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Figure 1 Training, Tuning, and Testing regions.

4.2 Experimental Settings and Baselines
In the experiments, we consider a binary classification problem for each of the selected birds.
Specifically, the task we consider is to predict in which of the grid cells the bird occurs (i.e. for
which grid cells the NBN Atlas data contains at least one observation). We test our method
at three levels of granularity, considering grid cells of size 10, 20 and 30 kilometers. The
set of cells C was split into two-thirds for training, one-sixth for testing, and one-sixth for
tuning the SVM parameters. It is known that the quality of any supervised model is strongly
affected by the way in which the data are divided. Therefore, we split the study area into
geographically separated regions, as shown in Figure 1, to test the ability of our method to
make predictions about geographic regions for which no observation records are given. This
makes the task more challenging than choosing the cells randomly, due to possible differences
between the training and testing regions. Finally, for formal evaluation we compared the
results of three different methods: “Species Names” which predicts that the species occurs
if its common or scientific name appears in at least one Flickr photo in the test cell, “All
Flickr Tags” (SV M1) which uses the PPMI-based feature vector modelling all Flickr tags
to train an SVM classifier using the cells in the training set and predict labels for the cells
in the testing cells, and finally “Meta features”(SV M2) which is our proposed method, as
described in Section 3.

4.3 Results and Discussion
The results of predicting species distribution are reported in Table 1 in terms of the average
accuracy, average precision, average recall, average F1 score, and average Area Under the
ROC Curve (AUC) over the 50 birds. The results clearly show that “All Flickr Tags”
significantly outperforms “Species Names”. However, the proposed meta-classifier leads to
the best results overall, especially in terms of F1 score.

While the “All Flickr Tags” approach works well overall, we found a few cases where
using only the species names led to better performance. Perhaps unsurprisingly, this is
mostly the case when the number of NBN records (i.e. True labels) in the training region
is low, as there may not be enough training data to effectively learn an SVM classifier in
such cases. To illustrate such issues, Table 2 shows the F1 scores of 5 individual species.
As can be seen, for common species such as Mallard, Dunlin, and Green Sandpiper, the
“All Flickr Tags” method performs rather well. In contrast, for some less common species
(or species which only occur in particular geographic contexts), such as Atlantic Puffin and
Nightingale, we found better results when using the “Species name” method. Interestingly,
our proposed meta classifier, which takes account of both the species presence data and the
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Table 1 Results for predicting the distribution of 50 species across the testing area.

Dataset Cell Size Accuracy Precision Recall F1 Score AUC
Species Names 10 km 0.520 0.876 0.109 0.183 0.550
All Flickr Tags 10 km 0.779 0.787 0.500 0.560 0.801
Meta features 10 km 0.825 0.820 0.603 0.637 0.850
Species Names 20 km 0.501 0.943 0.241 0.355 0.613
All Flickr Tags 20 km 0.784 0.852 0.639 0.705 0.893
Meta features 20 km 0.870 0.907 0.811 0.832 0.917
Species Names 30 km 0.567 0.970 0.384 0.515 0.684
All Flickr Tags 30 km 0.831 0.868 0.758 0.795 0.943
Meta features 30 km 0.919 0.943 0.896 0.905 0.952

Figure 2 Prediction of the Dunlin distribution across the testing area with 10km grid cells.

Figure 3 Prediction of the Atlantic Puffin distribution across the testing area with 10km grid
cells.

all tags classification for nearby regions, outperforms both of the other methods for almost
all the considered species.

Figures 2 and 3 visually illustrate the performance of our method. Note that these species
(like most of the considered birds) occur in fewer than 50% of the cells, which is intuitively
why the “All Flickr Tags” method is more cautious in predicting occurrence (i.e. in absence
of any reason to predict occurrence, it is safer for a classifier to predict non-occurrence).

5 Conclusions and Future Work

In this paper we have presented a method for mapping the location of wildlife species
occurrence using the evidence of tags from the photo sharing web site Flickr. We have shown
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Table 2 F1 scores for predicting the distribution of individual species using different methods.

No.NBN No.Flickr Cell Species All Flickr Meta
records photos size Names Tags features

Mallard 1718823 11831 10 km 0.640 0.978 0.985
(Anas platyrhynchos ) 20 km 0.899 0.974 0.986

30 km 0.955 0.988 0.992
Dunlin 278872 796 10 km 0.196 0.630 0.744

(Calidris alpina ) 20 km 0.346 0.920 0.969
30 km 0.553 0.980 0.996

Green Sandpiper 103295 187 10 km 0.077 0.610 0.806
(Tringa ochropus ) 20 km 0.195 0.849 0.955

30 km 0.367 0.906 0.980
(Common) Nightingale 24437 383 10 km 0.128 0.0 0.401

(Luscinia megarhynchos ) 20 km 0.326 0.0 0.705
30 km 0.512 0.0 0.835

(Atlantic) Puffin 11551 2512 10 km 0.152 0.136 0.367
(Fratercula arctica ) 20 km 0.173 0.359 0.518

30 km 0.264 0.476 0.630

that while a method based simply on the presence or absence of the species name provides
good precision, much better overall accuracy, with similar precision, can be achieved with a
machine learning classifier that combines the presence-absence data with predictors based on
all the textual tags of the photos.

One line of future work is to investigate the use of a text classifier to estimate confidence
in observations of wildlife species in individual social media postings. This could be of
particular value when considering postings that mention a species name but in a context
that might be unrelated to its occurrence in nature.
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Abstract
When serious emergency events happen in metropolitan cities where pedestrians and vehicles are
in high-density, single modal-transport cannot meet the requirements of quick evacuations. Exist-
ing mixed modes of transportation lacks spatiotemporal collaborative ability, which cannot work
together to accomplish evacuation tasks in a safe and efficient way. It is of great scientific signi-
ficance and application value for emergency response to adopt multimodal-transport evacuations
and improve their spatial-temporal collaboration ability. However, multimodal-transport evacu-
ation strategies for urban serious emergency event are great challenge to be solved. The reasons
lie in that: (1) large-scale urban emergency environment are extremely complicated involving
many geographical elements (e.g., road, buildings, over-pass, square, hydrographic net, etc.); (2)
Evacuated objects are dynamic and hard to be predicted. (3) the distributions of pedestrians
and vehicles are unknown. To such issues, this paper reveals both collaborative and competit-
ive mechanisms of multimodal-transport, and further makes global optimal evacuation strategies
from the macro-optimization perspective. Considering detailed geographical environment, ped-
estrian, vehicle and urban rail transit, a multi-objective multi-dynamic-constraints optimization
model for multimodal-transport collaborative emergency evacuation is constructed. Take crowd
incidents in Shenzhen as example, empirical experiments with real-world data are conducted to
evaluate the evacuation strategies and path planning. It is expected to obtain innovative research
achievements on theory and method of urban emergency evacuation in serious emergency events.
Moreover, this research results provide spatial-temporal decision support for urban emergency
response, which is benefit to constructing smart and safe cities.
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Category Short Paper

1 Introduction

Serious emergency events mainly refer to major natural disasters, fire disaster, explosive
outbreaks, production safety accident, terrorist attack, explosion events, and so on. Tens of
thousands of people died in such disasters every year. These events cause serious damages
to personal and property safety, and they are principal threat to urban security. The top
priority task after serious emergency events is to evacuate the crowd from the sites of accident
[3]. As an important core of response plan for emergency management, emergency evacuation
for serious sudden events has become a hot topic in our society [9], and it is very benefit to
construct safety cities.

Emergency evacuation for serious sudden events in bustling city has its own characteristics:
(1) High population density. The density of population in city is very high and the aggregation
effect works during evacuation process. For example, over 300 thousands people gathered in
Shanghai’s Bund area for the arrival of the new year and caused stampede event in 2014.
(2) Pedestrian take occupation of vehicular road. As a result, regular traffic rules don’t
work anymore. (3) Wide spreading. As large-scale crowd-gathering, the traffic congestion
spreads out and the evacuation distance generally reaches several kilometers. (3) Evacuated
objects may change their modes of transportation. (4) The evacuation statuses are highly
dynamical [7]. Under this scenario, if there is no scientific and reasonable unified guidance,
the crowd must be mingled with the traffic vehicles and the evacuation efficiency is very
low. Thus, single modal-transport cannot meet the requirements of quick evacuations under
serious sudden events [11]. A new theory is in urgent need to efficiently and synergistically
invoke various transportation tools [8]. So that, the pedestrian and vehicles can be scheduled
in a scientific and reasonable way to ensure the high-efficiency, safe, ordered emergency
evacuation system. Undoubtedly, multimodal-transport evacuation strategies for urban
serious emergency event are very meaningful and urgent required, but also full of great
challenges.

Existing multimodal-transport evacuations generally indicate the pedestrian-vehicle mix-
ture evacuation [10] [1], [5], [4]. They focused on analyzing the behavior characteristics under
mixed statuses, but lack of spatiotemporal collaborative capacity. In general, the challenges
of developing the efficient multimodal-transport evacuations come from two aspects: (1) For
dynamic distributed people and vehicles, all walk, road vehicle and rail transit are used to
evacuate the pedestrian and traffic flows in a collaborative way; (2) Under time-geography
environment, multimodal-transport evacuations are constrained by the limited road resource
and dynamic conditions. Traffic control, road resource allocation and route planning should
be considered to minimize obstructions, maximize evacuation efficiency, minimize traffic
conflicts between vehicle and pedestrian and ensure safety. These two challenges become
the development bottleneck of urban emergency evacuation. With spatiotemporal dynamic
evacuation task and time geography-constrained environment, multimodal-transport collab-
orative evacuation strategies are a difficult issue to be resolved for emergency response in
serious incidents.

This paper focuses on the multimodal-transport collaborative evacuation strategies
considering walk, road vehicle and rail transit under dynamic distributions of people and
vehicles and time geography constraints. The research achievements could improve the
spatiotemporal collaborative capacity for various transportation tools, provide space-time
decision supports for emergency response in serious sudden incidents.
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2 Research framework

This paper aims at constructing an effective multimodal-transport collaborative evacuation
optimization model under space-time evacuated objects and time geography-constrained
environment for urban serious sudden incidents. This optimization model should satisfy
two requirements: in global scale, the entire evacuation system must be operated in a
high-efficiency and safe way under scientific guidance; in local scale, personalized escape path
and transportation modes should be provided for individuals. For this goal, we propose a
research framework in which Four main parts are contained:

Modeling the emergency environment;
Constructing multimodal-transport collaborative evacuation optimization model;
Solving the model and separating evacuation strategies;
Experimental testing and assessing. More detailed contents embed in each part and their
association among them are shown Fig. 1.

Generally speaking, this paper utilizes multi-source spatiotemporal data to construct static
and dynamic emergency, uses multi-commodity network flow model to build multi-objectives
multi-constrained emergency evacuation optimization model considering multi transport
modals. Moreover, our solution contains multiple strategies, such as routing planning [6], [2],
road resources distribution, dynamic flow control and transportation tool conversion, etc.
As considering relative comprehensive factors, this proposed model is expected to achieve
satisfactory effects and this will be tested by empirical data.

3 Study area and data source

Our study area is an entertainment Center, which is located in Shenzhen, one of the biggest
cities in China. Many large-scale public events, such as concerts, sports, exhibition, were
held here. Large crowds gather, and the large traffic jam ultimately emerges and last a long
time. Furthermore, complex geographical environment involves 2 metro stations, 7 bus stops,
four main routes and lots of bypass, squares, bridges, and so on. Thus, this study is of
representativeness in metropolis. Multi-source spatiotemporal data used in this paper mainly
includes:

Foundational geographic data. This dataset can accurately static 3D geographic model in-
cluding buildings, roads, overpasses, underground passages, hydrographic net, vegetation-
covered area, metro stations, and so on.
Phone cellular signaling data. For the goal in this paper, this data is mainly used to
estimate dynamic population distribution.
GPS data of bus and taxi. With the real position information of bus, we can infer how
many available buses at arbitrary time moment. Massive amounts of taxi’s GPS are
widely used to calculate traffic congestion status by many software. Besides of traffic
congestion status, this paper attempt to further figure out dynamic traffic flows.
Smart card records for buses and subways. Smart cards record the location and time of
passengers to get on and off the bus or subway. From these, we can know the maximum
passenger capacity and residual available capacity.

4 Methodology

With above known emergency evacuation environment, an effective multi-objective multi-
dynamic-constraints optimization model for multimodal-transport collaborative emergency
evacuation is constructed in this section. As the core of the entire framework, the objective
functions and constraint conditions in this model are analyzed from macro-perspective.
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Figure 1 The framework to study multimodal-transport collaborative evacuation strategies

Objective functions. All evacuation efficiency, security, evacuation distance for various
transportation tools and many other objectives should be optimized in an integrated way.

As the basic requirements for emergency response, the evacuation efficiency is the primary
goal.

The mixture of pedestrian and vehicles would cause chaos. It is very necessary to separate
pedestrian and vehicle flows and minimize vehicle-pedestrian conflicts.

In order to make full use of the advantages of various transportation modes, the conversion
among different transportation modes should be considered. So that, short-, moderate-,
and long-distance evacuations are assumed respectively by walk, road transport and rail
transit. In such way, a kind of spatial-layered evacuation phenomenon emerges.

Besides, more other objectives should also be considered, and different objectives play
various roles or even contradict each other.
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Figure 2 The study area: an entertainment center in Shenzhen, China.

Constraint conditions. Numerous constraint conditions can be classified into three major
categories:

Basic constraints. Evacuation strategy and status (or environment) influence each other.
Their interaction mechanisms can be described in mathematical forms, which is treated
as a kind of constraint. These constraints include limited flow capacity of pedestrian,
vehicle and metro, and the conservation of total population.
Constraints from space-time evacuated tasks. At the scene of an accident, dynamic
evacuation tasks are assigned to walk, car, bus and metro, etc. in real time, so that
stranded population at arbitrary time and site is always less than a threshold; in transit,
under the conservation of total population, conversion of various transportation modes is
allowed to control traffic and pedestrian flows. This reflects the task-cooperation relations
among multimodal transportations.
Constraints from time-geography. The movement speeds of escapers are affected by
surrounding environment, which is a kind of constraints. The capacity of a metro
station is limited to receive people within a specific time interval. On the sidewalks
and motorways, pedestrian and vehicle flows are not allowed to exceed their respective
capacities. But, pedestrian can occupy motorways in such emergency scenario and this
requires to reasonably allocate the road resources. Constraints from time-geography
implies the resource competition relations among multimodal transportations.

Model Solution. Above multi-objective multi-dynamic-constraints optimization model
simultaneously optimize numerous factors. As a result, lots of evacuation strategies are hided
in the solution of aforementioned emergency evacuation optimization model. Two main steps
are needed to be executed to obtain the finial evacuation strategies:

Spatiotemporal multimodal-transport traffic flow solution
Pedestrian and vehicle can respectively occupy different lanes in the same road, but not
allowed to be mixed up in a same lane. Due to the limited capacity of road, the flows of
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Figure 3 Emergency environment modeling from multi-source spatiotemporal data: (a) 3D
emergency scenario model; (b) Spatial configuration of bus stops and the metro system; (c) population
distribution; (d) dynamic traffic states.

pedestrian and vehicle are complementary:
fp

i,j(t) ≤ Cp
i,j(t)× ui,j(t) (1)

fv
i,j(t) ≤ Cv

i,j(t)× [1− ui,j(t)] (2)
Where fp

i,j(t) and fv
i,j(t) are respectively dynamic pedestrian and vehicle flows; Cp

i,j(t)
and Cv

i,j(t) are the road capacity for pedestrian and vehicle; ui,j(t) the percentages of
lane occupied by pedestrian, which suggest road resource allocation. As for rail transit, it
is an independent system, but share small number of nodes with sidewalks.
If pedestrian, vehicles and metros are respectively treated as three kinds of commodity
flows with different behavior characteristics, then multi-commodity network flow model
can be used to solve above multi-objective multi-dynamic-constraints optimization model.
After these endeavors, the optimized spatiotemporal flow of pedestrian, vehicles and
metros would be obtained.
Multiple evacuation strategies and route planning In order to consider the interaction
mechanism of evacuation strategy and evacuation environment, above model simultan-
eously optimize multiple strategies and their solutions are mixed together. These strategies
mainly include road sources allocation, dynamic flow control and route planning for ped-
estrian and vehicles, orbital traffic scheduling, multimodal transportation conversion,
dispersion assignment in intersection, and so on. In order to make evacuation strategies
is more clear and available for managers to operate, it is necessary to extract them as
shown in Fig. 4.

5 Conclusion

Multimodal-transport collaborative evacuation system for urban serious emergency incidents
is a complex dynamic system: on one hand, the pedestrian and vehicles from large-scale public
places, building, parking lots, etc. are dynamic. In order to reduce threats of sudden incidents,
the pedestrian and vehicles in the site of incident should be evacuated in a quickest time; on
other hand, emergency evacuation is carried out in special place and time. Restricted by the
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Figure 4 Multiple evacuation strategies and route planning.

limited road resources, superabundant pedestrian or vehicles could cause congestion and low
efficiency of emergency evacuation. For management departments, it is necessary to figure out
the optimized task allocation for multimodal transportation, road resources distribution and
other evacuation strategies under both dynamic tasks and time geography constraints. The
aim of improving the spatiotemporal cooperative capability of multimodal transportation is
to minimize the safety risk of evacuated objects and maximize the evacuation efficiency. Thus,
multimodal-transport collaborative evacuation mechanism considering dynamic tasks and
time geography constraints is a key scientific issue. This paper comprehensively takes into
account the external environmental impacts and interactions of internal multiple evacuation
strategies to solve above issue.

For evacuated individuals, they all want to escape from dangerous places along shortest
path and in a quickest way. If everyone does this, some areas could be heavily-crowded
and the evacuation efficiency must be very low; while global optimal paths would sacrifice
the interests of some individuals and increase their safety risks. It is necessary to find a
balance point between global and individual optimum. This paper firstly figures out the
global optimal spatiotemporal flows based on optimization theory, and then the individual
escape path is obtained following the principle of risk-sharing.

Above two key scientific issues are respectively to ensure the efficiency, safety and
equity. This paper aims at solving the challenge of spatiotemporal collaborative capacity
for multimodal transportations. Its achievement can improve the theory and method of
emergency response for urban serious incidents, and safety of smart city.
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Abstract
Maps are an excellent way to present data with spatial components. For the large-scale geo-
sensors being utilized in recent years, the map-based management and visualization of geo-senor
data have become ubiquitous. Without a doubt, managing and visualizing geo-sensor data on
maps will have vastly more future applications. However, current maps typically do not support
real-time communication in the Internet of Things (IoT), and it is difficult to implement real-time
visualization of sensor data on a map. Map symbols are the language of maps. In this paper,
we describe a new map symbol design method for geo-sensor data acquisition and visualization
on maps. We refer to the sensor data visual method in supervisory control and data acquisition
system (SCADA) and apply it to the design process of map symbols. Based on the traditional
vector map symbol, the mapping relationship between the sensor data and the graphic element
is defined in the map symbol design process. When the map symbol is rendered in the map,
the map symbol is integrated into the map layer. The communication module in the map that
communicates with the sensor device receives real-time sensor data and triggers a refresh of the
map layer according to the mapping profile. All the methods and processes shown herein have
been verified in GeoTools.
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1 Introduction

The Internet of Things (IoT) is emerging as a major trend shaping the development of the
Information and Communication Technologies (ICT) sector[12]. The possibility of seamlessly
merging the real and the virtual world through the massive deployment of embedded devices
opens up new exciting directions for both research and business [5]. With the development
of sensors and the gradual maturity of sensing technology, the IoT is being widely applied
in industrial process monitoring, production chain management, material supply chain
management, product quality control, equipment maintenance and other production processes
[7]. Since the IoT is becoming an increasingly trendy topic for individuals, businesses and
governments, the needs for easy-to-understand visualization focused on different sensor
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state are increasing as well. Meaningful presentation and visualization are critical for IoT
applications as more information is provided to consumers. These methods will also enable
policy makers to convert data into knowledge, a process which is critical for helping the end
user make decisions quickly [13].

Visualizing the geo-sensor data while regularly updating the presentation of the location
is necessary [10]. A good way to show the information is on a map. There are many
applications of sensor data visualization based on maps [9, 15, 18]. Although some GIS
technologies are able to visualize real-time data[2], there is no sensor data exchange between
the map and communication server. Although periodically refreshing the map is a way to
visualize changing sensor data, a frequent refresh rate increases the burden of the system.
In addition, an infrequent refresh rate will cause some changes to the sensor data to be
ignored. Hence, there is no single, well-defined way to provide sensor data for real-time
visualization through maps. The following discussion describes some of the most important
design choices made in mapping between the data models of map symbols and the models
required for real-time geo-sensor data visualization. In this paper, we propose to compensate
for deficiencies in the methods by incorporating sensor data transmission protocol into the
map symbol architecture.

2 Sensor data acquisition and visualization in IoT

Traditionally, most sensor data acquisition and visualization has been built around SCADA,
which is a system for remote monitoring and control that operates with coded signals over
communication channels [8, 1, 14]. In basic SCADA architectures, information from sensors is
sent to RTUs (remote terminal units), which then send that information to SCADA software.
SCADA software analyzes and displays the data in a Human Machine Interface (HMI) in
which all the elements, such as buttons, text arrays and other objects, are represented
graphically in visualization screens. In recent years, large-scope sensor arrays that are
produced worldwide have been utilized. The location of the sensor data, which is commonly
handled by the Geographic Information System (GIS), appears to be increasingly important,
and the implementation of geographical schematics in SCADA systems has been widely
accepted. Ten [16] proposed a framework to migrate a GIS database to a SCADA system
in which spatial data is converted to a SVG format to appear in an HMI. Back S employ
international standards from both domains to enable information exchange between the
SCADA and GIS systems and then present new concepts for bridging these systems [6]. The
above studies focused on how to transfer the spatial information from a GIS to a SCADA
system and present it via an HMI but focused less on how to collect sensor data and perform
visualization in the GIS.

For visualization of geographic objects, the map in the GIS is a “special” HMI. Carto-
graphers design and use symbols to represent geographic features. The procedure of a map
for spatial features is similar to an HMI in a SCADA system. The geographic object is
abstracted to a map symbol, which is composed of graphic elements, and then the symbol is
rendered on the map. The key to visualize real-time sensor data on a map is the mapping
profile between the sensor data and the graphic elements in the map symbol, just as with a
SCADA system.

3 Mapping profile definition between sensor data and map symbol

The traditional design principles of map symbols are based on the visual variable system[4].
Map symbols describe the different characteristics of geographical entities by the visual
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variables, such as size, hue, orientation, shape, location, texture and density. According
to the process in SCADA, building the mapping between the sensor data and the graphic
elements in a point map symbol is the key to visualize real-time sensor data on the map.
Therefore, we incorporate this mapping into the traditional point symbol model. The data
collected by the geo-sensor are periodic, so the sensor data in the system is presented in
the form of discrete data. According to the principle of data visualization, different data
types correspond to different visualization methods. For example, finite discrete data can be
directly matched to different visual variables, and infinite discrete data can be divided into
limited intervals, with each interval corresponding to different visual variables.

Production rules are widely used for representing knowledge in system[17]. We examine
methods for expressing the mapping as a succinct collection of production rules of the form

IF conditions THEN outcomes

There is at least one set of logical expressions in conditions; a logical expression defines
the relationship between a parameter representing sensor data and a threshold (e.g., Gas
< 5 ), and different expressions are joined by logical operators (not,and,or), Outcomes are
defined as visual variable = value. As an example, consider:

Parameter Gas
IF Gas >5 THEN TY1.fill=rgb (255 ,255 ,255)
IF Gas <=5 THEN TY1.fill= rgb (255 ,0 ,0)
end parameter

In this sample, the rect graphic element whose id is TY1 in gas station map symbol
notation corresponds to the sensor Gas, and the fill color will change to rgb(255,0,0) if Gas
is less than 5 ton.If Gas is more than 5, the fill color will change to rgb(255,255,255).

4 The Map Symbol Architecture for sensor data real-time
visualization

4.1 Driver Interface oriented sensor data transmission protocol
Through the network, sensor data is transmitted from the sending side to the server side.
At the transmitter, sensor data is serialized into a data stream (a frame data) according
to a certain sequence or organization mode. After receiving the data stream on the server,
the data were deserialized in the same sequence or organization mode. The agreement of
data organization is called the data transmission protocol[11]. In the design process of map
symbols, establishing the mapping relationship between the sensor data in protocol and the
visual variable is the key step. Therefore, the user needs to obtain the metadata information
of the sensor data in the process of map symbol design, such as data type, data name, data
length, data precision and so on. In the map render process, the sensor data transmitted
from sending side should be converted into an open data format for data visualization. We
define the metadata interface (IMeataData) and data-parsing interface (IDataParser) for
data transmission protocol. The metadata interface can obtain the name and type of the
item in the sensor data that is used for the design of the map symbol. The data-parsing
interface takes action on server side, and transform the data stream from private format
into public format. JSON is a lightweight text data exchange format[3]. We take JSON as a
public format data description.

The protocol designers program the driver class, which implements the two interfaces
(IMeataData, IDataParser). On one hand, the map symbol designer does not care about
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Figure 1 Outline of the model of the map symbol.

the structure of the transmission protocol. The metadata information of the sensor data
can be obtained by IMeataData and used for mapping definition. On the other hand, in the
process of the map render, the geo-sensor data frame converted to JSON format data by
IDataParser, and then the JSON format data is used for real-time visualization.

4.2 Model of map symbol for sensor data real-time visualization

Traditionally, a sensor device was abstracted into a point symbol (graphics block) shown
on a map. The graphic element is the basic component of a map symbol. From the point
of view of object-oriented modeling (programming), each type of graphic element includes
visual variables as properties. The functions of the graphic element can be generalized into
two types: graphic design and map symbol render in map visualization. We design the two
type functions separately into two interfaces (IElementDraw, IRenderDraw). IElementDraw
contains the methods needed for the graphic design, such as mouse up, mouse move, mouse
down and redraw. IRenderDraw is mainly for map rendering, which includes the method to
invoke when the map is rendered. The abstract class of graph element (AbstractElement)
which implements the two interfaces (IElementDraw, IRenderDraw) is defined in the model.
All properties of each type of graphic element in a map symbol are inherited from the abstract
class. In the process of designing the map symbol, IMeataData in the driver class show the
sensor metadata information to the map symbol designer. The designer defines the mapping
of the sensor data item and visual variables, and saves it. In the process of map rendering,
the graphic rendering function (IRenderDraw) maps the sensor data into visual variables by
the Rule class.

MapSymbolUI binds the IElementDraw interface and the mouse operation in the drawing
area, which makes the symbol model and UI integrated. Users can choose different types of
graphic elements, and use the mouse event in the drawing area to draw the symbol element,
and save it into the current symbol data model. The outline of the model show as Figure 1.
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Figure 2 Map symbol design and application (Take the gas station as an example).

5 The application of geo-sensor data real-time visualization by map
symbol

The current GIS is a component-based system, and the different components are coupled
together through an interface. The components in GIS associated with map visualization
are the layer component and the symbol component, which are coupled through a rendering
interface.We add the real-time sensor data acquisition module in the layer component when
the map symbols are combined with it. The data acquisition module connects with the sensor
through a “long-polling” connection. When the module receives data from the sensor, the
module calls the parsing interface (IDataParser) in the driver class to transform the received
sensor data into JSON format data, and then the JSON data is forwarded to the symbol
render interface (IRenderDraw) via a layer component. According to the mapping profile,
the symbol-rendering interface changes the visual variables and then realizes the real-time
sensor data visualization based on the map symbol.

In this paper, we developed a new map symbol editor in the JAVA language (Figure 2a)
based on the model (Figure 1) and use GeoTools to verify it. We use a gas station as an
example, the new map symbol editor designs a gas station symbol (Figure 2a). When the oil
of the gas station is below the threshold, the rectangle box of the map symbol is changed to
a red filled circle (Figure 2b).

6 Conclusions

We have described the design and implementation of the map symbol for real-time sensor
data visualization on the map. We have identified aspects in the map symbol that are needed
to implement real-time visualization of sensor data. These aspects include the following:

Define how the sensor data can be mapped to the visual variable of map symbols.
Develop a new map symbol design system oriented real-time geo-sensor data visualization.
Verify the real-time visualization by map symbol in GeoTools.

The present research focuses on how to achieve real-time visualization of sensor data on
a map. At present, there are only a few types of graphic elements in the symbol system,
and the change of graphic elements is relatively simple. In the future, we hope to design a
variety of graphic elements and design more diverse graphic elements that change according
the mapping profile.
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Abstract
We report on an empirical study with over hundred online participants where we investigated
how texture and color value, two popular visual variables used to convey uncertainty in maps,
are understood by non-domain-experts. Participants intuit denser dot textures to mean greater
attribute certainty; irrespective of whether the dot pattern is labeled certain or uncertain. With
this additional empirical evidence, we hope to further improve our understanding of how non-
domain experts interpret uncertainty information depicted in map displays. This in turn will
allow us to more clearly and legibly communicate uncertainty information in climate change
maps, so that these displays can be unmistakably understood by decision-makers and the general
public.

2012 ACM Subject Classification Information systems → Geographic information systems,
Human-centered computing → User centered design, Human-centered computing → Contex-
tual design, Human-centered computing → Empirical studies in visualization, Human-centered
computing → Visualization design and evaluation methods

Keywords and phrases uncertainty visualization, empirical study, visual variables, climate change

Digital Object Identifier 10.4230/LIPIcs.GIScience.2018.37

Category Short Paper

Funding This work is based on the unpublished MSc thesis by the first author advised by the
subsequent authors. It was partially supported by the Canton of Zurich, Switzerland.

Acknowledgements We would like to thank the Geographic Information Visualization and Ana-
lysis (GIVA) group at the Geography Department of the University of Zurich for their feedback
and methodological support. Special thanks go to Annina Bruegger for her expertise and time to
prepare this manuscript in LaTex. I would particularly like to thank Prof. Evers for supporting
this research and Prof. Sara Irina Fabrikant for guiding my empirical study, providing me with
the opportunity to be a part of the GIVA group, and to publish my MSc thesis research. Finally,
we are grateful for the many people who participated in our study without whom we would not
have been able to write this paper.

© I. Johannsen, S. I. Fabrikant, and M. Evers;
licensed under Creative Commons License CC-BY

10th International Conference on Geographic Information Science (GIScience 2018).
Editors: Stephan Winter, Amy Griffin, and Monika Sester; Article No. 37; pp. 37:1–37:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:irene.johannsen@uni-bonn.de
mailto:sara.fabrikant@geo.uzh.ch
https://orcid.org/0000-0003-1263-8792
mailto:mariele.evers@uni-bonn.de
https://orcid.org/0000-0001-7767-6058
http://dx.doi.org/10.4230/LIPIcs.GIScience.2018.37
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


37:2 How Do Texture and Color Communicate Uncertainty?

Figure 1 Thematic map conveying climate change predictions using color value combined with
color hue to communicate average changes in precipitation. The visual variable texture, including
stippling (black dots) and hatching (diagonal lines) visualizes prediction uncertainties (Source: [5]:
Figure SPM.7).

1 Introduction

Maps are a popular means to inform decision-makers and the general public about climate
change. For example, well-known and highly cited reports produced by the Intergovernmental
Panel on Climate Change [5], the European Environment Agency (EEA 2017), and the US
National Climate Assessment (e.g., [14]) contain on average at least one thematic map every
dozen pages to make climate change visible and tangible to everyone (Figure 1). Important
decisions on climate change mitigation and adaptation are often made with the help of such
maps [15]. Climate change predictions contain various sources and types of uncertainties.
This information is also visualized in the earlier mentioned climate change reports, as to
alert decision-makers and the public of the inherent prediction uncertainties (Figure 1). For
instance, the numbers printed in the upper right corner above the two maps in Figure 1
describe the number of model outcomes used to compute the depicted average change in
precipitation over the depicted period. The stippling texture (dot pattern) in these maps
indicate regions where the projected change is large compared to natural internal variability
(i.e., greater than two standard deviations of internal variability in the 20-year averages),
and where 90% of the models agree on the sign of change. The hatching texture (diagonal
line pattern) in Figure 1 shows regions where the projected change is less than one standard
deviation of the natural internal variability in the 20-year averages (WGI Figure SPM.8,
3Figure 1.20, Box 12.1). The visualization of complex and difficult to interpret climate
change statistics, including the inherently difficult to comprehend concept of uncertainty can
lead to uninformed (at worst, wrong) decisions and respective harmful consequences. It is
therefore critically important that climate change maps clearly and legibly communicate the
information, so that these displays can be unmistakably understood by the decision-makers.

2 Background

The visualization of uncertainty has been empirically studied by a diverse visualization
community for over 20 years [13]. GIScientists, for instance, have investigated the suitability
of various visual variables for the communication of uncertainty in maps [8]. Particular
attention has been paid, for instance, to how color value ([12, 16]) and texture [10, 9] might
intuitively communicate uncertainty information in thematic maps. Empirical study results
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Figure 2 Entire procedure of the online study, and respective sequence and style of test stimuli
(administered in English and in German), showing both black and white textures, two question
types, and the response box.

to date suggest that the graphic variable color value is particularly intuitively understood
and associated with uncertainty [12]. This research also provides empirical evidence that
the graphic variable texture, as shown in Figure 1, is particularly easy to read [11, 10, 16].
However, empirical findings are contradictory on how color value and texture intuitively
communicate uncertainty, when the concept is labeled differently, i.e., uncertainty or certainty
[10, 12], herein labeled un|certainty. In the following, we report on an empirical, online study
that aims to narrowing mentioned research gaps.

3 Empirical Study

We systematically examine how the visual variables color value and texture [1] are intuitively
understood by non-domain-expert map readers to convey un|certainty information in climate
change maps. We also wish to further develop GIScience theory, focusing on the widely
known, but little empirically evaluated cartographic principles “darker-is-more” and “denser-
is-more”, typically used to convey increasing data magnitudes, and how these principles
apply to the intuitive understanding of the visualization of un|certainty. For this, we
specifically developed a new uncertainty visualization method which simulates color value
by means of regularly spaced white and black dot textures of varying dot densities. This
method not only combines the intuitively understood properties of the graphic variable
color value to convey uncertainty [12], but it is also directly based on the graphic variable
texture, which previous empirical uncertainty visualization research suggests to be highly
legible [12, 16]. We were inspired by the halftone technique, a classic reprographic method
to simulate continuous tone by means of a dot pattern, varying either in dot size or in
dot spacing [17]. We thus employed black and white dot patterns of various densities to
lighten or darken areas in the classed, univariate precipitation change maps used as stimuli
in our study (Figure 2). Our developed map stimuli were directly inspired by the maps
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(a) un|certainty concept. (b) density of dot texture (black or white).

Figure 3 Main Effects: un|certainty concept (a) and visual variable texture density (b).

available in the IPCC Report 2014, as shown in Figure 1. To control for potential perceptual
confounds, we carefully checked map stimuli against color deficient viewing simulations [7]
and by running biologically inspired vision models [6] to assure consistent center-surround
contrasts across all stimuli. The online study had three sections (Figure 2); comprising of
a background questionnaire (Part 1), two types of map-based questions (Part 2), and the
Hidden Patterns Test (Part 3), a standardized spatial abilities test [4], deployed via an online
survey (i.e., onlineumfragen.com). We collected data during July 14-27, 2017, targeting
various international GIScience/cartography, geography and geomatics lists. Participants
could choose to complete the test either in German or in English. We retained 104 participants
for data analysis (52 females and males), because they completed the entire test (Total
N=799, completion rate of 13%). Based on the background questionnaire, our participants
have mostly a geography, cartography, and geomatics background (approx. 40% of the total
sample), but are considered non-climate-domain experts. After completing the background
questionnaire and a warm up trial, participants were then asked to rate on a 4-step response
scale matching the four depicted dot densities (within subject factor: density) how un|certain
(between-subject factor: question type) the labeled zones highlighted on a series of maps,
looked to them. In the second map-based portion of the study, participants were also asked
to compare two precipitation maps that differed in dot color black|white (within-subject
factor: color) of the newly developed uncertainty visualization method. Finally, participants
completed the Hidden Patterns test to assess their visuo-spatial abilities.

4 Results

To compare ratings across the un|certainty conditions, we assigned “not at all un|certain” to
rating 1 and “very” un|certain to rating 4. We then linked the word pairs “very uncertain”
with “not at all certain” to compare the ratings across un|certainty conditions. We ran mixed
ANOVAs on the ratings, and where data assumptions were violated, we relied on the Aligned
Rank Transform (ART) [18]. Interestingly, textures that are labeled uncertain (Figure 3a),
on average, receive significantly higher certainty ratings, compared to those that are labeled
certain (F(1,102) = 8.877, p < .01, partial η2 = .08).

Participants associated the increased density of the dot textures (Figure 3b) with increased
certainty (F(3,306) = 40.026, p < .001, partial η2 = .28). All textured zones are rated more
certain compared to the non-textured zones (x̄ = 2.39, F(1,102) = 49.13, p < .001, partial
η2 = .33). The differences between the increasing texture densities are all significant (p <
.001). There were no significant differences comparing the color of the dot texture (white vs.
black dots). We also did not find any significant differences between participants’ expertise
with climate change mapping and their spatial abilities relating to the Hidden Patterns test.
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5 Discussion

In contrast to our hypotheses, based on above cited uncertainty visualization research, the
response pattern shown in Figure 3b is the same, whether participants rate uncertainty or
certainty. In other words, we find empirical support for the basic cartographic principle the
more (denser) the (dot) texture, the more participants associate this with more certainty in
precipitation change maps. In doing so, we replicate similar studies using different types of
textures (hatching, dot size, dot arrangement, and color) to convey uncertainty [12, 3, 16].
This is somewhat in contradiction with the cartographic principle “the darker-is-more”,
assumed with color value. The denser (more certainty) a white (dot) texture on the dark
map background, the lighter it appears. However, [12] found that the progression from a
light color shade or from light appearing fuzziness (i.e., more uncertainty) to a dark or solid
color shade (i.e., more certainty) was amongst the top three most intuitively understood
visual variables to convey uncertainty. To our surprise, the color of the dots (white vs. black)
did not make a significant difference in our collected certainty ratings. One explanation
for this unexpected result is that the developed dot textures possibly appeared too coarse
as to produce distinguishable (just noticeable) differences in color value across the white
and the black dot conditions. Looking into participants’ open responses in the comments
response box, it seems that a significant portion of them interpreted the dots in the textures
to mean precipitation measurement locations. With an increase of the precipitation sampling
locations within a zone, a plausible conclusion could thus mean an increase in data certainty.

6 Conclusion and Outlook

We set out to empirically assess whether the well-known cartographic principles “darker-is-
more” and “denser-is-more” also applied to the intuitively understood visualization of data
un|certainty. Our empirical findings suggest that the increase of regularly spaced dot textures
in precipitation change maps are indeed associated with perceived increase in data certainty.
This association pattern is stable whether or not the term uncertainty or certainty are used to
label the textures in the map displays. However, certainty ratings increase significantly when
the term uncertainty is used in the maps, compared to when the texture is labeled certainty.
Unexpectedly, the color of the dot texture has no significant influence on un|certainty ratings
in our study. While we varied the spacing of the regular dot textures, others have also varied
the arrangement of textures (e.g., [2, 8]). This invites like-minded researchers to further
systematically investigate dot arrangements in future empirical studies. In closing, we hope
to have shed further light on how the popular visual variables texture and color value might
be employed to clearly and legibly communicate uncertainty information in climate change
maps, so that these displays can be unmistakably understood by decision-makers and the
general public.
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Abstract
The intertwined relationship between urban functionality and human activity has been widely
recognized and quantified with the assistance of big geospatial data. In specific, urban land
uses as an important facet of urban structure can be identified from spatiotemporal patterns of
aggregate human activities. In this article, we propose a space, time and activity cuboid based
analytical framework for clustering urban spaces into different categories of urban functionality
based on the variation of activity intensity (T -fiber), mixture (A-fiber) and interaction (I- and
O-fiber). The ability of the proposed framework is empirically evaluated by three case studies.
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1 Introduction

Human activities and urban functionality are strongly intertwined. As stated in [3], “Land
use typically refers to the distribution of activities across space, including the location and
density of different activities, where activities are grouped into relatively coarse categories,
such as residential, commercial, office, industrial and other activities”. It implies that different
land use types inherently demonstrate distinct patterns of activity density and intensity [12],
which are their most intuitive characteristics and can be both aggregate and temporal.

The interconnection between land use and urban activity, on the one hand, enables the
generation, allocation and prediction of urban activities in space and time. For instance,
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Figure 1 Urban land use inference as a analog to remote sensing.

there exists an abundant body of literature in urban modeling relying on the link between the
two [1]. On the other hand, urban activity and its spatiotemporal dynamics can be regarded
as good proxies of urban land use distributions. The usage of a specific urban space depends
on those who occupy it and when, and what they do. These factors, in turn, constitute of a
unique signature of the given urban space or land use zone [10]. Yet, an universal analytical
framework for unraveling the relationship between urban land use types and their associated
signatures of human activity is still missing.

Earlier research attempts show that utilizing urban activities to identify land use types
can be analog to remote sensing for geographical classification [7]. As shown in Figure 1, the
signature of changes of activity intensity along time can be taken as spectral characteristics of
remote sensing for differentiating geographical objects. Recent advances in land use inferences
and urban space segmenting based on urban activities follow this scheme in general. The
procedure can be summarized as: (1) building feature vectors of urban spaces (e.g., places
and regions) based on the variations of human activities in a predefined temporal granularity
(e.g., hours of weekdays and weekends); (2) classifying urban spaces into different land use
types (e.g., residential, commercial, leisure) based on the similarity between their feature
vectors using mainstream clustering algorithms. Due to this fact, traditional classification
approaches used in remote sensing are naturally adapted for the purpose, for instance
Principal Component Analysis [10], K-means [8], Supervised Classification [11], and just
name a few. However, it is still an open and interesting question that how to build the
signature from the spatiotemporal dynamics of human activity to inform stakeholders the
characteristic of the underlying urban spaces.

In this article, we will show readers a proposed space, time and activity cuboid based
analytical framework for understanding the functionality of urban spaces based on human
mobility data. With the cuboid, different activity signatures are derived for urban land use
inference from the perspectives of the variation of activity intensity, mixture and interaction.
The proposed framework is applied in three case studies based on three types of activity
datasets (i.e., bus ridership, taxicab ridership and metro ridership) in different geographical
regions. For each of the three types of activities, we build, normalize and cluster the signatures
of each urban zone using different approaches. The results are accessed by the ground truth
land use map as an evaluation of the capabilities of each combination of activity, feature,
normalization and clustering algorithm.
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Figure 2 The STA cuboid of human activity in space and time. In A, B and C, the 3-dimension
tensor X consists of I regions, J time slots and K features (or activities). In addition, S-norm,
T -norm and A-norm define the normalizations of fibers x : jk (i.e., fixing time and activity), xi : k

(i.e., fixing space and activity), xij : (i.e., fixing space and time), respectively. Intuitively, S-fiber
x : jk quantifies the spatial distribution of a given activity ak at the given time tj , T -fiber xi : k the
temporal signature of a given activity ak in the given region ri, and A-fiber xij : the mixture of
distinct activities in a give region ri and at a given time tj . In principle, S-norm captures the relative
intensity of activities in different regions (volume), T -norm the fluctuations of activity intensity
along time (shape), and A-norm the component of activities of a region (texture). Additionally, if
the interaction between spatial regions can be observed, a new tensor X consists of I regions (I = J)
and K time slots is built in D. Under this scenario, SS-norm captures the flow patterns between
each pair of regions along time (network), and I-fiber x : jk, O-fiber xi : k quantify the inflow and
outflow of human mobility in the region, respectively.

2 A space, time and activity cuboid based analytical framework

For urban land use inference, we concentrate on three dimensions as Space, Time and Activity
(STA) and propose a cuboid representation of the three dimensions as shown in Figure 2.
In the cuboid, the Space dimension denotes the I distinct regions which are usually regular
grids across space; the Time dimension represents the J different time slots; and the Activity
dimension contains the K types of activities. Therefore, the proposed STA cuboid quantifies
the distributions of human activities in space and time.

In practice, we usually observe individuals’ diverse activities (large K) in fine spatial and
temporal granularities (large I and J) with the assistance of the increasing availability of
user-centric geospatial data. If fixing activity ak, we can obtain a ST slice demonstrating the
spatial distributions of the given activities along with time (Figure 2A). In the ST slice, each
row is a S-fiber of the distribution of the given activity ak in space at the given time slot tj .
Whereas, each column is a T -fiber of the signature capturing the fluctuations of intensities of
activity ak in region ri at time tj . In a similar way, we can obtain a TA slice if fixing the
location (region) of interest (Figure 2B). The TA slice delineates the intensities of various
types of activities {a1, · · · , aK} and their fluctuations along time {t1, · · · , tJ} within the
given region ri. In the TA slice, each row is a T -fiber while each column is a A-fiber of the
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component of different types of activities in the given region ri and time slot tj . Fixing time
tj , a SA slice demonstrates how the different types of activities distribute across space, and
its rows are A-fibers and columns S-fibers. Additionally, if the interaction between regions
can be observed, a new tensor X consists of I regions (I = J) and K time slots is built
(Figure 2D). Therefore, SS-norm captures the flow patterns between each pair of regions
along time. Fixing time tk, a SS slice demonstrates how the different regions interact with
each other in space, and its rows are inflow I-fibers and columns outflow O-fibers.

Based on the fibers (i.e., activity signatures) derived from the space-time-activity tensor,
we then relate urban land use and human activity from three distinctive perspective. Consid-
ering that the signatures are organized as time series, the clustering approach is adopted to
assign urban spaces into different categories of urban functionality based on the similarity of
their signatures in terms of the variation of activity intensity (i.e., the T -fiber), the component
of activity type (i.e., A-fiber) and the pattern of spatial interaction (i.e., I- and O-fiber). Note
that, in addition to the signature, different normalization method and clustering algorithm
can result in different classification of urban land use types. To be concise, hereafter we will
concentrate on the activity signature and discuss the normalization and clustering method
briefly.

3 Applications of the framework for urban functionality inference

3.1 Clustering based on the variation of activity intensity (T -fiber)
Using a seven-day taxi trajectory data set collected in Shanghai, we investigate the temporal
variations of both pick-ups and drop-offs, and their association with different land use features.
For each hour in the seven days, we compute the numbers of pick-ups and drop-offs for each
1 km × 1 km cell in the study area as the activity signatures. Two T -dimensional vectors,
denoted by V pickup and V dropoff , can be constructed to represent the temporal variations
of trips for each pixel i in the study area as

V pickup
i = [V 1

i , V 2
i , · · · , V T

i ] (1)
V dropoff
i = [V 1

i , V 2
i , · · · , V T

i ] (2)

Based on the balance between the numbers of drop-offs and pick-ups and its distinctive
temporal patterns V dropoff

i − V pickup
i for each pixel i at time t (= 1, · · · , T ), the study area

is classified into six traffic ‘source-sink’ areas using the K-means clustering method. These
areas are closely associated with various land use types (commercial, industrial, residential,
institutional and recreational) as well as land use intensity. Five sample points are selected
from the study area to represent various locations (land uses), and their corresponding
V pickup and V dropoff are depicted in Figure 3. Their temporal patterns differed significantly.
For example, the average numbers of pick-ups and drop-offs were roughly equal for cells A
and B. In either cell C or D, however, the average number of pick-ups was much fewer than
the average number of drop-offs. Cell E had far lower numbers of pick-ups and drop-offs than
the other four locations. It confirms that the temporal patterns of pick-ups and drops-offs
vary a great deal from place to place, and are manifest of the function of the place.

3.2 Clustering based on the component of activity type (A-fiber)
Leveraging a comprehensive data collection of bus, metro and taxi ridership from Shenzhen,
China, we furture unveil the spatio-temporal interplay between the mixed use of transport
modes and the underlying urban land use. For each spatial analysis unit (SAU), we build
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Figure 3 Temporal variations of pick-ups and drop-offs of 5 sample points in Shanghai, China
(A: downtown; B: residential; C: Hongqiao Airport; D: Pudong Airport; E: suburban) [8].

a volume signature capturing the temporal fluctuations of ridership of mass transit modes
during a day. Taking 15-minutes as the temporal granularity, the signature Vi of a SAU i

is denoted as a 1× T vector quantifying the ridership of bus, metro or cab within the nth
time slot. Targeting to compare three distinct mass transit modes, we therefore obtain the
signatures of volume { V bus

i , V metro
i , V cab

i } for bus, metro and cab ridership within each
SAU i, as well as the signatures of ratio { Rbus

i ,Rmetro
i ,Rcab

i } of ridership of different
mass transit modes over time:

Rbus
i = V bus

i /(V bus
i + V metro

i + V cab
i ) (3)

Rmetro
i = V metro

i /(V bus
i + V metro

i + V cab
i ) (4)

Rcab
i = V cab

i /(V bus
i + V metro

i + V cab
i ) (5)

where ·/· represents the itemwise division between two input vectors.
Applying a novel spectral clustering on the proposed signatures of the ratio of ridership, we

obtain 5 clusters of SAUs that demonstrate distinct patterns of bus, metro and cab ridership
dynamics as shown in Figure 4. In Cluster 1, metro rails play the most important role within
these SAUs. During morning and evening commuting periods, metro ridership increase
significantly. In comparison, the ratios of bus ridership and cab ridership are relatively low.
Besides, the temporal fluctuations of bus ridership and cab ridership are also distinct. In
Cluster 2, bus ridership and metro ridership are at a comparative level, which is significant
higher than cab ridership. It indicates passengers have easy access to bus and metro at
the same time. However, during morning and evening commuting periods, bus and metro
ridership show no significant increase to that of working time periods. In Cluster 3, metro
ridership demonstrate substantial increase during the morning and the evening commuting
periods. On the contrary, bus ridership show no peaks during the commuting periods and
its ratio is very low. In Cluster 4, bus ridership and metro ridership are very similar to
that of Cluster 2. However, within these SAUs, increase of ridership during the morning
commuting period are high while that during the evening commuting period is low. In Cluster
5, bus and metro compete for the dominant mass transit mode during different time regimes.
During the morning commuting period, metro rails are the dominant mass transit mode.
Whereas, during the evening commuting period, buses become the dominant mass transit
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Figure 4 Temporal variations of ridership patterns of mass transit modes associated with different
clusters of SAUs in Shenzhen, China (Cluster 1: business and commercial; Cluster 2: rich residential;
Cluster 3: mixed-use; Cluster 4: middle-income residential; Cluster 5: recreational) [13].

mode. Over the entire day, cab ridership is always relatively low. This phenomena reveals the
transmission of passengers’ preference of different mass transit modes over time. In general,
different categorized urban spaces are associated with different accessibility levels (such as
high-, medium-, and low-ranked) and different urban functionalities (such as residential,
commercial, leisure-dominant, and home-work balanced). The results indicate that the
demographic and socioeconomic attributes of the underlying urban environments can be
revealed by the ridership dynamics of different mass transit modes.

3.3 Clustering based on the pattern of spatial interaction (I- and
O-fiber)

Based on the observation that spatial interaction patterns between places of two specific
land uses are similar, we derive a new type of place signature to infer urban land uses from a
perspective of connections. The method is validated with a case study using taxi trip data
from Shanghai. Assuming that intra-city spatial interactions between N different places
represented by travel flows can be extracted from the massive data sets, in each hour of a day,
an N ×N origin-destination (OD) matrix M t (t ∈ [1, 2, · · · , T ]) of population movements
can be constructed, denoting the population moving from place i to j at time slot t as mt

i,j

(i, j ∈ [1, 2, · · · , N ]). Using mt,k
i,j and mt,k

j,i to denote the outflows from place i to j and inflows
from j to i at time slot t, while the assumed land use type of j is K, we build the grouped
interaction signature V group for place i as

V group
i =

 m1,1
i,. · · · mT,1

i,. m1,1
.,i · · · mT,1

.,i
...

...
...

...
...

...
m1,K

i,. · · · mT,K
i,. m1,K

.,i · · · mT,K
.,i

 (6)

which represents the flow patterns of a place with a trade-off between aggregated patterns
and individual spatial interactions.

Inspired by the expectation-maximization (EM) algorithm, we use an iterative algorithm
combined with the K-means clustering method to link the clustered parcels to their cor-
responding land uses. Figure 5 illustrates the classification result based on the grouped
interaction signature of parcels. By interpreting the mean temporal signature curves and
referring to Google Map information, we assign the roughly corresponding land uses to each
parcel cluster. Type 1 have inflow peaks in the morning, afternoon and early evening, repres-
enting residents coming for work, business and eating/shopping/entertaining, respectively.
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Figure 5 Temporal variations of spatial interaction patterns between different categories of land
uses in Shanghai, China [6].

Whereas, the two outflow peaks in the afternoon and night represent people’s travels for
business and going home, respectively. Therefore, these parcels are urban commercial and
business area. Type 2 covers business and industrial area. Type 3 covers civic facilities,
such as railway stations, hospitals and museums, and their inflow and outflow peaks are
in the daytime. For Type 4, 5 and 6, the normalized mean temporal signatures of them
all show that people leave these regions in the morning and return to these areas in the
evening, which is consistent with the way people use residential areas. According to their
spatial distributions, we name them urban residential area, outskirt urban residential area
and suburban residential area, respectively. Type 7 are considered to be other land use area
with few taxi trips. These results confirm that urban functionality can be better understood
by analyzing the interaction patterns between different land uses.

4 Conclusion and Discussion

In this article, we proposed a space, time and activity cuboid based analytical framework for
understanding the functionality of urban spaces. The core contribution is how to organize
the human activity data into the cuboid for building meaningful and informative activity
signatures. Applied in three case studies with the derived signatures of the variation of
activity intensity, the component of activity type and the pattern of spatial interaction, the
ability of the proposed analytical framework is confirmed. Note that directly following the
remote sensing paradigm surely shows promising potentials for understanding and analyzing
urban spaces. However, there are also several pitfalls should be aware of by researchers and
practitioners as listed below.

Activity: Different activities have substantially distinct spatiotemporal characteristics.
Particularly, the big data revolution has been producing plentiful geo-data associated
with individuals and their activities in space-time. Much more urban phenomenon
are accessible and identifiable by this new and rich data source. For instance, spatial
distributions of mobile phone and taxicab usages are observed to be quite different in
many cities [4]. It is of critical importance to choose what kind of activity to analyze.
Feature selection: Even for a single type of activity, the feature or feature combination
selected also can result in inconsistent results. For instance, the combination of features
related to taxi pick-up/set down dynamics significantly influence the recognition accuracy
of urban land uses in a Chinese city [9]. Therefore, the feature should be carefully selected
based on the research context.
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Normalization: Unlike the spectral curve of remote sensing, which is typically con-
sistent for the same type of geographical objects and invariable with object size, the
signatures of same land use types can be very different in magnitude order, in that
socioeconomic activities change superlinearly with urban area size [2]. To cope with this
issue, normalization is thus usually conducted before clustering the signatures.
Clustering: In the context of using urban activity for land use classification, many
classical clustering algorithms can be used because the signatures of urban zones can
be simply regarded as time series. A comprehensive survey of time series clustering
algorithms can be found in the literature [5]. The main challenge lies in the way to
measure the similarity between the activity signatures.
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Abstract
As the market for indoor spatial information burgeons, the construction of indoor spatial data-
bases consequently gain attention. Since floorplans are portable records of buildings, they are an
indispensable source for the efficient construction of indoor environments. However, as previous
research on floorplan information retrieval usually targeted specific formats, a system for con-
structing spatial information must include heuristic refinement steps. This study aims to convert
diverse floorplans into an integrated format using the style transfer by deep networks. Our deep
networks mimic a robust perception of human that recognize the cell structure of floorplans under
various formats. The integrated format ensures that unified post-processing steps are required to
the vectorization of floorplans. Through this process, indoor spatial information is constructed
in a pragmatic way, using a plethora of architectural floorplans.
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1 Introduction

Recently, the development of information technology has made it possible to expand location-
based services such as position tracking and indoor navigation. Consequently, the indoor
spatial information market has burgeoned and various studies on indoor spaces are being
conducted. The accomplishment of several services and research on indoor spaces requires
a database that contains information of the geometry, topology, and semantics of indoor
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Figure 1 Study flow chart.

cells. The construction of indoor spatial information has been based on aerial photographs,
3D laser scanning, 2D floorplans, and CAD plans [7]. Among these, the 2D floorplan is
pragmatically focused on because it is obviously present in existing buildings, being usually
open source and simply and effectively available compared to other methods. With such
features, OpenStreetMap and Google Maps provide a plug-in that allows users to build their
own indoor maps using floorplans. In addition to these tools, several systems are used in the
construction of indoor spatial information from floorplans, such as open sources like QGAR
[13] and commercial vectorization software. These systems, however, have some limitations:
the accuracy of outputs depends on the level of information represented by the floorplans,
such as grid lines, layouts, symbols, and electric wiring, thus requiring heuristic revisions.

This paper proposes a method of refining various types of floorplans and levels of
information in a consistent form. Even with the dramatic advances in computer vision,
retrieving information on floorplans is a challenge due to the number of rooms in different
houses, different formats of symbols and walls, and different levels of information. Despite
all these difficulties, humans can still recognize the structures of houses from floorplans. The
goal of this paper is to materialize this "perception" through deep networks by learning many
types of floorplans.

2 Related work

Retrieving leaking information from raster floorplans follows sequential steps [4, 7, 8]. First,
textual and graphical data are separated in a preprocessing step [14]. Then, lines in vector
are extracted from the graphical data [1]. The next step is a pattern recognition that assigns
semantic information, such as walls and openings, to the extracted lines [3, 6, 8]. Finally,
room space is detected through the use of geometry and semantic information, including
textual data [3, 12]. The studies of construction of indoor information from floorplans are, in
a broad view, all or parts of these steps. Although the issue of these research is automation,
they work partially or conditionally for practical datasets, demanding additional manual
processes.

The main reason for handwork is that a model does not handle a wide spectrum of
architectural floorplans. Previous research focus mainly on a consistent form of floorplan
datasets [5] or, after classifying floorplans by wall and symbol formats, apply tuned algorithms
respectively [3]. In order to ensure versatility for previous models of retrieved floorplans, the
goal of this study is to convert several floorplans into an integrated and unified form. Figure
1 shows the whole workflow. Various rasterized floorplans are converted to an integrated
format, and being vectorized by a coherent post-processing.
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(a) (b) (c) (d)

Figure 2 Different floorplan formats: (a) format with simplified walls, (b) format with bearing
walls, pillars and the interior symbols, (c) format with the electronic wiring, (d) format with different
representative of walls.

We approached the problem by integrating diverse formats of floorplans with a style
transfer that converts domains of data while maintaining their features. Recently, image
style transfer has improved remarkably with the development of generative network models.
Based on Generative Adversarial Networks (GANs), deep networks, such as Conditional
GANs [9] , CycleGANs [15], and DiscoGANs [10], have gained great reputation on style
transfers. Conditional GANs and CycleGANs transfer images into different styles with
preserving the underlying structure, while DiscoGANs focuses primarily on the texture of
them. Conditional GANs works in condition that labeled pairs exist, while Cycle GANs and
DiscoGANs aims to convert domains even when images in each domain are not paired. We
propose an integrated format with a strength in vectorization and convert floorplans to this
format. Given the characteristics of each networks, we use Conditional GANs because we
prepare pairs of floorplans in the integrated format and underlying structure of floorplans
that conveys geometry information is important on our goal.

3 Style for integrated floorplans

In order to integrate different floorplan formats into a unified format, the following should be
considered: 1) the represented information shared in diverse floorplans, 2) the meaningfulness
of the level of information extracted as material for indoor spatial data. The architectural
floorplan spectrum that can be used for the construction of indoor spatial data is variable
(Figure 2). In Figure 2 (a), the wall structure is simplified and detailed information, such
as equipment, is omitted. Figure 2 (b) represents the bearing walls and the pillars, as well
as several interior symbols. Figure 2 (c) represents the electronic wiring on the topology of
the walls. Figure 2 (d) represents walls with different formats and some noises is present.
Floorplans of such varied purposes, however, preserve a structure of cells made of walls
and openings. In the integrated format, the simplified walls and openings are targeted
as representative of the floorplan. Homogeneous walls and openings containing original
information represent the structure of cells. Figure 1 shows example of the integrated format.
Research on indoor information, such as matching indoor position with photo, are based
on the extrusion of simplified walls with openings [2, 11]. In other words, indoor research
generally uses only the topology of walls and openings, which means that the integrated
floorplan style can be used significantly.

A floorplan dataset was provided by the E-AIS (Electronic Architectural Administration
Information System), which is an architectural floorplans management system maintained by
Korea’s Ministry of Land and Transport. Approximately 400 floorplans in various formats
were used and manually annotated to the integrated format.
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(a)

(b) (c)39, 40

(a) (b) (c) (d)

Output of networks Annotation 1 Annotation 2

Figure 3 (a) output, (b) original floorplan, [(c) annotation 1 and (d) annotation 2] are annotations
by different annotators. In relation to the original floorplan, annotation 1 represents the boundary
column and the sliding door as a wall, while annotation 2 disregards this information.

4 Style transfer via conditional GANs

Conditional GANs proposed by Isola et al. [9] are practical and effective networks that transfer
style preserving intrinsic features when data pairs are given. The generating networks are type
U-net, which have the advantage of keeping the underlying structure, and the discriminating
networks are type PatchGANs classifier, which discriminate generated images by summing
up score of each patch implicitly. The integrated format and its correspondents were fed
simultaneously, and both networks improve competitively. The network structure and the
parameters were modified for the purpose of ours.

The goal of this study is to transfer floorplans to the integrated style. To maintain
the underlying structure of floorplans, tuning is performed in a direction that emphasizes
the sharp edges and the position accuracy of the simplified walls and openings. Regarding
hyperparameters, 1) the L1 error was increased by 1.5 times compared to that in the study
on conditional GANs, and 2) the patch size of the discriminator was adjusted to 16 × 16.
The lower the ratio of L1 error to generative error, the sharper the extracted walls, although
they tend to be cut off. The smaller the patch size, the neater the induced outputs without
noise, even if computation becomes larger. The aforementioned parameters were mutually
determined for the networks.

The advantage of using generative models rather than pixel-based classification models
such as Convolutional Neural Networks(CNNs) is that the structure of cells and the shape of
the homogeneous walls are “selected and generated” by networks. As seen in Figure 2, many
architectural floorplans are neither neat nor homogeneous, which means that the outputs of
the classification models require demanding post-processing steps.

5 Qualitative evaluation

Given that the purpose of this work is to transfer floorplans from various formats to the
integrated one, this study inevitably aimed at ambiguous criterion. The annotating depends
on individuals while prioritizing a representation of the cell structure, thus yielding multiple
annotations match with one floorplan (Figure 3). Since the networks were trained with these
pairs, we do not ensure their incorrectness even when the outputs do not match with the
annotations. Figure 3 (a) shows this. An output (Of course, this pairs is only used in test set)
does not match with both annotations but represent the cell structure quite well. Therefore,
an evaluation should take account of preserving structure of cells, which was inappropriate
for raster output images. For this reason, qualitative evaluation is performed for the style
transfer.
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Figure 4 Results (a) Various architectural floorplans as inputs, (b) Transferred floorplans in the
integrated format as outputs

Figure 4 shows the results of the style transfer. Figure 4 (a) represents various floorplan
spectra used as inputs, while Figure 4 (b) represents the integrated style floorplans operated
by deep networks. Despite the diverse formats and levels of representative information, the
floorplans were transferred into the coherent, integrated form. The networks generate walls
with uniform shape and clear boundaries even in conditions where the original walls were
crooked, or edges were blurred. However, in the case of openings, the positions were extracted
correctly, but the boundary was blurred. In particular, the networks perform well at points
where the information was overlapping (e.g. doors on tile patterns, pillars in walls) which
was identified as a difficulty in previous studies.

6 Conclusion

When applying style transfer via conditional GANs, diverse floorplans were transferred into
the integrated format. The deep networks is suitable for this problem, we confirm that
it works well. This ensures that single unified post-processing steps are required to the
consummation of vectorizing floorplans. Through this process, it is possible to construct
indoor spatial information in a pragmatic way, using a plethora of architectural floorplans.

For further study, we will perform additional evaluation. This paper covers suggestion of
the style transfer in the vectorization of floorplan, thus only the qualitative evaluation is
performed. In the field of retrieving information from floorplans, a match table is a common
evaluation method for vector results, that is proper forms for representing cell structures.
Thus, after whole vectorization that is specific to the integrated format, we will perform the
matching-based assessment as a quantitative evaluation.
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Abstract
Building databases are a fundamental component of urban analysis. However such databases
usually lack detailed attributes such as building age. With a large volume of building images
being accessible online via API (such as Google Street View), as well as the fast development of
image processing techniques such as deep learning, it becomes feasible to extract information from
images to enrich building databases. This paper proposes a novel method to estimate building
age based on the convolutional neural network for image features extraction and support vector
machine for construction year regression. The contributions of this paper are two-fold: First,
to our knowledge, this is the first attempt for estimating building age from images by using
deep learning techniques. It provides new insight for planners to apply image processing and
deep learning techniques for building database enrichment. Second, an image-base building age
estimation framework is proposed which doesn’t require information on building height, floor
area, construction materials and therefore makes the analysis process simpler and more efficient.
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1 Introduction

Building databases have been widely used for urban planning. New construction and
renovation works require comprehensive building databases for analysis and decision-making.
However, the application of such databases has been hampered by data integrity and accuracy
issues [14].

Many image databases are available online. For example, Google Street View, which
updates an online street image database periodically, provides advanced APIs for accessing
building images by the location. Google street view based applications have been implemented
in urban planning, such as estimating the demographic makeup of the cities [6], studying the
relationships between city appearance and the health of its residents [5]. Another example is
Google search, when appropriate keywords are provided, hundreds of relevant images will
show in the results. Several public image classification databases are created from this data
source, such as ImageNet [3] and CIFAR-10 [9].

Image processing using deep learning methods has shown great performance in many
applications, such as image classification [10] and object segmentation [2]. Several popular
deep learning methods have been developed for image analysis. Convolutional neural network
(CNN) is the state-of-art method for feature extraction [10]. Support vector machine (SVM)
has shown remarkable performance in regression problems, especially for high dimensional
data [4]. Despite the rapid development of image processing techniques, building age
estimation from images has not been studied in the research community. Existing methods
such as [1] require additional building attributes (e.g. building height, floor area, etc.) for
decision-making. Collecting these attributes is time-consuming and usually ends up with
incomplete information. This paper proposes a novel method based on deep learning approach
for direct building age estimation, using the CNN for image feature extraction and SVM for
building age estimation.

The contributions of this research are two-fold:
this is the first attempt for estimating building age from Google Street View images
by using deep learning techniques. It provides new insight for planners to apply image
processing and deep learning techniques for building database construction.
the proposed image-based building age estimation framework is independent of building
information, such as height, floor area, construction materials; therefore, it makes the
analysis process simpler and more efficient.

2 Related work

2.1 Building age estimation
While building age is an important parameter in building specifications, the data is not always
available or complete. Little research has been done for the building age estimation. [1]
proposed an estimation method which adopts random forest regression and infers the building
construction age from other attributes, such as ceiling height, footprint area, shape complexity
and so on. However the accuracy of this method largely depends on the completeness of
these attributes. This limitation motivates us to seek alternative solutions for overcoming
the native incompleteness of existing database attributes. So looking for the available dataset
is critical for our research and open data is ideal for this purpose. Several large Internet
companies such as Google, Facebook, Instagram provide free APIs to access their image
sources, in particular, Google Street View API provides house images based on a given
location and hence it meets our requirement.
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2.2 Image regression
This research treats the building age estimation as a regression problem. Image regression,
which builds a regression model based on extracted image features, has shown the state-of-art
performance in many tasks.

The general procedure of image regression contains two steps. The first step is to retrieve
features from images, and the second step is to construct a regression model using the
extracted features as inputs. The CNN [15, 11] is adopted in this research. Since the training
of a CNN requires large training datasets and computing resources, many pre-trained models
have been made publicly available. For example, the place365 dataset [16], trained by 8
million images, is used for scene recognition. Pre-trained CNN models are provided including
AlexNet [10], ResNet18, ResNet50 [7], DenseNet161 [8], which are high performance CNN
structures. As for the regression model, the support vector regression (SVR) can capture
main features that characterize the algorithm (maximal margin). It is particularly suitable
for high dimensional regression problems with a limited number of training samples.

3 Methodology

Our approach includes three major steps: data collection, feature extraction, and building
age regression. First, the house images of each address are obtained from Google Street View
API. Second, image features are extracted using a pre-trained CNN. At last, a SVR model is
built by taking image feature vectors as inputs and building age as outputs.

3.1 Google Street View images download
Using the Google Street View Image API, we directly submit a list of addresses, for example,
“172 Bouverie St, Carlton VIC 3053”, and then store the retrieved house images locally.
This process avoids the potential accuracy problems introduced by geocoding procedure and
successfully obtains all the house images except invalid street addresses. As the images are
shot from streets, they usually contain the target house in the mid as well as parts of adjacent
buildings on two ends. We tune the API parameters to obtain the exact region of the target
house. The parameters include heading, pitch (the horizontal and vertical rotation of the
camera respectively) and fov (field of view, controlling the width of the street view images).
Based on our experiments, setting heading as 180, pitch as 0, and fov as 50 degrees yields
the best image results. In particular, the fov should be assigned appropriately because a
wide view will introduce neighbour buildings and a narrow view will only capture partials of
the target building. Each retrieved building image is in 600x400 pixels, which is the largest
size that Google Street View API provides.

3.2 Feature extraction by Convolutional Neural Network
In this paper, we choose the largest scene recognition database and three pre-trained CNN
models including AlexNet, ResNet and DenseNet for image feature extraction, as shown in
Figure 1. These models are different in network structures. AlexNet won the 2012 Imagenet
competition. Compared with modern network structures, AlexNet is simple and consists of 5
convolutional layers, maxpooling layers, drop-out layers and three fully-connected layers. It is
specially designed for classification with 1000 categories. ResNet won the 2015 ImageNet and
COCO competitions, and it allows for effectively training deeper neural networks. DenseNet,
proposed in 2016, is based on the hypothesis that convolutional networks can be substantially
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Input

Support vector regression(a) AlexNet

C1                   C2              C3           C4          C5            F6       F7      F8

Image feature vectors

(b) ResNet

(c) DenseNet161

Pre-trained CNN model

Year

Figure 1 Different Convolutional neural networks are applied to extract image features. The
convolutional networks are getting deeper from AlexNet to DenseNet.

deeper, more accurate and efficient to train if they build shorter connections between each
layer and every other layer. All the experiments of extracting image features are implemented
using the deep learning framework Pytorch [12].

3.3 Support Vector Regression
The support vector regression (SVR) [4] is advanced in high dimensionality space because
SVR optimization doesn’t depend on the dimensionality of the input space, and provides
different kernel functions for the decision function. This research chose Scikit-learn library
[13] to build the SVR model by taking image vectors as inputs and building age (construction
year) as outputs. 80% of data are used to train the regression model and the best fit SVR
model is decided according to the training data. Then we perform regression on test data
based on the trained model.

4 Experiment results

4.1 Dataset
As shown in Figure 2, the North and West Metropolitan Region (NWMR) is chosen as
the case study area, which is the most populous and diverse region extending from the
Melbourne CBD to the outer northern and western suburbs in Victoria, Australia. It has
2981 square kilometres, 14 local government areas and around one third (33.1%) of the
population of Victoria (2011 Census). The building attributes for NWMR are extracted from
Valuer-General Victoria valuation dataset which contains the location, street address, zoning
type, construction year, building material and valuation prices for both land and property
across the entire Victoria. We assume that the building images from Google Street View for
different zoning types may vary significantly and weigh down the model performance, hence
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Figure 2 Case study area: North and West Metropolitan Region (NWMR), Victoria, Australia

Table 1 Accuracy of each CNN structure

CNN structure AlexNet ResNet18 ResNet50 DenseNet161
MAE 10.749 10.996 10.722 10.689
RMSE 12.210 12.423 12.154 12.121

the dataset is further narrowed down to Residential 1 Zone (R1Z) which contains 520,694
(69.5%) buildings in NWMR. It also should be noted that among these R1Z buildings, 21,830
(4.19%) of them miss construction year (i.e., building age) information. The key motivation
of this work is to estimate the missing values.

4.2 Accuracy
For regression models, two evaluation metrics are widely used for performance evaluation:
mean absolute error (MAE) and root mean squared error (RMSE), both indicate the error
of prediction results. MAE is the average over the test sample of the absolute differences
between the prediction and the actual observation where all individual differences have equal
weights. RMSE is the square root of the average of squared differences between the prediction
and the actual observation. Since the errors are squared before they are averaged, RMSE is
more useful particularly when large errors are undesirable.

Table 1 summarises the estimation performance of different CNN structures. DenseNet161
shows the best performance among them, and it confirms that deeper CNN structure tends
to yield more accurate results[8]. Figure 3 shows the distribution of errors. Around 15%
samples have less than 5 years error. Most samples, about 25%, have about 10 years error.

4.3 Findings
The changing of building fashions allows inspectors to roughly determine when buildings
are constructed, based on their appearances, materials, components and styles. Inspired by
this idea, we explore the feasibility of teaching a machine to estimate the building age by
reading housing images and learning the styles. We list house samples in the same age range
in Figure 4 and find some interesting patterns. Clearly, it can be observed that more recently
constructed buildings tend to have newer facades, and houses are getting more complex both
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Figure 3 Error distribution of each CNN structure

in horizontal and vertical space. Duplex houses also prevail in recent decades. Exterior wall
materials have also changed over time. Before 2000, newly built houses had wood or brick
exteriors; while after that, new houses start to use vinyl siding. These features are hidden in
images and could be learned and extracted by the CNN models and then passed to our SVR
model for the regression analysis.

5 Conclusions and future work

In this study, a novel approach for direct estimation of building age from Google Street View
images is proposed, implemented and tested. The algorithm consists of three major steps:
Google Street View images download, image features extraction and building age estimation.
Results for the North and West Metropolitan Region of Victoria show that building age
estimation can be accurately predicted with deeper convolutional neural networks.
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Abstract
In the area of cartography and geographic information science, the center points of area features
are related to many fields. The centroid is a conventional choice of center point of area feature.
However, it is not suitable for features with a complex shape for the center point may be outside
the area or not fit the visual center so well. This paper proposes a novel method to calculate
the center point of area feature based on triangulation skeleton graph. This paper defines two
kinds of centrality of vertices in skeleton graph according to the centrality theory in graph and
network analysis. Through the measurement of vertices centrality, the center points of polygon
area features are defined as the vertices with maximum centrality.
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1 Introduction

In geographic information science (GIS), skeleton and center point are two important abstract
descriptors of area feature which are extensively used in spatial data compression, cartographic
generalization, map annotation configuration, multiscale map matching, spatial relation
calculation, etc. Skeleton is a dimension reduction representation of area feature which
maintains the geometric and topological characteristics of the area feature. Generally, the
skeleton of area feature is a graph structure. The branches reflect the topological relation
between different part of an area feature. The extension, length, and width of each part
indicate the geometric characteristics of an area feature[7][3]. As for the calculation of center
point of an area feature, the most popular used method is the centroid of boundary polygon
of an area feature[11]. The pole of inaccessibility evaluation is also used to calculate the
center point of area feature[9]. Chen presented a method for calculating the shape center
through the triangulation skeleton of area feature[7]. As Chen indicated this method heavily
relies on the parameter selection, and it will not guarantee the center point within the area
feature. Inspired by Chen’s work, this paper provides a new center point extraction method
based on skeleton graph of a simple polygon.
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Figure 1 Triangulation of Polygon and Related Structures.

This paper presents a method to define the centrality of polygon area feature based
on its triangulation skeleton. On the skeleton graph structure of polygon, we define the
betweenness and closeness centrality of skeleton graph vertex which is similar to centrality in
graph theory[6]. By the centrality definitions, we can extract different kinds of center points
of area features. At last, we discusses the algorithm complexity of the methods presented.

2 Triangulation Skeleton Graph of Simple Area Feature

Skeleton or medial axis is a concept firstly used in biology as the descriptor of biological
Shape[5]. In computational geometry, this structure has been studied extensively[8][4]. And
there are several different definitions for this structure. Skeleton is wildly studied and used
in areas such as image recognition, medicine analysis, geospatial science, etc. In cartography
and geographical information science. A kind of skeleton based on triangulation of polygon is
generally used for spatial relation calculation, map annotation, and map generalization[2][1].
This section will give some brief formal definition of this kind skeleton structure and some
basic concepts for the definition of centrality of polygon.

2.1 Triangulation of Simple Polygon
This paper studies the GIS area feature which is formed by simply polygon P in a two-
dimensional plane of Euclidean space. A decomposition of P into triangles by a maximal set of
non-intersecting diagonals is called a triangulation of P , noted as TP [4]. This decomposition
is not unique for every simple polygon. The number of different triangulation is a Catalan
number related to the number of vertices[8]. In paper[2], the authors studied the influence
of different triangulation on the form of the skeleton of a polygon. In GIS science area,
constrained Delaunay triangulation is used prevalently in engineering projects and scholar
researches. According to the definition of TP , there are three kinds of triangles classified by
edge type(Figure 1.a). The one which contains one diagonal is noted as type I triangle, or
ear triangle; the one which contains 2 diagonals as type II triangle, or link triangle; the one
which contains three diagonals as type III triangle, or branch triangle. The dual graph of
triangulation[4](Figure 1.b) represents the topological link relations between sub-areas of
a polygon which shows the topological characteristics of different visual feature parts of a
polygon.

2.2 Basic Definitons
The triangulation skeleton graph of P , GP , is defined by a construction process presented in
[2]. The vertices of graph GP can be the vertices of P (end vertex), and middle point of
diagonals (link vertex) of P , and mass centers of triangles in TP (branch vertex). The
structure is shown in Figure 1.c.
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Figure 2 All Skeleton Paths of a Polygon Triangulation.

Figure 3 Geometric Definition of Cover Width of Three Type of Triangles.

The shortest path between every two vertices in GP is defined as a skeleton branch.
If the path between two vertices of GP doesn’t contain any branch vertex, we call the two
vertices directly adjacent. The skeleton branch of two end vertices s, t is called skeleton
path, noted as Ps,t. As shown in Figure 2, the red skeleton branches are all the skeleton
paths of a polygon. If all the link vertices are removed, and the directly adjacent end vertices
and branch vertices are connected, we have a topological skeleton graph of P , as shown in
Figure 1.d.

We define the cover length, cover width and cover area of the edge of GP . The cover
area of type I and II edge is the area of the corresponding triangle, and cover area of type
III edge is 1

3 of the area of the corresponding triangle. The cover length of each edge is the
geometric length of the edge. The geometric definitions of cover width of three type triangles
are in the following description shown in Figure 3. The red line segments are the edges, and
the blue line segments are the geometric definition of cover width of each edge. For type II
triangle, width is the length of the height of triangle on non-diagonal edge, shown as W3W4.
For type I triangle, we find a line segment W1W2 on triangle parallel to the diagonal edge,
and the product of the length of W1W2 and the length of edge P1P2 will equal to the area of
the triangle. For type III triangle, the three sub-area of it can be regarded as type I triangle,
the definition of widthW5W6 for each sub-area is the same as type I triangle.

3 Centrality of Area Feature

Center point of shape is an important attribute of a geographic feature. Generally, the
centroid of a polygon will be regarded as the center point. And for special shapes, the center
points would not be within the polygon and they will not suitable for some applications,
such as annotation of area features. Chen proposed a method based on the main skeleton of
a polygon to calculate the center point. There are parameters to be specified when adopting
Chen’s method which is subjective and sensitive to different data and it will not guarantee
the center point always be within the polygon. This study uses the skeleton to define the
center point of a polygon from the perspective of graph centrality. In skeleton graph, the
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end vertices represent the visual feature points of an area feature. The skeleton paths show
the connected characteristics of each pair visual feature points of area feature. The branch
vertices are the topological link points of each visual parts. This is the base of our centrality
definition of a polygon area.

3.1 Skeleton Graph Vertex Centrality
In graph theory, betweenness centrality is a central measurement of graph vertex based on
the shortest path between vertices, which is defined as the number of shortest path through
a vertex. In this study, we consider the visual coherence between visual feature parts of
a polygon which can be indicated by the shortest path between visual feature vertex of a
polygon. We define the betweenness centrality of skeleton graph vertex as the number of
skeleton path through a vertex. Through the definition we can conclude that the maximum
betweenness centrality vertex is a branch vertex if there are branches in the skeleton of a
polygon. Thus, the calculation of betweenness centrality can be applied to the topological
skeleton graph which can reduce the calculation complexity for fewer vertices.

I Definition 1 (Betweenness Centrality of Skeleton Vertex). Betweenness centrality of vertex
V is the number of skeleton path through V as:

Cb(V ) =
∑

s

∑
t

Ps,V,t,

for Ps,V,t is the skeleton path through V .

The closeness centrality of graph vertex measures the balance of all vertices to the specific
vertex by the total length of shortest paths through the vertex. In this paper, we consider the
balance between each visual feature vertex and the specific vertex. We define the standard
deviation of all the weighted length of the specific vertex between each visual feature vertex.
We can have three different kinds of closeness centrality when choosing different weight. The
cover length indicates the elongation of the visual part shape of a polygon, and the cover
width shows the width of the shape of visual parts, and cover area consider this two factors
which are similar to Chen’s method.

I Definition 2 (Closeness Centrality of Skeleton Vertex). Closeness centrality of vertex V is
the inverse of standard deviation of all the weighted lengths of paths from V to each end
vertex as:

Cc(V ) = 1
std(dw(V, s) ,

for dw(V, s) is the weighted length between V and end vertex s, the weight can be cover area,
cover length, and cover width of graph edge.

3.2 Experiments and Results
To calculate the center point of a polygon, we first calculate the centrality of all vertex of
the skeleton graph and find the vertex with the maximum value of centrality, which can
be used as the center point of a polygon. In Figure 4, there are different center points by
our algorithm. Betweenness centrality indicates the topological connections between visual
feature parts of a polygon. The betweenness center point shows the center place have greatest
topological importance. Closeness center point reflect the geometric nearness to feature
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Figure 4 Two kinds center points examples(a,b,d,f) and interpolate map (c,e,g).

points of a polygon. All the two kinds of center points are within the polygon and indicate
the different visual center of a polygon.

In Figure 4(a, b, d, f), two kinds of centrality degree of the vertices are illustrated. We
also generate closeness centrality pattern map of three different weight (c, e, g) which is
calculated by linear interpolation with the centrality degree all the vertices of skeleton graph
and the points of the boundary polygon. Our centrality illustrates the geometric visual center
of area feature while the method by border number [10] is about urban structure center by
road networks blocks.

4 Complexity Analysis and Discussion

4.1 Complexity Analysis
The calculation of centrality related to polygon triangulation and skeleton construction.
According to the triangulation theory, we know that each triangulation has n− 2 triangles,
and must have at least 2 type I (ear) triangles. If a triangulation contains e type I triangle,
then n ≥ 2, and the number of type III triangles is e− 2. By the definition of skeleton graph,
each type I triangle and type II triangle form a skeleton edge, and each type III triangle
form 3 skeleton edges. Therefore, the number of skeleton edge is E = n− 2 + 2(e− 2). At
extreme cases, there are only type I and type III triangles, that is n− 2 = e + (e− 2), thus
2 ≤ e ≤ n/2, and we can deriven− 2 ≤ E ≤ 2n− 6. A skeleton graph can also be regarded
as a binary tree structure, therefore, the number of vertex and edge maintains V = E + 1.

The betweenness centrality needs the calculation of path between two end vertices. And
this calculation based on the topological skeleton graph only contains the end vertices and
branch vertices. Finding all the paths between end vertices, the complexity is O(e(2e− 2)).
Under extreme cases in which the triangulation only contains type I and type III triangles,
the complexity is O(n2).

For closeness centrality of vertices in skeleton graph, we need to find the all the path
between the end vertices and all other vertices. To find the skeleton branch from each
vertex to all end vertex needs a traverse of the skeleton graph, thus the complexity isO(V ),
and V = E + 1 = n + 2e − 3. The number of link vertex and branch vertex is n − e.
According to the range of e discussed above, we have the complexity of closeness centrality is
O((n− e)(n + 2e− 3)) ∼ O(n2).

4.2 Special Cases Discussions
We will consider some special cases. For an "H" shape polygon, the betweenness centrality
may have two maximum vertices. In this situation, we can use the closeness center point
which can give the difference. For a stripe shape polygon, there is no branch vertex in the
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skeleton graph. Under this situation, we only consider the closeness center point. For the
polygon with a hole, which is not a simple polygon, we can have a skeleton graph which
contains ring structures. This kind of polygon will not be considered for the calculation of
center points in this study.

5 Conclusion

This paper presents a definition and calculation of center point of area feature formed by simple
polygon. The centrality of a polygon is defined based on the triangulation skeleton graph of
a polygon. This method takes into account of the topological and geometric characteristics
of visual feature points and parts of a polygon. The center point by this method is within
the polygon and shows good visual center characteristics of an area feature. The method
proposed has several issues need to be considered. One is the calculation complexity is higher
than the mass-based center point in theory. Another is the situations when two candidates
will occur. In the future study, we consider extending this paper considering formalizing the
definition and comparing with other existing methods by cognitive experiments.
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Abstract
Cellular automata (CA) is an important area of research in GIScience, with recent research
developing vector-based models in addition to the traditional raster data formats. One active
area of research is the calibration of transition rules, particularly when applied to vector CA.
Here we evaluate a particle swarm optimization (PSO) process to calibrate a vector CA model of
land use change for a sub-region of Ipswich in Queensland, Australia, for the period 1999-2016.
We compare the results with those for a raster CA of the same dataset. The spatial indices of the
vector PSO-CA model exceed that of the raster model, with spatial accuracies being 82.45% and
76.47%, respectively. In addition, the vector PSO-CA model achieved a higher kappa coefficient.
Vector-based PSO-CA model can be used for the exploration of urbanization process and provide
a better understanding of land use change.
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1 Introduction

Cellular automata (CA) are widely used models of dispersal processes, with example ap-
plications including disease spread [6], forest fire spread [8], land use change [2, 15], traffic
flow simulation [1], planning support systems [12]. Of these topics, the integration of CA
and land use change analysis is of considerable significance given issues of globalization and
the expansion of the human population. There are already several case studies applying the
method to metropolitan areas, for example in Australia [17], Canada [21], China [23], Europe
[5] and the USA [13].

The definition of transition rules, which determine the state conversion of geographical
features during simulation, is a core component of CA modelling [16]. A variety of artificial
intelligence and evolutionary algorithms have been used to calibrate land use transformation
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rules in an efficient and objective way, including artificial neural networks (ANN), ant colony
optimization (ACO), bee colony optimization (BCO), cuckoo search (CS), decision tree (DT),
genetic algorithm (GA), multi-agent system (MAS), particle swarm optimization (PSO), and
support vector machines (SVM). It is generally accepted that such methods offer a capacity
to minimize the disagreement between the simulations and reference maps, resulting in a
set of optimized transition rules and thus improving their accuracy for urban modelling [10].
Nonetheless, most of the above-mentioned methodologies have been validated with raster
CA models. There are very few analyses of the integration of evolutionary algorithms and
intelligent optimization with vector CA models.

Here we report on the implementation of CA models calibrated using PSO, implemented
as both vector and raster formats. The parameters and simulation processes are compared
between the two formats using a case study in Queensland, Australia. The analyses were
implemented using a prototype system developed using ArcEngine 10.3 and C#.

2 Particle swarm optimization (PSO)

Particle swarm optimization is a widely used intelligent optimization method in artificial
intelligence algorithms, an important research area in GIScience. This method explores the
optimal solution of problems with regard to a given measure of quality. The method was
first proposed by Kennedy and Eberhart [7], and then developed by Shi and Eberhart [19] to
enhance the efficient search for a globally optimal solution with inertia weights. The basic
unit in the PSO method is the ‘particle’, which refers to one of the potential solutions in the
model, and can be described as:

particle = (vn, Pn) (1)

where n is the dimensionality of the target problem, vn and Pn are the velocity and position
of a particle at a specific time point. Specifically, vn can be described as the combination of
n velocities (in n dimensions) at time t:

vn = (v1, v2,. . . , vn, t) (2)

and similarly, Pn can be represented by n positions in a n-dimensional space at time t:

Pn = (P1, P2,. . . , Pn, t) (3)

Furthermore, the velocity and position of each particle will be updated according to individual
and global best positions:{ .

v(t + 1) = w ∗ v(t) + c1 ∗ rand ∗ (Pib − P (t)) + c2 ∗ rand ∗ (Pgb − P (t))
P (t + 1) = P (t) + v(t + 1)

(4)

where w is the weight of velocity at time t, c1 and c2 are two constant weights which are set
in advance, and rand is a randomly generated number in the interval [0, 1]. Pib is the best
individual position of particle i, and Pgb is the best global position of particle swarm, namely
the best one of all best individual positions. In addition, v(t + 1) is the velocity of a particle
at time t + 1, P (t) and P (t + 1) are the positions of particle at time t and t+1, separately.

3 Case study

3.1 Study area
The study area for this research comprises two districts (Collingwood Park and Redbank
Plains) of Ipswich city, with an area of 2,571 ha. Ipswich City is the second oldest local
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Table 1 Driving factors of land use change in the study area.

Driving factors Definition
Raster PSO-CA Vector PSO-CA

disCom Distance to commercial service
disPub Distance to public service
disHw Distance to highways
disSr Distance to secondary roads
neigh 5×5 Moore Neighbour Parcels intersecting a 60 m buffer zone around the 1999 residential cells

popDen The changed density of population within a parcel over the past decade
area not applicable Area of parcel

government area in the Brisbane-South East Queensland (SEQ), one of the fastest growing
metropolitan region in Australia [22, 14]. The current population of approximately 200,000
in Ipswich is projected to double by 2031 [11].

In general, there are 17 land use classes in the study area. During 1999-2016, the main
land use transformation was from ‘grazing native vegetation’ and ‘residual native cover’ to
‘residential area’. The area of grazing native vegetation decreased by 233.95 ha over this
period, representing 76.03% of all changed land use. Residual native cover is the category
with the second largest reduction, at 66.3 ha, or 21.55% of the entire decreased category.
There is also a 200-ha increase of residential area during the same period, which is 64.76% of
all increased land use types.

3.2 Driving factors

The general objective of this study is to model the set of non-residential cells (in 1999) which
were transformed in 2016, thus for the purposes of analysis, ‘grazing native vegetation’ and
‘residual native cover’ were reclassified as ‘non-residential’. Between 1999 and 2016, 188.47
ha of non-residential land was transformed to ‘residential’, while 809.77 ha of non-residential
land remained unchanged. These ‘non-residential’ and ‘residential’ land parcels are defined
as the vector cells of our CA model. The raster data sets were derived by converting the
land use map into 30 m grid cells, which is consistent with the Landsat Thematic Mapper
data commonly used to derived such maps.

The position values of a single PSO particle correspond to one possible combination of
weights. Therefore, the number of dimensions is equal to the number of driving factors of
land use change in the study area (Table 1). There are six common driving factors to both
the raster and vector CA models, and vector CA having an additional driving factor to
represent parcel area.

3.3 Simulations

On the basis of previous work by Feng et al. [10] and experimentation, the values of w, c1, c2
were set as 1, 1.2 and 1.2, which represent the contributions of the current velocity and best
position of a particle, as well as the best position of particle swarm. 50% of the transformed
and non-transformed non-residential cells were randomly selected and normalized as the
sample of PSO training. Derived weights for the two models are given in Table 2.

The transfer probability Ptran, of non-residential cells is calculated as:

Ptran = 1
1 + exp((−1) ∗

∑1
n(wi ∗ xi))

(5)
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Table 2 Weights of vector and raster PSO-CA models.

Driving factors disCom disPub disHw disSr neigh popDen area

Weight values Raster PSO-CA 0.023 -2.181 0.270 -0.970 2.500 -0.320 na
Vector PSO-CA 0.025 0.312 0.390 0.080 0.650 0.880 0.800

Figure 1 Simulation results of raster (A) and vector (B) PSO-CA models (Base map: Open-
StreetMap).

Table 3 Spatial accuracies of PSO-CA models.

Model type Spatial accuracy (%) Kappa coefficient
Raster PSO-CA 76.47 0.886
Vector PSO-CA 82.45 0.916

where wi is the weight of corresponding driving factor, xi is the normalized value of a
non-residential cell. Ptran is in the interval [0, 1]. A larger number of iterations, which
means a shorter iteration interval, are required for completing CA-based simulations [3].
Accordingly, the number of iteration is set as 100 in this study.

The simulation results (Figure 1) show that the general distribution of simulated new
residential cells is similar. Specifically, these cells are located in the north (part 1), east (part
2) and south (part 3) of the study area. These are near the 1999 residential areas, consistent
with previous studies [9].

Two spatial indices, spatial accuracy and kappa coefficient, are calculated using observed
and real land use for years 1999 and 2016. The value of spatial accuracy indicates the
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proportion of correctly predicted new residential cells, and the inter-rater agreement for cell
categories is demonstrated by kappa coefficient [4]. It is clear from the results that the vector
CA performs better than the raster CA (Table 3).

4 Discussion and conclusion

The weights of driving factors, which describe their contribution to the transformation of
non-residential cells during the period 1999 to 2016, is the main reason for the differences
between simulation results. In the raster PSO-CA, neighbouring cells have the largest positive
contribution to land use transformation, which is as much as 2.5. Distances to highways and
commercial service are the second and third positive driving factors, but only with values of
0.270 and 0.023, respectively. The remaining three driving factors have negative influences
on land use transformation from non-residential to residential in raster PSO-CA. Apart from
the inconsistency of weight values in the raster PSO-CA, all the seven driving factors of
vector PSO-CA have positive influences on the same type of land use transformation, where
population growth (0.880), area of cell (0.800) and neighbouring cells (0.650) ranking in the
top three. The vector PSO-CA models are more reasonable considering the fact that land use
transformation is usually dependent on a series of spatial variables in terms of accessibilities
or proximities [15, 20].

The spatial accuracy of PSO-CA is 5.98% higher for the vector format (Table 3). In
addition, the kappa coefficient for the raster PSO-CA is also 0.03 lower than the vector
CA. Therefore, the vector-based PSO-CA has the capability to produce a more accurate
prediction of land use change, which is consistent with previous research on vector CA [18].

In this paper, the effect of data format on PSO-CA model has been assessed by taking
a sub-region of Ipswich, Southeast Queensland, Australia. Considering the weights of
driving factors, spatial accuracy and kappa coefficients, vector-based PSO-CA achieves a
higher accuracy of simulation, which produces a more realistic model of the expansion of
residential area. Future research will have a further exploration of the uncertainties of
random disturbance [10], which could lead to a different simulation result (such as another
combination of driving weights).
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Abstract
The temporal fluctuations of footfall in the urban areas have long been a neglected research
problem, and this mainly has to do with the past technological limitations and inability to
consistently collect large volumes of data at fine intra-day temporal resolutions. This paper
makes use of the extensive set of footfall measurements acquired by the Wi-Fi sensors installed
in the retail units across the British town centres, shopping centres and retail parks. We present
the methodology for classifying the diurnal temporal signatures of human activity at the urban
microsite locations and identify characteristic profiles which make them distinctive regarding
when people visit them. We conclude that there exist significant differences regarding the time
when different locations are the busiest during the day, and this undoubtedly has a substantial
impact on how retailers should plan where and how their businesses operate.
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1 Introduction

Spatial classifications have been a subject of a wide range of research papers in geography
and GIScience. The popularity of clustering can be justified by the vast amount of readily
available spatial data and need for interesting characteristics and patterns extraction [4].
Such classifications aim to describe the extent to which place A is similar to place B and to
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use the derived clustering solution to make predictions about the characteristics of locations
where data are incomplete and thus inform the industrial or public planning policymakers.

While the geographical classifications have been extensively covered in the past literature,
little has been done to characterise bigger samples of places based on the recorded activity
patterns on the finer temporal scales. In the past, this could have been done only by manual
surveying, which is a costly and laborious process and does not enable the continuous data
acquisition. These shortcomings have been addressed after the rapid development and
wide-scale adoption of smartphones and Wi-Fi, GPS and Bluetooth technologies, which
together made possible the collection of high volumes of data at small time periods, while,
regarding spatial resolution, coming even to the granularity of an individual.

Knowing about where people go at which times in the weekly, daily or (sub-)hourly time
frames has great practical importance for many fields. A good example of a sector where this
is particularly relevant is retailing. Knowing what time of the day a specific retail unit can
expect to see the highest number of potential customers passing by is vital to understanding
whether that particular location is suitable for a specific category of retail business. For
example, pubs and bar operators will be more interested in the places where footfall is
significant in the evenings. This is contrary to the coffee shop operators, which will seek to
exploit the large flow of morning commuters and midday lunch and coffee consumers.

This paper aims to use the footfall measurements collected by the Wi-Fi sensors to
characterise urban microsite locations based on the features of the recorded temporal
signatures of footfall. In other words, we are interested in finding out whether urban
locations tend to differ in terms of diurnal temporal distribution of footfall and if so, how
common each profile is. This classification presents the first step in acquiring a broader
understanding of how urban places function and why people tend to find themselves at
particular places at particular times of the day or days of the week.

2 National footfall data set

The data for this project were acquired through the network of Wi-Fi sensors installed by
the Local Data Company (LDC) in the different UK cities from July 2015 until August
2017. They were placed in the three different categories of retail centres: shopping centres,
out-of-town retail parks and, most commonly, urban town centres, i.e. high streets.

The initial set of retail centres for sensor installations was chosen based on the research
sample design tailored to incorporate different cities of Great Britain, capturing centres of
different sizes and diverse set of geodemographic characteristics of their catchment areas. The
criteria for the sample locations outside London were dominant Output Area Classification
(OAC) Supergroup, which is based on the cluster analysis of the 2011 Census variables [3];
town centre size expressed by the number of businesses and the town centre type, i.e. position
of the centre in the national hierarchy. The primary criterion for the locations in Greater
London was, on the other hand, the population size of retail centres’ respective catchment
areas. The Wi-Fi sensors were placed inside the retail units as close to the storefront window
as possible.

2.1 Data acquisition
The Wi-Fi sensors work by receiving the probe requests sent out by the smartphones that are
scanning for the available Wi-Fi networks. When a pedestrian carrying a smartphone with
Wi-Fi and background scanning turned on passes by the Wi-Fi sensor, the sensor records
the data contained in that probe request. The data includes the time stamp, the device
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signal strength and the MAC address, which is hashed at the sensor level to preserve the
privacy of the device owners. The idea is to derive the accurate measurements of the number
of passers-by, monitor their fluctuations over time and use them to characterise locations
based on their temporal distribution.

2.2 Data pre-processing
The approach described in the previous subsection comes with limitations, as derived footfall
is prone to measurement errors due to factors which cause overcounting or undercounting [7].

Overcounting is caused by the fact that Wi-Fi sensors typically capture probe requests
from devices which dwell locally (for example, workers in the retail unit and surrounding
offices, devices other than smartphones such as printers, etc.). Undercounting stems from
the fact that some passers-by do not have Wi-Fi probing capabilities enabled on their
smartphones or they are simply missed due to the presence of some physical obstructions or
signal interferences. The overcounting factors can be eliminated automatically by filtering
methods and undercounting factors can to a certain extent be accounted for by the calibration
in which passers-by are counted manually on site. After that, the ground truth is compared
to the filtered sensor measurements, an adjustment factor is calculated by dividing those two
figures and then used to adjust the measures. A more detailed treatment of those factors
and ways to eliminate them is given in [7] and [9].

After identifying the devices of interest which serve as the proxy for people, the data were
cleaned from outliers, as in this case we are interested in detecting the general functional
characteristics of the location, rather than unusual events. The missing data were inputted by
linear interpolation or inferred by taking the historical data for the corresponding hours and
days of the week in cases where gaps of missing data were too wide for reliable interpolation.
One representative weekly profile was then generated for every location by taking the median
of every hour separately. The result comprised averaged time series each comprising 168
hours of the week for each of the 605 selected locations.

3 Clustering methodology

Since temporal profiles of different days of the week differ, it is not sensible to create a
temporal classification for a "typical, average day" for each location. When the variation of
footfall across time is visually inspected at the chosen location, Mondays through Thursdays
generally display mutually similar profile shapes, whereas Fridays begin to differ if that
location has pronounced nightlife activity. Same is true for Saturdays; however, due to the
absence of the majority of workers, the daytime activity profile is usually different. In the
first instance, the classification was therefore conducted for the footfall between Mondays
and Thursdays for each location. The previously cleaned data were range-normalised.

The next step was to choose from the myriad of distance measures and clustering
algorithms suitable for the time series clustering [2][5][6][8].

According to [1], the distance measures are commonly classified as (dis)similarities in
either time, shape or change. The similarity in time can be regarded as a special case of
similarity in shape, so the two go under the collective term shape-based methods [8][1]. In
our case, we are interested in detecting the clusters of similar shapes of footfall profiles,
however, at the same time, knowing at what time peaks or troughs occurred is also relevant.
That said, we examined the shape-based methods more closely and Dynamic Time Warping
(DTW) and Euclidean distances (ED) were found to be the most useful for our particular
problem. A further justification for this is found in the recent detailed comparison of the
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Figure 1 Temporal profiles of microsite locations (data source: Local Data Company (2015–2017)).

different distance measures [2], in which it was concluded that despite some plausible progress
made in the time series classification domain, DTW remains hard to beat and it is at the
same time computationally less intensive than some of the newly proposed methods such
as the Collection of Transformation Ensembles (COTE). In addition, it was found that, on
reasonably large data sets comprising thousands (and in some cases only hundreds) of series,
the difference between the classification error rate of the DTW and the ED diminishes [11].
In our case, the cleaned data set comprises 605 locations, which means that while warping
may be advantageous, the ED could still suffice. Both ED and DTW with a relatively small
width of the warping window equal to one hour were tested and coupled with several different
partitional and hierarchical methods (k-means, PAM and Ward’s method). The ED fed into
Ward’s algorithm provided the best trade-off between the mathematical validity, as measured
by clustering validity indices [10] and interpretability.

4 Results and discussion

The optimal clustering solution was found to comprise eight distinct temporal profiles, as
shown in the Figure 1.

The number of cases across clusters is unevenly distributed (Table 1), however, since we
aimed to detect the interesting functional differences between places, trying to balance the
number of cases would produce clusters in which such interesting properties would have been
inherently lost.

According to the Table 1, the most common temporal profile in the retail centres of Great
Britain (27.93% of the sampled microsite locations) is a two-peaked profile with a maximum
around midday and late afternoon - appropriately labelled as Consistent afternoons. Unlike
with similar profiles, such as One-directional commute, the drop of footfall during the early



K. Lugomer and P. Longley 43:5

Table 1 The breakdown of cluster cases.

Cluster Proposed name Cases Percentage (%)
1 Commute and lunch 84 13.88
2 Gradual rise 80 13.22
3 Consistent afternoons 169 27.93
4 Midday top 119 19.67
5 One-directional commute 29 4.79
6 Lunch time with minor afternoon commuter inflow 90 14.88
7 Quiet mornings, busy evenings 19 3.14
8 Busy lunchtimes with both commuting peaks 15 2.48

Total 605 100.00

afternoon, i.e. between 2 pm and 5 pm is almost insignificant, which means that such
locations benefit from consistently high footfall throughout most of the day. The second most
common temporal profile (Midday top, comprising 19.67% locations) is a simple one-peaked
profile with maximum activity recorded around midday. Such locations likely attract lunch
goers. Next cluster is Lunch time with minor afternoon commuter inflow, comprising 14.88%
of the locations. It is a one-peaked profile with a minor secondary peak in the late afternoon,
which is not strictly speaking a peak, but rather a part of the profile where a drop of footfall
slows down due to the impact of late afternoon commuters. However, in these locations,
commuters are not as numerous as is the case in some other locations, so secondary peaks
are not formed.

Similarly numerous, clusters 1 (Commute and lunch) and 2 (Gradual rise) account for
13.88% and 13.22% of the locations, respectively. Both are three-peaked profiles and are
characterised by busier customer traffic during all three characteristic periods during the
day - morning rush hour, lunchtime and afternoon rush hour. The difference is that Gradual
rise cluster expects more customers towards the end of the day and intra-day differences of
footfall volume are not as pronounced. Commute and lunch, on the other hand, has more
pronounced peaks and intermediate drop and corresponding locations may expect the similar
volume of passing footfall during all three periods, with a peak in the late afternoon recording
slightly higher footfall than other two peaks.

The profiles captured by the remaining three minor clusters are not as commonly en-
countered across the British retail space, however, since they are functionally specific, it is
worth further investigating their temporal distribution of footfall.

As was already mentioned, One-directional commute cluster is characterised by the
two-peaked profiles of microsite locations (4.79%) with a more significant drop in customer
traffic after the lunchtime, as compared to the similarly shaped Consistent afternoons cluster.
Interestingly, these locations do not record any peak during the morning rush hour but do
record one during the afternoon rush hour. Next, Quiet mornings, busy evenings cluster
(3.14%) is to a certain extent similar to the Gradual rise locations, but morning footfall is
much smaller, and differences between the peaks are much more pronounced. Moreover,
the maximum footfall is, on average, reached between 7 pm and 8 pm, which seemingly
makes these locations more attractive for the dinner and pub goers. And finally, occurring
at only 15 of the sampled locations (2.48%), Busy lunchtimes with both commuting peaks is
characterised by its distinctive dominant lunchtime peak and two smaller peaks during the
rush hours.
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5 Conclusion and future work

The initial aim of this paper was to test whether different microsite locations in urban areas
display different diurnal footfall patterns and if that was the case, to further inspect if the
readings from the Wi-Fi sensors could serve to derive the temporal classification of footfall
patterns. This cluster analysis proved that there exist significant differences in footfall
patterns among urban microsite locations. We identified eight clusters of distinct functional
characteristics and described each of them.

As part of the future work, we aim to combine the identified profiles with the ancillary data
on local vacancy rates, retail occupancy structure, i.e. local compositions of store types, in
addition to the relative distributions of footfall that were presented here. The geodemographic
characteristics of the retail centre catchment areas or the underlying Workplace Zones will
also be considered as the relevant factors worth further investigation. The ultimate goal is to
identify and explain the functional characteristics of the national set of retail centres based
on both structural and dynamical properties of space.
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Abstract
Text often includes references to places by name; in prior work, more than 20% of a sample of
event-related tweets were found to include place names. Research has addressed the challenge
of leveraging the geographic data reflected in text statements, with well-developed methods to
recognize location mentions in text and related work on automated toponym resolution (deciding
which place in the world is meant by a place name). A core issue that remains is to distinguish
between text that mentions a place or places and text that is about a place or places. This paper
presents the first step in research to address this challenge. The research reported here sets
the conceptual and practical groundwork for subsequent supervised machine learning research;
that research will leverage human-produced training data, for which a judgment is made about
whether a statement is or is not about a place (or places), to train computational methods to
do this classification for large volumes of text. The research step presented here focuses on three
questions: (1) what kinds of entities are typically conceptualized as places, (2) what features of
a statement prompt the reader to judge a statement to be about a place (or not about a place)
and (3) how do judgments of whether or not a statement is about a place compare between a
group of experts who have studied the concept of “place” from a geographic perspective and a
cross-section of individuals recruited through a crowdsourcing platform to make these judgments.
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1 Introduction

The research reported here has two primary goals. The first extends beyond and motivates
the present paper – to develop geographic information retrieval (GIR) methods to retrieve
place-focused unstructured information from text. Our longer term project related to this
goal is to explore the potential of machine/deep learning methods to categorize statements
into those “about place” (or not). Work reported here is a precursor to that objective. Our
second goal, the primary focus of the project reported on here, is to explore the concept of
place and what it means for a statement to be “about” a place. To address this objective, we:
(a) consider examples of places and attributes that lead to an entity being considered to be a
place or not, (b) assess the extent to which a set of individuals with scientific understanding
of place as a concept agree on whether short statements (in Twitter) are about place or not
and (c) evaluate the potential to use Amazon Mechanical Turk (MTurk) crowdsourcing to
build large corpora of statements classified into those that are or are not about a place (for
subsequent use in training and testing of machine/deep learning).

2 What is a place?

Place has been a core concept of Geography for centuries. Trying to define “place” in a way
that appeals across multiple disciplines has been a beguiling problem for geographers [5].
From a humanist perspective, Tuan [11] defined place as “spatial locations that have been
given meaning by human experience.” Golledge [3], from a behavioral science perspective,
contended that “although place is a dimensionless spatial term, it is conventionally interpreted
as a multidimensional phenomenon (emphasis added).” From a social perspective, place can
be characterized as an emergent phenomenon, its evolution is non-linear and shaped by
many, varying perspectives, constructed and made tangible by social processes and historical
narratives, see: [8]. In spite of many efforts to define place, the concept has been difficult to
formalize sufficiently to leverage digital data for understanding place as a dynamic construct
[4]. Here, we focus on exploring place-related discourse in language. For a broader overview
of place in the context of GIScience and Big Data, see: [7].

3 Typical “places”

As a discussion starting point in a Place & Big Data seminar, 6 students (co-authors)
completed two tasks in successive weeks. The first focused on listing and categorizing
“places,” the second on listing attributes that distinguish places from other entities. Entities
proposed as places varied in scale (from the Treaty Oak, through countries, to The Universe).
Some entities were uniquely personal (e.g., “the secret fort near my house growing up”).
Others, while personally relevant were also prototypical examples of local places (e.g.,
“Flightpath Coffee”). Some entities, while locations one can be at or in, are also prominent
landmarks (e.g., “Golden Gate Bridge”, Taj Mahal).

One parsing of entities listed is to apply Montello’s [9] four Scales of Psychological Space:
figural (smaller than the body), vista (potentially apprehended from one place – single rooms,
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Table 1

Vista (43) Environmental Scale (63) Geographical Scale (25)
Treaty Oak Museum of Modern Art Pennsylvania
This classroom Lake Michigan The Great Basin
Hubble telescope 16801 Midwest
secret fort near my house growing up Yahoo! Inc. Headquarters Mesopotamia
The bathroom Grand Central United States
Craig O’s Pastaria walk-in freezer JFK International Airport Mordor
Times Square Boalsburg, PA I-99
Intersection Allen St and College Ave. Korean town in LA Yugoslavia
Golden Gate Bridge Manhattan Africa
My hallway closet Wall Street The universe

town squares, small valleys), environmental (requiring locomotion to experience – buildings,
neighborhoods, cities), and geographical (much larger than the body, understood through
symbolic means). Among 140 entities listed collectively, five (arguably) are figural (e.g.,
the atom in my foot; my shoe). The table below provides 10 examples each for the other
three categories (with totals). Those at vista scale include many personal places. Most
environmental and geographical scale entities are named places experienced or known by
many people. Geographical scale places were least frequent, suggesting that “place” is more
easily associated with locations that can be experienced; it also included the only instances
of fictional (Mordor) or historical (Mesopotamia) places. Overall, few linear features were
named (e.g., 2 streets, 1 wildlife drive, 1 freeway, 1 interstate, and 1 river – the Nile).

4 Statements about places: expert classification

Understanding which entities count as places is a step toward recognizing statements "about"
a place. Addressing the about component is closely related to GIR research on document
relevance, (e.g., [1], [10]) and on document geographic focus (e.g., [2],[6] ), but focuses on
statements, not documents. In this section, we present results of a classification task carried
out by the 6 graduate student co-authors. The objective was to explore factors leading to
statements (in tweets) being conceptualized as “about a place” (or not), and to analyze
differences in opinion among individuals who have studied the concept of place formally.

4.1 Procedure

For this task, 104 tweets were sampled from a large repository, with 8 tweets each from 13
subsets related to different event types (earthquake, ebola, fire, flood, flu, malaria, measles,
protest, rebels, riot, tornado, violence, womensmarch). Each sample of 8 included 4 tweets
containing a formal place name and 4 tweets without a formal place. Tweets with strong
offensive language, unintelligible language, or primarily hashtags and/or URLs were omitted.
The sampling goal was to select tweets (whether containing formal place names or not) that
varied in likelihood of being considered to be about place. Tasks were presented via Google
Forms with a form heading of Is this Tweet about a place? followed by, The goal of this
task is to distinguish between tweets that are “about” places (thus that are “on the subject
of; concerning” places) and those that are not. Tweets appeared to participants in random
order, with two choices: “Yes, it is about a place” or “No, it is not about a place.”
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4.2 Results and interpretation
Of the 104 tweets, 20 were judged unanimously to be about a place, with 24 more about a
place by a majority (>= 4 of 6). At the other extreme, 28 tweets were judged unanimously
to be not about a place, with 25 more by a majority. Seven tweets resulted in a 3-3 tie.

At the extremes, there are clear characteristics that prompt unanimity in judgments
about whether a statement is or is not “about a place.” For those judged as about a place,
the statement is often about an event, focused on something local in geographical scale,
and/or from the perspective of being on the ground. Linguistic cues in the form of locative
prepositions also are common. Examples (with RT and @ references removed) include:

... about 20,000 people are here in Santa Ana for Orange County #womensmarch2018
Apparently it’s testing day for the tornado sirens. Skerd me to death. They’re much
louder at 101st and Sheridan!??

For statements judged consistently as not about a place, the most common feature is absence
of reference to a geographic scale entity (thus without a name or description). This is the
case even if an event probably occurring in a place is mentioned; examples include:

Proud supporter of this & other groups trying to save this democracy.. #dontbackdown .
#unitedwewin . #womensmarch2018
. . . and the government want to send arms for the rebels but not a democracy

That said, statements with place names are not always judged to be about a place; e.g.,
when a government is the intended meaning rather than the territory as well as when it is
clear that the geographic entity mentioned is not the focus of the statement; one example is:

It would cost $1 billion a year to eradicate malaria which kills $1 million people per year,
the U.S. spends 10 billion . . .

Minority views in near-unanimous “is a place” judgments (5-1) can result from too-quick
reading (e.g., not noticing a place name due to abbreviation of unfamiliarity). Other factors
leading to a minority view that a statement is not about a place are: statements naming
more than one location, interpreting “about” strictly, or a geographic entity with indistinct
boundaries. At the other extreme, a liberal definition of “about” (e.g., any mention of a
proper place name counts) or considering virtual/social “places” to count (e.g., twitisphere)
prompts judgments that a statement is about a place when most individuals feel it is not.

Statements with a 4-2 majority for place typically included a formal place name or
abbreviation (e.g., “. . . about the ebola existing in jhb”) and/or use a preposition tied to
an event or a proper noun (e.g., “. . . the 0749 from Radlett cancelled due to no driver...”).
Lack of unanimity, however, is prompted by many factors: unfamiliar abbreviations (jhb for
Johannesburg), symbolic interpretation of a name (e.g., White House), unclear connection of
name to overall statement (e.g., for hashtags), mention of multiple places (thus not a place),
context points to other focus (e.g., mentions China, but tweet is “about” measles), or too
little context to distinguish place from object (e.g., “the fire hydrant outside my building”).

In contrast to the set above, some statements resulted in a 2-4 minority judging them to
be about a place. Factors include: use of negation (Not Baghdad), unclear place reference
(“Miss”, could be a person’s title or an abbreviation for the U.S. state), place entities
mentioned as context for something else (“If TB Joshua want to heal the Ebola Victims
Sierra Leone and Liberia isn’t far away let him take his crusade there pls!we”), place names
standing for a person (the White House, as above) or a government (Russia protests . . . ),
vague reference (e.g., the world), description of an event, but with no place name to locate it
(e.g., “I want them to stop rioting now”), use of a place name without a corresponding event
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Figure 1 The top figure section (from Grads Y through MTurk Y) depicts comparison of
judgments by 6 graduate students (co-authors) and 6 MTurk workers. The bottom section is a
legend for the middle row of the top figure section. In the top section of the figure, the “Grads Y”
row contains the number of graduate students (out of 6) who judged each of the 104 tweets to be
about a place (each column signifies one tweet); the “MTurk Y” row contains the same information
for the 6 MTurk workers. The tweets are ordered from those with unanimous agreement by the
graduate students as being about a place (6), through those with a 3-3 split judgment, to those with
unanimous agreement that the tweet is not about a place (0). Slate gray highlights all tweets with a
consensus (4-2, 5-1, or 6-0) that the tweet is about a place; yellow highlights the 3-3 disagreements,
and white with slate gray numbers highlights consensus (2-4, 1-5, 0-6) that the tweet is not about a
place. For those that agree on consensus, but differ in number, a “>” indicates that more graduate
students than MTurk workers judged the tweet to be about a place and a “<” indicates that fewer
graduate students than MTurk workers judged the tweet to be about a place. The same color coding
is applied to judgments by MTurk workers on each tweet. The middle row highlights agreements and
disagreements between the graduate students and the MTurk workers. All that are black or gray
signify that the majority in both groups agreed on ‘yes’ or ‘no’. The two in light yellow represent 3-3
judgments by both groups. Only those tweets in purple or green have a disagreement in majority
judgment. Dark green indicates a consensus on ‘yes’ for graduate students and ‘no’ for MTurk
workers; dark purple indicates the reverse. Medium green indicates a consensus on ‘yes’ for graduate
students and a 3-3 judgment by MTurk workers with the lightest green indicating a 3-3 judgment
by graduate students and a ‘no’ by MTurk workers. The medium and light purples indicate ‘no’
compared to 3-3 and 3-3 compared to ‘yes’ for graduate students compared with MTurk workers.

(e.g., a hashtag such as #bristol but no clear connection to the rest of the text), and reference
to imaginary, virtual, or fictitious places (dreams, computer games such as Minecraft).

The greatest disagreement (3 for, 3 against) are with statements referring to a location
that is not specifically named (e.g., “the airport” or “the mountains”). In addition, vague
locations (e.g., “We want snow here”) also lead to contrasting views. In addition, a difference
of opinion can result from anthropomorphizing the place or perhaps treating the statement
as a metaphorical one (e.g., “Happy Independence Day Indonesia! ...”).

5 Comparing crowdsourced judgment of place to expert judgment

We repeated the tweet classification activity with MTurk workers as participants. The same
104 tweets were used, grouped in eight Human Intelligence Tasks (HITs) with 13 tweets each
(systematically sorted to mix the 13 event types across HITs). Instructions were identical to
those for the grad students (plus the requisite informed consent statement). Google Forms
was used again, to provide the tweets in random order to avoid any order effects. Each HIT
was completed by 6 workers to match the 6 graduate students who initially classified the
same tweet (17 workers did 1 or more HITs). Work time varied widely (from about 3min. to
50min with a median of 13/HIT or about 1min/tweet).

Data from MTurk and the 6 grad students was integrated, with tweets sorted from
high to low grad "about a place" rating. This supported assessment of the extent to which
crowdsourced and expert data matched and an examination of between group differences.
Results are summarized graphically in Figure 1, with a detailed explanation in the caption.
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6 Discussion

The research reported is a part of a larger effort focused on understanding characteristics of
language related to place and creating computational methods to recognize statements (and
documents) that are about places. While the initial research (focused on entities considered
to be places and place attributes) was carried out in a semi-formal way as part of an ongoing
course, results provide a starting point to explore the diverse characteristics that define place,
including how place is related to geographic scale, personal experience, and function.

The second two parts of the research together provide insight on the challenges and
possibilities for building computational methods to enable large volumes of text to be explored
for place-related information. It is clear (from analysis of agreement and disagreement among
a group of individuals studying place), that judging whether a statement is “about a place”
depends on how “about” is interpreted as well as on the individual’s view of what constitutes
a “place”. But, the small number of statements that resulted in a stalemate of conflicting
judgments suggests that statements can be reliably categorized as being about a place (or
not). The subsequent repeat of the experiment using crowdsourcing shows that reliable
results are likely using this approach for all statements except those on which even experts
disagree (situations with differences in what “about” means, abbreviated names, symbolic
places, or imprecise/vague place references). Thus, we expect that it will be possible to build
a large corpus of statements classified as being about place or not and to use them to train
and test machine/deep learning methods to carry out this task with large volumes of text.
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Abstract
In this paper the potential of geospatial semantics for spatial predictions is explored. Therefore
data from the LinkedGeoData platform is used to predict landcover classes described by the
CORINE dataset. Geo-objects obtained from LinkedGeoData are described by an OWL ontology,
which is utilized for the purpose of spatial prediction within this paper. This prediction is based
on an association analysis which computes the collocations between the landcover classes and
the semantically described geo-objects. The paper provides an analysis of the learned association
rules and finally concludes with a discussion on the promising potential of geospatial semantics
for spatial predictions, as well as potentially fruitful future research within this domain.
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1 Introduction and Related Research

This paper investigates the potential of geospatial semantics for spatial predictions. For this
purpose data is obtained from the LinkedGeoData platform [6], which maintains geospatial
data with semantic annotations, provided as linked data. This data is then used to predict
CORINE landcover classes within a defined region of interest (ROI). Predictions are carried
out by computing association rules using the FP-Growth algorithm. Descriptive statistics
are calculated for the corresponding association rules and are used for an evaluation of the
potential of geospatial semantics for spatial predictions. For the purpose of this research,
spatial prediction is defined as the prediction of a CORINE landcover class for a defined
region, based on the classes of geo-objects which fall within that region. Examples for such
classes of geo-objects are given: tree, restaurant, river and bar. The proposed methodology
ultimately enables to predict landcover classes in areas, where no classifications are yet
available.
Spatial predictions are identified as one of the use-cases of Digital Earth [5] as well as
a key feature for tackling global problems such as urbanization and climate change [3].
Association analysis can spatially predict and has traditionally been utilized as spatial
association rule mining [8] or co-location mining [7] within the domain of Geoinformation
science. Spatial association rule mining aims at detecting geo-ojects with a frequent spatial
relationship. Other papers focus on increasing the performance of co-location mining in
terms of computational complexity [1, 10] . Further approaches use contextual information as
an auxiliary data source in order to achieve better predictions [11, 14]. Nevertheless, no work
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uses extensive semantic information for association analysis or researches on the contribution
of geospatial semantic information for spatial predictions. Thus, this work explores the
potential, geospatial semantics hold for spatial predictions. The contribution of this paper is
as follows: It demonstrates that data with geospatial semantics enable to score meaningful
association rules and are therefore a promising data source for this purpose. Additionally, it
is shown that geospatial semantics predict association rules with a high conviction in urban
areas as well as that a higher number of distinct classes provide better results.
The paper is structured as follows: Firstly the methodology is outlined, followed by a
presentation of the results, including an analysis. The paper finalizes with a discussion of
the results as well as its fruitfulness to future research and applications.

2 Methodology

Two major steps are performed within the methodology of this work. First, the data is
derived and preprocessed. Second, the association analysis is carried out using the FP-Growth
algorithm [2]. The FP-Growth algorithm generates association rules describing which set of
classes have a relevant association.

2.1 Data acquisition and preparation
In order to perform an association analysis between linked data of the LinkedGeoData dataset
and the CORINE landcover dataset (see table 1), a series of steps are performed for deriving
and preparing the data: OpenStreetMap data is downloaded for a ROI. SPARQLIFY[6]
is then used to load the OpenStreetMap data into a new local triplestore as linked data
in the LinkedGeoData structure. Thus, a local copy of the LinkedGeoData endpoint is
created for a specific ROI. This enables to access semantic information of geo-objects of
the OpenStreetMap dataset, such as its OWL classes. The OWL classes are defined by the
LinkedGeoData ontology and are ultimately used to predict the CORINE landcover classes.
The ROI is covered by Austria. Geo-objects are then loaded into a PostGIS database. Each
object contains three attributes: A unique identifier, the name of its OWL class as well as a
geometry encoded as a well-known binary. Thus, every geometry is enhanced with semantics.
The dataset contains 3 different types of geometries, namely, point, polygon and linestring.
There are 1.080.819 point-objects, 4.024.536 polygon-objects and 1.893.309 line-object which
can have one of the 768 OWL classes. Furthermore, the CORINE dataset is transformed
to a polygon dataset where each pixel is presented by a square polygon, called a grid-cell.
Each grid-cell contains two attributes: An unique identifier, as well as the class number of
the corresponding landcover class. There are 44 classes in the CORINE landcover dataset,
however, only 28 of them are present in Austria [13]. There are 56667188 grid-cells within
the ROI. Finally, a transaction table is generated in the PostGIS database. Each row of
this transaction table contains the identifier of a grid-cell and a class of a geo-object which
intersects with the corresponding grid-cell. Thus, the table enables to query which classes
appear within a certain grid-cell. The distinct set of classes which intersect with a grid-cell
is defined as a transaction ti. All transactions form a set, denoted as T. Thus, ti is a subset
of T.

2.2 Association Analysis
After the preparation of the data, the association analysis is performed. Therefore the
FP-Growth algorithm is utilized which computes association rules based on the frequencies
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of transactions and the number of all available transactions. An example of a computed
association rule is given:

{Building, Tree, Tramway} → {Continuous urban fabric }

This association rule suggests, that the class “Continuous urban fabric” is likely to appear,
if the classes “Building”, “Tree” and “Tramway” are present. Association rules can have
different confidences. The confidence of an association rule can be calculated by equation 1
[12].

conf(X→ Y) = supp(X ∪Y)
supp(X) (1)

supp(X) = |{ti|X ⊆ ti, ti, ti ∈ T}|
|T| (2)

The support function supp(X) describes the proportion of a transaction ti, which contains
X, in the set T. Its numerator denotes the number of times ti (which contain X) is observed
among all transactions in T. Whereas the denominator is defined by the number of all
transactions within T. The confidence can range from [0,1] and states how often a rule has
been found in the transaction database. A confidence of 0 corresponds to no confidence
that a given rule is true. In contrast, a confidence of 1 states the maximum confidence
that an association rule is correct. An association rule can be additionally described by the
Conviction [12]:

conv(X→ Y) = 1− supp(Y)
1− conf(X→ Y) (3)

The conviction is as a measurement of the degree of implication of an association rule.
An association rule can be confident merely because Y appears with a high frequency and X
with a low frequency. A high conviction corresponds to a high degree of implication of an
association rule, whereas a low conviction corresponds to a low degree of implication of a rule.
Confidence and conviction are going to be used to validate the generated association rules.
The FP-Growth algorithm computes rules based on a defined minimum support. The lower
the support is set, the more association rules are computed. However, defining the value
too low will yield a long runtime. The support is set as low as possible within this study to
compute as much association rules as possible in order to gain more insights on the impact
of geospatial semantics on spatial predictions. For this purpose, an optimal value of 0.1 was
found in an interative manner. In addition, association rules having a conviction lower than
1 were pruned, as a conviction below that value suggests no significant implication. For
running the FP-growth algorithm, rapidminer [9] was used. There are 56.667.188 grid-cells
and consequently 56.667.188 potential transactions. Due to computational limitations not
all of these transactions were used within this study. Therefore 5000 randomly selected
transactions per landcover class were chosen. This balanced selection was made in order to
avoid a bias in the association rules.

3 Results and Analysis

There are 28 predictable CORINE landcover classes within the ROI (see table 1). Each
landcover class is a subclass of a more general parentclass. Tables 2, 3 and 4 summarize the
number of learned association rules, the descriptive statistics for each class as well as the
corresponding parent class, according to the definition of the CORINE dataset [13].
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Table 1 All available 28 CORINE classes in Austria and their description.

1 2 3 4 5 6 7 10

Continous
urban fabric

Discontinous
urban fabric

Industrial and
commercial units

Road and rail
network and
associated land

Port areas Airports
Mineral
extraction
sites

Green
urban
areas

11 12 14 15 18 20 21 23

Sport and leisure
facilities

Non-irrigated
arable land Rice fields Vine yards Pastures

Complex
cultivation
patterns

Agriculture
with natural
vegetation

Broad leaved
forest

24 25 26 27 29 31 32 34

Coniferous forest Mixed forest Natural grassland Moors and heathland Transitional
woodland shrubs Bare rock

Sparsely
vegetated
area

Glaciers
and perpetual
snow

35 36 40 41
Inland marshes Peatbogs Water courses Waterbodies

Table 2 Predictions for CORINE landcover classes 1-11.

CLASS number 1 2 3 4 5 6 7 10 11
Number of
association rules

5752 157 345 226 - 1525 45 496 11

Min (Confidence) 0.11 0.11 0.11 0.11 - 0.11 0.11 0.11 0.11
Max (Confidence) 0.87 0.36 0.58 0.72 - 0.98 0.90 0.71 0.86
Mean (Confidence) 0.32 0.17 0.23 0.25 - 0.60 0.51 0.24 0.52
Standarddeviation
(Confidence)

0.17 0.05 0.12 0.14 - 0.25 0.28 0.12 0.28

Min (Conviction) 1.08 1.09 1.08 1.08 - 1.10 1.08 1.08 1.08
Max (Conviction) 7.23 1.50 2.27 3.48 - 61.47 9.23 3.40 7.06
Mean (Conviction) 1.59 1.17 1.31 1.37 - 6.17 3.25 1.34 2.87
Standarddeviation
(Conviction)

0.64 0.07 0.27 0.41 - 8.58 2.50 0.34 1.89

CORINE
Parentclass

Artificial surfaces

Observing tables 2, 3 and 4, several trends can be observed: Most rules were computed for
class 1(Continuous urban fabric), followed by class 6 (Airports). Association rules predicting
class 1 exhibit a relatively high confidence, up to 87%, as well as a relatively high conviction,
7.23. An association rule which exhibits both, a high conviction and high confidence can be
considered a meaningful rule. Generally, it can be observed that all subclasses of “Artificial
surfaces” yield the most promising results. In contrast, confidence and conviction decline
for classes which are a subclass of “Agricultural areas”, with one exception, i.e. class 15
(vine yards), which was predicted with exceptional conviction and confidence. However, no
predictions could be made for class 14 (rice fields). The lowest confidence as well as conviction
can be observed among subclasses of “Forests and semi-natural areas” and “Wetlands” with
one exception, class 34 (Glaciers and perceptional snow). No association rules were computed
for classes 27 (Sclerophyllous vegetation), class 29 (Transitional woodland shrub), class 32
(Sparsely vegetated areas), as well as class 36 (Peatbogs). The confidence as well as conviction
inclines for subclasses of water bodies, as specially for subclass 41 (water bodies).

4 Discussion and Future Research

Considering the findings based on the results presented in tables 2, 3 and 4 it can be said
that geospatial semantics can be used for spatial predictions and exhibit different qualities
depending on the landcover class to be forecast. Classes closely related to urban areas are
predicted better than classes which can be found more often in rural areas, such as forests
or wetlands. A potential explanation for this effect is given: LinkedGeoData is based on



M. Mc Cutchan and I. Giannopoulos 45:5

Table 3 Predictions for CORINE landcover classes 12-25.

CLASS number 12 14 15 18 20 21 23 24 25
Number of
association rules

5 - 64 2 4 1 - - -

Min (Confidence) 0.12 - 0.11 0.12 0.12 0,15 - - -
Max (Confidence) 0.13 - 0.86 0.13 0.17 0.15 - - -
Mean (Confidence) 0.13 - 0.48 0.12 0.14 0.15 - - -
Standarddeviation
(Confidence)

0.01 - 0.25 0.01 0.02 - - - -

Min (Conviction) 1.09 - 1.10 1.09 1.09 1.13 - - -
Max (Conviction) 1.11 - 6.73 1.10 1.16 1.13 - - -
Mean (Conviction) 1.10 - 2.59 1.10 1.12 1.13 - - -
Standarddeviation
(Conviction)

0.01 - 1.68 0.01 0.03 - - - -

CORINE
Parentclass

Agricultural areas Forests and semi-
natural areas

Table 4 Predictions for CORINE landcover classes 26-41.

CLASS number 26 27 29 31 32 34 35 36 40 41
Number of
association rules

1 - - 2 - 11 8 - 47 12

Min (Confidence) 0.15 - - 0.11 - 0.15 0.11 - 0.11 0.11
Max (Confidence) 0.15 - - 0.27 - 0.86 0.25 - 0.27 0.52
Mean (Confidence) 0.15 - - 0.19 - 0.44 0.16 - 0.15 0.22
Standarddeviation
(Confidence)

- - - 0.12 - 0.24 0.05 - 0.04 0.12

Min (Conviction) 1.13 - - 1.08 - 1.13 1.08 - 1.08 1.08
Max (Conviction) 1.13 - - 1.32 - 7.11 1.29 - 1.31 1.99
Mean (Conviction) 1.13 - - 1.20 - 2.49 1.15 - 1.14 1.28
Standarddeviation
(Conviction)

- - - 0.17 - 2.13 0.07 - 0.05 0.25

CORINE
Parentclass

Forests and semi-natural areas Wetlands Waterbodies

OpenStreetMap and therefore relies on volunteers collecting geospatial data. Thus, there
is a greater likelihood that a higher coverage of geospatial data is present in urban areas,
increasing the number of classes per grid-cell. A higher number of classes per grid-cell enable
to compute association rules with a higher conviction as they exhibit a higher distinction
and therefore result in a lower support. The same argument could be made for the number
of available classes: A higher amount of available classes would increase the chances to get
association rules with a higher conviction as it would increase the distinction. However, this
aspect is not covered in this study. Future research will focus deeper on the investigation of
the potential of geospatial semantics for predictive purposes. Therefore two major aspects
will be investigated: (1) The effect of the class hierarchy on the quality of spatial predictions.
For this purpose classes will be exchanged with their parent class. (2) Future studies will
investigate the impact of adding other geospatial data with different ontologies. The obtained
knowledge can be used as input in spatial human-computer interaction [4], for future geo-
sensor networks in order to create better predictions as well as to measure the impact on
integrating different geospatial data sources with semantic annotations. This could help
to explain yet undiscovered geospatial phenomena and it is therefore argued that further
analysis in this domain is paramount to research progress.
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Docked vs. Dockless Bike-sharing: Contrasting
Spatiotemporal Patterns
Grant McKenzie
Department of Geography, McGill University, Montréal, Canada

Abstract
U.S. urban centers are currently experiencing explosive growth in commercial dockless bike-
sharing services. Tens of thousands of bikes have shown up across the country in recent months
providing limited time for municipal governments to set regulations or assess their impact on
government-funded dock-based bike-sharing programs. Washington, D.C. offers an unpreced-
ented opportunity to examine the activity patterns of both docked and dockless bike-sharing
services given the history of bike-sharing in the city and the recent availability of dockless bike
data. This work presents an exploratory step in understanding how dockless bike-sharing services
are being used within a city and the ways in which the activity patterns differ from traditional
dock station-based programs.
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1 Introduction

Cities in the United States are in the midst of a bike-share revolution of sorts [8]. Seemingly
overnight, GPS-enabled bicycles have popped up in urban centers from Seattle to Miami,
offering access to inexpensive, mobile-payment-based, one-way rentals. Users simply unlock a
bike with their mobile device, cycle to their destination, park and lock it on any public land,
and walk away. These new dockless bike-share services sell themselves as low cost alternatives
to traditional dock-based bike-sharing programs, allowing users the freedom to park a bike
virtually anywhere in contrast to the traditional model of designated docking stations.

There is no shortage of companies entering the U.S. dockless bike-sharing space. While
dockless programs are quite common in much of Asia and Europe, the U.S. has recently
seen substantial investment from companies such as Mobike, Spin, Jump, and LimeBike
(Figure 1a). In October of 2017, just as it entered the Washington, D.C. market, LimeBike1
(LB), reported 300,000 unique users and $225 million in funding [2]. Similar to other dockless
services, LimeBike offers 30 minute rentals for $1 USD and operates on any public space
within the metro Washington D.C. area.

Bike-sharing in general is not new to the U.S. and one of the oldest bike-share programs in
the country, Capital Bikeshare (CB), currently serves the greater metro D.C. area. Originally
started under the name SmartBike DC in 2008, it boasts an annual ridership of over 2.1
million2 and costs either $2 USD per 30 min rental or access through membership subscription.
CB is a dock-based bike-sharing service where users lock and unlock bicycles from docking
stations distributed around the city (Figure 1b). Importantly, and in contrast to the dockless

1 http://www.limebike.com/
2 https://www.capitalbikeshare.com

© Grant McKenzie;
licensed under Creative Commons License CC-BY

10th International Conference on Geographic Information Science (GIScience 2018).
Editors: Stephan Winter, Amy Griffin, and Monika Sester; Article No. 46; pp. 46:1–46:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.GIScience.2018.46
http://www.limebike.com/
https://www.capitalbikeshare.com
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


46:2 Docked vs. Dockless Bicycle-sharing

(a) LimeBike (Dockless). (b) Capital Bikeshare (Docked).

Figure 1 Docked vs. dockless bike-sharing platforms. Photographs: Wikimedia / CC License.

bike-share companies mentioned previously, Capital Bikeshare is owned by the municipal
governments it serves (i.e., D.C., Virginia, and Maryland).

There have been numerous studies aimed at the social impact [5] and mobility patterns [10,
9] of bike-sharing programs as well as method for intelligently redistributing bikes throughout
urban centers [6]. However, very little research has compared traditional dock-based models
to new dockless systems. Given the dramatic influx of dockless bike-sharing companies in
the U.S. over the last six months [1], this study is one of the first to compare and contrast
the spatial and temporal usage patterns in a city that supports both. One important factor
contributing to the novelty of this work is that the public is just now gaining access to
much of these data.3 The vast majority of these new dockless bike-sharing companies do not
share data related to the locations of their fleet. As far as I am aware, Washington, D.C.’s
Department of Transportation (DDOT) is the only U.S. city requiring these companies to
provide a publicly accessible application programming interface (API) showing the current
location of any dockless bicycles available for rent.4

This short paper takes a first step in better understanding the differences in activity
patterns between docked and dockless bike-sharing programs. The insight gained through this
exploratory research can be used to better inform urban planners, transportation engineers,
and the general public on how cyclists and citizens interact with their city.

2 Data

Capital Bikeshare trips for the month of March, 2018 were accessed for this work,5 a total
238,936 individual trips. Attribute information for these trips include bike ID, time stamps for
the start and end of the trip (to the nearest second), and start and end station IDs. Station
IDs were matched with point locations through data available from DC.gov’s open data
portal. All stations outside of D.C., namely those in Maryland and Virginia, were removed
thus restricting trips to only those within the district. This reduced the number of accessible
stations from 499 to 269 and number of trips to 209,973. To permit comparison between the
two bike-sharing services, the CB data was rounded to the nearest five minute interval.

LimeBike data were accessed through their API6 every five minutes from March 10th
through March 31, 2018. These data include the bike ID, geographic coordinates (to roughly
the nearest meter), and time stamp of the available bicycle (at a five minute temporal

3 LimeBike’s D.C. API was made public on February 6, 2018.
4 https://github.com/ubahnverleih/WoBike/issues/9#issuecomment-355047664
5 Data are available at https://www.capitalbikeshare.com/system-data
6 https://lime.bike/api/partners/v1/bikes
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(a) Capital Bikeshare.

(b) LimeBike.

Hours of the Week
Sunday Monday Tuesday Wednesday Thursday Friday Saturday

(c) LimeBike subtracted from Capital Bikeshare temporal patterns. Y-axis ranges from 0.6 to -0.2.

Figure 2 Temporal signatures for Capital Bikeshare and LimeBike in Washington, D.C. aggregated
to hours of a standard week.

resolution). Further steps were necessary to convert the LB bike availability data into trips.
The data snapshots captured every five minutes were sorted in order and a trip was recorded
as the last time stamp that a bike ID was marked as available, to the next time stamp that the
same bike ID reappeared in the data. Assuming GPS accuracy errors within an urban setting,
only those bike IDs that moved more than 50 meters were recorded as trips. In total, 154,024
trips were taken by LimeBike users over this time period within the district boundary.

3 Temporal Differences

The mean duration of a trip for both services was approximately 18 minutes though CB
showed a median duration of 11 minutes while LB reported 5 minutes (the temporal resolution
of data collection). The tendency towards longer trips by CB users is significant and may be
partially due to the necessity of finding a docking station instead of leaving the bike in any
public space.

The temporal popularities of the two bike-sharing services are shown in Figure 2. This
shows bike trip start times aggregated to the nearest hour of a week and independently
normalized to account for the larger number of CB trips. We see an expected diurnal pattern
with the majority of trips taking place during daylight hours for both services. One difference
is the weekday morning peak in Figure 2a, notably missing from Figure 2b. Figure 2c shows
the LB temporal pattern subtracted from the CB pattern. The weekday morning peak in
CB activity is more apparent here and most pronounced at 8 a.m. This also shows that LB
is more popular in the early and late afternoons. Note, however, that there is a negligible
difference between the two bike-share services at 5 p.m. on weekdays, peak of the evening
commute.

An assessment, based purely on temporal patterns within these data, suggests that the
docked CB is used more for commuting to and from work than the dockless LB. Contrarily,
CB is used more frequently outside of commuting hours and particularly in the mid-afternoon.
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(c) LB subtracted from CB.

Figure 3 Normalized trip starts assigned to Capital Bikeshare station-based Voronoi polygons.

4 Spatial Patterns

While the temporal activity patterns of bike-sharing services is one dimension on which to
assess their similarities and differences, spatial activity patterns offer a different perspective.

By definition, docked or dockless bike-sharing systems consist of fundamentally different
architecture. These differences make it difficult to compare them spatially. While dockless
bike locations are scattered throughout the city (where ever someone chooses to stop), CB
bike trips are restricted to starting and ending at docking station. To compare these two
datasets, a Voronoi tessellation was used to partition Washington, D.C. into polygons based
on the locations of CB docking stations. In theory, each of these polygons represents the
region to which a CB user was traveling based on their chosen docking station. Admittedly
there are limitations to this approach (e.g., water body restrictions), but this analysis was
deemed suitable for this short paper.

The number of CB trips starting from each station were summed across the dataset and
matched to the appropriate Voronoi polygon. LB trip starting points were also intersected
with these same polygons and summed. The total trip count for each bike-sharing service
in each polygon was then normalized for each service independently. This was done to
account for the larger number of CB trips thus allowing for comparison between the two
services. Figures 3a and 3b show the spatial distribution of trip starting points for CB and
LB respectively. Figure 3c demonstrates the difference between the two services as the LB
value for each Voronoi polygon subtracted from the CB value.

These maps demonstrate that CB ridership is more focused on the central business district,
of Washington, D.C. than LB. Intersecting these polygons with land use data from D.C.’s Office
of Planning, we find the ratio of commercial, industrial, or mixed use buildings to residential
housing is nearly double for CB (0.35) compared to LB (0.17). This supports the temporal
pattern analysis that suggests that CB is used more frequently for commuting than LB.

These maps indicate that the southeastern portion of the district is less likely to use any
bike-sharing service than anywhere else in the district. One possible explanation is that
the 2015 American Community Survey reported these predominantly residential regions,
namely Wards 7 and 8, as having both the lowest household income in the district and largest
number of individuals below the federal poverty line. While relatively inexpensive, both of
these bike-sharing services rely on credit cards as the basis for payment, making it less likely
that lower income individuals can use these services.
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From a combined spatiotemporal perspective, the largest trip volume difference between
services, across Voronoi polygons is weekdays between 3 p.m. and 5 p.m. whereas the
smallest overall difference is weekdays between 2 a.m. and 4 a.m. LB shows the largest
temporal variance in trip volume to the west of the downtown core, near the Georgetown
neighborhood with peak usage on Fridays at 2 p.m. In contrast, CB peaks at 5 p.m., Monday
through Thursday in the downtown commercial region of the district.

4.1 Data-driven Dock Locations
Access to dockless bike-share data offers an opportunity for a docked bike-share company
such as CB. Given that dockless bikes can be left virtually anywhere, we can assume that
bikes are most often parked at the most convenient locations for their users. This information
can be used to assess the optimality of current docking station locations.

K-means [7] was used to cluster the dockless LB locations with a value of 269, the current
number of DB stations in D.C., set as the number of clusters. Provided the weighted centers
of these new clusters, the average distance between each cluster center and it’s nearest
existing CB station was computed. This resulted in a mean distance of 305.4 m with a
median of 181.4 m).This clustering approach ignores buildings and roads, however, and since
many DB docking stations are located near intersections, these new cluster centers were
snapped to the nearest road intersection and the average distance to existing stations was
calculated again. The snapping had a minimal impact reducing the mean distance to 300.1
m and median to 180.2 m. This median distance indicates that the existing DB docking
stations, on average, are reasonably well situated throughout Washington, D.C., at least as
reflected by LB users. This approach demonstrates that having access to dockless bike-share
data can have a substantial impact on infrastructure planning, potentially saving a city
considerable effort and financial investment [4].

4.2 Network Patterns
The previous section’s comparison of trip starting points7 is useful for understanding the
different spatial distributions of bike-sharing services in D.C. An alternative approach is to
examine the spatial distributions of trips on the D.C. road network. The shortest path was
calculated between each start and end location along the D.C. road network using Dijkstra’s
algorithm [3] as implemented in pgRouting.8 Once routing analysis was complete, point
geometries were generated every 10 m along each of the resulting line geometries. Using
these points, kernel density estimates were created for CB and LB independently, producing
the two heat maps shown in Figures 4a and 4b. Normalizing the kernel density values, LB
was subtracted from CB to produce Figure 4c.

These results depict a similar, but more nuanced pattern than the Voronoi polygons
shown in Figure 3. While the results are based on a simple shortest-path approach to
determining trip routes, the analysis does offer important insight into how urban cyclist
interact with their city. LB shows relatively more activity outside the city core, towards
historic Georgetown, around the Tidal Basin, and along the Potomac River, areas that cater
to leisure activity and are not typically considered areas of business. CB, by comparison,
dominates commercial centers, along Massachusetts Avenue, Union train station, and the
streets around Capital Hill. These results again support the notion that Capital Bikeshare
tailors more to commuters than dockless services such as LimeBike.

7 Start points and end points since every end point is a start point for the next trip.
8 http://pgrouting.org/
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(a) Capital Bikeshare. (b) LimeBike. (c) LB subtracted from CB.

Figure 4 Start and end points of bike-share trips mapped to shortest path on the D.C. road
network displayed as kernel density maps.

5 Conclusions & Next Steps

This work investigates the spatial and temporal dimensions of docked and dockless bike-share
services in Washington, D.C. Though much of this analysis is exploratory, the findings suggest
that there are clear difference in how these two services are used. Capital Bikeshare tends to
be more commuter focused whereas LimeBike reflects more leisure or non-commute related
activities. The results of these analyzes have important implications for urban planners,
transportation safety boards, and transportation engineers as these findings may influence
infrastructure budgeting, maintenance planning, and new development opportunities.

The results presented in this paper are preliminary since access to this spatial and temporal
resolution of commercial bike-share data in the U.S. is still new and the recent influx of bike-
share services in cities is disrupting the status quo. Analyzing more data over a longer time
period will provide additional insight. Future work will examine the impact of new modes of
dockless transportation (e.g., electric scooters), compare these patterns to light-rail ridership,
and further examine the behavioral motivations for selecting one service over another.
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Abstract
Places of Interest (POI) are a principal component of how human behavior is captured in today’s
geographic information. Increasingly, access to POI datasets are being restricted – even silo-ed
– for commercial use, with vendors often impeding access to the very users that contribute the
data. Open mapping platforms such as OpenStreetMap (OSM) offer access to a plethora of
geospatial data though they can be limited in the attribute resolution or range of information
associated with the data. Nuanced descriptive information associated with POI, e.g., ambience,
are not captured by such platforms. Furthermore, interactions with a POI, such as checking in,
or recommending a menu item, are inherently place-based concepts. Many of these interactions
occur with high temporal volatility that involves frequent interaction with a platform, arguably
inappropriate for the “changeset” model adopted by OSM and related datasets. In this short
paper we propose OpenPOI, an open platform for storing, serving, and interacting with places
of interests and the activities they afford.
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Digital Object Identifier 10.4230/LIPIcs.GIScience.2018.47

Category Short Paper

1 Motivation

Gazetteers play an important role in how we understand the world. They facilitate the
labeling of geographic space thus forming the foundation of location-based services [3].
Historically, gazetteers have been categorized by scale, resolution, and theme. Some of the
more traditional gazetteers are global in scale but at fairly course resolutions focusing largely
on geographic features on the macro and meso levels such as airports, populated places, and
rivers. Local gazetteers have tended to focus on a specific theme at higher resolution within
a limited geographic boundary, e.g., Difangzhi local Chinese histories [4]. With advances in
technology and commercial investment, digital gazetteers have quietly taken on new roles,
forming the foundation on which a lot of the technology we use today, is built. Anyone who
has used a mobile device in the past ten years has benefited from digital gazetteers be it
through navigation/wayfinding using Google Maps or photograph tagging on Instagram.

In the last several years, context-based technology has continued to drive commercial
investment, as many information technology companies realize the value of location informa-
tion. This has lead to substantial investments in digital mapping technology [2] as well as
the underlying spatial data that drives these platforms [7]. Digital gazetteers are increasingly
storing the locations, names, and categories of local businesses and venues, today generally
referred to as points of interest (POI). For instance, the location, name and hours of operation
of the mom-and-pop shop at the end of your street is now stored alongside millions of other
place records in a global gazetteer that forms the basis of Silicon Valley’s latest mapping
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products. Not only are these companies capturing information related to the location and
hours of operation, but they are also enlisting citizens to contribute data on everything from
menu recommendations to general ambience. Pushing this a step further, the technological
scope of many of these commercial entities means that they can determine popular times for
many of these places based on users’ mobile device-reported locations [11]. The amount of
auxiliary, or descriptive, data stored about these points of interest arguably contributes to
a variation of the POI acronym, namely Place of interest. The content contributed about
POI are much more than geometric points and really serve to give users of these data an
understanding of fine-grained characteristics of a place.

Unfortunately, the high financial cost of developing these place of interest dataset has
led to much of these data being siloed within companies, solely being used within (or sold
as) their services or products. As is the case with many data silos, the redundancy between
gazetteers is high. Companies such as Yelp, Foursquare, and Facebook have all invested
heavily in data collection and development of their own proprietary POI datasets, rarely with
collaborative interests. This has resulted in multiple academic efforts to match and conflate
these datasets [6, 10] and occasional legal and regulatory action [9]. Though many companies
offer limited access to their POI datasets for third party application development, recent
high-profile events related to data privacy have resulted in tighter restrictions on outside
access [1].

One concern related to the construction of these POI datasets is the reliance on volunteered
contributions. Most of the data stored in these proprietary data silos were contributed by
individuals not employed by the companies. Users are actively choosing to share, or are
coerced [5] into sharing, often personal information with these platforms which are in turn
monetized and sold back to those same users. While there is an argument to be made for the
value added by these companies through their services and platforms, the reality is that most
users no longer have legal rights, or even digital access, to the data that they’ve contributed
to these platforms. These silos also hurt the research community as they limit access to
attribute data needed for modern recommender systems and work on geographic information
retrieval more broadly. Hence, we see this paper and the data and services it introduces
as a research enabler for the community. Such dataset papers play an important role in
geoinformatics research and are gaining importance in many other communities [8].

2 OpenPOI

Considering this, we introduce the OpenPOI platform, a dataset and service for storing,
sharing, and interacting with a common set of places of interest. Following the open and
user-contributed, geo-data model proposed by OpenStreetMap (OSM) and others, OpenPOI
aims at supplying highly descriptive content related to local places of interest and enable a
high level of interaction and sharing. Both of these approaches sit outside the mission of the
OSM community and are likely not suitable for the changeset model and validation approach
adopted by OSM. Through the OpenPOI platform, users can share recommendations,
opinions, and place-specific information as well as check-in,1 post photographs, or access any
form of information they would like concerning a place. The purpose is to enable free and
open access to platial information that is owned and shared by the community. This should be
appealing to place-based social media users as the project is completely transparent, allowing
everyone open access to all data and code associated with the platform. For researchers, it

1 Check-in, in this case, refers to the social act of publishing one’s presence at a location.
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offers a valuable resource on which to study human activity behavior and a place of interest
dataset that can be used as the basis for any application, study, or research project.

As this platform is in a prototype phase, we give a very brief overview of the components,
the current state of the platform, and some directions for moving forward. Currently, there
are three components to the OpenPOI project: The dataset, the web service, and the mobile
application.

3 Dataset

OpenStreetMap nodes are the source for all POI in this current version of the platform. As
OSM is user-contributed and regularly updated, it provides the most extensive coverage of
non-proprietary POI in the world. As the OpenPOI user-base grows, new POI may be added
and existing POI updated or removed, branching the dataset from the OSM community
while still maintaining links through original OSM node IDs. Future versions of the platform
will ingest changes from OSM and publish changes, with basic attributes, back to OSM,
following community best-practices and appropriate validation. In this prototype version of
the platform, country specific OSM PBF files were downloaded for the United States and
Canada. After thoroughly testing the platform using these data, global OSM planet files will
be used. The OsmPoiPbf POI extraction script2 was used to extract point of interest nodes
from the raw OSM files resulting in a series of CSV files that were automatically inserted
into a PostGIS-enabled PostgreSQL database. Once in the database, a duplication check
was made before building a spatial index on the point geometries.

This PostGIS-enabled PostgreSQL relational database is used to store all point geometries
in the OpenPOI dataset. Data related to users, check-ins, and tags are all stored in MongoDB,
a document-oriented database system, often classified as NoSQL. The primary reason for
the two different storage formats is to keep the POI geometry data spatially indexed and
separate from the application-level data. The rate at which POI geometries are changed is
far less than that of descriptive content, tags, and check-ins. As MongoDB was developed
with consistency across database replicas in mind, it serves this purpose well. The current
version of the database stores user profile information, time stamps and locations of check-ins
as well as collections of tags and attributes assigned to a specified POI. Data extracts are
available for each of these data collections or access to the data is available via the OpenPOI
application programming interface (API).

4 Web Service

The current version of the OpenPOI API allows for basic interaction with the underlying
OpenPOI dataset. Again, the API, including source code, is freely available and accessible
via creative commons license. The API forms the basis for the OpenPOI mobile application
and forthcoming data extraction tool. NodeJS3 in combination with the Express4 framework
supply the foundation for back-end development. A set of public API endpoints are now
available and currently permit the following data requests:

Provided a latitude and longitude, return an array of nearby POI objects.
Provided a User ID or POI ID, return an array of check-in objects.

2 https://github.com/MorbZ/OsmPoisPbf
3 https://nodejs.org/
4 https://expressjs.com/
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Provided a POI ID, return an array of tag objects for the specified POI.

In addition to requesting data related to POI, users can also interact with the data
through submission of various types of content, namely,

Add a check-in object to a POI given the POI ID and User ID.
Add an array of tags (hash-pairs) to a POI given the POI ID and User ID.
Create a new user object.

These endpoints form the core of the OpenPOI platform functionality with additional
endpoints being added as development continues. Documentation including example requests
and required parameters is available at https://github.com/ptal-io/OpenPOI-Server.
The current version of the API does not require authentication, nor does it limit requests,
though authentication will be required in future versions of the platform.

5 Mobile Application

The OpenPOI mobile application sits as a front-end interface through which the OpenPOI
dataset is accessed and updated. The mobile application communicates through the afore-
mentioned public API endpoints keeping the entire project modular. Anyone can build a
mobile, desktop, or web-based front-end that interacts with the data through this API. The
mobile application presented here is one possible interactive window into the dataset.

The OpenPOI mobile application5 is currently in development using the React-Native
framework.6 React-Native allows developers to use the JavaScript scripting language in
combination with the React library to create mobile apps that are compiled into platform-
specific applications. The current release of the mobile application has been compiled for use
on an Android mobile device and can be downloaded for testing at http://openpoi.org.
An iOS version of the OpenPOI application is forthcoming. The prototype version of the
application is limited in functionality to a few core interactions, but serves the purpose of
demonstrating the value of such an application.

Upon logging in and ensuring the location services are enabled, a list of nearby places
of interest are shown to the user ranked by proximity (Figure 1a). The list view shows
the name, category icon,7 distance and direction from the device’s current location. After
selecting a POI from the list, the user is presented a screen listing descriptive information and
permitting two forms of interaction. Users can check in to the POI by selecting the check-in
button, in which case they are added to the database and list of previous check-ins to the
specified POI (Figure 1b), or they can choose to update the POI with attribute information
(Figure 1c). Virtually any type of descriptive textual information can be added to the POI
on this screen using a key-value pair. Through this method, users can specify a key term
such as wifipass by prepending a hashtag symbol. This term is then followed by a colon and
the value associated with the key term. Attribute information is separated by these hashtags
allowing for free text entry of any information. Currently, the application prompts user to
update the category of the POI, but future versions will suggest potential key terms that
may be most useful for the specified POI.

While the unrestricted ability to add any type of character-based content to a POI will
undoubtedly lead to noisy data, the purpose of this application is not to restrict what people

5 Source Code: https://github.com/ptal-io/OpenPOI-App
6 http://www.reactnative.com/
7 Currently based on OSM’s amenity category taxonomy
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(a) Nearby places of interest. (b) POI details and check-in screen.(c) Adding key-value hashtag pairs.

Figure 1 Three screens of the mobile OpenPOI application.

can or cannot enter, it is to get as much content as possible contributed to the application so
that users can decide for themselves which information they care about and researchers have
access to a wide variety of data. In today’s area of big data and machine learning, it is much
easier to clean, organize and extract meaning from large, noisy data than to work with a very
limited supply of well structured content. Along these same lines, the underlying motivation
for this application is not financial, meaning that clean, curated, and validated data is a
secondary thought after free and open access to a large, heterogeneous, POI-specific dataset.

6 Summary & Next Steps

As digital gazetteers and POI datasets becomes increasingly silo-ed behind commercial
firewalls, additional efforts must be made to ensure continued access to these types of
geospatial information. In this short paper we introduced the OpenPOI platform and provide
a brief overview of the components, functionality, and motivation for its development. We
believe that such a dataset and services will be of value for the research community and act
as a research enabler for many researchers in a wide range of disciplines.

Next steps for this platform will focus on three primary areas. First, a robust automated
work flow for the extraction and merging of global places of interest from OpenStreetMap
is in development. This process will merge the latest updates and changes from the OSM
community with the rich attribute information and check-ins added through the OpenPOI
platform. Additional effort will focus on inclusion and conflation of other data sources.
Second, further functionality for interacting with the OpenPOI dataset, e.g., adding new
places and updating geometry, are in the works along with associated API documentation.
Last, further development on the mobile application will focus on rigorous testing of the core
features, addition of a mapping screen, and overall interface development.
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Abstract
Animated maps are widely used for representing shifting densities. Though there is evidence
that animations can provide better memory recall than static charts, it could be a consequence
of using better techniques for animation than for static representations. However, the lack of
control makes them frustrating for users, while animated choropleth maps can cause change
blindness. In this paper, we propose an interactive animation technique which employs the
lenticular printing metaphor and benefits from the user’s proprioceptive sense to explore density
changes over time. We hypothesized that using a tangible interface based on the body movement
would improve memory recall and, consequently, animated map reading.

2012 ACM Subject Classification Human-centered computing → User interface design, Human-
centered computing → Visualization, Human-centered computing → Geographic visualization,
Human-centered computing → Gestural input, Human-centered computing → Mobile computing

Keywords and phrases proprioceptive interaction, lenticular technique, shifting densities, tan-
gible interfaces, mobility analysis

Digital Object Identifier 10.4230/LIPIcs.GIScience.2018.48

Category Short Paper

Acknowledgements We would like to acknowledge the Region Auvergne-Rhône-Alpes for funding
this research.

1 Introduction

Shifting densities describe the density changes in different space areas over time. Study-
ing them support the measurement of urban mobility while exploring indicators such as
attractiveness changes and the space use frequency according to the activities performed [19].
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This indicator is often represented through animated choropleth maps. Even if there
is evidence that animation can improve performance on memory-recall and map-reading
if compared to static graphs [14], this representation has shown drawbacks like change
blindness. Consequently, users regularly fail to detect basic changes within animated
choropleth maps [13]. They can be frustrating while dealing with complex changing maps
that are difficult to control [14].

Tversky et al. [21] found out that most of the so-called successful applications of animation
turn out to be a consequence of a better visualization or study procedures such as interactivity
or prediction that are known to improve learning independent of graphics. The same authors
say that the drawback of animation may be perceptual and cognitive limitations in the
processing of a changing visual situation. Animations are fleeting, they disappear, and when
they can be reinspected, this is done in motion, where it may be difficult to perceive all the
minute changes simultaneously.

Interactivity could be the key to overcome the drawbacks of animation while improving
learning and giving the user the power of controlling speed, stop and start, zoom in and
out, and so on. Therefore, we propose a motion-based interaction for map animation, which
explores the lenticular printing metaphor combined with the user’s proprioceptive sense to
explore the use of the space in urban areas represented by animated choropleth maps. Our
approach brings together the benefits of controlling the animation by using the lenticular foil
technique, which allows the user to see spatial information separately, and to see relations and
dependencies of phenomena by changing the view [11], and making use of their proprioceptive
sense by tilting a mobile device.

2 Related Work

Previous studies have proposed visualization and interaction techniques to improve animation
effectiveness for shifting densities exploration. André-Poyaud et al. [1] present the concept
of territorial heartbeat, through which one could observe the density variation by sensing
the city pulse: in the morning, the periphery people move towards the main agglomerations,
which receive even more density, and then they leave gradually from the end of the afternoon
to beginning of the evening. This technique has been explored in combination with the 3D
view, by varying the z-axis height and color according to the density change on different map
regions [15, 5]. Le Roux et al. [17] use animated timelines to represent the social segregation
over time. Users can control time periods by pausing/playing or directly clicking on the
timeline to choose periods.

In thematic cartography, researchers have explored the lenticular foil technique for
improving map-reading and, especially, for displaying 3D effects without any specific device,
e.g. glasses, which is called true-3D. Lenticular printing uses lenticular lenses to change or
move the image as it is viewed from different angles. Cartography could benefit from the
possibility of giving the user different information from the respective content layers since
they can be visualized separately by auto-stereoscopic accentuation or sequential insertion.
Moreover, it could reduce the drawbacks of graphic density and its associated bad legibility,
as well as improving information communication [11].

The lenticular foil technique can display both 2D and 3D effects. Up to this date, it has
been mostly applied to display information by using true-3D. Buchroithner et al. [7] employed
this technique to create an interactive map of the Granatspitz Massif in the Eastern Alps
aiming to exhibit the touristic places in the region. Similarly, Wagman [23] uses the same
technique to support tourism in Manhattan city, in which the viewer has the impression of
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seeing several layers of information, almost like an hologram. The map can be seen from
three different angles, showing the New York’s subway system, the neighborhood, and the
streets grid.

By using visualization environments composed of immersive and stereoscopic augmented
reality combined with tangible input, Bach et al. [3] showed that direct manipulation with
3D holographic visualizations improves time and accuracy for tasks that require coordination
between perception and interaction. In 3D visualizations employing spatial information
with mobile devices, Buschel et al. [8] found that users perceived spatial interaction as more
supportive, comfortable and preferable to touch input.

Besançon et al. [6] explore the possibility of using both tactile and tangible input for
fluid dynamics data visualization using a portable, position-aware device. Their approach
was better appreciated by the users than a traditional mouse-and-keyboard setup. Moreover,
Arvola and Holm [2] showed that device-orientation based panning on hand-held devices is
useful when engagement is considered important, and their results strengthen the idea that
more intensive bodily interaction can be more engaging. In fact, the user’s proprioceptive
sense could help to retain information by using their body’s position as a recall reference.
This sense corresponds to user’s feeling regarding the pose of their own body and the strength
or effort being employed in the movement. It could assist interaction through tangible user
interfaces, in which a person interacts with the digital information through the physical
environment.

3 Space Use over Time

Studies on shifting density are of interest for areas as diverse as crisis and health management,
social segregation, or mobility issues. Bañgate et al. [4] propose a multi-model of human
behavior during seismic crisis based on the social attachment theory. During the simulation
of the model, they consider where people are performing their activities at each hour of the
day. Likewise, Davoine et al. [10] proposed a visualization tool to improve the study of social
vulnerability considering spatio-temporal variations regarding visited places at personal and
professional aspects.

The investigation of social segregation helps to dynamically consider place effects on
individual behavior and to target areas to implement interventions more connected with the
real rhythm of the city [17]. Moreover, the day course perspective may help to isolate some
critical and sensitive periods in which changes in place attributes occur, as well as days and
nights constitute an important timescale for humans as they impose a biological rhythm,
which helps to understand the mobility impacts upon health [22].

In France, Household Travel Surveys (HTS) constitute a valued database on urban
mobility. We explored the data from a large HTS regularly carried out in the Rhône-Alpes
region since 1976, from which we recovered the 2010 edition [9]. This survey provides a large
amount of information on the daily mobility of inhabitants aged five and older, as well as on
the household and individual aspects. Displacements are described through origin-destination
information, which contains information about departure/arrival sector and time.

In this study, we calculated presence density and migration rate varying along a 24-hour
period. The first one refers to all people staying in the referred sector, while the second
refers to the difference between present people and the sector population.
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4 Lenticular Printing Metaphor

4.1 Design Rationale
Animations are appropriate when we need to use multiple maps to represent information
changing over time. However, it should be interactive to properly replace static maps, which
also facilitates analysis when allowing the user to choose viewpoints [12]. Dorling also points
out the brain’s poor visual memory as being a problem when animating time. Therefore, we
believe the proprioceptive sense could assist the improvement of memory recall while using
animation for the analysis of spatio-temporal information.

In virtual reality, proprioception aids users to orientate themselves spatially inside virtual
environments [18], and improves object manipulation, which is also better performed when
using a handheld object to guide the user from the physical space [20]. Additionally, the
use of tangible user interfaces reduces the cognitive workload, while physical mobility may
increase user creativity, which indicates that less constrained interaction styles are likely to
help users to think and communicate. Tangible interfaces that engage the body can leverage
body-centric experiential cognition [16].

Based on these assumptions, our animation technique uses a mobile device as visualization
and interaction interface and grants interactivity through lenticular effects (see Figure 1). We
implemented the morphing effect, which changes one image into another through a seamless
transition and, thus, it is suitable to represent a series of spatial events gradually [11] along a
24-hour period. Since these transitions are activated by tilting the device, the user could use
their wrists orientation as a physical reference to recall the information seen on the screen.

4.2 Implementation and preliminary results
In order to calculate presence density, individuals who reported staying at home all day
were assigned to their residence sector during all observation time. Individuals that moved
during the day can be considered either visitors (people that do not reside in the current
sector they are staying) or residents (people whose displacements were performed inside their
residence sector). Time periods have one-hour duration. Then, for each hour we calculated
the number of people staying in each sector. Displacements were recorded from 4:00 AM to
3:59 AM, then we considered people were at their first origin sector from 4:00 AM to the
departure time of their first displacement, and at their last destination sector from their last
displacement arrival time to 3:59 AM. Following the approach of Le Roux et al. [17], we did
not take people that were moving into account.

The density was calculated by dividing the number of persons present in the sector at each
time period by the sector surface in square kilometers. The migration rate was determined
by the difference between the current population and the number of inhabitants in the sector.

The map can display either the presence density or migration rate at the time. For the
first one, we vary density from light to dark red, while for the second one, we vary migration
rate from blue nuances (when the sector looses population) to red nuances (when the sector
gains population). Time periods can be selected by cyclically tilting the mobile device,
from which we recover accelerometer information. This data is mapped to a time period
by computing the tilting angle and then matching it with the corresponding period. The
indicators are dynamically updated according to the selected time. Finally, the user also
disposes of a play/pause button (in the middle of the clock) and the velocity animation is
determined by the user’s movement speed while tilting the device. We used D3 Data-Driven
Documents javascript library for developing our application, which holds a choropleth map
and a 24-hour clock to select the time.
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Migration Rate between 11a.m and 12p.m

Play/Pause Button

Figure 1 The desired time period is selected by tilting the tablet. During the movement, the
clock (left) shows the current time period and the map is animated accordingly. Animation can be
stopped by pressing the play/pause button and the movement speed is set by the tilting velocity.

5 Final Comments and On-going Work

In this paper, we introduced a technique for exploring animated maps based on a natural and
tangible interface. We use the lenticular printing approach to visualize changes in mobility
indicators along a 24-hour period by tilting a mobile device. By using a tangible interface
we benefit from the user’s proprioceptive sense, which aims to improve memory-recall and,
consequently, map-reading.

This work is part of a greater project, in which we intend to develop a geovisualization
tool for exploring individual mobility data by combining non-conventional interactions and
successful visualization techniques for mobility analysis. Therefore, the next step consists of
evaluating the proposed technique to test our hypothesis that it really improves animated
map-reading.
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Abstract
Location information is an essential element of location-based services and is used in various
ways. Unstructured data contain different types of location information, but coordinate values
are required to determine the exact location. In Twitter, a typical social network service (SNS)
platform of unstructured data, the number of geotagged tweets is low. If we can estimate the
location of text by geotagging a large number of unstructured data, we can estimate the location
of the event in real-time. This study is a base study on extracting the location information by
using the named entity recognizer provided by the Exobrain API and applying geotagging to
unstructured data in Hangul (Korean). We used Chosun news articles, which are grammatically
correct and well organized, instead of tweets to extract three location-related categories, namely
“location,” ”organization,” and “artifact”. We used the named entity recognizer and geotagged
each sentence in combination of the fields in each category. The results of the study showed
that 61% of the 800 test sentences did not have the location-related information, thus hindering
geotagging. In 11.75% of the test sentences, geotagging was possible with only the given location
information extracted using the named entity recognizer. The remaining 27.25% of the sentences
contained information on more than two locations from the same subcategories and hence required
location estimation from candidate locations. In future research, we plan to apply the results
of this study to develop location estimation algorithm that makes use of the extracted location-
related entities from purely unstructured data such as that on SNSs.
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Table 1 Percentages of Tweets with Location Information.

Max Min Average
% of Geotagged Tweets Per Day 0.22% 0% 0.11%

Funding This study was supported by the research funding of the project on the development
of big data management, analysis, and service platform technology for the national land spatial
information research project of the Ministry of Land, Infrastructure, and Transport (18NSIP-
B081023-05).

1 Introduction

Recently, location-based services are growing rapidly owing to the large amount of
data generated in people’s lives. A person’s behavior or the occurrence of an event is
often accompanied by location information. Recently, the use of social network services
(SNSs) has increased as a method for human expression. However, less than 0.42% of
tweets were geotagged even though Twitter is providing a function to determine the location
information [9]. In fact, we collected 611,687 tweets for the entire month of March 2018 and
confirmed that they are geotagged only on an average of 0.11% tweets a day, as shown in
Table 1. If the tweet is geotagged, a location where a specific article was written or a location
that it describes is known. Hence, an incident or an accident mentioned in the SNS or the
news article can be checked in real time. Therefore, by extracting the location information
from these unstructured data and adding the location information, the occurrence of a specific
event and its location can be monitored.

As mentioned earlier, the number of geotagged SNSs is small. As a result, many studies
have been carried out only on geotagged posts [5, 7]. Therefore, other factors such as
user profiles, text content, and location labeling are used to aid in an ongoing location
estimation [4]. One study detected earthquake in real time and inferred the location from the
registered location and GPS data created when users sign up the unstructured data platform,
Twitter [8]. Further, a study on the extraction of location-related entities from each tweet on
twitter using named entity recognition and concept-vocabulary-based extraction has been
performed [1]. Recently, research has been performed to detect the location information in
text using the conditional random fields (CRF) model [3]. However, a case in which the
location information is extracted by using the named entity recognizer for Hangul (Korean)
does not exist. In this study, we aim to geotag the unstructured Hangul data with the
location information extracted with the entity recognizer.

2 Detection of Location Information by Named Entity Recognition

2.1 Named Entity Recognition
Named entities are the names of persons, organizations, locations, dates, and times.

Named entity recognition refers to recognizing and tagging the corresponding entity name
among proper names or noun phrases. Named entity recognition is one of the language
analysis techniques that is essential in natural language processing tasks used in information
retrieval or information extraction. In the English language, high-level recognition and
classification performance were shown by using language characteristics such as capital
letters [6]. However, in the Korean language, it is difficult to recognize an entity name
in the absence of certain features such as capital letters in English. As an alternative,
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Table 2 Lists of items in each category (in Parts).

LC OG AF

LCP_COUNTRY OGG_EDUCATION AF_BUILDING
LCP_CAPITALCITY OGG_SPORTS AF_ROAD

LCP_COUNTY OGG_FOOD AF_TRANSPORT
LCP_CITY OGG_HOTEL AF_CULTURAL_ASSET
LC_TOUR OGG_POLITICS :

LCG_MOUNTAIN OGG_RELIGION :
LCP_PROVINCE OGG_ECONOMY :

: : :

there is a study using word embedding features in recognition and classification of Korean
entity names [2]. The entity name recognizer used in this study is the Exobrain language
analysis open API provided by Korea Electronics and Telecommunications Research Institute
(ETRI). The entity recognition corpus for Exobrain comprises of 10,000 sentences from news
articles. It uses the Telecommunications Technology Association’s (TTA) standard object
name tag set consists of 15 main categories and 146 subcategories for object types in various
fields. Location (LC), organization (OG), and artifact (AF) were selected as the necessary
main categories for this study. Subcategories that can be used to extract location-related
information are partly introduced in Table 2. There are fourteen subcategories for LC, fifteen
for OG, and thirteen for AF. LC contains the geographical name, the administrative district
name, and the like. OG contains the names of educational institutions, medical institutions,
accommodations, and the like. AF indicates the names of cultural properties, buildings, and
roads.

2.2 Extracting Location Information
The workflow of this study is presented in Figure 1. We extracted the LC, OG, and

AF information from sentences related to fire accidents by using the entity recognizer. If
no location-related information that belongs to the three major categories is obtained in
the sentence, such a sentence is stored in a database (DB) that cannot be geographically
located by geotagging. If extracted location information are geographically hierachical, the
coordinates corresponding to the area are tagged and stored in the extracted DB. If only one
OG or one AF information exists in addition to the LC, only one coordinate value can be
assigned. However, if more than two OG or AF information are to be assigned, the allocation
of the location cannot be determined. In other words, if the text, in this case a sentence, is
mentioning more than two locations that are not geographically hierachical, then location
estimation is needed. In our future study, several OGs and AFs will be temporarily stored as
estimated candidates so that location estimation can proceed.

3 Test and Results

The sentences used in this study are 800 fire accident-related sentences from the Chosun
news articles published in 2017. Since tweets are written by the users in colloquial style that
is hard for computers to understand, we chose news articles as an alternative as thay are
grammatically correct and well structured. To geotag the sentence, not estimate, at least
one LC is required. For example, if “Starbucks” is the only retrieved location information
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Figure 1 Work Flow Chart.

for OG, the specific Starbucks branch cannot be determined because there are more than
thousand Starbucks stores in Korea. As many as 488 sentences through the named entity
recognizer did not contain location information, comprising 61% of the total number of
sentences. In contrast, sentences with location information including LC, OG, or AF, were
312 in number. Among them, only 94 sentences, i.e., only 11.75% out of the total, could
be geotagged; for the remaining 27.25% of sentences, location estimation is required. The
results are summarized in Table 3. Figure 2 shows the example visualization of named entity
recognition and morphological analysis performed using the Exobrain API. The sentence at
the top is written in Hangul, and the one below is the corresponding translated sentence.

4 Conclusion

Recently, the use of SNS has increased, but the location information extracted from
unstructured data is lacking. We confirmed the lack of geotagging through the twitter data
collected for a month and aimed to solve it through the location estimation from the named
entity recognition. In this study, geotagging was performed by extracting the location-related
information on LC, OG, and AF from fire accident-related sentences using the Exobrain
named entity recognizer as a base study for location estimation. Our experimental results
showed that 61% of 800 sentences had no extracted location information, 11.75% of sentences
were geotagged, and 27.25% of sentences required location estimation. As the number of
sentences has a large number of candidates that can be used for estimation, future studies
will focus on improving the accuracy using named entity recognition and CRF model, and
the location information can be provided to more unstructured data by developing a location
estimation algorithm that uses the extracted location information.
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Table 3 Application Result.

Figure 2 Example of named entity recognition result for fire-related sentence.
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Abstract
The fitness for purpose concerns many different aspects of data quality. These aspects are usually
assessed independently by different data quality measures. However, for the assessment of the
fitness for purpose, a holistic understanding of these aspects is needed. In this paper we discuss
two Linked Open Data vocabularies for formally describing measures and their relations. These
vocabularies can be used to semantically annotate repositories of data quality measures, which
accordingly adhere to common standards even if being distributed on multiple servers. This
allows for a better understanding of how data quality measures relate and mutually constrain.
As a result, it becomes possible to improve intrinsic data quality measures by evaluating their
effectivity and by combining them.

2012 ACM Subject Classification Information systems → Geographic information systems

Keywords and phrases data quality, measure, semantics, Linked Open Data (LOD), vocabulary,
repository, reproducibility, OpenStreetMap (OSM)

Digital Object Identifier 10.4230/LIPIcs.GIScience.2018.50

Category Short Paper

Supplement Material http://purl.org/data-quality, http://purl.org/osm-data-quality

Funding This work was supported by the DFG project A framework for measuring the fitness
for purpose of OpenStreetMap data based on intrinsic quality indicators (FA 1189/3-1).

1 Introduction

Data quality and fitness for purpose are major issues for many applications. Are the data
of use for a certain application because they are capable of delivering the desired result?
Applications each have their own requirements: certain aspects of the data might be more
important than other ones for a specific application. Data quality measures quantify how
usable the data are in respect to a certain aspect of the data. Among such aspects are the
completeness of the data, logical consistency, positional and thematic accuracy, temporal
quality, etc. [6] As in many cases no reference data are available – the reference data would
then be used instead of the considered data – one aims for intrinsic measures, which evaluate
aspects of data quality by, for the most part, only referring to the data themselves.

While often examining different aspects of data quality independently, a holistic view
is needed in many practical examples. In case of vehicle routing, the completeness of the
representation of the road network and the topological quality play a major role, but the
geometric quality and the thematic accuracy have an impact as well. The same is true for
many other applications: whether a dataset is fit for a certain purpose can only be evaluated
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when assessing all concerned aspects of the data. Therefore, a repository of data quality
measures should ideally address the following needs:
(N1) Formal harmonization of measures. Measures can often not be related because

they are implemented independently. Their results are semantically incompatible and
their descriptions in publications stay often unrelated. Common standards, including
semantic descriptions, allow for harmonizing and combining measures.

(N2) Situational interpretation of measures. When assessing data quality, the results
need interpretation. Measures often presume a certain context and work only in a
certain setting – they mutually constrain. A repository allows for relating measures to
gain a situational interpretation of their results if the relations and dependencies are
formally described.

(N3) Traceability of complex results. Data quality measures are described and evaluated
in scientific publications but their algorithms are often not properly documented. The
publication in a repository under an open license and the semantic annotation allow
for tracing how individual measures lead to a complex assessment of data quality.

In this article, we discuss how data quality measures and their dependencies can be
described as Linked Open Data (LOD). First, we shortly summarize related work (Section 2).
Subsequently, we discuss properties of data quality measures, including relations between
different measures (Section 3). These properties are formalized in two vocabularies, which
can be used to annotate data quality measures as LOD (Section 4). Such annotations allow
for a harmonization of data quality measures and, accordingly, for examining them as a
whole. The structure of a repository of data quality measures is discussed by referring to the
role that the LOD vocabularies may take in this context (Section 5).

2 Related Work

Numerous data quality measures have been discussed in literature. Senaratne et. al. [13]
list measures for Volunteered Geographic Information in general, and Mocnik et. al. [10] for
OSM in particular. Such measures can be classified by their grounding, i. e., by the source
of information used to assess data quality. A corresponding ontology has been introduced
by Mocnik et. al. [10]. Data quality aspects have been discussed by Wand and Wang [14]
and been published as a norm [6]. Descriptions of data quality by the properties of the
data have been complemented by descriptions of how the data can be used, the fitness for
purpose [2, 5]. The concepts of fitness for purpose and data quality have been related by
Devillers et. al. [4]. Couclelis has discussed differences between information and knowledge in
respect to imperfection [3], which emphasizes the need to relate several data quality measures.
Mocnik et. al. have discussed the comparison of intrinsic and extrinsic measures [11]. The
importance of traceability has, among others, been discussed by Popper [12].

3 Properties of and Relations Between Measures

In this section, we discuss the semantic foundations of a repository of data quality measures.
Both intrinsic and extrinsic measures are often constrained by a context or other measures,
creating the need to formally capture such constrains and relations. In the following, we
discuss how to describe measures and their interrelations formally. OpenStreetMap will serve
as an example while the definitions apply to data quality measures in general.

Measures assign meta information to a dataset. As an example, the saturation principle
can measure the completeness of a road network represented in some dataset [1]. Thereby,
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it is measured whether the length of the road network still increases or already stagnates –
stagnation occurs when the road network is (more or less) completely represented in the data.
The measure assigns to the dataset meta information about its completeness, e. g., by the
increase of the road network’s length. In general, measures can be conceptualized as follows:

I Definition 1. A measure µ : D → R is a function or algorithm that assigns to each dataset
d ∈ D a result µ(d) ∈ R. A measure is called a data quality measure if the result refers to
the quality of the dataset.

In geographical applications, measures are of particular interest if they describe a dataset
spatially. Many datasets explicitly expose a spatial dimension while others include them
implicitly [9, 7]. We call a measure spatial if its result explicitly exposes a spatial dimension,
aggregated by a discrete grid. The saturation principle can, e. g., be applied independently to
a collection of grid cells for assessing the completeness of the road network for each of them.

I Definition 2. A measure µ : D×G→ R is called spatial in case of G being a discrete grid
that tessellates some region in Rn or Sn.

The saturation principle works in case of a road network for OSM [1] but it remains
unclear whether it also works in other contexts, e. g., for the electrical grid. In addition, the
principle only works in case that the increase of road length is in a meaningful interval. This
fact can be expressed as a condition ξ to the information resulting from the measure: if the
increase is outside a certain range, the measure cannot be expected to deliver meaningful
information1. Similar concepts even apply to other measures. We accordingly define:

I Definition 3.
(a) A measure µ : D → R is called to be valid in a context c if the result µ(d) has a meaningful

interpretation in respect to c.
(b) A spatial measure µ : D × G → R is called to be valid in an area G′ ⊂ G if µ(d, g)

has a meaningful interpretation for all (d, g) ∈ D ×G′. The measure is called to meet
condition ξ if µ is valid in the area G′ := {g | ξ(g)} ⊂ G.

Many conditions cannot be provided in general but depend on the examined place. The
saturation principle, e., g., only works if volunteers contribute data about the examined area.
Otherwise, the length of the road network does not increase, independent of its completeness.
A second measure can be used to examine the presence of mapping activity in a particular
area and, in turn, to determine in which areas the saturation principle provides meaningful
information. Such relations between measures can, more formally, be described as follows:

I Definition 4. A spatial measure µ : D×G→ R is said to presume another spatial measure
ν : D̃ ×G→ R̃ under a condition ξ if µ is valid in the area G′ ⊂ G where ν meets ξ.

Even in before evaluating a spatial measure by computing its result for some region, one
might want to know what to expect from the measure. The saturation principle might, e. g.,
not be able to properly distinguish between a completeness of 95 and 100 per cent. If the
repository contains information about such limits of the expected results, one can decide in
before whether to evaluate the saturation principle. We define:

I Definition 5. Assume R to be a totally ordered set. Then, the minimum/maximum of a
spatial measure µ : D ×G→ R is defined as the minimum/maximum for both components:

minµ := min
d,g

µ(d, g) and max µ := max
d,g

µ(d, g).

1 It needs to be discussed in detail and in respect to each measure what meaningful information refers to.
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Table 1 Linked Open Data vocabulary for describing data quality measures.

Classes (selection) Definition

dq:measure, :dataQualityMeasure, :result Definition 1
dq:spatialMeasure Definition 2
dq:context Definition 3(a)
dq:grounding grounding of a data quality measure [10]

Individuals (selection) Definition

dq:extrinsicPerceptionBasedGrounding perception-based grounding [10]
dq:intrinsicDataBasedGrounding, :extrinsic... data-based grounding [10]
dq:intrinsicGroundingInProcessedData, :ext... grounding in processed data [10]
dq:intrinsicGroundingInRulesPatternsKnowledge,
:extrinsicGroundingInRulesPatternsKnowledge...

grounding in rules/patterns/knowledge [10]

Predicates (selection) Definition

dq:implementedBy who implemented the measure
dq:documentedBy who documented the measure
dq:api URL of the REST API
dq:typeOfResult Definition 1
dq:assesses assessed data quality aspect [6]
dq:validInContext, :validInArea Definition 3
dq:usesGrounding refers to the grounding-based ontology of

data quality measures [10]
dq:presumes Definition 4
dq:maximumResult, :minimumResult Definition 5

These formal definitions describe how measures relate and which properties they have.
In the next section, we discuss how these formal definitions can semantically be expressed by
the use of Linked Open Data (LOD) vocabularies.

4 Semantic Annotation Using Linked Open Data Vocabularies

The semantic annotation of a measure allows for a better interpretation of the measure’s
results and for an understanding of the context of the measure. When being able to relate
measures by their semantics, one can make sense of them as a whole. Here, we discuss two
new LOD vocabularies for semantically annotating measures, with the aim of expressing the
definitions of the preceding section and of further properties.

The first of the two vocabularies describes data quality measures and their relations
(dq; http://purl.org/data-quality; Table 1). The class measure represents measures
in general; its subclass dataQualityMeasure, data quality measures; and its subclass
spatialMeasure, spatial measures. If a measure is only valid in a certain context or area,
this can be described by validInContext and validInArea, respectively. The predicate
presumes expresses that a spatial measure presumes another one.

The vocabulary can also be used to represent the source of the data quality information
when evaluating a data quality measure. Data refers to the environment by relating symbols
to objects and processes, i. e., the data are grounded in the environment. When data is
assessed, the original grounding is compared to an additional one, which is described by the

http://purl.org/data-quality
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Table 2 Linked Open Data vocabulary for describing data quality measures for OpenStreetMap.

Classes (selection) Definition

osmdq:spatialMeasure spatial measure (Definition 2) related to OSM
osmdq:spatialDataQualityMeasure spatial data quality measure (Definition 2) related to OSM
osmdq:elementType type of the OSM element (node, way, area, relation)
osmdq:node, :way, :area, :relation OSM node, OSM way, OSM area, OSM relation
osmdq:tag, :key, :value OSM tag, and corresponding key and value

Predicates (selection) Definition

osmdq:assessesElementType type of element that is assessed in particular
osmdq:assessesTag tags of the elements assessed

grounding-based ontology of data quality measures [10]. The vocabulary allows for a formal
representation of this ontology, by which data quality measures can be classified.

OSM-related data quality measures can be characterized by which elements they assess
in the OSM dataset. This characterization is captured by a second LOD vocabulary (osmdq;
http://purl.org/osm-data-quality; Table 2). In particular, assessesElementType de-
scribes whether a particular type of element is assessed (node, way, area, or relation). The
predicate assessesTag refers to the tags of the elements that are assessed by the measure.

The two vocabularies described in this section can be used to annotate data quality
measures and OSM-related data quality measures in particular. This allows for making sense
of such measures as a whole, in particular when combining them. In the next section, we
discuss the structure of a repository that contains semantically annotated measures.

5 A Repository of Quality Measures

A repository needs to expose executable algorithms as well as semantic information if it shall
address the needs (N1)–(N3) of the introduction. Accordingly, different techniques have to
be combined. Here, we exemplarily discuss which techniques can practically be used to build
a repository2 of data quality measures for addressing the needs (N1)–(N3).

The algorithm related to a measure is in many cases simple to understand, but its
evaluation is often more complex than the central parts of the algorithm would suggest.
For instance, the dataset needs to be distributed among a number of machines for efficient
processing, the data need to be indexed, the history of the data might be made accessible,
etc. The use of a common query language ensures the traceability of the results when the
algorithms are made publicly available.

The measures in the repository should be semantically annotated by the vocabularies
that have been discussed in the preceding section. Without semantics, it is hard to combine
different measures and make sense of them as a whole. The use of the vocabularies, however,
allows for a formal representation of the information necessary to combine different results
and for taking account of mutual constraints between measures. When several measures and
their results are combined, there is a need to trace how these results have been concluded. The
use of formal vocabularies in combination with executable algorithms makes the evaluation
of single measures and their interrelations between measures more transparent and traceable.

2 see https://osm-measure.geog.uni-heidelberg.de for an exemplary implementation of these ideas
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Both the algorithms and the semantic annotation can be stored in a repository using a
version control system. In addition, they need to be offered on a website, where the semantic
information is available as LOD. The algorithms can be run on a REST server3 that executes
the code, aggregates by the ISEA3H Discrete Global Grid System4 [8], and caches the result.
This setup ensures the effective use of the LOD vocabulary in the context of a repository.

6 Outlook

We have discussed how measures can relate and mutually constrain. In addition, we
have introduced vocabularies for representing these relations and further properties. The
vocabularies integrate well into a repository of data quality measures.

Intrinsic data quality measures only consume the data themselves. Despite this advantage,
they can be unreliable because they cannot rely on any additional source of information.
When comparing intrinsic and extrinsic measures by the use of a repository, one is able to
trace the mutual dependencies of these measures. This allows for a better understanding of
their relations and, as a consequence, improves the applicability of intrinsic measures.

Reasoners can take advantage of semantic annotations when relating measures. The
formal representation of mutual dependencies allows thus for computationally combining
data quality measures by their potentially similar (or dissimilar) results as well as by their
mutual constraints, which renders synergy effects. As a result, more stable measures can be
derived and data quality and fitness for purpose can be assessed more situationally.
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Abstract
Commuting models estimate the number of commuting trips from home to work locations in
a given area. Since their infancy, they have been increasingly used in a variety of fields to
reduce traffic and pollution, drive infrastructure choices, and solve a variety of other problems.
Traditional commuting models, such as gravity and radiation models, typically have a strict
structural form and limited number of input variables, which may limit their ability to predict
commuting flows as well as machine learning models that might better capture the complex
dynamics of the commuting process. To determine whether machine learning models might add
value to the field of commuter flow prediction, we compare and discuss the performance of two
standard traditional models with the XGBoost machine learning algorithm for predicting home
to work commuter flows from a well-known United States commuting dataset. We find that the
XGBoost model outperforms the traditional models on three commonly used metrics, indicating
that machine learning models may add value to the field of commuter flow prediction.
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1 Introduction

Knowing how many people commute from various home to work locations is important
for solving problems in a wide variety of domains. Commonly referred to as commuting
flows, these movements form a complex socio-economic network that can be used to better
understand the transport of people, goods, money, information, and diseases at different
spatial scales [7]. Having a better grasp of these processes is important for policy- and other
decision-makers who aim to tackle a variety of issues such as reducing traffic and pollution,
planning the development of new infrastructure, and preventing the spread of disease.

In response to the need for better understanding the movement of commuters, researchers
have developed a suite of commuting models used for estimating population flows, planning
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transportation systems, analyzing urban traffic, and many other applications [7, 8, 10, 5].
This collection of techniques has traditionally consisted of different versions of what are
commonly known as gravity and radiation models [7]. In general, these models are based on
simple equations with a small number of input variables that have been chosen based on the
assumption that the number of trips between two locations is related to their residential and
work populations, the distance between the locations and/or the number of opportunities
(e.g. other jobs) between them [7].

Though useful, both gravity and radiation models are analytical models with crafted
functional forms and a small number of input variables [9]. This potentially limits their
ability to capture the more complex dynamics that more flexible models, such as machine
learning algorithms, may be able to. To determine whether machine learning models might
add value to the field of commuter flow prediction, we compare and discuss the performance
of a standard gravity and radiation model with the XGBoost machine learning algorithm for
predicting home to work commuter flows from a well-known United States (U.S.) commuting
dataset. We find that the XGBoost model outperforms the traditional models on three
commonly used metrics, showing promise for machine learning models in the field of commuter
flow prediction.

2 Related Work

The goal of commuting modeling is to predict the matrix of commuters T = (Tij)1≤i,j≤n

that move from every zone i to every other zone j within a set of n distinct zones. Assuming
there are a total of N commuters, the estimated matrix T̃ = T̃ij is derived by first estimating
the set of probabilities (pij)1≤i,j≤n that a randomly drawn commuter from the set of N
commuters moves between all zones i and j, and then drawing at random N trips from the
set of estimated probabilities (p̃ij)1≤i,j≤n. Oftentimes, additional constraints are added to
ensure that the total number of commuters mi leaving each zone i, the total number of
commuters nj working in each zone j, or both, is preserved.

In order to estimate the probabilities (pij)1≤i,j≤n, researchers have traditionally used
variants of the well-known gravity and radiation laws [9]. Gravity laws are based on the
assumption that the number of trips Tij between two locations i and j is related to the total
number of commuters mi leaving zone i, the total number of commuters nj working in zone
j, and decays directly as a function of the distance dij between the zones [6]. The importance
of the distance in predicting the probabilities is typically controlled by parameters α, β,
and/or γ.

Radiation laws, on the other hand, are based on the assumption that the number of trips
Tij between two locations i and j depends on the total number of commuters mi leaving
zone i, the total number of commuters nj working in zone j, and the number of intervening
opportunities sij between the two zones [7]. In the commuting literature, sij is typically
defined as the total number of commuters working in all zones whose centroid falls in the
circle centered at i with radius dij (not including zones i or j) [7]. In some forms of this law,
a parameter β is introduced to control the effect of the number of intervening opportunities
between the home and work zones. Table 1 provides equations for the traditional gravity
and radiation laws chosen in this study.

The XGBoost model is a subset of a broader class of models, called machine learning
models, that use a set of known input and output data to "learn" a model that can then be
given new input data to estimate unknown output data [1]. In the case of commuter flow
modeling, one might use a set of known input variables mi, nj , dij , sij , and known output
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Table 1 Traditional commuting laws.

Law Equation

Gravity with exponential law p̃ij ∝ minje
−βdij

Extended radiation law p̃ij ∝
[(mi+nj+sij)β−(mi+sij)β ](mβ

i
+1)

[(mi+sij)β+1][(mi+nj+sij)β+1]

variables Tij , to learn the structure of a machine learning model that can then take in new
values of mi, nj , dij and sij , to estimate unknown values of Tij . The XGBoost model is
well known for winning several machine learning competitions and depends on three primary
parameters commonly referred to as the maximum tree depth (r), number of estimators (e),
and learning rate (k) [4].

3 Methodology

To determine whether the XGBoost model might add value to the field of commuter flow
prediction, we compare and discuss the performance of a standard gravity and radiation
model with the XGBoost machine learning algorithm for predicting a subset of home to work
commuter flows within the Knoxville Metropolitan Statistical Area (MSA). From this point
forward, we refer to the home location as the origin location and the work location as the
destination location. The following subsections discuss the specific gravity, radiation, and
XGBoost models chosen, as well as the data, study area, evaluation metrics, and experimental
setup, in greater detail.

3.1 Models
In this study, we compare the performances of the gravity model based on an exponential
distance decay function, the radiation model based on the extended radiation law, and
a standard implementation of the XGBoost model. Table 1 provides the equations for
both the gravity and radiation laws underlying the gravity and radiation models selected.
Additionally, for both the gravity and radiation models, we ensure that the number of workers
in each destination zone j is preserved by simulating all (T̃ij)1≤i,j≤n from the multinomial
distributionM

(
nj ,
( p̃ij∑n

k=1
p̃kj

)
1≤i,j≤n

)
. From this point forward, whenever we use the terms

gravity or radiation model, we are referring specifically to the gravity and radiation models
chosen in this study. The exponential distance decay function and extended radiation model
were chosen because of their decent performance in a recent study conducted by [7]. The
standard XGBoost model was chosen because of its flexibility and proven track record as the
winner of several machine learning competitions [4].

3.2 Data and Study Area
We use each of the three models to predict commuting flows reported in a Census dataset
called the 2010 Longitudinal Employer-Household Dynamics Origin-Destination Employment
Statistics (LODES) [3]. The 2010 LODES dataset is a partially synthetic dataset that
provides residential, workplace, and origin to destination commuter flow totals for a variety
of U.S. Census-defined regions. We focus our study on estimating commuting flows between
origin and destination Census block groups. Additionally, we focus our study on a subset of
origin and destination block groups in the Knoxville MSA. More specifically, we consider
all origin and destination block group pairs within a random sample of 120 block groups in
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Figure 1 The spatial boundaries for all 2010 Knoxville block groups (bgs), the subset of sampled
bgs in the study area, and all origin-destination (o-d) commuting flows between the sampled block
groups.

Table 2 Evaluation metrics.

Metric Equation

Common Part of Commuters (CPC ) CP C(T, T̃ ) =
2
∑n

i,j=1
min(Tij ,T̃ij)∑n

i,j=1
Tij+

∑n

i,j=1
T̃ij

Common Part of Links (CPL) CP L(T, T̃ ) =
2
∑n

i,j=1
(1Tij>0·1T̃ij>0)∑n

i,j=1
1Tij>0+

∑n

i,j=1
1T̃ij>0

Root Mean Squared Error (RMSE) RMSE(T, T̃ ) =
√

1
n

∑n

i,j=1 (Tij − T̃ij)2

the Knoxville MSA. In total, there are n = 14, 280 block group pairs within this subset, and
N = 15, 288 commuters who travel these routes. Figure 1 provides a visual map of the study
area and data.

We use the LODES dataset to determine mi, nj , and Tij , and another dataset, called
the 2010 U.S. Census Block Group Shapefiles [2], to obtain the distances dij and intervening
opportunities metrics sij for all origin block groups i and destination block groups j in the
study area. Whenever we calculate a distance for a set of locations, we use the haversine
formula to determine the great-circle distance between them.

3.3 Evaluation Metrics
To evaluate how well each of the models perform, we use three metrics commonly used in the
commuting modeling literature. The first two, known as the Common Part of Commuters
(CPC ) and Common Part of Links (CPL) metrics, measure the similarity between the true
commuting flow network and a predicted network. The third metric, known as the Root
Mean Squared Error (RMSE), measures the prediction accuracy (how similar the true flow
counts are to the predicted flow counts). Table 2 provides the equations for each metric.

3.4 Experimental Setup
To select the optimal hyperparameters and then compare the winning models, we split our
data into training, validation, and testing sets via nested cross validation. More specifically,
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we first split our data into 10 unique training and testing set pairs via 10-fold cross validation.
We refer to each of these training/testing set pairs as outer folds. We then further split the
training sets of each outer fold into 10 more unique training and validation sets via a second
round of 10-fold cross validation.

For our gravity and radiation models, we choose the optimal β ∈ [0, 0.1, · · · , 1] for each
outer fold by first simulating one possible T̃ij from the models corresponding to each β on
the training sets of each inner fold. We then select the β that corresponds to the model with
the highest average CPC score over all inner folds. Once the optimal βs are selected for each
outer fold, we use the winning models to compute one possible T̃ij on the testing sets of each
outer fold.

For the XGBoost model, we choose the optimal maximum tree depth r, number of
estimators e, and learning rate k, by first using a randomized grid search to simulate 100
random samples (r, e, k) from the Cartesian product of r ∈ [2, 3, · · · , 7], e ∈ [25, 26, · · · , 275],
and k ∈ [0.1, 0.2, · · · , 0.5]. We then find the optimal combination (r, e, k) for each outer
fold by first simulating T̃ij from the models corresponding to each of the 100 parameter
combinations (r, e, k) on the training sets of each inner fold, and then selecting the (r, e, k)
set that corresponds to the model with the highest average CPC score over all inner folds.
Once the optimal parameter combinations are selected for each outer fold, we next use the
optimal models to compute T̃ij on the testing sets of each outer fold. During each simulation,
we round the output data T̃ij to the nearest non-negative integer.

4 Results

Figure 2 shows box plots of the CPC, CPL, and RMSE scores produced by each model type
for all outer folds. In addition, each of these figures shows the actual values for each metric
over each outer fold, randomly adjusted, or "jittered", on the y-axis to prevent overlap. More
specifically, we see in Figure 2 that all CPC and CPL scores produced by the XGBoost
model are higher than all CPC and CPL scores produced by the gravity model, which are in
turn higher than all of the CPC and CPL scores produced by the radiation model. Since all
scores, rather than just all median scores, are higher in the XGBoost model than both other
models, we are confident that the XGBoost model outperforms the gravity and radiation
models on the CPC and CPL metrics. On the other hand, though we see that the median
RMSE of the XGBoost model is also the best, or lowest, median RMSE among all three
models, not all of the XGBoost model’s RMSE scores are lower than scores coming from
the other models. For example, the XGBoost RMSE score from one of the 10 testing sets is
worse than all of the gravity model’s RMSE scores and worse than eight of the radiation
model’s RMSE scores. This suggests that, though the XGBoost model produces a network
with more similar structure to the ground truth network, it may also produce flow counts
that are very far apart from one another.

5 Conclusion and Future Work

In this paper, we compared and discussed the performance of a standard gravity and radiation
model with the XGBoost machine learning algorithm for predicting origin/destination
commuter flows for a subset of block groups in the Knoxville MSA. We parameterized each
model using two well known Census datasets and then evaluated and compared each model
using the CPC, CPL and RMSE metrics.

Overall, we found that the XGBoost model far outperformed the gravity and radiation
models on both the CPC and CPL metrics, indicating that it was able to re-create the
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Figure 2 Box plots and horizontally jittered CPC, CPL and RMSE scores for the best performing
models on each testing set.

original network better than the traditional models. However, we also discovered that the
XGBoost model sometimes led to higher RMSE scores than both the gravity and radiation
models, despite having the lowest median RMSE value. This may indicate that, given certain
training/testing set combinations, the XGBoost model has the potential to produce estimates
that are very far off from the ground truth flows. Thus, despite the fact that the XGBoost
model re-creates the overall flows better than the gravity and radiation models, certain
(though likely rare) links may have larger errors.

Though this study does indicate that the XGBoost model likely adds value to the field of
commuter flow prediction, there are a few limitations and opportunities worth noting. For
example, in a follow-up study it may be worth comparing more complex commuting models
with the XGBoost model to determine if it still performs better. Additionally, one might want
to add other machine learning models to the framework to determine if they add additional
value on top of the XGBoost model. Furthermore, there may be other non-conventional
input variables worth considering in the machine learning models that may further improve
their performances.
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Abstract
To model dynamic road traffic environment, it is imperative to integrate spatial and temporal
knowledge about its evolution into a single model. This paper introduces temporal dimension
which provides a method to reason about time-varying spatial information in a spatio-temporal
graph-based model. Two types of evolution, topological and attributed, of time-varying graph
(TVG) are considered which require the time domain to be discrete and/or continuous, and the
TVG proposed includes time-varying node/edge presence and labeling functions. Theoretical
concepts presented in this paper will guide us through the process of application development in
future.
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1 Introduction

Road traffic evolves in space-time. This evolution is made explicit by time-varying spatial
relations between different objects like vehicles, pedestrians, buildings etc. which directly
affect the flow of traffic in an urban environment. To extract useful information from the
movement of traffic, we need to model it in a reasoning system. To this effect, we proposed a
spatial model in [7]. It includes different physical objects present in an urban area and, using
quantitative information, aims to extract qualitative spatial knowledge which can enhance the
robustness of Advanced Driver Assistance Systems (ADAS) currently in use. The model uses
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graphs as data structure which abstract the real world information. Furthermore, dynamic
phenomenon can be described using time-varying graphs.

In this paper, we propose a time formalization which provides a temporal dimension to
the spatial model described in [7]. We define a time-varying graph (TVG) which models the
change in its structure as well as in its node/edge attributes. The objective of this paper is
to propose a theoretical formalization of TVG and link it with spatial graph proposed in our
previous work.

The paper is organized as follows. Section 2 presents the related work. In Section 3, we
describe, in brief, different spatial graphs. Then, in Section 4, we propose the formalization
of time-varying graph and Section 5 concludes the paper along with future work.

2 Related Work

In this section, we will first mention some research related to modeling of road traffic and
urban environment in Intelligent Transport Systems (ITS) domain. Then we will mention
some techniques for including time and modeling time-varying graphs present in the literature.

Although there is a lot of research which exists for modeling road traffic environment
for ITS applications, the one we would like to focus on and compare with our work is Local
Dynamic Map (LDM) [4], a multi-level database, which has been standardized in Europe.
It has been developed for cooperative systems and uses a four layered model to store data.
Although we plan to use similar database architecture as in LDM, the main contribution of
our model is data abstraction using graphs, which can initiate the use of graph algorithms to
comprehend the evolution of road traffic.

Time modeling has applications in various domains. It can be modeled using intervals or
instants [5]. In our model, we consider time to consist of both. A lot of researchers have
proposed different methods for time modeling and a survey of such methods is given in [8].

A time-varying phenomenon (like road traffic) can be modeled using time-varying graphs
(TVG). Some models for TVGs are described in [3] and [9]. However, the model proposed in
this paper is motivated from the one described in [2], as it is suitable for highly dynamic
networks and it uses continuous time domain.

3 Spatial Graph Model

The qualitative spatial model we proposed in [7] is based on graph theory in which different
objects are represented as nodes and qualitative spatial relations between those objects are
included as edges. The objective is to have a spatio-temporal model which can help to
understand the dynamics of road traffic in an urban environment from the perspective of
evolving spatial relations between static and/or non-static objects.

Figure 1a shows the hierarchy of spatial graphs which are derived from Basic Graph
G = (V,E) containing information about the urban environment at finest level of detail. V is
the set of nodes which represent real-world objects and E is the set of edges which represent
spatial relations between different nodes. From G, a Road Graph for each road segment in
that environment is derived, which contains the spatial relations between objects present on
that road segment. G also contains the relations between objects present at each intersection
and hence an Intersection Graph (for each intersection) is derived from it. If a road segment
is divided into bi-directional carriageways, Two-Carriageway Graph for that road segment
is computed which gives information at a coarser level than Road Graph. If, on the other
hand, it is divided into sectors, Sector Graph for each sector present on that road segment is
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Two-Carriageway Sector Graph

granular subgraph subgraph

Basic Graph

Intersection
Graph

Graph

Primal Graph Dual Graph

Dynamic Graphs

Static Graphs

Road Graph

subgraph subgraph

(a) (b)

(c)

Figure 1 (a) Hierarchy of graphs (b) An ith road segment divided into two carriageways (c)
(Finer) Road graph (Gi) and (coarser) Two-carriageway graph (GLi).

defined. Graphs which provide static information about the road network, primal and dual
graphs, are also included in the model.

Road graph in Figure 1c includes different objects (vehicles, buildings, pedestrians, road
markings, vertical structures, roadsides), present on the road segment in Figure 1b, as nodes
with its edges representing spatial relations [7]. The nodes of two-carriageway graph represent
groups of vehicles moving in opposite directions (for bi-directional road segment).

4 Time and Temporal Graph Model

Let us now add a temporal dimension to the proposed spatial model to theorize about
dynamic aspects of the road traffic. In this section, we will first describe the structure of the
temporal domain along with the temporal primitives considered. Then we will move onto
the formalization of the temporal graph model, which is the main contribution of this paper.

4.1 Structure of Time
Before diving into the formalization of temporal graph, some characteristics of time [8] need to
be clarified. We assume time to be linear, dense and positively unbounded [0, ∞[ (we use [ ]
notation to represent a closed interval and ] [ for open). Consider a time domain (T,≤) which
is a set of totally ordered time points with order relation ≤. Since it is dense, the domain of T
is R>0 (set of positive real numbers) and ∃tj | ti < tj < tk, ∀ti, tj , tk ∈ T, i, j, k ∈ R>0. That
means that there is always a time point between two adjacent time points (digitization of such
time points could give different results depending on temporal granularity considered). This
time domain has two time primitives: instants and intervals, and we assume that intervals are
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bounded by instants [1]. For clarification, term "time instants" is used to represent individual
points on a discrete time line whereas term "time points" is used to represent individual
points on a continuous time line. We define T ⊂ T as the time during which our model is
functional and we call it the lifetime of the model, which is bounded. We consider that T can
represent discrete as well as continuous time. In the former case, the domain of T is Z>0 (set
of positive integers) and it consists of discrete time instants and intervals. For continuous
time, T belongs to R>0 and consists of continuous time intervals. A closed non-zero duration
time interval is given as the pair [tstart, tend] | tstart < tend, tstart, tend ∈ T , where tstart

and tend are zero duration instants which bind the interval.

4.2 Temporal Graph Model

Our model of time varying graph (or TVG) is motivated from [2]. We include node/edge
presence functions and define labeling functions. We consider the evolution of the graph in
terms of change in its structure (or topology), called "topological evolution", and change in
the value of node/edge attributes given as labels, called "attributed evolution". We define
a TVG as G = (V, E, T , ρV (T ), ρE(T ), AV (T ), AE(T )) where V and E are the sets of
nodes and edges, respectively, included in the spatial graph described in Section 3, T ⊂ T is
the lifetime of the model, ρV : V × T → {0, 1} is the time-varying node presence function,
ρE : E × T → {0, 1} is the time-varying edge presence function, AV is time-varying node
labeling function and AE is time-varying edge labeling function. For topological evolution,
T is discrete and for attributed evolution, it is continuous. In both types of evolution, the
time at which the change occurs, is called characteristic date [2]. In topological evolution,
the characteristic date is when a node or edge is added/removed in the graph. Similarly, in
attributed evolution, attribute value changes at a characteristic date. Such dates defined
within discrete/continuous lifetime T provide an explicit way to model time when different
kinds of changes occur.

4.2.1 Time-varying Node Labels

In our previous work [6], we described nine classes into which real world objects, present
in an urban environment, can be classified. These objects, along with groups of vehicles
belonging to each carriageway on a bidirectional road segment, are included as nodes in our
model. For simplification and homogeneity, we consider that the nodes representing groups
of vehicles belong to a separate class called "Group". Each (of now ten) class of nodes, given
by the set of classes CV = {c1, c2, ..., c10}, is assumed to have a unique set of attributes
during T , given by Kci

= {κ1, κ2, ..., κm}, where the number of attributes m varies for every
ci ∈ CV , 1 ≤ i ≤ 10. As in [10], we assign an attribute vector [κ1(vi), κ2(vi), ..., κm(vi)]
to ith node vi ∈ Vcj

, 1 ≤ j ≤ 10 with Vcj
being the set of nodes which belong to a

class cj ∈ CV . An element of the attribute vector κx(vi), 1 ≤ x ≤ m is the value of the
attribute κx for a node vi. This attribute vector of a node vi is considered to be the label for
that node. Assume that classes for all nodes in G and set of attributes Kcj

for all classes
cj ∈ CV , 1 ≤ j ≤ 10 are given as a priori. For a node vi ∈ Vcj , a node labeling function can
be given as Avi

(vi, Kcj
) =

[
κ1(vi) κ2(vi) ... κb(vi)

]
1×b

where b = |Kcj
|. Considering
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all nodes in a class cj ∈ CV , a node labeling function for this class is written as

AVcj
(Vcj

, Kcj
) =



κ1(v1) κ2(v1) ... κb(v1)
κ1(v2) κ2(v2) ... κb(v2)
. . .

. . .

. . .

κ1(va) κ2(va) ... κb(va)


a×b

with a = |Vcj |. When the time is included with AVcj
, we get a time-varying node labeling

function AVcj
(Vcj

, Kcj
, T ) for a class cj ∈ CV . This function will give as output a 3-D vector

with dimensions |Vcj | × |Kcj | × |T |. Since in case of attributed evolution T is continuous, the
value of |T | will change according to the temporal granularity considered. Finally, we define
a time-varying node labeling function AV (T ) which gives as output the value of all attributes
for the nodes present in G during T in the form of 4-D vector, where fourth dimension has
ten entries, one for each class.

4.2.2 Time-varying Edge Labels
To define the time varying edge labeling function, we classify an edge in TVG on the basis of the
classes of nodes which are its end points. For example, an edge between a vehicle and a building
is classified as Vehicle-Building edge. In [6], sets of relations for thirteen different classes of
edges are proposed. Since we have defined class "Group" of nodes in the previous section, we
classify edge between two group nodes into Group-Group class, and hence fourteen classes of
edges are possible. The value of relations on these edges, given by a corresponding attribute
vector, acts as the edge label. Given the set of node classes CV = {c1, c2, ..., c10}, set of edge
classes can be written as CE = {cxcy| cx, cy ∈ CV , 1 ≤ x ≤ 10, 1 ≤ y ≤ 10} and has fourteen
elements. It is possible to have a class of type cxcx ∈ CE provided cx = V ehicle ∨ cx =
Group ∨ cx = Intersection ∨ cx = Roadsegment since relations between two vehicles, groups,
intersections and road segments are allowed. Each class cpcq ∈ CE , 1 ≤ p ≤ 10, 1 ≤ q ≤ 10
is made up of two classes cp and cq of nodes, between which an edge exists belonging to
cpcq. For every cpcq ∈ CE , Rpq = {r1, r2, ...rn} is the set of relations corresponding to that
class, where n depends on the class [6]. Given an edge evv′ ∈ E, v, v′ ∈ V , it belongs to class
cpcq ∈ CE ⇐⇒ v ∈ Vcp

∧ v′ ∈ Vcq
, Vcp

, Vcq
⊂ V . An edge labeling function for evv′ given

Rpq is written as Aevv′ (evv′ , Rpq) =
[
r1(evv′) r2(evv′) ... rd(evv′)

]
1×d

where d = |Rpq|.
The attribute vector, given as output, contains the values of different relations which exist
on edge evv′ . Let Ecq

cp represent the set of edges which belong to class cpcq ∈ CE . Then edge
labeling function for Ecq

cp gives a 2D vector as output

AE
cq
cp

(Ecq
cp
, Rpq) =



r1(e1) r2(e1) ... rd(e1)
r1(e2) r2(e2) ... rd(e2)
. . .

. . .

. . .

r1(ec) r2(ec) ... rd(ec)


c×d

where c = |Ecq
cp |. Over T , time varying edge labeling function AE

cq
cp

(Ecq
cp , Rpq, T ) for a class

cpcq ∈ CE gives as output the 3-D vector with dimensions |Ecq
cp | × |Rpq| × |T |. Considering

all classes of edges in E, time varying labeling function AE(T ) has 4-D vector as output
with fourth dimension related to the total number of edge classes (fourteen).
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4.2.3 Graph Evolution
As mentioned before, the evolution of a TVG can be topological or attributed. The change
in the graph topology is considered to be discrete in our model. That means, the addition/re-
moval of a node/edge is instantaneous. In addition, we ignore the change in attribute values
of nodes/edges and only focus on their presence/absence. Hence, the definition of TVG can
be modified to GT = (V, E, T , ρV (T ), ρE(T )). However, in case of attributed evolution,
the TVG is formalized as GA = (V, E, T , AV (T ), AE(T )) with T representing continuous
time, which can be discretized if variation in an attribute value is instantaneous. In this case,
change in graph topology is ignored. It is noteworthy, that both types of evolution happen
simultaneously and hence, the lifetime of the system is the same in both cases.

5 Conclusion and Future Work

In this paper, we proposed the formalization of a time-varying graph (TVG) which provides
the temporal dimension to the spatio-temporal graph-based model we are developing, to
understand the dynamics of road traffic in a given urban environment. Two types of graph
evolution are considered and node/edge presence and labeling functions are defined. Due
to limited number of pages, we skip the description of related concept of underlying graph,
a static graph which relates spatial and time-varying graphs, and the notion of defining
different point of views for visualizing the evolution of TVG. The next step for our work is
to define the conceptual framework of the system and implement the ideas proposed. To
do this, we first need to compare the existing spatio-temporal data models (conceptual and
physical) and adapt one to our needs. The required real-world traffic data is collected by
CEREMA, Rouen (France). Our long-term goal is to develop graph algorithms to compute
and reason about patterns in evolving road traffic.
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Abstract
Significant diversity exists in the way languages structure spatial reference, and this has been
shown to correlate with diversity in non-linguistic spatial behaviour. However, most research
in spatial language has focused on diversity between languages: on which spatial referential
strategies are represented in the grammar, and to a lesser extent which of these strategies are
preferred overall in a given language. However, comparing languages as a whole and treating
each language as a single data point provides a very partial picture of linguistic spatial behaviour,
failing to recognise the very significant diversity that exists within languages, a largely under-
investigated but now emerging field of research. This paper focuses on language-internal diversity,
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1 Introduction

Diversity in the way languages structure spatial reference has been amply demonstrated,
and has been shown to correlate with diversity in spatial behaviour in other, non-linguistic,
cognitive modalities (navigation and wayfinding; memory recall and memory recognition;
inferential reasoning; gesture; etc.). Some theories have argued for a primary role of language
in shaping conceptual representations of space [9, 12, 20]. Others have focused on the role of
the environment in which communities live and languages are spoken in motivating spatial
representations that are manifest across modalities, including language [15].

Here we present findings on diversity in preferred Frame of Reference in linguistic
expressions of spatial relations. In this context, a Frame of Reference (FoR) is a conceptual
strategy for locating an object (“figure”) or path in relation to another object (“ground”).
This is done by assigning an asymmetry to a scene so that a path or a search domain in which
the figure can be found can be projected off the ground object on the basis of a coordinate
system fixed to a particular “anchor”. Different FoRs are different strategies for assigning this
asymmetry, involving different anchors, and therefore represent different types of coordinate
systems. Three FoRs are established: intrinsic, relative, and absolute [8, 9, 12, 15] (see Figure
1). In the intrinsic FoR the coordinate system is anchored in the ground object on the basis of
a perceived intrinsic asymmetry in the facets of that object itself (e.g., in front of the chair –
the search domain/path is projected off a perceived intrinsic ‘front’ of the ground chair, itself
the anchor). In the relative and absolute FoRs the anchor is external to the Figure_Ground
array. In the relative FoR the coordinate system is anchored in the location of a viewpoint
(e.g., in front of [i.e., on the viewer’s side of] the post - the search domain/path is projected
off the facet of the ground post facing the viewpoint anchor). Absolute FoR invokes a set of
external coordinates imposed on the scene (e.g., west of the house - the search domain/path
is projected off the facet of the ground house facing west in an external cardinal coordinate
system, with the anchor in those external coordinates).

The two externally-anchored FoRs and a number of other referential strategies for
expressing spatial relations can also be divided into those which are egocentric, such as
those invoking participants in the speech event as landmarks (e.g., on my side of the post)
or through the relative FoR (e.g., in front of the post); and those which are geocentric,
invoking features of the external world, either through the absolute FoR (e.g., seaward from
the village), or through reference to landmarks (e.g., towards the sea from the village) (e.g.
[4, 14, 17]).

2 Diversity across languages

Most research in spatial language to date has focused on diversity between languages. This has
primarily focused on which referential strategies are represented in the grammars of individual
languages [9, 10, 12, 20]. For example, in terms of FoR, some languages provide specialised
grammatical means of expressing spatial relations in the relative FoR, and others do not. To
a lesser extent research has focused on which of these strategies are preferred overall out of
the referential strategies available in individual languages [12]. For example, Mopan (Mayan,
Belize) has been characterized as employing intrinsic and absolute (geocentric) FoR, but not
relative (egocentric) FoR, with intrinsic preferred and absolute only available in restricted
contexts [12]. Tamil (Dravidian, India), on the other hand, has been characterized as
allowing intrinsic, relative and absolute, but dispreferring intrinsic [12]. However, considering
each language as a whole fails to recognise the very significant diversity that exists within
languages, a largely under-investigated but now emerging field of research.
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3 Diversity within language communities

A handful of recent studies have now shown that diversity among speakers within a language
can be considerable, and that individual language communities are far from homogeneous
[2, 17]. Language-internal diversity based on environment has previously been observed
in a preference for relative FoR among urban communities and absolute FoR among rural
communities [12], for example between urban and rural Tamils [18, 19], and on the basis
of scale (table-top space versus navigational scale). However, recent studies have found
significant variation on the basis of individual demographic factors such as age, gender and
occupation, and community-wide cultural practices such as dominant subsistence mode.

Some language-internal diversity may correlate with different patterns of sociocultural
interaction with the environment of the language locus. For example, in one Ancash
(Quechuan, Peru) community in the Andes, individuals who work in the highlands as herders
show significantly higher rates of geocentric reference than those who do not: “both highland
pastoralism and the use of the Absolute FoR draw on a similar cognitive ability to keep
track of one’s position among various landmarks in a fixed coordinate system” [22]. Gender
is another factor that may correlate with variation in spatial reference. Mopan is cited
above as preferring intrinsic FoR with absolute used in restricted contexts [12], but this
language-level generalisation oversimplifies the situation and masks patterns of behaviour.
For example, cardinal directions are used across the board more often by Mopan men, who
work in the fields, than by Mopan women, who work in the home or in the village [5].
Similarly, among Yucatec Mayans (Mexico), men but not women use cardinal direction terms,
reflecting occupational biases and cultural practices specific to men, particular in garden work
[1, 3, 7]. Other factors such as age or education also play a role. In Dhivehi (Indo-Aryan,
Maldives) older speakers, men, and less well educated individuals, who were more likely
to have worked outdoors or on the sea, were more likely to use geocentric references than
younger speakers, women, and better educated speakers, who were more likely to have always
worked indoors [11]. Sometimes community-wide cultural practices play a role. On one
Maldivian atoll, speakers living on islands where fishing was the dominant subsistence mode
used geocentric expressions at significantly higher rates, independent of the occupation of
individual community members, than speakers on other islands on the same atoll where
indoor work dominated, who favoured egocentric strategies (see below) [11]. Other studies
show inter-generational change. In Australia’s Indigenous Gurindji community, older speakers
use absolute FoR more frequently than younger speakers, apparently correlating with a shift
to Gurindji Kriol and Aboriginal English, perhaps also related to schooling and other changes
to way of life [13].

4 Diversity within Marshallese and Dhivehi

Quantitative analysis of a corpus of data gathered in a recent study of language-internal
and language-external variation in spatial reference in two atoll-based languages presents
a picture of systematic and partially parallel variation within each language community
[11, 16, 17, 21]. One of the first systematic large-scale investigations of language-internal
variation in spatial behaviour, this study was conducted among speakers of Marshallese
(Austronesian, Marshall Islands) and Dhivehi (Indo-Aryan, Maldives), in order to test
the Topographic Correspondence Hypothesis (TCH) [15]. TCH hypothesises a correlation
between the features of linguistic spatial referential systems and features of the topography
of the environment in which a language is spoken. The results of the atoll study partially
support TCH, but demonstrate that language-internal variation exists correlating with a
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Figure 1 Sample “Man and Tree” card [6].

range of sociocultural factors beyond the scope of TCH, revealing the limitations of the
hypothesis’s focus on environment alone.

Data in this study was elicited using an identical set of formal experimental task-based
methodologies, some established, some developed for the project, in each of a range of
diverse communities in a range of environments in both languages. A total of 96 participants
for Marshallese and 118 for Dhivehi were involved, making this the largest such study by
a considerable margin. Data presented below are from the results of a “Man and Tree”
elicitation task [23]. In this task, one participant, a ‘director’, selects a card from a set of
cards bearing images of a toy man and a toy tree in various configurations, and describes the
configuration so a second participant, a ‘matcher’, who selects the corresponding card from
their own set, yielding data heavy in spatial reference.

The tree is in front of the man (intrinsic FoR).
The tree is to the left of the man (relative FoR).
The tree is west of the man (absolute FoR).
Quantitative analyses of task results revealed not coarse-grained FoR choice (absolute

versus relative, etc.), but preferences among a wide range of referential strategies offered by
each language, some involving specialised grammatical constructions, some not. In other
words, each language provides its speakers with a range of spatial referential strategies,
and speakers vary on which strategies they prefer, and how strong those preferences are.
Patterns of strategy preference emerged based on a range of factors. Some representative
findings are presented here. Some patterns of strategy preference correlated simply with
overall language community regardless of location or individual demography. For example
intrinsic FoR accounted for 31% of spatial descriptions offered by Dhivehi participants in a
Man & Tree task, but only 10% of descriptions offered by Marshallese participants. However,
environment also played a role. For example, among externally-anchored Dhivehi Man &
Tree location descriptions, preference for egocentric strategies correlated with degree of
urbanisation: egocentric strategies account for 88% of descriptions in the densely urban
Maldivian capital Malé, 77% in less urban Addu atoll, and an average of 43% in rural Laamu
atoll.

Community-wide practices were also a factor. On Laamu atoll the dominant subsistence
mode on some islands is fishing, but on others it is indoor work and small scale farming.
Quantitative analyses found 79% of all externally anchored Man & Tree descriptions were
geocentric on islands where the dominant subsistence mode is fishing, but only 39% on
islands where indoor work and small scale farming dominate, independent of the individual
occupation of each participant (see Figure 2). Moreover, individual demographic factors
were also important. Laamu participants aged 17-34 produced 44% geocentric descriptions,
while the figure for ages 35-49 was 67%, and ages 50-70 was 77%. Cross-cutting that, among
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fishermen and sailors, 93% of Man & Tree descriptions were geocentric, but among indoor
workers only 55% were. Variation was also observed on the basis of education, literacy, and
bilingualism [11, 21]. Finally, linguistic resources and language use were factors: topographic
features and cardinals were invoked in equal numbers in Marshallese, but references invoking
topographic features were almost entirely absent in Dhivehi, correlating with the encoding of
key topographic features in specialised terms in high frequency constructions in Marshallese
but not Dhivehi.

5 Sociotopography

Findings such as those outlined in sections 3 and 4 provide strong support for the Soci-
otopographic Model (STM) [17], an attempt to model the interaction of environmental,
sociocultural and linguistic factors in spatial referential systems. Major environmental fea-
tures are salient to humans and play a role in conceptual representations of space that then
interact with linguistic spatial expressions, consistent with the Topographic Correspondence
Hypothesis. However, sociocultural factors, as well as affordances of the environment, mediate
in the relationship between humans and landscape, a fact that cannot be accounted for
within TCH but is captured by STM. In addition, the linguistic resources of the language
itself contribute to nonlinguistic representations of space, mediated by language use. Each
of these interactions is bidirectional. For example, topographic features and affordances
of the environment shape human sociocultural interaction with that environment, while
that interaction itself in turn plays a role in modifying and developing the environment
through the built environment [17]. Sociotopography is defined in terms of: the natural
environment (broadly construed, including topography, path of the sun, prevailing winds
etc.); the built environment; and affordances of and sociocultural interaction and associations
with the natural and built environment. It is culturally ‘constructed’: humans modify
their environment; and conceptualise existing topography in terms of uses, associations and
meanings attached to it. Consequently, elements of the landscape that are not attended
to by some individuals and by some communities may be prominent to others. A sample
implementation of the model is presented in Figure 2.

6 Conclusion

A tendency of much previous research to focus on a language’s overall spatial system rather
than individual choices among available spatial referential strategies within a language has
led to failed attempts to attribute a determining role to a single factor: to language, or to
landscape, or to culture. Our findings demonstrate that all these factors and more play a role.
Attending only to strategy choice in languages as a whole obscures patterns that reveal the
complex interplay of factors at work in shaping conceptual representations of space: patterns
reflecting the nature of the environment, the degree and nature of engagement with the
environment, cultural associations placed on the environment, individual and community-wide
cultural practices, the linguistic resources of the language itself, and patterns of language
use. The Sociotopographic Model attempts to model the interplay of these diverse factors.

References

1 Jürgen Bohnemeyer. Spatial frames of reference in Yucatec: Referential promiscuity and
task-specificity. Language Sciences, 33:892–914, 2011.

GISc ience 2018



53:6 Diversity in Spatial Language Within Communities

2 Jürgen Bohnemeyer, Katharine T. Donelson, Randi E. Tucker, Elena Benedicto, Ale-
jandra Capistrán Garza, Alyson Eggleston, Néstor Hernández Green, María de Jesús Selene,
Hernández Gómez, Samuel Herrera Castro, Carolyn O’Meara, Enrique Palancar, Gabriela
Pérez Báez, Gilles Polian, and Rodrigo Romero Méndez. The cultural transmission of spa-
tial cognition: Evidence from a large-scale study. In Cogsci 2014 Proceedings, pages 212–217,
2014. URL: https://mindmodeling.org/cogsci2014/papers/047/paper047.pdf.

3 Jürgen Bohnemeyer and Christel Stolz. Spatial reference in Yukatek Maya: A survey.
In Stephen C. Levinson and David Wilkins, editors, Grammars of space: Explorations in
cognitive diversity, pages 273–310. Cambridge University Press, Cambridge, 2006.

4 Jürgen Bohnemeyer and Randi Tucker. Space in semantic typology: Object-centered geo-
metries. In Peter Auer, Martin Hilpert, Anja Stukenbrock, and Benedikt Szmrecsanyi,
editors, Space in language and linguistics: Geographical, interactional, and cognitive per-
spectives, pages 637–666. Mouton de Gruyter, Berlin, 2013.

5 Eve Danziger. Language, space and sociolect: Cognitive correlates of gendered speech in
Mopan Maya. In Catherine Fuchs and Stéphane Robert, editors, Language diversity and
cognitive representations, volume 3, pages 85–107. John Benjamins Publishing Company,
Amsterdam, 1999. doi:10.1075/hcp.3.09dan.

6 Cris Edmonds-Wathen. Frame of Reference in Iwaidja: Towards a culturally responsive
early years mathematics program. PhD thesis, RMIT, Melbourne, 2012.

7 Olivier Le Guen. Modes of pointing to existing spaces and the use of frames of reference.
Gesture, 11(3):271–307, 2011. doi:10.1075/gest.11.3.02leg.

8 Stephen C. Levinson. Frames of reference and Molyneux’s question: Crosslinguistic evid-
ence. In Paul Bloom, Mary A Peterson, Lynn Nadel, and Merrill F Garrett, editors,
Language and Space, pages 109–169. MIT Press, Cambridge, 1996.

9 Stephen C. Levinson. Space in language and cognition: Explorations in cognitive diversity.
Cambridge University Press, Cambridge, 2003.

10 Stephen C Levinson and David Wilkins, editors. Grammars of space: Explorations in
cognitive diversity. Cambridge University Press, Cambridge, 2006.

11 Jonathon Lum. Frames of spatial reference in Dhivehi language and cognition. PhD thesis,
Monash University, Melbourne, 2018.

12 Asifa Majid, Melissa Bowerman, Sotaro Kita, Daniel B.M. Haun, and Stephen C. Levinson.
Can language restructure cognition? The case for space. Trends in Cognitive Sciences,
8(3):108–114, 2004.

13 Felicity Meakins, Caroline Jones, and Cassandra Algy. Bilingualism, language shift and
the corresponding expansion of spatial cognitive systems. Language Sciences, 54:1–13, 2016.
doi:10.1016/j.langsci.2015.06.002.

14 Carolyn O’Meara and Gabriela Pérez Báez. Spatial frames of reference in Mesoamerican
languages. Language Sciences, 33(6):837–852, 2011. doi:10.1016/j.langsci.2011.06.
013.

15 Bill Palmer. Topography in language: Absolute Frame of Reference and the Topographic
Correspondence Hypothesis. In Rik De Busser and Randy J. LaPolla, editors, Language
structure and environment. Social, cultural and natural factors, pages 179–226. John Ben-
jamins Publishing Company, Amsterdam, 2015.

16 Bill Palmer, Alice Gaby, Jonathon Lum, and Jonathan Schlossberg. Socioculturally me-
diated responses to environment shaping universals and diversity in spatial language. In
Paolo Fogliaroni, Andrea Ballatore, and Eliseo Clementini, editors, Proceedings of work-
shops and posters at the 13th International Conference on Spatial Information Theory
(COSIT 2017), pages 195–205. Springer International Publishing, Cham, 2018. doi:
10.1007/978-3-319-63946-8_35.

https://mindmodeling.org/cogsci2014/papers/047/paper047.pdf
http://dx.doi.org/10.1075/hcp.3.09dan
http://dx.doi.org/10.1075/gest.11.3.02leg
http://dx.doi.org/10.1016/j.langsci.2015.06.002
http://dx.doi.org/10.1016/j.langsci.2011.06.013
http://dx.doi.org/10.1016/j.langsci.2011.06.013
http://dx.doi.org/10.1007/978-3-319-63946-8_35
http://dx.doi.org/10.1007/978-3-319-63946-8_35


B. Palmer, A. Gaby, J. Lum, and J. Schlossberg 53:7

17 Bill Palmer, Jonathon Lum, Jonathan Schlossberg, and Alice Gaby. How does the envir-
onment shape spatial language? Evidence for sociotopography. Linguistic Typology, 21(3),
2017. doi:10.1515/lingty-2017-0011.

18 Eric Pederson. Geographic and manipulable space in two Tamil linguistic systems. In
Andrew U. Frank and Irene Campari, editors, Spatial Information Theory: A theoretical
basis for GIS, pages 294–311. Springer-Verlag, Berlin, 1993.

19 Eric Pederson. Spatial language in Tamil. In Stephen C. Levinson and David Wilkins,
editors, Grammars of space: Explorations in cognitive diversity, pages 400–436. Cambridge
University Press, Cambridge, 2006.

20 Eric Pederson, Eve Danziger, David Wilkins, Stephen C. Levinson, Sotaro Kita, and Gunter
Senft. Semantic typology and spatial conceptualization. Language, 74(3):557–589, 1998.

21 Jonathan Schlossberg. Atolls, islands and endless suburbia: space and landscape in Mar-
shallese. PhD thesis, University of Newcastle, Newcastle, Australia, 2018.

22 Joshua A. Shapero. Does environmental experience shape spatial cognition? Frames of
Reference among Ancash Quechua speakers (Peru). Cognitive Science, 41:1274–1298, 2017.
doi:10.1111/cogs.12458.

23 Angela Terrill and Niclas Burenhult. Orientation as a strategy of spatial reference. Studies
in Language, 32(1):93–136, 2008. doi:10.1075/sl.32.1.05ter.

GISc ience 2018

http://dx.doi.org/10.1515/lingty-2017-0011
http://dx.doi.org/10.1111/cogs.12458
http://dx.doi.org/10.1075/sl.32.1.05ter


53:8 Diversity in Spatial Language Within Communities

 

Figure 2 Strategy tendencies and subsistence mode in Laamu fishing versus non-fishing com-
munities [17].



Flexible Patterns of Place for Function-based
Search of Space
Emmanuel Papadakis
Dept. of Geoinformatics - Z_GIS, University of Salzburg, Schillerstr. 30, 5020 Salzburg, Austria
emmanouil.papadakis@sbg.ac.at

https://orcid.org/0000-0001-8669-2420

Andreas Petutschnig
Dept. of Geoinformatics - Z_GIS, University of Salzburg, Schillerstr. 30, 5020 Salzburg, Austria
andreas.petutschnig@sbg.ac.at

https://orcid.org/0000-0001-5029-2425

Thomas Blaschke
Dept. of Geoinformatics - Z_GIS, University of Salzburg, Schillerstr. 30, 5020 Salzburg, Austria
thomas.blaschke@sbg.ac.at

https://orcid.org/0000-0002-1860-8458

Abstract
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nature of place, reflecting the meaning infused within. For instance, “is it possible to locate
a shopping area if it is not denoted as a shopping mall?" This work contributes to the
formalization of place and development of place search methodology that is not limited to
placenames or semantic infusion of spatial entities; instead, it treats places as entities that
conform to specific spatial patterns. The objective of this methodology is twofold: (1) to
provide an enhanced representation of place that relies on both statistical and narrative
information and (2) to identify locations and extents of places that possess a set of desired
features, in order to yield results that cannot be captured simply through search based on
placenames or place properties.

The most prevalent method of place search relies on digital gazetteers [4], which are
spatially-referenced catalogs of placenames. The major limitation of this approach is the
lack of information, which is narrowed down to placenames, spatial footprints and simple
properties such as place types. The use of ontologies [5] overcome these limitations. CIDOC
CRM [3] is an upper level ontology that provides a detailed knowledge representation about
places facilitating sophisticated search; however, most of the ontologies provide relative,
limited or devoid absolute spatial representation. Ontological gazetteers [6], on the other hand,
combine the aforementioned methods by enriching the traditional structure of placenames
and spatial footprints with additional semantics. Nevertheless, according to [11], the meaning
of place is something more than a collection of semantics.

Following a meta-modeling approach, [9] establishes places from narratives by taking
into account the relations between semantics instead of lists of properties, combined with
spatial information. However, the high dependency on natural language makes this approach
context-dependent, as well as, it raises many technical difficulties. On the other side of
the spectrum, [10] follows a bottom-up approach. Particularly, it gives emphasis on the
extraction of semantic signatures of places, in the form of co-occurrence patterns of points of
interest, using LDA topic modeling and statistical analysis. These patterns are then used to
discover similar regions that comply to the aforementioned signatures. The unsupervised
nature of this method imply certain limitations with respect to describing the plausible
meaning of places.

In previous work, we proposed the model of functional space [7]. This emphasizes on a
fraction of the meaning of place that is functionality. Particularly, according to this model
a place is a system that satisfies people’s purposes by offering certain functions. These
functions are regarded as “services" enabled or disabled by the spatial organization that
governs a place, known as composition. Under this model, places are formalized based
on composition patterns[8], which are defined as sets of components and rules, denoted as
Comps and Rules, respectively. The former refers to the physical entities that constitute
a place, whereas the latter is a set of implications between functions and first-order logic
formulas that form the composition rules. These rules stand for relations between physical
entities and external variables. The overall formalization is visualized in Figure 1 and the
set of all the available composition rules, denoted as CR is shown in Figure 2. Composition
patterns are created through text analysis. Specifically, narratives, such as dictionaries,
Wikipedia pages, design guidelines and so on, are analyzed to extract information about the
functions and the composition of a place. This knowledge is then organized as a composition
pattern, essentially offering a commonly accepted blueprint for the place under consideration.

The composition patterns enable function-based search of space [7], that is, locating
places that support certain functions. However, the rigid rules that describe the composition
patterns can be more restrictive than necessary in some use cases. In particular, since
the composition rules are expressed in first-order logic, every associated function is either
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Figure 1 Composition pattern. Figure 2 Composition rules.

permitted or forbidden. This hinders the effectiveness of place search, especially when dealing
with inconsistent data or in cases of increased vagueness that marks a function to be optional.
Furthermore, the extraction of composition patterns highly depends on narratives, which
often reflect the ideal or the most general definition of a place, abstracting away the diversity
that characterizes the real world.

This study proposes an improved version of the composition patterns of place, described
above, that addresses the aforementioned limitations. Specifically, the composition patterns
are extended to support flexibility in terms of what is necessarily or possibly included in
the composition of a place. In addition, the extraction process of composition patterns is
enhanced with empirical knowledge, which revise and complements the knowledge extracted
by narratives.

The remainder of this paper is organized as follows. Section 2 proposes the improved
composition pattern of place and introduces an empirical methodology for extracting patterns
of place. Then, Section 3 demonstrates the applicability of the proposed model for the use
case of searching shopping areas in London, UK. Finally, Section 4 concludes and points out
directions for future work.

2 Methodology

In this section, we first analyze the required extensions that will improve the composition
patterns of place with flexibility. Then, we detail how the process of extracting patterns is
(1) adjusted to conform to the extended formalization and (2) enhanced in order to allow
automations and patterns with finer details based on spatial analysis and statistics.

2.1 Flexible Composition Pattern
The initial model of composition patterns of place is extended by introducing its flexible
counterpart, the model of flexible composition patterns. This extension is made possible
by applying the principles of modal logic [1]. Note that modalities are chosen, instead of
quantities, to represent necessity and possibility in a concise and natural manner, and to
preserve the model’s generality. In the remainder of this document, we refer to these flexible
composition patterns simply as patterns.

The newly proposed patterns conform to the fundamental assumption that “place is space
with ascribed functions” and are formalized as a collection of three sets (Comp, CR, FR).
The first two stand for the possible components and composition rules (Figure 2) that frame
the composition of a place, respectively. FR contains logical implications between functions
and logical formulas comprised of composition rules. The latter are extended with modal
operators that allow the expressions “necessarily” and “possibly” (denoted as � and ♦,
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respectively) in order to attribute a certainty value for every rule. Considering the above, a
particular function is enabled, if the combination of necessary or possible rules holds.

2.2 Enhanced Pattern Extraction
In order to achieve automated creation of more realistic patterns, we propose an extraction
process that utilizes both theoretical and empirical knowledge. According to this approach,
a pattern of place is no longer a strict reflection of the written word, but a combination
of text-based and experiment-based information acquired through the phases of theoretical
design and empirical revision, respectively.

The phase of theoretical design uses text analysis to extract a theoretical pattern, which
includes the textually derived knowledge about the composition of a place. This pattern is
regarded as a collection of “echoes”, after Alexander’s 15 structural properties [12] and it
describes the expected features that would enable the functions of the place under question.
Since text-based knowledge is usually designed with generalization in mind, it is safe to
assume that the composition rules included in this pattern are marked as possible (and not
necessary) in terms of the level of certainty.

The empirical revision focuses on the analysis of regions that are considered as the ideal
candidates of the place for which the theoretical pattern was created. More specifically,
spatial and semantic data are acquired for a wide range of ideally defined instances of the
place under question. Considering the latter as anchors, additional data is collected about
adjacent components conforming to requirements listed in the theoretical pattern.

The next step aims to extract and describe the most significant components that charac-
terize the ideal places under question. This is achieved by classifying the aggregated data
into context-specific categories by conducting statistical and spatial analysis. Statistical
analysis includes extraction of the population count and the average frequency of occurrences
per category. Spatial analysis, on the other hand, focuses on the mean distance between
components and the centroids of the ideal candidates of place. By the end of the analysis,
an empirical pattern is constructed that includes the required and optional information
that describes the composition of the place under question. A context-specific significance
threshold is employed in order to classify which rules are considered as necessary or optional.
The aforementioned threshold is chosen empirically and is calculated based on the statistical
importance. Particularly, we assume the following convention: aggregated data that exceed
this threshold introduce necessary composition rules, while the rest imply possible rules.

It is worth noting that there are cases where necessity or possibility rules depend on the
possible or necessary existence of some components, respectively. These scenarios imply to
possible necessity and conditional possibility and so forth. Figure 3 illustrates all the possible
cases of interrelation between necessity rules and conditional existence of components along
with the corresponding descriptions.

3 Experiment

This section demonstrates the proposed methodology using the example of shopping malls
in London, UK. The objective of the described experiment is to create a pattern which can
enable a place search system to locate all places that offer functions similar to a shopping
mall, even if they are not explicitly defined as one. By convention, we refer to these places
as shopping areas, for which the ideal representatives are the standard shopping malls.

Before proceeding, we list some basic assumptions that underline our experiment. We
consider a simple version of shopping areas that support the functions of shopping experience,
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Figure 3 Dependency between necessity rules and existence of components.

Figure 4 Functions and components of a shopping area.

leisure, walkability, accessibility to drivers and accessibility to non-drivers (Figure 4). In
addition, we assume that the maximum walkable distance is 500m and the minimum driving
distance is no more than 5000m. We use a subset of the composition rules in Figure 2 that
includes Occurrence, Correlation and Proximity.

Considering the assumptions above, textual analysis is performed on the following sources:
Wikipedia reference, dictionary definition and architectural guidelines of shopping malls.
This results in the theoretical pattern depicted in Figure 5.

Empirical revision is then conducted using data acquired from OpenStreetMap. We
collected a set of 63 polygons, outlining shopping malls in London. Using the centroids of
the latter we aggregate: (1) point geometries of shops, amenities and public transport stops
within a 500m radius, and (2) junction points along with line geometries of primary and
secondary highways within a 5000m radius. Figure 7 illustrates indicative results of the
spatial and statistical analysis applied on the acquired components for all the ideal instances
of shopping areas.

For the construction of the empirical pattern, we assume that a variable is significant
and hence it implies a necessary composition rule if the coefficient of variation for the
corresponding mean value is no more than 25%. Values more than this level result to
insignificant variables and, hence, refer to possible rules. The empirical pattern is shown in
Figure 6.

Our method is evaluated by conducting and comparing two function-based search processes
for shopping areas: one relying on the theoretical pattern, and one on the empirical one.
Pattern matching is realized by converting each pattern to a sequence of spatial queries and
procedures, implemented using PostGIS and QGIS. Particularly, every function, included in
the pattern, is expressed as a query that reflects the implied composition rules. Afterwards,
the generated queries are issued on the database. The theoretical pattern is evaluated by
aggregating the results of each query in a conjunctive manner. The empirical pattern, on
the other hand, is evaluated in two steps. Initially, queries based on the necessity rules
suggest candidate regions of the place under question; then the possibility rules are checked
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Figure 5 Theoretical pattern. Figure 6 Empirical pattern.

Figure 7 Indicative results of spatial and statistical analysis.

in order to mark which among the selected candidates better fit the initial functionality. The
algorithms used for the function-based search go beyond the scope of this work, and the
methods used are not considered optimal but used for demonstration purposes only.

Figure 8 illustrates the results retrieved by the theoretical pattern, with blue cells
representing all candidate shopping areas and cross symbols indicating the locations of the
shopping malls. It should be clear that all ideal places are included, however there is no
indication as to which cells better support the required functions. In contrast, the results
shown in Figure 9 indicate that the empirical pattern enables a finer delineation of shopping
areas, as well as a clear indication of the level of functions support (illustrated using a heat
map where blue represents least support and red represents highest support). Note that due
to a much smaller grid size, Figure 9 corresponds only to the rectangle area in Figure 8.

4 Conclusion

This study contributes to formalizing place and place search. In particular, we introduce
a more flexible formalization of place capable of capturing what is necessarily or possibly
included in the composition of a particular place. Furthermore, we propose a pattern
extraction process that combines the theoretical, text-based design of composition patterns
of place with empirical revision based on statistical and spatial analysis. The resulting
pattern provides a detailed description of place that is closer to reality and can lead to more
accurate results in function-based search of space, as evidenced by the conducted experiment
of locating shopping areas in London, UK. This work indicates that place can be treated
as a functional region and be formalized as a system using both narratives and spatial
data, however further development is necessary. The dependency of theoretical patterns on
narratives raises important obstacles; indicatively, natural language processing has many
technical difficulties and usually the extracted information is context-dependent and highly
vague. In addition, a more formal definition of the composition rules is required, which will
allow the introduction of new rules or the modification of existing ones. Furthermore, although
modal logic seems a convenient solution, when it comes to reasoning, it hinders quantification,
which in return limits the model’s ability to provide grading on places or functionality rating.
Interesting directions of future work include the integration of probabilistic models, which will
quantify the possible knowledge about places, and the automation of the pattern extraction
process utilizing deep learning techniques.
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Figure 8 Results using theoretical pattern. Figure 9 Results using empirical pattern.
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Abstract
Multi-scale analysis for spatio-temporal data forms a fundamental challenge for many analytic
systems. In geographic information systems, analysis and modeling at pre-defined spatial and
temporal scales may miss critical relationships in other scales. Previous studies have investigated
the uses of the triangle model as a multi-scale framework in analyzing temporal data. This
article demonstrates the utilities of the triangle model and pyramid model for multi-scale spatial
analysis through real-world analytical tasks and discusses the potential of developing a unified
modeling framework that integrates the two models.
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1 Introduction

Currently, the increasing diversity of geospatial data collected at different resolutions (e.g.
satellite, UAV, field sampling, and census data) poses serious challenges for data integration
and analyses. The choice of analytic scale to a large extent determines the insights that can
be gained, due to the nature of geospatial information and due to its sensitivity to spatial
and temporal resolution. The importance of scale has been epitomized in the well-known
Modifiable Areal Unit Problem (MAUP). Ideally, geospatial data should be analyzed at
multiple scales to reveal the nested interactions at different scales and decisions should be
made at the level where the spatial and temporal relationships are maximized. However, the
scale of analysis that is best suited for a given problem is not always immediately evident,
which raises a compelling justification for exploring data solutions supporting multiple-scale
analyses.
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Multi-scale analysis for spatio-temporal data forms a longstanding challenge for analytic
systems in different disciplines. In GIS, spatial data are represented as flat layers and
temporal data are represented as linear sequences at pre-determined resolution, with spatial
analysis tools operating usually at a single scale. For instance, kernel density can display
clusters of features only at a single spatial scale. To discover clusters concealed in other scales,
the analysis needs to adjust the bandwidth using an inefficient “trial-and-error” approach that
repeats the density calculation at one or more alternative scales. Similar issues exist in image
classification and land cover change modeling, which usually are based on pixel-centered
single-scale methodologies that can ignore or obscure the impact of scale and hierarchy
in landscape processes that drive pattern creation. To fully understand the complexity of
coupled natural and human systems, the interactions and competitions among different
systems need to be analyzed and modeled at multiple scales.

To address the issue of multi-scale temporal analysis, Qiang et al. [4][5] proposed a
Triangle Model (TM) that projects linear temporal data onto a 2D space and demonstrated
how variation of data across multiple temporal scales can be represented in a continuous 2D
space [3]. The TM was later applied in analyzing movement data [7]. This paper demonstrates
the utility of the triangle model in evaluating surface-adjusted distance measurements in
digital elevation models and the utility of its extension (the pyramid model) in analyzing
land fragmentation. Finally, we will discuss the potential of building a unified framework for
integrating the triangle and pyramid model for multi-scale spatio-temporal analyses.

2 Triangle Model

Time intervals are conventionally represented as linear segments in a one-dimensional space
(Figure 1(a)). Alternatively, a 2D representation of intervals was originally introduced by
Kulpa [2] as a diagrammatic tool for mathematical reasoning. Later, Qiang et al. [4][5][3]
extended the model for spatio-temporal analysis, and implemented it into a GIS. In Qiang et
al’s approach, a time interval (starting at I - and ending at I+ can be mapped to a point at
((I+ + I -)/2, (I+- I -)/2) in a 2D Cartesian coordinate system (Figure 1(b)). The position
of the point in the horizontal axis ((I+ + I -)/2) indicates the midpoint of the interval, while
the vertical position ((I+ - I -)/2) is proportional to the length of the interval. Using this
approach, which is termed the Triangle Model (TM), all time intervals can be represented
as unique points in a 2D coordinate space. Figure 1(c) demonstrates a TM depiction of
the five intervals shown in Figure 1(a), illustrating its facility for representing temporal
properties (e.g. start, end, midpoint and duration) in a compact view. One of the advantages
of the TM is that by converting temporal relations into a spatial representation, the TM
permits temporal analysis to be conducted seamlessly across multiple scales using simple
GIS operations.

In addition to time intervals, the TM can be used to represent sequential time series data
[3]. A time series (e.g. daily temperature) consists of a sequence of intervals (e.g. days)
associated with an attribute (e.g. average temperature of the day) (Figure 2(a)). Daily
intervals, which are the finest granularity, can be represented as points at the lowest level in
a TM. Intervals of every two days can be represented as points at 2nd level and intervals of
every three days can be represented as points at the 3rd level. The point on the top represents
the interval of the entire time series (Figure 2(b)). Each point in the TM is associated with
an aggregated value (e.g., the mean or standard deviation) of attributes of the intervals it
represents. Figure 2(c) shows the values of each day shown in Figure 2(a) along its lowest
level; and a nested average for each interval is easily computed in the TM. Interpolation of
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Figure 1 The transformation from the linear model to the triangle model. (a) Time intervals
in the linear model. (b) Projecting a time interval into a point in the triangle model. (c) Time
intervals in (a) shown in the triangle model.

Figure 2 Representation of time series in the TM: (a) a time series represented in a conventional
line chart; (b) representing time intervals in the time series in (a) as points in the TM; (c) a rasterized
TM showing nested means for the time series.

the nested values within the TM can form a continuous field representing all intervals in
the time series, providing an explicit view of the hierarchy and nested relations of patterns
across different scales. Using conventional spatial analysis methods, (e.g. classification,
overlay, and Map Algebra), multiple time series can be compared to support multi-criteria
decision-making at different temporal scales.

3 Surface-Adjusted Distance in the Triangle Model

In GIScience, distance is the most fundamental spatial metric that anchors proximity analysis,
spatial pattern detection, and spatial interpolation, and, indeed, underlies detection of nearly
every type of geospatial pattern. Similar to time series data, distance measurement is a linear
process based on aggregating distances in small intervals. Current distance measurement
on terrain assumes that Digital Elevation Model (DEM) pixels are rigid and flat, as tiny
facets of ceramic tile approximating a continuous terrain surface. It is still unclear how the
measurement errors using different approaches propagate over scales in all types of terrain.
As the measured distance increases, the errors introduced by the assumption of rigid pixels
can propagate dramatically and increase overall error [1], or cancel each other out and result
in coarse-scale accuracy.

Distance measurements of four surface-adjustment approaches, including weighted average
(WeiAve), and three polynomial approaches (i.e. Bilinear, Biquadratic and Bicubic) are
compared in this section. Please refer to [1] for the details of these surface-adjusted approaches.
The distance of a transect is measured using the four surface-adjustment approaches on
DEMs at different resolutions (10, 30, 100 and 1000m). Then, the measured distances are
compared with the benchmark distance measured on a 3m LiDAR DEM to evaluate their
accuracies. Using traditional visualization methods, accuracies of the surface-adjustment
distance measurements can only be examined at a single scale. For instance, Figure 3 shows
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Figure 3 A transect in a DEM (left) and error rates of distance measurement in 100m intervals
along the transect (right). The colors of the lines indicate different surface-adjusted methods.

Figure 4 Error rates of distance measurements in the 10m DEM represented in TM (left) and
the overlaid TM showing the most accurate approach (right).

Figure 5 Comparison of the four surface-adjustment methods for measuring different lengths of
intervals in the TM. Colors indicate the most accurate approach.

error rate of distance (computed as (benchmark distance – measured distance)/benchmark
distance) in every 100m interval along the transect, using different surface-adjustment
methods and on DEMs of different resolutions. From the linear charts, it is also difficult to
analyze the propagation of errors at different scales and to compare the surface-adjustment
approaches in measuring different interval lengths.

The TM provides a compact view of error rates of measuring different lengths of intervals
(Figure 4). By overlaying the TMs of different surface-adjustment approaches, we can
identify the most accurate (lowest error rate) approach in measuring different lengths of
intervals along the transect. The left side of Figure 4 demonstrates the error rates of the four
surface-adjustment approaches in the 10m DEM. The right side is the result of overlaying
the four TMs in the left panel, where the colors denote the most accurate surface-adjustment
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Figure 6 A raster in a Pyramid Model (PM).

approach in measuring different lengths of intervals. The single color (orange) of the overlaid
TM indicates that weighted average is the most accurate approach in measuring all intervals
in the 10m DEM. However, as shown in Figure 5(b), the Bilinear approach outperforms
weighted average in some short intervals (yellows in the bottom of the TM) in the 30m DEM.
In the 100m DEM, Bilinear approach becomes the most accurate approach for long intervals,
while Bilinear and Biquadratic have better accuracy in short intervals (Figure 5(c)). In
the 1000m DEM, Bilinear and weighted average have competing accuracies in measuring
distances in different intervals (Figure 5(d)). The measurement errors represented in the
TMs inform the best surface-adjustment approach for measuring distance in different lengths
of intervals. Next, the relationship between the measurement accuracy and terrain roughness
will be explored in the framework of TM, which will be presented in the conference.

4 Multi-Scale Spatial Analysis in the Pyramid Model

The concept of the Pyramid Model (PM) is similar to an image pyramid, which represents a
raster image across multiple resolutions by smoothing and resampling. Image pyramids were
originally developed in computer vision, image processing and signal processing, but are now
used more widely to enhance the efficiency of multi-scale raster rendering in GIS. In our
approach, the construction of a PM is similar to that of the TM in the sense of developing a
hierarchy; but the PM represents 2D space across scales instead of linear time. To construct
a PM, every pixel in the base raster can be represented as a point at the lowest level in the
pyramid. Points at the second level represent square region of four pixels (2×2) in the raster.
Points at the nth level represent square regions of n2 pixels. In constructing this hierarchy,
all square regions of different sizes in the base raster are represented as a pyramid containing
uniformly arranged points in a 3D space (Figure 6). The pyramid can be represented as
a 3D raster that consists of numerous equal-size voxels, each of which is associated with
an aggregated statistic of the attributes or spatial metrics (e.g. density, texture, spatial
dependence) for the square region it represents. The PM can also represent vector features
(e.g. point, line, and polygon), in which points represent square regions in the base layer.

The utility of the PM is demonstrated in analyzing wetland fragmentation in coastal
Louisiana. Published evidence shows that fragmented wetland habitats may accelerate
wetland erosion and wetland loss (e.g. Lam et al. 2018). However, fragmentation indices
calculated for different sizes of focal windows may lead to different results. Similar issues
exist in other spatial pattern indices such as density, spatial autocorrelation, and terrain
roughness. Figure 7 illustrates PM representations of fractal dimension (a commonly used
fragmentation index) of a binary land cover raster clipped from coastal Louisiana. Using
the land cover raster as the base (Figure 7(b)), local fractal dimensions for different sized
focal windows can be stacked into a 3D PM (Figure 7(c)) in which lower layers represent
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Figure 7 Representing local fractal dimensions of land cover raster in a PM. (a) A binary land
cover raster. (b) The land cover raster in the base of a PM. (c) A 3D Pyramid Model built from the
land cover raster. (d) Voxels with a fractal dimension in the 99th percentile.

fractal dimensions for smaller regions, and higher layers represent fractal dimensions for
larger regions. The internal variation of the PM can be visualized using ‘spatial query’. For
instance, Figure 7(d) displays the voxels in the 99th percentile (i.e. the highest 1%) fractal
dimension calculated in different sizes of focal windows, indicating the most fragmented
regions at different scales. Extending map algebra into the 3D space, the variation in the
PM can be further analyzed and multiple PMs can be compared or correlated. For instance,
subtracting PMs of fractal dimension calculated at two time points, one can identify land
areas where fragmentation has accelerated significantly. Moreover, regression analysis can be
conducted between the PM of the land fragmentation and density of man-made structures
to discover the scales at which human activities have most impact on wetland erosion.

5 Summary and Future Work

This study demonstrates the applications of the TM and the PM in multi-scale spatial
analyses. Compared with traditional analytic tools that are limited to a single scale,
the PM and TM can represent spatial patterns and relationships in a full dimension of
continuous changing scales, and facilitate queries across spatial and temporal scales. This
study demonstrates the use of two multi-scale models in evaluating distance measurement in
DEMs and analyzing landscape fragmentation respectively. Beyond these, our future research
plan includes developing a unified modeling framework that integrates TM and PM to fully
support multi-scale spatio-temporal analyses. Within the unified modeling framework, an
atomic element (x) consists of four dimensions including spatial location (s), spatial scale
(s’), temporal location (t), and temporal scale (t’) [6]. Compared with prevalent GIS that
focus on spatial analysis (i.e. f (s)) and single-scale spatio-temporal analysis (i.e. f (s,t)),
the unified framework will fundamentally resolve the issue of multi-scale spatio-temporal
analysis by providing 15 types of analyses using one or more of the four dimensions (i.e.( 4

1
)

+
( 4

2
)

+
( 4

3
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= 15).
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Abstract
In this paper we forecast hotspots of street crime in Portland, Oregon. Our approach uses
geosocial media posts, which define the predictors in geographically weighted regression (GWR)
models. We use two predictors that are both derived from Twitter data. The first one is the
population at risk of being victim of street crime. The second one is the crime related tweets.
These two predictors were used in GWR to create models that depict future street crime hotspots.
The predicted hotspots enclosed more than 23% of the future street crimes in 1% of the study
area and also outperformed the prediction efficiency of a baseline approach. Future work will
focus on optimizing the prediction parameters and testing the applicability of this approach to
other mobile crime types.
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1 Introduction

Crime occurrences are complex phenomena studied from an interdisciplinary path, including
criminology, law, psychology, geography, or economy. An important factor in understanding
crime patterns relates to their spatial and temporal attributes. Some of the methods that
have been used to explore these attributes in crime analysis are hot spot detection [7], spatial
regression [8], retrospective forecasting, machine learning, near-repeat concept [10], and
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risk terrain analysis [14]. However, many prediction models and their strategies are defined
and modeled for places with disparate regional conditions. Also, crime types have different
spatiotemporal distributions because they are affected by different factors. For example,
robberies increase during nights and weekends [14], while assaults are frequent around liquor
outlet areas on weekends [4]. The current study aims to forecast crime in three different
future periods by considering GWR models from precedent similar periods. Additionally,
we consider only street crimes and integrate information about their particular spatial and
temporal patterns to predict areas where crimes are more likely to occur.

1.1 Predictors of crime & population at crime risk
Some elements of the build environment that are strongly correlated to crime and have being
used for prediction include hospitals, schools, police stations, and population. Additionally,
Twitter data have been integrated in crime analysis by considering their location [2], their
topic [16, 9, 1], their sentiment [6], and by using a dictionary to select tweets that include
specific words [15]. Regarding population information, census data are commonly used in
calculating population at crime risk. However, population is not random in space and has
varying patterns during working days and hours compared with home or leisure times. Hence,
recent studies integrate dynamic population models. The ancillary dynamic information
can be extracted from social media data [11, 12], mobile phone data [13], or spatial data
and imagery analysis like LandScan Global Population Database, provided by Oak Ridge
National Laboratory.

1.2 Research objective
The objective of this study is to integrate and test geosocial media data as variables in
GWR crime prediction models. Geosocial media data are free and easier to obtain than
authoritative data. In addition, they can be used to produce ambient models compared
to the static nature of census data. Furthermore, there are at least two cases in which
retrospective methods that require historical data of more than one past period cannot be
used in prediction and thus regression-based approaches are promising alternatives. The first
case is to estimate the crime occurrence in an area for which data are not available. An area
with similar profile and availability of data can be used to deliver GWR regressions for the
“unknown” area. The second case is when there are crime and predictor data for time t-1
and we want to estimate the crime prevalence in t by assuming that slight variations in time
can be better represented in a generalized model of t-1 than the actual crimes of t-1.

2 A social media based GWR application for the prediction of crime

GWR is a modeling approach for spatially heterogeneous processes [3]. In the last decade,
implementing GWR as a predictor increased substantially even if still controversial. GWR
technique has the advantage of considering non-stationary variables and modeling local
relationships between dependent and independent variables. Our strategy is to use recent
past variables to create a model over the study area and predict crimes in the future. As for
the parameters need to set for this tool, we used the “adaptive” bandwidth, as recommended
in literature. For crime analysis, researchers are using a palette of interdisciplinary variables in
regression models to understand crime distribution, not only spatially. We define explanatory
variables from social data to examine, if being the only predictors in a model can favor the
understanding of spatial crime distribution. Two types of variables are defined and tested:
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Population at crime risk (PopCR) and crime-related tweets (CrimeTW). We used geolocated
Twitter data in calculating PopCR, adapting the methodology described by Kounadi et
al. 2017 for translating density of tweets into population density with the point-based
areal interpolation method. Residential population is calculated for large geometries, such
as census tracks or neighborhoods. Density-weighted interpolation disaggregates the data
included in large geometries (source zones, i.e. residential population values) by using control
point data (i.e. the spatial distribution of tweets) in order to obtain a new variable for target
zones, which are smaller polygon geometries (i.e. grid cells). In addition, to define relevant
geolocated tweets for our analysis, we first analyzed the temporal distribution of street crimes.
Then, we chose the days and times of crime peaks and only for those timeframes, geolocated
tweets were extracted and introduced in PopCR models. Second, we extracted CrimeTW by
filtering the entire geolocated Twitter dataset for crime related terms. After preprocessing
the data, we noticed four sources that post constantly about crimes: City of Portland 911
feed, City of Portland Fire/EMS feed, TTN POR traffic, Multnomah County Sherriff feed.
The last source is an unofficial posting of the East County using a scanner feed from police
information. Practically, we are using the intensity per polygon for these two independent
variables, PopCR and CrimeTW, in order to explain the dependent crime counts. The
analysis was performed for the three periods (one week, two months, three months), as well
as for two cell sizes (0.006 km2 small size called cell A and 0.023 km2 large size called cell B).

3 Case study: Portland

The study area is in Portland, the largest city from the state of Oregon in the USA. The size
of the study area is 382.6 km2 and includes an estimated population of 640,000 people in 2016.
Data for this case study contain crime occurrences in 2015 and 2016 from call-for-service data
from the Portland Police Bureau, and Twitter data from 2015. We only consider street crime
types that affect the mobile population, which include assault, disturbance, gang related
crimes, robbery, shooting, stabbing, drugs, liquor, prostitution, and gambling. We tested
three periods from the two years for which we downloaded the crime data: One week (1st
week of March: 559 crimes in 2015 and 538 in 2016); two months (March to April: 5,129
crimes in 2015 and 5,386 in 2016); and three months (March to May: 7,987 crimes in 2015
and 8,417 in 2016). Twitter data were obtained using the Twitter API. We only used tweets
that had the geolocation activated, so that we know the exact coordinates of the message.
For the PopCR variable, we extracted the tweets from the three periods in 2015 and kept only
those that showed a peak of crime events (e.g. weekend nights). Namely, we processed the
temporal information from the tweets and we extracted the ones which have a corresponding
time slot with crime at its peak (e.g. street crime type has temporal peaks during weekend
nights, so we extracted the tweets from weekend nights to be control points for PopCR). For
the second variable, CrimeTW, the entire filtered data set was used in all three periods (the
tweets from the four aforementioned users).

4 Results

The analysis was performed for three time periods (one week, two months, three months),
as well as for two cell sizes. The first size, called cell A, covers a rather small area of 0.006
km2 (total number of cells: 66,841), while the second one, called cell B, covers an area of
0.023 km2 (total number of cells: 16,753). We applied the analysis six times, one for each
combination of time period and cell size, so that we can have a first exploration on the effects
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Table 1 Evaluation of GWR models (three prediction periods and two cell sizes).

Cell A Cell B
P rediction period 1 week 2 months 3 months 1 week 2 months 3 months

AICc 123,245.67 55,119.85 96,639.98 22,994.95 37,001.81 23,664.39
R-squared 0.13 0.44 0.49 0.54 0.67 0.61

of these parameters on the estimation models and prediction accuracy. Table 1 shows the
Akaike Information Criteria (AICc) and R2 values of the six GWR models. The AICc scored
the lowest value for cell B and a three month period and R2 has the highest value for cell
B and a two month period. In general, we observe that larger cell sizes and longer time
periods (two or three months) give considerably better results compared to smaller cell sizes
and shorter prediction periods. The fact that different spatial aggregation chosen in analysis
produce different results is one well-known issue in geography, named modifiable areal unit
problem (MAUP), and in many cases the aggregation to a larger cell size can yield to better
results. To identify hotspot areas in 2016 using data from 2015, we selected areas with high
prediction values. Also, to compare the results among the models we standardized the size
of the prediction area to approximately 1% of the total number of cells. The size of the total
area is 382.6 km2 and the size of the prediction area is 3.9 km2. This amounts to 668 A
cells and 168 B cells (selected based on their prediction values). Since the prediction area
among models was the same and about 1, the denominator of the prediction accuracy index
(PAI), which represents a common accuracy index in crime analysis [5], was canceled and
thus we considered only the denominator, which is essentially the hit rate (i.e. success rate).
Furthermore, we compared the GWR models with baseline models. As a baseline model we
define a simple exploratory approach‘, where cells with the highest crime intensity in 2015
define hotspots in 2016. Again, the amount of cells was 668 A cells and 168 B cells so as to
compare only hit rates. Figure 2 shows the results of one period for cells A and B and a
zoomed-in section where we observe the divergence between baseline and GWR hotspots.

Street crimes in 2016 were used to calculate the hit rate. Although the prediction area was
defined to be quite small, all GWR models resulted in a hit rate between 23.2% and 27.8%
(Table 2). In particular, GWR models identified more than 20% of the crimes being located
in 1% of the area. On the other hand the hit rate of the baseline models ranges between
12.4% and 28.8%. In Table 3, we provide a summary of the predictive efficiency analysis
by calculating the mean hit rate by predictive period, cell size, and method. Although in
Table 1 it is apparent that the larger cell size creates better GWR models, in terms of the
prediction efficiency the smaller cell size predicts more crimes than the larger cell size (Table
3). Additionally, the larger the prediction period the better the results are. Finally, hotspot
areas defined from GWR models predict a significantly higher number of crimes than areas
defined from baseline models.

5 Discussion

The success of a prediction that employs spatial regression analysis depends on explanatory
variables. In the current study we used variables from one main data source, Twitter, and we
calculated how much of the spatial distribution of crimes is explained by tweets. We based
our analysis on the 2015 information in order to get hotspots for 2016. Six GWR models
were created using as dependent variables street crime data and independent variables from
two tweet subsets (i.e. population at crime risk and crime related tweets) both from the year
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Figure 1 Overlapping of prediction areas resulting from GWR and baseline methods for a period
of three months and two different cell sizes (cell A = 0.006 km2 and cell B = 0.023 km2).

Table 2 Predictive efficiency grouped by
period, cell size, and method (GWR vs Baseline).

Prediction
period

Cell
size

Method Hit
Rate

1 week
A GWR 25.4

Baseline 13.5

B GWR 23.4
Baseline 12.4

2 months
A GWR 27.8

Baseline 26.3

B GWR 23.8
Baseline 14.1

3 months
A GWR 27.6

Baseline 28.8

B GWR 23.2
Baseline 23.2

Table 3 Average Hit Rate by the three
parameters (predictive period, cell size, and
method). * Indicates higher Hit Rate among
comparisons.

Mean values of Hit Rate

cell size cell A* 24.9
cell B 20.0

length of
prediction
period

1 week 18.7
2 months 23.0
3 months* 25.7

method GWR* 25.2
Baseline 19.7

2015. The predictive efficiency of GWR outcomes was higher than a baseline model that
considered the past areas of high crime density as being the same for the next period. In
order to account for effects of the spatial resolution and temporal differences, we selected
three testing periods (one week, two months, and three months) and two different grid cell
sizes, namely small and large. Results for the year 2015 show that by using the larger cell
size the GWR models explain more variance of crime distribution patterns than by using
the smaller cell size. However, when it comes to prediction efficiency the smaller cell size

GISc ience 2018



56:6 Geosocial Media Data as Predictors in a GWR Application

yielded higher accuracy than the larger one. This may be a characteristic of the crime type in
question and possibly high number of repeats and/or near-repeats. Also, the accuracy varies
by prediction period with the longest analyzed period (i.e. three months) having the highest
prediction efficiency. The main limitations of our approach is the under-representativeness
of Twitter sample data (not each person is tweeting; not all users are using geolocation
actively), the possibility of having non-reported crime occurrences that we did not evaluate,
multicollinearity issues for GWR and the MAUP, which is not sufficiently addressed by two
different cell sizes. To compensate for these limitations, our future work on this topic will
employ the next three additions. First, we want to use additional types of social media
platforms (e.g. Foursquare or Flickr) for the development of predictors. Second, we will
perform multiple case studies for which the accuracy and completeness of crime data will
be tested. Last, we will extensively and empirically test the parameters of our approach,
including but not limited to the spatial resolution of the models and the temporal resolution
of the prediction periods.
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Abstract
Geomasking traditionally refers to a set of techniques employed by a data steward to protect the
privacy of data subjects by altering geographic coordinates. Data subjects themselves may make
efforts to obfuscate their location data and protect their geoprivacy. Among these individual-level
strategies are providing incorrect address data, limiting the precision of address data, or map-
based location masking. This study examines the prevalence of these three location-masking
behaviors in an online survey of California residents, finding that such behavior takes place
across social groups. There are no significant differences across income level, education, ethnicity,
sex, and urban locations. Instead, the primary differences are linked to intervening variables of
knowledge and attitudes about location privacy.
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1 Introduction

While a large body of research is dedicated to protecting the privacy of human subjects, there
has been less documentation on the efforts of individuals to protect their own privacy. The set
of procedures known as geomasking typically refers to the alteration of point data to protect
both spatial distributions and privacy of data subjects [2]. Common geomasking techniques
include random perturbation [6], donut masking [4], and grid masking [12]. The typical use
scenario for these top-down strategies is for researchers who wish to share geospatial data
with others, but must protect privacy. Masking behavior at an individual level, such as by
responding to location requests with false or imprecise address data, can also serve to protect
an individual’s geoprivacy. This study tests the correlates of bottom-up or individual-level
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location masking in an online survey, finding that intervening variables of hacking exposure,
social media use, and geoprivacy knowledge and attitudes are significantly correlated with
masking behavior.

1.1 Related work
In their geoprivacy manifesto, [5] argue that location privacy stands apart from information
privacy, in part because of the range of inferences that can be drawn from location, the
ubiquity of location-collecting technology, and the incentives which draw consumers to share
their locations. Compared to information privacy, which has been reported on by [8] and [1],
not much is known about specific geoprivacy-related attitudes and behaviors. Obfuscation at
the individual level is characterized as an act of resistance to surveillance [3], an idea seconded
by [13] and [14], who argue that Tor, an onion routing technology that masks location by
altering IP address, is a prime example of resistance to geosurveillance. Compared to the
technologically-advanced location masking of Tor, this study focuses on the masking behavior
internet users exhibit when faced with the explicit location request: “Please enter your home
location.” Both the precision and participant-reported truthfulness of entered location are
collected as outcome variables in determining “who masks”.

2 Methods

An online survey testing location masking behavior was deployed to California residents
between October 2017 and March 2018. Participants were drawn from two samples: a random
address-based sample obtained from Survey Sampling International (SSI) and contacted by
postal mail, and a non-probability online open sample, reached by paid ad placement on
Facebook and free advertising on Craigslist. A primary concern in the survey design was to
avoid social desirability bias, which results in inflated privacy concerns by participants in
studies advertised as privacy-related [11]. Therefore, this survey was designed to omit use of
the word “privacy” and to capture location masking as it might occur in a routine online
setting. Participants were told they were participating in a study about “online information
sharing” and were debriefed about the true purpose of the study at its conclusion, at which
time, they were also given the option to withdraw their responses.

2.1 Conceptualization
This study follows a knowledge-attitudes-behavior framework to predict participant location
masking, a model commonly used to predict behavioral outcomes in health and environmental
studies [9][7]. Hypothesized background variables included age, education, sex, income,
ethnicity, and urban location. Given that previous negative privacy experience online
increases perceived risk of sharing on social media [15], hypothesized intervening variables
included recent identity theft or hacking, social media use, and employment experience
with personal data. It was hypothesized that location masking behavior would be most
closely correlated with high geoprivacy knowledge and concern for geoprivacy. Each of these
variables was measured in a series of Likert-type questions in the survey.

2.2 Survey design
The primary test of location masking was participants’ response to “please enter your home
location,” for which they were given text boxes for street, cross street, city, state, and zip
code. If respondents entered a text-based location, they would then have the option to open
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Table 1 Differences between mail and online sample in Mann-Whitney U tests for background
variables (*p < 0.05).

Variable Mail Sample Online Sample Sig
Female 55% 76% *
White 66% 55%
College degree 69% 44% *
Median age group 45-54 25-34 *
Median income tax bracket 25% (38, 000−92,000) 15% (9, 000−38,000) *
Somewhat or very urban 62% 56%
Total participants 113 101

up a map and adjust a pin to their chosen coordinates. By default, the map pin was placed
at the geocoded coordinates of the entered street address with the Google geocoding API.
Respondents then selected their level of agreement on a five-point Likert scale (strongly
disagree to strongly agree) to the statements, “I intentionally provided incorrect information
on my home location” and “I intentionally moved the pin on the map away from my home
location.” The remainder of the survey tested geoprivacy knowledge, attitudes, and the other
background variables with similar Likert-type items, asking participants to respond with their
level of agreement. The survey was hosted on the Qualtrics platform and fully encrypted.

2.3 Analysis
Differences between the two samples were analyzed with Mann-Whitney U tests, a non-
parametric test for differences between two categorical variables [11]. Due to the ordinal
nature of the majority of the study variables, Spearman’s correlations were calculated
between each of the variables and tested for significance [10]. To determine geographical
patterns, global and local Moran’s I were applied as tests of spatial autocorrelation for survey
participation rates, location masking behavior, and geoprivacy-related attitudes.

3 Results

The questionnaire had a total of 214 respondents with 113 in the mail sample and 101 in
the online open sample. The two samples differed significantly in age, income, education
level, and gender composition, based on Mann-Whitney U tests (Table 1). The online open
sample was more female, younger, and had lower education levels and incomes compared to
the mail-based sample. The mail sample self-reported on average as more urban, though
this did not reach significance. The mail sample was also significantly more likely to have
employment experience working with personal data. In terms of location masking, the online
sample was significantly less likely to provide a numbered street address for home location
(p <0.05), compared to the mail sample, although the majority of participants in both cases
provided home location at this highest precision (73% of mail sample respondents and 56%
of open sample respondents). When it came to factuality of reported home location, however,
there were no significant differences between the two samples (Figure 1). About 15% of
respondents somewhat or strongly agreed that they intentionally provided an incorrect home
address, and 11% of respondents who interacted with the map function agreed that they
intentionally moved the pin away from their home location.

When tested with global Moran’s I, there was no global clustering of the respondents
from the two samples at the county level when normalized by population. This suggests that
a randomly distributed sample was achieved in both cases. Location masking behavior was
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Figure 1 Results by sample for three location masking behaviors.

not globally clustered when tested with Moran’s I, however, two of the attitude variables,
trust in websites to protect personal data and support of GPS devices in all vehicles, were
globally and locally clustered (p <0.05).

Overall knowledge about location privacy was low to average, with just 50% aware that
smartphones collect location outside of GPS, and 73% aware that IP address reveals location
(Figure 2). Self-reported knowledge about how location is shared was also low, with 48%
believing themselves to be well-informed. The attitude results demonstrated overall concern
for privacy, with only 34% believing websites to do a good job of protecting personal data,
and just 8% supporting the right of companies to collect irrelevant location data.

The Spearman’s tests (Table 2) revealed that no demographic background variables were
significantly correlated with the three indicators of location masking. Location precision had
the highest frequency of significant correlates. Respondents were more likely to mask location
by providing lower address precision if they were part of the open sample, if they had a
recent hacking experience, if they had more knowledge about smartphone location collection,
and if they did not trust websites to protect their personal data. Lower precision was also
correlated with other masking behavior, including use of technology to alter IP address and
provision of incorrect address information to retailers. The two intentional masking outcome
variables were not correlated with knowledge or attitudes, but again with other location
masking behaviors. Enjoyment of social media was the one intervening variable significantly
correlated with providing accurate home location.

4 Conclusion

With 15% of participants admitting to providing incorrect address information, location
masking behavior is a small but present minority among participants, and it takes place across
demographic lines. The precision of location respondents provide appears to be dependent
on context, trust, and knowledge, rather than background variables. The open online sample,
respondents who do not trust websites to protect their personal data, and respondents who
know that location can be collected in smartphones outside of GPS were more likely to
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Figure 2 Percent of participants exhibiting geoprivacy-related knowledge and attitudes.

Table 2 Spearman’s rho between predictor variables and location masking behavior. Only
significant correlations shown (p<0.05).

Correlates

Provided
higher home
location
precision

Intentionally
provided
incorrect

home location

Intentionally
moved pin
away from

home location

Background Sample (1=Mail Sample,
2=Open Sample) -0.169

Intervening Enjoy contributing to social
media -0.227

Had unauthorized user on
online account -0.155

Knowledge
Believe GPS only way
location collected on

smartphone
0.139

Attitudes
Believe websites do a good
job of protecting personal

data
0.238

Other
masking
behavior

Use technology to alter IP
address -0.169

Give inaccurate or
misleading address

information to retailers
-0.194 0.227

Turn location services off on
smartphone 0.194

Intentionally provided
incorrect home location 0.406
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provide a lower precision of home address. Location masking measured as truthfulness of
location has fewer clear correlations with the hypothesized background variables than location
precision does, but is significantly correlated with other location masking behaviors and
lower enthusiasm for social media. The results demonstrate that in California, a U.S. state
with a large high-tech sector, there is still relatively limited exercise of geoprivacy protection
measures at an individual level.
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Abstract
Geo-grid algorithms divide a large polygon area into several smaller polygons, which are import-
ant for studying or executing a set of operations on underlying topological features of a map.
The current geo-grid algorithms divide a large polygon in to a set of smaller but equal size poly-
gons only (e.g. is ArcMaps Fishnet). The time to create a geo-grid is typically proportional to
number of smaller polygons created. This raises two problems - (i) They cannot skip unwanted
areas (such as water bodies, given about 71% percent of the Earth’s surface is water-covered);
(ii) They are incognizant to any underlying feature set that requires more deliberation. In this
work, we propose a novel dynamically spaced geo-grid segmentation algorithm that overcomes
these challenges and provides a computationally optimal output for borderline cases of an uneven
polygon. Our method uses an underlying topological feature of population distributions, from
the LandScan Global 2016 dataset, for creating grids as a function of these weighted features. We
benchmark our results against available algorithms and found our approach improves geo-grid
creation. Later on, we demonstrate the proposed approach is more effective in harvesting Points
of Interest data from a crowd-sourced platform.
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1 Introduction

Obtaining land use data at a global scale can be arduous with respect to data availability,
coverage, resolution, accuracy, computational power and storage. The emergence of Vo-
lunteered Geographic Information (VGI) exploited from open sourced platforms, however,
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Figure 1 An example of dynamically-spaced geo-grid segmentation for weighted point sampling
on a polygon map layer.

can provide rich attributes world-wide from Points Of Interest (POI) data. This data can
facilitate many mapping and modeling techniques related to human dynamics, which is
vital to emergency management and response, urban planning, and energy use. In order to
optimize the collection of such available data, it is a recommended practice to segment a
given geographical region into smaller grid cells for a more focused collection effort. ArcMap’s
fishnet[5], and other spatial indexing techniques that implement triangular mesh gridding
are commonly used geoprocessing tools for this geo-grid segmentation. However, these tools
are agnostic to the underlying topology and evenly segments areas into equally sized cells
and/or triangular facets. Such approaches cannot skip unwanted regions (such as oceans)
and their computational time is proportional to the size of individual cells, eventually, it
consumes needless time and computational resources.

These challenges led us to develop a new approach for geo-grid segmentation that make
use of underlying topology such as population distribution, building settlement extractions,
etc. The proposed method creates dynamically spaced geo-grids as a function of underlying
topological data. For example, as shown in Figure-1, using population distribution data
to influence the location for request calls, the proposed method generates bigger cells for
sparsely populated areas, or several smaller cells for densely populated regions.

2 Related Work

Multiple algorithms have been developed to generate a geocoded index to describe an exact
or general location on Earth. In fact, many of these methods implement a hierarchical
dissecting system that follows a tree structure concept to index places [7], or use a reverse
geocoding practice of interpreting actual latitude/longitude coordinates to a single array [1],
or develop a continuous map at a specific spatial unit labeled with new and random naming
conventions [6] [8] [10]. Other approaches use a triangular mesh grid for analyzing geographic
data within equally sized facets with minimal distortion [4] [3], or to identify coverage areas
for database retrieval purposes [9] [11].

While the previously mentioned practices influenced this research, our approach is not
to create a universal addressing system or a new projected referencing system. Instead, we
propose a gridding system partitioned by a given topological requirement to help collect data
from open source platform graph APIs that require a lat/long and search radius. Specifically,
we produced a hierarchically gridded map of the world based on the underlying population
within each grid to maximize our retrieval of Points of Interest (POI) data from VGI. By
considering population distributions to subdivide a grid, we produce a map that can allocate
additional computational resources where higher populations reside.
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Figure 2 GeoHashed Grid Sizes with their respective search radii.

3 Methodology

In this section, we discuss the proposed method for creating dynamically-spaced geo-grid
segmentation for weighted point sampling on a polygon map layer. And with our efforts
focused on optimizing the number of POIs fundamental to human dynamics, we assume
population is an indicator of places. We use the LandScan Global population dataset [2],
developed at Oak Ridge National Laboratory (ORNL), for weighted point sampling purposes.
This model depicts an “ambient” population distribution (average over 24 hours) at 30
arc-seconds resolution (roughly 1km at the equator).

3.1 Spatial Analysis

We began by gridding the world in “.6 x .6” degree increments for two reasons. The first
reason was to begin with a small enough grid size so that the largest possible search radius
(from the center of a grid to the nearest edge) would be less than 50,000 meters. With that
said, a .6 degree grid at the equator has a radius of roughly 33,300 meters. The rationale for
not using a search radius just under 50,000m (which would actually be a .9 degree grid at the
equator), leads us to our second reasoning. Our geohashing technique splits each grid into 4
equal parts, until the last grid becomes smaller than a LandScan Global cell size, which is
~1km at the equator. When a geohashed grid is smaller than a LandScan Global cell, we can
no longer sum the population within the single grid without missing at least one LandScan
Global cell centroid. By using a .6 degree grid initially, we can geohash until the second to
last geohashed grid is roughly 1% bigger than a LandScan Global population grid, allowing
us to sum the population one last time. If the threshold is still not met, we can then geohash
one final time to make the smallest request grid possible based on population (see Figure 2).

The population threshold for this study was 5,000. Therefore, when a grid’s underlying
population sum was above 5,000 people, subdividing took place into 4 new quadrants. From
the top-left quadrant clockwise, we labeled the four quadrants A, B, C, and D, respectively.
These quadrant labels were then appended to the original ID of the grid being GeoHashed.
For example, Figure 3 represents the iterations of geohashing grids and the product of each
new quadrant’s ID. Grid 1 has a population over 5,000 and is replaced with four new grids
labeled Grid 1a, Grid 1b, Grid 1c, and Grid 1d. When necessary, these divisions continue
through each new quadrant(s) (Grid 1a, 1b, and 1c) constantly replacing the previous grid
with new appropriately sized grids. If a grid’s summed population is under 5,000, the
iterations end and no additional divisions occur (Grid 1d). The rest of the section discusses
the algorithms aspect of our method.
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Figure 3 An example of how Grids are geohashed and labeled.

Figure 4 Request points calculated through proposed algorithms and a standard 1km fishnet
grid over Kabul, Afghanistan. The background is LandScan Global’s population distribution.

3.2 Algorithm
The spatial analysis algorithm performs two important tasks that results in deciding whether
to split the current grid cell in equal size small sub-grid cells ( or move to next grid cell. This
decision is made based on the population count in the current grid cell. If the population
count is higher than the threshold, the algorithm (Algorithm:1) segments the grid cell. In
this algorithm, first we calculate the extent of the current grid cell. An extent defines the
geographic boundaries that contains a population data frame. These boundaries contain
top, bottom, left, and right coordinates, which are the edges of the map extent. For the
purpose of this work, we rely on fixed extent calculation of the cell. Later, we calculate the
total grid cell population count from the raster centroid of this grid cell (Algorithm: 2). The
algorithm returns the value of population count that main algorithm use to decide whether
to segment or maintain the current extent of the cell. In this algorithm, parameters are
passed as reference to calculate the values of grid cell extent and cell population count.

4 Application and Summary of Results

To showcase the usability of our proposed method, we curated Points of Interest (POI) data
over Kabul, Afghanistan. Influenced by population distributions from LandScan Global, we
generated dynamically-spaced geo-grid cells for weighted point sampling on Kabul’s polygon
map layer. We then benchmarked this method against the traditional 1-km fishnet generated
from ESRI ArcGIS and quantified the overall performance on three different measures. These
measures included - (i) total number of POIs curated; (ii) total number of requests made to
collect the POIs; and (iii) duration to collect.

4.1 Approach
A Point of Interest (POI) is a feature on a map that has a unique latitude and longitude
coordinate. Some examples include - church, school, and hospital. Several mapping sites,
such as OpenStreetMap, provide APIs to search POIs in a vicinity. These APIs input a
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Algorithm 1: Algorithm to calculate grids using LandScan Global.
Function CalculateGeoHash(inputGrid, landScan_global, threshold)

Data: LandScan Global raster population layer, grid, and threshold values
Result: grid cells
/* Split the original grid in 0.6° grid blocks.The radius from

center is 33,000 mtrs at the equator.API threshold 50,000 mtrs
*/

intpuGrid←− calculate_fishnet(inputGrid, 0.6°) ;
overlay_landscan_global();
while true do

/* Traverse each grid block in sequential fashion */
RunSpatialAnalysis(gridId, GeoPoint geoPoint[4], long populationCount) ;
if populationCount > 5000 then

Split the cell in to four equal parts;
replace old cell with four new cells ;
if current_grid == len(grid) then

break();
end

end
else

continue; /* move to next grid cell */
end

end
end

geocoordinate with a radius, and returns POIs in that extent. Mapping websites impose a
limit on the number of POIs returned, so its vital to keep a small radius. However, that
increases the scanning time and number of API calls needed to maximize POIs collection.
We assume population distribution dictates the distribution of POIs. A densely populated
area may have more POIs than a sparsely populated area. In this experiment, we attempt to
collect POIs for Kabul, Afghanistan. As shown in Figure-4, we have generated a set of 740
request points and distance between adjacent points using the proposed method and 790
request points at 1-km distance using the ArcMap fishnet algorithm. Next, we will make API
calls using these two request points dataset and compare the results of total POIs collected.

4.2 Results Discussion
The proposed geohash approach outperforms the traditional 1-km fishnet approach on all
three measures. As shown in Figure-5a, when the proposed approach reqeust points dataset
was used, it took us 3520 seconds to collect 2548 POIs using 741 API call. When the 1-k
dataset was used, it took us 3990 seconds to collect only 2495 POIs using 790 calls. These
numbers become significant for large scanning area such as at country scale. In Figure-5b,
we have shown the distribution of collected POIs from the two datasets.

4.3 Limitations and Future Work
One limitation to our proposed method is our use of LandScan Global, which restricts our
segmentation abilities considering its resolution of 30 arc-seconds. In the future, we plan to
implement LandScan HD, also developed at ORNL, because of its resolution at 3 arc-seconds
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Algorithm 2: Algorithm to calculate grid cell extent and population.
Function RunSpatialAnalysis(gridId, GeoPoint geoPoint[4], long
populationCount)

Data: LandScan Global raster population layer, grid, and threshold values
Result: grid cell extent, populationCount of the grid cell
if cell !=null then

/* Genrate coordinate values for top_left, top_right,
bottom_left, bottom_right corners of the grid cell */

geoPoint←− calculate_boundaries_spatial_extent();
/* Calculate population count for this grid cell */
populationCount←− extract_landscan_spatial_statistics(geoPoint) ;

end
end
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(a) The histogram shows the distribution of Points
of Interest curated using the two methods, time, and
the total number of request made to the server.

(b) Curated Points of Interest from two different
methods, overlaying LandScan Global’s population
distribution.

Figure 5 Results of Points of Interest curation.

(~90m at the equator). With a more spatially refined population distribution, our model can
be partitioned further with an ending grid size just shy of 90 square meters, instead of the
current 600 meters. Furthermore, the processing time to develop our dynamically spaced
geo-grids will also need to be improved. Countries with wide-spread population distributions,
like India and Pakistan, produced hundreds of thousands of grids that were appended after
each iteration, thus slowing down the overall processing time. Future work will explore how
to improve this workflow as it will be necessary when we refine our input measurements to
analyze population distributions at 3 arc-seconds.

5 Conclusion

In this paper, we proposed a method for gridding the world into varying geofenced grids
based on a given measurement threshold to optimize search requests against social media
APIs. While our research used ORNL’s LandScan Global population dataset to designate the
requirements, this algorithm can be augmented for other geospatial analysis and with other
datasets. In fact, raster and point data are best suited with this method for generalizing or
identifying areas of interest in vector data at multiple spatial representations. For example,
crime data can be used to provide emergency personnel a map for allocating resource coverage.
While, we recognize this method of geohashing is time consuming on the front end, we have
observed an increase in the amount of data exploited, thus validating the necessity up front.



K. Sims, G. Thakur, K. Sparks, M. Urban, A. Rose, and R. Stewart 58:7

Copyright. This manuscript has been authored by employees of UT-Battelle, LLC, under
contract DE-AC05-00OR22725 with the US Department of Energy. Accordingly, the United
States Government retains, and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes.

References
1 Ziyad S. AL-Salloum. What Is Your Makaney Code?, 2011. URL: http://www.makaney.

net/.
2 Budhendra Bhaduri, Edward Bright, Phillip Coleman, and Jerome Dobson. Landscan.

Geoinformatics, 5(2):34–37, 2002.
3 Jun Chen, Xuesheng Zhao, and Zhilin Li. An algorithm for the generation of voronoi

diagrams on the sphere based on qtm. Photogrammetric Engineering & Remote Sensing,
69(1):79–89, 2003.

4 Geoffrey Dutton. Encoding and handling geospatial data with hierarchical triangular
meshes. In Proceeding of 7th International symposium on spatial data handling, volume 43.
Citeseer, 1996.

5 ESRI. Create Fishnet—Data Management toolbox | ArcGIS Desktop. URL: http://pro.
arcgis.com/en/pro-app/tool-reference/data-management/create-fishnet.htm.

6 Google. Google Plus Codes. URL: https://plus.codes/.
7 Gustavo Niemeyer. Geohash - Wikipedia, 2008. URL: https://en.wikipedia.org/wiki/

Geohash.
8 Open Street Maps. DE:Browsing - OpenStreetMap Wiki. URL: https://wiki.

openstreetmap.org/wiki/QuadTileshttp://wiki.openstreetmap.org/wiki/DE:
Browsing.

9 Patrik Ottoson and Hans Hauska. Ellipsoidal quadtrees for indexing of global geographical
data. International Journal of Geographical Information Science, 16(3):213–226, 2002.

10 Chris Sheldrick, Jack Waley-Cohen, Mohan Ganesalingam, and Michael Dent.
what3words. URL: http://what3words.com/https://map.what3words.com/palace.
things.talking.

11 Kentaro Toyama, Ron Logan, and Asta Roseway. Geographic location tags on digital
images. In Proceedings of the eleventh ACM international conference on Multimedia, pages
156–166. ACM, 2003.

GISc ience 2018

http://www.makaney.net/
http://www.makaney.net/
http://pro.arcgis.com/en/pro-app/tool-reference/data-management/create-fishnet.htm
http://pro.arcgis.com/en/pro-app/tool-reference/data-management/create-fishnet.htm
https://plus.codes/
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://wiki.openstreetmap.org/wiki/QuadTiles http://wiki.openstreetmap.org/wiki/DE:Browsing
https://wiki.openstreetmap.org/wiki/QuadTiles http://wiki.openstreetmap.org/wiki/DE:Browsing
https://wiki.openstreetmap.org/wiki/QuadTiles http://wiki.openstreetmap.org/wiki/DE:Browsing
http://what3words.com/ https://map.what3words.com/palace.things.talking
http://what3words.com/ https://map.what3words.com/palace.things.talking




The Landform Reference Ontology (LFRO):
A Foundation for Exploring Linguistic and
Geospatial Conceptualization of Landforms

Gaurav Sinha
Department of Geography, Ohio University, Athens, Ohio, USA
sinhag@ohio.edu

Samantha T. Arundel
US Geological Survey, Center of Excellence for Geospatial Information Science, Rolla, MO, USA
sarundel@usgs.gov

Torsten Hahmann
School of Computing and Information Sciences, University of Maine, Orono, Maine, USA
torsten.hahmann@maine.edu

E. Lynn Usery
US Geological Survey, Center of Excellence for Geospatial Information Science, Rolla, MO, USA
usery@usgs.gov

Kathleen Stewart
Department of Geographical Sciences, University of Maryland, College Park, Maryland, USA
stewartk@umd.edu

David M. Mark
(Emeritus) Department of Geography, The University at Buffalo, Amherst, New York, USA
dmark@buffalo.edu

Abstract
The landform reference ontology (LFRO) formalizes ontological distinctions underlying naïve
geographic cognition and reasoning about landforms. The LFRO taxonomy is currently based
only on form-based distinctions. In this significantly revised version, several new categories
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physical support. Nuances of common natural language landform terms and implications for
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1 Motivation and background

The Landform Reference Ontology (LFRO) is being developed as a domain reference ontology
for knowledge representation and reasoning about landforms. Its immediate purpose is to
guide automated landform mapping from imagery data, but it is carefully being designed
as a more generally applicable reference ontology, independent of any specific culture,
language, or scientific discipline. LFRO is not being proposed as a universal ontology.
Landforms have been previously argued to be mind-dependent or fiat [7] or quasi-objects
[1] because their demarcation and categorization is not independent of human cognition.
Ethnophysiographic research clearly shows there are many alternative ways of describing
the domain of landforms.[9] As one extreme case, in the Lokono language, there is only one
scale and size independent general term horhorho for landforms, and all distinctions are
made through a complex vocabulary of lexical phrases that classify landforms as networks of
connected places.[11]

While LFRO clearly cannot cover every possible conceptualization of landforms, there
are still many consistent patterns in how people from diverse backgrounds conceptualize
landforms. This makes LFRO a worthy, albeit ambitious, ontology engineering initiative to
unify, through linguistic and formal ontological approaches, those fundamental categories and
relationships that typically and generally (but not necessarily) seem to underlie most people’s
common sense (naïve geographic) conceptualization and reasoning about landforms.[8] The
expectation is that, others can use this as a foundation to represent and compare more
specialized linguistic, cultural and geo-scientific concepts.

In the current phase, only the most important criterion of (three-dimensional) form
is relied upon, because, landforms are apprehended as unitary entities primarily (but not
exclusively) based on their characteristic form. Partitioning of the surface arbitrarily based
on non-morphological criteria will yield regions with other unifying characteristics, but not
landforms with a coherent, characteristic shape. An initial, simpler version of LFRO based
on form considerations was introduced in a short paper.[12] In this substantially revised
version, several new categories are introduced to explicate critical ontological notions of
material-spatial dependence and support.[4]

Many scientific, administrative, and folk landform classification systems and vocabularies
have obviously informed the conceptual development of LFRO. Here, for lack of space,
only a few directly relevant ontology design efforts are acknowledged. The surface network
ontology [13], which formalizes the well-established theory of surface networks, was the
first step in identifying the critical shape elements of the terrain surface. When further
aligned and integrated with the ontology of spatial regions [2] and contours [6], it will
also complement LFRO as an automated terrain feature extraction and reasoning ontology
(the primary inspiration for designing LFRO). The surface water features ontology pattern
provided insights about depressions [14], while work on hydro domain formal ontology (HyFO)
provided essential insights about holes and physical containment, which strongly influenced
how concave landforms should be represented in LFRO.[2],[3],[5]

2 Design and rationale for the Landform Reference Ontology

2.1 The ontology of landforms
Figure 1 presents all the categories and relationships recognized in LFRO. Grounding of
LFRO in the DOLCE upper level ontology [10] is now used to explicitly declare that all
landforms are of type Physical Endurant, which are physical entities that wholly (i.e., with
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Figure 1 The categories and primary relationships of the Landform Reference Ontology (LFRO),
with top level categories grounded in DOLCE categories (prefixed with DOL:).

all their proper parts) exist (typically as three-dimensional entities) in physical space at any
time they exist. DOLCE specializes physical endurants into physical objects, features and
amount of matter. Features depend on (are hosted by) other physical endurants and are
of two types: relevant parts (materially constituted bumps, edges, surfaces) or dependent
places (immaterial holes, shadows, etc.).

While LFRO is designed primarily for landforms on Earth, it can also be applied to any
other terrestrial/telluric planetary body – i.e., whose surface region is materially constituted
of rocky (silicate) or metallic material (like the bedrock and regolith composing the Earth’s
surface). LFRO is also intentionally designed to remain neutral regarding what qualifies as
the surface of a planetary body – whether it is only the bedrock or also includes all or some
of the overlying regolith material (e.g., sand, soil, alluvium, glacial till).

Intuitively, a landform is a physical endurant that is physically dependent on the solid
surface of a terrestrial planetary body (TerrestrialPlanetaryBody) in two ways: it is either part
of the surface (MatDependentLF) or physically supported by/on the surface (SupportedLF).
TheMatDependentLF category includes landforms that arematerially and spatially dependent
on either the solid surface of a planetary body or the surface of a SupportedLF landform. As
explained in [4], material-spatial interdependence (mat-dep) is a type of physical dependence
that requires the physical extents of two entities to be necessarily and mutually contingent
(e.g. an object and a material part thereof or its matter, or a hole and its host). Thus,
MatDependentLF landforms are (DOLCE) relevant part features of the surface. The location
and identity of MatDependentLF landforms are also intrinsically tied to their location on
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the host surface. Most commonly known landform categories will be categorized under the
MatDependentLF category.

In contrast to MatDependentLF landforms, SupportedLF landforms are not features of
the host surface, but independent, physical object landforms supported on/by the surface.
While the formalization of a support is still being worked out, intuitively, support is the
relation between two material, physical endurants (objects or features) where one significantly
contributes to maintaining the other one in one (or more) specific location(s). SupportedLF
landforms can be supported directly on the planetary body surface, or another SupportedLF
landform surface. SupportedLF landform surfaces can support both dependent and supported
landforms. A special challenge in formalizing SupportedLF semantics arises because some
surface entities (e.g., covered landfill and burial mounds) can be treated as landforms in
some contexts, but other artificial structures (e.g., bridges, buildings), even if formed by
naturally occurring rocks and soil, can never be.

2.2 Shape based categorization of landforms
In the first version of LFRO, Landform was the direct parent category for all shape-based
subcategories. However, now, it can be said more specifically that all material landforms
inherit their shape from certain characteristically shaped parts of the host surface. Based on
generic landform shape-based categories proposed in [8], five, mutually exclusive shape-specific
landform subcategories are specialized from the MatDependentLF category: ConvexLF,
ConcaveLF, HorzPlanarLF, VertPlanarLF and SaddleLF. Convex and concave landforms
comprise an overwhelming number of commonsense landform categories. While a convex
landform protrudes out from the host surface, a concave landform is an indentation in the host
surface, and necessarily hosts a hole feature. Planar surfaces are now further subcategorized
as vertical or horizontal because such surfaces are experienced and lexicalized quite differently.
The saddle subcategory was added to model passes, notches and gaps.

The semantics of concave landforms requires modeling of multiple possible perspectives
of the negative spaces (holes) associated with such landforms. While any concave surface
part necessarily encloses some hole, when people think of a concave-shaped landform, they
may associate it variously with i) only the immaterial hole hosted by the concave part of
the surface; ii) only the material concave part ConcaveLF of the surface, or iii) both the
immaterial hole and the enclosing concave part of the surface. Every ConcaveLF landform
must host some hole – regardless of whether the hole itself is viewed as a landform or not.
Examples and implications of these three choices are discussed briefly in section 3.

An topographic eminence is a convex landform that stands completely above its surround-
ings. The coresponding EminenceLF category in LFRO is now split into two subcategories.
DependentEminenceLF eminences (e.g., mountain, plateau, hill) inherit their characteristic
convex shape from a host part of the planetary surface while SupportedEminenceLF eminences
(e.g. landfills, mounds) are independent physical objects. Both these eminence categor-
ies are further specialized as LongDependentEminenceLF or LongDependentSupportedLF
subcategories to explicitly cover elongated eminences such as ridge forms.

The subcategories for concave landforms and their various specializations remain un-
changed from the previous version.[12] ConcaveLF landforms that are surrounded completely
by higher land are specialized as DepressionLF, which is further specialized as closed and
open. ClosedDepressionLF landforms have a rim marking the upper edge, the constant
elevation of which is determined by the location of the closed depression’s pour-point. Closed-
DepressionLF landforms are special because they can store water for prolonged periods,
thereby acting as containers for water bodies (e.g., puddle, lake, sea), provided enough water
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is available. In contrast, OpenDepressionLF landforms are “open” because they lack a unique
enclosing rim, and/or have holes and openings such that they cannot be store water, but only
allow it to flow through. Open and closed depression landforms can also be specialized based
on planimetric shape (of their spatial region) to distinguish elongated depressions. Only the
LongOpenDepressionLF category is currently recognized because elongated open depressions
(e.g., stream channel, valley, canyon, ravine, canal, and trench) are quite frequently recognized
across the world. Such landforms are commonly perceived as a concave part of the surface
with a primary, sloping longitudinal axis, sloping sides, and generally open at both ends of
the longitudinal section to allow water to flow through.

3 Exploring semantics and mapping of linguistic landform categories
using LFRO

While some linguistic categories are easier to associate with one LFRO category, many
others can be interpreted in multiple ways. For instance, a mountain landform will be a
surface-dependent eminence for most people, but the terms hill or ridge can be used for
both surface-supported and dependent eminences. If the surface is defined as the bedrock
only, cinder cones, drumlins, and sand dunes will all be categorized as SupportedEminenceLF.
However, if the earth’s surface is not bedrock, but the exposed land surface (ground)
that is directly accessible to us, the above-mentioned landforms should be modeled as
(DependentEminenceLF) landforms. Similarly, people often assume craters to be like lake
basins, which are closed depressions, but if any part of the rim is eroded to base level, the
crater transforms into an open depression, that cannot contain water bodies. Considering
a language other than English, the Yindjibardi term marnda can be applied to a variety
of eminences including mountains, hills, ridges, and ranges.[9] Marnda is, therefore, almost
(but not perfectly) synonymous with EminenceLF. Another Yindjibardi language term
bantha refers to artificial or piled up eminences [9], and, will, therefore, be a subcategory of
SupportedEminenceLF.

LFRO also helps illustrate practical reasoning implications of different conceptualizations
of landforms. For example, if valley (or any other term) refers to just the immaterial Hole in
the surface, then it can contain a water body, but it must be the concave part of the adjacent
host surface that provides the material support for the water body and all other things that
are “in” the valley. Alternatively, if the valley is just the material ConcaveLF part of the
surface, it can only support, but not contain water bodies (which can only be contained in
the hosted hole). Also, unlike the immaterial valley, a material concave valley can also share
a part with the bordering mountain or hill. Finally, if a valley is conceived as a landform
that has both ConcaveLF and Hole as necessary constituent parts, then people holding such
a view would consider a valley to have all the above-mentioned properties. Note that it is
not even necessary that people use the same interpretation for all concave landforms – for
valley, they might choose the compound landform interpretation, while sink holes may be
treated as holes, ignoring the materiality of their bottoms and sides.

LFRO can also be used to construct decision trees to choose appropriate mapping
algorithms and construct semantic queries. For example, a semantic search for “landforms that
can store water” would return all closed depression landforms, while searching for “landforms
where streams can flow” would return all open longitudinal depression landforms. Analysis
of linguistic terms and their alignment with LFRO also suggests that automated systems
might be better off starting with methods to make generalized categorical distinctions. So,
differences between mountain/hill/plateau/butte or valley/canyon/gorge or gully/gulch/rill
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are probably quite difficult to tease out. It might be better to first define methods to delineate
eminences, elongated eminences, closed depressions, and open longitudinal depressions.

While LFRO is still, primarily, a taxonomy, a comprehensive axiomatic formalization
will be undertaken only after some existing limitations are resolved by adding new LFRO
form categories. Then LFRO will be integrated with the hydro-domain ontology HyFO
and the (suitably enhanced) surface network ontology to support semantic reasoning and
guide automated mapping methods. For example, a request for mapping a valley floor can
be recast as a query to find the area within a certain distance and/or height of a surface
network courseline.[13] A search for lake boundaries can be automatically inferred to require
delineation of a closed depression landform, which in turn can be linked to finding pits and
their basins from surface network theory.[13] Finally, LFRO needs to be expanded to support
reasoning with other non-morphological commonsense criteria such as size, material, color,
geomorphological origin, and culturally significant factors.
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1 Introduction & Motivation

In the context of big Earth data, users do not seem to struggle mainly with technical problems,
such as the provision of hardware (e.g. disk space or computing power), but are challenged
by conceptual problems. These include decisions on how to observe phenomena on Earth
(e.g. see [6]), store and analyse observations (e.g. see [3]), or replicate studies (e.g., see [19]
or [14]). The value of big data, other than their volume, variety, and velocity, is challenging
to leverage not based on inherent data characteristics, rather by how the data will be used
[13]. For example, many data storage systems perform well when inputting data (i.e. saving
raw EO images), but perform poorly when outputting data (i.e. finding relevant data and
producing information from them) [13, 22]. Not knowing how data are structured and how
they will be used on a generic level does not only challenge the general use of big Earth
data, but also the replication of studies and reuse of workflows, because tools are not clearly
distinguished from methods and data are not separated by semantic type [19].

Regular, free provision of Landsat and Sentinel data makes analyses of the temporal
dimension increasingly important. Therefore, 3D Earth observation (EO) geospatial data
cubes [18, 17] are becoming an increasingly popular tool. They do not treat images as
temporally isolated, but index and reference them in a data structure where all axes (e.g.
spatial and temporal dimensions) can be integrated and accessed equally [18]. It is necessary
to know what types of queries are expected in order to decide on an optimal tiling scheme to
optimize a geospatial data cube [8].

Increased data availability allows for analysis of high-resolution images, like Sentinel-2,
on a continental or global scale, therefore opening new application domains such as serving
the information needs of intergovernmental agreements, e.g. the United Nations sustainable
development goals (SDGs). In this context, EO data and analysis methods spread into ’new’
domains and confront new user communities with their complexity and particularities without
providing a guiding and logical understanding of the representation of the geographical reality.

With all the technical preconditions available, analyses still aim to produce information
relevant to questions posed by humans. The translation from questions to queries and results
to answers is difficult, necessitates more than increasing data volumes and computing power,
and goes beyond pure technical achievements. Recent developments are often technology-
driven and are not necessarily tied to user requirements, where user groups are also non-experts
from various application domains. For example, terminologies like ’big Earth data’, ’data
cube’ or ’analysis ready data’ are used before a proper definition or a common understanding
is achieved. Inexperienced users struggle to become familiar with tools for reasons which
might include a lack of common core terminology [15] and gaps between the user domain
and the technical EO image domain [22, 21, 4]. This is especially complicated because a
consistent conceptual model of space-time (e.g. consisting of continuants and occurrents
(events) [9] and their relationships), as a representation of a mental model of the physical
world (i.e. world model or world ontology), is still missing.

While the definition and a formalisation of a world model goes beyond the scope of
this short paper, a certain level of understanding of at least continuants is necessary as a
first step. A continuant can be seen as an entity in the physical world, parameterised by
a unique continuant-identifier and an inner state, consisting of three types of attributes
in the modelled 4D physical world: (a) positional, 3D geospatial attributes in geospatial
units (e.g. lat-long coordinates and height in meters); (b) time attribute in a physical unit
of time; and (c) “theme” [20]. We define theme as the combination of: (I) a theme type
(i.e. geo-objects, geo-fields, and field-objects according to [10]); (II) a theme name (e.g.
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any symbolic geo-object has a theme name belonging to a finite and discrete hierarchical,
structured taxonomy of concepts or classes of real-world objects); and (III) appearance
properties in the 4D physical world, expressed as either quantitative/numeric variables or
qualitative/categorical sub-symbolic theme attributes in physical units [16]. These are: (1)
photometric properties, expressed as either numeric colour values in spectral reflectance units
(e.g. mean reflectance) or categorical colour names (e.g. red) belonging to a community-
agreed discrete and finite vocabulary of colour names, related to a partition of a numeric
colour space into quantization bins [11]); (2) shape (i.e. geometric) variables [2] such as
compactness, rectangularity, elongatedness, straightness of boundaries, simple connectivity
and orientation; and (3) size variables, like length and width in metres. Occurrents, as events,
are able to change the inner state of a continuant, its relationship to other continuants, or
the emergence of new continuants. To stick with the examples given above, we may conceive
occurents as rotating crop types on an agricultural field, or the vanishing of a lake. The latter
changes its size and thereby also its relationship to other continuants (patches of vegetation
or open soil), which emerge simultaneously as new continuants.

For defining abstract data types for the application on Earth observation data, our
conjecture is:
1. The variety of phenomena in the focus of Earth observation can be represented and

categorised by a limited set of abstract data types.
2. Having a set of defined abstract data types and knowing their behaviour can make remote

sensing analyses more comprehensive and reproducible.

2 State-of-the-art and research gap

A set of generic data types for spatio-temporal data was proposed by [7] based on three
dimensions (i.e. spatial, temporal and thematic dimensions) inherent to any geospatial data
[20]. Observations can be analysed by keeping one attribute fixed, controlling another and
measuring the third. For example, in an EO image, fixing time, but controlling space and
measuring the theme yields a land cover map. Similarly, fixing space (e.g. the location of a
temperature sensor), controlling time and measuring the theme represents a temperature
curve throughout a year. In total, [7] identified three out of nine possible data types as
relevant:

Coverage: fixing time, controlling space, measuring theme
Time series: fixing space, controlling time, measuring theme
Trajectory: fixing theme, controlling time, measuring space

Another method for separating geospatial data types from their physical organisation is
comprehensively described by [1], where "spatial lenses" provide software-based views as a
way to interpret datasets. The interpretations, based on a specific view of the world, include
a network, objects, fields and events, as well as refer back to the core concepts of spatial
data [15].

In the remote sensing domain, geographic object-oriented image analysis (GEOBIA)
uses image segments (i.e. objects) instead of pixels as target analysis units [5]. Therefore,
GEOBIA applies object-oriented data models to geographic image data. Since the segments
have inherent spatial characteristics (e.g. size, shape, topological arrangement) and can
be temporally associated with each other, GEOBIA allows spatial and temporal analyses.
Typically, the objects’ semantics are modelled using ontologies or a rule-based approach,
such as implemented in the eCognition software. However, the ontologies or rule-sets are
usually tied to a virtual 2D map legend domain and not to the 4D physical world domain [4].
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Separating the virtual image domain from the physical world domain in EO image analysis
was introduced in [16] and was then later taken up and applied as a GEOBIA-based approach
by [12] and [22, 21, 4].

Although some previous work is available, a set of universally applicable, comprehensive,
abstract data types for EO data have not yet been developed. Such a set could serve as
a framework for mapping spatial, temporal and thematic attributes of observations in EO
data cubes. Existing approaches and implementations lack either generality (e.g. specific
GEOBIA implementations), or are limited to fixed analysis units (e.g. pixels). We suggest
abstract data types to be used as a logical, intermediate layer between EO data cubes and the
4D physical world domain, thus adopting a clear distinction from the physical organisation
of data [1] as well as the 2D virtual image domain [22, 21, 4]. Our proposed abstract data
types adapt the ideas of [7] and extend them with the more differentiated understanding
of space-time phenomena and their spatial, temporal or semantic relations in GEOBIA
required for spatial image analysis [2]. Space in an EO image context has multiple meanings
since it: (1) refers to the absolute or relative location of an object (e.g. represented by a
coordinate tuple) and its spatial relation to other objects; and (2) also refers to inherent
spatial characteristics of an object (e.g. size and shape). In a more complex situation, e.g
observing the expansion of a city, the object itself is the result of a spatial arrangement of
other objects, including houses and streets.

3 Proposed abstract data types

We differentiate between position (or location) and space, which are inherent spatial properties
of objects. Further, a position of an object might not only be the absolute position, but also its
relative location within a topological arrangement. We also differentiate between continuous
(i.e. quantitative) and discrete (i.e. categorical) variables. The temporal dimension has its
upper limit in t0 and goes back until t−x as this approach is intended for querying an archive
and not for projecting processes in the future. The following abstract data types can be
selected, and are illustrated in Figure 1:

Coverage: constructed by fixing time, controlling position, measuring theme (continuous
or discrete)
Composition: constructed by fixing time, controlling theme, measuring space
Time series: constructed by fixing the position, controlling time, measuring theme
(continuous or discrete)
Trajectory: constructed by fixing theme, controlling time, measuring position
Evolution: constructed by fixing theme, controlling time, measuring space.

4 Conclusion & Outlook

Challenges of big Earth data go beyond technical issues. We suggest a limited, yet defined
and tangible set of abstract data types, which are specifically selected for use as a framework
for query primitives within EO data cubes. While existing solutions rely on fixed spatial
units, such as pixels, in GEOBIA the space properties do not only refer to the position,
but also to the spatial arrangement of objects and to properties such as extent, shape and
size of the object under consideration. Based on the state-of-the art review, we found the
necessity to extend the original set of abstract data types with two new ones to account for
the differentiated view on space within the GEOBIA domain. While defining this framework
is an ongoing process and this contribution is a first step towards it, in this short paper
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Figure 1 Example phenomena relevant to Earth observation visualised in a 3D space. Here, the
axes provide an ordering principle for EO spatio-temporal phenomena. Note that space can be
conceived as position (e.g. 0-dimensional, coordinate tupel or tripel) and the spatial relationship to
other entities, or as geometric features (e.g. set of coordinate tupels, size, compactness). Although the
attributes are represented on single, individual axis, the semantics of the axes differ between theme
or time (monodimensional) and space or position (multidimensional). An interactive visualisation is
available as online visualisation (http://cf000008.geo.sbg.ac.at/adt/).

we aim to highlight the necessity of having it for formalising queries. Future work will
align this framework with the definition of a world model as a conceptual description of
geospatial phenomena, e.g. using a rigorous formalisation of continuants, occurrences and
their relationships. Further, this also includes revisiting the original and suggested terms and
a discussion of whether they are appropriate for this purpose. Being in a preliminary stage,
the framework and the abstract data types are presented here in a rather informal manner.
Therefore, the focus will lie on the formalisation of the data types and their methods as well
as an example implementation in an EO data cube.

Abstract data types allow for semantic annotations and workflow exchanges by separating
methods from tools and the image domain from the physical world domain. They can be
considered as a logical, intermediate layer between the conceptual world model and the data
storage engine, e.g. geospatial data cubes. Therefore, they can be used to answer questions
such as “what data are used?" or "what are they useful for?” and are linked to big Earth
data relevant decisions. These include but are not limited to how certain phenomena can be
observed, how a system can be designed to provide analysis results with reasonable response
times and how the result can be interpreted and deemed trustworthy. Further, they help
non-EO experts to express their questions in formalised terms. It is increasingly relevant to
analyse EO data together with non-EO data, where abstract data types might also play a
significant role.
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Abstract
Vandalism is a phenomenon that has affected by now the digital domain, in particular in the
context of Volunteered Geographic Information projects. This paper aims at proposing a meth-
odology to detect vandalism in the OpenStreetMap project. First, an analysis of related works
sheds light on the lack of consensus when it comes to defining vandalism in VGI from both concep-
tual and practical points of view. Second, we present experiments on the use of clustering-based
outlier detection methods to identify vandalism in OSM. The outcome of this study focuses on
choosing the right variables when it comes to detecting vandalism in OSM.
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1 Introduction

Skepticism toward the use of Volunteered Geographic Information (VGI) stems from the
lack of data qualification in VGI datasets despite the likelihood of poor quality contribution
occurrences. In the case of the OpenStreetMap (OSM) project, allowing anyone to map also
adds the risk of welcoming ill-intentioned contributors who impoverish the quality of the data
through acts of vandalism. For instance, some of the Pokemon Go players who signed up as
OSM contributors wrongly mapped geographic elements in order to boost the development of
Pokemon nests1. But how to distinguish actual vandalism from unintended mistakes? And
how to automatically detect real vandalism in OSM? This paper’s contribution is twofold:
first we highlight the various definitions of vandalism that were adopted to automatically
detect vandalism. Then we investigate the ability of an unsupervised method to detect
vandalism in OSM by using a clustering-based outlier detection.

1 http://resultmaps.neis-one.org/osm-discussion-comments?uid=6310073&commented
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2 Understanding vandalism: related work

Historically, vandalism comes from Germanic barbarians, called Vandals, who were reputed
for sacking artworks and monuments during their invasions in Western Europe [7]. Over
times, its meaning broadened and nowadays vandalism refers generally to material defacement
made by human beings. However, a degradation does not necessarily fall under vandalism
because depending on the context, an act will not bear the same label. For instance, animal
slaughter can be labeled as vandalism unless the killer has a license to hunt [7]. Actually,
labeling an action as vandalism requires to assess the damage caused, the author’s motives
and the context of the incident [2]: these notions are already difficult to evaluate juridically,
as each case has its own elements of context and oftentimes the author’s motives are not
directly accessible. Actually, vandalism definition is quite clear but as it relies on elements
that are hard to assess for human beings, detecting it automatically remains a challenge.

Automatic detection of vandalism has been widely studied in Wikipedia [1] and Wikidata
[4], but as these papers dealt with vandalism detection using supervised machine learning,
they did not focus on giving a clear definition of vandalism. Actually, the existence of a
corpus of labeled data on Wikidata/Wikipedia enabled them to evacuate the question. [6]
developed a rule-based vandalism detection system for OSM data. The rules mainly take
into account user reputation and object history. Therefore OSM newbies’ created objects are
at a disadvantage as they are more prone to be detected as vandalism. Unlike Wikidata, no
corpus of OSM vandalism data is available. This is why our experiment attempts to detect
OSM vandalism with the use of an unsupervised method and considering other vandalism
metrics that were not tackled in [6].

Through the analysis of intentional vandalism incidents on Wikimapia and OSM, [2]
proposed a typology for carto-vandalism composed of six categories: play carto-vandalism,
ideological carto-vandalism, fantasy carto-vandalism, artistic carto-vandalism, industrial
carto-vandalism and spam. This typology is drawn from experimental observations so it is
quite realistic, however it can be difficult in some cases to label vandalism straight away in
one of these categories. For instance, artistic carto-vandalism can be seen as a sub-category
of fantasy carto-vandalism: mapping polygon art is necessarily a fictional data. In fact, the
proposed typology implies knowing the contributor’s intentions, which is a research problem
in itself. On this intentionality issue, [6] solves the problem by stating that “ in the case
of OSM, vandalism can occur intentional and unintentional, contradicting the traditional
definition of the term ‘vandalism’ ”. However, the OSM Wiki page about vandalism2 does
mention the difference between vandalism and bad editing which lays in the contributor’s
purpose, although both of them require data repairs. Actually, OSM vandalism and bad
editing may both result in the same defacement of the dataset. This is why OSM Wiki page
on vandalism does not provide a definition of what vandalism is but how it manifests in OSM
dataset together with bad editing. Thus another challenge for vandalism detection in OSM
is to steer clear of mistaking bad edits with true vandalism (i.e. minimizing false positives).

Like in [6], we analyze some cases of OSM user blocks in the light of the context, the
user’s motive and the caused damage in order to better understand what belongs to true
vandalism and what does not. The case depicted in Figure 1 is true vandalism on versions 6
and 7, as the contributor3 completely defaced the nature of a Russian island by changing its
name tags and turning it into a park. These edits are obviously made on purpose. We also

2 https://wiki.openstreetmap.org/wiki/Vandalism
3 https://www.openstreetmap.org/user_blocks/1598
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Figure 1 Tag history of an OSM fantasy vandalism case (source: OSM Deep History application).
Each column gives to the state of an OSM object’s version concerning its metadata and its tag
values. Key tags are on the left. The changes are coded by colors: green stands for tag addition,
yellow for tag-value edit and red for tag delete.

Figure 2 Tag history of an ambiguous area in Latvia (source: OSM Deep History application).

note that the changes made on version 8 are not vandalism as the same user brings back the
values of some previously altered tags. The edit war on an area in Latvia depicted on Figure
2 shows a disagreement about the real nature of this place. The banned user4 is the one who
added the ‘leisure=park’ tag to the area. However, further research shows that local people
do consider this place as a park5. Consequently, this case is not truly vandalism but rather
highlights the ambiguity of the geographic object. Lastly, adding unconventional tags6 can
be seen as an abnormal contribution but in this case it is not vandalism. Some of the tag
values are understandable for humans and actually add valuable information to the objects
(Figure 3). These examples show that vandalism – according to a data-oriented traditional
definition – is less regular than contributions being non-compliant to OSM policy. Due to
the scarcity of vandalism in OSM and the difficulty to enumerate all of the possible cases,
this study tackles the vandalism issue following an outlier detection approach.

3 Methodology

Assuming that vandalized data form outliers in a dataset, our experiment aims at finding
out whether using a clustering-based outlier detection enables to identify vandalized data in
an OSM dataset. As vandalism does not often occur on OSM and we do not know where it

4 https://www.openstreetmap.org/user_blocks/1328
5 http://www.spottedbylocals.com/riga/anninmuizas-mezs/
6 https://www.openstreetmap.org/user_blocks/1455
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Figure 3 OSM oddly-tagged contribution (source: OSM Deep History application).

Table 1 Overview of OSM building geometric variables that are used for the experiments. N.B. :
MBR stands for Minimal Bounding Rectangle.

Variable name Description

perimeter_out_of _max perimeter(building)
maxdataset(perimeter)

area_out_of _max area(building)
maxdataset(area)

shortest_length_out_of _perimeter length(shortest_edgebuilding)
perimeter(building)

median_length_out_of _perimeter length(median_edgebuilding)
perimeter(building)

elongation width(MBRbuilding)
length(MBRbuilding)

convexity area(building)
area(MBRbuilding)

compacity Miller’s index: 4∗π∗area(building)
perimeter(building)2

happened, we cannot choose a study area where we would be assured to find vandalism cases.
Therefore, we need to purposely add vandalized data so that the outliers to be detected are
known in advance.

Then, every OSM element should be described by variables that will be used as inputs for
the clustering algorithm. In the first place, the experiment will be limited to the detection of
vandalism on buildings. This implies retrieving OSM ways and OSM relations that contain
the ‘building’ key tag. To best describe OSM data, several types of descriptors may be
contemplated: geometric variables [3], topological variables [3], historic variables [6] and user
variables have been used in the literature to qualify OSM and crowdsourcing data in general
[1, 6]. In this study, we employ fantasy and artistic vandalism to deface our dataset so at
the moment only geometric variables were input into the clustering algorithm, as artistic
vandalism is characterized with oddly shaped objects (Table 1). Eventually, the clustering
algorithm will group similar objects according to their input attributes while setting aside
buildings having particular values.
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Figure 4 Fantasy vandalism (left image) and artistic vandalism in Aubervilliers, France.

Table 2 Outliers detected in OSM vandalized dataset using DENCLUE clustering algorithm
(σ = 0.05,m = 10250)

Number of outliers Number one-size clusters

Artistic vandalism (total: 10) 1 9
Fantasy vandalism (total: 17) 0 15
Non-vandalism (total: 10315) 115 6080

4 Experiment and initial results

In this study, the dataset is composed of OSM buildings that are located in Aubervilliers, a
suburban town of Paris. Vandalism committed in this dataset includes (Figure 4): 17 fictional
buildings of different sizes which were mapped in a blank space (the yellow polygon in Figure
4 indicates that this space is currently an area under construction) and 10 artistically shaped
buildings that were mapped in the middle of a river and over the town’s graveyard.

The outlier detection was run using the DENCLUE clustering algorithm (Java Smile
library) because it is noise-invariant and remains efficient for high dimensional datasets
[5]. It takes a smoothing parameter σ that describes the influence of a data point in the
data space, and a parameter m that corresponds to the noise threshold. The algorithm
starts by building a clustering model based on the input variables, then predicts the class of
each element according to the clustering model. At this point, buildings whose descriptors
are totally inconsistent with the clustering model are classified as outliers. The others
are classified into clusters. However, some clusters contain only one element, meaning the
values of these buildings descriptors fit into the clustering model but no building was similar
enough regarding its attributes’ values to belong to the same cluster. Thus, in a certain
way, these one-size clusters can be considered as outliers too but to a lesser degree. Table 2
summarizes the number of outliers and one-size clusters that were detected for each kind of
data (vandalism or not).

The first ‘e’ letter-shaped building was the only outlier-labeled vandalism while the
remainder of artistically vandalized buildings – including the other two ‘e’ letter-shaped
ones – was classified into one-size clusters. We note that 25 cases of vandalism out of 27 –
that represents 92% of known vandalism – could be retrieved either in the outlier class or
a one-size cluster, which is quite outstanding. Nevertheless, 60% of normal buildings have
been also classified into outliers or one-element clusters. By taking a look at the variables
of the vandalized buildings, we notice that the geometric descriptors do not bring out the
geometric peculiarities of the artistic vandalism that was committed into our dataset. Maybe
considering a polygon density variable which accounts for a polygon’s number of vertices

GISc ience 2018



61:6 Towards Vandalism Detection in OpenStreetMap Through a Data Driven Approach

would have brought out all of the committed artistic vandalism. OSM French buildings have
been mostly imported through mass imports from the French cadaster, so a lot of OSM
building elements actually map small and weirdly shaped pieces of building. This is why the
tiniest fictional building was not seen as an outlier given the strong presence of small sized
elements in the dataset. Therefore we should reconsider geometric attributes that would not
bring out the geometric specificity of geographic objects. Eventually, our input variables
did not take into account the building’s spatial relations with other elements. Here, some
vandalized buildings are contained inside a river, a construction area and intersect a cemetery.
Considering additional topological variables that express these peculiar situations might
improve the detection of uncommonly located vandalized building. Actually, we did not
expect to successfully detect all our vandalism cases – without any false positive – by simply
using a clustering method on geometric features, so this first result is fairly encouraging.

5 Conclusion and future work

Our work focused on the definition of vandalism and the aspects that challenge its automated
detection, such as the contributor’s purpose, the context and the harm done. Initial experi-
mental results showed that detecting OSM vandalism using an unsupervised method requires
a wiser choice of the attributes to be input in the clustering algorithm. These attributes
cannot be simple data quality assessment features but they have to be specifically designed
for vandalism detection.

Future work includes exploring the influence of the σ and m parameters of DENCLUE
clustering algorithm on the outlier detection predictions. Other clustering algorithms (e.g.
DBScan, BIRCH) should also be tested to check if they perform better on detecting vandalism.
Besides, we intend to carry out the same experiment on OSM German buildings because
most of them have been mapped by hand, so unlike OSM French buildings, they should not
be divided up into small pieces: maybe in this dataset our vandalism cases would be detected.
We also intend to deal with other types of vandalism, for instance vandalism through tag edits
or object delete. In this case, other relevant variables should be contemplated to enrich our
dataset – as mentioned previously, the set of input clustering variables should be extended
with topological, semantic and historical features, as well as contributor-oriented descriptors
and reference data matching indicators. However we will then have to address the curse of
dimensionality issue. Eventually, in the same way as with Wikipedia vandalism, supervised
learning classification techniques may be contemplated to detect vandalism in OSM.
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Abstract
This research develops a conceptual framework for the representation and analysis of location-
based social media activities (LBSMA) in GIS. With increasing popularity of location-based
social networking, social media platforms have become new channels to observe human activities
in physical and virtual worlds. At the same time, there is a shift of some human interactions
from the physical space to the virtual social space. Traditional geographical representation in
GIS is not sufficient to handle the increased sophistication of human activities related to, or
embedded in, location-based social media data. This research proposes an ontology for the
location-based social media activity data and a conceptual framework for them to be modeled
in a GIS environment so that interconnections of human activities in spatial-temporal-social
dimensions can be represented, organized, retrieved, analyzed, and visualized in the system.
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1 Introduction

Understanding human dynamics through human activities has been an important geographic
inquiry in the literature. Researchers have studied human behavior from various perspectives.
Behavior geography concerns the cognitive process of human behavior and draws on works
in other fields such as psychology, physiology and economics. Another thread of research
examines human activities through visualization, analysis, and modeling of human dynamics.
Our research attempts to contribute to the latter, motivated by two fundamental issues.
First, the growing popularity of computer network-based social media and the availability
of data from these social media provide an unprecedented opportunity to study human
activities in new lights. However, the new types of data require new conceptualization, new
methodologies, and new tools to make the best out of them. Secondly, it has been well
recognized that social connections play an important role in human behavior. However, social
network has been ignored or oversimplified in current representations of human activities in
current off-the-shelf GIS programs. Therefore, this research aims to develop a GIS conceptual
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framework and associated logical models to represent space, time, and social connections
from location-based social media activity (LBSMA) data in GIS.

By nature of the topic, studying human activities ideally requires data at the individual
level, or so called disaggregated level, with fine spatial and temporal granularities. However,
commonly available census data are usually aggregated. Thus the availability of location-
based social media (LBSM) data provides an unprecedented opportunities for this type
of research, as the LBSM data are inherently entered on individual basis and are of high
granularities in space and time. In the information age, a message from social media is
considered an extension of human mind [10]. Furthermore, details of human activities can
now be extracted from the social media to reveal when and where people interact with
others. Collections of such interactions can be used to develop social networks among people.
This is particularly advantageous for research on human activities, as the context of social
connection is particularly important to human activities. It has been argued that time, space
and social differentiation should be coupled in the study of practices or phenomena [7]. From
the relationalism-idealism perspective, the assumed existence of social networks sets the
scope to which space and time should be conceptualized and analyzed in human activity
analysis [12]. Different types of social media allow for different types of connections. For
example, Twitter fosters an asymmetric network structure that people prefer to broadcast
individual activities, while LinkedIn and Facebook capture pre-existing ties by focusing on
social interactions among friends [9]. Previous studies have investigated the content and
friendship structure on Twitter [9][5], Facebook [3] and Weibo [4]. The spatial distribution
of location-based social activities from different social media has also been explored in recent
studies.

There is a long tradition that human activities are visually represented and analyzed,
particularly in GIS. Starting from the space-time prism [1], trajectories of human activities
are visually represented as a series of locations in space-time dimensions. Because human
activities have innate spatial component, geographic information system (GIS) is naturally
the most desirable environment for the visualization and analysis of it. Sui and Goodchild
[8] suggest that GIS is a media for communicating and sharing knowledge and supporting
location-based social networking. Meanwhile, the convergence of geographic information
systems (GIS) and social media has resulted in a data avalanche that creates new challenges
in GIScience [8]. Although location-based social media activities have been examined in
many studies, a structured GIS representation is still absent for all three dimensions of space,
time, and the context of social connections in which activities take place. GIS representation
of space and time alone is already a critical research theme in the literature [11], adding
more dimensions obviously is not a trivial issue. The goal of this paper is to fill the gap
by developing an ontological framework and a conceptual model for the representation
location-based social media activity (LBSMA) data in GIS, so that the space, time, and
social connections associated with LBSM activities can be represented and analyzed further.
In this research, as shown in Figure 1, the LBSMA refer to the subset of human activities of
which locations can be georeferenced in the geographical space and contents are advertised
in the networked social media. The scope of the study is limited to human activities
that are recorded explicitly or implicitly in the LBSMA data, which is illustrated as the
yellow-highlighted area in Figure 1.

The paper is organized as follows. The next section presents an ontological framework
for LBSMA and a conceptual model for the representation of LBSMA in GIS. Section 3
introduces a pilot implementation based on the framework. A case study is conducted in the
prototype. The paper is concluded with discussions in Section 4.
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2. LBSMA Ontological Framework and Representation in a GIS environment 

Traditional GIS conceptual models use either object-based or field-based representations. The former 
distinguishes each spatial object with delineated spatial boundaries, while the latter enumerates all spatial 
locations systematically and stores attribute values for each location. However, none of them is able to directly 
account for social network (or social associations) or human activities in the context of such a network. Aiming 
to have a conceptual underpinning for later technical deployment to fill the gap, this paper first develops an 
ontological framework that identifies four primary categories for the LBSMA. They are Agents, Activities, 
Places, and Social Connections. Following the ontological framework, a conceptual data model is designed in 
the paradigm of object-oriented modeling. The model is illustrated in 2. The purpose of conceptual model is 
to organize the data in a reasonable and retrievable way, so as to maximize the possibility to study hidden 
relationships and patterns in the spatio-temporal big data of growing size. The most important aspect is to 
allow information in the spatio-temporal-social dimensions, expressed either explicitly or implicitly, to be 
identified and represented in the system.   

Agents 

Here an agent refers to a person or a collective entity with a group of individuals as long as the entity has a 
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Figure 1 Location-based Social Media Activity.

2 LBSMA Ontological Framework and Representation in a GIS
environment

Traditional GIS conceptual models use either object-based or field-based representations. The
former distinguishes each spatial object with delineated spatial boundaries, while the latter
enumerates all spatial locations systematically and stores attribute values for each location.
However, none of them is able to directly account for social network (or social associations) or
human activities in the context of such a network. Aiming to have a conceptual underpinning
for later technical deployment to fill the gap, this paper first develops an ontological framework
that identifies four primary categories for the LBSMA. They are Agents, Activities, Places,
and Social Connections. Following the ontological framework, a conceptual data model is
designed in the paradigm of object-oriented modeling. The model is illustrated in Figure
2. The purpose of conceptual model is to organize the data in a reasonable and retrievable
way, so as to maximize the possibility to study hidden relationships and patterns in the
spatio-temporal big data of growing size. The most important aspect is to allow information
in the spatio-temporal-social dimensions, expressed either explicitly or implicitly, to be
identified and represented in the system.

2.1 Agents

Here an agent refers to a person or a collective entity with a group of individuals as long
as the entity has a unique ID in a social media platform. A person may have one or more
active accounts in social media platforms and thus may be associated with multiple agents.
An agent can participate in any number of activities, some of which show social connections
with other agents. It is also possible that through analytical methods, multiple agents are
found to be the same person in the real world. A collective entity, such as a restaurant, a
university, or an association, which has an official account in a social media platform can be
identified as an agent too. It is often more likely for such an agent to identify itself with its
official name and thus can be readily associated with its real world identity.
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Figure 2 Conceptual Model of LBSMA.

2.2 Places
An agent may exist in a physical geographic space, a virtual social media space, or in both
spaces. Uniquely identifiable locations in either type of frame of references are called places
in this ontology. Therefore two types of locations are distinguished in the framework: the
geographic location (or spatial location) and the virtual location. For example, just like
an address can refer to the geographic location of a person’s home, a uniform resource
locator (URL) of a user’s profile page refers to the person’s virtual location on social media.
Sometimes, information of both types of locations may be available for an agent. For instance,
a restaurant can have its footprints in the geographical world, while its URL is a location
in the virtual world where its menu, public reviews or other types of information can be
retrieved. Virtual locations are equally important in the framework because they not only
facilitate the organization of human activities in the virtual world, but also provide the
source of rich information about people, activities and the context of environment.

2.3 Activities
An activity in this ontology refers to any action of an agent in either the physical space or
the virtual space. For example, visiting, commuting, reading, participating in a party are
examples of activities in the physical world, while posting a message and following another
account on Facebook or Twitter are examples of activities in the virtual space. Activities
can be further classified into solo activities and joint activities based on the number of
participants. Because the scope of this study is the intersection area of human activities in
the physical space and the social media space, the activities of concern are those reflected in
a social media regardless which space the actual activity took place.

2.4 Social Connections
In this framework, social connections are personal relationships expressed via social in-
teractions. It is a mind-dependent construct that can be reflected by mind-independent
human activities. Social connections can be explicitly expressed or identified through their
self-reported relationships such as kinship, workplace connection, friendship, and so on, which
can be explicitly indicated in the profiles or implicitly revealed via connections between
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Figure 3 LBSMA Data Collection.

profiles on social media platforms. However, many additional social connections can be
identified through spatial-temporal reasoning. For instance, two agents may already have, or
are potentially developing, a social connection if they participate in joint-activities. Frequent
joint-activities at the same home address suggests close family ties or friendship.

3 Pilot Prototype Implementation and Case Study

Based on the proposed conceptual model, a pilot prototype has been implemented and tested.
A case study is performed to validate the prototype and most importantly to evaluate the
usefulness of the proposed framework of LBSMA representation in GIS. This research has
widely recruited students in the University of Georgia to collect their Facebook data. The
extracted Facebook data are organized in the implemented LBSMA data model. About 500
unique Facebook accounts and 2,500 posts have been collected in this case study.

This website obtained the Institutional Review Board (IRB) and Facebook App approval,
and has gathered participants’ information through the Facebook Application Programming
Interface (API) with explicit authorizations of Facebook users. The website is running on
the Google Application Engine (GAE). The collected LBSMA data is then organized and
maintained in a PostgreSQL database with the PostGIS plugin to provide GIS functions.
Figure 3 shows the process. When a post is received, the name and user account ID are
recorded in an Activity table. Other people who are tagged in the same post are also kept in
the Participants field. Since the number of the tagged people is not predictable, this data
filed utilize the JSON format to record all the participants.

The prototype has developed a set of visualization and analysis tools for the LBSMA
in ArcGIS, including visualize activities and places, query people-based social network,
create location-based social network and identify spatial-temporal interactions of activities.
The demo of the developed tools can be found at https://www.youtube.com/watch?v=
aJnm0GTqV5w&list=PLHutrxqbP1BxvYmC0GX5fDQkLYUrbqsS5
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Figure 4 Visualization of Activities in Space and Time Dimensions.

3.1 Visualize Activities and Places in GIS
This tool reads the activity table and place table from PostgreSQL in ArcGIS, and displays
the places and activities on a map. In addition, since the activity records have the time
stamps, the activities can also be visualized on a 3D map in which the z coordination
represents the time an activity took place. The map in Figure 4 is such a map showing the
data collected from the case study.

3.2 Create a Place-Based Social Network
This tool allows users to interactively select the places in ArcGIS, and create a social network
of the visitors from those places. Participants in the same activity are connected to each
other in the social network. In addition to visualize the location-based social network, some
network measures, e.g., number of nodes, number of cliques, average clustering coefficient
and etc. are also reported in the output.

3.3 Query People-Based Social Network
This tool allows users to query the people-based social network based on a user-defined query
which will be translated into an SQL sentence. The user can also visualize and analyze the
social networks for the selected people.

3.4 Identify Spatial-Temporal Interactions
The spatial-temporal interactions are identified with the Knox test [2] by using the Pysal
python library [6]. This tool reports the identified spatial-temporal interactions based on the
user-defined spatial (delta) and temporal (tau) intervals.

4 Conclusion

Current GIS environment is not suitable for the representation and analysis of rich information
embedded in location-based social media data due to its lack of capability to represent some
of the key components of the data. This research aims to fill the blank by developing an
ontological framework and a conceptual data model for multiple-dimensional representation
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of geography, time, and social connections. The prototype of the conceptual model is
implemented and a case study is carried out. The effectiveness of the LBSMA model is
evidenced by a case study which collects and analyzes Facebook data.

The findings of this research yield new insights regarding human activities in virtual
and physical space, and will enhance technical capabilities for social media analysis in GIS.
The developed methods can help identify place-based or people-based strategies, e.g., urban
planning, traffic planning, commercial advertising or energy communicating. The proposed
framework paves new avenues for future research, such as public health, transportation,
urban geography and social science. Based on the proposed model and prototype, we believe
there are many more potential ways to mine the organized datasets. This study has only
provided a case study with a few application examples, both of which asked questions that
are only related to two dimensions of space, time, and social network. Starting from here,
many exciting future research avenues should be explored. Examples include development
of new analytical methods and explorations of new application studies, particularly those
involve all three dimensions of the LBSMA data.
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Abstract
The concept of place recently gains momentum in GIScience. In some fields like human geography,
spatial cognition or information theory, this topic already has a longer scholarly tradition. This
is however not yet completely the case with statistical spatial analysis and cartography. Despite
that, taking full advantage of the plethora of user-generated information that we have available
these days requires mature place-based statistical and visualization concepts. This paper con-
tributes to these developments: We integrate existing place definitions into an understanding of
places as a system of interlinked, constituent characteristics. Based on this, challenges and first
promising conceptual ideas are discussed from statistical and visualization viewpoints.
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1 Introduction

People utilize place for the mental representation of geographic phenomena, to verbalize
locations in colloquial conversations, and to orientate themselves geographically [25, 28, 23].
A place may thereby refer to either material or immaterial entities [19] and, most generally,
describes a location together with a set of attached meanings [5]. While place has been of
recurring importance (e.g., place was crucial to Aristotle, to German geographers of the
late 19th century, and to human geographers since the 1970s [5]), the concept has only
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recently gained greater attention in GIScience. For instance, platial1 approaches are still
uncommon in spatial analysis and geovisualization. Due to its importance, Mike Goodchild
has anticipated a place-based account of geographical information systems (GIS) enabling
us to benefit from the latest wealth of subjective user-generated (and thus largely platial)
geographical information [13, 12]. This paper contributes to these developments by dicussing
conceptual platial statistical and visualization challenges.

2 Places as systems of interlinked characteristics

Places are versatile and have been treated differently: as named domains occurring in human
discourse [13], sets of realized or unrealized affordances [23, 19], functional relationships
between humans and locations [20], or as references to events and entities [28]. What all these
definitions have in common is the concept of places as locations with meaning [25], including
a locale (the material setting found in a location), and a sense of place. Each of the outlined
definitions is useful for a particular aim. We argue here, however, that these aspects can
also be considered together simultaneously, by following the systemic tradition of geography
emphasized by Alfred Hettner and others [14]. The affordances and other properties of
places are often interlinked reciprocally with how people perceive and mentally represent
the geometric, temporal, and perceptual characteristics of places. We therefore suggest a
combined viewpoint emphasizing that many of the previously described place dimensions
are interrelated. This viewpoint largely reflects what Anderson et al. have recently called
assemblage thinking (including both relations and things) [1]. Further, certain phenomena
can only occur in places if all relevant contextual characteristics are fulfilled. The formulation
of a reasonable and realistic conceptual place-based counterpart to the field of spatial analysis
therefore requires a combined viewpoint instead of accounting for isolated components of
places individually. The following paragraphs explicate and utilize this viewpoint.

3 Analysing places statistically

The subjectivity of places is in stark contrast to spatial and conventional statistics. The
latter often assume identically distributed observations [3] through the notions of intrinsic or
second-order stationarity (i.e., stable moments up to some order) [10], guaranteeing that all
observations originate from the same process and in turn allowing the estimation of statistical
properties. The subjectivity of perceived places runs counter to this. Different people apply
idiosyncratic modes of perception, verbalize subjective opinions, and assign varying complex
meanings to places. Further, because place is heavily rooted in spatially and temporally
diverse context, even the platial expressions of only single individuals are not coherent and
thus not necessarily comparable. This raises questions about suitable methodological and
conceptual approaches.

3.1 Platial index sets and units
Mike Goodchild describes the geographic world as a “set of overlapping continua” [11, p. 36].
These continua represent spatially and temporally superimposed places [12], reflecting that
different people represent and verbalize their very own subjective places in the same locations

1 The term platial is used here as a complement to the term spatial.
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and times simultaneously. Place can therefore only be treated in limited terms in the sense of
spatial analysis, which is based on spatially exclusive observations. The latter is reflected by
the types of spatial indexes applied: geostatistical, lattice-based, or spatially stochastic units
prevail [4]. Reducing places to their spatial domain is thus insufficient, and recent results
obtained this way revealed issues in terms of the reliability of spatial-statistical results and
with respect to drawn conclusions [26, 27]. Platial analysis requires index sets, methods, and
concepts beyond the spatial domain.

It is the context which allows certain phenomena to occur. A platial notion of index sets
should thus take account of multiple contextual conditions in the combined way suggested in
Section 2. The contextual dimensions should thus form part of the domain over which platial
phenomena are defined. For example, a regular workplace must allow the respective work
to be carried out. At the same time, different employees will attach certain idiosynchratic
senses of place to the respective location, which are also linked to emotional attachements
and other influences. In a platial perspective, these conditions are not treated as spatially
referenced attributes, but are part of the coordinate system that allows phenomena to occur
in the workplace. The phenomenon chatting with colleagues at work is then not defined in
terms of space and time, but also in terms of coordinates reflecting the outlined contextual
factors. The context thus determines platial units, which are elements of a platial index set
and thus of a platial domain.

One possibility to conceptualize platial units could be the definition of regions in conceptual
spaces [9]. A conceptual space C is spanned by so-called quality dimensions q1 × · · · × qn,
which, following their original interpretation, represent how people judge stimuli to be
similar. These dimensions are well-suited for representing saliency, which places have to
fulfill in order to allow people distinguishing different places [28]. Quality dimensions further
represent psychological integral dimensions, which are roughly interpreted as decompositions
of perceptual stimuli into their base components. Thinking of places as concepts, and of their
subjective properties as quality dimensions, regions in multidimensional conceptual spaces
could form platial units in analogy to spatial units like administrative regions or raster cells.
Such platial units would automatically meet the conjectured container property allowing
objects and processes to be “in” a place [28]. Similar to measures of spatial and geographic
distance, the calculus offered by conceptual spaces could further be used to define distance
relationships between places. However, the framework is borrowed from cognitive science
and applying it to places will require future technical adaptations.

3.2 Platial concepts and data
Operationalizing platial analysis requires the definition of mature adapted statistical concepts.
For example, it is unclear what the study of platial autocorrelation would mean. Spatial
autocorrelation is a key concept in spatial analysis and it refers to an association between
correlation-based pattern within attributes with some notion of spatial distance [7]. This
characteristic largely resembles the so-called first law of geography [24]. Gao et al. suggest a
place-based counterpart to this law by stating that “every place is related to other places,
but more similar places are more interlinked” [8]. Still, in the light of the different discussed
available notions of place, it is yet unclear what exactly interlinked means in a generalizable
sense. By analogy, concepts like heterogeneity, stationarity, and randomization must be
coherently defined to enable a solid statistical theory of platial analysis.

One promising source of platial information is user-generated geographic information,
like those extracted from geosocial media feeds. These datasets reflect peoples’ subjective
impressions, which is why they have been conjectured to be of platial instead of geospatial
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Figure 1 Maps of the named places Dresden, the Elbe river, and the urban districts Altstadt and
Neustadt, based on Flickr tags visualized as (a) isolines and (b) micro diagrams.

nature [21]. Cognitive psychology shows that meaningful thoughts and experiences are stored
in the long-term memory, especially in the fraction called episodic memory [22]. Given the
meaningful nature of places, geosocial media data raises the question of the extent to which
the messages posted on such feeds originate from long-term memory. If large portions of
the posted contents may reflect short-term (and thus non-platial) information, it would be
questionable whether geosocial media is a useful source of platial information. It is instead
likely that the data found on these feeds represents a mixture of platial and non-platial
information, making it difficult to interpret obtained analysis results. An alternative possible
source of platial information is data collected through survey techniques like the event-
sampling method (ESM) [2]. This technique enables the collection of in-situ information by
triggering context-based surveys. These and related methods thus allow to collect platial
information in a systematic manner. Future research should clarify to what extent user-
generated information and the ESM technique are useful for investigating human platial
experiences.

4 Visualizing Places

Communicating results dervied from platial analysis requires new techniques and strategies.
Below we present ideas for visualizing places through an example using data from the
photo-sharing platform Flickr. Places are frequently extracted and visualized from this kind
of data by using selected assigned tags [15, 17]. A more sophisticated approach combining
multiple, different sources into a joint classification of topics and thematic regions is found
in [19]. Another frequently applied method of visualizing spatially continuous qualitative
areas is kernel density estimation. The isoline method is an alternative approach to this, the
results of which can be portrayed along with the underlying data points [15]. The approaches
outlined present pre-processed analysis results to the viewers of maps and visualizations.
Another related idea called tag maps [6] is to avoid extracting places a priori, but to instead
show all contained tags in one map and to let the viewer decide about reasonable places.
It is further possible to derive 2.5-dimensional pseudo surfaces known from GIS. For this,
interpolation methods like inverse distance weighting (IDW) can be used in a first step to
produce surfaces, from which isolines or hill shadings can then be derived. The dominance of
place representations can be visualized through proportional symbol grid maps or by means
of grid choropleths [16, p. 137].
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The approaches presented are not optimally suited for the visualization of mental place
representations. For example, kernel density maps create the wrong impression of a spatial
continuum, which might be misleading for some types of places. Further, when combining
information derived from multiple datasets, various individually estimated kernel density sur-
faces may not be one-by-one comparable, making their joint mapping problematic. Similarly,
because places are characterized by multiple dimensions, it is often of interest to visualize
more than just one attribute, as it is the case with the outlined techniques. We thus suggest
the aggregation of point-based data through regular grids based on point counts as a viable
alternative to the outlined interpolation approaches. In this way, the viewer at least does
not get the wrong impression of a possibly non-existent surface.

The micro diagram method is another promising approach for mapping diverse places [18].
This method utilizes different kinds of diagrams to represent multiple types of aggregated
qualitative information. We show the potential of this approach for the visualization of places
using an example based on Flickr data from Dresden. Figure 1a shows the spatial extents of
named places based on their occurrences in the Flickr tags. The visualization is based on
isolines extracted from a statistical surface estimated by IDW. This type of visualization
demonstrates the aforementioned superimposed nature of subjective platial verbalizations.
In contrast, Figure 1b shows the results for the micro diagram method, which shows the
detailed quantitative composition of the locations in terms of how people interpreted them
as places. Other than in 1a, the Elbe river is now notable (blue), and the Altstadt (red)
and the Neustadt (violet) are distinguishable. Beyond this proposed symbology, we suggest
avoiding the use of background maps, classical scale bars and other cartographic elements
to avoid the impression of a one-to-one mapping between space and place, which may not
always exist. Such an omission, however, requires the viewer to have a certain topographical
knowledge of the respective region.

5 Conclusions and future research

Investigating places is important for gaining a thorough understanding of peoples’ everyday
lives and to obtain insights on the perceived structures of urban areas. Current statistical
approaches from spatial analysis are not suited for this. We discussed challenges and useful
solution paths that may bring us closer to the long-term vision of a platial analysis framework.
One major challenge is to find suitable units upon which statistical analyses of places can
be conducted. Conceptual spaces have been identified as one promising way to define such
units, though an in-depth harmonization of this framework with places still needs to be
done in future work. Further, platial counterparts to important spatial-statistical concepts
must be formulated in order to develop a valid and rigorous statistical theory of places. It is
not yet clear to what extent data taken from user-generated feeds is truely platial. Since
data is a crucial ingredient to achieving insights on places, this is one of the major empirical
steps to be undertaken in the near future. In terms of visualizing places, the major issues
with current approaches include wrong spatial impressions created through interpolation
techniques, the problem of displaying multifaceted place-based information at once, and the
combination of different subjective places in one map. However, the proposed example using
micro diagrams has shown first promising results for the presentation of multidimensional,
qualitative information together with the spatial outline of places in a conceivable way.
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Abstract
Two of the grouping definitions for trajectories that have been developed in recent years allow a
continuous motion model and allow varying shape groups. One of these definitions was suggested
as a refinement of the other. In this paper we perform an experimental comparison to highlight
the differences in these two definitions on various data sets.
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1 Introduction

The presence of devices equipped with advanced tracking technologies, such as GPS-enabled
mobile phones and RFID tags, makes it possible to easily record the position of moving
entities over a period of time. The widespread use of such inexpensive devices leads to the
availability of a vast amount of movement data. Consequently, in many research areas there
is an increasing interest in analyzing such movement data [3, 11].

Typically, movement data is described as a trajectory: a path made by a moving entity
over a period of time together with time stamps at the locations. Differently put, a trajectory
is a continuous mapping from a time interval I = [tstart, tend] to the space in which the entity
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is moving. An analysis task that has been well studied is to extract collective movement
patterns from such data. Some of the movement patterns considered are flocks [1], herds [5],
convoys [7], moving clusters [8], mobile groups [6] and swarms [9]. Buchin et al. formalize the
definition for another variation called groups [2]. They define a group of moving entities by
taking into account three parameters: the spatial parameter (are the entities close enough?),
the temporal parameter (does the togetherness last long enough?), and the size parameter
(are there enough entities?). They implement the algorithm to compute groups and present
experimental evaluation of their method using both generated and real-world datasets. In
a recent paper [10], we refined the definition of groups by Buchin et al. We made a slight
change in the condition for the spatial parameter and argued that the refined definition of
groups is more intuitive and is expected to be better for finding the right groups in a dense
environment. Consequently, this change leads to different algorithms to compute groups.

In this paper we compare the two definitions experimentally. While there are many
definitions of flocks, herds, groups, etc., the last two definitions and the flocking definition
are the only ones that respect the continuity of the trajectories, and do not consider only
fixed time-stamped locations. We exclude the flocking definition because it uses a fixed-size
circle to define closeness, which does not allow for elongated groups. To compare the two
grouping definitions, we implemented the algorithm to compute groups based on the refined
definition (an implementation of the other one exists) and conducted experiments on dense
pedestrian data. We compare the outputs from both implementations, which is the same as
comparing the two definitions of groups, since the implementations follow the definitions
exactly. We analyze the claim made (by us) in [10] that the newer definition is more intuitive,
especially when the environment is dense. Arguably, dense situations are especially difficult
for identifying groups.

Results and Organization. In the following section, we review both definitions, and highlight
their differences. Section 3 briefly describes what we expect to find in an experimental analysis
where we compare the two definitions. In Section 4, we describe our experiments. We focus
our evaluation on the differences of the two definitions, and thus on the maximal groups that
are reported, rather than the differences between the algorithms and their implementation.
Moreover, we consider only a single dataset consisting of trajectories of pedestrians walking
through a narrow corridor. We conclude in Section 5 where we discuss the advantages and
disadvantages of the two definitions.

2 Description and Properties of the two Definitions for Groups

The original definition of a group by Buchin et al. relies on three parameters: the number of
entities in a group, the time interval in which those entities form a group and the distance
between entities in the group [2]. While the first two parameters are simple to formalize,
the latter needs to be described in more detail. The ε-connectivity between two entities is
defined as follows: Let X be a set of moving entities and consider two entities x, y ∈ X . If
at some time t, the Euclidean distance between x and y is at most ε (ε > 0), then x and
y are directly ε-connected. Furthermore, x and y are ε-connected in X at time t if there
is a sequence x = x0, ..., xk = y, with x0, ..., xk ∈ X and for all i, xi and xi+1 are directly
ε-connected at time t. Then, with the maximum entity inter-distance ε, a minimum number
of m entities in a group and a minimum required duration of δ, a subset G ⊂ X is a group
during time interval I, if the following three conditions hold [2]:

G contains at least m entities.
I has a duration at least δ.
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Figure 1 (left) Entities in G = {a, h} are ε-connected using entities not in G [10]. (right) In the
original definition [2], x and y are ε-connected during [t0, t2].

Every pair entities x, y ∈ G is ε-connected in X during I.
Furthermore, G is a maximal group during time interval I if there is no time interval I ′ ⊃ I
for which G is also a group and there is no G′ ⊃ G that is also a group during I.

However, this definition might have a counter-intuitive effect and may not be suitable in
a dense environment. In [10], we presented an example where this definition will have two
entities in one group that are far apart during their entire duration as a group, see Figure 1
(left). Here, a and h are always ε-connected through different entities between t1 and t3.
Hence, {a, h} form a group during the time interval [t1, t3]. Since there is no superset of
{a, h} in the same time interval I, {a, h} is a maximal group. Intuitively, we do not view
{a, h} as a group because they are separated by other entities that move in the opposite
direction. To avoid this counter-intuitive situation, we refined the definition of a group by
changing the requirement on the connectivity between entities in a group:

Every pair entities x, y ∈ G is ε-connected in G during I.
The only difference is that connectivity must happen using entities in the group G itself,
and it can no longer use any entity in the whole set that is not part of the group. With
this refined definition, {a, h} is not a group because they are not ε-connected through other
entities in the same group. Another example that shows the difference between the two
definitions can be seen in Figure 1 (right) [10]. With the original definition, x and y are a
group starting at t0 because they are ε-connected through black entities that are standing
still. However, by the refined definition, the group of {x, y} starts only at t1 when a and h
encounter each other.

We compute all maximal groups according to the original definition using the algorithm
of Buchin et al. [2]. For a set of n entities each specified using τ time-stamped locations,
this algorithm runs in O(τn3 +N) time, where N is the output size. We use their original
implementation. Computing all maximal groups according to refined definition [10] takes
O(τ2n5 logn) time. We implemented the algorithm ourselves.

3 Expectations

The two definitions for groups differ only in a subtle way. We observe that any group by the
refined definition is a group by the original definition, in particular, any maximal group by
the refined definition is a (not necessarily maximal) group by the original definition. This
implies that for any maximal group by the refined definition, there exists a maximal group
by the original definition that has at least these entities and at least this duration.

We can expect that in situations that are “easy” for detecting groups, the two definitions
give similar results in terms of the number of maximal groups and the duration of these
groups. When the situation gets more and more complex, the detection of groups also gets
more difficult. The small difference in the definitions may lead to different results now,
because the accidental linking of entities through ε-closeness via entities that are not in
the group is more likely to happen, which is exactly where the definitions differ. So we
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Figure 2 Trajectories of people walking in the corridor from the pedestrian data provided by the
Jülich Supercomputing Centre.

may see maximal groups in the original definition that do not exist in the refined definition.
Furthermore, maximal groups may have a longer duration by accidental linking just before
the group is ε-connected or just after it.

It is not directly clear, however, that the original definition will return more maximal
groups. Besides the effect just sketched above, it can also be that a maximal group in the
original definition is briefly spread too much but some other entity in the neighborhood
provides the linking to keep on seeing it as one maximal group. This linking would not
be realized in the refined definition, which may lead to two maximal groups due to the
interruption. If this happens much, the refined definition might give more maximal groups.

4 The Pedestrian Data

Our set of experiments uses pedestrian data collected by the Civil Security and Traffic
division of the Jülich Supercomputing Centre [4] to study the dynamics of pedestrians. The
data consists of trajectories extracted from video recordings of people walking in a synthetic
environment. The particular datasets we use consist of two sets of people walking in opposite
directions through a corridor that is 8 meters long and 3.6 meters wide [4]. The density
inside the corridor is controlled by the width w, in centimeters, of the two entrances to the
corridor: a larger width w means that more people can enter the corridor simultaneously.
The considered widths w are taken from {120, 160, 200, 250}. Each experiment consists of
300 trajectories, each of approximately 300 vertices as well.

In our experiments we fix the inter-entity distance ε to 80 cm, and choose the minimum
group size m from {3, 6, 9}. For the minimum required duration δ we consider values in the
range [60, 180]. This corresponds to a minimum group duration roughly between four and
twelve seconds. For comparison, the average time t it takes a person to cross the corridor
ranges from roughly twelve to twenty-three seconds.

The Number of Maximal Groups. We first consider the number of maximal groups as a
function of w, and thus of the density of the environment. As Figure 3 highlights for the
case m = 6 and δ = 150, we see that up to w = 200, the number of reported maximal groups
increase as a function of w. This applies for both the definitions of a group, although the
number of maximal groups according to the original definition increases much faster than for
the refined definition. For even bigger values of w, the number of maximal groups flattens
off, or sometimes even decreases. These results are more apparent for larger values of δ.

The number of maximal groups reported by the refined definition is generally much
smaller than the number of maximal groups reported by the original definition. This is
also clearly visible in Figure 4, where we show the number of maximal groups, with m = 6,
and w = 200, as a function of δ. The graphs for different settings of m and w are similar.
Here, we also see that the number of maximal groups decreases as we increase the minimum
required duration (which is to be expected).
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Figure 3 The number of maximal
groups for m = 6 and δ = 150 as a
function of the width w of the corridor
entrance, which influences density.
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Figure 4 The number of maximal groups for m = 6
and w = 200 as a function of δ. There are much fewer
maximal groups according to the refined definition when
compared with the original definition.

Measuring the Conformity of a Group. Since all entities (pedestrians) completely cross
the corridor, we can classify each entity as type going “left to right” (type R), or “right to
left” (type L). We can extend this notion to groups of entities by taking the type of the
majority of its members (in case of ties we pick arbitrarily). We then define the conformity
c(G) of a group G as the percentage of its members that have the same type as the type of
the group. Hence, the conformity of G is a value varying from 50, half of the members of G
cross the corridor each way, to 100, all members of G go in the same direction. Intuitively,
we expect that a set of people that act as a group (in the social sense) travel in the same
direction, and thus we expect the conformity to be high in a good grouping definition.

We now measure the conformity of all maximal groups reported by our two definitions.
Specifically, we consider the percentage of maximal groups that have conformity 100, that is,
all group members travel in the same direction. We say that such a group is uni-directional.
The results are in Figure 5. Consider the case where m = 3 and w = 120. For both
definitions, we see that as the minimum required duration increases, so does the percentage
of uni-directional maximal groups. However, the refined definition generally has a much
higher percentage of uni-directional maximal groups. In particular, for a duration as short
as 90 time units (about 5 seconds), all maximal groups are uni-directional. For the original
definition this requires a minimum duration threshold of more than 180. These results are
even more clearly visible as we increase the width of the corridor. For example, for w = 160,
all maximal groups with a duration of at least δ = 120 are uni-directional, whereas in the
original definition less than 40% of the reported maximal groups are uni-directional, even if
we increase the minimum required duration to 180. We expect that this is mostly due to
the fact that the original definition reports many more maximal groups than the refined
definition. We get similar results for larger minimum group size thresholds, that is, m = 6
and m = 9.

5 Conclusions

We examined two definitions for groups in trajectory data which both support continuous
movement and varying shapes of groups. One definition was introduced as a refinement of the
other, to obtain a more natural formalization of groups, but at the expense of a less efficient
algorithm for their computation. Our comparison is based on a number of experiments where
groups are computed by both definitions.
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Figure 5 The conformity of the maximal groups in the pedestrian data as a function of δ.

The most important finding is that the two definitions differ more and more as the density
of the crowd increases. This implies that in dense situations it does matter which definition is
taken, even though they seem very similar. A second observation is that the refined definition
appears to be more natural, at least in some cases. The original definition reports many
groups that contain entities that move in opposite directions, whereas the refined definition
finds only a few of them. Moreover, such groups then often have a short duration. An
other interesting observation is that the refined definition gives fewer groups. It is not clear
whether this is an advantage or a disadvantage, since the nature of both definitions gives rise
to groups that share entities at the same time.
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Abstract
With social media widely used for interpersonal communication, it has served as one important
channel for information creation and propagation especially during hazard events. Users of social
media in hazard-affected area can capture and upload hazard information more timely by portable
and internet-connected electric devices such as smart phones or tablet computers equipped with
(Global Positioning System) GPS devices and cameras. The information from social media(e.g.
Twitter, facebook, sina-weibo, WebChat, etc.) contains a lot of hazard related information
including texts, pictures, and videos. Most important thing is that a fair proportion of these
crowd-sourcing information is valuable for the geospatial analysis in Geographic information
system (GIS) during the hazard mitigation process. The geospatial information (position of
observer, hazard-affected region, status of damages, etc) can be acquired and extracted from
social media data. And hazard related information could also be used as the GIS attributes.
But social media data obtained from crowd-sourcing is quite complex and fragmented on format
or semantics. In this paper, we introduced the method how to acquire and extract fine-grained
hazard damage geospatial information. According to the need of hazard relief, we classified
the extracted information into eleven hazard loss categories and we also analyzed the public’s
sentiment to the hazard. The 2017 typhoon “Hato” was selected as the case study to test the
method introduced.
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1 Introduction

Social media has been widely used in our daily information creation and propagation especially
in the hazard scenario. Users of social media in hazard effaced area can acquire real-time
firsthand in-situ observation data and share these data by messages, short texts, pictures, or
videos. And a fair proportion of these crowd-sourcing data includes geospatial information
which is valuable for geospatial analysis of Geographic information system (GIS) during
the hazard mitigation process. The geo-location information of social media data plays
an important role in emergency detection and quick response [3]. The useful geospatial
information including position, geospatial distribution, location clustering, and status of
damages related with hazard, is hidden in the large number of social media data. Unlike
conventional spatiotemporal data, social media data is dynamic, massive, unevenly distributed
in space and time, noisy, incomplete, biased in terms of population, and represented in
stream of unstructured media (e.g. texts and photos), which pose fundamental challenges
for representation and computation to conventional spatio-temporal analysis [1]. Many
researchers in GIS study area have noticed the importance of social media as an important
source of geospatial information. In the past few years, geospatial information created by
volunteers and facilitated by social networks has become a promising data source in time-
critical situations [5]. And the concept of volunteering of geographic information(VGI) [4]
has been introduced. While the quantity and real-time availability of VGI make it a valuable
resource for disaster management applications, data volume, as well as its unstructured,
heterogeneous nature, make the effective use of VGI challenging [2]. user-generated data can
provide unique and highly useful information in several contexts (e.g. brand communication,
market research, political communication as well as in extreme events) [6]. The social media
GIS enables disaster information provided by local residents and governments to be mashed
up on a GIS base map, and for the information to be classified and provided to support
the utilization of the information by local residents [8]. In our study, we introduced the
method to extract geospatial information and use these information to get the hazard loss
categories and map the hazard-affected area. The Typhoon, a yearly happened hazard events
in northwest Pacific, was selected as case study.

2 Methods

The key step of extracting hazard related geospatial information from social media data
is how to understand the meanings of messages and texts. And the Natural Language
Processing (NLP) is a common method for social media information extraction. In our study,
we proposed a Social Media based Hazard information Recognition and Classification (SHRC)
model for hazard related geospatial information extraction and analysis based on the NLP
method. The workflow of the model (As shown in Fig. 1). The key steps of the SHRC model
are as followed.
1. Event-driven hazard information acquisition from social media: Social media platform

usually provides the interface or API for developers to retrieve and get social media data
by using time-span, location and event related key words.

2. Data cleaning and store: Many messages from social media are repeated or not related,
so we need to clean and filter the redundancy. After that the data are stored in the
database for further analysis.

3. Definition of hazard loss categories: To evaluate the hazard loss, we proposed a hazard
loss classification method of eleven categories including loss of life, interruption of water
supply, building damage, business influence, forestry loss, traffic congestion, vehicle
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Figure 1 Flowchar of extracting hazard geospatial information from social media data.

damage, power supply outage, electricity equipment broken, Communication Interrupt,
infrastructure damage.

4. Creation of classification knowledge base based on feature words and lexicon: The first
step is to extract some feature words from the sample micro- blog text of different disaster
loss categories based on Chinese grammar rules and constructed the pairs of feature
words collocation. The word vector model and existing lexicon is used to supplement
and expand these pairs of feature words collocation. And the external natural language
corpus is used to optimize the semantic collocation relationship between feature words.

5. Hazard information interpretation and extraction: The topics of social media messages
are usually random and we use the hazard classification knowledge base in the step 4) for
different types of hazard damage information extraction. A Chinese language processing
and information retrieval toolkit, NLPIR (http://ictclas.nlpir.org/downloads), is
deployed for word segmentation and part-of-speech tagging(POS). Then corresponding
lexicon is used to match feature words for disaster loss information classification and
sentiment analysis based on the knowledge base.

6. Sentiment analysis: The model uses sentiment words for sentiment analysis. The basic
sentiment words from the text base on Chinese sentiment word table from “HowNet”
(http://www.keenage.com/html/c_index.html). And the model extends the basic
sentiment words by using the feature words from social media. There are three kinds of
emotions, positive, neutral, and negative.

7. Spatio-temporal visualization: The hazard information from social media is geo-located
by GPS position, address match by user’s position, and Identification of place names
from text. Then we can use the geospatial information and hazard loss attributions for
visualization and mapping of the hazard-affected area.

8. Evaluation and validation: Three parameters, precision, recall and F-Measure (F1), serve
as the evaluation indexes to evaluate the experimental results.
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Figure 2 Typhoon “Hato” landed on the coast of Zhuhai city at 12:50, 23rd August, 2017. Map
from http://typhoon.zjwater.gov.cn.

Figure 3 Sentiment analysis of hazard damage information extracted from social media.The blue,
green, and red colors refer to negative, neutral, and positive emotion, respectively.

3 Case study

We used the dataset of 2017 typhoon events (about 20,000 records) [7] to train the model
proposed in the paper. And typhoon “Hato” event landed on the coast of Zhuhai city at
12:50 23rd August, 2017 was selected as the case study to test the effectiveness of the model.
The moving track of this typhoon is shown in Fig. 2. We selected 1600 records of the hazard
related information from “sina-weibo” (https://weibo.com/) after cleaning and filtering
redundant and irrelevant information with time span from 0:00 to 23:00 of the typhoon
landfall day.

The statistics of the hazard information extraction and classification from “sina-weibo”
are shown in Fig. 3. We can see that the numbers of power outage and interruption of
water supply were the biggest, 289 and 261 respectively. According to the statistics, we can
conclude that outage of power and water supply were the most affected hazard damages or
people paid much more attention on that during the typhoon hazard. And we did further
analysis on sentiment and classified the human emotion in three categories, negative, positive
and neutral sentiment. Fig.3 gives us a direct illustration of people’ sentiment to different
categories of hazard loss types. The blue, green, red colors refer to negative, neutral, and
positive emotion respectively. For example, there is a micro-blog message saying that “The
typhoon is really terrible”, we can identify the Chinese sentiment word “terrible” to put this
short sentence in category of negative sentiment. But,there is a micro-blog message saying

http://typhoon.zjwater.gov.cn
https://weibo.com/
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Figure 4 Distribution map of different types of hzard damage information from social media.

Figure 5 Social meida based spatio-temporal sentiment analysis.

that “The typhoon has great destructive power, it has no electricity until now, but thanks to
the power workers who are working hard to repair it. Give them a thumbs up”. This text
contains “Power supply outage”, but the emotion is positive, which shows that people were
satisfied with the disaster reduction response. We can get people’s reaction to the typhoon
event or know how severe of the hazard influence on the people’ life there. And we also got
the geospatial information of different damage types and visualized in the map as shown in
Fig. 4. This map shows the hazard damage distribution of hazard affected area. And this
map can be a useful supplemental geospatial data to the offical hazard mitigation. Most
important thing is that, the geospatial data can be obtained in a near real-time mannner
which is just the insufficiency of the common geospatial data acquisition method. As Fig. 5
shown, we did a spatio-temporal sentiment analysis of typhoon “hato” during its landfall on
coast of Zhuhai City. Before the landfall of the typoon as shown in Fig. 5a, the major hazard
influence was traffic congestion. And people of the hazard-affected area were in a hurry to
return home. With the typhoon landfalled and moved to the northwest, more categories of
hazard damages emerged along with the landfall route as illustrated in Fig. 5b,c,d,e. And
outage of power and water supply was the prominent influence types of the hazard by analysis
of the number and sentiment of social media records. And as the typhoon passed by, the
negative emotion decreased and positive emotion increased.
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We evaluated the experimental results with precision, recall and F-1. The comprehens-
ive evaluation index of different disaster loss categories was greater than 0.74. And the
comprehensive evaluation index of different sentiment categories was greater than 0.83.

4 Methods

Social media data contains a lot of valuable near-real time geospatial information during
the hazard events. This paper introduced the method to extract hazard related geospatial
information for evaluation of hazard loss. And we proposed a Social Media based Hazard
information Recognition and Classification model for hazard related geospatial information
extraction and analysis based on the nature language processing and sentiment analysis.
Typhoon “Hato” (landed on the coast of Zhuhai city at 12:50, 23rd August, 2017) was
selected as the case study. Firstly, social media data of hazard event were collected and
cleaned for further hazard information extraction. Nature language processing and semantic
interpretation was done to understand the content of the text of social media data. A
hazard damaged evaluation standard with eleven categories was proposed for the information
classification. And these hazard loss categories were geo-located and mapped to show the
distribution of hazard loss. Also sentiment analysis was done to extracted people’s reaction to
the Typhoon hazard. The geospatial time-serial map of sentiment analysis was generated. In
our recent research, We are developing a near real-time social media based hazard information
acquisition and analysis system. And we will use more hazard events to train the model
before it can be used in practical hazard mitigation.

References
1 Valentina Cerutti, Georg Fuchs, Gennady Andrienko, NataliaAndrienko, and Frank Oster-

mann. Identification of disaster-affected areas using exploratory visual analysis of georefer-
enced tweets: application to a flood event. In 16th Annual Symposium on Foundations of
Computer Science, Berkeley, California, USA, October 13-15, 1975, pages 1–5, 2016.

2 P. Thakuriah et al. Using Social Media and Satellite Data for Damage Assessment in Urban
Areas During Emergencies. Springer Geography, 2016.

3 Xu et al. Participatory sensing-based semantic and spatial analysis of urban emergency
events using mobile social media. EURASIP Journal on Wireless Communications and
Networking, 2016(4):1–9, 2016. doi:10.1186/s13638-016-0553-0.

4 Michael F. Goodchild. Citizens as sensors: web 2.0 and the volunteering of geographic
information. GeoFocus, 2007.

5 Linna Li and Michael F. Goodchild. The Role of Social Networks in Emergency Man-
agement: A Research Agenda. International Journal of Information Systems for Crisis
Response and Management, 2(4):49–59, 2010. doi:DOI:10.4018/jiscrm.2010100104.

6 Milad Mirbabaie, Stefan Stieglitz, and Stephan Volkeri. Volunteered geographic informa-
tion and its implications for disaster management. In HICSS ’16 Proceedings of the 2016
49th Hawaii International Conference on System Sciences (HICSS),Washington, DC, USA
,January 05 - 08, 2016, pages 207–216, 2016. doi:10.1109/HICSS.2016.33.

7 Jibo Xie Tengfei Yang and Guoqing Li. A social media-based dataset of typhoon disasters.
China Scientific Data, 2018(3), 2018. doi:10.11922/scdata.2017.0014.en.

8 Kayoko YAMAMOTO and Shun FUJITA. Development of Social Media GIS to Support
Information Utilization from Normal Times to Disaster Outbreak Times. International
Journal of Advanced Computer Science and Applications, 6(9):1–14, 2015.

http://dx.doi.org/10.1186/s13638-016-0553-0
http://dx.doi.org/DOI: 10.4018/jiscrm.2010100104
http://dx.doi.org/10.1109/HICSS.2016.33
http://dx.doi.org/10.11922/scdata.2017.0014.en


Propagation of Uncertainty for Volunteered
Geographic Information in Machine Learning
Jin Xing
Centre for Research in Geomatics, Laval University, Quebec City, Canada
jin.xing.1@ulaval.ca

https://orcid.org/0000-0001-5693-3414

Renee E. Sieber
Department of Geography, McGill University, Montreal, Canada
renee.sieber@mcgill.ca

Abstract
Although crowdsourcing drives much of the interest in Machine Learning (ML) in Geographic
Information Science (GIScience), the impact of uncertainty of Volunteered Geographic Informa-
tion (VGI) on ML has been insufficiently studied. This significantly hampers the application of
ML in GIScience. In this paper, we briefly delineate five common stages of employing VGI in
ML processes, introduce some examples, and then describe propagation of uncertainty of VGI.
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1 Background of VGI in Machine Learning

Machine Learning (ML) represents a set of methods that automatically learn from “experience”
or training data with respect to given tasks. The learning can be implemented via a large
body of models and algorithms, such as heuristic rules [32], decision trees [27], and cellular
automata [31]. In Geographic Information Science (GIScience), ML has attracted considerable
interest due to its wide applications in place recognition [34], ecology models [25], remote
sensing image classification [33], transportation pattern discovery [22], and gazetteer analysis
[9]. The rapid grow of ML has intensified due to the increasing ‘bigness’ of geospatial data,
which describes the exaflood of geographic information at unprecedented volume, velocity,
and variety, as well as challenges to veracity.

Among the diverse sources of big data, Volunteered Geographic Information (VGI) is
considered a main provider of input data/services [12]. For example, OpenStreetMap OSM,
in which individuals have crowdsourced editable web mapping services and content, has
become a powerful platform for building, training, and evaluating ML algorithms and models
in GIScience [15]. VGI describes the process of obtaining geographic data or services (e.g.,
rating accuracy of feature labels) from large groups of users in an open call that is self-
organizing via the Internet [10]. Uncertainty is innate within VGI, which means data is noisy,
containing redundancies, irrelevant content, errors and biases contributed by users, who are
often non-experts [26]. VGI also is disorderly, in which data may be unstructured, incorrectly
ordered, mis-formatted (e.g., lacking a header), and possibly poorly geo-registered. Finally,
users may be unreliable in providing consistent input and inputting within the appropriate
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Table 1 Uncertainty Issues in Applying VGI for ML

ML Process Uncertainty Type Examples in VGI
Data Collection, An-
notation, and Clean-
ing

Data Uncertainty
Inaccurate geolocation; spatial unevenness
in data contributions; redundancies; gender,
culture, and race bias in training data

Data Distribution Operation Uncer-
tainty

Boundary Vagueness (e.g., artificial bound-
aries introduced by data splitting); aggreg-
ation errors (e.g., heaping error in determ-
ining the existence of a traffic jam, binning
of VGI point data)

Feature/Topic Detec-
tion

Representation Un-
certainty

Interpreting location from place (from a
well-defined to a poorly defined object)

Model/Algorithm Se-
lection and Training Decision Uncertainty Simpler/alternate models than ML may be

better like linear regression
Evaluation and Tun-
ing Service Uncertainty Biased classification; Inconsistency in grad-

ing

time periods. Noisy, disordered, and unreliable data and service can significantly lower the
value of VGI in ML.

Previous work in VGI’s uncertainty largely concentrates on the data quality. Researchers
focused, for example, on uncertainty regarding the non-expert (e.g., skill levels and motiva-
tion), the thematic diversity of input (scattered focus relative to analysis needs), and the
spatial unevenness of contributions (e.g., popularity of places relative to others) [11]. In ML,
VGI is viewed primarily for its ability to provide data for ML, either as training data or
general input data. It also has been employed for result evaluation and tuning of ML [18].
A worrying trend in GIScience inquiry into ML is its treatment as a big black box, where
issues of data uncertainty are treated as I/O problems. We break down the black box of
ML into a collection of workflow processes to briefly identify uncertainty from VGI that can
occur within the ML as well as in its parameterization and refinement.

Other taxonomies tend to focus on classifying ML methods (e.g., supervised, unsuper-
vised, and reinforcement learning) and application areas (e.g., computer vision, natural
language processing, and speech recognition)[16]. The importance of uncertainty and its
propagation have not been highlighted. We view the interaction between VGI and ML as
five stages throughout the processing of VGI: data collection and cleaning, data distribution,
feature/topic detection, model/algorithm selection and training, and evaluation and tuning.

2 A General Framework for Integrating Geospatial Crowdsourcing
and ML

Our framework (Table 1) follows the standard ML workflow (data collection and cleaning,
splitting of training from testing data, model training, evaluation, parameter tuning) [28] and
adds components from big data handling [21] and ML computation [4] for de-/re-composition.
Since the five stages may occur iteratively (e.g., the evaluation result could be fed back to
the training process to improve accuracy), uncertainty also can propagate if we fail to attend
to the origin of the uncertainty.
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2.1 Data Collection and Cleaning
The primary utility of VGI in ML is for training and, more generally, input data. Training
refers to data used by ML to calculate its parameters/weights so that input data generates
expected outputs. Geospatial content is available across a wide range of VGI. It can be
raster (landscape photographs) and vector (social checkins, binned aggregations of points);
structured (Twitter metadata) and unstructured (Twitter text), explicit (x,y’s, placenames
in hashtags) and implicit (colloquial names for neighborhood), absolute (latitude/longitude)
and relative (concepts of home), passive (geo-fencing) and active (Amazon Mechanical
Turk-AMT). It can be static or dynamic (harvesting of Flickr geotags at point in time or
movement data), compensated or voluntary (AMT or VGI) [19]. Considerable research has
been conducts to assess uncertainty with various VGI (cf., [14]).

Like other crowdsourced content, VGI data contains considerable error, vagueness, and
ambiguity, and is vulnerable to malicious contributions (e.g., via GPS spoofing). As suggested
above, this is the richest area of current research so this section is admittedly brief. Most
research on the negative impact of ML focuses on the issue of algorithmic bias due to input
data [26]. Location often serves as a proxy for race so one needs to debias on the basis of
primary variable as well as data which functions as its surrogate [1]. Often dibiasing requires
human intervention (cf., gendered word2vec example in [2]) so this stage also can utilize
crowdsourcing. Geographic unevenness in data contributions can further distort ML output,
for example the low OSM participation in Africa or the differential accuracy of OSM in urban
areas versus rural regions [29]. Privacy protections, like the EU’s General Data Protection
Regulation, will increase distortions in VGI as whole swaths of data are removed or masked
[6]. Lastly, much of VGI is streamed, which requires new sampling techniques (e.g., reservoir
sampling) to normalize temporal spikes or redundancies.

2.2 Data Distribution
The attraction of VGI to ML is both in its source (geosocial media) and its potential as
big data. The latter likely requires de-/re-composition to distribute the computing. Data
distribution may suffer from disorder in VGI because geographic data has its own internal
topology and geometry that can be destroyed by arbitrary decomposition or splitting. For
example, rectangular decomposition can distort the boundary of geographic objects and
increase output uncertainty [5]. Most VGI is point-based and may need to be binned. A more
sophisticated feature type, a polygon like a hexagon, does not easily alleviate the problem
and any aggregation is subject to modifiable areal unit problems [24] that can alter ML
output.

ML can be employed to reduce uncertainty in data distribution. Felzenszwalb et al. [7]
employed latent support vector machine to decompose the original raster data into multiple
object-based rectangles to lower boundary distortions. Temporal disorder in VGI, such as
burstiness of reporting of natural disasters, could be addressed by decomposition with parallel
processing.

2.3 Feature/Topic Detection
ML is designed in large part to recognize patterns, generate rules, approximate functions,
and classify data sets. An important use of VGI in ML can be for feature or topic detection
(e.g., forest, alternate route to avoid traffic jam). We lack explicit control over the feature
representation in VGI. Users may not provide feature identification as planned or neural
networks may fail to extract useful features from noisy VGI. For example, uncertainty in
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placename makes it difficult to infer locations; “downtown nearby” could be interpreted
as multiple locations [8]. Although iterative feature/object detection in ML can reduce
uncertainty, there is no easy way to clean data to better disambiguate place to a location
and location to a place. This resembles the challenge of NLP regarding semantic modeling
to disambiguate slang (e.g., “bad”, “hot”, “sick”) in ML. Aggregation (pattern detection) is
a likely outcome of ML that is based on VGI and therefore is subject to Sorites paradox and
modifiable areal unit problems here as well (e.g., how many cars constitute a jam; how many
trees constitute a forest).

The temptation for users new to ML is to treat it as a blackbox, an algorithm amongst
many in a software library. Treating ML as a black box means that ML cannot necessarily
accommodate the geography of VGI. For example, max pooling, which is a widely used
method to pass features from one layer of neural network to another, is considered problematic
in convolutional neural network by Sabour et al. [30] because max pooling lacks topology.
In another example, a word embedding algorithm may produce very different vectors to
represent “pub” and “bar” due to the surrounding content, which may then require multiple
detection iterations.

2.4 Model/Algorithm Selection and Training
Which ML model or algorithm achieves the highest accuracy with a given input dataset
and features? What is the best way to calculate the weights or parameters of the ML
model/algorithm? Should we rely on a single ML model/algorithm or combine several ones
together? These questions are difficult in ML and there are no clear answers. VGI can
potentially assist this selection process with existing knowledge about model/algorithm
selection and training strategies (think a wiki of appropriate ML) [23]. However, knowledge
contributed via VGI may be unreliable because of a “follow the crowd” mentality with little
investigation into alternate approaches [17]. Deep neural network is increasingly popular in
ML research but a linear regression may be more appropriate, considering the quality of the
data at hand and the ease of an ML implementation.

2.5 Evaluation and Tuning
Performance of ML algorithms needs to be evaluated with datasets different from the training
process. VGI plays a pivotal role in collecting evaluation datasets and crowdsourcing can play
a role in the evaluation process. To avoid overfitting (i.e., model is too closely fitted to the
training data), ML scientists usually employ cross-validation, which can reduce the influence
of uncertainty from VGI training data. Evaluation can be conducted with crowdsourcing
services, such as the translation validation within the Google Translate Community [20] or
Captcha [3]. Here, issues similar to data collection re-emerge, with potential biases introduced
by the evaluators, who may be drawn from a particular gender, race, class, or skill level.
These issues resemble the social approach to assessing spatial data accuracy in [13], in which
the focus shifts from the uncertainty of the contribution to that of the contributor. One may
wish to implement ranking or rating systems to improve confidence in the validators.

3 Propagation of Uncertainty in ML and Conclusion

In this paper, we propose a general framework to explore VGI uncertainty in ML. This
includes the concrete importance of VGI for training data as well as the use of crowdsourcing
for model/algorithm selection and performance evaluation in ML.



J. Xing and R. E. Sieber 66:5

Uncertainty also can propagate across the ML workflow. Uncertainty in data collection
can make data distribution more difficult because we do not know the appropriate aggregation
size or scale. Without adequate cleaning, noisy data can generate messy features or false
positives that will invalidate the chosen ML models and algorithms. Crowdsourcers bring
their own bias to the evaluation of ML, which can influence the training of ML for parameter
tuning. Disagreements during the cross validations may generate inconsistency in iterations
of ML and force us to re-run the process. Where possible, it is critical to identify uncertainty
at each stage to minimize the propagation of uncertainty. However, the cost (e.g., human
intervention) of reducing the uncertainty in the early stages of ML (e.g., data collection
and cleaning) is generally less than later stages (e.g., evaluation and tuning), so it is useful
for us to consider at which stages it is appropriate to insert geographic crowdsourcing and
crowdsourcers.
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Abstract
The rise of Artificial Intelligence (AI) has brought up both opportunities and challenges for
today’s evolving GIScience. Its ability in image classification, object detection and feature ex-
traction has been frequently praised. However, it may also apply for falsifying geospatial data.
To demonstrate the thrilling power of AI, this research explored the potentials of deep learning
algorithms in capturing geographic features and creating fake satellite images according to the
learned ‘sense’. Specifically, Generative Adversarial Networks (GANs) is used to capture geo-
graphic features of a certain place from a group of web maps and satellite images, and transfer
the features to another place. Corvallis is selected as the study area, and fake datasets with
‘learned’ style from three big cities (i.e. New York City, Seattle and Beijing) are generated
through CycleGAN. The empirical results show that GANs can ‘remember’ a certain ‘sense of
place’ and further apply that ‘sense’ to another place. With this paper, we would like to raise
both public and GIScientists’ awareness in the potential occurrence of fake satellite images, and
its impacts on various geospatial applications, such as environmental monitoring, urban planning,
and land use development.

2012 ACM Subject Classification Human-centered computing → Geographic visualization

Keywords and phrases Deep Learning and AI, GANs, Fake Satellite Image, Geographic Feature

Digital Object Identifier 10.4230/LIPIcs.GIScience.2018.67

Category Short Paper

1 Introduction

Deep learning and Artificial intelligence (AI) techniques are attracting more and more
attentions from geographers and spatial scientists. Big data with geospatial information
like satellite images and crowdsourcing data are perfect input for computer-based learning
algorithms, especially considering the huge success of machine learning and deep learning
methods in computer vision problems, such as image classification, object detection and
feature extraction[1]. Deep neural networks are developed so powerful that they are applied
to enable geospatial system to capture underlying features and patterns at a near-human
perception level[6]. For example, recent studies indicate that convolutional neural networks
(CNNs) are highly effective in perceiving features in large-scale image recognition and
semantic segmentation[5, 7]. Deep learning algorithm can facilitate the research in the
domain of geoscience and remote sensing, and it is encouraged to be used with expertise from
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Figure 1 Input Datasets:(a) Google satellite images; (b) CartoDB basemap.

geospatial and remote-sensing scientists as an implicit general model to tackle large-scale
and unprecedented challenges like climate change and urbanization[8].

But can AI be trusted to take care of our location information? How can we deal with
fake information if deep learning and AI act as a ‘bad’ agency? ‘Fake’ is a big concern
because of the popularity of fake news and post-truth politics. In geography, the falsification
and spoofing of geospatial data have become a heated topics[9]. And ‘fake’ has also been
a highly popular word in AI since 2014, when Generative Adversarial Networks (GANs)
were introduced by Ian Goodfellow as a kind of artificial intelligence algorithm with huge
potential to mimic various data distribution[2]. GANs have been used in hyperspectral image
classification as a semi-supervised learning algorithm[3]. It provides us insight into how the
machine can ‘remember’ what it saw in the past, and then generate fake data in any fields
like image, speech or music. Instead of being used as a potential tool to deal with pragmatic
mapping issue in cartography, will it be meaningful and operable to create fake satellite
images with a certain kind of patterns or features?

To answer this question, this study aims to explore the potentials of GANs in capturing
geographic features and whether the machine can generate a ‘sense of place’ like humans.
Previous studies have indicated that it is possible to generate satellite images from street
map through a mapping from image to image (or from pixel to pixel)[4, 10].In this study,
Corvallis is used as the place of study, and fake satellite images with a certain style will be
generated through GANs to discuss this problem.

2 Data and method

2.1 Data
Satellite images from Google Earth and positron (no label) basemap from CartoDB are
used as input datasets in this study. Positron basemaps from CartoDB are developed based
on data from OpenStreetMap. The basemap is designed with latest data and has limited
color schemes, which gives users freedom to customize according to their visualization use.
Satellite images and maps are collected as multi-level raster tiles through a script based on
Google maps API and Qtile in QGIS. The image tile is 512*512.

2.2 Method
Cycle-Consistent Adversarial Networks (CycleGAN)[10]were implemented in this study
to train the model from training set and generate fake satellite images. CycleGAN is
a kind of image-to-image translation algorithm that can work without paired examples
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Figure 2 Satellite images and basemaps of three cities (i.e. New York City, Seattle and Beijing)
were used as input dataset for CycleGAN to extract city styles. Corvallis in Oregon is used as a
sample for fake satellite images generation.

of transformation from source to target domain. Compared to previous image-to-image
translation algorithm Pix2Pix, CycleGAN can learn the transformation without one to one
mapping. Adversarial losses and cycle consistency losses are applied to mapping functions as
follows[10]:

Lcyc(G, F ) = Ex∼pdata(x)[‖F (G(x))− x‖1] + Ey∼pdata(y)[‖G(F (y))− y‖1]. (1)
LGAN = Ey∼pdata(y)[log DY (y)] + Ex∼pdata(x)[log(1−DY (G(x)))]. (2)

In this study, CycleGAN was used to reconstruct the satellite imagery from its basemap
tiles for three typical cities in the world: New York City, Seattle and Beijing. It is assumed
in this study that these three cities have different urban styles. As the center of the New
York metropolitan area, New York City is the most populous urban agglomerations with a
modern style, while buildings in Seattle have relatively low heights even in the urban center.
Beijing is a hybrid of historical and modern style, with most urban area has been covered
with tall buildings and new architectures. The geographic features are shown on the satellite
images with different textures, such as shade, color scheme or spectral signatures, which
are significant information for image interpretation and supervised classification. Despite
of the spatial heterogeneity in internal urban area, these three cities in general give people
different sense of place, which is a little bit obscure and elusive. Although hard to describe
and quantify, we can still differentiate cities with their features from satellite images.

To examine whether it is possible for CycleGAN to extract city styles and transfer the
potentially learned style to another place, Corvallis, where Oregon State University locates,
was then used as a sample for generating satellite images. For the training dataset, there are
1066, 1196 and 1122 pairs of images for New York City, Seattle and Beijing respectively, and
there are 360 map tiles covering Corvallis.

3 Result

3.1 Training process
Taking the training process with input data from Seattle as an example, CycleGAN training
process was set with 200 epochs. Figure 3 shows some results during training process. After
the first epoch, the training model can learn and generate some geometric features. More
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Figure 3 Some results during training process using training dataset of Seattle.

details can be captured and created as the number of epoch increases. As the basemap has
limited color schemes, CycleGAN seems very sensitive in capturing green land.

3.2 Fake image generated for a single tile
It is difficult to quantify geographic features with a certain character or pattern, especially
taking spatial variability and heterogeneity into account. Landscape exhibits various patterns
and processes in different scales. However, it seems that CycleGAN is able to extract some
general features from spatial distribution of city structures.

Take a specific location in northwest of Corvallis as an illustration. In general, three
models are performing well in generating green land in the park area. But the details differ.

Although the fake satellite image with New York’s style failed to generate details in some
community block, some structures like tall building are created in the left corner of the image.
And the one with Seattle’s style has more detailed information, including low houses and
buildings created around the park. What’s more, the fake image with Beijing’s style has
most detailed information of tall buildings and shadow around them.

3.3 Fake images generated in a large scale
To examine the stability of the training model, fake satellite images are generated in a
relatively large-scale area north to Oregon State University. Nine tiles covering this area are
put together using mosaic method.

As New York model was not well-trained and failed to generate detailed information,
fake satellite images with Seattle and Beijing are generated to examine the stability of the
model in a large scale. Due to the blank in the northeast area of the basemap, less details
are generated there compared to other areas in the fake satellite images with Seattle’s style.
Generally speaking, the images created from the model have similar pattern and style with
Corvallis in terms of geographic characteristics.

But we can easily differentiate the fake images with transferred style from Beijing with
that of Seattle. As is shown in figure 5, almost all building created with Beijing’s style are tall
with shadows. The fake city is really crowded considering the small block. As the real satellite
images from Beijing have various temporal resolutions, the shadows looks unreasonable as
the sunshine looks from various directions. However, the style of the imaginary city looks
pretty unify across the whole area. In terms of the mosaic, no obvious edge could be observed
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Figure 4 Fake satellite image with transferred style from different cities for a single tile.

Figure 5 (a) CartoDB basemap of large-scale study area in Corvallis;(b) Fake satellite image
with transferred style from Seattle; (c)Fake satellite image with transferred style from Beijing.

from the image edges, which suggests that the model performs well and generates stable
results for this area in Corvallis.

4 Conclusion and discussion

CycleGAN and Pix2Pix networks have the ability to generate non-exist but realistic images.
This study explored whether it can capture complicated geographic features and patterns
from a large dataset of a certain city, and transfer the style to another place in a large scale.
The results show that CycleGAN can learn general styles from input dataset. And it seems
that the more specific features the dataset share, the better CycleGAN model performs.
There are big potentials to use CycleGAN or Pix2Pix mapping to transfer city styles and
geographic features from one place to another, which provides us insight into its future use
in urban planning or visualization.
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To some extent, Geographic feature is a very elusive concept to perceive. We tend to
develop sense of place based on our impression and experience subconsciously. However, it is
very difficult to quantify our feelings. CycleGAN may provide a new perspective on how we
think of a certain place with a vivid way.

There are many potential directions worth further exploration. Firstly, CartoDB Positron
basemap has limited color schemes and symbols. Although this can give GANs a great deal
of latitude to generate fake images, it also ‘confuses’ the machine. Therefore other map style
may improve the performance of the model efficiently. Second, GANs are often regarded as
an unsupervised learning algorithm, but more expertise from geographers or spatial scientists
is necessary to develop the training set and the network architectures. Moreover, instead of
taking the whole city as the input, using certain type of landscape or building as training set
may generate much better images.
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Abstract
The present study aims to propose the method for the quantitative evaluation of safety concerning
evacuation routes in case of earthquake disasters in urban areas using Ant Colony Optimization
(ACO) algorithm and Geographic Information Systems (GIS). Regarding the safety evaluation
method, firstly, the similarity in safety was focused on while taking into consideration road
blockage probability, and after classifying roads by means of the hierarchical cluster analysis, the
congestion rates of evacuation routes using ACO simulations were estimated. Based on these
results, the multiple evacuation routes extracted were visualized on digital maps by means of
GIS, and its safety was evaluated. Furthermore, the selection of safe evacuation routes between
evacuation sites, for cases when the possibility of large-scale evacuation after an earthquake
disaster is high, is made possible. As the safety evaluation method is based on public information,
by obtaining the same geographic information as the present study, it is effective in other areas
regardless of whether the information is of the past and future. Therefore, in addition to spatial
reproducibility, the safety evaluation method also has high temporal reproducibility. Because
safety evaluations are conducted on evacuation routes based on quantified data, highly safe
evacuation routes that are selected have been quantitatively evaluated, and thus serve as an
effective indicator when selecting evacuation routes.
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1 Introduction

From the experiences gained through the Great Hanshin earthquake (1995) as well as the
Great East Japan earthquake (2011), in recent years, Japan has been focusing on disaster
reduction by means of self and mutual help. In case of earthquake disasters, especially in
crowded urban areas, many road blockages are likely to occur due to secondary disasters
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which include the collapse and combustion of buildings. Additionally, if an earthquake
disaster occurs during a big event such as the Tokyo Olympics and Paralympics, which will
be held in Japan in 2020, busy urban areas especially around the stadiums are expected to
be crowded with evacuees. Therefore, in such cases, it is necessary to put emphasis on how
to reduce damage for risk management in central Tokyo.

In order to make a quick and safe “escape” from disasters, a clear evacuation plan, or
more specifically, an evacuation route must be developed. Current efforts to develop such
evacuation plans by means of self and mutual help include activities such as walking the streets
for disaster prevention in addition to disaster drills using maps, and an example of the latter
is Disaster Imagination Game (DIG). However, as the main purpose to create evacuation
routes using such activities is the promotion of disaster prevention awareness and disaster
prevention education, they are not quantitatively evaluated. As a result, the evacuation plans
developed in the way described may be influenced by the developers’ subjective thinking,
and its practicability is left uncertain.

Based on the backdrop mentioned before, assuming a large-scale evacuation in case of
an earthquake disaster, the present study aims to propose the method for the quantitative
evaluation of safety concerning evacuation routes in urban areas using Ant Colony Optimiza-
tion (ACO) algorithm and Geographic Information Systems (GIS). More specifically, the
multiple evacuation routes extracted using ACO algorithm will be visualized on digital maps
by means of GIS, and its safety will be evaluated. Based on the evaluation results, the
present study will provide effective information concerning disaster reduction through self
and mutual help, namely, the development of evacuation plans by individuals and voluntary
disaster prevention organizations in regional communities.

2 Related Work

The present study is related to (1) evacuation routes; (2) road blockages; (3) Spatial analysis
using geographic information; and (4) application of ACO algorithm for route searches. The
present study comes under the first category of studies, and proposes the safety evaluation
method of evacuation routes referring to the results of studies related to (2), (3), and
(4). In studies related to (1), though evacuation routes were extracted, its safety was not
yet evaluated. Additionally, comparing the related studies, the present study particularly
targets crowded urban areas as well as densely populated areas, and in order to provide
effective information concerning the development of evacuation plans for earthquake disasters,
originality and usefulness will be displayed when proposing the method for the quantitative
evaluation of safety concerning evacuation routes. More specifically, assuming a large-scale
evacuation in case of an earthquake disaster, the present study will propose the method for
the quantitative evaluation of safety concerning evacuation routes in urban areas using ACO
algorithm for risk management, in order to provide effective information for the development
of evacuation plans using self-help and mutual help methods, which are more direct forms of
natural disaster reduction help.

3 Safety Evaluation Method of Evacuation Routes

3.1 Evaluation Method and Framework
In the present study, firstly in this section, after selecting the evaluation target area, the
evacuation rules, which is the most important factor for the safety evaluation method of
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evacuation routes, will be introduced. In Section 4, a road network data using GIS will
be made. Additionally, Road blockage probability per road and the number of estimated
populations of evacuees in roads will be calculated, and will be added to the road network
data as attributes. A hierarchy cluster analysis using the above data will be conducted, and
roads will be classified by focusing on the similarity in safety.

In Section 5, an evaluation experiment of ACO algorithm concerning the evaluation target
area will be conducted. More specifically, a simulation of congestion conditions of evacuation
routes in the target area will be conducted, the parameter of the most valid evaluation results
will be applied to ACO, and the congestion rate of each evacuation route will be calculated.
ACO is a search method which mimics the path generation process when the ant is on the
hunt for food, and it has been applied to combinatorial optimization problems such as the
Travelling Salesman Problem (TSP), and has had many effective research results. Ants use
pheromones to communicate while they move as a group, resulting in a type of organized
system. ACO uses this system formation process for searches.

As the present study assumes a large-scale evacuation, in section 6, evacuation routes
with high congestion rates will be extracted and visualized on a digital map by means of
GIS, and its safety will also be evaluated. In the present study, the ArcGIS Ver.10.1 of ESRI
will be used as GIS, and making of road network data, spatial analysis and the visualization
of evacuation route choices will be conducted.

3.2 Selection of Evaluation Target Area

Large-scale evacuations are when many people around venues of large events have to evacuate.
As the Olympics and Paralympics will be held in Tokyo Metropolis in 2020, an increase
in tourists around the stadiums and other venues is expected. Therefore, if an earthquake
disaster occurs in such areas, the probability of a large-scale evacuation is high. Consequently,
Hongo district of Bunkyo Ward, an area close to the Tokyo Dome Stadium where a lot of
sports games and entertainment events are frequently held, is chosen as the evaluation target
area.

3.3 Evacuation Rules in Evaluation Target Area

3.3.1 Order of Evacuation

If an earthquake disaster occurs in Tokyo Metropolis, especially in crowded urban areas,
many road blockages are likely to occur due to secondary disasters which include the collapse
and combustion of buildings. Therefore, in Tokyo Metropolis, the principal of a two-step
evacuation on foot must be kept as an evacuation rule in case of an earthquake disaster. In
this two-step evacuation, as a first step in the evacuation from the occurrence of a disaster,
evacuees will evacuate to a temporary gathering sites and the damage situation will be
confirmed. After checking the damage situation, if the temporary gathering site is seen as
dangerous, an evacuation to a wide-area evacuation site (more than 10 hectares) will be
made as part of the second step. On the other hand, if the damage caused by fires following
the disaster extends significantly and the evacuation to temporary evacuation site is seen as
dangerous, evacuees will be instructed to go directly to wide-area evacuation sites (direct
evacuation). In the present study, in order to evaluate the safety of evacuation route assuming
a large-scale evacuation, the travel between evacuation sites will be assumed and the safety
of route between evacuation sites will be evaluated.
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3.3.2 Assignment of Evacuation Sites

As with the target area in the present study, University of Tokyo and an open space near the
Dome Stadium are assigned as a wide-area evacuation site by Bunkyo Ward. Additionally,
nine locations are also assigned as temporary evacuation sites. Therefore, in the present
study, a total of ten evacuation sites have been set as both the evacuation starting points as
well as destination points, and searches for evacuation routes will be conducted.

3.3.3 Evacuation Distance and Time for Evacuation Routes

Based on material from the Urban Disaster Prevention Office of the City Bureau of the
Ministry of Construction and the Director-General for Disaster Management in the Cabinet
Office, taking into consideration walking speed and evacuation time in times of a disaster,
locations that are within 2 km of walking distance are assigned as wide-area evacuation
sites. Regarding walking speed, although it is generally said to be about 4 km/h, taking into
consideration the elderly and children as well as the fact that this is in case of a disaster,
walking speed is considered to be 2 km/h which is half the normal speed (speed can drop to
1 km/h if in the dark).

Regarding evacuation time, from the fatality occurrences according to the cause in the
Great Kanto Earthquake in 1923, it became evident that the fatalities caused by fire rapidly
increased 3 hours after the earthquake, and that the first hour after earthquake quickly passed
by with the transportation of injured people, first-aid firefighting, and situation grasping.
Therefore, although this leaves 2 hours for evacuation, if another hour is allowed as a margin,
only an hour is left for the actual evacuation time. Hence, the evacuation distance for an
hour of evacuation time is around 2 km.

This shows that for evacuation route in case of wide-area evacuation, the evacuation
distance must be within 2 km and a route that is within an hour of evacuation time is
desirable. As mentioned in the previous section, because the present study sets all evacuation
sites including temporary evacuation sites as targets, evacuation routes within 1 km of
evacuation distance and 0.5 hours of evacuation time are considered desirable.

4 Creation of Road Information and Road Classification

4.1 Creation of Road Information Using GIS

In the present study, using the land use data and building use data developed by the Tokyo
Metropolitan Office, the road blockage probability will be calculated from the relationship
between the debris width buffer of wooden buildings along the road and the road’s centerline
located in front of the buildings. Therefore, the road centerlines will be extracted from the
above land use data to make the node data with intersection and junctions as well as link
data with roads connecting the intersections and junctions. By integrating the node data
and link data, a road network data will be made. The the road blockage probability was
added to the road network data as an attribute. Additionally, using the population data
provided by the Ministry of Internal Affairs and Communications, and the above building use
data, the estimated populations of evacuees were calculated in roads at the time of a disaster
outbreak in both cases of daytime (AM 7:00–PM 6:00) and nighttime (PM 6:00–AM 7:00).
The estimated populations of evacuees were also added to the road network data as attributes,
and were used in the ACO when calculating evacuation time for a route.
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4.2 Road Classification
Focusing on the similarity in safety and setting the road blockage probability calculated
on the basis of building collapse risk, all roads in the evaluation target area were classified
by the hierarchy cluster analysis using MATLAB. The Euclidean distance as the distance
between objectives, and Ward’s method for calculation of the distance between clusters are
used. Cluster 1 has the lowest safety, and safety levels are classified into 5 levels. The road
classification results will be referred to when estimating the congestion rate using ACO.

5 Evaluation Experiment of the ACO Algorithm

5.1 Method

5.1.1 Congestion Estimation Using the Back-Track Method
In this section, an evaluation experiment will be conducted to demonstrate the effectiveness
of the ACO algorithm. Using the information of large earthquakes obtained from a rescue
simulator, the ever-changing disaster conditions will be replayed. Additionally, route searches
using ACO, which is a crowd flow model and metaheuristic solution, will be conducted to
reduce the amount of calculations and to estimate real-time congestion in evacuation routes.
In the evaluation experiment in this section, evacuation starting points and destination
points are all considered as evacuation sites, and the congestion condition of evacuation route
between evacuation sites will be estimated.

In the present study, when trying to obtain the number of evacuation routes from
geographical information, a simulation by the back-track method using MATLAB will be
conducted. The back-track method is a type of search that prioritizes depth, and when
searching for a solution using this method, a potential process will be tested according to
order. If it becomes evident that a solution cannot be found in a certain process, it will go
back to the previous step and a different process will be tested.

5.1.2 Simulation Process
According to the two-step procedures, the simulation will be conducted:
(1) 1st tour: 1. All ants will select an evacuation route at random with the same probability;

2. The evaluation function of the evacuation routes selected by each ant will be calculated;
3. Based on the evaluation function value selected in ii), pheromones will be attached to
the evacuation routes;

(2) From the 2nd tour on: 4. All ants will select evacuation routes following the pheromones;
5. The evaluation function of the evacuation routes selected by each ant will be calculated;
6. Based on the evaluation function value of each ant, the pheromones on the evacuation
routes will be updated.

5.2 Simulation and Evaluation Experiments Concerning the Target
Area

In order to verify the effectiveness of the original simulation of the present study, a comparison
of three different simulation results will be conducted, by changing the number of ants in
correspondence with the number of evacuees and the amount of pheromones adjusted
according to the process in the previous section. By doing these, the congestion rate of
each road will be estimated. In order to compare the difference in results depending on

GISc ience 2018



68:6 A Safety Evaluation Method of Evacuation Routes

the number of ants, all parameters except for the number of ants (100, 200, 300) is made
the same, and simulations for three different cases were conducted. Because there are ten
evacuation sites within the target area, the number of solutions where pheromones can be
updated is also seven. Additionally, the number of evacuees is represented in the number of
ants. Taking into consideration the daytime and nighttime populations within the target
area, the number of ants is 300 for daytime population and 100 for nighttime population.

6 Safety Evaluation of Evacuation Routes Assuming a Large-scale
Evacuation

In this section, the simulation results of the previous section will be applied to the evaluation
target area, and evacuation routes with high congestion rates will be extracted. From these
evacuation routes, those that meet the three conditions will be extracted with reference
to section 3.3.2. The extracted route will be visualized on digital maps by means of GIS
and its safety will be evaluated: (i) Distance between evacuation sites is less than 1 km;
(ii) Evacuation time between evacuation sites is under 0.5 hours; (iii) Congestion rate is
more than 80 percent. Considering the congestion rate that represents the difficulty in
activity in times of a disaster, each evacuation site will be selected as evacuation starting
points. In the present study, in order to estimate the congestion rate of evacuation route
between evacuation sites, the closest evacuation site to each evacuation site will be selected
as evacuation destinations.

The simulations are conducted, and ACO parameters set in the cases of daytime evacuation
(300 ants) and nighttime evacuation (100 ants). Since two evacuation sites which are close to
the Tokyo Dome Stadium, the areas around these sites require attention especially when
large-scale events are being held. Additionally, it is evident that evacuation routes with high
congestion rates differ according to whether it is daytime or nighttime.

7 Discussion and Conclusion

In the present study, the multiple evacuation routes extracted were visualized on digital maps
by means of GIS, and its safety was evaluated. Furthermore, the selection of safe evacuation
routes between evacuation sites, for cases when the possibility of large-scale evacuation after
an earthquake disaster is high, is made possible. Additionally, using the safety evaluation
method in the present study, if all data and research information is updated with the future
technology developments and advances in related fields, it will be possible to update and
provide even more accurate information.

From land use data and building data, road network information which would be an
evacuation hindrance in disasters situations was created in the present study. Because the
safety evaluation of evacuation routes based on current building and road layout conditions
is made possible by estimating evacuation routes with high congestion rates based on such
information, it can be said that the safety evaluation method has high spatial reproducibility.
Furthermore, as the safety evaluation method is based on public information, by obtaining
the same geographic information as the present study, it is effective in other areas regardless
of whether the information is of the past and future. Therefore, in addition to spatial
reproducibility, the safety evaluation method also has high temporal reproducibility.

However, regarding spatial reproducibility, it is essential to modify the safety evaluation
method, paying attention to the differences concerning types of disasters and secondary
disasters between regions. In the present study, assuming a large-scale evacuation in case of
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an earthquake disaster and targeting a fireproofed area to conduct the safety evaluation of
evacuation routes, it is required to just consider building collapse risks. On the other hand,
on the same assumption as the present study in the area has a high concentration of wooden
dwellings, it is necessary to consider fire risk in addition to building collapse risk.
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Abstract
Machine learning methods such as Convolutional Neural Network (CNN) are becoming an in-
tegral part of scientific research in many disciplines, the analysis of spatial data often failed to
these powerful methods because of its irregularity. By using the graph Fourier transform and
convolution theorem, we try to convert the convolution operation into a point-wise product in
Fourier domain and build a learning architecture of graph CNN for the classification of building
patterns. Experiments showed that this method has achieved outstanding results in identifying
regular and irregular patterns, and has significantly improved in comparing with other methods.
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1 Introduction

With the improvement of computing power and the advent of data era, machine learning
methods are becoming an integral part of scientific research in many disciplines. As a
supervised learning method, CNN has excellent performance in many fields, such as computer
vision and natural language processing. These successes are mainly attributed to its two
important properties: first, inspired by neuronal processing, CNN focuses on local structures
(Local Receptive Fields), and combines them into a whole, which can be applied to classifica-
tion or identification. Second, local structure of different regions can be detected by the same
convolution kernel, that is, weights sharing. The former accords with the decomposability of
object and hierarchy of cognition, the latter reduces complexity and improves learnability.

However, it should be noted that both the local connection and weight sharing properties
require that the local structure of data is fixed, normative, and can be clearly defined. For
example, the images in visual analysis are organized in a grid of pixels as a processing unit,
and sentences in natural language processing are organized in a linear arrangement of words
as a processing unit. But, for most of spatial graphics data in GIS fields, the arrangement,
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combination, or connection between objects may be more diversified, and it is often difficult
to satisfy this requirements of specification, for example, the group relationships between
plane buildings. Therefore, this kinds of data cannot directly use these powerful learning
methods for pattern recognition and knowledge discovery.

Although spatial data is irregular and cannot be organized according to grid or linear
structure, it is still possible to represent by graph structure. The graph cannot define a
convolution operation in the vertex domain directly, but in virtue of graph Fourier transform
and convolution theorem, the operation can be transformed into a point-wise product in the
Fourier domain, which is similar to the transformation of spatial domain convolution into
frequency domain convolution in image processing. Based on this idea, we propose a graph
CNN for identifying patterns and mining knowledge of irregular spatial data.

In this study, we focus on using machine learning to solve the problem of building group
pattern recognition, which can be used in many fields, such as urban morphology and
environmental analysis. Although the related researches have been carried out for decades,
there are still some problems such as incomplete taxonomy and inconsistent recognition rules.
The introduction of machine learning method is an effective attempt and supplement to solve
such classical problems in spatial analysis. In the following sections, we will describe detailed
methods, then conduct experiments and compare with other similar methods, and finally
discuss and conclude this study.

2 Methodology

2.1 Definition of Building Pattern Classification
Building patterns refer to visually salient structures exhibited collectively by a group of
buildings[4]. Traditional patterns detection methods are to predefine some specific perceptual
rules according to the characteristics of azimuth angle, direction difference and proximity, and
then to inquire whether there is a local group that satisfy such rules[3][8][10]. But these rules
are difficult to formalize and too rigid, which inevitably lead to an unsatisfactory result[6].

Similar to image processing, determining which pattern a building group visually belongs
to is essentially an issue of classification. A building group is an analogy to a picture, and
each building is analogy to the pixel and its shape features are analogy to color channels, in
spite of the relationship between them is an irregular graph structure, not a fixed grid.

2.1.1 Features of single building
Single building has spatial features that describe its graphical structures and semantic features
that describe its attributes, which in combination can effectively reflect its basic form. For
the description of these features, dozens of indices have been proposed[8]. In this study, we
mainly consider area Ab, main direction α, and three shape indices including length-width
ratio Rlw, area ratio RA, and compactness C. These indices illustrated in figure 1.

2.1.2 Graph representation of building group
Graph is an ideal tool to describe the relationships between multiple objects. Delaunay
triangulation (DT) and Minimum Spanning Tree (MST) are the two most commonly used ways
due to they can take spatial constraints and other contextual constraints into consideration,
such as proximity.

Regardless of whether DT or MST, they can be defined as G= (V, E ,W), where V and E
is a finite set of |V| = n vertices and edges, respectively, W ∈ Rn×n is a adjacency matrix
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encoding the weight between two vertices, and each vertex also contains one or several
features, as seen in figure 2.

2.2 Graph Convolutional Neural Network

2.2.1 Graph Fourier transform

Fourier transform is an effective tool in signal analysis and image processing, it decomposes
an original function (e.g., a signal or image) into the frequencies that make it up. The process
is essentially a linear transformation by using given orthogonal basics

〈
f, eiωt

〉
.

For the graph structure, we utilize the eigenvectors χ` of Laplacian as the decomposition
basics instead of complex exponentials, then define the graph Fourier transform as:

f̂ (λ`) = 〈f, χ`〉 =
∫ N

n=1
χT` (n)f(n) (1) (1)

Where, λ` is the eigenvalue and the inverse Fourier transform as:

f (n) =
∫ N

n=1
f̂ (λ`)χ`(n) (2) (2)

This definition is precise analogy to the classical one, and it can be interpreted as an
expansion of f in terms of the eigenvectors of the Laplacian[5][7].

2.2.2 Convolution on graph

As we cannot conduct the convolution in vertex domain directly, we can try to convert this
operation into a point-wise product in Fourier domain by means of graph Fourier transform
and convolution theorem, and it can be defined as:

(f ∗ g) (n) =
∫ N

n=1
f̂ (λ`) ĝ (λ`)χ`(n) (3) (3)

Using notation from the matrix theory, the convolution also can be written as:

f ∗ g = X
((
X T f

)
•
(
X T g

))
= Xdiag (ĝ (λ1) , . . . , ĝ (λN ))X T f=X ĝθ (Λ)X T f (4) (4)

Where, diag (ĝ (λ1) , . . . , ĝ (λN )) can be understood as a set of free parameters θ in the
Fourier domain (the Eigenspaces of Laplacian), or a function of the eigenvalues ĝ (Λ).
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Figure 3 The convolution of a graph f and a kernel of free parameters.

2.2.3 Polynomial approximation for fast localized convolution

The above definition of convolution operation on graph still has two limitations: 1) in
each operation, the Eigen decomposition need to be performed, which will bring lots of
computational cost; 2) without considering the locality in space, the features of a vertex may
be related to global vertices after this operation, it is not consistent with the local connection
property of classical CNN[1][2].

In response to these problems, Hammond[5] proposed a fast localized convolution based
on low-order polynomial approximation that represent ĝθ (Λ) as a polynomial function of
eigenvalues:

ĝθ (Λ) =
∫ K−1

k=0
θkΛk (5) (5)

Then, the Equation (4) can be rewritten as:

f ∗ g = X
(∫ K−1

k=0
θkΛk

)
X T f =

(∫ K−1

k=0
θk
(
XΛkX T

))
f =

(∫ K−1

k=0
θkLk

)
f (6) (6)

As we can see, no need to perform the Eigen decomposition anymore, and the feature
values of vertex are related only to its K-order neighboring vertices, which satisfies the
locality in space.

2.2.4 Architecture of convolutional neural network on graph

Based on the above-defined graph convolution, we propose a learning architecture of CNN
on graph for the classification of building patterns, as seen in figure 4. This architecture
includes convolutional, subsampling, and full connected layers, where subsampling layer is
optional and the full connected layer is the same as the classical CNN. We input a building
group that has already been represented as graph to this architecture, after the steps of
feature extraction and classification, we can get the probability that it belongs to each class
and choose the class with maximum probability as the final classification result.
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Figure 4 The architecture of convolutional neural network on graph.

Table 1 Accuracies of the proposed method and other methods.

Method SVM Random Forest Graph CNN
Accuracy 90.2% 93.4% 98.04%

3 Experiments

The experimental buildings were extracted from a large-scale 1:2000 topological map of the
city of Guangzhou, China. We divided them into separated groups by using road network
division and clustering techniques, and each group contains 20-128 buildings. Then, we
manually identified the two patterns of regular and irregular from all groups. Each group
was estimated by at least three participants to ensure the correctness, and these ambiguous
groups were discarded. At last, there are 2647 and 2646 available groups for regular and
irregular pattern respectively and contain a total of 318 598 buildings. Each group can serve
as a sample for the graph CNN, all samples were split into training, validation and test sets
by 6:2:2, and input features of all data were standardized using training set.

We used a shallow graph CNN architecture with four convolutional layers and one
full connected layer to test the datasets, each convolutional layer contains 24 third-order
polynomial convolution kernels. The more convolutional layers, the more complex the model
is and the more samples are required. In addition, regularization and dropout techniques
are also used to control the complexity, and their parameters are referenced from empirical
values and fine-tuned. The accuracy is 98.04%, which is better than that of SVM[9] and
random forest[6] methods, the comparison results are shown in table 1.

The activation of a sample is shown in figure 5 and the input volume stores the graph of
building group (left) and the last volume holds the scores for each class (right).

In this model, the order K of the polynomial is one of the important parameters. We
tested the values of 1, 2, 3, 4, 5, and 6 respectively, the performances on the validation set are
shown in figure 6a. The comparison found that it achieved the best performance when K=3.
The larger of K, the more complex of the training and the longer it takes. We further tested
the effect of input features of individual building on the classification of group patterns. We
tried to train and learn by using 4 features of them or only one, these results are shown in
figure 6b and we found that the area was one of the important features and the accuracy
could also reach 96.34% when only area feature was used. This may be due to the fact that
areas of buildings in a regular pattern are more homogeneous.
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Figure 5 The activations of an example graph CNN architecture.
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Figure 6 Performances when taking different K values or inputting different features.

4 Discussion and Conclusion

As a classical problem in the analysis of irregular spatial data, the traditional building
pattern classification method needs to manually extract features and design rules for specific
patterns. In this paper, we propose a graph CNN that represent the building groups by
graph and convert the convolution of vertex domain into a point-wise product in Fourier
domain. It can directly extract patterns characteristics based on the training and learning of
sample data. Experiments showed that proposed method has achieved outstanding results in
identifying regular and irregular patterns, and has significantly improved in comparing with
other methods. Meanwhile, it has great potential to extend to other analyses of irregular
spatial data, such as classification of road patterns and identification of point clouds.

The difficulties of this method lie in the selection of input features and the training process.
We have selected five features for experiments, but there are still many other descriptive
indices that can be selected. Determining which indices can better describe building patterns
and applying them to training and learning still requires more experiments, and the principal
component analysis may be a worthwhile approach to try. The training of graph CNN
requires more samples, otherwise it will easily lead to overfitting, especially for deep networks
with many convolutional layers. In the follow-up work, Volunteer Geographic Information
(VGI) is a desirable and feasible data source.
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Abstract
Traditionally, understanding urban neighborhood conditions heavily relies on time-consuming
and labor-intensive surveying. As the growing development of computer vision and GIScience
technology, neighborhood conditions assessment can be more cost-effective and time-efficient.
This study utilized Google Earth Engine (GEE) to acquire 1m aerial imagery from the National
Agriculture Image Program (NAIP). The features within two main categories: (i) aesthetics
and (ii) street morphology that have been selected to reflect neighborhood socio-economic (SE)
and demographic (DG) conditions were subsequently extracted through geographic object-based
image analysis (GEOBIA) routine. Finally, coefficient analysis was performed to validate the
relationship between selected SE indicators, generated via spatial analysis, as well as actual SE
and DG data within region of interests (ROIs). We hope this pilot study can be leveraged to
perform cost- and time- effective neighborhood conditions assessment in support of community
data assessment on both demographics and health issues.
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1 Introduction

Socio-economic and demographic data are fundamental components of understanding neigh-
borhood makeup and health condition [13]. Conventional approach to investigate the socio-
economic and demographic condition within urban areas relies heavily on time-consuming
and labor-intensive surveying that usually causes the lag of socio-economic and demographic
changes (e.g. American Census Survey) [3]. With the growing development of computer
vision, remote sensing and GIS technology, the lag of socio-economic and demographic data
in urban areas can be effectively compromised to some degree. This pilot study aims to
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70:2 Assessing Neighborhood Conditions

examine the utility of RS imagery in urban neighborhood conditions assessment at census
block within given zip codes, specifically using a popular image classification paradigm:
GEOBIA. The research focus is to find SE indicators, generated from the extracted features
using spatial analysis, that can represent certain SE or DG conditions in given census-block
neighborhoods.

2 Remote Sensing on Neighborhood Condition Assessment

Considerable researches have demonstrated the feasibility of RS satellite imagery in estimation
of DG data. [2] exploited both high- and medium- resolution satellite imagery to estimate
population distribution for areas lacking census data in support of disaster resilience in
Haiti. [1] filled DG data gap within developing countries using per-pixel population estimates
generated by a classification and regression trees (CART) and multi-resolution satellite
imagery. More recently, [3] identified the significant associations between the presence of
specific vehicle models and voter preferences across 200 cities in the US. using convolutional
neural network (CNNs) and the Google Street View image dataset.

In terms of SE condition, the contextual features, such as the size of building structures,
the abundance of vegetation cover and etc., can reflect the different socio-economic status
(SES) in urban areas, particular in residential areas [8, 9]. Specifically, lower SES usually
accompanies less vegetation cover and swimming pools but high density of residential
buildings [7, 11, 12]. In addition, SES information plays an important role to understand
neighborhood health conditions.[4] indicated that neighborhood characteristics (e.g. SE and
built environments) impact cancer incidence or outcomes. [6] found that women in high-SES
neighborhoods have higher breast cancer-specific survival than in low-SES neighborhoods.
[13] illustrated that lower SES is highly related to poorer health condition in developing
countries because of the close proximity of people living and insanitary settlement. These
characteristics could directly or indirectly ascend disease spread within the neighborhoods.

Although RS has been widely-applied for neighborhood condition assessment, providing
more detailed perspectives of neighborhood characteristics is still on demand. Here, we take
advantages of ortho high-resolution aerial imagery and GEOBIA to provide detailed and
accurate neighborhood conditions assessment. The methodology will be elaborated in the
following paragraphs.

3 Methodology

3.1 ROIs
Three ROIs: (i) 92130 Carmel Valley, (ii) 92120 Del Cerro and (iii) 92113 Logan Heights
were selected to represent high, medium and low SES, respectively. The selection of ROIs
was based on household income data, derived from city-data.com.

3.2 GEOBIA
The term of GEOBIA is specifically for GIScience because of requiring the knowledge in
geographic information (GI) to segment and classify RS imagery. Moreover, the objects of
GEOBIA are usually associated with natural features (e.g., grassland) or artificial features
(e.g., building) [10]. These unique emphases set apart GEOBIA from object-based image
analysis (OBIA), which is more used in other disciplinesdisciplines (e.g., computer vision
and biomedical imaging) [5]. This pilot study applied GEOBIA to extract selected features
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from NAIP imagery. The features are within two main categories, aesthetics and street
morphology, that have potential to reflect SE and DG conditions within neighborhoods.

3.3 Feature Extraction and Building SE Indicators

Vegetation cover and swimming pool were two primary features extracted from NAIP imagery
via GEOBIA. The following SE indicators were built from these two features via spatial
analysis:
(i) Aesthetics:

Percentage of vegetation cover (veg_percent)
Swimming pool density(sp_den)
Percentage of swimming pool area (sp_percent)
Number of swimming pool (sp_num)

where: percentage of vegetation cover = the area of vegetation within each census block
/ each area of census block; swimming pool density = the number of swimming pool
within each census block / each area of census block; percentage of swimming pool
area = the area of swimming pool within each census block / each area of census block;
number of swimming pool = total number of swimming pools within each census block.

(ii) Street Morphology:
Road density (rd_den)
Road junction density (rd_junction_den)

where: road density = total road length within each census block / each area of census block;
road junction density = total number of road junctions within each census block / each area
of census block.

3.4 Selection of SE and DG variables

To validate whether the given SE indicators can represent certain SES or DG makeup, we
selected the following SE and DG variables from 2015 American Census Survey data.

T1115_INCOM: Median income; total household income
F1115_MHV: Median housing value
T1115_PROF: Total professional, scientific, management, administrative employed civil-
ians age 16 and older
P1115_I75: Percent individuals with income below / over $75,000

Coefficient analysis was subsequently performed to assess the association of the SE indicators
with surveyed SE and DG data.

4 Results and Discussion

Due to the limitation of pages, this paper will only show the results of high and medium
SES in this section.

4.1 Feature Extractions based on GEOBIA

Figure 1a-e shows a subset of NAIP image, swimming pool and vegetation cover in high SES
and medium SES, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 1 The NAIP image with the detection of vegetation cover and swimming pools in high
SES and medium SES in San Diego County.

4.2 The correlation of SE Indicators as well as surveyed SE and DG
variables

The coefficient outcomes of high SES and medium SES were demonstrated in Table 1 and
Table 2, respectively. The highest positive / lowest negative correlation between each SE
indicator and individual surveyed variable was highlighted by red / blue.

Table 1 shows that swimming pool density and percentage of swimming pool area have the
highest positive correlation with total household income. Number of swimming pool yields
the highest positive correlation with total professional, scientific, management, administrative
employed civilians age 16 and older. Percentage of vegetation cover yield the highest positive
correlation with percent individuals with income below / over $75,000, while road density
has the highest negative correlation with this SE variable.

Table 2 demonstrates that three swimming pool-related indicators have the highest
positive correlation with median housing value. Percentage of vegetation cover yield the
highest positive correlation with total professional, scientific, management, administrative
employed civilians age 16 and older. Two road-related indicators have the greatest negative
correlation with percent individuals with income below / over $75,000.
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Table 1 The coefficient analysis of high SES neighborhood (92130 Carmel Valley).

Features / SE or DG variables T1115_INCOME T1115_PROF T1115_MHV P1115_I75
sp_den 0.60 -0.18 0.42 0.49
sp_percent 0.62 -0.18 0.44 0.51
sp_num 0.45 0.53 0.45 0.45
veg_percent 0.25 0.28 -0.05 0.37
rd_den -0.35 -0.27 -0.43 -0.62
rd_junction_den -0.13 -0.21 0.13 -0.11

Table 2 The coefficient analysis of medium SES neighborhood (92120 Del Cerro).

Features / SE or DG variables T1115_INCOME T1115_PROF T1115_MHV P1115_I75
sp_den 0.31 -0.16 0.44 0.42
sp_percent 0.29 -0.09 0.47 0.40
sp_num 0.10 -0.01 0.49 0.42
veg_percent 0.29 -0.20 0.26 0.44
rd_den -0.18 0.08 0.13 -0.22
rd_junction_den -0.39 0.29 -0.12 -0.57

Figure 2 Coefficient=0.62

Figure 3 Coefficient=0.-62

Here we highlighted few pairs of SE indicators and the surveyed variables via Geovisual-
ization (Figure 2–4).
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Figure 4 Coefficient=0.44

5 Conclusion

Although all highest positive correlation between SE indicators and surveyed variables are
not significant, some certain SE indicators show the potential to assess specific SE or DG
conditions within ROIs. Specifically, swimming pool-associated indicators have the greatest
correlation with total household income at high SES and with median housing value at
medium SES. Vegetation indicator yields the highest correlation with percent individuals
with income below / over $75,000 at both high and medium SES. In terms of negative
correlation, road density has the greatest negative correlation with percent individuals with
income below / over $75,000 at high SES, while road junction density meets the greatest
negative correlation with this DG variable. In the near future, we plan to incorporate Google
Street View into our framework to provide different angle of features that have potential to
represent neighborhood conditions.
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Abstract
This paper is involved with extracting spatial information from text. We seek to geo-reference
all spatial entities mentioned in a piece of text. The focus of this paper is to investigate the
contribution of spatial and ontological reasoning to spatial interpretation of text. A preliminary
study considering descriptions of cities and geographical regions from English Wikipedia suggests
that spatial and ontological reasoning can be more effective to resolve ambiguities in text than a
classical text understanding pipeline relying on parsing.

2012 ACM Subject Classification Computing methodologies → Information extraction

Keywords and phrases spatial information extraction, geo-referencing, spatial reasoning

Digital Object Identifier 10.4230/LIPIcs.GIScience.2018.71

Category Short Paper

Funding This work is supported by the Deutsche Forschungsgemeinschaft (DFG), priority pro-
gram Volunteered Geographic Information. Financial support is gratefully acknowledged.

1 Introduction

We are involved with a project that aims to develop an automated system capable of
interpreting spatial language for resolving place descriptions. While ‘place’ is an inherently
complex and elusive concept (cp. [3, 7]), we take a pragmatic approach here: Given a natural
language description like “the campground south of Bamberg, near the river”, we seek to
identify geographic entities in the OpenStreetMap (OSM) data base1 that match noun phrases
occurring in the sentence that refer to real-world entities, in our example thus identifying a
campground, an entity named Bamberg, and a river. Automated interpretation of text is
still a challenging task, mainly because of language parsing and the ambiguity of names and
human conceptualization. While ambiguity of named entities can be tackled by considering
any entity with a matching name found in the database and then applying ranking techniques
based on geographic scope [1], there are no easy solutions to tackle failed attempts to parse
a piece of text. Ambiguity resolution can be regarded as a task of reasoning since the goal is
to identify a single interpretation from a set of candidates which is jointly agreeable with all
information given. We are motivated to investigate to which extent reasoning about spatial
and ontological properties is also capable of overcoming problems with natural language

1 http://www.openstreetmap.org
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parsing. Therefore, we investigate a radical attempt that only performs a very simple analysis
of the input text, generating many interpretation candidates. We then apply reasoning to
single out the interpretation that is most agreeable. This paper presents our method and a
preliminary study that suggests spatio-ontological reasoning is offering powerful means for
resolving ambiguous interpretations that can outperform classic interpretation pipelines built
around natural language parsing.

2 Approach and Discussion of Related Work

We seek to identify named and unnamed entities in a piece of text. While geo-referencing
named entities considers names and spatial relations to other entities [1], dealing with
unnamed entities presents a special case that can only exploit spatial constraints and maybe
type information. We can thus regard both cases jointly as tasks of ambiguity resolution.
One approach is geographic scope resolution which allows potential interpretations to be
restricted to within a known scope. Whereas Andogah et al. propose a method based on a
set of pre-defined geographic scopes [1], Richter et al. [5] consider granularity effects caused
by object types. They state that knowing the finest possible level of granularity with respect
to a general ontology of spatial entities is helpful for resolving place descriptions. Both ideas
can be integrated by attuning the semantics of relations and queries to focus on results
that fit a scope indicated by type and location of geographic entities appearing in the same
text. For example, the semantics of “near” can be set according to the granularity of objects
and their geographic scope. Exploiting such context information presents a chicken-and-egg
problem, though: information obtained by resolving entities is to be employed simultaneously
to resolving the entities. This motivates an approach using logic programming techniques
since dependencies can be expressed in a declarative manner, abstracting from algorithmic
realization. The declarative representation can be regarded as a constraint satisfaction
problem (CSP) in which variables correspond to spatial entities. A solution to the CSP is
obtained when all variables are geo-referenced by matching them to a spatial database.

Interpretation of a place description can be regarded as a simple cognitive simulation
of language interpretation, similar to Tschander et al. [6] who describe an artificial agent
capable of following route instruction, using a conceptual-level instruction language. In
contrast to that agent, we are mostly interested in interpreting describing statements like
“campground south of Bamberg”, rather than processing incremental instructions like “take
road R123 south”. Therefore, we are not incrementally interpreting a place description, but
aim to build a single declarative description from a single description.

Formal ontologies have been claimed to offers adequate means to represent semantic
commitments of a spatial language phrase [2]. Likewise, we employ an ontology-like repres-
entation to augment the semantic representation of words (the lexicon). However, we have
chosen not to employ formal ontology techniques for two reasons. First, truth semantics
of classical ontology languages is binary, i.e., entities belong to a certain class or they do
not. In the case of spatial entities and concepts, such crisp classification may be hard to
achieve and concepts may vary across individuals. Instead, concepts or relations like ‘near’
may me more adequately represented using a semantic capturing vagueness, e.g., using Fuzzy
or probabilistic models. Second, existing ontology languages do not support the spatial
domain and manifold spatial relations to the extent required to empower spatial reasoning
for computing likely interpretations of a locative phrase.

Since we are involved with natural language texts, application of natural language
parsing techniques appears reasonable. Several works make use of different parser and their
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input Bamberg is a town north of Nuremberg.

1. POS tagging Bamberg:NE town:N north:R Nuremberg:NE
2. named entity

resolution
{ID0, ID1, . . .} town:N north:R {ID8, ID9, . . .}

3. ontological
annotation

{ID0, ID1, . . .} settlement north:R {ID8, ID9, . . .}

4. logic program
generation

(isa(ID0,′ settlement′) ∧ northOf(′settlement′, ID9)) ∨
(isa(ID1,′ settlement′) ∧ northOf(′settlement′, ID9)) ∨
. . . northOf(ID0, ID8) ∧ . . .) ∨ . . .

Figure 1 Example of processing steps in generation phase of information extraction (NE: named
entity, N: noun, R:relation, ID:denotes reference to objects in OSM database).

modules (like Standford NLTK chunking or the dependency parser2) for relating the objects
and relations between them. However, as we are only interested in spatial entities which
correspond to nouns in the input text and the relations holding between them, a parser
which has to take the verb of a sentence as starting point may not be necessary. Moreover,
we found that no freely available parser was able to resolve references in the text correctly.
A wrongly identified reference can easily inhibit correct interpretation of a sentence. As
our experiments discussed further below reveal, wrongly identified references are a common
problem. By contrast, an unidentified reference can often be inferred from context. The
basic idea of our approach is thus to generate all candidate interpretations of references and
then apply reasoning to single out the most likely interpretation.

3 Processing Pipeline

The basic idea of our method is to use a set of logical statements as an intermediate
representation that over-generalizes information expressed in a sentence. Then, spatio-
ontological reasoning is applied to prune off implausible interpretations. The method can
therefore be regarded as exhaustive search consisting of a generation and pruning phase.
Both phases rely on the same sources of information:

an ontology of geographic entity types
a geographic data base (OpenStreetMap) providing information about entity names, their
type with respect to the ontology, and associated geographical information
a lexicon comprising all nouns that represent geographic entity types and all spatial
relations

In the generation phase (see Fig. 1 for an example), we process a sentence as follows:
1. Perform part-of-speech (POS) tagging by applying named entity recognition using the

geographic database and checking for occurrence in the lexicon. All recognized words are
labeled with their category, all other words are discarded. To handle composite expressions
of several nouns, (e.g., “art gallery”), nouns immediately following one another get joined
and treated as a single noun. In case of ambiguities at this or any later point, all possible
options are stored.

2. For all named entities, possible interpretations from the geographic database are retrieved.
For example, in case of Bamberg, we would obtain an OpenStreetMap entity referring
to the city of Bamberg, depicted as ID0 in Fig. 1, and to the corresponding district

2 https://nlp.stanford.edu/software/
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of Bamberg, ID1, both for Bamberg, Germany and for Bamberg, SC, USA (creating
ambiguity in the extracted information).

3. For all nouns ontological type information is obtained from the lexicon. Nouns are then
replaced by their ontological type. Every noun is assumed to either represent an unnamed
entity (e.g., “park in the town of Bamberg”) or a type designator for another noun or
named entity (e.g., “park in the town of Bamberg”).

4. Possible interpretations are determined as disjunctions by compiling interpretations of
words and references of relations:

For every relation, a term is constructed combining any word (noun or named entity)
appearing before the relation with any word occurring after the relation. The designator
for each relation is retrieved from the lexicon.
For every noun an ontological “is-a” relation is generated in reference to any other
noun or named entity, e.g., is-a(Bamberg, town).

In the pruning phase every conjunctive term generated in the generation phase is processed
individually, see also Fig. 2 for illustration. A term gets discarded if

a single noun occurs simultaneously in a “is-a” and a spatial relation, i.e., it would
represent ontological information and an unnamed entity simultaneously,
a noun or named entity in the input is not contained in at least one relation,
or the grouping of relations violates word order in the input sentence. We disallow
for relational statements r(wa, wb) ∧ r′(wc, wd) if the position in the sentence (denoted
Pos()) is in crossed order, i.e., it violates Pos(wa) < Pos(wc)⇒ Pos(wb) ≤ Pos(wd). For
example, in “Bamberg is a town north of Nuremberg, on the river Regnitz” interpretations
containing isa(′Bamberg′,′ river′) ∧ isa(′town′,′ Regnitz′) get discarded.

After the pruning phase, we search for the conjunctive term which can best be satisfied.
This means, for unreferenced nouns a suitable instantiation from the geographic database
is searched that agrees with the relations–agreement is measured gradually and summed
up. Also, relations between named entities and/or referenced nouns are tested. In case of
the example in Fig. 1 we would only find for the entity representing Bamberg in Germany
a matching entity Nuremberg such that Bamberg is located north of Nuremberg. The
ontological constraint saying Bamberg is a settlement would only be fulfilled for the city of
Bamberg, not the administrative region. We thus arrive at the desired interpretation.

4 First Findings

We collected a corpus of place descriptions from English Wikipedia by selecting sentences
which present mainly spatial information. We have used the summary part from Wikipedia
articles about geographical entities to collect the corpus and have applied our approach to
50 sentences. We also test natural language parsing using the Stanford NTLK parser on the
corpus and investigate parser output. One aim of the study is to compare the amount of
ambiguities introduced by our over-generalizing method of information extraction to wrongly
identified references by the parser. Also, we are interested to learn what kind of spatial and
ontological reasoning is required to interpret the output of our approach.

Let us start by considering a first example shown in Fig. 2 showing relations extracted
by the parser and by the generation method. For clarity of presentation, no entities were
replaced by OpenStreetMap references and no nouns were replaced by ontological types.
We write r({n1, n2}, {n3, n4}) as shorthand notation to denote that all four interpretations
r(n1, n3), r(n2, n3), . . . are considered. As can be seen, the parser identifies that the town
mentioned is located in Upper Franconia, but it does not make the relation between the
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“
B︷ ︸︸ ︷

Bamberg is a
T︷ ︸︸ ︷

town in
UF︷ ︸︸ ︷

Upper Franconia ,
G︷ ︸︸ ︷

Germany , on the
R︷ ︸︸ ︷

river Regnitz
close to its confluence︸ ︷︷ ︸

C

with the river Main︸ ︷︷ ︸
M

.”

parser output in(T, UF), on(G, R)

generation phase is-a({B, UF, G, R, M}, C), is-a({B, UF, G, R, M}, T ),
in({T, B}, {M, C, R, G, UF}), on({G, UF, T, B}, {M, C, R}),
close({B, T, UF, G, R}, {C, M})

pruning phase
ontological is-a({B, UF, G, R, M}, C), is-a({B, UF, G, R, M }, T ),
spatial in({T, B}, {M, C, R, G, UF}), on({G, UF, T, B}, {M, C, R}),
ordering close({B,T , UF, G, R}, {C, M})

Figure 2 Example of pruning using spatio-ontological reasoning.

named entity ‘Bamberg’ and town explicit. Also, the parser commits wrongly to claiming
Germany would be located on the river Regnitz. By contrast, exhaustive search contains
all correct interpretations by construction, but also several statements not following from
the input text. Applying ontological reasoning one immediately identifies that only named
entity Bamberg is of type town. Spatial reasoning reveals, for example, that Upper Franconia
is neither located on river Regnitz nor Main. As our approach is not yet prepared to
handle geographic names like “Upper Franconia, Germany”, we miss this important piece of
information.

In addition to above example, some candidate interpretations generated by exhaustive
search that are not valid interpretations of the input text take more effort to reject. In case
of The Historical Museum of Bamberg is a museum located in the Alte Hofhaltung next to
the city cathedral, the interpretation in(’museum’, ’city cathedral’) cannot easily be rejected
if the geographic database also includes a museum in the city cathedral. If, during search for
the most likely interpretation, the unintended reference is accepted, then order constraints
inhibit any further connection to the named spatial entity “Alte Hofhaltung” (Old Court). So
in this case we are relying on preferring the larger set of jointly possible interpretations that
involves in(’museum’, ’Alte Hofhaltung’) and next_to(’Alte Hofhaltung’, ’city cathedral’)
over just in(’museum’, ’city cathedral’). We have tested our corpus and in initial testing we
have found out that in 50% sentences it is providing us information that is not present in the
sentence but generated by the algorithm. In many examples, these facts are not incorrect like
in(’Bamberg’, ’Germany’) from the example in Fig. 2. While these unintended but correct
interpretation candidates did not inhibit a correct manual interpretation, it remains an open
question whether this will hold for automated interpretation on a larger corpus.

Now looking at the parser outputs, we can clearly see that it provides us with limited
information. In particular relations from complex language constructs are missing. In case
of the output of Fig. 2, the relations apply to different entities which inhibits any chaining
by means of reasoning. All in all, the parser is not able to provide a densely connected set of
facts that would make spatial or ontological reasoning effective. Carrying out spatial and
ontological reasoning manually and comparing residual errors after processing the output of
exhaustive search with facts extracted from the parser, we cannot rule out all ambiguous
interpretations in 25% of the sentences, but we are facing wrong outputs from the parser in
50% of the cases.
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5 Conclusion and Next Steps

This paper outlines an approach to information extraction from text which does not rely on
natural language parsing, but employs a simple part-of-speech tagging and applies spatial
and ontological reasoning for interpretation. Making spatio-ontological reasoning an explicit
step in the interpretation also enables consideration of contextual dependencies. Clearly,
exhaustive search does not tackle the fundamental problem of language understanding, but
it relies on the assumption that the largest set of statements that can be matched to a
geographic database corresponds to the intended interpretation. While our approach is
unable to deal with negation or complex language structures, it may indeed be sufficient for
typical descriptive texts. In a manual comparison using sentences from English Wikipedia
that describe geographic entities we see that reasoning is able to prune off most invalid
interpretations, whereas natural language parsing results in some wrong commitments one is
unable to recognize in a later processing step.

Before embarking on a comprehensive study to analyze the new method, a comprehensive
lexicon and knowledge base have to be prepared and reasoning methods to be automated.
Information required to build lexicon and knowledge base are readily available using data
sources such as WordNet[4] and OpenStreetMap, yet these need to be linked on a semantic
level. We are currently working on implementing the automated reasoning method using
these sources in order to arrive at a spatial interpretation of the constraints. To make the
approach efficient, a query strategy will be required to avoid costly queries by serializing
queries and by focusing on reasonable candidate locations.
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Abstract
Web Feature Service (WFS) is a popular Web service for geospatial data, which is represented
as sets of features that can be queried using the GetFeature request protocol. However, queries
involving spatial joins are not efficiently supported by WFS server implementations such as
GeoServer. Performing spatial join at client side is unfortunately expensive and not scalable. In
this paper, we propose a simple and yet scalable strategy for performing spatial joins at client side
after querying WFS data. Our approach is based on the fact that Web clients of WFS data are
often used for query-based visual exploration. In visual exploration, the queried spatial objects
can be filtered for a particular zoom level and spatial extent and be simplified before spatial join
and still serve their purpose. This way, we can drastically reduce the number of spatial objects
retrieved from WFS servers and reduce the computation cost of spatial join, so that even a simple
plane-sweep algorithm can yield acceptable performance for interactive applications.
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1 Introduction

OGC Web services such as Web Feature Service (WFS) and Web Map Service (WMS)
provide standard Web-based protocols for querying geospatial features. WMS clients can use
GetMap request to retrieve map images for a specified area and use GetFeatureInfo request to
query the attributes of specified features. WFS clients can use GetFeature request to retrieve
the feature instances including the geometries and other feature attributes. The retrieved
features can be used by clients for computations such as spatial joins.

In query-based visual exploration, users rely on an interactive client application to locate
data of interests, where spatial join is a commonly used operation to discover spatial relations
between features on a map. Spatial join is a computationally intensive operation that is
usually executed in a server such as PostGIS database. Previous studies have focused on
improving response time at server side [6] while very few research is on improving performance
at client side [5]. However, in some cases, it is preferable to perform spatial joins at client
side. For example, to join two or more types of features located in different WFS servers, it is
inefficient to retrieve one set of features from one server and send them to the second server
for spatial join. Moreover, WFS servers may not even provide efficient implementation of
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Table 1 Selected features of high-definition hydrology dataset for HUC0204 – Delaware-Mid
Atlantic Coastal sub-region in the Mid-Atlantic Water Resource Region.

Feature Type Geometry Type Number of Features Shapefile Size

NHDFlowline MultiLineString 310835 312 MB
NHDWaterbody MultiPolygon 57641 151 MB
NHDLine MultiLineString 8090 3.7 MB
NHDArea MultiPolygon 2592 113 MB
NHDPoint Point 514 0.023 MB

spatial joins. For example, GeoServer implements spatial joins of two layers as a GetFeature
request to the first layer where the join operation with the second layer is encoded in the
filter of the request. This is similar to the nested-loop join [4], which loads all features in
the server memory and performs spatial join on each pair of features in the two layers. This
is inefficient. For example, to avoid using too much server memory, GeoServer restricts
the number of features in the filter to be 1000 or less by default, which limits its ability of
handling big spatial datasets.

Implementing efficient spatial join at WFS clients requires special care. WFS GetFeature
requests can overwhelm both the server and the client when involving in big spatial datasets.
For example, the hydrology dataset shown in Table 1 contains features (e.g. flowline) over
300 megabytes (MB). If we make a request to retrieve all feature instances of the flowline
layer, then either the WFS server will fail to respond or the browser that runs the WFS
client will quit working due to memory exhaustion. Note that while WMS can build and
return maps of a large number of features such as the aforementioned flowline, WFS needs
to encode all feature data in a GetFeature response, which can severely strain the memory
capacity of the server. The WFS client, which often is the Web or mobile browser, will also
become overwhelmed by the amount of memory and computation workload that are required
to decode the response, store the spatial objects, and display them on a map. In addition,
transmitting hundreds of MB of data across network consumes time and bandwidth. Finally,
even if the server and client can process the GetFeature requests without crashing, spatial
join can still take exceedingly long time, which is unsuitable for an interactive application.

While it is possible to improve the runtime of spatial join by implementing more efficient
spatial join algorithms, there is a limit on how much improvement one can make. The query
response time for a WFS GetFeature request includes the query processing time at WFS
server, network transmission time of the query response, decoding time of the response, and
computation time of spatial join. Improving performance on spatial join alone will not be
sufficient if the network time and server time are still significant. In addition, WFS clients
are often implemented as dynamic Web pages running in browsers, where the join operation
is implemented in JavaScript that runs as a single-threaded program. There is a limited
opportunity to improve spatial join performance through parallelization.

Although many spatial join algorithms have been proposed in literature, very few studies
investigated performance of spatial join query on the client side over the Web or mobile
browser. Based on our best knowledge, there is no study to compare performance of different
spatial join algorithms for WFS, not to say in the context of Geospatial Semantic Web.
To address the above efficiency problem with spatial join at WFS clients, we propose an
approach that leverages the fact that users of the WFS clients are mostly interested in
features of the current map extent and zoom level by not retrieving irrelevant features before
performing spatial joins. In addition, retrieved features are cached to reduce network traffic
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Figure 1 WFS query interface.

and server load and geometry simplification is used to improve the efficiency of evaluating
spatial relations. Alternative spatial join algorithms are evaluated. For index-based join,
spatial indices generated online are cached to reduce runtime costs.

For the rest of the paper, we first explain our approach in Section 2, then we evaluate its
performance in Section 3, and we discuss the result in Section 4.

2 Approach

This WFS query client is an extension of our prior work on RDF query interface for WFS
data [8, 7]. The spatial query is written in SPARQL-like syntax, which is translated
to WFS requests and spatial join operations. A configuration file is used to map the
WFS feature types and attributes to RDF classes and properties. Furthermore, certain
attribute values are mapped to more recognizable constants for the convenience of writing
queries. The query interface is shown in Figure 1 and the application is available at
http://tianpar.cs.uwm.edu:8080/usgs.

The interface has an option to automatically insert spatial filters based on the current
map extent so that features beyond the current map extent will not be retrieved. It also has
an option to insert spatial filters based on the current zoom level so that features with sizes
that are smaller than a threshold will not be retrieved. The threshold is calculated based
on an adjustable scale proportional to the current zoom level. In order to perform spatial
filtering based on feature size, we encode the attribute information of a feature type used to
represent sizes in the configuration file.

For example, the query (Q1) below retrieves streams/rivers near lakes/ponds.
select ?r ?w where { (Q1)

?r a <flow_line>.
?r <nh:type> <StreamRiver>.
?w a <water_body>.
?w <nh:type> <LakePond>.
?r <nearby> ?w }

In this query, the predicate <nearby> specifies a spatial join between the variables ?r and
?w, which refer to features of streams/rivers and lakes/ponds respectively. The adjustable
distance of <nearby> is specified separately in the query interface. This query is translated
to the following concrete actions.
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(a) Stream/river (b) Lake/pond (c) Simplified (d) Not simplified

(e) Stream/river† (f) Lake/pond† (g) Simplified† (h) Not simplified†

Figure 2 Part of selected streams/rivers (in yellow) and lakes/ponds (in green) with or without
size filters (marked with †) and the join result with or without simplification.

(GetFeature: usgs_hd:NHDFlowline,
filter(FType = ’460’) AND (BBOX(the_geom,-75.52,39.48,-74.84,39.79))

AND (LengthKM >= 0.5)).
(GetFeature: usgs_hd:NHDWaterbody,

filter(FType = ’390’) AND (BBOX(the_geom,-75.52,39.48,-74.84,39.79))
AND (AreaSqKm >= 0.0625)).

Join (distance = 250 meters).

The extent and size filters are inserted automatically by the query client into the generated
GetFeature requests. The extent filter BBOX(the_geom,~-75.52,39.48,-74.84,39.79)) is
derived from the current map extent (as in Figure 1). The size filter is derived from the
current zoom-level and related to size attribute of each feature type. For streams/rivers, size
filter is LengthKM ≥ 0.5 and for lakes/ponds, the size filter is AreaSqKm ≥ 0.0625.

We have implemented four spatial join algorithms: nested-loop join [4], plane sweep [1],
index nested-loop join [3], and hierarchical traversal [2], where the latter two use R-tree
indexing. Before spatial join, complex geometries (multi-line-strings and multi-polygons) are
simplified based on a tolerance value proportional to the join distance. The implementation
of nested-loop join is optimized by filtering candidate pairs using their bounding boxes.

3 Evaluation

We evaluated the performance of the four spatial join algorithms implemented in JavaScript
running in Chrome browser. We used the query (Q1) to select the streams/rivers (NHD-
Flowline) that are within 250 meters of lakes/ponds (NHDWaterbody). Figure 2 shows some
of the streams/rivers and lakes/ponds with or without size filters and the corresponding join
results. The right two maps of each row are the join results with or without simplification.
The maps on the second row (without size filters) are cluttered with features (especially
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Table 2 Numbers of features after join, written as (# of streams/rivers, # of lakes/ponds).

Algorithm Nested loop Plane sweep Index nested-
loop

Hierarchical
traversal

Filter by extent (3192, 1764) (3192, 1764) (3192, 1764) (3192, 1764)
Filter by extent & Simplify (2865, 1514) (2911, 1649) (2865, 1514) (2865, 1514)
Filter by extent/size (51, 36) (51, 36) (51, 36) (51, 36)
Filter by extent/size & Simplify (47, 33) (46, 33) (47, 33) (47, 33)

Table 3 Number of retrieved features and runtime (in seconds) for data retrieval, rendering
results, and computing geometry bounds (included in the runtime of spatial join).

Stream/River Lake/Pond Retrieval Render Bounds
Filter by extent only 8291 2757 11.6 s 0.85 s 0.99 s
Filter by extent and size 981 69 2.9 s 0.07 s 0.32 s

lakes/ponds) that are too small for visual exploration. From the figure it can be seen that,
the join results with or without simplification ((c) vs. (d) and (e) vs. (f)) do not show
obvious visual differences.

To measure the accuracy of various query options, we report in Table 2 the number of
joined features that are with or without size filters and with or without simplification (with
the tolerance of 125 meters). From Table 2, it can be seen that all four algorithms report
similar results. The only exception is the plane sweep algorithm when the feature geometries
are simplified. This difference is due to the combined effect of the simplification and the
order of comparison of the join algorithms. Without simplification, all four algorithms report
the same results. Simplification also reduces the number of joined features moderately.

Table 3 shows the number of retrieved features with or without size filters and the
corresponding runtime for data retrieval, rendering results, and calculating geometry bounds.
Table 4 shows the runtime of the four join algorithms for query (Q1) that are with or without
size filters and with or without simplification. The runtime includes one-time costs such
as calculating geometry bounds, simplification, spatial indexing (for index nested-loop join
and hierarchical traversal), and sorting (for plane sweep). The costs are one-time since the
bounds or indices are stored with the cached features and if the next user query uses cached
data, such costs will not be repeated. Since these one-time costs are significant portions of
the join time, for queries that can find data in the cache, the join time is much lower.

Caching reduces runtime cost even for queries that share some of the data. For example,
if we first run the below query (Q2) and then run (Q1) with the same extent and size filters,
the execution of (Q1) will be much faster because the features of streams/rivers will be in
cache where spatial indices and geometry bounds have already been computed.

select ?r ?p where { (Q2)
?r a <flow_line>.
?r <nh:type> <StreamRiver>.
?p a <hydro_point>.
?r <nearby> ?p }

In this case, the query (Q1) only needs to send a WFS request to retrieve lakes/ponds
features and to perform spatial join. The runtime cost of (Q1) (with simplification) reduces
from 3.5 s to about 1.7 s (1.5 s for data retrieval, 0.16 s for index nested-loop join – 0.12 s of
which is for computing geometry bounds of lakes/ponds, while rendering is still 0.07 s).
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Table 4 Runtime (in seconds) of spatial join (including one-time costs such as calculating
geometry bounds, simplification, indexing, and sorting).

Algorithm Nested loop Plane sweep Index
nested-loop

Hierarchical
traversal

Filter by extent 73.2 s 2.87 s 2.5 s 2.74 s
Filter by extent & Simplify 49.7 s 1.4 s 1.4 s 1.37 s
Filter by extent/size 3.9 s 0.76 s 0.75 s 0.72 s
Filter by extent/size & Simplify 0.65 s 0.42 s 0.46 s 0.456 s

4 Discussion and Conclusion

This work evaluates optimization strategies for spatial join queries on client browser from
distributed WFS servers. Our strategy is to automatically apply spatial filters based on map
extent and feature size. The extent filter removes features beyond the currently viewed map
while size filters remove features too small for the current zoom level. This kind of filters are
suitable for the purpose of visual exploration. The results show the importance of spatial
filtering in achieving acceptable query performance. As shown in Tables 3 and 4, the time
for feature retrieval (11.6 s) dominates the time for spatial join and rendering if size filters
are not applied. Even with size filters, the feature retrieval time (2.9 s) is still the largest
component of the query time but at least it is within an acceptable range (3.5 s), which can
be much lower if some or all of the queried data is cached. The results also show that naive
implementation of spatial join (e.g. nested loop) scales poorly with the large number of
features. Plane sweep, index nested-loop, and hierarchical traversal have similar performance,
which makes plane-sweep a better choice due to its simplicity. Finally, the results show that
geometry simplification can greatly reduce spatial join time, especially for features such as
waterbody that can have tens of thousands of points in a geometry.
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Abstract
The understanding of geographical reality is a process of data representation and pattern discov-
ery. Former studies mainly adopted continuous-field models to represent spatial variables and to
investigate the underlying spatial continuity/heterogeneity in a regular spatial domain. In this
article, we introduce a more generalized model based on graph convolutional neural networks
that can capture the complex parameters of spatial patterns underlying graph-structured spatial
data, which generally contain both Euclidean spatial information and non-Euclidean feature in-
formation. A trainable site-selection framework is proposed to demonstrate the feasibility of our
model in geographic decision problems.
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1 Introduction

The continuous-field model, which can be seen as a process of reducing the number of spatial
variables required to represent reality to a finite set (a field) [6], is a fundamental perspective
in modelling the complex geographical world. The variation of attributes in a field model
represents the spatial pattern of certain geographical phenomenon at the conceptual level of
abstraction [12, 7], as is shown in Figure 1. The analysis of spatial patterns based on field
models has been studied extensively in traditional geography applications [2, 17]. Methods
can be roughly divided into two types: autoregressive methods that adopt a spatial lag term
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Figure 1 Spatial patterns represented in a regular grid [5]. (a) Positive spatial autocorrelation.
(b) Spatial randomness. (c) Negative spatial autocorrelation.

to consider the autocorrelation of local neighborhoods [1] and geostatistical methods that
use semi-variograms to characterize the spatial heterogeneity [15, 2].

To uncover the deep features of spatial patterns, convolutional neural networks (CNNs)
have been introduced from computer science to investigate local stationary properties of
the input data by allowing long range interactions in terms of shorter, localized interactions
[11]. However, the use of CNNs becomes problematic when the data is not structured
in the regular spatial domian (e.g. raster model in GIS), since the local kernel filter can
no longer be defined via the Euclidean metric of the grid. Graph convolutional networks
(GCNs) is a generalization of CNNs to deal with graph-structured data in the irregular
spatial domain (i.e., vector model in GIS), where the input data is represented as objects
and their connections. The convolutional filter in GCNs can be extended to be localized in
the spectral domain of the objects’ features [3, 9], thus enable us to investigate both short
range interactions and long range interactions in the spatial domain. We think that GCNs
are suitable for modelling the complex spatial patterns in geographical data that generally
contain both Euclidean spatial information and non-Euclidean feature information [13].

In this article, we will introduce a way to model the spatial patterns in geographical
data by constructing a graph neural network with both spatial information and feature
information embedded and by designing a localized feature filter on graph that considers
spatial constraints. A layer-wise neural network framework is proposed to make the model
trainable. In addition, we have applied the proposed framework in a intra-urban site-selection
cases based on a POI check-in dataset in Beijing, China to demonstrate the feasibility of our
model.

2 Embedding spatial patterns in graphs

2.1 Graph Fourier transformation
To enable the formulation of fundamental operations such as filtering on a graph, the Graph
Fourier transform is needed first, which is defined via a generalization of the Laplacian
operator on the grid to the graph Laplacian [4]. In graph G = (V,E,W ), V is a finite set
of |V | = n nodes, E is a set of edges among nodes and W ∈ Rn×n is a weighted adjacency
matrix representing the weights of edges. An input vector x ∈ Rn is seen as a signal defined
on G with xi denotes the spectral information of node i.
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I Definition 1 (Graph Laplacian). Let L = ∆ −W be the graph Laplacian of G, where
∆ ∈ Rn×n is a diagonal matrix with ∆ii =

∑
jWij , and the normalized definition is

Ls = In −∆−1/2W∆−1/2 where In is the identity matrix.

As Ls is a real symmetric positive semidefinite matrix, it has a complete set of orthonormal
eigenvectors U = (u1, · · · , un), and their associated nonnegative eigenvalues λ = (λ1, · · · , λn).
The Laplacian is diagonalized by U such that Ls = UΛUT where Λ = diag([λ1, · · · , λn]) ∈
Rn×n. The graph Fourier transform of x ∈ Rn is then defined as x̂ = UTx ∈ Rn.

2.2 Convolutions on graphs
I Definition 2 (Graph convolutions). The convolution operators on graphs are defined as the
muliplication of x with a filter gθ = diag(θ) parameterized by θ ∈ Rn in the Fourier domain,
i.e.:

gθ ? x = gθ(Ls)x = gθ(UΛUT )x = Ugθ(Λ)UTx. (1)

We can understand gθ(Λ) as a function of the eigenvalues of Ls, a non-parametric filter whose
parameters are all free and can be trained.

However, the evaluation of Eq. 1 is computationally expensive, as the multiplication
with eigenvector matrix U is O(n2). To overcome this problem, [8] suggested the Chebyshev
polynomials Tk(x) = 2xTk−1(x)− Tk−2(x) up to Kth order to approximate gθ(Λ):

gθ′(Λ) ≈
K∑
k=0

θ′kTk(Λ̃), (2)

with a rescaled Λ̃ = 2
λmax

Λ− In, θ′ ∈ RK is a vector of polynomial coefficients, T0(x) = 1
and T1(x) = x.

Furthermore, by assuming K = 1 and λmax = 2 in Eq. 2 and some renormalization tricks,
[10] proposed an expression with a single parameter θ = θ′0 = −θ′1 to compute:

gθ ? x ≈ θ(In + ∆−1/2W∆−1/2)x = θ∆̃−1/2W̃ ∆̃−1/2x, (3)

where W̃ = W + In and ∆̃ii =
∑
j W̃ij . Eq. 3 has complexity O(|E|) because W̃x can be

efficiently implemented as a product of a sparse matrix with a dense vector.

2.3 Spatial-enriched graph construction
Different from state-of-the-art graph constructions in many recognition tasks, where the
adjacency matrix W are often defined by calculating the similarity among nodes, we try to
enable the constructed graph to capture the relationships between the feature similarity and
the spatial displacement of node pairs, i.e., to construct a spatial-enriched graph.

Given the input features X ∈ RN×C of nodes V , where N = |V | is the number of locations
and C ∈ R is the number of features for each node, we define the adjacency matrix W

according to spatial displacement of N locations. The distance matrix for locations can
be considered a prior knowledge for the graph construction process and we can introduce
the distance decay effect in geography to represent the spatial dependence of features in X.
Derived from the gravity model, there many functions that could be used to express the
spatial weighting function, such as the power function, the exponential function, and the
Gaussian function [19]. Here, we consider a variant of the self-tuning Gaussian diffusion
kernel [9]:

Wij = exp
− d(i,j)
σiσj , (4)
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Figure 2 Illustration of the site-selection framework based on graph convolutional networks.

where d(i, j) is the Euclidean distance between node i and j and σi is computed as the
distance d(i, ik) corresponding to the k-th nearest neighbor ik of node i. Eq. 4 gives a
normalized measurement of spatial displacement in a graph whose variance is locally adapted
around each location.

Compared to traditional geographical studies that choose arbitrary models to capture the
effect of distance, our GCN-based model is a more universal way to model the relationship
underlying spatial data. We treat the feature information and the spatial information
separately, and leave the graph to learn the spatial pattern given certain training objective.
The details of learned spatial pattern are restored in the layer-wise parameters of the deep
graph convolutional network and can be adopted in various applications.

3 Example: site-selection tasks

One of the most common applications that implicitly consider spatial patterns is to find the
best location to site a facility given the urban configurations. Traditionally, there are lots of
studies that tried to solve this kind of site-selection problem through an spatial optimization
model that considers some predefined spatial constraints [18]. However, if the model is simple
and easy to compute, the optimization may be arbitrary to some extent; while if the model
is too specific about the complex spatial relationships, the optimization are always difficult
to compute.

Based on the graph convolutional model proposed in Section 2 that can learn the
heterogeneity pattern underlying spatial data, we design a trainable neural network framework
for the site-selection problem, illustrated in Figure 2. The site-selection framework is an
example to show how our graph convolutional model can be adopted in geographic decision
problems.

In Figure 2, the goal of the neural networks is to learn a complex function of spatial
pattern on a graph G = (V,E), which takes as input:

A feature matrix X ∈ RN×C that contains the features xi for every observed location i,
where N is the number of given locations and C is the number of input feature types
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Figure 3 Illustration of some input training samples with only six POI types visualized. There
are actually 242 POI types in total, and the multi-channel features contained in our dataset are
not shown in this figure, such as the check-in number of each facility, the area of each facility, the
number of photos took at each location.

A fully-connected spatial distance matrix W ∈ RN×N summarized using Eq. 4 that
represents the spatial structure of observed locations

and outputs a decision vector Z = [R1, · · · , RN ] ∈ RN that contains the distances between
the optimal site and all given locations. By calculating the virtual decision vector Z ′ =
[R′1, · · · , R′N ] ∈ RN for all potential locations in the area, we can find an optimal site that
minimize ||Z − Z ′|| or we can reject a proposal of site-selection given a distance threshold.

For simplicity, we display a simple two-layer GCN to capture the spatial dependence
among urban locations and make prediction. Recalling the convolutional filter introduced in
Eq. 3, let Ŵ = ∆̃−1/2W̃ ∆̃−1/2, the forward propagation then takes the simple form:

Z = ReLU
(
ŴReLU

(
ŴXΘ(0)

)
Θ(1)

)
, (5)

where Θ(0) ∈ RC×H is the input-to-hidden parameters for a hidden layer with H feature
maps. Θ(1) ∈ RH×1 is the hidden-to-output parameters for an output desicion vector Z.

Assuming all the existed facilities in urban areas are successful samples of site-selection
given their circumstances, we then backpropagate the model with the mean square error loss
function (MSELoss) between the output decision vector Z and the real location vector Z∗.
Computational skills such as stochasitic gradient descent, batch normalization and activation
functions are all adopted in our work to train the model.
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We utilized a dataset collected from Sina Weibo in 2014 that contains 868 million check-in
records for 143,576 points of interest (POIs) in Beijing [14]. The dataset contains multiple
features to form the multi-channel enriched feature matrix X as our model input. By
randomly capturing 28,000 snapshots (3km× 3km) that contain at least one built-up hotel
as our input training samples and 7000 snapshots with the same settings as our validation
set, we can adopt the framework in Figure 3 to train a network that tries to learn the
function of spatial configurations between hotels and their complex urban environment. The
original input training samples are shown in Figure 3. The trained network can thus be
used to evaluate the built-up environment and decide where to build a potential hotel. In
practice, methods of patch extraction and normalization are applied to make the input
training samples comparable and combinable [16]. We formalized the comparable training
graphs into minibatches without the information of target hotels, but record the ground
truth decision vectors Z∗ of each input sample for the calculation of MSELoss.

Currenly, we are still optimizing the experiment for this site-selection task. After more
than 200 epochs of training, the average prediction accuracy on the validation set (7,000
samples) can reach around 50 meters, but the result is not very stable due to the abnormally
complex POI configurations in Beijing, China. However, we believe the simple framework
proposed in this section casts light on the applications of graph convolutions in geographic
decision systems.

4 Conclusion and Discussion

In this article, we introduced a generalized model that can capture the spatial pattern in
geographical data using graph convolutional networks. By embedding the feature information
and the spatial information separately into the graph network, and designing a feature-based
localized filter on the graph, our model can learn both short and long range interactions
among space and approximate the high-dimensional parameters of spatial patterns according
to certain training objectives. Based upon that, we proposed a trainable site-selection
framework using spatial-enriched graph convolutional neural networks to demonstrate the
feasibility of our model to be adopted in various geographic problems.

Important open questions remain: How about universality of the graph convolutional
networks, how could it be transferred to other applications directly? How to evaluate
the model’s parameters in a way that is both quantitative, interpretable and intuitive for
geographical analysis? How to incorporate more understanding of spatial interactions into
the graph-based model except for the distance decay? In addition, this initial work has only
focused on the multi-features in a single dataset; a promising area is to integrate the features
of multi-sourced geo-data such as street networks, remote sensing spectra and other social
sensing datasets. An improved version of our model is needed to characterize and explain the
intertwined spatial variation pattern in our complex geographic world. We plan to address
these questions in on-going works.
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