29th International Conference on

Concurrency Theory

CONCUR 2018, September 4-7, 2018, Beijing, China

Edited by
Sven Schewe
Lijun Zhang

\\v LIPICS

LIPlcs — Vol. 118 — CONCUR 2018

www.dagstuhl.de/lipics

Editors

Sven Schewe Lijun Zhang

Department of Computer Science State Key Laboratory of Computer Science
University of Liverpool Institute of Software Chinese Academy of Sciences
Liverpool, UK Beijing, China

sven.schewe@liverpool.ac.uk zhanglj@ios.ac.cn

ACM Classification 2012
Theory of Computation

ISBN 978-3-95977-087-3

Published online and open access by
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, Dagstuhl Publishing, Saarbriicken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-087-3.

Publication date
August, 2018

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPlcs. CONCUR.2018.0

ISBN 978-3-95977-087-3 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-087-3
http://www.dagstuhl.de/dagpub/978-3-95977-087-3
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.0
http://www.dagstuhl.de/dagpub/978-3-95977-087-3
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

O:iii

LIPlcs — Leibniz International Proceedings in Informatics

LIPlcs is a series of high-quality conference proceedings across all fields in informatics. LIPlcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board
Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Susanne Albers (TU Miinchen)
Christel Baier (TU Dresden)
Javier Esparza (TU Miinchen)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (University Bordeaux)
Catuscia Palamidessi (INRIA)
Raimund Seidel (Saarland University and Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik)
Thomas Schwentick (TU Dortmund)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

CONCUR 2018

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

Preface
Sven Schewe and Lijun ZRang 0:ix-0:x

Invited Contributions

The Siren Song of Temporal Synthesis

Moshe Y. Vardi e 1:1-1:1
Bisimulations for Probabilistic and Quantum Processes

Yuzin Deng 2:1-2:14
Is Speed-Independent Mutual Exclusion Implementable?

Rob van Glabbeek 3:1-3:1
Verifying Arithmetic Assembly Programs in Cryptographic Primitives

Andy Polyakov, Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang 4:1-4:16
Coalgebraic Theory of Biichi and Parity Automata: Fixed-Point Specifications,
Categorically

Tchiro HasUooo o e 5:1-5:2

Regular Papers

Universal Safety for Timed Petri Nets is PSPACE-complete
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Radu Ciobanu, Richard Mayr, and
Patrick Totzke 6:1-6:15

It Is Easy to Be Wise After the Event: Communicating Finite-State Machines
Capture First-Order Logic with “Happened Before”
Benedikt Bollig, Marie Fortin, and Paul Gastin 7:1-7:17

Learning-Based Mean-Payoff Optimization in an Unknown MDP under
Omega-Regular Constraints
Jan Kretinsky, Guillermo A. Pérez, and Jean-Frangois Raskin 8:1-8:18

Deciding Probabilistic Bisimilarity Distance One for Probabilistic Automata
Qiyi Tang and Franck van Breugel oo, 9:1-9:17

Non-deterministic Weighted Automata on Random Words
Jakub Michaliszyn and Jan OtOD ... 10:1-10:16

Ergodic Mean-Payoff Games for the Analysis of Attacks in Crypto-Currencies
Krishnendu Chatterjee, Amir Kafshdar Goharshady, Rasmus Ibsen-Jensen, and
Yaron Velner 11:1-11:17

Bounded Context Switching for Valence Systems
Roland Meyer, Sebastian Muskalla, and Georg Zetzsche 12:1-12:18

Alternating Nonzero Automata
Paulin Fournier and Hugo Gimberto, 13:1-13:16

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:vi

Contents

Affine Extensions of Integer Vector Addition Systems with States

Michael Blondin, Christoph Haase, and Filip Mazowiecki

Verifying Quantitative Temporal Properties of Procedural Programs
Mohamed Faouzi Atig, Ahmed Bouagjjani, K. Narayan Kumar, and

Prakash Saivasam

Narrowing down the Hardness Barrier of Synthesizing Elementary Net Systems
Ronny Tredup and Christian Rosenkecoiiiiiiiiiiiiiiniain.

Up-To Techniques for Behavioural Metrics via Fibrations

Filippo Bonchi, Barbara Konig, and Daniela Petrisan

Completeness for Identity-free Kleene Lattices

Amina Doumane and Damien Pous

Reachability in Parameterized Systems: All Flavors of Threshold Automata

Jure Kukovec, Igor Konnov, and Josef Widder,

Selective Monitoring

Radu Grigore and Stefan Kiefer

Synchronizing the Asynchronous

Bernhard Kragl, Shaz Qadeer, and Thomas A. Henzinger

A Semantics for Hybrid Iteration

Sergey Goncharov, Julian Jakob, and Renato Neves

GPU Schedulers: How Fair Is Fair Enough?

Tyler Sorensen, Hugues Fvrard, and Alastair F. Donaldson

Linear Equations with Ordered Data

Piotr Hofman and Slawomir Lasota,

A Coalgebraic Take on Regular and w-Regular Behaviour for Systems with
Internal Moves

TOMASZ BTENGOS ..o e ettt e e e e

Relating Syntactic and Semantic Perturbations of Hybrid Automata

Nima Roohi, Pavithra Prabhakar, and Mahesh Viswanathan

Updating Probabilistic Knowledge on Condition/Event Nets using Bayesian
Networks

Bengjamin Cabrera, Tobias Heindel, Reiko Heckel, and Barbara Kénig

Reachability in Timed Automata with Diagonal Constraints

Paul Gastin, Sayan Mukherjee, and B. Srivathsan

Parameterized complexity of games with monotonically ordered w-regular
objectives

Véronique Bruyére, Quentin Hautem, and Jean-Francois Raskin

A Universal Session Type for Untyped Asynchronous Communication

Stephanie Balzer, Frank Pfenning, and Bernardo Toninho

Verification of Immediate Observation Population Protocols
Javier Esparza, Pierre Ganty, Rupak Majumdar, and Chana Weil-Kennedy

14:1-14:17

15:1-15:17

16:1-16:15

17:1-17:17

18:1-18:17

19:1-19:17

20:1-20:16

21:1-21:17

22:1-22:17

23:1-23:17

24:1-24:17

25:1-25:18

26:1-26:16

27:1-27:17

28:1-28:17

29:1-29:16

30:1-30:18

31:1-31:16

Contents

The Satisfiability Problem for Unbounded Fragments of Probabilistic CTL

Jan Kretinsky and Alexej Rotaro

Automatic Analysis of Expected Termination Time for Population Protocols

Michael Blondin, Javier Esparza, and Antonin Kucera

On Runtime Enforcement via Suppressions

Luca Aceto, Ian Cassar, Adrian Francalanza, and Anna Ingdlfsdottir

Regular Separability of Well-Structured Transition Systems
Wojciech Czerwinski, Stawomir Lasota, Roland Meyer, Sebastian Muskalla,

K. Narayan Kumar, and Prakash Saivasan

Separable GPL: Decidable Model Checking with More Non-Determinism

Andrey Gorlin and C. R. Ramakrishnan it n..

(Metric) Bisimulation Games and Real-Valued Modal Logics for Coalgebras

Barbara Konig and Christina Mika-Michalski0 iiiii...

The Complexity of Rational Synthesis for Concurrent Games

Rodica Condurache, Youssouf Oualhadj, and Nicolas Troquard

Logics Meet 1-Clock Alternating Timed Automata
Shankara Narayanan Krishna, Khushraj Madnani, and Paritosh K. Pandya

Progress-Preserving Refinements of CTA

Massimo Bartoletti, Laura Bocchi, and Maurizio Murgia

Automated Detection of Serializability Violations Under Weak Consistency

Kartik Nagar and Suresh Jagannathan i,

Effective Divergence Analysis for Linear Recurrence Sequences
Shaull Almagor, Brynmor Chapman, Mehran Hosseini, Joél Ouaknine, and

James Worrell

0:vii

32:1-32:16

33:1-33:16

34:1-34:17

35:1-35:18

36:1-36:16

37:1-37:17

38:1-38:15

39:1-39:17

40:1-40:19

41:1-41:18

42:1-42:15

CONCUR 2018

Preface

This volume contains the proceedings of the 29th Conference on Concurrency Theory, which
was held in Beijing, China, on September 4-7, 2018. CONCUR 2018 was organised by the
Institute of Software, Chinese Academy of Sciences.

CONCUR is a forum for the development and dissemination of leading research in
concurrency theory and its applications. Its aim is to bring together researchers, developers,
and students to exchange and discuss latest theoretical developments and learn about
challenging practical problems. CONCUR is the reference annual event for researchers in the
field.

The principal topics include basic models of concurrency such as abstract machines,
domain-theoretic models, game-theoretic models, process algebras, graph transformation
systems, Petri nets, hybrid systems, mobile and collaborative systems, probabilistic systems,
real-time systems, biology-inspired systems, and synchronous systems; logics for concurrency
such as modal logics, probabilistic and stochastic logics, temporal logics, and resource logics;
verification and analysis techniques for concurrent systems such as abstract interpretation,
atomicity checking, model checking, race detection, pre-order and equivalence checking,
run-time verification, state-space exploration, static analysis, synthesis, testing, theorem
proving, type systems, and security analysis; distributed algorithms and data structures:
design, analysis, complexity, correctness, fault tolerance, reliability, availability, consistency,
self-organisation, self-stabilisation, protocols. The theoretical foundations of more applied
topics like architectures, execution environments, and software development for concurrent
systems such as geo-replicated systems, communication networks, multiprocessor and multi-
core architectures, shared and transactional memory, resource management and awareness,
compilers and tools for concurrent programming, programming models such as component-
based, object- and service-oriented can also be found at CONCUR.

This edition of the conference attracted 101 full paper submissions, and we thank the
authors for their interest in CONCUR 2018. After careful reviewing and discussions, the
Program Committee selected 37 papers for presentation at the conference. Each submission
was reviewed by at least three reviewers who wrote detailed evaluations and gave insightful
comments. We warmly thank the members of the Program Committee and the additional
reviewers for their excellent work, including the constructive discussions. The full list of
reviewers is available as part of these proceedings.

The conference programme was greatly enriched by the invited talks by Moshe Vardi,
Yuxin Deng, Rob van Glabbeek, and Bow-Yaw Wang, as well as the tutorial delivered by
Ichiro Hasuo. We thank the speakers for having accepted our invitation and their excellent
presentations.

This year, the conference was jointly organised with the 16th International Conference
on Formal Modelling and Analysis of Timed Systems (FORMATS), the 15th International
Conference on Quantitative Evaluation of SysTems (QEST), and the fourth Symposium on
Dependable Software Engineering (SETTA) in an overarching event, CONFESTA, organised
by the Institute of Software, Chinese Academy of Sciences.

CONFESTA included four more satellite events: the combined 25th International Work-
shop on Expressiveness in Concurrency and 15th Workshop on Structural Operational
Semantics (EXPRESS/SOS), the 3rd International workshop on TIming Performance engin-
eering for Safety critical systems (TIPS’18), the 7th IFIP WG 1.8 Workshop on Trends in
Concurrency Theory (TRENDS), and the 8th Young Researchers Workshop on Concurrency

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Preface

Theory (YR-CONCUR). as well as a number of tutorials. CONFESTA was preceeded by
two further associated events, a Summer School on Formal Methods and a CAP Project
Workshop.

The CONCUR proceedings are available for open access via LIPIcs, and we thank the staff
from Schloss Dagstuhl, in particular Michael Wagner, for helping us with the preparation.
Last, but not least, we thank the authors and the participants for making this year’s CONCUR,
a successful and inspiring event.

Sven Schewe (University of Liverpool)
Lijun Zhang (Institute of Software, Chinese Academy of Sciences)

Committees

Programme Committee

Parosh Abdulla
Uppsala University (Sweden)

Christel Baier
TU Dresden (Germany)

Roderick Bloem
Graz University of Technology (Austria)

Ahmed Bouajjani
IRIF, University Paris Diderot (France)

Taolue Chen
Birkbeck, University of London (UK)

Yu-Fang Chen
Academia Sinica (Taiwan)

Alessandro Cimatti
Fondazione Bruno Kessler (Italy)

Pedro R. D’Argenio
Universidad Nacional de Cérdoba -
CONICET (Argentina)

Josée Desharnais
Université Laval (Canada)

Wan Fokkink
Vrije Universiteit Amsterdam (The
Netherlands)

Erich Gradel
RWTH Aachen University (Germany)

Ichiro Hasuo
National Institute of Informatics (Japan)

Fei He
Tsinghua University (China)

Anna Ingélfsdéttir
Reykjavik University (Iceland)

Stefan Kiefer
University of Oxford (UK)

Shankara Narayanan Krishna
IIT Bombay (India)

Antonin Kucera
Masaryk University (Czech Republic)

Salvatore La Torre
Universita degli Studi di Salerno (Italy)

Jérome Leroux

CNRS (France)

Parthasarathy Madhusudan

University of Illinois at Urbana-Champaign
(USA)

Rupak Majumdar
MPI-SWS (Germany)

Radu Mardare
Aalborg University (Denmark)

Roland Meyer
TU Braunschweig (Germany)

Angelo Montanari
University of Udine (Italy)

Sriram Sankaranarayanan
University of Colorado, Boulder (USA)

Alexandra Silva
University College London (UK)

Ana Sokolova

University of Salzburg (Austria)

Mariélle Stoelinga
University of Twente (The Netherlands)

Franck van Breugel
York University (Canada)

Verena Wolf

Saarland University (Germany)

Co-Chairs

Sven Schewe
University of Liverpool (UK)

Lijun Zhang
Institute of Software, Chinese Academy of
Sciences (China)

29th International Conference on Concurrency Theory (CONCUR 2018).

Editors: Sven Schewe and Lijun Zhang

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:xii

Committees

Steering Committee

Jos Baeten
Centrum Wiskunde & Informatica (CWI)
(The Netherlands)

Pedro R. D’Argenio
Universidad Nacional de Cérdoba,
(Argentina)

Javier Esparza
Technische Universitat Miinchen (Germany)

Joost-Pieter Katoen
RWTH Aachen (Germany)

Kim G. Larsen
Aalborg University (Denmark)

Ugo Montanari
Universita di Pisa (Italy)

Catuscia Palamidessi
INRIA and LIX, Ecole Polytechnique
(France)

Local Organisers

Teng Fei
Institute of Software, Chinese Academy of
Sciences (China)

David N. Jansen
Institute of Software, Chinese Academy of
Sciences (China)

Yongjian Li
Institute of Software, Chinese Academy of
Sciences (China)

Yi Lv
Institute of Software, Chinese Academy of
Sciences (China)

Andrea Turrini
Institute of Software, Chinese Academy of
Sciences (China)

Shuling Wang
Institute of Software, Chinese Academy of
Sciences (China)

Peng Wu
Institute of Software, Chinese Academy of
Sciences (China)

Bai Xue
Institute of Software, Chinese Academy of
Sciences (China)

Rongjie Yan
Institute of Software, Chinese Academy of
Sciences (China)

Li Zhang
Institute of Software, Chinese Academy of
Sciences (China)

Xueyang Zhu
Institute of Software, Chinese Academy of
Sciences (China)

Local Organisation Chair

Zhilin Wu
Institute of Software, Chinese Academy of
Sciences (China)

Publicity Co-Chairs
Ernst Moritz Hahn
University of Liverpool (UK)

Meng Sun
Peking University (China)

List of External Reviewers

Luca Aceto

Dan Alistarh

Baskar Anguraj
Stavros Aronis

S. Arun-Kumar
Mohamed Faouzi Atig
Giorgio Bacci
Giovanni Bacci
Michael Backenkohler
Eric Badouel

Nikhil Balaji

Borja Balle
Francesco Belardinelli
Dietmar Berwanger
Frantisek Blahoudek
Laura Bocchi

Marco Bozzano
Laura Bozzelli

Tomas Brazdil

Simon Castellan
Tlaria Castellani
Pablo Castro

Didier Caucal
Mariano Ceccato
Rohit Chadha

Ligian Chen

Xin Chen

Peter Chini

Corina Cirstea
Emanuele D’Osualdo

Vrunda Dave

David de Frutos Escrig
Giorgio Delzanno
Stéphane Demri
Catalin Dima
Brijesh Dongol
Cezara Dragoi
Clemens Dubslaff
Jérémy Dubut
Constantin Enea
Gidon Ernst

Marco Faella

Uli Fahrenberg
Nathanaél Fijalkow
Brendan Fong
Ignacio Fabregas
Pierre Ganty

Paul Gastin

Simon Gay

Sergey Goncharov
Alexander Graf-Brill
Alberto Griggio
Gerrit Grossmann
Stefan Goller
Vojtéch Havlena
Frédéric Herbreteau
Lukas Holik
Hung-Wei Hsu
Omar Inverso
Ahmed Irfan

Rinat Tusupov

Petr Jancar

29th International Conference on Concurrency Theory (CONCUR 2018).

Editors: Sven Schewe and Lijun Zhang

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:xiv

External Reviewers

Nils Jansen

Claude Jard

Peter Gjgl Jensen
Thomas Kahl
Benjamin Lucien Kaminski
Anja Karl

Joachim Klein
Bettina Koenighofer
Clemens Kupke
Marcel Kyas
Charalampos Kyriakopoulos
Rom Langerak
Kung-Kiu Lau
Marijana Lazic
Ondrej Lengél
Christoph Lenzen
Hsin-Hung Lin
Alexander Liick
Khushraj Madnani
Konstantinos Mamouras
Richard Mayr

Filip Mazowiecki
Alberto Molinari

J. Garrett Morris
Mohammad Mousavi
Sergio Mover
Sebastian Muskalla
Elisabeth Neumann
Jan Obdrzalek

Oded Padon

Vincent Penelle
Adriano Peron

Kirstin Peters

Gustavo Petri
Thomas Place
Gabriele Puppis
David Pym
Jorge A. Pérez
Hadi Ravanbakhsh
Vojtech Rehak
Antoine Rollet
Jurriaan Rot
Marco Roveri
Enno Ruijters
Prakash Saivasan
Pietro Sala
Tetsuya Sato
Sylvain Schmitz
Lutz Schroder
Roberto Segala
Ilya Sergey
Mahsa Shirmohammadi
David Sprunger
Daniel Stan
Caleb Stanford
Ivan Stojic
Eijiro Sumii
Grégoire Sutre
Toru Takisaka
Qiyi Tang

Peter Thiemann
Chun Tian
Simone Tini
Stefano Tonetta
Tigran Tonoyan

Andrea Turrini

External Reviewers

Henning Urbat
Jaco van de Pol
Rob van Glabbeek
Dominik Velan
Walter Vogler
Masaki Waga
Hengfeng Wei
Tim Willemse
Sebastian Wolff
Nicolas Wolovick
James Worrell

Bo Wu

Zhilin Wu

Sascha Wunderlich
Akihisa Yamada
Shaofa Yang
Fabio Zanasi

Georg Zetzsche

0:xv

CONCUR 2018

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Authors

List of Authors

Parosh Aziz Abdulla
Uppsala University
Sweden
parosh@it.uu.se

Luca Aceto
Reykjavik University
Iceland

luca@ru.is

Shaull Almagor

Oxford University, UK
United Kingdom
shaull.almagor@mail.huji.ac.il

Mohamed Faouzi Atig
Uppsala University

Sweden

mohamed_ faouzi.atig@it.uu.se

Stephanie Balzer

Carnegie Mellon University
United States
balzers@cs.cmu.edu

Massimo Bartoletti

Universita degli Studi di Cagliari
Ttaly

bart@unica.it

Michael Blondin

Technical University of Munich
Germany

blondin@in.tum.de

Laura Bocchi
University of Kent
United Kingdom
L.Bocchi@kent.ac.uk

Benedikt Bollig

LSV, ENS Cachan, CNRS
France
bollig@lsv.ens-cachan.fr

Filippo Bonchi
University of Pisa

Ttaly
filippo.bonchi@ens-lyon.fr

0:xvii

Ahmed Bouajjani

IRIF, University Paris Diderot
France

abou@irif.fr

Tomasz Brengos

Warsaw University of Technology
Poland
t.brengos@mini.pw.edu.pl

Véronique Bruyere

University of Mons

Belgium
veronique.bruyere@Qumons.ac.be

Benjamin Cabrera
University of Duisburg-Essen
Germany
benjamin.cabrera@uni-due.de

Tan Cassar

University of Malta & Reykjavik University
Malta & Iceland

ian.cassar.10Qum.edu.mt

Brynmor Chapman

MIT CSAIL & EECS, Cambridge, MA
United States

brynmor@mit.edu

Krishnendu Chatterjee

Institute of Science and Technology (IST)
Austria

krish.chat@gmail.com

Radu Ciobanu

The University of Edinburgh
United Kingdom
R.Ciobanu@sms.ed.ac.uk

Rodica Condurache

Universite Paris Est, Creteil, and
Universite Libre de Bruxelles
France & Belgium
rodica.bozianu@gmail.com

Wojciech Czerwinski
University of Warsaw
Poland
wezerwin@mimuw.edu.pl

CONCUR 2018

0:xviii

Authors

Yuxin Deng

East China Normal University
China
yxdeng@sei.ecnu.edu.cn

Alastair Donaldson

Imperial College London

United Kingdom
alastair.donaldson@imperial.ac.uk

Amina Doumane

CNRS - ENS Lyon

France
Amina.Doumane@ens-lyon.fr

Javier Esparza

Technical University of Munich
Germany

esparza@in.tum.de

Hugues Evrard

Imperial College London
United Kingdom
h.evrard@imperial.ac.uk

Marie Fortin

LSV, ENS Paris-Saclay,
CNRS, Université Paris-Saclay
France

marie.fortin@Isv.fr

Paulin Fournier

LS2N, Université de Nantes
France
paulin.fournier@gmail.com

Adrian Francalanza

University of Malta

Malta
adrian.francalanza@um.edu.mt

Pierre Ganty

IMDEA Software Institute
Spain
pierre.ganty@imdea.org

Paul Gastin

LSV, ENS Paris-Saclay,
CNRS, Université Paris-Saclay
France

gastin@Qlsv.fr

Hugo Gimbert

CNRS, LABRI, Bordeaux
France
hugo.gimbert@labri.fr

Amir Kafshdar Goharshady
IST Austria

Austria
goharshady@ist.ac.at

Sergey Goncharov

FAU Erlangen-Niirnberg
Germany
Sergey.Goncharov@fau.de

Andrey Gorlin

Stony Brook University
United States
agorlin@cs.stonybrook.edu

Radu Grigore
University of Kent
United Kingdom
radugrigore@gmail.com

Christoph Haase

University of Oxford

United Kingdom
Christoph.Haase@Qcs.ox.ac.uk

Ichiro Hasuo

National Institute of Informatics
Japan

i.hasuo@acm.org

Quentin Hautem

UMONS

Belgium
quentin.hautem@umons.ac.be

Reiko Heckel
University of Leicester
United Kingdom
reiko@mcs.le.ac.uk

Tobias Heindel

DIKU, University of Copenhagen
Denmark
tobias.heindel@googlemail.com

Thomas A. Henzinger
IST Austria

Austria

tah@ist.ac.at

Authors

Piotr Hofman

University of Warsaw
Poland
piotrek.hofman@gmail.com

Mehran Hosseini

University of Oxford

United Kingdom
mehran.hosseini@cs.ox.ac.uk

Rasmus Ibsen-Jensen
IST Austria

Austria
ribsen@ist.ac.at

Anna Ingolfsdottir
Reykjavik University
Iceland

annai@ru.is

Suresh Jagannathan
Purdue University
United States
suresh@cs.purdue.edu

Julian Jakob

FAU Erlangen-Niirnberg
Germany
Julian.Jakob@fau.de

Kartik Nagar
Purdue University
United States
nagark@purdue.edu

Stefan Kiefer

University of Oxford
United Kingdom
stefan.kiefer@cs.ox.ac.uk

Barbara Konig

Universitdat Duisburg-Essen
Germany

barbara_ koenig@Quni-due.de

Igor Konnov

INRIA Nancy (LORIA)
France
igor.konnov@inria.fr

Bernhard Kragl
IST Austria
Austria
bkragl@ist.ac.at

0:xix

Jan Kietinsky

Technical University of Munich
Germany
jan.kretinsky@gmail.com

Antonin Kucera
Masaryk University
Czechia
tony@fi.muni.cz

Jure Kukovec

Vienna University of Technology
Austria

jkukovec@forsyte.at

K Narayan Kumar
Chennai Mathematical Institute
India

kumar@cmi.ac.in

Stawomir Lasota
University of Warsaw
Poland
sl@mimuw.edu.pl

Khushraj Madnani
IIT Bombay
India

khushraj@cse.iitb.ac.in

Rupak Majumdar

Max Planck Institute for Software Systems
Germany

rupak@mpi-sws.org

Richard Mayr

The University of Edinburgh
United Kingdom
rmayr@staffmail.ed.ac.uk

Filip Mazowiecki

LaBRI, Université de Bordeaux
France
filip.mazowiecki@Qu-bordeaux.fr

Roland Meyer

TU Braunschweig
Germany
roland.meyer@tu-bs.de

Jakub Michaliszyn

University of Wroclaw
Poland
jakub.michaliszyn@gmail.com

CONCUR 2018

0:xx

Authors

Christina Mika-Michalski
University Duisburg-Essen
Germany
christine.mika@uni-due.de

Sayan Mukherjee

Chennai Mathematical Institute
India

sayanm@cmi.ac.in

Maurizio Murgia
University of Kent
United Kingdom
M.Murgia@kent.ac.uk

Sebastian Muskalla
TU Braunschweig
Germany
s.muskalla@tu-bs.de

Renato Neves

INESC TEC (HASLab) and
University of Minho
Portugal
nevrenato@di.uminho.pt

Jan Otop

University of Wroctaw
Poland
jotop@cs.uni.wroc.pl

Joel Ouaknine

Max Planck Institute for Software Systems

Germany
joel@mpi-sws.org

Youssouf Oualhadj
Université Paris Est Créteil
France
youssouf.oualhadj@lacl.fr

Paritosh Pandya
TIFR

India
pandya@tifr.res.in

Guillermo Perez

Université libre de Bruxelles
Belgium
gperezme@ulb.ac.be

Daniela Petrisan

Université Paris Diderot - Paris 7
France
daniela.petrisan@gmail.com

Frank Pfenning

Carnegie Mellon University
United States
fp@cs.cmu.edu

Andy Polyakov

The OpenSSL project
Sweden
appro@Qopenssl.org

Damien Pous

CNRS - ENS Lyon
France
Damien.Pous@ens-lyon.fr

Pavithra Prabhakar
Kansas State University
United States
pprabhakar@ksu.edu

Shaz Qadeer
Microsoft

United States
qadeer@microsoft.com

C. R. Ramakrishnan
Stony Brook University
United States
cram@cs.stonybrook.edu

Jean-Francois Raskin
Université Libre de Bruxelles
Belgium

jraskin@ulb.ac.be

Nima Roohi

University of Pennsylvania
United States
roohi2@cis.upenn.edu

Christian Rosenke

University of Rostock

Germany
christian.rosenke@uni-rostock.de

Alexej Rotar

Technical University of Munich
Germany
alexejrotar@gmail.com

Authors

Krishna S

IIT Bombay

India
krishnas@cse.iitb.ac.in

Prakash Saivasan
TU Braunschweig
Germany
p-saivasan@tu-bs.de

Tyler Sorensen

Imperial College London
United Kingdom
t.sorensen15@imperial.ac.uk

B Srivathsan

Chennai Mathematical Institute

India
sri@cmi.ac.in

Qiyi Tang

York University, Toronto
Canada
qiyitang@eecs.yorku.ca

Bernardo Toninho
Universidade NOVA de Lisboa
Portugal

btoninho@gmail.com

Patrick Totzke
University of Edinburgh
United Kingdom
p-totzke@ed.ac.uk

Ronny Tredup

University of Rostock
Germany
ronny.tredup2@uni-rostock.de

Nicolas Troquard

Free University of Bozen
Ttaly
nicolas.troquard@unibz.it

Ming-Hsien Tsai
Academia Sinica
Taiwan
mhtsai208@gmail.com

Franck van Breugel
York University, Toronto
Canada
franck@eecs.yorku.ca

0:xxi

Rob van Glabbeek
CSIRO

Australia
rvg@Qcs.stanford.edu

Moshe Y. Vardi
Rice University
USA
vardi@cs.rice.edu

Yaron Velner

Tel Aviv University
Israel
yaronl72@yahoo.com

Mahesh Viswanathan

University of Illinois at Urbana-Champaign
United States

vmahesh@illinois.edu

Bow-Yaw Wang
Academia Sinica

Taiwan
bywang@iis.sinica.edu.tw

Josef Widder

Vienna University of Technology
Austria

widder@forsyte.at

James Worrell
University of Oxford
United Kingdom
jbw@cs.ox.ac.uk

Bo-Yin Yang
Academia Sinica
Taiwan
by@crypto.tw

Georg Zetzsche

IRIF, CNRS & Université Paris-Diderot
France

zetzsche@irif. fr

CONCUR 2018

The Siren Song of Temporal Synthesis

Moshe Y. Vardi!

Department of Computer Science, Rice University, Houston, TX, USA
vardi@cs.rice.edu

—— Abstract

One of the most significant developments in the area of design verification over the last three
decade is the development of algorithmic methods for verifying temporal specification of finite-
state designs. A frequent criticism against this approach, however, is that verification is done after
significant resources have already been invested in the development of the design. Since designs
invariably contains errors, verification simply becomes part of the debugging process. The critics
argue that the desired goal is to use temporal specification in the design development process in
order to guarantee the development of correct designs. This is called temporal synthesis. In this
talk I will review 60 years of research on the temporal synthesis problem, describe the automata-
theoretic approach developed to solve this problem, and describe both successes and failures of
this research program [1, 2].

2012 ACM Subject Classification Software and its engineering
Keywords and phrases Formal Methods, Temporal Synthesis
Digital Object Identifier 10.4230/LIPIcs. CONCUR.2018.1

Category Invited Talk

—— References

1 Shufang Zhu, Lucas M. Tabajara, Jianwen Li, Geguang Pu, and Moshe Y. Vardi. A symbolic
approach to safety LTL synthesis. In Proc. 13th Int’l Haifa Verification Conf. on Hardware
and Software: Verification and Testing, volume 10629 of Lecture Notes in Computer Science,
pages 147-162. Springer, 2017. doi:10.1007/978-3-319-70389-3_10.

2 Shufang Zhu, Lucas M. Tabajara, Jianwen Li, Geguang Pu, and Moshe Y. Vardi. Symbolic
LTLf synthesis. In Proc. 26th Int’l Joint Conf. on Artificial Intelligence, pages 1362-1369.
ijcai.org, 2017. doi:10.24963/ijcai.2017/189.

1 Work supported in part by NSF Expeditions in Computing project “ExCAPE: Expeditions in Computer
Augmented Program Engineering”.

© Moshe Y. Vardi;
37 licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 1; pp. 1:1-1:1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:vardi@cs.rice.edu
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.1
http://dx.doi.org/10.1007/978-3-319-70389-3_10
http://dx.doi.org/10.24963/ijcai.2017/189
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Bisimulations for Probabilistic and Quantum
Processes

Yuxin Deng!

Shanghai Key Laboratory of Trustworthy Computing,

MOE International Joint Lab of Trustworthy Software,

and International Research Center of Trustworthy Software,

East China Normal University, Shanghai, China

yxdeng@sei.ecnu.edu.cn
https://orcid.org/0000-0003-0753-418X

—— Abstract

Bisimulation is a fundamental concept in the classical concurrency theory for comparing the

behaviour of nondeterministic processes. It admits elegant characterisations from various per-
spectives such as fixed point theory, modal logics, game theory, coalgebras etc. In this paper,
we review some key ideas used in the formulations and characterisations of reasonable notions of
bisimulations for both probabilistic and quantum processes. To some extent the transition from
probabilistic to quantum concurrency theory is smooth and natural. However, new ideas need
also to be introduced. We have not yet reached the stage of formally verifying quantum commu-
nication protocols and quantum algorithms using bisimulations implemented by automatic tools.
We discuss some recent efforts in this direction.

2012 ACM Subject Classification Theory of computation — Process calculi, Theory of compu-
tation — Operational semantics, Theory of computation — Modal and temporal logics

Keywords and phrases Bisimulations, probabilistic processes, quantum processes

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2018.2

Category Invited Paper

1 Introduction

Bisimulation [39, 37] is a fundamental concept in the classical concurrency theory as it admits
beautiful characterisations in terms of fixed points, modal logics, co-algebras, pseudometrics,
games, decision algorithms, etc. Its generalisation in the probabilistic setting is initiated
by Larsen and Skou in [36] and has subsequently been widely investigated in probabilistic
concurrency theory. One of the main contributions of [36] is the introduction of a lifting
operation that converts a relation between states to a relation between distributions over
states. Later on, the lifting operation is shown to be closely related to some prominent
concepts in mathematics such as the Kantorovich metric [33, 45] and the maximum network
flow problem [1]; the latter is crucial for designing algorithms to check if two states are
bisimilar.

The probabilistic bisimulation nicely defined in [36] has natural characterisations by
probabilistic extensions of Hennessy-Milner logic [28]; see e.g. [36, 14, 15, 40, 10, 30, 26, 12, 4].
Most characterisations employ some modalities indexed with numbers. A typical modal

L Supported by the National Natural Science Foundation of China (61672229) and Shanghai Municipal
Natural Science Foundation (16ZR1409100).

© Yuxin Deng;
37 licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 2; pp. 2:1-2:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:yxdeng@sei.ecnu.edu.cn
https://orcid.org/0000-0003-0753-418X
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2

Bisimulations for Probabilistic and Quantum Processes

formula, dated back to [36], is (a),¢, where p is a probability value. A state s satisfies this
formula if the probability that s can make an a-labelled transition to the set of states satisfying
¢ exceeds p. In [44] van Breugel et al. generalise the characterisation of [36] to labelled
Markov processes, i.e. reactive probabilistic processes [36, 46] with continuous state spaces,
and surprisingly, without using any modality indexed with numbers. Usually, the simpler
the logical characterisation, the more difficult its completeness proof, since constructing
distinguishing formulae for non-bisimilar states with fewer modalities is more challenging.
Van Breugel et al. prove such an elegant result by using some advanced machinery such
as the Lawson topology on probabilistic powerdomains [31] and Banach algebras. However,
if we confine ourselves to discrete rather than continuous state spaces, as in e.g. [36], the
characterisation result given in [44] has a very elementary proof [7].

Since probabilistic behaviour is prevalent in quantum computation, it is natural to invest-
igate how a quantum concurrency theory can be built upon the probabilistic concurrency
theory. Notice that the operational semantics of many quantum systems can be defined in
terms of probabilistic labelled transition systems, which allows us to define quantum bisimu-
lations in a very intuitive way by extending probabilstic bisimulations with a requirement
on demanding equal environments when comparing two quantum processes. However, to
check quantum bisimulations, we need to appeal to the instantiation of quantum variables
by quantum systems. What’s worse, to check whether or not two quantum processes are
bisimilar, we need to consider arbitrarily chosen quantum states, which appears infeasible
in practice because quantum states constitute a continuum. Fortunately, it is possible to
overcome this difficulty by introducing a symbolic semantics and its associated symbolic
quantum bisimulations [20] that are equivalent to the usual concrete bisimulations. This
opens the door to design effective algorithms to check quantum bisimulations.

A distinctive feature of quantum computation is entailed by the no-cloning theorem
in quantum mechanics. Namely, quantum resources are linear from a type-theoretic point
of view. It is then particularly meaningful to study linear contextual equivalence, which
is a special form of contextual equivalence as the behaviours of programs are observed by
executing them only once. In [8], it is shown that for higher-order quantum programs, linear
contextual equivalence can be precisely captured by a distribution-based bisimilarity, which
is weaker than the usual state-based bisimilarity. Of course, distribution-based bisimulations
can also be defined for probabilistic processes, but in the quantum setting they become a
more important coinductive proof technique.

The rest of the paper is structured as follows. In Section 2, we review the formal model
of probabilistic labelled transition systems, the lifting operation, some of its equivalent
formulations, state-based and distribution-based bisimulations. In Section 3 we introduce a
quantum process algebra, discuss state-based and distribution-based quantum bisimulations,
and symbolic bisimulations. Finally, we conclude in Section 4.

2 Probabilistic Bisimulation

In this section, we introduce the model of probabilistic labelled transition systems, the key
concept of lifting operation, the state-based and distribution-based bisimulations.

2.1 Probabilistic Labelled Transition Systems

Let S be a countable set. A (discrete) probability (sub)distribution over set S is a function
A S — [0,1] with size |A] = Y cgA(s) < 1. It is a (full) distribution if [A| = 1. Tts
support, written [A], is the set {s € S | A(s) > 0}. Let Dgyp(S) and D(S) denote the set of

Y. Deng

13 T

a

2/3 1/3 2/3

(a) ' (b)

Figure 1 Example pLTSs.

all subdistributions and distributions over S, respectively. We use ¢ to stand for the empty
subdistribution, that is €(s) = 0 for any s € S. We write 3 for the point distribution for
state s, satisfying 3(t) = 1 if t = s, and 0 otherwise. If p; > 0 and A; is a distribution for
each 4 in some finite index set I, then), ; p; - A; is given by

Sop-A)s) = Sopi-Ads).

iel iel
If 3 ,c;pi = 1 then this is easily seen to be a distribution in D(S).

» Definition 1. A probabilistic labelled transition system (pLTS) is defined as a triple
(S, A, —), where S is a set of states, A is a set of actions, and the transition relation — is a
subset of S x A x D(S).

A non-probabilistic labelled transition system (LTS) may be viewed as a degenerate pLTS
— one in which only point distributions are used. We often write s — A in place of
(s,a,A) €—.

In order to visualise pLTSs, we often draw them as directed graphs. Given that in a
pLTS transitions go from states to distributions, we need to introduce additional edges to
connect distributions back to states, thereby obtaining a bipartite graph. States are therefore
represented by nodes of the form e and distributions by nodes of the form o. For any state s
and distribution A with s — A we draw an edge from s to A, labelled with o.. Consequently,
the edges leaving a e-node are all labelled with actions from A. For any distribution A

and state s in [A], the support of A, we draw an edge from A to s, labelled with A(s).

Consequently, the edges leaving a o-node are labelled with positive real numbers that sum to
1. Sometimes we partially unfold this graph by drawing the same nodes multiple times; in
doing so, all outgoing edges of a given instance of a node are always drawn, but not necessarily
all incoming edges. Edges labelled by probability 1 occur so frequently that it makes sense
to omit them, together with the associated nodes o representing point distributions.

Two example pLTSs are described this way in Figure 1, where diagram (b) depicts the
initial part of the pLTS obtained by unfolding the one in diagram (a).

2:3

CONCUR 2018

2:4

Bisimulations for Probabilistic and Quantum Processes

For each state s, the outgoing transition s — A represents the nondeterministic
alternatives available in the state s. The nondeterministic choices provided by s are supposed
to be resolved by the environment, which is often formalised by a scheduler or an adversary.
On the other hand, the probabilistic choices in the underlying distribution A are made by the
system itself. Therefore, for each state s, the environment chooses some outgoing transition
s — A. Then the action « is performed, the system resolves the probabilistic choice, and
subsequently with probability A(s’) the system reaches state s'.

If we impose the constraint that for any state s and action « at most one outgoing
transition from s is labelled «, then we obtain the special class of pLTSs called reactive (or
deterministic) pLTSs that are the probabilistic counterpart to deterministic LTSs. Formally,
a pLTS is reactive if for each s € S, € A we have that s — A and s — A’ imply A = A’.

2.2 Lifting Relations

In the probabilistic setting, formal systems are usually modelled as distributions over states.
To compare two systems involves the comparison of two distributions. So we need a way of
lifting relations on states to relations on distributions. This is used, for example, to define a
notion of probabilistic bisimulation as we shall see soon. A few approaches of lifting relations
have appeared in the literature. We will take the one from [11], and show its coincidence
with two other approaches.

» Definition 2. Given two sets S and T and a binary relation R C S x T, the lifted relation

RT C D(S) x D(T) is the smallest relation that satisfies:

(1) s Rt implies s RT £

(2) (Linearity) A; RT ©, for all i € I implies (D ierpi - A) RT (> serpi- ©i), where I is a
finite index set and), ., p; = 1.

There are alternative presentations of Definition 2. One example is given below.

» Proposition 3. Let A and © be two distributions over S and T, respectively, and RC S xT.
Then A RT © if and only if there are two collections of states, {s;}ic; and {t;}icr, and a
collection of probabilities {p;}icr, for some finite index set I, such that)", ;p; =1 and A,©
can be decomposed as follows:

(1) A=3cpi " Si

(2) ©=3cipi-ts

(3) For each i € I we have s; R t;.

From Definition 2, the next two propositions follow. In fact, they are sometimes used in the
literature as definitions of lifting relations instead of being properties (see e.g. [43, 36, 13, 41]).

» Proposition 4.

(1) Let A and © be distributions over S and T, respectively. Then A RY © if and only if there
s a probability distribution on S x T, with support a subset of R, such that A and © are
its marginal distributions. In other words, there exists a weight function w : SxT — [0, 1]
such that
a. VseS:) cpw(st)=A(s)
b. VteT:) qw(s,t)=0(t)
c. V(s,t) € SxT:w(s,t) >0=sRt.

(2) Let A and © be distributions over S and R be an equivalence relation. Then A RY © if
and only if A(C) = ©(C) for all equivalence classes C € S/R, where A(C) stands for
the accumulation probability) .~ A(s).

Y. Deng

Given a binary relation RC S x T and a set S’ C S, we write R(S’) for the set
{teT|3se S :sRt}. Aset S is R-closed if R(S") C 5.

» Proposition 5. Let A and © be distributions over finite sets S and T, respectively.

(1) AR © if and only if A(S") < O(R(S")) for all S' C S.

(2) If R is a preorder, then A RT © if and only if A(S") < O(S") for each R-closed set
S CS.

Besides the above interesting properties, the lifting operation has an intrinsic connection
with some important concepts in mathematics, notably the Kantorovich metric [33]. For
example, it turns out that our lifting of binary relations from states to distributions nicely
corresponds to the lifting of metrics from states to distributions by using the Kantorovich
metric. In addition, the lifting operation is closely related to the mazimum flow problem in
optimisation theory. This observation initially made by Baier et al. is crucial for designing
decision algorithms for probabilistic bisimulations and simulations [1, 48].

2.3 Probabilistic Bisimulation

With a solid base of the lifting operation, we can proceed to define a probabilistic version of
bisimulation. Let s and t be two states in a pLTS. We say ¢ can simulate the behaviour of s
if whenever the latter can exhibit some action, say a, and lead to distribution A then the
former can also perform a and lead to a distribution, say ©, which then in turn can mimic
A in successor states. We are interested in defining a relation between two states, but it is
expressed by invoking a relation between two distributions. To formalise the mimicking of
one distribution by the other, we make use of the lifting operation investigated in Section 2.2.

» Definition 6. A relation RC S x S is a probabilistic simulation if s R t implies

if s -5 A then there exists some © such that ¢ —— © and A R' ©.
If both R and R~! are probabilistic simulations, then R is a probabilistic bisimulation.
The largest probabilistic bisimulation, denoted by ~yg, is called (state-based) probabilistic
bisimilarity.

Let’s look at the two pLTSs in Figure 1. It is easy to check that the top node in diagram (a)
and that in diagram (b) are related by ~s.

Various characterisations of probabilistic bisimilarity by probabilistic versions of Hennessy-
Milner logic [28] have appeared in the literature. In particular, if we confine ourselves to
reactive pLTSs, then there are neat logical characterisations even without negation. For
example, Desharnais et al. [14] uses a logic with the following grammar

pu=T|oAp|{a)gp

where ¢ is any rational number in the unit interval [0, 1] and a ranges over the fixed set of
labels of a given reactive pLTS. The formula T can always be satisfied. The formula ¢ A ¢
stands for the usual conjunction. The formula (a),¢ is satisfied by state s if the probability
that s can make an a-labelled transition to the set of states satisfying ¢ exceeds p. The
characterisation result of [14] holds for reactive pLTSs with continuous state spaces. For
reactive pLTSs with countable state spaces, a simpler proof of that result is given in [12].
Most other characterisations also employ modalities indexed with numbers. This fits in our
intuition: if two states are not bisimilar, then they may satisfy a property with different
probabilities, so by fiddling with the numbers we can construct a formula that can tell apart
the two states. The only exception is the one given in [44], which shows that, for reactive
probabilistic processes, probabilistic bisimilarity can be characterised by a surprisingly simple
logic.

2:5

CONCUR 2018

2:6

Bisimulations for Probabilistic and Quantum Processes

Let £ be the set of formulae defined by the grammar

¢ w= T, 9) | {a)¢

where a ranges over the set of labels of a reactive pLTS. A state s satisfies a formula ¢ with
certain probability, given by Pr(s, ¢) defined as follows:

Pr(s, T) 1
Pr(s,(¢1,¢2)) = Pr(s,¢1)- Pr(s,¢2) -
Pr(s, (a)¢) = { Yaes A(s) - Pr(s',¢) ifs = A

0 otherwise.

We call (¢1, ¢2) a conjunction of two formulae ¢ and ¢, which models the copying capacity of
probabilistic testing originally considered in [36]. Note that conjunction is given the arithmetic
interpretation as multiplication, which differs from many other logical characterisations of
probabilistic bisimilarity. The formula (a)¢$ measures the probability that a state performs
action a and then its successor states sastisfy ¢.

The logic £ induces a natural logical equivalence, written =, by letting s; =, so if
Pr(s1,¢) = Pr(s2,¢) for any ¢ € £ and states s; and so. In [44] van Breugel et al. consider
labelled Markov processes with continuous state spaces and they show that probabilistic
bisimilarity coincides with the above notion of logical equivalence. Their proof involves
advanced machinery such as the Lawson topology on probabilistic powerdomains [31] and
Banach algebras. If we confine ourselves to finite-state reactive pLTSs, it is possible to avoid
all the advanced machinery and give an elementary proof of the coincidence of ~; with =,
as recently demonstrated in [7].

2.4 Distribution-Based Bisimulation

In Definition 6 we compare the behaviour of two states, and then resort to the lifting
operation when talking about the simulation of one distribution by another. Alternatively, it
is possible to consider subdistributions as first-class citizens and directly define a relation that
compares subdistributions. In order to do so, we first define a transition relation between
subdistributions.

» Definition 7. With a slight abuse of notation, we also use the notation — to stand for

the transition relation between subdistributions, which is the smallest relation satisfying the

following three rules:

(1) if s % A then 5 % A;

(2) if s £ then 5 % ¢;

(3) if A; %5 ©; for all i € I then (3, pi - Ai) — (X;crpi - ©;), where I is a finite index
set and >, ;ps < 1.

Note that if A %+ A’ then some (not necessarily all) states in the support of A can perform

action a. Those states that cannot enable action a contribute nothing for A’.

» Definition 8. Let ~;C Dyup(S) X Dsup(S) be the largest symmetric relation such that if
A ~4 O then |[A| = |©] and A %> A’ implies the existence of some ©’ such that © - @’
and A’ ~4 ©.

The distribution-based bisimilarity ~4 is shown in [6] as a sound and complete coinductive
proof technique for linear contextual equivalence, a natural extensional behavioural equival-
ence for functional programs. In the literature there are several proposals of distribution-based
bisimilarities [23, 26, 9, 17, 29], and some typical ones are compared in [16].

Y. Deng

3 Quantum Bisimulation

In this section, we will see that quantum bisimulations can be obtained by extending
probabilistic bisimulations in a smooth way.

As is well known, it is very difficult to guarantee the correctness of classical communication
protocols at the design stage, and some simple protocols were eventually found to have
fundamental flaws. One expects that the design of complex quantum protocols is at least
as error-prone, if not more, than in the classical case. Bisimulation and its associated
coinduction proof technique have also been explored in quantum concurrency theory.

Due to the presence of measurements, quantum processes exhibit probabilistic behaviour.

It is then natural to define the operational semantics of a quantum process in turns of a
pLTS, on which the probabilistic bisimulations we discussed before, with some modifications,
may play a role in providing a coinduction proof technique for quantum processes. Note that
in the quantum setting, bisimulations are defined to be relations over configurations that
are pairs of a quantum process and a density operator describing the state of environment
quantum systems. Below we illustrate this idea in the framework of a quantum process
algebra.

3.1 Quantum Bisimulation for qCCS

We first briefly review the syntax and semantics of a quantum extension of value-passing
CCS [37, 25], called qCCS, studied in [18, 47, 19, 21], and the definition of open bisimulation
between qCCS processes presented in [5]; the idea can be applied in other quantum process
algebras such as CQP [24] and QPAlg [32].

We assume three types of data in qCCS: Bool for booleans, real numbers Real for classical
data, and qubits Qbt for quantum data. Let ¢Var, ranged over by z,y, ..., be the set of
classical variables, and ¢Var, ranged over by ¢, r,..., the set of quantum variables. It is
assumed that c¢Var and ¢Var are both countably infinite. We assume a set Exp of classical
data expressions over Real, which includes c¢Var as a subset and is ranged over by e, ¢, ...,
and a set of boolean-valued expressions BEzp, ranged over by b,b',.... We further assume

that only classical variables can occur free in both data expressions and boolean expressions.

Let ¢Chan be the set of classical channel names, ranged over by c¢,d, ..., and ¢Chan the
set of quantum channel names, ranged over by c,d,.... We often abbreviate a sequence of
distinct variables {q1,...,¢,} into q.

Based on these notations, the syntax of qCCS terms can be given by the Backus-Naur
form

U == nil| K(eq) |aU|U+U|U|U|if b then U
a u= Tlctr|ce]|c?q|clq| Q| Mg «]

where ¢ € ¢cChan, x € cVar, c € qChan, q € q¢Var, ¢ C qVar, e € Exp, € C Ezp, 7 is the silent
action, b € BExp, K(Z,q) is a process constant with a defining equation K(Z, q) “ry , and
&€ and M are respectively a trace-preserving super-operator and a non-degenerate projective
measurement applying on the Hilbert space associated with the systems ¢. In this paper, we
assume all super-operators are completely positive.

The notion of free classical variables in quantum processes, denoted by fv(-), can be
defined in the usual way with the only modification that the quantum measurement prefix
M|q; x] has binding power on xz. A quantum process term U is closed if fo(U) = 0. We let U,
ranged over by U,V ---, be the set of all qCCS terms, and P, ranged over by P, @, - -, the
set of closed terms.

2:7

CONCUR 2018

2:8

Bisimulations for Probabilistic and Quantum Processes

The process constructs we give here are quite similar to those in classical CCS, and they
also have similar intuitive meanings: nil stands for a process which does not perform any
action; ¢’z and cle are respectively classical input and classical output, while c?q and clq
are their quantum counterparts. £[g] denotes the action of performing the super-operator £
on the qubits ¢ while M[q; x] measures the qubits § according to M and the measurement
outcome is substituted for the classical variable . The binary sum + models nondeterministic
choice: U + V behaves like either U or V' depending on the choice of the environment. ||
denotes the usual parallel composition. Finally, if b then U is the standard conditional
choice where U can be executed only if b is tt.

We now turn to the operational semantics of qCCS. For each quantum variable ¢ € ¢Var,
we assume a 2-dimensional Hilbert space H, to be the state space of the g-system. For any
S C qVar, we denote Hg = ®q€S Hq. In particular, H = Hqv,r is the state space of the
whole environment consisting of all the quantum variables. Note that # is a countably-infinite
dimensional Hilbert space.

Suppose P is a closed quantum process. A pair of the form (P, p) is called a configuration,
where p € D(H) is a density operator on H (As H is infinite dimensional, p should be
understood as a density operator on some finite dimensional subspace of H which contains
Hqu(p))- The set of configurations is denoted by Con, and ranged over by C, D, ---. Let

Act = {7} U{c?,clv | ¢ € cChan,v € Real} U {c?r,clr | c € ¢Chan,r € ¢qVar}.

Let D(Con), ranged over by A,0©,---, be the set of all finite-supported probabilistic
distributions over C'on. Then the operational semantics of qCCS can be given by the pLTS
(Con, Act,—), where — C Con x Act x D(Con) is the smallest relation satisfying some
inference rules. Here we select two rules related to super-operator application and quantum
measurements; the others can be found in [5].

(Meas) A A
(Oper) M = Zie] NE? pi = t’f’(E(’%p)
(€1al-P, p) — (P, E4(p)) (M[g;2].P, p) == ic; pi(PINi/2], ESpEY/pi)

In rule (Meas), E} denotes the operator E* acting on the quantum systems ¢ and tr(E}p)
stands for the trace of Efp. This rule tells us that a measurement on the quantum system ¢
entails a probabilistic transition; each candidate configuration (P[\;/z], EzpE;/p;) occurs
with probability tr(EZp).

Let C = (P, p). We use the notation ¢uv(C) := quv(P) for free quantum variables and
env(C) := trg,(p)(p) for partial traces. Let A =). p; - (P, p;). We write £(A) for the
distribution), pi - (P, E(ps)). In addition, we let qu(A) := J;c; qu(FP;) and env(A) :=
2ier Pi trqu(p,) (pi)-

» Definition 9. A symmetric relation R C Con x Con is called an open bisimulation if for
any C,D € Con, C R D implies that

(1) qu(C) = qu(D), and env(C) = env(D),

(2) for any trace-preserving super-operator £ acting on HW (Again, &€ should be understood

as a super-operator on some finite dimensional subspace of ”HmL whenever £(C) - A,

there exists © such that £(D) -+ © and A RT ©.
Two quantum configurations C and D are open bisimilar, denoted by C ~, D, if there exists
an open bisimulation R such that C R D.

Here we are using exactly the same lifting operation as that in the probabilistic case
(ct. Definition 2). The above definition is inspired by the work of Sangiorgi [42], where a

Y. Deng
(Q.p)
(P, p) -
T Po p1
(Z[g]-mil, [0)4 (0] @ trq(p)) (Q0,10)4 (0 ® trg(p)) (Q1, [1)q (1] ® trg(p))
(nil, [0)4(0] ® try(p)) (i, [0)4(0] & trq(p)) (nil, |0)4(0] & try(p))

Figure 2 pLTSs for the two ways of setting a quantum system to |0).

notion of bisimulation is defined for the m-calculus [38, 42] by treating name instantiation
in an “open” style (name instantiation happens before any transition). Here we deal with
super-operator application in an “open” style, but the instantiation of variables can be in an
“early” style (variables are instantiated when input actions are performed). For example, the
operational semantics given in [5] is essentially an early semantics.

To illustrate the operational semantics and open bisimulation presented in this section,
we give a simple example.

» Example 10. This example shows two alternative ways of setting a quantum system to
the pure state |0). Let P I Geto [q]. Z[g].nil and

Q = Mo 1[q; z].(if © = 0 then Z[g].nil + if z = 1 then X[g].nil),

where Set® = {|0)(0], [0)(1]}, Mo 1 is the 1-qubit measurement according to the computational
basis {|0),|1)}, Z is the identity super-operator, and X is the Pauli-X super-operator. For
any p € D(H), the pLTSs rooted by (P, p) and (Q, p) respectively are depicted in Figure 2
where

Qo = if 0=0 then Z[g].nil +if 0 =1 then X[¢].nil,
@1 = if 1=0then Z[g].nil +if 1 =1 then X[g].nil,

and p; = tr(]é)(i]q - p). Note that both P and @ are free of quantum input. We can show
P ~, Q easily by verifying that the relation R U R™!, where

R = {(Pp),(Q,p)), ((Z[g]mil, po), (Qo, po)),
((I[q].nil,p0>, <Q1; P1>)7 (<1’1i1, p0>7 <ni17 P0>) ‘pE D(H)}

and p; = |i)(i]q @ trgp, is an open bisimulation.

3.2 A Useful Proof Technique

In Definition 9 super-operator application and transitions are considered at the same time.

In fact, we can separate the two issues and approach the concept of open bisimulation in an
incremental way, which turns out to be very useful when proving that two configurations are
bisimilar.

» Definition 11. A relation RC Con x Con is closed under super-operator application if

C R D implies £(C) R £(D) for any trace-preserving super-operator £ acting on Hm.

2:9

CONCUR 2018

2:10

Bisimulations for Probabilistic and Quantum Processes

» Definition 12. A relation R C Con x Con is a ground simulation if C R D implies that
qu(C) = qu(D), env(C) = env(D), and

whenever C -2 A, there is some distribution © with D -% © and A R ©.
A relation R is a ground bisimulation if both R and R~! are ground simulations.

The following property is shown in [5].

» Proposition 13. ~, is the largest ground bisimulation that is closed under all super-operator
applications.

Proposition 13 provides us with a useful proof technique: in order to show that two config-
urations C and D are open bisimilar, it suffices to exhibit a binary relation including the
pair (C,D), and then to check that the relation is a ground bisimulation and is closed under
all super-operator application. This is analogous to a proof technique of open bisimulation
for the m-calculus [42], where name instantiation is playing the same role as super-operator
application here.

3.3 Distribution-Based Quantum Bisimulation

The distribution-based bisimulation defined in Section 2.4 can also be extended to the
quantum setting.

» Definition 14. A relation R C D(Con) x D(Con) is a distribution-based ground simulation
if A R © implies that qu(A) = qu(©), env(A) = env(©), and

whenever A -5 A’ there is some subdistribution ® with ©® - ©’ and A’ R ©'.
A relation R is a distribution-based ground bisimulation if both R and R~! are distribution-
based ground simulations.

A relation R is a distribution-based bisimulation if it is a distribution-based ground
bisimulation, and is closed under super-operator applications.

Note that the distribution-based bisimulation given in Definition 14 is slightly coarser
than that considered in [22], for the same reason as the comparison of the corresponding
probabilistic bisimulations [16].

In quantum mechanics, a fundamental principle is the no-cloning theorem of quantum
resources. From a type-theoretic point of view, quantum resources are linear and can be
described by linear types in quantum programming languages. How to define appropriate
program equivalences for this kind of languages is an interesting problem. In [8] a linear
contextual equivalence is introduced to compare the behaviour of quantum programs. Two
notions of bisimilarity, a state-based and a distribution-based are introduced as proof
techniques for reasoning about higher-order quantum programs. Both notions of bisimilarity
are sound with respect to the linear contextual equivalence, but only the distribution-based
one turns out to be complete.

3.4 Symbolic Bisimulations

The quantum bisimulations introduced so far, either state-based or distribution-based, are
generalised from the corresponding probabilistic bisimulations naturally and smoothly. A
major problem with them is that they all resort to the instantiation of quantum variables
by quantum states. As a result, to check whether or not two processes are bisimilar, we
have to accompany them with arbitrarily chosen quantum states, and check if the resultant
configurations are bisimilar. Note that all quantum states constitute a continuum. Therefore,
it seems that the verification of quantum bisimulations is infeasible from an algorithmic point
of view.

Y. Deng

Recall that for classical process algebras, Hennessy and Lin [27] introduced a notion of
symbolic bisimulation to deal with possibly infinite classical data sets. As a quantum extension
of value-passing CCS, the quantum process algebra qCCS has both (possibly infinite) classical
data domain and (doomed-to-be infinite) quantum data domain. To overcome the additional
difficulty caused by the infinity of all quantum states, we can make use of super-operator
valued distributions, which allow us to fold the operational semantics of qCCS into a symbolic
version and thus provide us with a notion of symbolic bisimulation. To check the symbolic
bisimilarity of two quantum processes, only a finite number of process-superoperator pairs
need to be considered, without appealing to quantum states. This idea has been successful in
developing an algorithm to check the state-based ground bisimulation for quantum processes
[20]. It would be interesting to purse this line of research so as to develop algorithms of
checking the symbolic versions of other quantum bisimulations.

4 Concluding Remarks

We have briefly reviewed a few ingredients for formulating reasonable notions of probabilistic
and quantum bisimulations.

(1) The lifting operation is the key of defining state-based probabilistic and quantum bisimu-
altions. It is mathematically interesting in itself because of the close connection with the
Kantorovich metric and the maximum network flow problem.

(2) Distribution-based bisimulation is more relevant to quantum processes because it offers
a coinductive proof technique for linear contextual equivalene, and linear resources are
prominent in quantum computation.

(3) The symbolic approach is promising to yield feasible algorithms of checking quantum
bisimulations.

There is a huge amount of literature on probabilistic bisimulations, and the current paper
is by no means a complete survey. A more detailed account of probabilistic bisimulations is
given in [4, Chapter3]. For quantum processes, a branching bisimulation is firstly proposed
in [35]. However, it is not a congruence because it is not preserved by parallel composition.
Quantum bisimulations that are congruence relations are given in [19, 20] and independently
in [3]. Both of them are defined for concrete quantum transition systems, and are difficult
to check with algorithms, which motivated the introduction of symbolic bisimulations for
quantum processes [20)].

In [34] a semi-automated tool is developed to verify security proofs based on a weak
bisimulation similar to that given in Definition 9 for a finite fragment of qCCS. In that tool,
security parameters and quantum states are represented as symbols, and some user-defined
equations are used as rewriting rules for simplification. This differs from the symbolic
semantics discussed in Section 3.4 as the latter is more in line with the idea investigated in
[27] for value-passing CCS.

In the future, we believe that distribution-based symbolic bisimulations would be promising
to be used in software tools in support of verifying quantum communication protocols. Some
efforts are made in [22], which considers distribution-based bisimulations and the proofs are
manual when reasoning about the behavioural equivalence of quantum processes. In order
to deal with advanced protocols such as the quantum key distribution protocol BB84 [2], it
would be helpful to have some tool support, for which symbolic semantics could play a role.

2:11

CONCUR 2018

2:12

Bisimulations for Probabilistic and Quantum Processes

—— References

1

10

11

12

13

14

15

16

17

18

19

Christel Baier, Bettina Engelen, and Mila E. Majster-Cederbaum. Deciding bisimilarity and
similarity for probabilistic processes. Journal of Computer and System Sciences, 60(1):187—
231, 2000.

C.H. Bennett and G. Brassard. Quantum cryptography: Public key distribution and coin
tossing. In Proceedings of IEEE International Conference on Computers, Systems and
Signal Processing, pages 175-179, 1984.

T.A.S. Davidson. Formal verification techniques using quantum process calculus. PhD
thesis, University of Warwick, 2011.

Yuxin Deng. Semantics of Probabilistic Processes: An Operational Approach. Springer,
2015.

Yuxin Deng and Yuan Feng. Open bisimulation for quantum processes. In Proceedings of
the 7th IFIP International Conference on Theoretical Computer Science, volume 7604 of
LNCS, pages 119-133. Springer, 2012.

Yuxin Deng and Yuan Feng. Bisimulations for probabilistic linear lambda calculi. In
Proceedings of the 11th IEEE International Symposium on Theoretical Aspects of Software
Engineering, pages 1-8. IEEE Computer Society, 2017.

Yuxin Deng and Yuan Feng. Probabilistic bisimilarity as testing equivalence. Information
and Computation, 257:58-64, 2017.

Yuxin Deng, Yuan Feng, and Ugo Dal Lago. On coinduction and quantum lambda calculi.
In Proceedings of the 26th International Conference on Concurrency Theory, volume 42 of
LIPIcs, pages 427-440. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

Yuxin Deng and Matthew Hennessy. On the semantics of Markov automata. Information
and Computation, 222:139-168, 2013.

Yuxin Deng and Rob van Glabbeek. Characterising probabilistic processes logically. In
Proceedings of the 17th International Conference on Logic for Programming, Artificial In-
telligence and Reasoning, volume 6397 of LNCS, pages 278-293. Springer, 2010.

Yuxin Deng, Rob van Glabbeek, Matthew Hennessy, and Carroll Morgan. Testing finit-
ary probabilistic processes (extended abstract). In Proceedings of the 20th International
Conference on Concurrency Theory, volume 5710 of LNCS, pages 274-288. Springer, 2009.
Yuxin Deng and Hengyang Wu. Modal characterisations of probabilistic and fuzzy bisimula-
tions. In Proceedings of the 16th International Conference on Formal Engineering Methods,
volume 8829 of LNCS, pages 123-138. Springer, 2014.

Josée Desharnais. LabelledMarkovProcesses. PhD thesis, McGillUniversity, 1999.

Josée Desharnais, Abbas Edalat, and Prakash Panangaden. Bisimulation for labelled
Markov processes. Information and Computation, 179(2):163-193, 2002.

Josée Desharnais, V. Gupta, R. Jagadeesan, and Prakash Panangaden. Approximating
labelled Markov processes. Information and Computation, 184(1):160-200, 2003.

Wenjie Du, Yuxin Deng, and Daniel Gebler. Behavioural pseudometrics for nondetermin-
istic probabilistic systems. In Proceedings of the the 2nd International Symposium on De-
pendable Software Engineering: Theories, Tools, and Applications, volume 9984 of LNCS,
pages 67-84. Springer, 2016.

Christian Eisentraut, Jens Chr. Godskesen, Holger Hermanns, Lei Song, and Lijun Zhang.
Probabilistic bisimulation for realistic schedulers. In Proceedings of the 20th International
Symposium on Formal Methods, volume 9109 of LNCS, pages 248-264. Springer, 2015.

Y Feng, R Duan, Z Ji, and M Ying. Probabilistic bisimulations for quantum processes.
Information and Computation, 205(11):1608-1639, 2007.

Y Feng, R Duan, and M Ying. Bisimulations for quantum processes. In Mooly Sagiv,
editor, Proceedings of the 38th ACM Symposium on Principles of Programming Languages,
pages 523-534, Austin, Texas, USA, 2011.

Y. Deng

20 Yuan Feng, Yuxin Deng, and Mingsheng Ying. Symbolic bisimulation for quantum pro-
cesses. ACM Transactions on Computational Logic, 15(2):1-32, 2014.

21 Yuan Feng, Runyao Duan, and Mingsheng Ying. Bisimulation for Quantum Processes.
ACM Transactions on Programming Languages and Systems, 34(4):1-43, 2012.

22 Yuan Feng and Mingsheng Ying. Toward automatic verification of quantum cryptographic
protocols. In 26th International Conference on Concurrency Theory, volume 42 of LIPIcs,
pages 441-455. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

23 Yuan Feng and Lijun Zhang. When equivalence and bisimulation join forces in probabilistic
automata. In Proceedings of the 19th International Symposium on Formal Methods, volume
8442 of LNCS, pages 247-262. Springer, 2014.

24 Simon J. Gay and Rajagopal Nagarajan. Communicating quantum processes. In Pro-
ceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 145-157. ACM, 2005.

25 M Hennessy and A. Ingélfsdéttir. A theory of communicating processes value-passing.
Information and Computation, 107(2):202-236, 1993.

26 Matthew Hennessy. Exploring probabilistic bisimulations, part I. Formal Aspects of Com-
puting, 24(4-6):749-768, 2012.

27 Matthew Hennessy and Huimin Lin. Symbolic bisimulations. Theoretical Computer Science,
138(2):353-389, 1995.

28 Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32(1):137-161, 1985.

29 Holger Hermanns, Jan Krcél, and Jan Kretinsky. Probabilistic bisimulation: Naturally on
distributions. In Proceedings of the 25th International Conference on Concurrency Theory,
volume 8704 of LNCS, pages 249-265. Springer, 2014.

30 Holger Hermanns, Augusto Parma, Roberto Segala, Bjorn Wachter, and Lijun Zhang. Prob-
abilistic logical characterization. Information and Computation, 209(2):154-172, 2011.

31 C. Jones. Probabilistic nondeterminism. PhD thesis, University of Edinburgh, 1990.

32 Philippe Jorrand and Marie Lalire. Toward a quantum process algebra. In Proceedings of
the First Conference on Computing Frontiers, pages 111-119. ACM, 2004.

33 L. Kantorovich. On the transfer of masses (in Russian). Doklady Akademii Nauk, 37(2):227—
229, 1942.

34 Takahiro Kubota, Yoshihiko Kakutani, Go Kato, Yasuhito Kawano, and Hideki Sakurada.
Semi-automated verification of security proofs of quantum cryptographic protocols. Journal
of Symbolic Computation, 73:192—-220, 2016.

35 Marie Lalire. Relations among quantum processes: bisimilarity and congruence. Mathem-
atical Structures in Computer Science, 16(3):407-428, 2006.

36 Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing. Information
and Computation, 94:1-28, 1991.

37 Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

38 Robin Milner. Communicating and mobile systems - the Pi-calculus. Cambridge University
Press, 1999.

39 David Park. Concurrency and automata on infinite sequences. In Proceedings of the 5th
GI Conference, volume 104 of LNCS, pages 167—183. Springer, 1981.

40 Augusto Parma and Roberto Segala. Logical characterizations of bisimulations for discrete
probabilistic systems. In Proceedings of the 10th International Conference on Foundations
of Software Science and Computational Structures, volume 4423 of LNCS, pages 287-301.
Springer, 2007.

41 J. Sack and Lijun Zhang. A general framework for probabilistic characterizing formulae.

In Proceedings of the 13th International Conference on Verification, Model Checking, and
Abstract Interpretation, volume 7148 of LNCS, pages 396—411. Springer, 2012.

2:13

CONCUR 2018

2:14

Bisimulations for Probabilistic and Quantum Processes

42

43

44

45

46

47

48

Davide Sangiorgi. A theory of bisimulation for the pi-calculus. Acta Informatica, 33(1):69-
97, 1996.

Roberto Segala and Nancy Lynch. Probabilistic simulations for probabilistic processes. In
Proceedings of the 5th International Conference on Concurrency Theory, volume 836 of
LNCS, pages 481-496. Springer, 1994.

Franck van Breugel, Michael W. Mislove, Joél Ouaknine, and James Worrell. Domain
theory, testing and simulation for labelled Markov processes. Theoretical Computer Science,
333(1-2):171-197, 2005.

Franck van Breugel and James Worrell. An algorithm for quantitative verification of prob-
abilistic transition systems. In Proceedings of the 12th International Conference on Con-
currency Theory, volume 2154 of LNCS, pages 336-350. Springer, 2001.

Rob J. van Glabbeek, Scott A. Smolka, Bernhard Steffen, and Chris M. N. Tofts. Reactive,
generative, and stratified models of probabilistic processes. In Proceedings of the 5th Annual
Symposium on Logic in Computer Science, pages 130-141. IEEE Computer Society, 1990.
M Ying, Y Feng, R Duan, and Z Ji. An algebra of quantum processes. ACM Transactions
on Computational Logic, 10(3):1-36, 2009.

Lijun Zhang, Holger Hermanns, Friedrich Eisenbrand, and David N. Jansen. Flow faster:
Efficient decision algorithms for probabilistic simulations. Logical Methods in Computer
Science, 4(4):1-43, 2008.

Is Speed-Independent Mutual Exclusion
Implementable?

Rob van Glabbeek
Data61, CSIRI, Sydney, Australia
rvg@cs.stanford.edu

—— Abstract

A mutual exclusion algorithm is called speed independent if its correctness does not depend
on the relative speed of the components. Famous mutual exclusion protocols such as Dekker’s,

Peterson’s and Lamport’s bakery are meant to be speed independent.

In this talk I argue that speed-independent mutual exclusion may not be implementable on
standard hardware, depending on how we believe reading and writing to a memory location is
really carried out. It can be implemented on electrical circuits, however.

This builds on previous work showing that mutual exclusion cannot be accurately modelled
in standard process algebras.

2012 ACM Subject Classification Theory of computation — Concurrency

Keywords and phrases Mutual exclusion, speed independence, concurrent reading and writing,
liveness, justness

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2018.3

Category Invited Talk

© Robert J. van Glabbeek;
37 licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 3; pp. 3:1-3:1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:rvg@cs.stanford.edu
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Verifying Arithmetic Assembly Programs in
Cryptographic Primitives

Andy Polyakov
The OpenSSL project
appro@Qopenssl.org

Ming-Hsien Tsai'
Academia Sinica, Taiwan
mhtsai208@gmail.com

Bow-Yaw Wang?
Academia Sinica, Taiwan
bywang@iis.sinica.edu.tw

Bo-Yin Yang?®
Academia Sinica, Taiwan
by@crypto.tw

—— Abstract

Arithmetic over large finite fields is indispensable in modern cryptography. For efficienty, these op-
erations are often implemented in manually optimized assembly programs. Since these arithmetic
assembly programs necessarily perform lots of non-linear computation, checking their correctness
is a challenging verification problem. We develop techniques to verify such programs automat-
ically in this paper. Using our techniques, we have successfully verified a number of assembly
programs in OpenSSL. Moreover, our tool verifies the boringSSL Montgomery Ladderstep (about
1400 assembly instructions) in 1 hour. This is by far the fastest verification technique for such
programs.

2012 ACM Subject Classification Software and its engineering — Formal software verification
Keywords and phrases Formal verification, Cryptography, Assembly Programs
Digital Object Identifier 10.4230/LIPIcs. CONCUR.2018.4

Category Invited Talk

1 Introduction

Cryptographic primitives are the building blocks of computer security. They are indispensable
in various encryption, authentication, and key exchange protocols. Underneath these critical
primitives, arithmetic over large finite fields is necessitated by modern cryptography. Efficiency
of arithmetic operations such as addition and multiplication is crucial to practical applicability
of cryptographic primitives due to their wide usage. Consequently, these operations are
implemented by low-level languages (such as C or assembly). Indeed, more than forty
arithmetic assembly subroutines for different architectures are found in the OpenSSL NIST

1 partially supported by the Academia Sinica Project AS-106-TP-A06
2 partially supported by the Academia Sinica Project AS-106-TP-A06
3 partially supported by the MOST Project 105-2221-E-001-014-MY3

© Andy Polyakov, Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang;
37 licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 4; pp. 4:1-4:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:appro@openssl.org
mailto:mhtsai208@gmail.com
mailto:bywang@iis.sinica.edu.tw
mailto:by@crypto.tw
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2

Verifying Arithmetic Assembly Programs in Cryptographic Primitives

P-256 elliptic curve cryptographic library. Each is manually optimized to attain the best
performance.

Since cryptographic primitives rely on arithmetic operations over large finite fields, correct
implementations of such operations are essential to computer security. For implementations
written in C, source codes are compiled into executable binary codes. Certified compilation
(for instance, the CompCert project) is necessary to ensure correctness after C codes are
verified. Even so, hand-optimized assembly implementations are still significantly more
efficient than C implementations (up to two times faster for the OpenSSL NIST P-256
Intel Broadwell microarchitecture). Manually optimized assembly implementations for
arithmetic operations are typical in practical cryptography. We verify such low-level codes
for cryptographic primitives in this paper.

Several obstacles must be overcome. Different architectures have different instruction sets.
Even for the same architecture (x86_64), different microarchitectures may have different
instruction sets (Broadwell versus its predecessors). Since one would like to develop verification
techniques across different instruction sets, a unified framework is preferred. Code sizes also
vary from operations significantly. From a dozen of instructions (multiplication by two) to
more than a thousand (group operation in elliptic curves), these assembly implementations
must be verified with reasonable resources. Last but not least, several assembly programs
realize non-linear multiplication over large finite fields. Such algebraic properties are hard
to verify by bit blasting. Existing SMT solvers for the bit-vector theory cannot verify the
multiplication of two 256-bit numbers. New techniques have to be developed for assembly
codes in this special domain.

We propose a domain specific language CRYPTOLINE for modeling assembly programs
across different architectures. The language contains instructions used in implementations of
arithmetic operations. Different from assembly languages, operands and flags are explicit
in CRYPTOLINE for clarity. CRYPTOLINE moreover allows users to specify program properties
with assertions, pre- and post-conditions. Using CRYPTOLINE, assembly programs of different
arithmetic operations from the OpenSSL cryptographic library are modeled and specified. We
feel CRYPTOLINE is a suitable abstraction for assembly programs in cryptographic primitives.

Rewriting assembly codes in CRYPTOLINE can be a daunting task. Moreover, assembly
programs can be written in various ways. For example, assembly code fragments can be
put in the asm statement in GNU C compilers; the OpenSSL library allows programmers to
write portable assembly codes with its Perl scripts. Instead of writing parsers for various
assembly development environments, we extract assembly codes from execution traces. Since
CRYPTOLINE is designed to model assembly programs, each assembly instruction can be
translated to CRYPTOLINE statements straightforwardly. Using a simple Python script,
extracted assembly codes are converted to CRYPTOLINE programs automatically. Users can
transform their assembly programs to CRYPTOLINE programs for verification via simple
scripts. Usability of our work is greatly improved.

For verification, we consider conjunctions of range and algebraic predicates. Range
predicates specify program variable ranges with the unsigned bit-vector theory; they are
resolved by SMT solvers rather straightforwardly. Algebraic predicates specify algebraic
properties among program variables; they are reduced to instances of the ideal membership
problem through a series of transformations. Instances of the ideal membership problem
are sent to and solved by computer algebra systems. Our hybrid technique decomposes
verification problems and takes advantages of recent developments in SMT solving and
computer algebra. It opens new opportunities in verifying non-linear arithmetic computation
in cryptographic programs.

A. Polyakov, M. Tsai, B. Wang, and B. Yang

We report case studies in OpenSSL, boringSSL, and mbedTLS. For OpenSSL, we verify
eight assembly subroutines converted from execution traces in the OpenSSL NIST P-256
cryptographic library. These subroutines perform arithmetic computation including but not
limited to square and multiplication over the Galois field G F(2256 —2224 42192 4 996 _ 1) The
Montegomery multiplication subroutine over arbitrary 256-bit Montgomery primes is also
verified. For boringSSL, the multiplication and square subroutines over GF (2255 — 19) are
verified, as well as the Montgomery Ladderstep subroutine for X25519 (=~ 1400 instructions).
For mbedTLS, the multiplication subroutine accepts any size of inputs and involves both
assembly and C code. The execution traces are extracted and verified.

Related Work. A domain-specific language BvCRYPTOLINE has been proposed to model low-
level mathematical constructs in cryptographic programs [16]. Programs in BVCRYPTOLINE
can be verified automatically by a certified approach. Both the certified approach and
ours reduce the verification problem to SMT problems and ideal membership problems.
However, we introduce new instructions in our domain-specific language so that more low-
level arithmetic programs can be verified. Unlike the certified approach which verifies
programs in BVCRYPTOLINE, we target on real industrial programs and provide scripts for
the extraction of assembly codes from execution traces and for the translation from assembly
codes to our domain-specific language. Although our approach is not certified, it verifies
programs much faster than the certified approach does. The tool gfverif [6] has been used
to automatically verify a C implementation of the Montgomery Ladderstep. In gfverif,
range properties and algebraic properties are verified separatedly by a specialized range
analysis and by the Sage computer-algebra system. A drawback of gfverif is that programs
not written in the constructs provided by gfverif cannot be verified.

A hand-optimized assembly implementation of the Montgomery Ladderstep has been
verified by a semi-automatic approach [8] with SMT solvers. As non-linear arithmetic
operations are hard for SMT solvers to verify, the semi-automatic approach requires manual
program annotation to reduce verification problems to smaller ones and CoOQ proofs for some
theorems about modulo operation. Similarly, several mathematical constructs have been
re-implemented in F* [18] and Vale [7] and to be verified using a combination of SMT solving
and manual proofs.

Fiat-Crypto can synthesize correct-by-construction assembly codes for mathematical
constructs but the synthesized codes are not as efficient as hand-optimized assembly im-
plementations [9]. Various implementations of mathematical constructs, hash functions,
and random number generators have been formalized and manually verified in proof assis-
tants [1, 3, 2, 14, 13, 4, 5, 17]. Cryptol/SAW can automatically verify several cryptographic
implementations in C and Java against their reference implementations but the correctness
of the reference implementations is not proven [15].

After preliminaries (Section 2), the domain specific language CRYPTOLINE for crypto-
graphic assembly programs is presented in Section 3. Our verification algorithm is given in
Section 4. Case studies are reported in Section 5. Section 6 concludes the presentation.

2 Preliminaries

Let N be the set of non-negative integers and Z the set of integers. [n] = {0,1,...,n} for
n € N. Fix a set ¥ = {z,y, z,...} of variables and a set ¢ = {a,b,c, ...} of carry flags such
that tN &= 0. Let £ =7 U ¢ Z[Z] denotes the set of polynomials over & with coefficients in
Z. A set I CZ[Z] is an ideal if f + g € I for every f,g € I; and h x f € I for every h € Z[Z]
and f € I. Given G C Z[Z], (G) is the minimal ideal containing G; G are the generators of
(G). The ideal membership problem is to decide if f € I for a given ideal I and f € Z[Z].

4:3

CONCUR 2018

4:4

Verifying Arithmetic Assembly Programs in Cryptographic Primitives

Num == 0]1|2] -
Var = o APred ::=T | APred N\ APred |
Flag == ¢ Exzpr = Expr | Expr = Expr mod Ezpr |
Ezpr = Num | Var | Flag | RPred ::= T | RPred A RPred |
Expr+ Expr | Expr— Expr | Exzpr <., Expr | Expr <,, Expr
Exprx Expr

(b) Predicates.

(a) Expressions.

Figure 1 Syntax of Expressions and Predicates.

3 Domain Specific Language — CryptoLine

CRYPTOLINE is designed to model and specify arithmetic assembly programs in cryptograhpic
primitives. Arithmetic over large finite fields is essential to modern cryptography. In practice,
it is necessary to perform arithmetic computation with numbers in hundreds of bits lest
security may be compromised due to cryptoanalysis. We analyze real arithmetic assembly
programs, identify a small subset of assembly instructions, and formalize the subset in our
domain specific language CRYPTOLINE. In order to specify properties about programs,
the language is enriched with statements like Assert and Assume. We detail the design of
CRYPTOLINE in this section.

3.1 Syntax

As in low-level cryptographic programs, numbers are non-negative in CRYPTOLINE. The
language also allows variables and binary flags. Expressions are only used in property
specifications. They admit arithmetic operators 4+, —, and x (Figure 1la). Property specifi-
cations are divided into two classes: algebraic and range predicates. An algebraic predicate
is a conjunction of equalities or modulo equalities. A range predicate is a conjunction of
finite-width comparisons?. For instance, Ezpr <, Ezpr means the w-bit less-than relation
between two expressions in Figure 1b.

CRYPTOLINE statements contain assembly instructions used in arithmetic computation®.
They even have a similar syntax: mnemonic, destination variables, and source arguments in
order (Figure 2a). Set is the assignment statement. The Cmov statement is the conditional
assignment. Mul is the half multiplication whereas Mulf is the full multiplication. Add! is the
addition statement without setting the carry flag. Add is the addition statement with setting
the carry flag. Adc is the addition with carry statement. Similarly, Sub! is the subtraction
statement without setting the borrow flag, Sub is the subtraction with setting the borrow
flag, and Sbb is the subtraction with borrow statement. A predicate consists of an algebraic
and a range predicate separated by || (Figure 2b). The Assert statement asserts a predicate.
The Assume statement assumes a predicate. A program is a sequence of statements. Finally,
a specification contains a program with two predicates as the pre- and post-conditions.

Range predicates such as negation, equality, and disjunction are also allowed in our implementation.
Expressions allowed in a range predicate also include signed/unsigned remainder, bit-wise and, bit-wise
or, and bit-wise xor.

Instructions such as setting a binary flag, clearing a binary flag, and instructions in [16] are also allowed
in our implementation.

A. Polyakov, M. Tsai, B. Wang, and B. Yang

Stmt ::= Set Var Arg | CmovVarFlagArgArg |
Add! Var ArgArg | AddFlagVarArgArg | Arg == Num | Var
Sub! Var ArgArg | SubFlagVarArgArg | Prog == Stmt; | Stmt; Prog
AdcFlagVar ArgArgFlag | MulVarArgArg | Pred := RPred||APred
SbbFlagVarArgArgFlag | Mulf Var VarArgArg | Spec ::= (Pred|) Prog(Pred)
AssertPred | AssumePred

(b) Programs and Specifications.
(a) Statements.

Figure 2 Syntax of Programs and Specifications.

1: Set g To; 6: Add! rg rg 4503599627370458; 11: Sub! 7o 7o yo;
2: Set r1 x1; 7 Add! r1 71 4503599627370494; 12: Sub! 71 71 y1;
3: Set 9 T9; 8: Add! r5 r9 4503599627370494; 13: Sub! 79 75 yo;
4: Set r3 w3; 9: Add! r3 r3 4503599627370494; 14: Sub! r3 r3 y3;
5: Set 15 x4; 10: Add! r4 r4 4503599627370494; 15: Sub! 74 74 y4;

Figure 3 Subtraction sub.

Example. Consider the CRYPTOLINE program for the subtraction over GF(22%° — 19) in

X25519. In Figure 3, each element in the finite field is represented by five 51-bit numbers.

Each 51-bit number is a limb of the representation. The program first assigns the minuend
(x;’s) to the result (r;’s). It then adds 4503599627370458 = 252 — 38 to the lowest limb and
4503599627370494 = 252 — 2 to other limbs of the result. Finally, the program subtracts the
subtrahend (y;’s) from the result.

In order to specify the subtraction program, let radiz51(¢,,¢5,£2,£,,0y) denote

£4 % 251><4 +€3 % 251><3 _~_£2 % 251><2 +£1 % 251><1 +€O

That is, radiz51(£;,¢3,02,¢1,¢p) is the element represented by ¢;’s. We have the following
specification for the program in Figure 3:

(' Aimo @i <oa 270+ 25 AN <oa 270 4215 | T)
sub
radiz51 (x4, T3, T2, 1, To) — radizd1 (Ya, Y3, Y2, Y1, Yo)

4 54
; . 2
0 Aicori <os I = radiz51(rq,r3,72,71,70) mod 225° — 19

.

Given each limb of the minuend and subtrahend slightly greater than 2°!, the specification
says the subtraction program computes the difference over GF(22%5 — 19) with the result less
than 254. To see why the subtraction program satisfies the algebraic specification, observe
that radiz51 (25t —1,2%1 —1,251 1,251 —1,251 —19) = 2255 —19. Hence radiz51(2°% -2, 252 —
2,252-2 25292 252_38) = 2x(22°°—19). That is, the subtraction program adds 2x (225°—19)
to the minuend and then subtracts the subtrahend. Since the algebraic specification only
requires modulo equality, the program is indeed correct. Adding 2 x (22°® — 19) does not
induce the propagation of carry flags during addition. It moreover prevents borrow flag
propagation during subtraction.

3.2 Semantics

Let W be a architecture-dependent parameter: W = 264 for 64-bit architectures; W = 232
for 32-bit architectures. A state is a mapping from Var to [W — 1] and from Flag to {0, 1},

4:5

CONCUR 2018

4:6

Verifying Arithmetic Assembly Programs in Cryptographic Primitives

and L is the designated error state. The error state does not satisfy any predicate. Figure 4
gives the operational semantics of each statement.

The semantics for CRYPTOLINE is standard for unsigned bounded arithmetic. The Set
statement updates the value of a variable in a state. Cmov updates a variable by the given
flag. Add! updates a variable by the sum of arguments if the sum is smaller than W, and
otherwise results in the error state (overflows in this case). Add and Adc update a flag and a
variable by the sum of arguments. Sub! updates a variable by the difference of arguments if
the difference is non-negative, and otherwise results in the error state (underflows in this
case). Sub and Sbb update a flag and a variable by the difference of arguments. For the half
multiplication Mul, it is an error if the higher bits of the product is non-zero (overflows in
this case). The full multiplication Mulf always terminates successfully if the two updated
variables are different. Assert results in the error state if the current state does not satisfy
the given predicate. Assume ensures the new state satisfying the given predicate. Finally,
the error state always propagates.

Let 0 and 7 be states. The semantics of a program is inductively defined as follows.
o 2" 1 is defined in Figure 4. o SUMEPTOS, - if there is a state A such that o <7 X\ and
A 2% 7 We call a program prog safe with respect to a predicate P if for every ¢ and T,
o= Pand o 2% 7 imply 7 # L. We write = (P||Q|)prog(P'||Q’) if for every o, 7 with
o =PAQand 0 2% 7 we have 7 = P’ A Q'. Note that ¥ (P||Q|)prog(P’||Q’)) if there is
an assertion failure during execution.

Example (continued). The subtraction program will never reach the error state. For
example, consider the variable rg. The statement at line 1 assigns rg the value of xg,
which is smaller than 2°! + 2'® by the precondition. The Add! statement at line 6 assigns
ro a value between 4503599627370458 = 252 — 38 and 2°! 4 215 4+ 4503599627370458 =
251 4 215 1 952 _ 38 < 264, Thus the Add! statement never goes to the error state. Finally,
observe yy < 25 4 215 < 252 _ 38 < r(after line 6. The Sub! statement at line 11 therefore
never goes to the error state.

4 Verifying CryptoLine Programs

We want to check if = (P||Q|) prog(P’||Q’|) for a given specification (| P||Q[)prog(P’||Q’]) with
range predicates P, P’ and algebraic predicates @,)'. Firstly, we transform the specification
to static single assignments where variables are indexed such that no input variables are
assigned and every variable is assigned at most once. As CRYPTOLINE programs are
straight-line, the transformation can be done easily so that the validity of specification is
preserved. In this section, we will assume the specification (| P||Q[)prog(P’||Q’)) is in static
single assignments and write 2(*) to explicitly indicate a variable 2 with index i when needed.

Secondly, we need to ensure that all assertions in prog are valid. Consider the first
assertion AssertP”||Q” in prog and let prog = prog;; AssertP”||Q"; progz. We verify the
validity of this assertion by checking if = (P||Q))prog; (P"||Q") is valid. Once the assertion
is valid, it is safe to be removed when verifying prog. Therefore all the assertion checking
can be reduced to specification checking of programs without assertions. In this section, we
will assume there is no assertion in prog.

Finally, observe (= (P T)prog(P'[[T) and &= (P Q)prog(T|IQ') imply k= (P Q)prog
(P'||Q'). The specification (P||T[)prog(P’||T]) involves only range predicates; and the
specification (P||Q))prog(T||Q’]) concerns only algebraic properties. We therefore divide the
verfication task into two parts: range and algebraic properties.

A. Polyakov, M. Tsai, B. Wang, and B. Yang

[nle = n [2], = o), foraed [, = olc), forced
Set x u
olz — [u],]
Cmovzbuy 1o, Rl where R = [u], if [b], = 1; [v]s if [b]o = 0O
Addtowo, where R = [u], + [v], and ¢/ = o[z > R]

if R/W = 0; L otherwise

AV E Y Glb,a > R/W, Rmod W] where R = [u], + [v],
AePetv S Glb,a s R/W,Rmod W] where R = [u], + [v]s + [
Subtzuwv o where R = [u], — [v], and 0’ = o[z + R]
if [u], > [v]s; L otherwise
o 22T 51 2y B, Rmod W] where R = [u], — [v]o + W and B =0 if
[u]s > [v]s; 1 otherwise
g Sbbzuvc olb,x — B, R mod W] where R = [u], — [v]o — [c]o + W and B
=0if [u], > [v]s + [c]s; 1 otherwise
g Muzuov, o where R = [u], x [v]s and 0’ = oz — R]
if R/W = 0; L otherwise
g MLV UE Gley s R/W,Rmod W] if 2 #yand R = [u], x [v],
g Aserle o where 0/ = o if 0 = P A Q; L otherwise
_ Asmerla ffoPAO
L stmi 1 where stmt € Stmt

Figure 4 Semantics.

4.1 Range Properties

Range properties are amenable to analysis by bit blasting. We therefore reduce the problem
of deciding = (P||T)prog(P’|| T) to SMT solving. More specifically, we construct a formula
U in the bit vector theory such that ¥ is satisfiable if and only if & (P||T|)prog(P’||T]). An
SMT solver is then employed to check range properties. Since the reduction is standard,
details are omitted here (see, for instance, [12]). Note that & (P||T|)prog(P’||T|) may be
caused by the violation of the post-condition or by the violation of program safety (that
is, overflow/underflow of some program statement). Therefore, safety check of prog is also
encoded in ¥ by the same way as in [16]) and = (P||T|)prog(P’||T|) actually indicates that
prog is safe with respect to P.

4.2 Algebraic Properties

Algebraic properties, especially those involving non-linear multiplication, are not suitable
for SMT solving. In order to effectively verify algebraic properties, we propose modular
polynomial abstraction. In modular polynomial abstraction, program behaviors are modeled
by solutions to systems of modular polynomial equations. Checking algebraic properties is
reduced to modular polynomial equation entailments. The modular polynomial equation
entailment problem in turn is reduced to the ideal membership problem. The ideal member-
ship problem is widely studied in commutative algebra. Decision procedures for the ideal
membership problem are available in computer algebra systems. We hence employ computer
algebra systems to verify algebraic properties.

4:7

CONCUR 2018

4:8 Verifying Arithmetic Assembly Programs in Cryptographic Primitives

Set z u — r—u=20

Cmov z b u v — x—(bxu+(1—-b)xwv)=0

Add! z u v — z—(u+v)=0

Add bz uwv = (z4+bxW)—(u+v)=0Abx(1-0)=0
Adcbzruwvc — (x4+bxW)—(u+v+¢)=0Abx (1-0)=0
Sub! z u v — z—(u—v)=0

Subbzuwv — (x—bxW)=(u—v)=0Abx(1-0)=0
Sbbbzxuwvc — (x—bxW)—(u—v—¢)=0Abx (1—-b)=0
Mul z u v — z—(uxv)=0

Mulf z y u v — (xxW+y)—(uxv)=0

Assert P||Q — T

Assume P||Q — poly(Q)

Figure 5 Modular Polynomial Equations.

In the following, the three transformations from the verification problem of algebraic
properties on CRYPTOLINE programs to the ideal membership problem are explained. We
first show how to transform program behaviors to systems of modular polynomial equations.
The algebraic property verification problem is then reduced to the modular polynomial
equation entailment problem. Finally, we explicate how to solve the entailment problem by
the ideal membership problem in commutative algebra.

4.2.1 Modular Polynomial Equations

Let f(Z),9(%) € Z[Z]. A modular polynomial equation is of the form f(Z) = 0 or f(Z) =
0 mod g(&). A system of modular polynomial equations is denoted by /\f:1 fi(@) = 0A
/\ﬁ:1 9:(Z) = 0 mod h;(Z) where f;(Z), g:(Z), h;(Z) € Z[Z] for all i. A state o is a solution
to a modular polynomial equation (written o = f(Z) = 0 or o |= f(&) = 0 mod ¢(Z)) if
the equation holds under the valuation o. A state o is a solution to a system of modular
polynomial equations if it is a solution to every equations in the system.

Our first task is to describe program behaviors. Consider the transformation from
CRYPTOLINE statements to systems of modular polynomial equations (Figure 5). Set is
transformed to the equation stating that the updated variable is equal to the argument. For
Cmov, the argument b can be either 0 or 1. Hence its corresponding equation identifying the
updated variable to uw or v by the value of b. Add! and Sub! are transformed to equations
respectively mimicing the addition and the subtraction. In addition to the equations for the
updated variable and flag, Add, Adc, Sub, Sbb also have equations restricting the values of
flags to be 0 or 1. Mul and Mulf are transformed to equations mimicing the multiplication.
Assert is verified as another specification and is ignored. Finally, AssumeP||Q is transformed
to poly(Q). Given Q € Z[Z], poly(Q) is @ with e; = ez replaced by e; — es = 0 and
e1 = e mod ez replaced by e; — es = 0 mod e3.

We have the following theorem for the transformation from CRYPTOLINE to a system of
modular polynomial equations.

» Theorem 1. For each stmt — ® in Figure 5 and non-error states o and 7, we have
o 2 T implies T E .

A. Polyakov, M. Tsai, B. Wang, and B. Yang

1oSetr@ 20 6 Add! Y r? 4503509627370458; 11: Subl 2 (D 4O,
2: Set T(O) % 7 Add! r§)r§°> 4503599627370494; 12: Sub! r (7«1) (0).,
3 Set 7’(0) e; 8 Addl) ry? 4503509627370494; 13: Subl 7 (r2>y§0>,
4: Set 7"(0) 200 9 Add! “ (°> 4503599627370494; 14: Sub! r (r{h S0,
50 Setrl” 2”; 10: Add! 7«4) ()4503599627370494, 15: Sub! r (r{t 80,
Figure 6 sub in static single assignments.

Add b =z u v

Sketch. We only show the proof for two statements here. Suppose 0 ———— 7. If
[uls + [v]le < W, [b], = 0 and [z], = [u]s + [v]o. Otherwise, we have [b], = 1 and
[z]- = [u]s + [v]o — W. As statements are in static single assignments, [u], = [u], and
[v] = [v]s. Hence 7 = (x +bx W) — (u+v) =0and 7 = b x (1 —b) = 0 in both cases.
Now suppose o "2 2% % - 1f [5], = 1, []» = [u]o = [b]o * [u],. Otherwise [b], =
and [z], = [v]o = (1—[b]s) x[v],. As statements are in static single assignments, [b], = [b]s,
[u]r = [u]s and [v]- = [v]s. In both cases, we have T =z — (bxu+ (1 —b) xv) =0. <

By the assumption that programs are in static single assignments and Theorem 1, a
system of modular polynomial equations whose solutions are program execution traces is
constructed. More formally, we have the following corollary:

» Corollary 2. Suppose stmt;; stmto;-- - ; stmit, is in static single assignments. Let o and T
stmty;stmtg;--- ;stmt,

be non-error states with o 7. Suppose stmt; — ®; (Figure 5) for every

1<i<n. Thent = N\, ¥,

Example (continued). Let us compute the system of modular polynomial equations for
the subtraction program in Figure 3. We rewrite the program in static single assignments
(Figure 6). The specification concerning algebraic properties, denoted by aspecsys, is rewritten
as well:

(' Aizo it ea 250+ 25 Aot <eq 250 421 | T)
sub
radiz51 (:vé(l),xgo),xgo),xgo), (0)) — radiz51 (yf1),y:(,,), ygo), ygo),yéo)

)
-
(Tl = radizd1 (7’4(12),7*:(32), (2), r(z) r(()Q)) mod 2255 — 19 b
For each statement in the static single assignments, we apply the transformation in Figure 5.

Figure 7 shows the corresponding modular polynomial equations.

4.2.2 Modular Polynomial Equation Entailment

Let ® and @’ be systems of modular polynomial equations with variables over . A modular
polynomial entailment is a formula of the form VZ(® = &’). Given a modular polynomial
entailment, the modular polynomial entailment problem is to decide whether the entailment
holds in the theory of integers. Given systems of modular polynomial equations describ-
ing program behaviors and intended algebraic properties, it is standard to transform the
verification problem to an instance of the modular polynomial entailment problem.

4:9

CONCUR 2018

4:10

Verifying Arithmetic Assembly Programs in Cryptographic Primitives

1oy —a =0nA 9: (M —(r{? +4503599627370494) =0 A
20 7 2" =0 10: Y~ (1 1 4503599627370494) =0 A
3 rgo) _ xgo) —0A 11: 7,(()2) _ (rél) _ y((]o)) —0A

4: réo) :v:go) =0A 12: r§2) — (rgl) — y§0)) =0A

5: 73(10) — xio) =0A 13: réz) — (rél) - yéo)) =0A

6: g —(r§” + 4503599627370458) =0 A 14: 7y — (1§ —yiV) =0 A

7 i —(r” 4 4503599627370494) =0 A 150 1) — (Y —y{) =0

8 i —(r{” 4+ 4503599627370494) =0 A

Figure 7 System of Modular Polynomial Equations ®,; for sub.

» Theorem 3. Given a specification (P||Q)prog(T||Q’]) in static single assignments and
the corresponding system of modular polynomial equations ®p..q for prog where there is no
Assert statement, if prog is safe with respect to P and VZ(poly(Q) N Pprog = poly(Q’))

holds, then = (P||Q)prog(T|Q’).

Example (continued). We apply Theorem 3 to verify algebraic properties on the subtraction
program in Figure 3. Recall the system of modular polynomial equations ®,,;, for the program
in Figure 7. If we can show

radizd1 (mflo), xéo), xgo), x(lo), méo)) — radizd1 (yio), y§0)7 yéo), y§0), y(()o))

VZ | TADPgyp —
b —radizb1 (Tf), ng), 7“52), r§2), 7“(()2)) =0 mod 2% — 19

denoted by entsyp, then = aspecsyp.

Our next task is to solve the modular polynomial entailment problem. It is known how
to replace modular polynomial equations with polynomial equations and hence simplify the
modular polynomial entailment problem [11]. In the following, we review the simplication
for the sake of completeness.

Let e;(Z), f;(Z), n;(Z)gr(Z), hi(Z), my(Z) € Z[Z] for i € [I], j € [J], k € [K], and | € [L].
Consider the instance of the modular polynomial entailment problem:

VZ[A\ e(Z)=0A A f;j(Z) =0mod n;(¥) =

i€[l] j€lJ]
N ge(@) =0A A h(Z) =0 mod my(Z)]
ke[K] le[L]

Its consequent has K + L + 2 modular polynomial equations. We decompose the problem
into K 4+ L + 2 instances of the modular polynomial entailment problem. Each instance is of
the form

Vi[\\ e(@ =0 N\ £i(Z) =0modn;(F) = g(z) =0]; or
i€l JEJ]

V[/\ e (%) =0A /\ [i(@) =0mod n;(¥) = h(Z) =0 mod m(Z)].
€[] JE]
For the first form, we expand the modular polynomial equations and obtain

Vil N\ (@) =0n N\ [3d;.f;(&) = d; - nj(&) = 0] = g(&) = 0],
i€(I] JeJ]

A. Polyakov, M. Tsai, B. Wang, and B. Yang 4:11

2255 — 19,7y 0 _ :C(()o)mgo) — xgo), réo) xéo), ré) xé), 7’4(10) — ZZ?A(LO),
rit - <0> — 4503599627370458, 7" — (%) — 4503599627370494,
< it — §0> —4503599627370494,r§1) —r{®) — 4503599627370494, >

ri — (Y — 4503599627370494,
0 L) 04 00 @m0 @) o

7"4(12) B 7'4(;1) + yELO),

@ _ .4

MO NCINOS (0)

+y3 9

Figure 8 Ideal for Checking Algebraic Property on Subtraction.

which in turn is equivalent to
vavd])\ ei(@) =0A \ fi(&) —d; ni(@) =0 = g(z) =0).
€[] JE[J]
Similarly, we obtain the following entailment for the second form:
vavd])\ ei(@) =0)\ fi(&) —d; n;(&) =0 = h(%) = 0 mod m()].
€[] J€[J]

Note that antecedents in both forms are but polynomial equations. In order to solve the
modular polynomial entailment problem, it suffices to solve the following forms:

Vf['e/[\I]GZ() =0 = g(7) = 0] (1)
Vf[‘e/[\l] ei(%) =0 = h(Z) =0 mod m(Z)] (2)

4.2.3 Solving Modular Polynomial Equation Entailment Problem

There is an interesting connection between solving the formula (2) and the ideal membership
problem. Suppose h(Z) € (e;(Z), m(Z));c;r- By the definition of ideal, h(Z) is a linear
combination of e;(Z) and m(Z). Hence, there are ¢(%), ¢;(¥) € Z[Z] such that

h(F) = E)+ Y i) - ei().
i€[I]
When e;(Z) = 0 for every i € [I], we have h(Z) = ¢(Z) - m(Z), that is, h(Z) = 0 mod m(Z).
The following theorem summarizes the connection:
» Theorem 4 ([11]). Let e;(Z), g(Z), h(Z), m(Z) € Z[Z]
1. The formula (1) holds if g(Z) is in the ideal {e;(Z))ic[r
2. The formula (2) holds if h(Z) is in the ideal (e;(Z), ()>ze[l]

orze[]

Example (continued). Recall that we would like to establish ents,;,. By Theorem 4, it
suffices to show radiz51 (x g]), xgo), xéo)7 xgo), x(()o)) — radiz51(4(10), y:(;)), yéo), ygo)’ y(o)) -

radizd1 (rf), r§2), réQ), 52), r((f)) is in the ideal from Figure 8.

4.2.4 Completeness

The reduction from the algebraic verification problem to the ideal membership problem is
sound but incomplete. There are instances of (1) or (2) whose corresponding ideal membership
problems do not hold.

CONCUR 2018

4:12

Verifying Arithmetic Assembly Programs in Cryptographic Primitives

4.2.5 Optimization

The ideal membership problem typically becomes harder when the number of polynomials
grows [10]. To reduce the number of polynomials, we apply variable substitution same as
in [16]. For the instruction Set x w and its corresponding modular polynomial equation
x —u = 0, we remove the equation and replace z with u in all other modular polynomial
equations. Other instructions that update only one variable are processed similarly. Consider
Mulf 2 y u v and its corresponding modular polynomial equation (x x W +y) — (u x v) =0
for an example of instructions that update two variables. Since (z x W 4+ y) — (u x v) =0
implies y = u X v — x X W, we remove the equation and replace y with u x v —x x W in
all other modular polynomial equations. For an AssumeP||@Q statement with an equation
e1 —eg = 0 in poly(Q), we identify a variable 2 and an expression e such that e; — eg = 0 if
and only if x = e. Then e; — e3 = 0 is removed after replacing = with e.

Example (continued). By the optimization, it suffices to show

radios1 (e, 25", 0y’ 2t wi") — radias1 (5, v v 17" -

radiz51 () + 4503599627370494 — y{”, &) + 4503599627370494 — 35",
8” + 4503599627370494 — 5, 2”4 4503599627370494 — y\”,
28 + 4503599627370458 —)

is in the ideal of (22°% — 19).

5 Evaluation

We have implemented our approach in OCaml. Followed by a case study on Montgomery mul-
tiplication in this section, the verification of arithmetic assembly programs in cryptographic
libraries is reported.

5.1 Montgomery Multiplication

Consider modulo arithmetic computation over Z,,. Since results must be in Z,,, a modulo
operation is necessary. For modulo addition or subtraction, it is relatively easy since results
are obtained by subtracting or adding m respectively. For modulo multiplication, the naive
algorithm requires division. This is inefficient. Consider, for instance, modulo arithmetic
computation over Zgs. Let a = 79 and b = 39. We have a + b = 118 and 118 — 93 = 25.
Hence (a + b) mod 93 = 25. But a x b =79 x 39 = 3081. Since 3081 = 93 x 33 + 12. We
obtain (79 x 39) mod 93 = 12 by division.

To avoid inefficient division, cryptographic programs perform modulo arithmetic com-
putation over Z,, in Montgomery forms. Two numbers R and m’ with ged(R,m) =1 and
mm’ = —1 mod R are chosen by programmers. For any a € Z,,, its Montgomery repre-
sentation is aR mod m. For modulo addition and subtraction, it is still easy to compute
in Montgomery forms since (a & b)R = aR £+ bR mod m. For modulo multiplication, one
would like to compute the Montgomery representation abR mod m from the representations
aR mod m and bR mod m of a and b respectively. Yet aR - bR = abR? mod m. It appears
that one has to multiply the inverse of R and then modulo m to obtain the result.

Surprisingly, Montgomery proposed a reduction algorithm which multiplies the inverse
of R and modulo m simultaneously. The following computation performs the Montgomery

A. Polyakov, M. Tsai, B. Wang, and B. Yang

reduction on a number T in Montgomery representation:

n = ((TmodR)x m’) mod R
t = (T+nxm)/R
r = ift>mthent—melset

We will illustrate by an example. Choose (m, R,m’) = (93,100, 43). We have ged(100,93) = 1
and 93 x 43 = —1 mod 100. The numbers a and b in Montgomery representation are
7900 mod 93 = 88 and 3900 mod 93 = 87 respectively (two hard divisions). To perform the
Montegomery reduction on T' = 88 x 87 = 7656, we compute n = ((7656 mod 100) x 43) mod
100 = (56x43) mod 100 = 2408 mod 100 = 8. t = (7656+8x93)/100 = 8400,/100 = 84. Since
84 < m = 93, we obtain the product 84 in Montgomery representation. To compute ab mod m,
we perform Montgomery reduction again on T' = 84. Thus n = ((84 mod 100) x43) mod 100 =
(84 x 43) mod 100 = 3612 mod 100 = 12 and ¢ = (84 + 12 x 93)/100 = 1200/100 = 12. Since
12 < 93, we have (79 x 39) mod 93 = 12 as before. Observe that only two hard divisions are
necessary for computing Montgomery representations of 79 and 39. Modulo 100 and dividing
multiples of 100 by 100 are trivial. If a number of arithmetic operations are required (as in
the case for cryptographic primitives), computation in Montgomery representation is much
more efficient than textbook algorithms. Cryptographic libraries subsequently implement
arithmetic in Montgomery representation.

Assembly subroutines in OpenSSL go even further than that. Previously, we compute

multiplication 88 x 87 followed by reduction to perform one Montgomery multiplication.

In practice, multiplication and reduction are performed simultaneously in Montgomery
multiplication. OpenSSL moreover uses the multi-limb Montegomery multiplication algorithm
where R can be a large power of 2. Consider the four-limb Montgomery multiplication with
64-bit limbs. m is hence a 256-bit number. Choose R = 2256, Define radiz64 ({3, l2,¢1,09)
to be the expression

53 % 264><3 +£2 % 264><2 +€1 % 264><1 +£0

Let m = radiz64 (ms, ma, my,mg), * = radizb](xs, 2, x1,20), y = radiz64(ys, Y2, Y1, Yo)
and m’ € [25% — 1] be inputs and r = radiz64(rs,m2,71,70) the output. The four-limb
Montgomery multiplication subroutine bn_mul mont_4 in OpenSSL has the following
specification:

(T|mo =1mod 2 Am' x m+ 1= 0mod 264)
r=Dbn_mul mont_4(x,y, m,m’)
(Tllz x y = r x 2256 mod m))

The precondition mg = 1 mod 2 is equivalent to ged(m,2%%) = 1. On input numbers
x = aR mod m and y = bR mod m in Montgomery representation, the output r satisfies
2y = abR? = rR mod m. That is, r = abR mod m. The output r is the product of a and b
in Montgomery representation.

The Montgomery multiplication subroutine for x86_ 64 is invoked by the C fragment:

bn_mul_mont(r, x, y, m, m’, n_limbs);

where x, y, m, m’ are arrays of 64-bit unsigned integer and n_limbs is the number of limbs.
We compile the C code and link it with the OpenSSL cryptographic library. The program
execution trace is then extracted by gdb along with effective addresses automatically. For
4-limb bn_mul_mont_4 (n_limbs = 4), there are about 350 assembly instructions. As an
illustration, the following three instructions load the value of m’, y[0], and x[0] to the
registers r8, rbx, and rax respectively.

4:13

CONCUR 2018

4:14

Verifying Arithmetic Assembly Programs in Cryptographic Primitives

mov (4r8) ,%r8 #! EA = L0x6060e0
mov (hr12) ,%rbx #! EA = L0x6060a0
mov (hrsi) ,%rax #! EA = LOx606080

For each instruction, we write a Python script to translate it to a CRYPTOLINE statement.
Here are the corresponding CRYPTOLINE code for the three instructions:

Set 8 L0x6060e0;
Set rbx L0x6060a0;
Set rax LOx606080;

In our automatic translation, each memory cell is a variable identified by its address. Each
register is also a variable with the same name. Since effective addresses are obtained from
gdb, indirect memory operands (such as -0x10(%rsp,%r15,8)) are translated to variables
corresponding to their effective addresses. It remains to initialize memory cells for inputs.

Set LOx606080 zg; 5: Set L0x6060a0 yo; 9: Set L0x26060c0 my;
Set L0x606088 x1; 6: Set L0x6060a8 y;; 10: Set L0x6060c8 my;
Set L0x606090 xzo; T7: Set L0x606000 yo; 11: Set L0x26060d0 mo;
Set L0x606098 x3; 8: Set L0x606008 y3; 12: Set L0x6060d8 ms;

13: Set L0x6060e0 m/’;

The Assert and Assume statements are indispensable in verifying bn__mul mont. Consider
the following fragment extracted from the assembly subroutine:

1: Set rbx yo; 4: Mulf rdx rax rbx raz; 7: Mulf unused rbp r10 rbp;
2: Set rax xg; 5: Setrl0 rax; 8: Mulf rdx rax rbp rax;
3: Setrbp m'; 6: Set rax mo; 9: Add! carry r10 rax r10;

At line 5, we have 710 = yg x o mod 254, At line 7, 7bp = yo X zo x m’ mod 254, At line 8,
rax = yo X xo X m’ x mg mod 24, Finally at line 9, we have r10 = (yo X 2o X m’ X mg) + (yo X
70) = (yo X T9) X (M’ x mo +1) mod 2%4. From the precondition m’ x m+1 = 0 mod 2%4, we
have m’ x radiz64 (ms, ma, m1,mg) + 1 = 0 mod 24 and m’ x mg + 1 = 0 mod 254. Hence
710 = (yo X x0) X (M’ x my + 1) = 0 mod 24, Now r10 is a 64-bit register. 710 = 0 mod 2%4
implies 710 = 0 on x86_ 64. Its value can be safely discarded. The equality is essential to the
proof of correctness in the Montgomery multiplication program.

Although 710 = 0 mod 2%¢ can be verified by modular polynomial equation entailment,
the algebraic technique fails to prove 10 = 0. In order to verify bn_ mul_mont_ , we add two
instructions following the code fragment: AssertT||r10 = 0 mod 2%* and AssumeT ||r10 = 0.
The Assert statement is automatically verified; the Assume statement is safe because r10 =
0 mod 2% implies 710 = 0 when 710 is a 64-bit register.

5.2 Arithmetic in Cryptographic Libraries

We have successfully verified assembly codes extracted from the arithmetic programs in
cryptographic libraries OpenSSL, boringSSL, and mbedTLS. The extracted traces are not
affected by the inputs in all programs except mbedTLS. The big integer multiplication in
mbedTLS contains a loop with undetermined iterations in C for propagating carry chains.
For this multiplication, we extracted and verified assembly codes for different cases of carry
chains but only report two cases with longest carry chains. All the verification tasks are
performed on a Linux machine with a 3.47GHz CPU and 128GB memory. We use Boolector

A. Polyakov, M. Tsai, B. Wang, and B. Yang

Table 1 Experimental Results.

library program In assert range alg total
ecp_ nistz256_ add 89 0.44 4.17 0.03 4.63
ecp_ nistz256_ sub 88 - 18.54 ~0 18.55
ecp_ nistz256_ from_ mont 82 - 0.41 0.02 0.45
ecp_ nistz256_ mul__mont 192 - 21.49 0.03 21.53
ecpinist22567mulimont+ 153 - 15.43 0.03 15.47
OpenSSL -
ecp_ nistz256__mul_by_ 2 49 - 0.05 0.02 0.08
ecp_ nistz256__sqr_ mont 148 - 16.43 0.03 16.47
ecpﬁnistz25678qr7mont+ 131 - 22.50 0.03 22.54
x86_ 64 _mont_ 2 228 832.60 13.41 0.03 846.05
x86_64__mont_ 4 490 8279.87 523.27 0.91 8804.06
x25519_x86_ 64_ mul 226 - 28.73 0.03 28.78
boringSSL x25519_x86_64_ sqr 171 - 6.14 0.03 6.18
x25519_x86_64_ ladderstep | 1459 - 2921.82 107.93 3029.78
mbedtls mpi_mul mpi_ 2 76 0.46 0.42 0.03 0.92
mbedTLS | mbedtls. mpi_mul_mpi_4 249 12.85 9.27 0.02 22.16

2.4.0 for SMT solving and use Singular 4.1.0 for ideal membership solving. Table 1 shows
the verification results. For each arithmetic program, we report the number of lines (In)
in CRYPTOLINE (including the specification), the time in seconds for assertion checking
(assert), range checking (range), algebraic checking (alg), and overall verification (total). A
“-” in the assertion column indicates that the program contains no assertion. In OpenSSL,
two versions of ecp_ nistz256__mul_mont and ecp_ nistz256_sqr__mont are availble: one for
typical x86_ 64 microarchitectures, the other for Broadwell microarchitecture (annotated
by “T” in the table). For multiplication, we verified 2- and 4-limb versions in OpenSSL
(x86_64_mont_*) and mbedTLS (mbedtls mpi_mul mpi_*).

To the best of our knowledge, our work is the first on automatically verifying assembly

codes extracted from low-level arithmetic implementations of industrial cryptographic libraries.

Most of the other works verified re-implementations of arithmetic operations written in
high-level languages. In the most related work [16], an implementation of the Montgomery
Ladderstep in BVCRYPTOLINE was verified in days. With our approach, the implementation
of the Montgomery Ladderstep in boringSSL can be verified in 1 hour.

6 Conclusion

We have described a domain-specific language CRYPTOLINE for modeling arithmetic assembly
programs in cryptographic primitives across different instruction sets. Scripts have been
developed to extract execution traces from programs as assembly codes and to translate
assembly codes to CRYPTOLINE. A specification for a program in CRYPTOLINE is divided into
range predicates and algebraic predicates. While range predicates are verified by SMT solving,
algebraic predicates are verified via transformation to ideal membership problems solved by
computer algebra systems. We have implemented our verification approach to successfully
verified several arithmetic programs in cryptographic libraries OpenSSL, boringSSL, and
mbedTLS.

We are working on a certified translator to accurately generate CRYPTOLINE codes from
different assembly. The case studies in mbedTLS expose limitations of verifying cryptographic
codes with CRYPTOLINE. We would like to extend our techniques to such programs.

4:15

CONCUR 2018

4:16

Verifying Arithmetic Assembly Programs in Cryptographic Primitives

—— References

1

10

11

12

13

14

15

16

17

18

Reynald Affeldt. On construction of a library of formally verified low-level arithmetic
functions. Innovations in Systems and Software Engineering, 9(2):59-77, 2013.

Reynald Affeldt and Nicolas Marti. An approach to formal verification of arithmetic func-
tions in assembly. In Mitsu Okada and Ichiro Satoh, editors, Advances in Computer Science,
volume 4435 of LNCS, pages 346-360. Springer, 2007.

Reynald Affeldt, David Nowak, and Kiyoshi Yamada. Certifying assembly with formal
security proofs: The case of BBS. Science of Computer Programming, 77(10-11):1058—
1074, 2012.

Andrew W. Appel. Verification of a cryptographic primitive: SHA-256. ACM Transactions
on Programming Languages and Systems, 37(2):7:1-7:31, 2015. doi:10.1145/2701415.
Lennart Beringer, Adam Petcher, Katherine Q. Ye, and Andrew W. Appel. Verified correct-
ness and security of openssl HMAC. In USENIX Security Symposium 2015, pages 207—-221.
USENIX Association, 2015.

Daniel J. Bernstein and Peter Schwabe. gfverif: Fast and easy verification of finite-field
arithmetic, 2016. URL: http://gfverif.cryptojedi.org.

B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch, B. Parno, A. Rane,
S. Setty, and L. Thompson. Vale: Verifying high-performance cryptographic assembly code.
In USENIX Security Symposium 2017, pages 917-934. USENIX Association, 2017.
Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Peter Schwabe, Ming-Hsien Tsai, Bow-
Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang. Verifying curve25519 software. In Gail-Joon
Ahn, Moti Yung, and Ninghui Li, editors, CCS, pages 299-309. ACM, 2014.

Fiat-crypto. https://github.com/mit-plv/fiat-crypto, 2015. Accessed: 2017-05-19.
Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and company, 1979.

John Harrison. Automating elementary number-theoretic proofs using Grébner bases. In
Frank Pfenning, editor, CADE, volume 4603 of LNCS, pages 51-66. Springer, 2007.

D. Kroening and O. Strichman. Decision Procedures - an algorithmic point of view. EATCS.
Springer, 2008.

Magnus O. Myreen and Gregorio Curello. Proof pearl: A verified bignum implementation
in x86-64 machine code. In Certified Programs and Proofs, volume 8307 of LNCS, pages
66-81. Springer, 2013. doi:10.1007/978-3-319-03545-1_5.

Magnus O. Myreen and Michael J. C. Gordon. Hoare logic for realistically modelled machine
code. In Orna Grumberg and Michael Huth, editors, TACAS, volume 4424 of LNCS, pages
568-582. Springer, 2007.

Aaron Tomb. Automated verification of real-world cryptographic implementations. IEEE
Security & Privacy, 14(6):26-33, 2016. doi:10.1109/MSP.2016.125.

Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang. Certified verification of algebraic
properties on low-level mathematical constructs in cryptographic programs. In David Evans,
Tal Malkin, and Dongyan Xu, editors, CCS. ACM, 2017.

Katherine Q. Ye, Matthew Green, Naphat Sanguansin, Lennart Beringer, Adam Petcher,
and Andrew W. Appel. Verified correctness and security of mbedtls HMAC-DRBG. In
CCS, pages 2007-2020. ACM, 2017. doi:10.1145/3133956.3133974.

Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and Benjamin
Beurdouche. HACL*: A verified modern cryptographic library. In CCS, pages 1789-1806.
ACM, 2017. doi:10.1145/3133956.3134043.

http://dx.doi.org/10.1145/2701415
http://gfverif.cryptojedi.org
https://github.com/mit-plv/fiat-crypto
http://dx.doi.org/10.1007/978-3-319-03545-1_5
http://dx.doi.org/10.1109/MSP.2016.125
http://dx.doi.org/10.1145/3133956.3133974
http://dx.doi.org/10.1145/3133956.3134043

Coalgebraic Theory of Biichi and Parity Automata:
Fixed-Point Specifications, Categorically

Ichiro Hasuo
National Institute of Informatics, Japan

i.hasuo@acm.org
https://orcid.org/0000-0002-8300-4650

—— Abstract

Coalgebra is a categorical modeling of state-based dynamics. Final coalgebras — as categorical
greatest fixed points — play a central role in the theory; somewhat analogously, most coalgeb-
raic proof techniques have been devoted to greatest fixed-point properties such as safety and
bisimilarity. In this tutorial, I introduce our recent coalgebraic framework that accommodates
those fixed-point specifications which are not necessarily the greatest. It does so specifically by

characterizing the accepted languages of Biichi and parity automata in categorical terms. We
present two characterizations of accepted languages. The proof for their coincidence offers a
unique categorical perspective of the correspondence between (logical) fixed-point specifications
and the (combinatorial) parity acceptance condition.

2012 ACM Subject Classification Theory of computation — Automata over infinite objects

Keywords and phrases Coalgebra, category theory, fixed-point logic, automata, Biichi automata,
parity automata

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2018.5
Category Invited Tutorial

Funding Supported by ERATO HASUO Metamathematics for Systems Design Project (No. JP-
MJER1603), JST; Grants-in-Aid No. 15KT0012 & 15K11984, JSPS; and the JSPS-INRIA Bilat-
eral Joint Research Project “CRECOGI”

Studies of automata, and state-based transition systems in general, have been shed a fresh
categorical light in the 1990s by the theory of coalgebra [7, 5]. In the theory, a state-based
dynamics is modeled by a coalgebra, that is, an arrow ¢: X — F X in a category C; and this
simple modeling has produced numerous results that capture mathematical essences and
provide general techniques.

Final coalgebras as “categorical greatest fixed points” play a central role in the theory of
coalgebra. Somewhat analogously, most coalgebraic proof methods have focused on greatest
fixed-point properties — a notable example being a span-based categorical characterization of
bisimilarity.

In this tutorial, I will outline our recent results [10, 8] about how we can accommodate,
in the theory of coalgebra, those fixed-point properties which are not necessarily the greatest.
This takes the concrete form of characterizing the accepted languages of Biichi and parity
automata in the language of category theory. Our framework, based on the so-called Kleisli
approach to coalgebraic trace semantics [6, 4, 2, 1], is generic and covers both automata with
nondeterministic and probabilistic branching. It covers both word and tree automata, too.

© Ichiro Hasuo;
37 licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 5; pp. 5:1-5:2

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:i.hasuo@acm.org
https://orcid.org/0000-0002-8300-4650
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2

Coalgebraic Theory of Biichi and Parity Automata

We present two characterizations of the accepted languages of Biichi and parity automata.
The first one is called logical fixed points; it is formulated in terms of the order-enriched
structure of the underlying Kleisli category (where the monad in question models branching
type) [10]. The second one, called categorical fixed points, utilizes nested datatypes specified
by a functor. The latter resembles repeated application of (co)free (co)monads. We exhibit a
proof for the coincidence of the two characterizations. What arises through it is a categorical
perspective of one of the key observations that underpin the recent developments in computer
science — namely the fact that the combinatorial notion of parity acceptance condition
represents logical specifications given by nested and alternating fixed points.

The tutorial is based on the speaker’s joint works with Corina Cirstea, Bart Jacobs,
Shunsuke Shimizu, Ana Sokolova, and Natsuki Urabe [2, 3, 8, 10]. A detailed account of the
technical material of the tutorial will be given in a forthcoming paper [9].

—— References

1 Corina Cirstea. Canonical coalgebraic linear time logics. In Lawrence S. Moss and
Pawel Sobocinski, editors, 6th Conference on Algebra and Coalgebra in Computer Science,
CALCO 2015, June 24-26, 2015, Nijmegen, The Netherlands, volume 35 of LIPIcs, pages
66-85. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.
CALCO0.2015.66.

2 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace semantics via coinduction.
Logical Methods in Comp. Sci., 3(4:11), 2007.

3 Ichiro Hasuo, Shunsuke Shimizu, and Corina Cirstea. Lattice-theoretic progress meas-
ures and coalgebraic model checking. In Rastislav Bodik and Rupak Majumdar, editors,
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
grammaing Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages
718-732. ACM, 2016. doi:10.1145/2837614.2837673.

4 B. Jacobs. Trace semantics for coalgebras. In J. Addmek and S. Milius, editors, Coalgebraic
Methods in Computer Science, volume 106 of FElect. Notes in Theor. Comp. Sci. Elsevier,
Amsterdam, 2004.

5 Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation,
volume 59 of Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 2016. doi:10.1017/CB09781316823187.

6 J. Power and D. Turi. A coalgebraic foundation for linear time semantics. In Category
Theory and Computer Science, volume 29 of Elect. Notes in Theor. Comp. Sci. Elsevier,
Amsterdam, 1999.

7 J.J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comp. Sci., 249:3-80,
2000.

8 Natsuki Urabe and Ichiro Hasuo. Categorical Biichi and parity conditions via alternating
fixed points of functors. In Corina Cirstea, editor, Proc. Coalgebraic Methods in Computer
Science - 14th IFIP WG 1.3 International Workshop, CMCS 2018, Lect. Notes Comp. Sci.,
2018. to appear, preprint available at arxiv.org/abs/1803.06811.

9 Natsuki Urabe, Shunsuke Shimizu, and Ichiro Hasuo. Coalgebraic theory of Biichi and
parity automata: Fixed-point specifications, categorically (tentative). forthcoming.

10 Natsuki Urabe, Shunsuke Shimizu, and Ichiro Hasuo. Coalgebraic trace semantics for
buechi and parity automata. In Josée Desharnais and Radha Jagadeesan, editors, 27th
International Conference on Concurrency Theory, CONCUR 2016, August 23-26, 2016,
Québec City, Canada, volume 59 of LIPIcs, pages 24:1-24:15. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016.

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.66
http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.66
http://dx.doi.org/10.1145/2837614.2837673
http://dx.doi.org/10.1017/CBO9781316823187

Universal Safety for Timed Petri Nets is
PSPACE-complete

Parosh Aziz Abdulla
Uppsala University, Sweden

Mohamed Faouzi Atig
Uppsala University, Sweden

Radu Ciobanu
University of Edinburgh, UK

Richard Mayr
University of Edinburgh, UK

Patrick Totzke
University of Edinburgh, UK
https://orcid.org/0000-0001-5274-8190

—— Abstract

A timed network consists of an arbitrary number of initially identical 1-clock timed automata,
interacting via hand-shake communication. In this setting there is no unique central controller,
since all automata are initially identical. We consider the universal safety problem for such
controller-less timed networks, i.e., verifying that a bad event (enabling some given transition) is

impossible regardless of the size of the network.

This universal safety problem is dual to the existential coverability problem for timed-arc
Petri nets, i.e., does there exist a number m of tokens, such that starting with m tokens in a
given place, and none in the other places, some given transition is eventually enabled.

We show that these problems are PSPACE-complete.

2012 ACM Subject Classification Theory of computation — Timed and hybrid models
Keywords and phrases timed networks, safety checking, Petri nets, coverability
Digital Object Identifier 10.4230/LIPIcs. CONCUR.2018.6

Funding This work was supported by the EPSRC, grant EP/M027651/1.

1 Introduction

Background. Timed-arc Petri nets (TPN) [4, 16, 3, 8, 13] are an extension of Petri nets
where each token carries one real-valued clock and transitions are guarded by inequality
constraints where the clock values are compared to integer bounds (via strict or non-strict
inequalities). The known models differ slightly in what clock values newly created tokens
can have, i.e., whether newly created tokens can inherit the clock value of some input token
of the transition, or whether newly created tokens always have clock value zero. We consider
the former, more general, case.

Decision problems associated with the reachability analysis of (extended) Petri nets
include Reachability (can a given marking reach another given marking?) and Coverability
(can a given marking ultimately enable a given transition?).

While Reachability is undecidable for all these TPN models [15], Coverability is decidable
using the well-quasi ordering approach of [1, 10] and complete for the hyper-Ackermannian
? Parosh Aziz Abdul.la, Mohamed Fé.a‘ouzi Atig, Radu Ciobanu, Richard Mayr, and Patrick Totzke;

5v icensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 6; pp. 6:1-6:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5274-8190
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2

Universal Safety for Timed Petri Nets is PSPACE-complete

complexity class F .« [12]. With respect to Coverability, TPN are equivalent [7] to (linearly
ordered) data nets [14].

The FEzistential Coverability problem for TPN asks, for a given place p and transition
t, whether there exists a number m such that the marking M(m) = m - {(p,0)} ultimately
enables t. Here, M(m) contains exactly m tokens on place p with all clocks set to zero
and no other tokens. This problem corresponds to checking safety properties in distributed
networks of arbitrarily many (namely m) initially identical timed processes that communicate
by handshake. A negative answer certifies that the “bad event” of transition ¢ can never
happen regardless of the number m of processes, i.e., the network is safe for any size. Thus
by checking existential coverability, one solves the dual problem of Universal Safety. (Note
that the m timed tokens/processes are only initially identical. They can develop differently
due to non-determinacy in the transitions.)

The corresponding problem for timed networks studied in [2] does not allow the dynamic
creation of new timed processes (unlike the TPN model which can increase the number of
timed tokens), but considers multiple clocks per process (unlike our TPN with one clock per
token).

The TPN model above corresponds to a distributed network without a central controller,
since initially there are no tokens on other places that could be used to simulate one. Adding
a central controller would make Ezistential Coverability polynomially inter-reducible with
normal Coverability and thus complete for F, .« [12] (and even undecidable for > 1 clocks
per token [2]).

Aminof et. al. [6] study the model checking problem of w-regular properties for the
controller-less model and in particular claim an EXPSPACE upper bound for checking
universal safety. However, their result only holds for discrete time (integer-valued clocks)
and they do not provide a matching lower bound.

Our contribution. We show that Fzistential Coverability (and thus universal safety) is
decidable and PSPACE-complete. This positively resolves an open question from [2] regarding
the decidability of universal safety in the controller-less networks. Moreover, a symbolic
representation of the set of coverable configurations can be computed (using exponential
space).

The PSPACE lower bound is shown by a reduction from the iterated monotone Boolean
circuit problem. (It does not follow directly from the PSPACE-completeness of the reachability
problem in timed automata of [5], due to the lack of a central controller.)

The main ideas for the PSPACE upper bound are as follows. First we provide a logspace
reduction of the Existential Coverability problem for TPN to the corresponding problem
for a syntactic subclass, non-consuming TPN. Then we perform an abstraction of the real-
valued clocks, similar to the one used in [3]. Clock values are split into integer parts and
fractional parts. The integer parts of the clocks can be abstracted into a finite domain, since
the transition guards cannot distinguish between values above the maximal constant that
appears in the system. The fractional parts of the clock values that occur in a marking
are ordered sequentially. Then every marking can be abstracted into a string where all
the tokens with the i-th fractional clock value are encoded in the i-th symbol in the string.
Since token multiplicities do not matter for existential coverability, the alphabet from which
these strings are built is finite. The primary difficulty is that the length of these strings
can grow dynamically as the system evolves, i.e., the space of these strings is still infinite
for a given TPN. We perform a forward exploration of the space of reachable strings. By
using an acceleration technique, we can effectively construct a symbolic representation of the
set of reachable strings in terms of finitely many regular expressions. Finally, we can check
existential coverability by using this symbolic representation.

P. A. Abdulla, M. Atig, R. Ciobanu, R. Mayr, and P. Totzke

2 Timed Petri Nets

We use N and R to denote the sets of nonnegative integers and reals, respectively. For
n € N we write [n] for the set {0,...,n}.
For a set A, we use A* to denote the set of words, i.e. finite sequences, over A, and write &

for the empty word. If R is a regular expression over 4 then £(R) C A* denotes its language.

A multiset over a set X is a function M : X — N. The set X® of all (finitely supported)
multisets over X is partially ordered pointwise (by <). The multiset union of M, M’ € X®
is (M@ M') e X® with (M @ M')(a) < M(a)+ M'(a) for all a € X. If M > M’ then the
multiset difference (M © M’) is the unique M € X® with M = M’ & M". We will use a

monomial representation and write for example (o + 32) for the multiset (a +— 1,8 + 3).

For a multiset M and a number m € N we let m - M denote the m-fold multiset sum of
M. We further lift this to sets of numbers and multisets on the obvious fashion, so that in
particular N- S = {n-M |n e N, M € S}.

Timed Petri nets are place/transition nets where each token carries a real value, sometimes
called its clock value or age. Transition firing depends on there being sufficiently many tokens
whose value is in a specified interval. All tokens produced by a transition either have age 0,
or inherit the age of an input-token of the transition. To model time passing, all token ages
can advance simultaneously by the same (real-valued) amount.

» Definition 1 (TPN). A timed Petri net (TPN) N' = (P, T, Var, G, Pre, Post) consists of
finite sets of places P, transitions T and variables Var, as well as functions G, Pre, Post
defining transition guards, pre— and postconditions, as follows.

For every transition ¢t € T, the guard G(t) maps variables to (open, half-open or closed)
intervals with endpoints in NU{oo}, restricting which values variables may take. All numbers
are encoded in unary. The precondition Pre(t) is a finite multiset over (P x Var). Let
Var(t) C Var be the subset of variables appearing positively in Pre(t). The postcondition
Post(t) is then a finite multiset over (P x ({0} U Var(t))), specifying the locations and clock
values of produced tokens. Here, the symbolic clock value is either 0 (demanding a reset to
age 0), or a variable that appeared already in the precondition.

A marking is a finite multiset over P x R>.

» Example 2. The picture below shows a place/transition representation of an TPN with
four places and one transition. Var(t) = {x,y}, Pre(t) = (p,2)? + (¢,y), G(t)(x) = [0, 5],
G(t)(y) =1,2] and Post(t) = (r,y)* + (5,0).

t
@—=_gzizg O
0<xr <5
l<y<2 0
O O:

The transition ¢ consumes two tokens from place p, both of which have the same clock value
x (where 0 < 2 < 5) and one token from place ¢ with clock value y (where 1 < y < 2). It
produces three tokens on place r who all have the same clock value y (where y comes from
the clock value of the token read from ¢), and another token with value 0 on place s.

There are two different binary step relations on markings: discrete steps —; which fire
a transition ¢ as specified by the relations G, Pre, and Post, and time passing steps —»4 for
durations d € R>g, which simply increment all clocks by d.

6:3

CONCUR 2018

6:4

Universal Safety for Timed Petri Nets is PSPACE-complete

» Definition 3 (Discrete Steps). For a transition ¢ € T' and a variable evaluation 7 : Var —
R, we say that m satisfies G(t) if n(z) € G(¢)(x) holds for all x € Var. By lifting 7 to
multisets over (P x Var) (respectively, to multisets over (P x ({0} U Var)) with 7(0) = 0)
in the canonical way, such an evaluation translates preconditions Pre(t) and Post(t) into
markings 7(Pre(t)) and w(Post(t)), where for all p € P and ¢ € R,

m(Pre(t))(p,c) = Y Pre(t)(p,v) and w(Post(t))(p,c) = > Post(t)(p,v).
(

m(v)=c w(v)=c

A transition ¢ € T is called enabled in marking M, if there exists an evaluation 7 that satisfies
G(t) and such that w(Pre(¢t)) < M. In this case, there is a discrete step M —; M’ from
marking M to M’, defined as M’ = M & w(Pre(t)) @ w(Post(t)).

» Definition 4 (Time Steps). Let M be a marking and d € R>o. There is a time step
def def

M — 4 M’ to the marking M’ with M'(p,c¢) = M(p,c— d) for ¢ > d, and M'(p,c) = 0,
otherwise. We also refer to M’ as (M + d).

We write — 7y for the union of all timed steps, — pss. for the union of all discrete
steps and simply — for — pise U = 7ime . The transitive and reflexive closure of — is —.
Cover (M) denotes the set of markings M’ for which there is an M"” > M’ with M = M".

We are interested in the existential coverability problem (3COVER for short), as follows.

Input: A TPN, an initial place p and a transition t.
Question: Does there exist M € Cover(N - {(p,0)}) that enables ¢?

We show that this problem is PSPACE-complete. Both lower and upper bound will be shown
(w.lo.g., see Lemma 8) for the syntactic subclass of non-consuming TPN, defined as follows.

» Definition 5. A timed Petri net (P, T, Var, G, Pre, Post) is non-consuming if for all t € T
p € P and x € Var it holds that both 1) Pre(t)(p,z) < 1, and 2) Pre(t) < Post(t).

In a non-consuming TPN, token multiplicities are irrelevant for discrete transitions. Intuitively,
having one token (p, ¢) is equivalent to having an inexhaustible supply of such tokens.

The first condition is merely syntactic convenience. It asks that each transition takes at
most one token from each place. The second condition in Definition 5 implies that for each
discrete step M —; M’ we have M’ > M. Therefore, once a token (p,c) is present on a
place p, it will stay there unchanged (unless time passes), and it will enable transitions with
(p, ¢) in their precondition.

Wherever possible, we will from now on therefore allow ourselves to use the set notation
for markings, that is simply treat markings M € (P x Rx()® as sets M C (P x Rxg).

3 Lower Bound

PSPACE-hardness of 3COVER does not follow directly from the PSPACE-completeness of
the reachability problem in timed automata of [5]. The non-consuming property of our TPN
makes it impossible to fully implement the control-state of a timed automaton. Instead our
proof uses multiple timed tokens and a reduction from the iterated monotone Boolean circuit
problem [11].

A depth-1 monotone Boolean circuit is a function F' : {0,1}" — {0,1}" represented
by n constraints: For every 0 < i < n there is a constraint of the form ¢/ = j ® k, where
0<j,k<nand ® € {A,V}, which expresses how the next value of bit ¢ depends on the

P. A. Abdulla, M. Atig, R. Ciobanu, R. Mayr, and P. Totzke

True; False;

i.Blz=y=1 True; False; Q

Truey, Falsey,

A

Figure 1 The transitions i.B,i.R and i.L that simulate the update of bit ¢ according to constraint
i’ = j A k. All transitions demand that incoming tokens are of age exactly 1 and only tokens of age
0 are produced.

current values of bits j and k. For every bitvector v € {0,1}", the function F' then satisfies
def

F(v)[i] = v[j]®v[k]. It is PSPACE-complete to check whether for a given vector v € {0,1}"
there exists a number m € N such that F(v)[0] = 1.

Towards a lower bound for 3ICOVER, (Theorem 7) we construct a non-consuming TPN
as follows, for a given circuit. The main idea is to simulate circuit constraints by transitions
that reset tokens of age 1 (encoding v) to fresh ones of age 0 (encoding F'(v)), and let time
pass by one unit to enter the next round.

For every bit 0 < i < n, the net contains two places True; and False;. A marking M, <
P x R is an encoding of a vector v € {0,1}™ if for every 0 < ¢ < n the following hold.

1. (True;,0) € M, < v[i] =1.

2. (False;,0) € M,, < v[i] =0.

3. If (p,c¢) € M,, then c=0or ¢ > 1.

Note that in particular one cannot have both (True;,0) and (False;,0) in M,,. For every
constraint ¢ = j A k we introduce three transitions, i.L,:.R, and i.B, where

Pre(i.B) = (True;,) + (Trueg, y) Post(i.B) < Pre(i.B) + (True;,0)
Pre(i.L) = (Falsej, x) Post(i.L) < Pre(i.L) + (False;, 0)
Pre(i.R) = (Falsey, x) Post(i.R) = Pre(i.R) 4 (False;,0)

and the guard for all transitions is G(z) = G(y) = 1. See Figure 1 for an illustration. For

disjunctions i’ = 7 V k the transitions are defined analogously, with True and False inverted.

The correctness proof of our construction rests on the following simple observation.

» Lemma 6. If F(v) = v’ then for every encoding M, of v, there exists an encoding M, of
v’ such that My —1-5 Dise My . Conversely, if M, ——1 5 Dise My for encodings M, and
M, of v and v’ respectively, then F(v) = v’.

Proof. For the first part, we construct a sequence My — pisc M1 — pise - —>Dise Mn_1
where My & (M, + 1) and every step M;—1 —pise M; adds tokens simulating the ith
constraint of F. Since the TPN is non-consuming, we will have that M; > (M, + 1), for
all i < n. Consider now constraint ', and assume w.l.o.g. that i’ = j A k (the other case is
analogous). There are two cases depending on v’[i].

1. Case v’'[i] = 1. By our assumption that F(v) = v’ we know that v[j] = 1 and v[k] = 1.
So (Truej, 1) € (M, +1) < M;_;1 and (Trueg, 1) € (My + 1) < M;_1. By construction of
the net, there is a transition ¢.B with Pre(i.B) = (True;, 1) + (Trueg, 1) and Post(i.B) =
Pre(i.B) + (True;,0). This justifies step M;_1 —; g M; and therefore that (True;,0) €

6:5

CONCUR 2018

6:6

Universal Safety for Timed Petri Nets is PSPACE-complete

M; < M,,_1. Also notice that no marking reachable from M, using only discrete steps can
contain the token (False;,0). This is because these can only be produced by transitions
requiring either (Falsej, 1) or (Falsey, 1), which are not contained in My by assumption
that M, encodes v. Therefore (False;,0) ¢ M, _1.

2. Case v'[i] = 0. W.lo.g., v[j] = 0. Therefore, (False;,1) € (M, + 1) < M;_4.
By construction of the net, there exists transition ¢.L with Pre(i.L) = (False;,1)
and Post(i.L) = Pre(i.L) + (False;,0). This justifies the step M;_1 —; 1 M;, with
(False;,0) € M; < M, 1. Notice again that no marking reachable from M, using only
discrete steps can contain the token (True;,0). This is because these can only be pro-
duced by transitions i.B, requiring both (True;, 1), (Trueg,1) € My, contradicting our
assumptions. Hence, (True;,0) ¢ M,_1.

We conclude that the constructed marking M,,_; is an encoding of v’.

For the other part of the claim, assume that there exist markings M, and M, which
are encodings of vectors v and v’, respectively, with M, —s N Disc M. We will show that
F(v) = v'. Recall that F(v)[i] = v[j] ® v[k], where 0 < j,k < n and ® € {A,V}. We will
show for each i < n that v'[i] = v[j] ® v[k]. Again, consider the constraint i’, and assume
w.l.o.g. that i/ = j A k (the other case is analogous). There are two cases.

1. Case v'[i] = 1. By definition of a marking encoding, we have that (True;,0) € M,.
By construction, there is a transition ¢.B with Pre(i.B) = (True;, 1) + (Trueg, 1) and
Post(i.B) = Pre(i.B) + (True;,0). By assumption, it holds that (M, + 1) = pis M},
where M, —1 (M, + 1). Note that (True;,1) € (M, + 1) and (Trueg,1) € (M, + 1).
Hence, we have that v[j] = 1 and v[k] = 1, and therefore that F(v)[i] = v’[i] = v[j] Av[k].

2. Case v'[i] = 0. Then (False;,0) € M, and, since this token can only be produced by
transitions i.L or i.R, either (Falsej, 1) € (M, + 1) or (Falsey, 1) € (M, + 1).

Therefore (False;,0) € (M,) or (Falsey,0) € (M,) and because M, is an encoding of v,

this means that either v[j] = 0 or v[k] = 0. Therefore, F(v’)[i] = v[j] A v[k] = 0. <

» Theorem 7. 3COVER is PSPACE-hard for non-consuming TPN.

Proof. For a given monotone Boolean circuit, define a non-consuming TPN as above. By
induction on m € N using Lemma 6, we derive that there exists m € N with F™(v) = v’
and v'[0] = 1 if, and only if, there exists encodings M, of v and M, of v’, with M, = M,
Moreover, if there is a marking M such that M, = M and 0 € frac(M), where M contains
a token of age 0, then M < M,/ for some encoding M, of a vector v/ = F™(v). This means
that it suffices to add one transition ¢ with Pre(t) = (Truep,0) whose enabledness witnesses
the existence of a reachable encoding M, containing a token (Trueg,0). By the properties
above, there exists m € N with F(v) = v’ and v'[0] = 1 iff M,, = M, L. <

This lower bound holds even for discrete time TPN, e.g. [9], because the proof uses only
timed steps with duration d = 1.

4 Upper Bound

We start by observing that we can restrict ourselves, without loss of generality, to non-
consuming TPN (Definition 5) for showing the upper bound. Intuitively, since we start with
an arbitrarily high number of tokens anyway, it does not matter how many of them are
consumed by transitions during the computation, since some always remain.

P. A. Abdulla, M. Atig, R. Ciobanu, R. Mayr, and P. Totzke

» Lemma 8. The 3COVER problem for TPN logspace-reduces to the 3ICOVER problem for
non-consuming TPN. That is, for every TPN N and for every place p and transition t of N,
one can construct, using logarithmic space, a non-consumimg TPN N together with a place
P’ and transition t' of N', so that there exists M € Coverar(N-{(p,0)}) enabling t in N if
and only if there exists M’ € Coverpn(N-{(p’,0)}) that enables t' in N.

4.1 Region Abstraction

We recall a constraint system called regions defined for timed automata [5]. The version for
TPN used here is similar to the one in [3].

Consider a fixed, nonconsuming TPN N = (P, T, Var, G, Pre, Post). Let ¢4 be the
largest finite value appearing in transition guards G. Since different tokens with age
> Cmag cannot be distinguished by transition guards, we consider only token ages below
or equal to ¢4, and treat the integer parts of older tokens as equal to cpep + 1. Let
int(c) = min{cmae + 1, [¢]} and frac(c) = ¢ — |¢| for a real value ¢ € Rso. We will work
with an abstraction of TPN markings as words over the alphabet 3 & oPx[enatl] - Fach
symbol X € ¥ represents the places and integer ages of tokens for a particular fractional
value.

» Definition 9. Let M C P x Rx be a marking and let frac(M) = {frac(c) | (p,c) € M}
be the set of fractional clock values that appear in M.

Let S C [0,1] be a finite set of real numbers with 0 € S and frac(M) C S and let
fo, f1,- -, fn, be an enumeration of S so that f;_1 < f; for all ¢ <n. The S-abstraction of
M is

absg(M) = 20Ty ... Ty €XF

where z; = {(p, int(c)) | (p,c) € M A frac(c) = f;} for all i < n. We simply write abs(M)
for the shortest abstraction, i.e. with respect to S = {0} U frac(M).

» Example 10. The abstraction of marking M = {(p,2.1),(q,2.2),(p,5.1),(¢,5.1)} is
abs(M) = 0 {(p,2),(p,5),(q,5)} {(g,2)}. The first symbol is @), because M contains no
token with an integer age (i.e., no token whose age has fractional part 0). The second and
third symbols represent sets of tokens with fractional values 0.1 and 0.2, respectively.

Clocks with integer values play a special role in the behavior of TPN, because the
constants in the transition guards are integers. Thus we always include the fractional part 0
in the set S in Definition 9.

We use a special kind of regular expressions over X to represent coverable sets of TPN
markings as follows.

» Definition 11. A regular expression E over X represents the downward-closed set of TPN
markings covered by one that has an abstraction in the language of E:

[E] < {N | 3M3S. M > N A abss(M) € L(E)}.

An expression is simple if it is of the form E = xgxy ...z, where for all i < k either
x; € X or x; = y;* for some y; € 3. In the latter case we say that x; carries a star. That is,
a simple expression is free of Boolean combinators and uses only concatenation and Kleene
star. We will write Z; to denote the symbol in ¥ at position 4: it is x; if z; € ¥ and y;
otherwise.

6:7

CONCUR 2018

6:8

Universal Safety for Timed Petri Nets is PSPACE-complete

» Remark 12. Notice that for all simple expressions a, so that |a| > 0, we have that
[a®5] = [oB]. However, unless « has length 0 or is of the form « = 0o/, we have [(a] # [o].
This is because a marking M that contains a token (p, ¢) with frac(c) = 0 has the property
that all abstractions absg(M) = zq ...z of M have xy # .

The following lemmas express the effect of TPN transitions at the level of the region
abstraction. Lemmas 13 and 15 state that maximally firing of discrete transitions (the
relation = Disc) is computable and monotone. Lemmas 16 and 17 state how to represent
timed-step successor markings.

» Lemma 13. For every non-consuming TPN N there are polynomial time computable
functions f: X XX XX —= ¥ and g: X X X X X — X with the following properties.
1. f and g are monotone (w.r.t. subset ordering) in each argument.
2. f(a,B,2) Dz and g(o, B,x) D x for all a, B,z € X.
3. Suppose that E = xgxy ...z 1S 0 simple expression, o “ 2o and 15} o Uiso &i, and
E' =z(x! ... 2} is the derived expression defined by conditions:
a. zh Z fo, B, x0),
b.] “g(a, B, &))" fori>0,
c. x} carries a star iff x; does.
Then [E'] = {M" | 3M € [E] AM 5 pise M' > M"'}.
» Definition 14. We will write SAT(E) = E’ for the successor expression E’ of E guaranteed
by Lemma 13. Le., SAT(E) is the saturation of E by maximally firing discrete transitions.

Notice that by definition it holds that [E] C [SAT(E)] C Cover([E]), and consequently
also that Cover([SAT(E)]) = Cover([E]).

» Lemma 15. Suppose that X = xoxy ...z is a simple expression of length k + 1 with
SAT(X) = zpzy .. .xp, and xo,x(€ . Let Y = yoonyras ... axyr be a simple expression
with SAT(Y) = ypaiyiod ... y;, and yo,y) € 2.

If &; C g; for alli <k then &, C g, for all i < k.

Proof. The assumption of the lemma provides that o, = zy C Oty <y and B, =
def

Ursiso2i € By = Upsiso i- Therefore, by Item 1 of Lemma 13, we get that

mf):f(az,ﬂx,xo) c f(ayaﬂyvyo) :y6

and similarly, for all k >4 > 0, that &, = g(ay, B, %) € g(ow, By, 9:) = U <

For z € ¥ we write (z + 1) = {(p, int(n + 1)) | (p,n) € z} for the symbol where token
ages are incremented by 1.

» Lemma 16. [0E] ={M'|3IM € [E]ANM —4 M' ANd < 1 —max(frac(M))}.

» Lemma 17. Let az be a simple expression where 2 = z € X (the rightmost symbol is
not starred). Then, [(z + 1)a] contains a marking N if, and only if, there exists markings
N’ > N and M, and a set S C [0,1] so that

1. |S| = |az|

2. absg(M) € L(az)

3. M —4 N’ ford=1— max(S5).

P. A. Abdulla, M. Atig, R. Ciobanu, R. Mayr, and P. Totzke

Proof. Suppose markings N, N’', M, a set S C [0,1] and d € R>¢ so that the conditions 1
to 3 are satisfied. Let S’ = {0} U{s+d | s € S\ {d}}. Then, |S’| = |S| and abss (N') €
L((z + 1)a), which witnesses that N € [(z + 1)a].

Conversely, let N € [(z + 1)a] be a non-empty marking. If || = 0, then N € [(z + 1)]
and so absg(N) € L((z + 1)) for S = frac(N) = {0}. This means that M —s; N = (M +1)
for a marking M with absg(M) € L(z) = L(az).

If |a| > 0, pick some marking N’ > N and set S so that absg/(N') = (z + 1)w, for some
word w € L£(a). Then we must have that |S’| = |(z + 1)a| > 1 and so d = min(S’ \ {0})
exists. Let S = {s —d|s e S'}U{l —d} and M be the unique marking with M —s; N’.
Notice that 1 — d = max(S). It follows that absg(M) = wz € L({az). <

We will often use the following simple fact, which is a direct consequence of Lemma 17.
» Corollary 18. [(z + 1)a] C Cover([az]).
Finally, the following lemma will be the basis for our exploration algorithm.

» Lemma 19. Let axfy be a simple expression with SAT (axl) = axl. Then Cover([axd]) =
[azs] U Cover ([(xo + 1)axd]).

Proof. For the right to left inclusion notice that [axzd] C Cover([axzf]) trivially holds.

For the rest, we have [(xo + 1)azf] C Cover(Jaxzf]) by Corollary 18, and therefore
Cover([(zo + Dax§]) <€ Cover(Cover([axi])) = Cover([axj]). For the left to right
inclusion, we equivalently show that

Cover ([axi]) \ [axs] € Cover([(xo + 1)axf]) (1)

Using the assumption that SAT (axf) = axf, the set on the left contains everything coverable
from [axy] by a sequence that starts with a (short) time step. It can therefore be written as

Cover({Ny | ANy € Jaxzi] A Ng —q N1 A0 < d <1 —max(frac(Ny))}).

By Lemma 16 and because [fa] C [Xa] for all X € ¥ and o € ¥*, we conclude that indeed,
Cover([azi]) \ [azi] C Cover([dazi]) C Cover([(xo + 1)axf]). <

4.2 Acceleration

We propose an acceleration procedure based on unfolding expressions according to Lemma 19
(interleaved with saturation steps to guarantee its premise) and introducing new Kleene
stars to keep the length of intermediate expressions bounded. This procedure (depicted in
Algorithm 1), is used to characterize an initial subset of the coverability set.

Given a length-2 simple expression Sy where the rightmost symbol is starred, the algorithm
will first saturate (Definition 14, in line 1), and then alternatingly rotate a copy of the
rightmost symbol (Lemma 17), and saturate the result (see lines 2, 3, 6). Since each such
round extends the length of the expression by one, we additionally collapse them (in line 7)
by adding an extra Kleene star to the symbol at the second position. The crucial observation
for the correctness of this procedure is that the subsumption step in line 7 does not change
the cover sets of the respective expressions.

Observe that Algorithm 1 is well defined because the SAT(S;) are computable by
Lemma 13. Termination is guaranteed by the following simple observation.

6:9

CONCUR 2018

6:10

Universal Safety for Timed Petri Nets is PSPACE-complete

Algorithm 1 Accelerate.

Input: a simple expression Sy = z12{ (of length 2 and with last symbol starred)
Output: simple expressions 51, S; and R, of lengths 2, 4, and 2, respectively.

L 51 = w(xh)”
52 2 okad(s)
S3 = wfada’(xf)"
1+ 3
repeat
i el g = SAT((wh +1)S))
Siv1 = aify (et ey (1)
1 i+1
until Sz = Si,1

def

= SAT (z1xf)
= SAT((z} + 1)51)
= SAT((2f +1)S2)

10 R (af + 1)(al_y)"
11: return S1,S;, R
line 1 xH start
1: i (zd)* S1 = SAT (x1x4)
2 @h+1) o (ab) (b + 1))
//% 2 (@) S = SAT((zh + 1))
3: (z +/$§ zi (25) (xf +1)S>
3 x5 3 (z3)* S3 = SAT((x3 4+ 1)S2)
6: (xg+1) /25 /a3 af (23) (g +1)83
xy) ws) wp o at (ap) SAT (2 +1)83)
7 Al N
6: (x5 +1) /o fa5)" ap (2p) (x5 +1)Ss
s xi /) (ad)* a? (%) SAT((x5 +1)S4)
T w5 (@)” zp (ap)* S5

Figure 2 A Run of Algorithm 1 (initial steps). The column on the left indicates the line of code,
the middle depicts the current expression and the column on the right recalls its origin. Gray bars
indicate that the respective symbols are equal. Arrows denote (set) inclusion between symbols.
The gray vertical arrows indicate inclusions due to saturation (Lemma 13), as claimed in item 1 of

Lemma 20. Red and blue arrows indicate derived inclusions (as stated in Lemma 20).

P. A. Abdulla, M. Atig, R. Ciobanu, R. Mayr, and P. Totzke

» Lemma 20. Let xi € X be the symbols computed by Algorithm 1. Then
1. x”le forallz>j>0
2. xz 2 xz_% and xt D at_ |, for alli > 3.

Proof. The first item is guaranteed by Point 2 of Lemma 13. In particular this means that
x4 D xf and therefore that (z™ +1) D () + 1) for all i > 0 (indicated as red arrows in
Figure 2). The second item now follows from this observation by Lemma 15. |

» Lemma 21 (Termination). Algorithm 1 terminates with i < 4-|P|- (Cmaz + 1).

Proof. From Lemma 20 we deduce that for all © > 2, the expression S; 1 is point-wise larger
than or equal to S; with respect to the subset ordering on symbols. The claim now follows
from the observation that all expressions S;>3 have length 4 and that every symbol z; € X
can only increase at most |P| - (Cmqqy + 1) times. <

» Lemma 22 (Correctness). Suppose that S1,S¢, R be the expressions computed by Algorithm 1
applied to the simple expression x1xf. Then Cover([z1zf]) = [S1] U [Se] U Cover([R]).

Proof. Let Sq,...S; denote the expressions defined in lines 1,2,3, and 7 of the algorithm. That
is, ¢ is the least index 1 such that Sz+1 S We define a sequence E; of expressions inductively,

; def) i i i def
starting with Ei = S and if E; = elel_;...eh, we let By = eifjelel . eftt =

SAT((éy + 1)E;). Here, the superscrlpt 1nd1cates the position of a symbol and not iteration.

This is the sequence of expressions resulting from unfolding Lemma 19, interleaved with
saturation steps, just in line 6 of the algorithm. That is, the expressions F; are not collapsed
(line 7) and instead grow in length with ¢. Still, 4 = S7, E5 = S and E5 = S3, but E4 # Sy,

because the latter is the result of applying the subsumption step of line 7 in our algorithm.

Notice that Cover([x12§]) = (Uk 1>i>11Ei]]) U Cover([FEx]) holds for all k € N. We will

use that

Uizl = IS = [:]- (2)

i>2 i>2

We start by observing that for all ¢, 7 € N it holds that e = z . For ¢ < 3 this holds trivially by
definition of E; = .S;. For larger ¢, this can be seen by mductlon using Lemma 13. Towards the
first equality in Equation (2), let S7 be the expression resulting from S; = x(xi_,)*z ()"

by unfolding the first star j times. That is, SJ B xi(xt_)i (xh)*, where the superscript
(j) denotes j-fold concatenation. Clearly, [S;] = U, [S7] and so the D-direction of the first
equality in Equation (2) follows by
j i+5 i+ i+ +5\ i 1%
[57] = [t) OV (28)"] € [(0t i)ad ()]
C [t (i awid ™) (6 ah)i ()]
= [[Ei—&-j]],
where the first inclusion is due to Lemma 20. The same helps for the other direction:

i i i i i \(2) o i—
[Ei] = [zix;_q7i_s ... xpzimg] C [i(2i_q) zizo] = [S] 2]] = [Sil, (3)

which completes the proof of the first equality in Equation (2). The second equality holds
because [S;] C [S;+1] for all ¢ > 2, by Lemma 20, and by definition of Sy = Sp11. As a next
step we show that

Cover([Se]) = [Se] U Cover([R]) (4)

6:11

CONCUR 2018

6:12

Universal Safety for Timed Petri Nets is PSPACE-complete
First observe that [R] = [(«f + 1)(z%_,)"] = [(zf + 1)x%(2%_,)"] and consequently,

Cover([R]) = Cover([[(m{ + 1)m§(w§,1)*]])
€ Cover ([ef(x}1)"a1])

C Cover([[xﬁ(wﬁfl)*xf(xé)*]]) = Cover([S¢])

where the first equation follows by Corollary 18 and the second because L(xf(xﬁil)*xf) C

E(xﬁ(mf_l)*x‘i(xg)*) For the left to right inclusion in Equation (4), consider a marking

M € Cover([S]) \ [Se]. We show that M € Cover([R]). Recall that Cover([Se]) consists
of all those markings M so that there exists a finite path

* ;7 di * ; da2 / *
Mo — pisc My — Time M1 — Disc My —= Time Ma ... M}, _ 1 = pise My,

alternating between timed and (sequences of) discrete transition steps, with My € [Se],
My, > M and all d; < max(frac(M])).

By our choice of M, there must be a first expression in the sequence which is not a
member of [S¢]. Since [SAT(S;)] = [Se¢], we can assume an index i > 0 so that M; ¢ [S(]
but M/_; € [S¢] that is, the step that takes us out of [S,] is a timed step.

Because [S¢] = U;>,[5:], it must hold that M;_; € [S;] = [[x; (xj_l)*x]l(mf))*]] for some
index j > 2. We claim that it already holds that

My € [w)(x]_,) «i]. ()
Suppose not. If d; < max(frac(M/_;)) then M; € [0S;] C [S;] by Lemma 16, contradiction.
Otherwise, if d; = max(frac(M;_,)), notice that every abstraction abss(M;_;) € L(S;) must
have |S| = 4. So by Lemma 17, M; € [(z} + 1)S;]. But then again

[(«f +1)8;1 € [SAT((z} + 1)S))] € [Sj1l, (6)

contradicting our assumption that M; ¢ [S¢]. Therefore Equation (5) holds. By Lemma 17
we derive that M; € [(e1 + Da(e_,)*] = [+ 1)(@]_,)*] € [+ 1)(a_,)*] = [I.

g -1 Jj—1
This concludes the proof of Equation (4).
Notice that by Lemma 19 we have that
Cover ([z12]) = [SAT (z125)] U Cover ([SAT (x12()]) = [S1] U Cover([S1])- (7)

Analogously, we get for every ¢ > 1 that
Cover ([E;]) = [SAT(E;)] U Cover ([SAT((z} + 1)E;)]) = [E;] U Cover ([E;41]) (8)
This used Lemma 19 and the fact that SAT(E;) = E; by construction. Using Equation (8)

and that [E;] C [E;4+1] for ¢ > 2, we deduce

Cover([S1]) = Cover([E1]) = [E1] U U Cover([E;]) |- (9)

i>2

P. A. Abdulla, M. Atig, R. Ciobanu, R. Mayr, and P. Totzke

Finally we can conclude the desired result as follows.

Cover([x125]) 2 [S1] U Cover([S1]) £ [S1] U Cover U[[El]]

i>2

2 [S1] U Cover ([Si])
@ [S1] U [Se] U Cover([R]) -

4.3 Main Result
The following theorem summarizes our main claims regarding the 3COVER problem.

» Theorem 23. Consider an instance of ICOVER with N = (P, T, Var,G, Pre, Post) a

non-consuming TPN where Cp,q, 1S the largest constant appearing in the transition guards G

encoded in unary, and let p be an initial place and t be a transition.

1. The number of different simple expressions of length m is B(m) L (1P| (emast2)-m)+m.

2. It is possible to compute a symbolic representation of the set of markings coverable from
some marking in the initial set N-{(p,0)}, as a finite set of simple expressions. ILe.,
one can compute simple expressions Si, ..., S s.t. Uy<;<,[5i] = Cover(N-{(p,0)}) and
where £ < 3- B(2). Each of the S; has length either 2 or 4.

3. Checking if there exists M € Cover(N-{(p,0)}) with M — can be done in O(|P|- cmaz)
deterministic space.

Proof. For Item 1 note that a simple expression is described by a word where some symbols
have a Kleene star. There are |X|™ different words of length m and 2™ possibilities to attach
stars to symbols. Since the alphabet is ¥ = 2P*[emat1] and |[emes + 1]| = Cmaz + 2, the
result follows.

Towards Item 2, we can assume w.l.o.g. that our TPN is non-consuming by Lemma 8§,
and thus the region abstraction introduced in Section 4.1 applies. In particular, the initial
set of markings N - {(p,0)} is represented exactly by the expression Sy = {(p,0)}0* where
) € ¥ is the symbol corresponding to the empty set. That is, we have [Sy] = N- {(p,0)} and
thus Cover([So]) = Cover(N - {(p,0)}).

The claimed expressions S; are the result of iterating Algorithm 1 until a previously seen
expression is revisited. Starting at i = 0 and Sy = {(p,0)}0*, each round will set S;;1, S;+2
and S;y3 to the result of applying Algorithm 1 to S;, and increment i to i + 3.

Notice that then all S; are simple expressions of length 2 or 4 and that in particular, all
expressions with index divisible by 3 are of the form ab* for a,b € ¥. Therefore after at most
B(2) iterations, an expression Sy is revisited (with ¢ < 3B(2)). Finally, an induction using
Lemma 22 provides that |J; ,-,[Si] = Cover(N-{(p,0)}).

Towards Item 3, we modify the above algorithm for the 3COVER problem with the
sliding window technique. The algorithm is the same as above where instead of recording
all the expressions 51, ..., Sy, we only store the most recent ones and uses them to decide
whether the transition ¢ is enabled. If the index ¢ reaches the maximal value of 3 - B(2) we
return unsuccessfully.

The bounded index counter uses O(log(B(2))) space; Algorithm 1 uses space O(log(B(5)))
because it stores only simple expressions of length < 5. The space required to store the three
expressions resulting from each application of Algorithm 1 is O(3 - log(B(4))). For every
encountered simple expression we can check in logarithmic space whether the transition ¢ is
enabled by some marking in its denotation. Altogether the space used by our new algorithm
is bounded by O(log(B(5))). By Item 1, this is O(|P| - (¢maz + 2)) = O(|P| - ¢maz)- <

6:13

CONCUR 2018

6:14

Universal Safety for Timed Petri Nets is PSPACE-complete

» Corollary 24. The 3COVER problem for TPN is PSPACE-complete.

Proof. The PSPACE lower bound was shown in Theorem 7. The upper bound follows from
Lemma 8 and Item 3 of Theorem 23. |

5 Conclusion and Future Work

We have shown that Existential Coverability (and its dual of universal safety) is PSPACE-
complete for TPN with one real-valued clock per token. This implies the same complexity for
checking safety of arbitrarily large timed networks without a central controller. The absence
of a central controller makes a big difference, since the corresponding problem with a central
controller is complete for F, .« [12].

It remains an open question whether these positive results for the controller-less case can
be generalized to multiple real-valued clocks per token. In the case with a controller, safety
becomes undecidable already for two clocks per token [2].

Another question is whether our results can be extended to more general versions of
timed Petri nets. In our version, clock values are either inherited, advanced as time passes,
or reset to zero. However, other versions of TPN allow the creation of output-tokens with
new non-deterministically chosen non-zero clock values, e.g., the timed Petri nets of [3, 4]
and the read-arc timed Petri nets of [8].

—— References

1 Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. Algorithmic ana-
lysis of programs with well quasi-ordered domains. Information and Computation, 160(1-
2):109-127, 2000.

2 Parosh Aziz Abdulla, Johann Deneux, and Pritha Mahata. Multi-clock timed networks. In
Annual IEEE Symposium on Logic in Computer Science (LICS), pages 345-354, 2004.

3 Parosh Aziz Abdulla, Pritha Mahata, and Richard Mayr. Dense-timed Petri nets: Checking
Zenoness, token liveness and boundedness. Logical Methods in Computer Science, 3(1),
2007.

4 Parosh Aziz Abdulla and Aletta Nylén. Timed Petri nets and BQOs. In International
Conference on Application and Theory of Petri Nets (ICATPN), volume 2075 of LNCS,
pages 53-70. Springer, 2001.

5 R. Alur and D. L. Dill. A theory of timed automata. tcs, 126(2):183-235, 1994.

6 Benjamin Aminof, Sasha Rubin, Florian Zuleger, and Francesco Spegni. Liveness of para-
meterized timed networks. In International Colloquium on Automata, Languages and Pro-
gramming (ICALP), volume 9135 of LNCS, 2015.

7 Rémi Bonnet, Alain Finkel, Serge Haddad, and Fernando Rosa-Velardo. Comparing Petri
data nets and timed Petri nets. Technical Report LSV-10-23, LSV Cachan, 2010.

8 Patricia Bouyer, Serge Haddad, and Pierre-Alain Reynier. Timed Petri nets and timed
automata: On the discriminating power of Zeno sequences. In International Colloguium
on Automata, Languages and Programming (ICALP), pages 420-431. Springer, 2006.

9 David de Frutos Escrig, Valentin Valero Ruiz, and Olga Marroquin Alonso. Decidability of
properties of timed-arc Petri nets. In International Conference on Application and Theory
of Petri Nets (ICATPN), volume 1825 of LNCS, pages 187-206. Springer, 2000.

10 Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere!
tes, 256(1-2):63-92, 2001.

11 Eric Goles, Pedro Montealegre, Ville Salo, and Ilkka Térméa. PSPACE-completeness of
majority automata networks. Theor. Comput. Sci., 609(1):118-128, 2016.

P. A. Abdulla, M. Atig, R. Ciobanu, R. Mayr, and P. Totzke

12

13

14

15

16

Serge Haddad, Sylvain Schmitz, and Philippe Schnoebelen. The ordinal recursive complex-
ity of timed-arc Petri nets, data nets, and other enriched nets. In Annual IEEE Symposium
on Logic in Computer Science (LICS), pages 355-364, 2012.

Lasse Jacobsen, Morten Jacobsen, Mikael H. Mgller, and Jif{ Srba. Verification of timed-
arc Petri nets. In International Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM), volume 6543 of LNCS, pages 46-72, 2011.

Ranko Lazi¢, Tom Newcomb, Joél Ouaknine, A.W. Roscoe, and James Worrell. Nets with
tokens which carry data. Fundamenta Informaticae, 88(3):251-274, 2008.

Valentin Valero Ruiz, Fernando Cuartero Gomez, and David de Frutos Escrig. On non-
decidability of reachability for timed-arc Petri nets. In International Workshop on Petri
Nets and Performance Models. IEEE Computer Society, 1999.

Jifi Srba. Timed-arc Petri nets vs. networks of timed automata. In International Conference
on Application and Theory of Petri Nets (ICATPN), volume 3536 of LNCS, pages 385—402.
Springer, 2005.

6:15

CONCUR 2018

It Is Easy to Be Wise After the Event:
Communicating Finite-State Machines Capture
First-Order Logic with “Happened Before”

Benedikt Bollig
LSV, CNRS & ENS Paris-Saclay, Université Paris-Saclay, Cachan, France
bolligQlsv.fr

Marie Fortin
LSV, CNRS & ENS Paris-Saclay, Université Paris-Saclay, Cachan, France
fortin@lsv.fr

Paul Gastin
LSV, CNRS & ENS Paris-Saclay, Université Paris-Saclay, Cachan, France
gastin@lsv.fr

—— Abstract

Message sequence charts (MSCs) naturally arise as executions of communicating finite-state
machines (CFMs), in which finite-state processes exchange messages through unbounded FIFO
channels. We study the first-order logic of MSCs, featuring Lamport’s happened-before relation.
We introduce a star-free version of propositional dynamic logic (PDL) with loop and converse.
Our main results state that (i) every first-order sentence can be transformed into an equivalent
star-free PDL sentence (and conversely), and (ii) every star-free PDL sentence can be translated
into an equivalent CFM. This answers an open question and settles the exact relation between
CFMs and fragments of monadic second-order logic. As a byproduct, we show that first-order
logic over MSCs has the three-variable property.

2012 ACM Subject Classification Theory of computation — Logic and verification

Keywords and phrases communicating finite-state machines, first-order logic, happened-before
relation

Digital Object ldentifier 10.4230/LIPIcs. CONCUR.2018.7

Related Version A full version of the paper is available at [2], https://arxiv.org/abs/1804.
10076.

Funding Partly supported by ANR FREDDA (ANR-17-CE40-0013) and UMI RELAX.

1 Introduction

First-order (FO) logic can be considered, in many ways, a reference specification language. It
plays a key role in automated theorem proving and formal verification. In particular, FO logic
over finite or infinite words is central in the verification of reactive systems. When a word is
understood as a total order that reflects a chronological succession of events, it represents
an execution of a sequential system. Apart from being a natural concept in itself, FO logic
over words enjoys manifold characterizations. It defines exactly the star-free languages and
coincides with recognizability by aperiodic monoids or natural subclasses of finite (Biichi,
respectively) automata (cf. [8,31] for overviews). Moreover, linear-time temporal logics are

© Benedikt Bollig, Marie Fortin, and Paul Gastin;

37 licensed under Creative Commons License CC-BY
29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 7; pp. 7:1-7:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:bollig@lsv.fr
mailto:fortin@lsv.fr
mailto:gastin@lsv.fr
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.7
https://arxiv.org/abs/1804.10076
https://arxiv.org/abs/1804.10076
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2

It Is Easy to Be Wise After the Event

usually measured against their expressive power with respect to FO logic. For example, LTL
is considered the yardstick temporal logic not least due to Kamp’s famous theorem, stating
that LTL and FO logic are expressively equivalent [21].

While FO logic on words is well understood, a lot remains to be said once concurrency
enters into the picture. When several processes communicate through, say, unbounded first-in
first-out (FIFO) channels, events are only partially ordered and a behavior, which is referred
to as a message sequence chart (MSC), reflects Lamport’s happened-before relation: an event
e happens before an event f if, and only if, there is a “message flow” path from e to f [23].
Communicating finite-state machines (CFMs) [5] are to MSCs what finite automata are to
words: a canonical model of finite-state processes that communicate through unbounded
FIFO channels. Therefore, the FO logic of MSCs can be considered a canonical specification
language for such systems. Unfortunately, its study turned out to be difficult, since algebraic
and automata-theoretic approaches that work for words, trees, or Mazurkiewicz traces do
not carry over. In particular, until now, the following central problem remained open:

Can every first-order sentence be transformed into an equivalent
communicating finite-state machine, without any channel bounds?

Partial answers were given for CFMs with bounded channel capacity [14,20,22] and for
fragments of FO that restrict the logic to bounded-degree predicates [4] or to two variables [1].
In this paper, we answer the general question positively. To do so, we make a detour
through a variant of propositional dynamic logic (PDL) with loop and converse [11,29].
Actually, we introduce star-free PDL, which serves as an interface between FO logic and
CFMs. That is, there are two main tasks to accomplish:
(i) Translate every FO sentence into a star-free PDL sentence.
(ii) Translate every star-free PDL sentence into a CEM.

Both parts constitute results of own interest. In particular, step (i) implies that, over
MSCs, FO logic has the three-variable property, i.e., every FO sentence over MSCs can be
rewritten into one that uses only three different variable names. Note that this is already
interesting in the special case of words, where it follows from Kamp’s theorem [21]. It is also
noteworthy that star-free PDL is a two-dimensional temporal logic in the sense of Gabbay et
al. [12,13]. Since every star-free PDL sentence is equivalent to some FO sentence, we actually
provide a (higher-dimensional) temporal logic over MSCs that is expressively complete for
FO logic.! While step (i) is based on purely logical considerations, step (ii) builds on new
automata constructions that allow us to cope with the loop operator of PDL.

Combining (i) and (ii) yields the translation from FO logic to CFMs. It follows that CFMs
are expressively equivalent to existential MSO logic. Moreover, we can derive self-contained
proofs of several results on channel-bounded CFMs whose original proofs refer to involved
constructions for Mazurkiewicz traces (cf. Section 5).

Related Work. Let us give a brief account of what was already known on the relation
between logic and CFMs. In the 60s, Biichi, Elgot, and Trakhtenbrot proved that finite
automata over words are expressively equivalent to monadic second-order logic [6, 10, 32].
Note that finite automata correspond to the special case of CFMs with a single process.
This classical result has been generalized to CFMs with bounded channels: Over uni-
versally bounded MSCs (where all possible linear extensions meet a given channel bound),
deterministic CFMs are expressively equivalent to MSO logic [20,22]. Over ezistentially

L It is open whether there is an equivalent one-dimensional one.

B. Bollig, M. Fortin, and P. Gastin

bounded MSCs (some linear extension meets the channel bound), CFMs are still expressively
equivalent to MSO logic [14], but inherently nondeterministic [15]. The proofs of these
characterizations reduce message-passing systems to finite-state shared-memory systems so
that deep results from Mazurkiewicz trace theory [9] can be applied.

This generic approach is no longer applicable when the restriction on the channel capacity
is dropped. Actually, in general, CFMs do not capture MSO logic [4]. On the other hand, they
are expressively equivalent to existential MSO logic when we discard the happened-before
relation [4] or when restricting to two first-order variables [1]. Both results rely on normal
forms of FO logic, due to Hanf [19] and Scott [17], respectively. However, MSCs with the
happened-before relation are structures of unbounded degree (while Hanf’s normal form
requires structures of bounded degree), and we consider FO logic with arbitrarily many
variables (while Scott’s normal form only applies to two-variable logic). That is, neither
approach is applicable in our case.

Finally, there exists a translation of a loop-free PDL into CFMs [3]. As our star-free PDL
has a loop operator, we cannot exploit [3] either.

Outline. In Section 2, we recall basic notions such as MSCs, FO logic, and CFMs. Moreover,
we state one of our main results: the translation of FO formulas into CFMs. Section 3
presents star-free PDL and proves that it captures FO logic. In Section 4, we establish the
translation of star-free PDL into CFMs. We conclude in Section 5 mentioning applications
of our results. Some proof details can be found in the long version [2].

2 Preliminaries

We consider message-passing systems in which processes communicate through unbounded
FIFO channels. We fix a nonempty finite set of processes P and a nonempty finite set of
labels 3. For all p,q € P such that p # ¢, there is a channel (p,q) that allows p to send
messages to q. The set of channels is denoted Ch.

In the following, we define message sequence charts, which represent executions of a
message-passing system, and logics to reason about them. Then, we recall the definition of
communicating finite-state machines and state one of our main results.

2.1 Message Sequence Charts

A message sequence chart (MSC) (over P and ¥) is a graph M = (E,—, <, loc, \) with
nonempty finite set of nodes F, edge relations —, <1 C E x E, and node-labeling functions
loc: E— P and A\: E — X. An example MSC is depicted in Figure 1. A node e € E is an
event that is executed by process loc(e) € P. In particular, E, := {e € E | loc(e) = p} is the
set of events located on p. The label A(e) € ¥ may provide more information about e such
as the message that is sent/received at e or “enter critical section” or “output some value”.
Edges describe causal dependencies between events:
The relation — contains process edges. They connect successive events executed by
the same process. That is, we actually have — C Upe p(Ep x Ep). Every process p is
sequential so that — N (E, x E,) must be the direct-successor relation of some total order
on E,. We let <proc := =* and <proc := —T.
The relation <1 contains message edges. If e <1 f, then e is a send event and f is the
corresponding receive event. In particular, (loc(e),loc(f)) € Ch. Each event is part
of at most one message edge. An event that is neither a send nor a receive event is
called internal. Moreover, for all (p,q) € Ch and (e, f), (¢/, f') € <N (E, x E,), we have
€ <proc € Ut f <proc f’ (which guarantees a FIFO behavior).

7:3

CONCUR 2018

7:4 It Is Easy to Be Wise After the Event

() e1 €2 es3 €4 €5 €6 er
pl 1 M) 1 1) 1
I T I T N I \ T I
D2
fo l v\%fg \\ﬁ fa i\% \ f
D3 1@, Lt O O
g1 gs

A\l
9o g2 g4 g5 3 gr

Figure 1 A message sequence chart (MSC).

We require that — U <1 be acyclic (intuitively, messages cannot travel backwards in time).
The associated partial order is denoted < := (— U <0)* with strict part < = (— U <)". We
do not distinguish isomorphic MSCs. Let MSC(P, X)) denote the set of MSCs over P and .
Actually, MSCs are very similar to the space-time diagrams from Lamport’s seminal
paper [23], and < is commonly referred to as the happened-before relation.
It is worth noting that, when P is a singleton, an MSC with events e; — e3 — ... — e,
can be identified with the word A(e1)A(ez2) ... A(e,) € E*.

» Example 1. Consider the MSC from Figure 1 over P = {p1,p2,ps} and ¥ = {O,0,¢}. We
have, for instance, E,, = {eo,...,er}. The process relation is given by e; — e;41, fi = fit1,
and g; — gi41 for all i € {0,...,6}. Concerning the message relation, we have e; < fo,
e4 < g5, etc. Moreover, es < f3, but neither e; < f; nor f1 < es.

2.2 MSO Logic and Its Fragments

Next, we give an account of monadic second-order (MSQO) logic and its fragments. Note that
we restrict our attention to MSO logic interpreted over MSCs. We fix an infinite supply
Vevent = {2, ¥, ...} of first-order variables, which range over events of an MSC, and an infinite
supply Vset = {X, Y, ...} of second-order variables, ranging over sets of events. The syntax
of MSO (we consider that P and ¥ are fixed) is given as follows:

® = pl)|al@)|z=y|lz—y|lz<y|lz<y|lzeX|PVD|-®|Tz.®|IX.D

where p € P, a € X, £,y € Vevent, and X € Vs We use the usual abbreviations to also
include implication =, conjunction A, and universal quantification V. Moreover, the relation
T <proc y can be defined by z < y AV pp(x) Ap(y). We write Free(®) the set of free
variables of ®.

Let M = (E,—, <, loc, \) be an MSC. An interpretation (for M) is a mapping v: Veyent U
Vet — E U 2F assigning to each & € Veyent an event v(z) € E, and to each X € Ve a set
of events v(X) C E. We write M,v = @ if M satisfies ® when the free variables of ® are
interpreted according to v. Hereby, satisfaction is defined in the usual manner. In fact,
whether M, v = ® holds or not only depends on the interpretation of variables that occur free
in ®. Thus, we may restrict v to any set of variables that contains at least all free variables.
For example, for ®(z,y) = (z Qy), we have M, [z — e,y — f] E ®(x,y) iff e< f. For a
sentence ® € MSO (without free variables), we define L(®) := {M € MSC(P,X) | M | ®}.

We say that two formulas ® and ®' are equivalent, written ® = @', if, for all MSCs
M = (E,—, <, loc, \) and interpretations v: Veyent U Vset — E U 2P, we have M, v = ® iff
M,vEd.

B. Bollig, M. Fortin, and P. Gastin

Let us identify two important fragments of MSO logic: First-order (FO) formulas do
not make use of second-order quantification (however, they may contain formulas z € X).
Moreover, ezistential MSO (EMSO) formulas are of the form 3X; ...3X,.® with ® € FO.

Let F be MSO or EMSO or FO and let R C {—, <, <}. We obtain the logic F[R] by
restricting F to formulas that do not make use of {—, <, <} \ R. Note that F = F[—, <, <].
Moreover, we let L(F[R]) := {L(®) | ® € F[R] is a sentence}.

Since the reflexive transitive closure of an MSO-definable binary relation is MSO-definable,
MSO and MSO|[—, <1 have the same expressive power: L£L(MSO[—, <, <]) = L(MSO[—, <]).
However, MSOI[<] (without the message relation) is strictly weaker than MSO [4].

» Example 2. We give an FO formula that allows us to recover, at some event f, the most
recent event e that happened in the past on, say, process p. More precisely, we define the
predicate latesty(z,y) as ¢ < yAp(z) /\Vz((z <yAp(z)) = z< x) The “gossip language’
says that process ¢ always maintains the latest information that it can have about p. Thus,
it is defined by ®EP = Vavy. ((latest,(z,y) A q(y)) = Vyexl(a(@) Aa(y))) € FO?[<]. For
example, for P = {p1,p2,p3} and ¥ = {0,0, <}, the MSC M from Figure 1 is contained in

L(®&5P). In particular, M, [x — e5,y — gs] = latest,, (x,y) and X(es) = A(gs) = O.

)

2.3 Communicating Finite-State Machines

In a communicating finite-state machine, each process p € P can perform internal actions of
the form (a), where a € X, or send/receive messages from a finite set of messages Msg. A
send action (a,!,m) of process p writes message m € Msg to channel (p,¢), and performs
a € ¥. A receive action (a, 7,m) reads message m from channel (¢, p). Accordingly, we let
Act,(Msg) :=={(a) | a € B} U {{a,!ym) | a € B, m € Msg, g € P\ {p}} U{{a,?ym) | a € X,
m € Msg, g € P\ {p}} denote the set of possible actions of process p.

A communicating finite-state machine (CFM) over P and X is a tuple ((A,)pep, Msg, Acc)
consisting of a finite set of messages Msg and a finite-state transition system A, = (Sp, tp, Ap)
for each process p, with finite set of states S, initial state ¢, € S, and transition relation
A, C Sy x Acty(Msg) x S,. Moreover, we have an acceptance condition Ace C [],cp Sp.

Given a transition ¢t = (s,a,s’) € A,, we let source(t) = s and target(t) = s’ denote
the source and target states of ¢t. In addition, if & = (a), then t is an internal transition
and we let label(t) = a. If a = (a,!;m), then t is a send transition and we let label(t) = a,
msg(t) = m, and receiver(t) = ¢. Finally, if o = (a, 7,m), then t is a receive transition with
label(t) = a, msg(t) = m, and sender(t) = q.

A run p of Aon an MSC M = (E,—, <, loc, \) € MSC(P,X) is a mapping associating
with each event e € E, a transition p(e) € A,, and satisfying the following conditions:
for all events e € E, we have label(p(e)) = A(e),
for all =-minimal events e € E, we have source(p(e)) = tp, where p = loc(e),
for all process edges (e, f) € —, we have target(p(e)) = source(p(f)),
for all internal events e € E, p(e) is an internal transition, and

A

for all message edges e < f, p(e) and p(f) are respectively send and receive transitions
such that msg(p(e)) = msg(p(f)), receiver(p(e)) = loc(f), and sender(p(f)) = loc(e).
To determine whether p is accepting, we collect the last state s, of every process p. If E,, # 0,
we let s, = target(p(e)), where e is the last event of E,. Otherwise, s, = t,. We say that p
is accepting if (sp)pep € Acc.

The language L(A) of A is the set of MSCs M such that there exists an accepting run of
A on M. Moreover, L(CFM) := {L(A) | Ais a CFM}. Recall that, for these definitions, we
have fixed P and X.

7:5

CONCUR 2018

7:6

It Is Easy to Be Wise After the Event

One of our main results states that CFMs and EMSO logic are expressively equivalent.
This solves a problem that was stated as open in [15]:

» Theorem 3. L(EMSO[—, «, <]) = L(CFM).

It is standard to prove L(CFM) C L(EMSO|—, <1]): The formula guesses an assignment
of transitions to events in terms of existentially quantified second-order variables (one for
each transition) and then checks, in its first-order kernel, that the assignment is indeed an
(accepting) run. As, moreover, the class L(CFM) is closed under projection, the proof of
Theorem 3 comes down to the proposition below (whose proof is spread over Sections 3
and 4). Note that the translation from FO[—, <, <] to CFMs is inherently non-elementary,
already when |P| =1 [28].

» Proposition 4. L(FO[—, <, <]) C L(CFM).

3 Star-Free Propositional Dynamic Logic

In this section, we introduce a star-free version of propositional dynamic logic and show that
it is expressively equivalent to FO[—, <, <]. This is the second main result of the paper.
Then, in Section 4, we show how to translate star-free PDL formulas into CFMs.

3.1 Syntax and Semantics

Originally, propositional dynamic logic (PDL) has been used to reason about program
schemas and transition systems [11]. Since then, PDL and its extension with intersection
and converse have developed a rich theory with applications in artificial intelligence and
verification [7,16,18,24,25]. It has also been applied in the context of MSCs [3,27].

Here, we introduce a star-free version of PDL, denoted PDLg. It will serve as an “interface”
between FO logic and CFMs. The syntax of PDLg and its fragment PDL¢[Loop] is given by
the following grammar:

PDLg = PDLg[Loop, U, N, c]

PDLg[Loop] £u=Eg@|EVE]| ¢
pu=plaleVe|-p|(r)e|Loop(r)

o= | <pg | < ﬁ>|<£|jumppyr|{<p}?|7r-7r TrUrm|mNm| e

where p,r € P, g € P\ {p}, and a € 3. We refer to £ as a sentence, to ¢ as an event formula,
and to m as a path formula. We name the logic star-free because we use the operators
(U,N,c,-) of star-free regular expressions instead of the regular-expression operators (U, -,)
of classical PDL. However, the formula i), whose semantics is explained below, can be seen
as a restricted use of the construct 7*.

A sentence ¢ is evaluated wrt. an MSC M = (E,—, <, loc,). An event formula ¢ is
evaluated wrt. M and an event e € E. Finally, a path formula 7 is evaluated over two events.
In other words, it defines a binary relation [7]as C F x E. We often write M,e, f E 7
to denote (e, f) € [n]ap. Moreover, for e € E, we let [n]a(e) :={f € E | (e, f) € [7]am}
When M is clear from the context, we may write [r] instead of [7]as. The semantics of
sentences, event formulas, and path formulas is given in Table 1.

B. Bollig, M. Fortin, and P. Gastin

Table 1 The semantics of PDLgs.

M = Egif M,e = ¢ for some event e € £

M =€ M€ ME&VEIEMES or MEE&

M,e = pif loc(c) = p M,e = (m) g if 3f € [nlule) : M, [E o
M,ek=aif Me) =a M, e k= Loop(n) if (e, ¢) € [
M,el=—pif M e~ ¢ M,el=p1 Vo if Mie =1 or M,e = g

[l ={(e,f) e ExE|e—f} [Qalm:={(e.f) € B, x Eq|e < f}
[l ={(fe) e ExEle—f} [l ={(fe) € Egx E,|e<f}
[ump,, . Jn = Ep x E; {}?]n :=A{(e;e) e € E: M, e |= o}
[=]ar = {(e,f) € Ex E| e <poc [and ¥g € E: € <proc § <proc f = M. g = ¢}
[Elar ={(e,) EEXE| f <proc € and ¥g € E: f <proc § <proc € => M, g |= ¢}
[m1-molm =A{(e,;9) € Ex E[3f € E: (e, f) € [m]m A(f,9) € [m2]ar}

[Ume]ar := [mi]ar U 2] [71ar := (B x E)\ [7]

[Nwa]ar = []ar N [m2] s

» Example 5. Consider again the MSC M from Figure 1 and the path formula 7 =

. O
DG = Uy py—=<Ipaps—- We have M, g5 = Loop(m). Moreover, (ez,e5) € [—]a but

(e2,¢6) & [-

We use the usual abbreviations for sentences and event formulas such as implication and

conjunction. Moreover, true := p V —p (for some arbitrary process p € P) and false := —true.

Finally, we define the event formula (7) := () true, and the path formulas &y = I and

*

=50 {true}?.

Note that there are some redundancies in the logic. For example (letting = denote logical

equivalence), — = %7 m Ny = (7§ UTS)S, and Loop(w) = ({true}? Nm). Some of them

are necessary to define certain subclasses of PDLg. For every R C {Loop,U,N,c}, we let
PDLg[R] denote the fragment of PDLg that does not make use of {Loop,U,N,c} \ R. In
particular, PDLyg = PDLg[Loop, U, N, c]. Note that, syntactically, — is not contained in
PDL¢[Loop] since union is not permitted.

3.2 Main Results

Let FO?*[—, <1, <] be the set of formulas from FO[—, <1, <] that use at most three different
first-order variables (however, a variable can be quantified and reused several times in a
formula). The main result of this section is that, for formulas with zero or one free variable,
the logics FO[—, <, <], FO*[—, <1, <], PDLg, and PDLe[Loop] are expressively equivalent.

Consider FO[—, <, <] formulas ®¢, ®;(z) and P3(z,y) with respectively zero, one, and
two free variables (hence, @ is a sentence). Consider also some PDLg sentence £, event
formula ¢, and path formula 7. The respective formulas are equivalent, written &y = £,

77

CONCUR 2018

7:8

It Is Easy to Be Wise After the Event

®1(z) = ¢, and Po(z,y) =, if, for all MSCs M and all events e, f in M, we have

M = ®, iff ME¢
M,z — e] = ®1(x) iff M,elE o
M, [z e,y — f] | ®a(2,y) iff M fE™

We start with a simple observation, which can be shown easily by induction:

» Proposition 6. Every PDLg formula is equivalent to some FOg[—>, <, <] formula. More
precisely, for every PDLg sentence €, event formula o, and path formula m, there exist some
FO?[—, <, <] sentence &, formula @(x) with one free variable, and formula 7(z,y) with two
free variables, respectively, such that, £ = 5, v =¢(x), and T =7 (2, y).

The main result is a strong converse of Proposition 6:

» Theorem 7. Every FO[—, <, <] formula with at most two free variables is equivalent to
some PDLg formula. More precisely, for every FO[—, <, <] sentence ®q, formula ®1(x) with
one free variable, and formula ®o(x,y) with two free variables, there exist some PDLgt[Loop]
sentence &, PDLg[Loop] event formula ¢, and PDLg[Loop| path formulas m;;, respectively,
such that, ®o =&, ®1(z) = ¢, and P2(z,y) = U, N; mij-

From Theorem 7 and Proposition 6, we deduce that FO has the three variable property:
» Corollary 8. L(FO[—, <, <]) = L(FO?*[—, 1, <]).

3.3 From FO to PDL

In the remainder of this section, we give the translation from FO to PDLg. We start with
some basic properties of PDLg. First, the converse of a PDLg formula is definable in PDLg¢
(easy induction on 7).

» Lemma 9. Let R C {Loop,U,N,c} and m € PDLg[R] be a path formula. There exists
7! € PDLg[R] such that, for all MSCs M, [x~ar = [7]af = {(f.€) | (e, f) € [7]ar}-

Given a PDLg[Loop] path formula 7, we denote by Comp(7) the set of pairs (p,q) € Px P
such that there may be a w-path from some event on process p to some event on process q.
Formally, we let Comp(—) = Comp(+—) = Comp(%) = Comp(+%) = Comp({¢}?) = id, where
id = {(p,p) | p € P}; Comp(<p,q) = Comp(<, ;) = {(p,9)}; Comp(jump,) = {(p,)}; and
Comp(my - m2) = Comp(mz) o Comp(m1) = {(p,7) | 3¢ : (p,q) € Comp(m1), (¢,7) € Comp(2)}.

Notice that, for all path formulas 7 € PDLg[Loop], the relation Comp(7) is either empty
or a singleton {(p,q)} or the identity id. Moreover, M, e, f = 7 implies (loc(e), loc(f)) €
Comp(7). Therefore, all events in [7])(¢) are on the same process, and if this set is nonempty
(i.e., if M,e |= (), then min[n](e) and max[r](e) are well-defined.

» Example 10. Consider the MSC from Figure 1 and © = i><lp17p2%<1p27p3%. We have
Comp(m) = {(p1,p3)}. Moreover, min[r](es) = g4 and max[r](e2) = gs.

We say that m € PDLg[Loop] is monotone if, for all MSCs M and events e, f such
that M,e = (m), M, f = (m), and e <pwoc f, we have min[r](e) <proc min[r](f) and

max[7r](e) <proc max[r](f). Lemmas 11 and 12 are easily shown by simultaneous induction.
» Lemma 11. Let 71,3 € PDLg[Loop| be path formulas, and m = w1 - w2. For all MSCs M
and events e such that M, e |= (n), we have

min[7](e) = min[ms] (minfmy - {{m2)}?](e)) and

max[[r](e) = max[ma](max[my - {(m2)}?](e)) .

B. Bollig, M. Fortin, and P. Gastin

» Lemma 12. All PDLg[Loop] path formulas are monotone.

The following crucial lemma states that, for all path formulas 7 € PDLg[Loop] and
events e in some MSC, [7](e) contains precisely the events that lie in the interval between
min[7](e) and max[r](e) and that satisfy (7=1).

» Lemma 13. Let m be a PDLg[Loop] path formula. For all MSCs M and events e such
that M, e = (), we have

[7](e) = {f € E | min[r](e) <proc f <proc max[m](e) A M, f = (r71)}.

Proof. The left-to-right inclusion is trivial. We prove the right-to-left inclusion by induction
on w. The base cases are immediate.
Assume that m = 71 - mo. For illustration, consider the figure below.

min[m2](f1) =: f2 max[r2](f1) ha min[m2](g1) g2 := max[m2](g1)
min[mme](e) = ® —proc ? Sproc g Sproc $ Sproc ® = max[rim2](e)
minfm {(m2)}?](e) =: fr é g1 := max[m1 {(m2)}?](e)
e

We let fi = min[m{(m2)}?](e), f2 = min[m](f1), g1 = max[mi{(m2)}?](e), and go =
max[ms]](g1). By Lemma 11, we have fo = min[m;ms](e) and go = max[mims](e). Let
ha € E such that fao <proc ha <proc g2 and M, ho = ((mime) ™). If hy <proc max[ma](f1),
then by induction hypothesis, M, fi,he |E w2, and we obtain M, e, hy = w72, Simil-
arly, if min[m2](g1) <proc h2, then M,g1,ha = m and M,e hy = mme. So assume
max[m2](f1) <proc h2 <proc minfma](g1). Since M, hy |= (w;lﬂfl>7 there exists h; such
that M, hy, he |E 7o and M, hy E <7r1_1>. Moreover, min[ma](h1) <proc P2 <proc min[ma](g1),
hence hy <proc 91 by Lemma 12 (notice that g1 and h; must be on the same process).
Similarly, max[m2](f1) <proc h2 <proc max[ma](h1), hence fi <proc h1. We then have
11 <proc P <proc 91, and M, hy = <7rl_1>. By induction hypothesis, M, e, hy = 7. Hence,
M,@,hQ):7'('171'2. |

Using Lemma 13, we can give a characterization of [7¢](e) (when 7 € PDLg[Loop]) that
also relies on intervals delimited by min[#](e) and max[r](e). More precisely, [7](e) is
the union of the following sets (see figure below): (i) the interval of all events to the left
of min[7](e), (ii) the interval of all events to the right of max[n](e), (iii) the set of events
located between min[r](e) and max[n](e) and satisfying — (7 ~1), (iv) all events located on
other processes than min[7](e) and max[r](e).

W e e () (i)

>0 —>0— >0 —>0—>0—>

(iii)

min 7T max 7

e
This description of [7<](e) can be used to rewrite 7€ as a union of PDLg[Loop] formulas.

In a first step, we show that, if 7 is a PDLg[Loop] formula, then the relation {(e, min[n](e))}
can also be expressed in PDLg[Loop] (and similarly for max).

7:9

CONCUR 2018

7:10

It Is Easy to Be Wise After the Event

» Lemma 14. Let R =0 or R = {Loop}. For every path formula = € PDLg[R], there exist
PDLg[R] path formulas min m and max 7 such that M, e, f = min 7 iff f = min[x](e), and

M, e, f E max 7 iff f = max[r](e).
Proof. We construct, by induction on 7, formulas min (7 - {1}?) for all PDLg[R] event
formulas ¢. For m € {—, =, <pq, <, 4, {p}?}, we let min (7 - {¢}?) = - {}?. Then,

min (£ - {$}7) = L5 {p}?
min (<% {9}7) = <& {P A (o V - (E))}
min (jump,, , - {¥}7) = jump, , - {1 A = (<-) 9}?
min (my - my - {}?7) = min (71 {{m2) $}7) - min (72 - {1}7).

The construction of max 7 is similar. <

We are now ready to prove that any boolean combination of PDLg[Loop] formulas is
equivalent to a positive one, i.e., one that does not use complement.

» Lemma 15. For all path formulas m € PDLg[Loop], there exist PDLs¢[Loop] path formulas
(mi)1<i<|ppz43 such that 7 = U << poys i
Proof. We show 7n¢ = o, where

o= (minT- <) U(max 7 S)U(r- - {~(x" N7 U U {=(7)q}? - jump, , .

(p,q)€P?

Let M = (E,—, <, loc,) be an MSC and e, f € E. We write p = loc(e), g = loc(f). Let
us show that M,e, f = 7n° iff M,e, f E o. If M,e = —(n)q, then both M e, f = 7° and
M, e, f | o hold. In the following, we assume that M, e = () ¢, and thus that min[#](e) and
max[n](e) are well-defined and on process g. Again, if f <proc min[r](e) or max[r](e) <proc f,
then both M, e, f = 7 and M,e, f = o hold. And if mm[[wﬂ() <proc | <proc max[r](e),
then, by Lemma 13, we have M, e, f = 7¢ iff M, f =~ (x~ 1), iff M,e, f | 0. <

The rest of this section is dedicated to the proof of Theorem 7, stating that every
FO[—, <, <] formula with at most two free variables can be translated into an equivalent
PDLg formula. As we proceed by induction, we actually need a more general statement,
which takes into account arbitrarily many free variables:

» Proposition 16. Every formula ® € FO[—, <, <] with at least one free variable is equivalent
to a boolean combination of formulas of the form 7(x,y), where m1 € PDLg[Loop] and
x,y € Free(®).

Proof. In the following, we will simply write 7 (x,y) for 7(x,y), where 7(z,y) is the FO
formula equivalent to 7 as defined in Proposition 6. The proof is by induction. For convenience,
we assume that ® is in prenex normal form. If ® is quantifier free, then it is a boolean
combination of atomic formulas. For x,y € Vevent, atomic formulas are translated as follows:

plz) = {p}?(z,2) =y = —(v,y) =y = {true}?(z,y)

alz) = {a}?(x,x) rdy = \/ <pq(z,y)
(p,a)€Ch

Moreover, z < y is equivalent to the disjunction of the formulas (7r *<lpy,ps . po,ps *° =+

Lo 1.pm ~7r’)(x,y), where 1 < m < |P|, p1,...,pm € P are such that p; # p;41 for all
ie{l,...,m—1}, and m, 7" € {5, {true}?}.

B. Bollig, M. Fortin, and P. Gastin

Universal quantification. We have V.U = —3z.—W¥. Since we allow boolean combinations,
dealing with negation is trivial. Hence, this case reduces to existential quantification.

Existential quantification. Suppose that ® = Jz.U. If z is not free in ¥, then & = ¥ and
we are done by induction. Otherwise, assume that Free(¥) = {x1,...,z,} with n > 1 and
that x = x,,. By induction, ¥ is equivalent to a boolean combination of formulas of the form
m(y, z) with y, z € Free(¥). We transform it into a finite disjunction of formulas of the form
N; (Y. 2j), where y; = x;, and z; = z;, for some 41 < is. To do so, we first eliminate
negation using Lemma 15. The resulting positive boolean combination is then brought into
disjunctive normal form. Note that this latter step may cause an exponential blow-up so that
the overall construction is nonelementary (which is unavoidable [28]). Finally, the variable
ordering can be guaranteed by replacing 7; with 7r;1 whenever needed.
Now, ® = dJx,,.V is equivalent to a finite disjunction of formulas of the form

/\wj(yj,zj) A Hmn(/\ i (Yj, Tn) A /\ Wj(mn,xn))

Jjel JjedJ jeJ’

=7

for three finite, pairwise disjoint index sets I, J,J" such that y; € {z1,...,2,_1} for all
jeluUJ,and zj € {1,...,2,-1} for all j € I. Notice that Free(Y) C {z1,...,2p_1}. If
J = (), then?

T = \/ (jumppyq - /\ Loop(;)}? ~jumpq’p) (x1,21) -

p,q€P JjeJ’

So assume J # (. Set

Njes((min 7;) - = - (min m) =) (g5, yx)
Ti= VoA Agegl(max me) - 55 - (maxx) ™) e, wy)
A e 0k)
where ¢ = A\, ; (7} >/\/\J€J’ Loop(m;). We have Free(Y') = Free(Y) C {z1,...,zn_1}.
» Claim 17. We have T =Y.

Intuitively, by Lemma 13, we know that Y holds iff the intersection of the intervals
[min[7;](y;), max[m;](y;)] contains some event satisfying). The formula Y’ identifies some
7 such that min[my](yx) is maximal (first line), some 7y such that max[ms](ye) is minimal
(second line), and tests that there exists an event z,, satisfying ¢ between the two (third
line). This is illustrated in the figure below.

min
max Tk
min 7y knax Tk

. @ - ©®

m\\‘ /ﬁ -

2 In this case, T is a sentence whereas 21 is free in the right hand side. Notice that = does not require
the two formulas to have the same free variables.

7:11

CONCUR 2018

7:12

It Is Easy to Be Wise After the Event

Thus, T is equivalent to some positive combination of formulas 7(z,y) with 7 €
PDL¢[Loop] and =,y € {z1,...,2,-1} = Free(®), therefore, so is . Note that the two
formulas ((min ;) - = - (min 7,) ™) (yj, yx) and ((max ;) - = - (max 7;) 1) (ye, y;) are not
PDLg[Loop] formulas (since — is not). However, they are disjunctions of PDLg[Loop]
formulas, for instance, ((min 7;) - = - (min mx) ™) (y;,) = ((min ;) - (min 7)) 7Y (y5, yx) V

((min ;) - +. (min wk)*l)(yj,yk). <
We are now able to prove the main result relating FO[—, <1, <] and PDLg[Loop].

Proof of Theorem 7. Let ®5(z1,22) be an FO[—, <, <] formula with two free variables.
We apply Proposition 16 to ®o(x1,x2) and obtain a boolean combination of path formulas
m(y, z) with y,z € {z1,22}. First, we bring it into a positive boolean combination using
Lemma 15. Next, we replace formulas m(z1,z1) with \/, ({Loop(7)}? - jump, ,)(z1, z2).
Similarly, 7(z2, 2) is replaced with \/, (jump, , - {Loop(m)}?)(21,x2). Also, m(x2, 1) is
replaced with 7=1(x, x2). Finally, we transform it into disjunctive normal form: we obtain
Py (21, 22) = V; \; mij(21, 22), which concludes the proof in the case of two free variables.

Next, let ®1(x) be an FO[—, <, <] formula with one free variable. As above, applying
Proposition 16 to ®;(z) and then Lemma 15, we obtain PDLst[Loop] path formulas m;; such
that ®1(z) = V; A\, mij(z,). Now, M, [z — €] | m(x,z) iff M, e |= Loop(m;;). Hence,
®(z) =V, A\, Loop(my;).

Finally, an FO[—, <, <] sentence ® is a boolean combination of formulas of the form
Jz.®4 (x). Applying the theorem to ®;(x), we obtain an equivalent PDLg¢[Loop] event formula
©. Then, we take & = E, which is trivially equivalent to Jz.®q(x). <

4 From PDLg[Loop] to CFMs

Letter-to-letter MSC transducers. For the translation of FO[—, <1, <] sentences into CFMs,
we will need to introduce MSC transducers to handle subformulas with one free variable, or,
equivalently, PDLg[Loop| event formulas. More precisely, we will associate with an event
formula ¢ a transducer that evaluates ¢ at all events, and outputs 1 when the formula holds,
and 0 otherwise.

Let T be a nonempty finite output alphabet. A (nondeterministic) letter-to-letter MSC
transducer (or simply, transducer) A over P and from ¥ to T' is a CFM over P and
% x I'. The transducer A accepts the relation [A] = {((E, —, <, loc, A), (E,—, <, loc,7)) |
(E,—,<,loc, A x v) € L(A)}. Transducers are closed under product and composition, using
standard constructions:

» Lemma 18. Let A be a transducer from X to T, and A’ a transducer from X to I”. There
exists a transducer A x A" from ¥ to T X TV such that

[Ax Al ={((E,—,<,loc,\), (E,—, <, loc,y x 7)) |
((E, —, <, loc, A), (E,—, <, loc,’y)) € [A],
((E, —, <, loc, \), (B, —, <, loc,v’)) € [[A']]})

» Lemma 19. Let A be a transducer from ¥ to T', and A’ a transducer from T to T”. There
exists a transducer A’ o A from ¥ to TV such that

[A 0 A] = [Ao[A] = {(M, M") | 3IM’ € MSC(P,T) : (M, M") € [A], (M', M") [A]}.

B. Bollig, M. Fortin, and P. Gastin

Translation of PDLs[Loop] Event Formulas into CFMs. For a PDLg[Loop] event formula
p and an MSC M = (E,—, <, loc, \) over P and X, we define an MSC M, = (E, —, <, loc,)
over P and {0,1}, by setting v(e) = 1 if M, e | ¢, and y(e) = 0 otherwise. Our goal is to
construct a transducer A, such that [A,] = {(M,M,) | M € MSC(P,X)}.

We start with the case of formulas from PDLg/[0], i.e., without Loop. A straightforward
induction shows:

» Lemma 20. Let ¢ be a PDL[0] event formula. There exists a transducer A, such that
[As] = {(M,M,) | M € MSC(P,%)}.

Next, we look at a single loop where the path m € PDLg|[0)] is of the form min 7’ or max «'.

This case will be simpler than general loop formulas, because of the fact that [min 7'](e) is
always either empty or a singleton. Recall that, in addition, min 7’ is monotone.

» Lemma 21. Let w be a PDLg (0] path formula of the form m = min @' or m = max 7', and let
¢ = Loop(m). There exists a transducer A, such that [A,] = {(M,M,) | M € MSC(P,X)}.

Proof. We can assume that Comp(r) C id. We define A, as the composition of three
transducers that will guess and check the evaluation of ¢. More precisely, A, will be obtain
as an inverse projection o', followed by the intersection with an MSC language K, followed
by a projection .

We first enrich the labeling of the MSC with a color from © = {O,m,0,®}. Intuitively,
colors O and @ will correspond to a guess that the formula ¢ is satisfied, and colors O and @
to a guess that the formula is not satisfied. Consider the projection a: MSC(P, X x ©) —
MSC(P,¥) which erases the color from the labeling. The inverse projection a~! can be
realized with a transducer A, i.e., [A] = {(a(M'),M') | M' € MSC(P, % x ©)}.

Define the projection 5: MSC(P, X x ©) — MSC(P, {0,1}) by B(E, —, <, loc, A x) =
(E,—, <, loc,v), where y(e) = 1 if 0(e) € {O,m}, and y(e) = 0 otherwise. The projection 3

can be realized with a transducer A”: we have [A"] = {(M’,8(M")) | M’ € MSC(P, X x O)}.

Finally, consider the language K C MISC(P, X x 0) of MSCs M’ = (E, —, <, loc, A x 0)
satisfying the following two conditions:
1. Colors O and B alternate on each process p € P: if e; < --- < e, are the events in
E, N6~ 1({o,m}), then f(e;) =0 if i is odd, and 6(e;) = B if i is even.
2. For all e € E, 0(e) € {O,m} iff there exists f € E such that M, e, f = and 0(e) = 6(f).
The first property is trivial to check with a CFM. Using Lemma 20, we can easily show
that the second property can also be checked with a CFM. We deduce that there is a
transducer A’ such that [A'] = {(M',M") | M" € K}. We let A, = A” 0 A’ o A. Notice that
[AL] = {(a(M"), B(M")) | M" € K}. From the following two claims, we deduce immediately
that [A,] = {(M,M,) | M € MSC(P,%)}.

» Claim 22. For all M € MSC(P, X), there exists M' € K with a(M') = M.

Let M = (E,—,<,loc,\) € MSC(P,%). Let By ={e€ E | M,e = ¢} and Ey = E \ E;.

Consider the graph G = (E,{(e, f) | M,e, f = 7}). Since # = min 7’/ or # = max 7', every

vertex has outdegree at most 1, and, by Lemma 12, there are no cycles except for self-loops.

So the restriction of G to Ej is a forest, and there exists a 2-coloring x: Ey — {O, @} such
that, for all e, f € Ey with M, e, f = 7, we have x(e) # x(f). There exists §: E — © such
that 6(e) = x(e) for e € Ey, and 0(e) € {O,m} for e € E; is such that Condition 1 of the
definition of K is satisfied. It is easy to see that Condition 2 is also satisfied. Indeed, if
f(e) € {O,m}, then e € E; and M,e,e |= m. Now, if 0(e) ¢ {O,m}, then e € Ey and either

M, e V£ (m) or, by definition of x, we have 8(e) # 0(f) for the unique f such that M, e, f = 7.

7:13

CONCUR 2018

7:14

It Is Easy to Be Wise After the Event

» Claim 23. For all M’ € K, we have f(M') = M, where M = o(M").

Let M’ = (E,—,<,loc, A\ x §) € K and M = a(M’). Suppose towards a contradiction
that M, # (M) = (E,—, <, loc,7). By Condition 2, for all e € E such that v(e) = 0, we
have M,e [~ ¢. So there exists fy € F such that y(fy) = 1 and M, fy = . Notice that
0(fo) € {O,m}. For all i € N, let f;;1 be the unique event such that M, f;, fir1 E 7. Such
an event exists by Condition 2, and is unique since 7 = min 7’ or # = max 7’. Note that,
for all ¢, 6(fi+1) = 6(f;) € {O,m}. Suppose fo <proc f1 (the case fi <proc fo is similar). By
Condition 1, there exists go such that fo <proc g0 <proc f1 and {0(fo),0(go)} = {0, m}. Again,
for all i € N, let g;1 be the unique event such that M, g;, g;+1 |E 7. Note that all fo, f1,...
have the same color, in {0,m}, and all go, g1, . . . carry the complementary color. Thus, f; # g;
for all 4, j € N. But, by Lemma 12, this implies fo <proc 90 <proc f1 <proc g1 <proc - * -, which
contradicts the fact that we deal with finite MSCs. |

The general case is more complicated. We first show how to rewrite an arbitrary loop
formula using loops on paths of the form max 7 or (max =) - sy Intuitively, this means
that loop formulas will only be used to test, given an event e such that ¢/ = max[x](e) is
well-defined and on the same process as e, whether e’ <,oc €, € =€, or € <proc €. Indeed,

we have M, e = Loop((max 7) - <) iff <proc max[r](e).

» Lemma 24. For all PDLg[Loop| path formulas 7,
Loop(w) = Loop(max) V ((w‘1> A Loop((max) - <=) A =Loop((min 7) - é)) .

Proof. The result follows from Lemma 13. Indeed, if we have M, e |= Loop(w) and M, e -
Loop(max 7), then min[r](e) <poc € <proc max[r](e) and M,e = (7~1), hence M,e =
(m=1) A Loop((max 7) - <=) A =Loop((min) - <). Conversely, if M, e = Loop(max =), then
M, e = Loop(w), and if M,e = ((x~1) A Loop((max) - <i) A =Loop((min) - <i)), then
M,e = (r71) and min[r](e) <poc € <poc max[r](e), hence M,e,e | m, ie., M,e
Loop(w). <

Notice that, since min 7 = max (min 7), the formula Loop((min) - <i) can also be seen

as a special case of a Loop((max ') - <i) formula.

» Theorem 25. For all PDLg[Loop] event formulas ¢, there exists a transducer A, such
that [A,] = {(M,M,) | M € MSC(P,X)}.

Proof. By Lemma 24, we can assume that all loop subformulas in ¢ are of the form
Loop((max) - <i) or Loop(max) (notice that min 7 = max min 7). We prove Theorem 25
by induction on the number of loop subformulas in ¢. The base case is stated in Lemma 20.

Let 1) = Loop(n’) be a subformula of ¢ such that 7’ contains no loop subformulas and
Comp(n’) C id. Let us show that there exists Ay such that [Ay] = {(M,My) | M €

MSC(P,¥)}. If ©’ = max =, then we apply Lemma 21. Otherwise, 7’ = (max) - < for

some PDLg[0)] path formula . So we assume from now on that ¢ = Loop((max =) - <—t)

We start with some easy remarks. Let p € P be some process and e € E,,. A necessary
condition for M,e = v is that M,e = (m) A—Loop(max 7). Also, it is easy to see that
M, e |= Loop(min (i> -~ 1)) is a sufficient condition for M,e = 1.

We let EJ be the set of events e € E, satisfying () p. For all e € EJ we let ¢ =
[max 7](e) € E,. The transducer A, will establish, for each e € EJ, whether €’ <y €,
e =e, or e <proc €, and it will output 1 if e <proc €', and 0 otherwise. The case €/ = e means

B. Bollig, M. Fortin, and P. Gastin

M, e |= Loop(max 7) and can be checked with the help of Lemma 21. So the difficulty is to
distinguish between €’ <proc € and € <proc € when M, e = () A-Loop(max 7).
The following two claims rely on Lemma 12:

» Claim 26. Let f be the minimal event in EJ (assuming this set is nonempty). Then,
M, f =4 iff M, f |= Loop(min (= -7~1)).
» Claim 27. Let e, f be consecutive events in EJ, i.c., e, f € EJ and M, e, f |= ﬂ)

1. If M,e b1, then [M, f = iff M, f = Loop(min (<5 - 7=1))].
2. If M,e =1, then [M, f £ iff M, f = Loop(max) V Loop(max ((max)- ﬂ>))}

To conclude the proof, let 1 = (), s = Loop(max 7), @3 = Loop(min (= - 7~1)), and
4 = Loop(max ((max m)- ﬂ>)) By Lemmas 20 and 21, we already have transducers A,
fori € {1,2,3,4}. Welet Ay = Ao (A, X Ay, X Ay, X Ay,,), where, at an event f labeled
(b1,b2,bs3,bs), the transducer A outputs 1 if b3 = 1 or if (b1, b2, b3,bs) = (1,0,0,0) and the
output was 1 at the last event e on the same process satisfying ; (to do so, each process
keeps in its state the output at the last event where b; was 1), and 0 otherwise.

Consider the formula ¢’ over ¥ x {0, 1} obtained from ¢ by replacing ¢ by \/,cx.(a, 1), and
all event formulas a, with a € X, by (a,0)V (a, 1). It contains fewer Loop operators than ¢, so
by induction hypothesis, we have a transducer A, for ¢’. We then let A, = A, o(Argx Ay),
where Ajy is the transducer for the identity relation. |

Proof of Proposition 4. By Theorem 7, every FO[—, <, <] formula ®(z) with a single free
variable is equivalent to some PDLg[Loop] state formula, for which we obtain a transducer
Ag using Theorem 25. It is easy to build from Ag CFMs for the sentences Va.®(x) and
Jz.®(x). Closure of L(CFM) under union and intersection takes care of disjunction and
conjunction. <

5 Discussion

Though the translation of EMSO/FO formulas into CFMs is interesting on its own, it allows
us to obtain some difficult results for bounded CFMs as corollaries. We will briefly sketch
some of them. For details, we refer to [2].

First, note that, for a given channel bound, the set of existentially bounded MSCs is
FO-definable (essentially due to [26]). By Theorem 3, we obtain [14, Proposition 5.14] stating
that this set is recognized by some CFM. Second, we obtain [14, Proposition 5.3], a Kleene
theorem for existentially bounded MSCs, as a corollary of Theorem 3 in combination with a
linearization normal form from [30].

Since (bounded) MSCs can be seen as a special case of Mazurkiewicz traces [9], we also get
Zielonka’s theorem [33] (though a weaker, nondeterministic version, and without guarantee
on the size of the constructed automaton).

We leave open whether there is a one-dimensional temporal logic over MSCs, with a finite
set of FO-definable modalities, that is expressively complete for FO[—, <, <].

—— References

1 B. Bollig, M. Fortin, and P. Gastin. Communicating finite-state machines and two-variable
logic. In 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018),
volume 96 of Leibniz International Proceedings in Informatics, pages 17:1-17:14. Leibniz-
Zentrum fiir Informatik, 2018.

7:15

CONCUR 2018

7:16

It Is Easy to Be Wise After the Event

2

10

11

12

13

14

15

16

17

18

19

20

21

22

23

B. Bollig, M. Fortin, and P. Gastin. It is easy to be wise after the event: Commu-
nicating finite-state machines capture first-order logic with "happened before". CoRR,
abs/1804.10076, 2018. arXiv:1804.10076.

B. Bollig, D. Kuske, and I. Meinecke. Propositional dynamic logic for message-passing
systems. Logical Methods in Computer Science, 6(3:16), 2010.

B. Bollig and M. Leucker. Message-passing automata are expressively equivalent to EMSO
logic. Theoretical Computer Science, 358(2-3):150-172, 2006.

D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of the ACM,
30(2), 1983.

J. Biichi. Weak second order logic and finite automata. Z. Math. Logik, Grundlag. Math.,
5:66-62, 1960.

G. De Giacomo and M. Lenzerini. Boosting the correspondence between description logics
and propositional dynamic logics. In Proceedings of the 12th National Conference on Arti-
ficial Intelligence, Seattle, WA, USA, July 31 - August 4, 1994, Volume 1., pages 205-212.
AAAT Press / The MIT Press, 1994.

V. Diekert and P. Gastin. First-order definable languages. In Jorg Flum, Erich Gridel, and
Thomas Wilke, editors, Logic and Automata: History and Perspectives, volume 2 of Texts
in Logic and Games, pages 261-306. Amsterdam University Press, 2008.

V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, Singapore,
1995.

C. C. Elgot. Decision problems of finite automata design and related arithmetics. Trans-
actions of the American Mathematical Society, 98:21-52, 1961.

M. J. Fischer and R. E. Ladner. Propositional Dynamic Logic of regular programs. Journal
of Computer and System Sciences, 18(2):194-211, 1979.

D. M. Gabbay. Expressive functional completeness in tense logic. In Uwe Moénnich, editor,
Aspects of Philosophical Logic: Some Logical Forays into Central Notions of Linguistics
and Philosophy, pages 91-117. Springer Netherlands, Dordrecht, 1981.

D. M. Gabbay, I. Hodkinson, and M. A. Reynolds. Temporal Logic: Mathematical Found-
ations and Computational Aspects, vol. 1. Oxford University Press, 1994.

B. Genest, D. Kuske, and A. Muscholl. A Kleene theorem and model checking al-
gorithms for existentially bounded communicating automata. Information and Compu-
tation, 204(6):920-956, 2006.

B. Genest, D. Kuske, and A. Muscholl. On communicating automata with bounded chan-
nels. Fundamenta Informaticae, 80(1-3):147-167, 2007.

S. Goller, M. Lohrey, and C. Lutz. PDL with intersection and converse: satisfiability and
infinite-state model checking. Journal of Symbolic Logic, 74(1):279-314, 2009.

E. Grédel and M. Otto. On logics with two variables. Theoretical Computer Science,
224(1-2):73-113, 1999.

J. Y. Halpern and Y. Moses. A guide to completeness and complexity for modal logics of
knowledge and belief. Artif. Intell., 54(2):319-379, 1992.

W. Hanf. Model-theoretic methods in the study of elementary logic. In J. W. Addison,
L. Henkin, and A. Tarski, editors, The Theory of Models. North-Holland, Amsterdam, 1965.
J. G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni, and P. S. Thiagarajan. A
theory of regular MSC languages. Information and Computation, 202(1):1-38, 2005.

H. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of California,
Los Angeles, 1968.

D. Kuske. Regular sets of infinite message sequence charts. Information and Computation,
187:80-109, 2003.

L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558-565, 1978.

http://arxiv.org/abs/1804.10076

B. Bollig, M. Fortin, and P. Gastin

24

25

26

27

28

29

30

31

32

33

M. Lange. Model checking propositional dynamic logic with all extras. Journal of Applied
Logic, 4(1):39-49, 2006.

M. Lange and C. Lutz. 2-ExpTime lower bounds for Propositional Dynamic Logics with
intersection. Journal of Symbolic Logic, 70(5):1072-1086, 2005.

M. Lohrey and A. Muscholl. Bounded MSC Communication. Information and Computation,
189(2):160-181, 2004.

R. Mennicke. Propositional dynamic logic with converse and repeat for message-passing
systems. Logical Methods in Computer Science, 9(2:12):1-35, 2013.

L. J. Stockmeyer. The Complezity of Decision Problems in Automata Theory and Logic.
PhD thesis, MIT, 1974.

R. S. Streett. Propositional dynamic logic of looping and converse. In Proceedings of
STOC’81, pages 375-383. ACM, 1981.

P. S. Thiagarajan and I. Walukiewicz. An expressively complete linear time temporal logic
for Mazurkiewicz traces. Inf. Comput., 179(2):230-249, 2002.

W. Thomas. Languages, automata and logic. In A. Salomaa and G. Rozenberg, editors,
Handbook of Formal Languages, volume 3, pages 389-455. Springer, 1997.

B. A. Trakhtenbrot. Finite automata and monadic second order logic. Siberian Math. J,
3:103-131, 1962. In Russian; English translation in Amer. Math. Soc. Transl. 59, 1966,
23-55.

W. Zielonka. Notes on finite asynchronous automata. R.A.ILR.O. — Informatique
Théorique et Applications, 21:99-135, 1987.

7:17

CONCUR 2018

Learning-Based Mean-Payoff Optimization in an
Unknown MDP under Omega-Regular Constraints

Jan Kretinsky
Technische Universitdt Miinchen, Munich, Germany

jan.kretinsky@in.tum.de
https://orcid.org/0000-0002-8122-2881

Guillermo A. Pérez!
Université libre de Bruxelles, Brussels, Belgium

gperezme@ulb.ac.be
https://orcid.org/0000-0002-1200-4952

Jean-Francois Raskin?
Université libre de Bruxelles, Brussels, Belgium
jraskin@ulb.ac.be

—— Abstract

We formalize the problem of maximizing the mean-payoff value with high probability while satisfy-
ing a parity objective in a Markov decision process (MDP) with unknown probabilistic transition
function and unknown reward function. Assuming the support of the unknown transition func-
tion and a lower bound on the minimal transition probability are known in advance, we show that
in MDPs consisting of a single end component, two combinations of guarantees on the parity and
mean-payoff objectives can be achieved depending on how much memory one is willing to use.
(i) For all € and v we can construct an online-learning finite-memory strategy that almost-surely
satisfies the parity objective and which achieves an e-optimal mean payoff with probability at
least 1 — ~. (ii) Alternatively, for all & and + there exists an online-learning infinite-memory
strategy that satisfies the parity objective surely and which achieves an e-optimal mean payoff
with probability at least 1 —~. We extend the above results to MDPs consisting of more than
one end component in a natural way. Finally, we show that the aforementioned guarantees are
tight, i.e. there are MDPs for which stronger combinations of the guarantees cannot be ensured.

2012 ACM Subject Classification Theory of computation — Logic and verification, Theory of
computation — Reinforcement learning

Keywords and phrases Markov decision processes, Reinforcement learning, Beyond worst case
Digital Object ldentifier 10.4230/LIPIcs. CONCUR.2018.8
Related Version A full version is available at https://arxiv.org/abs/1804.08924.

Funding This research was funded in part by the Czech Science Foundation grant No. 18-11193S,
the German Research Foundation (DFG) project 383882557 “Statistical Unbounded Verification”,
the ERC Starting grant 279499 “inVEST”, the ARC (Fédération Wallonie-Bruxelles) project
“Non-Zero Sum Game Graphs: Applications to Reactive Synthesis and Beyond”, and the EOS
(FNRS-FWO) project 30992574 “Verifying Learning Artificial Intelligence Systems”.

1 G. A. Pérez has been supported by an F.R.S.-FNRS Aspirant fellowship.
2
J.-F.

Raskin is Professeur Francqui de Recherche funded by the Francqui foundation.

© Jan Kfetinsky, Guillermo A. Pérez, and Jean-Frangois Raskin;

licensed under Creative Commons License CC-BY
29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 8; pp. 8:1-8:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:jan.kretinsky@in.tum.de
https://orcid.org/0000-0002-8122-2881
mailto:gperezme@ulb.ac.be
https://orcid.org/0000-0002-1200-4952
mailto:jraskin@ulb.ac.be
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.8
https://arxiv.org/abs/1804.08924
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2

Learning-Based Mean-Payoff Optimization in an Unknown Parity MDP

1 Introduction

Reactive synthesis and online reinforcement learning. Reactive systems are systems that
maintain a continuous interaction with the environment in which they operate. When
designing such systems, we usually face two partially conflicting objectives. First, to ensure
a safe execution, we want some basic and critical properties to be enforced by the system no
matter how the environment behaves. Second, we want the reactive system to be as efficient
as possible given the actual observed behaviour of the environment in which the system
is executed. As an illustration, let us consider a robot that needs to explore an unknown
environment as efficiently as possible while avoiding any collision. While operating at low
speed makes it easier to avoid collisions, it will impair its ability to explore the environment
quickly even if the environment is clear of other objects.

There has been, in the past, a large research effort to define mathematical models and
algorithms in order to address the two objectives above, but in isolation only. To synthesize
safe control strategies, two-player zero-sum games with omega-regular objectives have been
proposed [29, 4]. Reinforcement-learning (RL, for short) algorithms for partially-specified
Markov decision processes (MDPs) have been proposed (see e.g. [32, 22, 26, 28]) to learn
strategies that reach (near-)optimal performance in the actual environment in which the
system is executed. In this paper, we want to answer the following question: How efficient
can online-learning techniques be if only correct executions, i.e. executions that satisfy a
specified omega-regular objective, are explored during execution? So, we want to understand
how to combine synthesis and RL to construct systems that are safe, yet, at the same time,
can adapt their behaviour according to the actual environment in which they execute.

Problem statement. In order to answer in a precise way the question above, we consider
a model halfway between the fully-unknown models considered in RL and the full-known
models used in verification. To be precise, we consider as input an MDP with rewards whose
transition probabilities are not known and whose rewards are discovered on the fly. That is,
the input is the support of the unknown transition function of the MDP. This is natural from
the point of view of verification since: we may be working with an underspecified system,
its qualitative behaviour may have already been observed, or we may not trust all given
probability values. As optimization objective on this MDP, we consider the mean-payoff
function, and to capture the sure omega-regular constraint we use a parity objective.

Contributions. Given a lower bound 7,;, on the minimal transition probability, we show
that, in partially-specified MDPs consisting of a single end component (EC), two combinations
of guarantees on the parity and mean-payoff objectives can be achieved. (i) For all € and
v, we show how to construct a finite-memory strategy which almost-surely satisfies the
parity objective and which achieves an e-optimal mean payoff with probability at least 1 — ~
(Prop. 20). (ii) For all € and 7, we show how to construct an infinite-memory strategy
which satisfies the parity objective surely and which achieves an e-optimal mean payoff with
probability at least 1 —~ (Prop. 14). We also extend our results to MDPs consisting of more
than one EC in a natural way (Thms. 21 and 16) and study special cases that allow for
improved optimality results as in the case of good ECs (Props. 11 and 17). Finally, we show
that there are partially-specified MDPs for which stronger combinations of the guarantees
cannot be ensured.

Our usage of Ty follows [9, 18] where it is argued that it is necessary for the statistical
analysis of unbounded-horizon properties and realistic in many scenarios.

J. Kretinsky, G. A. Pérez, J.-F. Raskin

Figure 1 Two automata, representing unknown MDPs, are depicted in the figure. Actions
label edges from states (circles) to distributions (squares); a probability-reward pair, edges from
distributions to states; an action-reward pair, Dirac transitions; a name-priority pair, states.

Example: almost-sure constraints. Consider the MDP on the right-hand side of Fig. 1
for which we know the support of the transition function but not the probabilities x and
y (for simplicity the rewards are assumed to be known). First, note that while there is no
surely winning strategy for the parity objective in this MDP, playing action a forever in gq
guarantees to visit state g3 infinitely many times with probability one, i.e. this is a strategy
that almost-surely wins the parity objective. Clearly, if > y then it is better to play b for
optimizing the mean-payoff, otherwise, it is better to play a. As x and y are unknown, we
need to learn estimates & and ¢ for those values to make a decision. This can be done by
playing a and b a number of times from gy and by observing how many times we get up and
how many times we get down. If £ > ¢, we may choose to play b forever in order to optimize
our mean payoff. We then face two difficulties. First, after the learning episode, we may
instead observe & < ¢ while x > y. This is because we may have been unlucky and observed
statistics that differ from the real distribution. Second, playing b always is not an option
if we want to satisfy the parity objective with probability 1 (almost surely). In this paper,
we give algorithms to overcome these two problems and compute a finite-memory strategy
that satisfies the parity objective with probability 1 and is close to the optimal expected
mean-payoff value with high probability.

The finite-memory learning strategy produced by our algorithm works as follows in this
example. First, it chooses n € N large enough so that trying a and b from gy as many as n
times allows it to learn & and § such that | — x| < e and |§j — y| < e with probability at least
1 — . Then, if & > ¢ the strategy plays b for K steps and then a once. K is chosen large
enough so that the mean payoff of any run will be e-close to the best obtainable expected
mean payoff with probability at least 1 — . Furthermore, as a is played infinitely many
times, the upper-right state will be visited infinitely many times with probability 1. Hence,
the strategy is also almost-surely satisfying the parity objective.

In the sequel we also show that if we allow for learning all along the execution of the
strategy then we can get, on this example, the exact optimal value and satisfy the parity
objective almost surely. However, to do so, we need infinite memory.

Related works. In [11, 17, 8, 16], we initiated the study of a mathematical model that
combines MDPs and two-player zero sum games. With this new model, we provide formal
grounds to synthesize strategies that guarantee both some minimal performance against
any adversary and a higher expected performance against a given expected behaviour of
the environment, thus essentially combining the two traditional standpoints from games
and MDPs. Following this approach, in [1], Almagor et al. study MDPs equipped with a
mean-payoff and parity objective. They study the problem of synthesizing a strategy that

8:3

CONCUR 2018

8:4

Learning-Based Mean-Payoff Optimization in an Unknown Parity MDP

ensures an expected mean-payoff value that is as large as possible while satisfying a parity
objective surely. In [15], Chatterjee and Doyen study how to enforce almost surely a parity
objective together with threshold constraint on the expected mean-payoff. See also [10], where
mean-payoff MDPs with energy constraints are studied. In all those works, the transition
probability and the reward function are known in advance. In contrast, we consider the more
complex setting in which the reward function is discovered on the fly during execution time
and the transition probabilities need to be learned.

In [19, 33, 21, 2], RL is combined with safety guarantees. In those works, there is a
MDP with a set of unsafe states that must be avoided at all cost. This MDP is then
restricted to states and actions that are safe and cannot lead to unsafe states. Thereafter,
classical RL is exercised. The problem that is considered there is thus very similar to the
problem that we study here with the difference that they only consider safety constraints.
For safety constraints, the reactive synthesis phase and the RL can be entirely decoupled
with a two-phase algorithm. A simple two-phase approach cannot be applied to the more
general setting of parity objectives. In our more challenging setting, we need to intertwine the
learning with the satisfaction of the parity objective in a non trivial way. It is easy to show
that reducing parity to safety, as in [7], could lead to learning strategies that are arbitrary far
from the optimal value that our learning strategies achieve. In [34], Topcu and Wen study
how to learn in a MDP with a discounted-sum (and not mean-payoff) function and liveness
constraints expressed as deterministic Biichi automata that must be enforced almost surely.
Contrary to our setting, they do not consider general omega-regular specifications expressed
as parity objectives nor sure satisfaction.

Finally, in [9], we apply RL to MDPs where even the topology is unknown. Only T,
and, for convenience, the size of the state space is given. There, we optimize the probability
to satisfy an omega-regular property; however, no mean payoff is involved.

Structure of the paper. In Sect. 2, we introduce the necessary preliminaries. In Sect. 3,
we study online finite and infinite-memory learning strategies for mean-payoff objectives
without omega-regular constraints. In Sect. 4, we study strategies for mean-payoff objectives
under a parity constraint that must be enforced surely. In Sect. 5, we study strategies for
mean-payoff objectives under a parity constraint that must be enforced almost surely.

2 Preliminaries

Let S be a finite set. We denote by D (S) the set of all (rational) probabilistic distributions
on S, i.e. the set of all functions f : S — Qx> such that) __ f(s) = 1. For sets A and B
and functions g : A — D (S) and h: A x B — D (5), we write g(s|a) and h(s|a,b) instead
of g(a)(s) and h(a,b)(s) respectively. The support of a distribution f € D (S) is the set

supp (f) et {s € S| f(s) > 0}. The support of a function g : A — D (S) is the relation

R C A x S such that (a,s) € R VN g(sla) > 0.

2.1 Markov chains

» Definition 1 (Markov chains). A Markov chain C (MC, for short) is a tuple (Q,d,p,)
where @ is a (potentially countably infinite) set of states, 0 is a (probabilistic) transition
function ¢ : @ — D (Q), p: @ — N is a priority function, and = : supp (§) — [0,1] N Q is an
(instantaneous) reward function.

J. Kretinsky, G. A. Pérez, J.-F. Raskin

A run of an MC is an infinite sequence of states gogy - -+ € Q“ such that §(g;+1|g;) > 0 for
all 0 < 4. We denote by Runs? (C) the set of all runs of C that start with the state go.
Consider an initial state gg. The probability of every measurable event A C Runs?(C) is
well-defined [31, 25]. We denote by PZ [A] the probability of A; for a measurable function
f : Runs®™(C) — R, we write EY [f] for the ezpected value of the function f under the
probability measure P [-] (see [23, 25] for a detailed definition of these classical notions).

Parity and mean payoff. Consider a run ¢ = qoq1 ... of C. We say o satisfies the parity
objective, written g = PARITY, if the minimal priority of states along the run is even. That
is to say ¢ = PARITY 2L i inf{p(q;) | ¢ € N} is even. In a slight abuse of notation, we
sometimes write PARITY to refer to the set of all runs of an MC which satisfy the parity

objective {o € Runs?(C) | o = PARITY}. The latter set of runs is clearly measurable.

The mean-payoff function MP is defined for all runs ¢ = goqi . .. of C as follows MP(p) def
liminf ey, % Zg;& 7(¢i, gi+1)- This function is readily seen to be Borel definable [13], thus

also measurable.

2.2 Markov decision processes

» Definition 2 (Markov decision processes). A (finite discrete-time) Markov decision process
M (MDP, for short) is a tuple (@, 4, o, d, p,r) where @ is a finite set of states, A a finite
set of actions, o : @ — P (A) a function that assigns to ¢ its set of available actions,
d:Q x A— D(Q) a (partial probabilistic) transition function with (g, a) defined for all
g€ Qand all a € a(q), p: @ = N a priority function, and r : supp (§) — [0,1] N Q a reward
function. We make the assumption that a(q) # @ for all ¢ € Q, i.e. there are no deadlocks.

A history h in an MDP is a finite state-reward-action sequence that ends in a state and
respects «, 9, and r, i.e. if h = goapxo ... ax—1Tk—1qx then a; € a(g;), 6(¢i+1]¢,a;) > 0, and
7(qi, ai,giv1), for all 0 < ¢ < k. We write last(h) to denote the state gx. For two histories
h,h', we write h < h' if h is a proper prefix of h'.

» Definition 3 (Strategies). A strategy o in an MDP M = (Q, A, «,6,p,r) is a function
c:(Q-A-Q)*Q — D (A) such that o(alh) >0 = a € a(last(h)).

We write that a strategy o is memoryless if o(h) = o(h') whenever last(h) = last(h');
deterministic if for all histories h the distribution o(h) is Dirac.

Throughout this work we will speak of steps, episodes, and following strategies. We write
that o follows T (from the history h = qoaoxo . .. qi) during n steps if for all b = gpapay . . . q,
such that h < b’ and £ < k 4+ n, we have that o(h') = 7(h'). An episode is simply a finite
sequence of consecutive steps, i.e. a finite infix of the history, during which one or more
strategies may have been sequentially followed.

A stochastic Mealy machine T is a tuple (M, my, fu, fo) where M is a (potentially
countably infinite) set of memory elements, my € M is the initial memory element, f, :
M x Q x Q — M is an update function, and f, : M x Q@ — D (A) is an output function. The
machine 7 is said to implement a strategy o if for all histories h = qpagxg - - - Gx—1Tr_1qx We
have o(h) = f,(mk, q), where my, is inductively defined as m; = f,(m;—1,qi—1,2;—1) for all
1 > 1. It is easy to see that any strategy can be implemented by such a machine. A strategy
o is said to have finite memory if there exists a stochastic Mealy machine that implements it
and such that its set M of memory elements is finite.

A (possibly infinite) state-action sequence h = goagToqiaixy - .. is consistent with strategy
o if o(ai|goaoxo - . - aj—12;—1q;) > 0 for all 7 > 0.

8:5

CONCUR 2018

8:6

Learning-Based Mean-Payoff Optimization in an Unknown Parity MDP

From MDPs to MCs. The MDP M and a strategy o implemented by the stochastic Mealy
machine (M, mg, fu, fo) induce the MC M7 = (Q',d’,p’, ") where Q' = (Qx M x A)U(QxM);
5 (¢! a)s) = fola'm, q) - 3(q')q,@) for any s € {{g.m,a), (g, m)} and @’ € alg) with
(¢:0',¢') € supp (6) and m' = fu(m,q,7(q,a',q)); p'({g;m,a)) = p'({g,m)) = p(q); and
(s, (¢',m',d')) = r(q,a,q) for any s € {(q,m,a), (g, m)}. For convenience, we write P9, [
instead of Pﬁ\‘ﬁ’;m‘)) [-].

A strategy o is said to be unichain if M has a single recurrent class, i.e. a single bottom

strongly-connected component (BSCC).

End components. Consider a pair (S,) where S C Q and §: S — P (A) gives a subset of
actions allowed per state (i.e. 5(q) C a(q) for all ¢ € S). Let G(g) be the directed graph
(S, E) where E is the set of all pairs (¢,¢’) € S xS such that 6(¢’|g, a) > 0 for some a € 5(q).
We say (S, 3) is an end component (EC) if the following hold: if a € 5(s), for (s,a) € S x A,
then supp ((s,a)) C S; and the graph Gg gy is strongly connected. Furthermore, we say the
EC (S, 8) is good (for the parity objective) (a GEC, for short) if the minimal priority over all
states from S is even; weakly good if it contains a GEC.

For ECs (S,) and (S, 8’), let us denote by (S, 3) C (5’,8’) the fact that S C S’ and
B(s) C B'(s) for all s € S. We denote by MEC 4 the set of all maximal ECs (MECs) in
M with respect to C. It is easy to see that for all (S,-),(S’,-) € MEC,; we have that
SNS' =@, ie. every state belongs to at most one MEC.

Model learning and robust strategies. In this work we will “approximate” the stochastic
dynamics of an unknown EC in an MDP. Below, we formalize what we mean by approximation.

» Definition 4 (Approximating distributions). Let M = (Q, A, «, d,p,r) be an MDP, (S, 3)
an EC, and ¢ € (0,1). We say ¢’ is e-close to ¢ in (S,5), denoted ¢’ N?S,ﬁ) 0, if
10'(¢'|q,a) — d(q'|g,a)| < e for all ¢,¢" € S and all a € B(g). If the inequality holds for
all ¢,¢' € Q and all a € a(q), then we write §’ ~€ §.

A strategy o is said to be (uniformly) expectation-optimal if for all g9 € @ we have
E% [MP] = sup, E%- [MP]. The following result captures the idea that some expectation-
optimal strategies for MDPs whose transition function have the same support are “robust”.
That is, when used to play in another MDP with the same support and close transition
functions, they achieve near-optimal expectation.

» Lemma 5 (Follows from [27, Theorem 6] and [14, Theorem 5]). Consider values €,7n. € (0,1)
such that n. < 52'2“22““; a transition function ¢’ such that supp (§) = supp (¢') and § ~" §'
where Tyin is the minimal nonzero probability value from 6 and §'; and a reward function
" such that max{|r(q,a,q") —1'(q,a,q")| : (¢,a,q") € supp (6)} < 5. For all memoryless
deterministic expectation-optimal strategies o in (Q, A, «,d ,p,r'"), for all qo € Q, it holds

that |E%. [MP] — sup, E%, [MP]| < e.

We say a strategy o such as the one in the result above is e-robust-optimal (with respect to
the expected mean payoff).

2.3 Automata as proto-MDPs

We study MDPs with unknown transition and reward functions. It is therefore convenient to
abstract those values and work with automata.

J. Kretinsky, G. A. Pérez, J.-F. Raskin

» Definition 6 (Automata). A (finite-state parity) automaton A is a tuple (Q, A, T, p) where
Q is a finite set of states, A is a finite alphabet of actions, T'C @ X A x @ is a transition
relation, and p : Q — N is a priority function. We make the assumption that for all g € @
we have (q,a,q’) € T for some (a,q’) € A x Q.

A transition function § : Q@ x A — D(Q) is then said to be compatible with A if
Y(g,a) € Q@ x A : supp (6(q,a)) = {¢' | T(q,a,q")}. For a transition function § compatible
with A and a reward function r : ' — [0, 1]NQ, we denote by As , the MDP (Q, A, ar,d,p, 1)

where a € ar(q) PN I(q,a,q’) € T. It is easy to see that the sets of ECs of MDPs
(Q, A, ar,d,p,r) and (Q, A, ar,d,p,r") coincide for all 6’ compatible with 4 and all reward
functions r’. Hence, we will sometimes speak of the ECs of an automaton.

Example: sure-constraints. Consider the (variable-labelled-)automaton on the left-hand
side of Fig. 1. Note that playing a forever surely wins the parity objective from everywhere
but it may not be optimal for the expected mean payoff. To play optimally, we need to
learn about the values r1, 9, and z. Assume that we play for n steps a and b uniformly
at random when in state ¢g. This will probably allows us to reach ¢; and g2 a number of
times, and so to learn rg and r1, and compute an estimation z of x. If & - ry > rg, we may
want to conclude that the optimal strategy is to always play b from qo. But we face here
two major difficulties. First, after the learning episode of n steps, we can observe & - r1 > rg
while = - r; < rg, this is because we may have been unlucky and observed statistics that
differ from the real distribution. Second, playing b always is not an option if we want to
surely satisfy the parity objective. In this paper, we give algorithms to overcome the two
problems. In our example, the strategy constructed by our algorithm will do the following;:
given €, € (0,1), choose n € N large enough, learn & such that | — z| < e with probability
more than 1 —+, then if & - r; < rg, play a forever. Otherwise, keep playing b for longer and
longer episodes. If during one of these episodes, the state go is not visited (i.e. the parity
objective is endangered as the minimal priority seen during the episode is odd) switch to
playing a forever.

Transition-probability lower bound. Let i, € [0,1] N Q be a transition-probability lower
bound. We say that d is compatible with m;, if for all (¢,a,q’) € Q@ x A x @ we have that:
either 6(¢'|q,a) > mmin or 6(¢’|q,a) = 0.

3 Learning for MP: the Unconstrained Case

In this section, we focus on the design of optimal learning strategies for the mean-payoff
function in the unconstrained single-end-component case. That is, we have an unknown
strongly connected MDP with no parity objective.

We consider, in turn, learning strategies that use finite and infinite memory. Whereas
classical RL algorithms focus on achieving an optimal expected value (see, e.g., [32]; cf. [6]),
we prove here that a stronger result is achievable: one can ensure — using finite memory only
— outcomes that are close to the best expected value with high probability. Further, with
infinite memory the optimal outcomes can be ensured with probability 1. In both cases, we
argue that our results are tight.

For the rest of this section, let us fix an automaton A = (@, A, T, p) such that (Q, ar) is
an EC, and some i, € (0, 1].

8:7

CONCUR 2018

8:8

Learning-Based Mean-Payoff Optimization in an Unknown Parity MDP

Yardstick. Let ¢ be a transition function compatible with A and 7y, and r be a reward
function. The optimal expected mean-payoff value that is achievable in the unique EC
(Q, ar) is defined as Val(Q, ar) def sup,, qug [MP] for any go € Q. Indeed, it is well known
that this value is the same for all states in the same EC.

Note that this value can always be obtained by a memoryless deterministic [20] and
unichain [11] expectation-optimal strategy when ¢ and r are known. We will use this value

as a yardstick for measuring the performance of the learning strategies we describe below.

Model learning. Our strategies learn approximate models of § and r to be able to compute
near-optimal strategies. To obtain those models, we use an approach based on ideas
from probably approximately correct (PAC) learning. Namely, we will execute a random
exploration of the MDP for some number of steps and obtain an empirical estimation of its
stochastic dynamics, see e.g. [30]. We say that a memoryless strategy A is a (uniform random)
exploration strategy for a function f: Q — P (A) if A(alq) = 1/]8(q)| for all ¢ € Q,a € a(q)
such that a € 5(q) and A(a|q) = 0 otherwise. Each time the random exploration enters a
state ¢ and chooses an action a, we say that it performs an experiment on (g, a), and if the
state reached is ¢’ then we say that the result of the experiment is ¢’. Furthermore, the value
r(q,a,q’") is then known to us. To learn an approximation §’ of the transition function ¢, and
to learn 7, the learning strategy remembers statistics about such experiments. If the random
exploration strategy is executed long enough then it collects sufficiently many experiment
results to accurately approximate the transition function ¢ and the exact reward function r
with high probability.

The next lemma gives us a bound on the number of |@Q|-step episodes for which we need
to exercise such a strategy to obtain the desired approximation with at least some given
probability. It can be proved via a simple application of Hoeffding’s inequality.

» Lemma 7. For all ECs (S,() and all e, € (0,1) one can compute n € N (exponential in
|Q| and polynomial in |A|, 71k,

for B during n (potentially non-consecutive) episodes of |Q|-steps suffices to collect enough

In(y~1Y), and e=1) such that following an exploration strategy

information to be able to compute a transition function &' such that P [5' Nfs 5) 5] >1—1.

3.1 Finite memory

We now present a family of finite memory strategies og, that force, given any ,v € (0, 1),

outcomes with a mean payoff that is e-close to the optimal expected value with probability

higher than 1 — ~. The strategy og, is defined as follows.

1. First, ogy, follows the model-learning strategy above for L steps, according to Lemma 7,
in order to obtain an approximation ¢’ of § such that 6’ ~” § with probability at least
1 —~. A reward function r’ is also constructed from the observed rewards.

2. Then, og, follows a memoryless deterministic expectation-optimal strategy 7 for As/ ..

The following result tells us that if the learning phase is sufficiently long, then we can obtain,

with ogy,, & near-optimal mean payoff with high probability.

» Proposition 8. For all ¢,y € (0,1), one can compute L € N such that for the resulting
finite memory strateqy ogay, for all qo € Q, for all § compatible with A and Ty, and for all
reward functions r, we have Pj":aﬁn [0: MP(p) > Val(Q,ar) —¢] > 1—7.

5,r

Proof. We will make use of Lemma 5. For that purpose, let n = min{mmin, 7} where 7. is
as in the statement of the lemma. Next, we set L = |Q|n where n is as dictated by Lemma 7
using 1 and v. By Lemma 7, with probability at least 1 — v our approximation ¢’ is such

J. Kretinsky, G. A. Pérez, J.-F. Raskin

that ¢’ ~" 8. Since 1 < Tpin, it follows that supp (§) = supp (') and we now have learned r,
again with probability 1 — ~. Finally, since n < 7., Lemma 5 implies the desired result. <«

» Remark (Finite-memory implementability). Note that og,, as we described it previously, is
not immediately seen to be a computable finite stochastic Mealy machine. Let us consider
all possible histories of length L. Observe that this set is not finite because of the unknown
rewards which can range over arbitrary rational numbers in [0, 1]. However, we can finitize
the set by focusing only on rewards of bounded representation size by imposing an upper-
bound on the bitsize of their representation (truncating the rest off observed rewards) while
still satisfying the hypotheses of Lemma 5. Now, for all such histories we can compute an
approximation ¢’ of § and an approximation 7’ of the observed reward function r. Using that
information, the required finite-memory expectation-optimal strategy 7 can be computed.
We encode these (finitely many) strategies into the machine implementing og, so that it only
has to choose which one to follow forever after the (finite) learning phase has ended. Hence,
one can indeed construct a finite-memory strategy realizing the described strategy.

Optimality. The following tells us that we cannot do better with finite memory strategies.

» Proposition 9. Let A be the single-EC automaton on the right-hand side of Fig. 1 and
Tmin € (0,1]. For all e,y € (0,1), the following two statements hold.
For all finite memory strategies o, there exist 0 compatible with A and wmin, and a reward
function r, such that Pq“g [o: MP(p) > Val(Q,ar) — €] < 1.
For all finite memory straT{egies o, there exist 0 compatible with A and mmin, and a reward
function v such that qugr [0: MP(p) < Val(Q, ar)] > v.

Proof sketch. With a finite-memory strategy we cannot satisfy a stronger guarantee than
being e-optimal with probability at least 1 — ~ in this example. Indeed, as we can only
use finite memory, we can only learn imprecise models of é and r. That is, we will always
have a non-zero probability to have approximated x or y arbitrarily far from their actual
values. It should then be clear that neither optimality with high probability nor almost-sure
e-optimality can be achieved. <

3.2 Infinite memory

While we have shown that probably approximately optimal is the best that can be obtained
with finite memory learning strategies, we now establish that with infinite memory, one can
guarantee almost sure optimality.

To this end, we define a strategy o,, which operates in episodes consisting of two phases:
learning and optimization. In episode i € N, the strategy does the following.

1. It first follows an exploration strategy A for ar during L; steps, there exist models §;
and r; based on the experiments obtained throughout the Z;:o L; steps during which A
has been followed so far.

2. Then, o4, follows a unichain memoryless deterministic expectation-optimal strategy Ug/}P
for As, r, during O; steps.

One can then argue that o, can be instantiated so that in every episode the finite average

obtained so far gets ever close to Val(Q, ar) with ever higher probability. This is achieved by

choosing the L; as an increasing sequence so that the approximations §; get ever better with
ever higher probability. Then, the O; are chosen so as to compensate for the past history, for
the time before the induced MC reaches its limit distribution, and for the future number of
steps that will be spent learning in the next episode. The latter then allows us to use the
Borel-Cantelli lemma to show that in the unknown EC we can obtain its value almost surely.

8:9

CONCUR 2018

8:10

Learning-Based Mean-Payoff Optimization in an Unknown Parity MDP

» Proposition 10. One can compute a sequence (L;, O;)ien such that L; > |Q| for all i € N;
additionally the resulting strateqy oo is such that for all qo € Q, for all § compatible with A
and Tmin, and for all reward functions r, we have P [0 : MP (o) > Val(Q, ar)] = 1.

RS
Optimality. Note that o, is optimal since it obtains with probability 1 the best value that
can be obtained when the MDP is fully known, i.e. when § and r are known in advance.

4 Learning for MP under a Sure Parity Constraint

We show here how to design learning strategies that obtain near-optimal mean-payoff values
while ensuring that all runs satisfy a given parity objective with certainty.

First, we note that all such learning strategies must avoid entering states ¢ from which
there is no strategy to enforce the parity objective with certainty. Hence, we make the
hypothesis that all such states have been removed from the automaton A, and so we assume
that for all g € @ there exists a strategy opar such that for all functions § compatible with
A, for all reward functions r, and for all ¢ € Runs® (AF), we have o = PARITY. It is worth
noting that, in fact, there exists a memoryless deterministic strategy such that the condition
holds for all ¢y € @ [4, 3]. Notice the swapping of the quantifiers over the initial states
and the strategy, this is why we say it is uniformly winning (for the parity objective). The
set of states to be removed, along with a uniformly winning strategy, can be computed in
quasi-polynomial time [12]. We say that an automaton with no states from which there is no
winning strategy is surely good.

We study the design of learning strategies for mean-payoff optimization under sure parity
constraints for increasingly complex cases.

4.1 The case of a single good EC

Consider a surely-good automaton A = (Q, 4, T,p) such that (Q,ar) is a GEC, i.e. the
minimal priority of a state in the EC is even, and some 7y, € (0, 1].

Yardstick. For this case, we use as yardstick the optimal expected mean-payoff value:
Val(Q, ar) = sup, Eq(’g (MP].

Learning strategy. We show here that it is possible to obtain an optimal mean-payoff with
high probability. Note that our solution extends a result given by Almagor et al. [1] for known
MDPs. The main idea behind our solution is to use the strategy o, from Proposition 10 in
a controlled way: we verify that during all successive learning and optimization episodes, the
minimal parity value that is visited is even. If during some episode, this is not the case, then
we resort to a strategy opar that enforces the parity objective with certainty. Such opa, is
guaranteed to exist as A is surely good.

» Proposition 11. For all v € (0,1), there exists a strategy o such that for all gy € Q, for
all 6 compatible with A and Tmin, and for all reward functions r, we have ¢ |= PARITY for
all o € Runs™ (A7) and Pq"g [0: MP(p) > Val(Q,ar)] > 1—1.

Proof sketch. We modify o, so as to “give up” on optimizing the mean payoff if the minimal
even priority has not been seen during a long sequence of episodes. This will guarantee that
the measure of runs which give up on the mean-payoff optimization is at most ~.

J. Kretinsky, G. A. Pérez, J.-F. Raskin

First, recall that we can instantiate o, so that L; > |Q] for all ¢ € N. Hence, with some
probability ¢ > 0, during every learning phase, we visit a state with even minimal priority. We
can then find a sequence nj,ng, - - - € N* of natural numbers such that H;’;(l —(M) > 11—,
for some i € N. Given this sequence, we apply the following monitoring. If for £ € N we write
Ny def Zi;ll ng, then at the end of the ¢-th episode we verify that during some learning phase
from Ln,, Ln,+1,---,LnN,+n, We have visited a state with minimal even priority, otherwise

we switch to a parity-winning strategy forever. |

Optimality. The following proposition tells us that the guarantees from Proposition 11 are
indeed optimal w.r.t. our chosen yardstick.

» Proposition 12. Let A be the single-GEC automaton on the left-hand side of Fig. 1 and
Tmin € (0,1]. For all parity-winning strategies o, there exist 6 compatible with A and Tmin,
and a reward function r, such that qug [o: MP(p) > Val(Q, ar)] < 1.

Proof sketch. Consider a reward function such that rg = 0 and ; = 1 and an arbitrary §. It
is easy to see that Val(Q, ar) = 1. However, any strategy that ensures the parity objective
is satisfied surely must be such that, with probability v > 0, it switches to follow a strategy
g2 — (a — 1) forever. Hence, with probability at least + its mean-payoff is sub-optimal. <«

4.2 The case of a single EC

We now turn to the case where the surely-good automaton A = (Q, A, T, p) consists of a
unique, not necessarily good, EC (Q, ar). Let us also fix some myin € (0, 1].

An important observation regarding single-end-component MDPs that are surely good is
that they contain at least one GEC as stated in the following lemma.

» Lemma 13. For all surely-good automata A = (Q, A, T,p) such that (Q,ar) is an EC
there exists (S, 5) C (Q,ar) such that (S,) is a GEC in As, for all § compatible with A
and all reward functions r, i.e. (Q,ar) is weakly good.

Yardstick. Let § and r be fixed in the single EC, our yardstick for this case is defined as
follows: sVal(Q, ar) Lef maxge Sup {]E:’L‘g) [MP] ‘ o is a parity-winning strategy} . That is
sVal(Q, ar) is the best MP expectation value that can be obtained from a state q € @ with
a parity-winning strategy. It is remarkable to note that we take the maximal value over all
states in Q. As noted by Almagor et al. [1], this value is not always achievable even when &
and 7 are a priori known, but it can be approached arbitrarily close.

Learning strategy. The following proposition tells us that we can obtain a value close to
sVal(Q, ar) with arbitrarily high probability while satisfying the parity objective surely.

» Proposition 14. For all e,y € (0,1) there exists a strategy o such that for all o € Q, for
all & compatible with A and mymin, and for all reward functions r, we have o = PARITY for
all o € Runs™ (Af,) and Pffg [o:MP(o) > sVal(Q,ar) —e] > 1 —1.

Proof sketch. We define a strategy o as follows. Let 7 = min{mmin,7:/2} for 1.2 as defined

for Lemma 5. The strategy o plays as follows.

1. Tt first computes ¢’ such that ¢’ ~" ¢ with probability at least 1 — v/4 and a reward
function r’ by following an exploration strategy A for ar during Jy steps (see Lemma 7).

8:11

CONCUR 2018

8:12

Learning-Based Mean-Payoff Optimization in an Unknown Parity MDP

SEBSERE

Figure 2 An automaton for which it is impossible to learn to obtain near-optimal mean-payoff
almost surely or optimal mean-payoff with high probability, while satisfying the parity objective.
For clarity, probability and reward placeholders have been omitted.

2. It then selects a contained maximal good EC (MGEC) with maximal expected mean-
payoff value (see Lemma 13) and tries to reach it with probability at least 1 — v/4 by
following A during Jp steps.

3. Finally, if the component is reached, it follows a strategy 7 as in Proposition 11 with ~/4
from then onward.

If the learning “fails” or if the component is not reached, the strategy reverts to following

a winning strategy forever. (A failed learning phase is one in which the approximated

distribution function does not have T' as its support.) |

Optimality. The following states that we cannot improve on the result of Proposition 14.

» Proposition 15. Let A be the single-EC automaton in Fig. 2 and 7 € (0,1]. For all
g,v € (0,1), the two following statements hold.
For all strategies o, there exist & compatible with A and Ty, and a reward function r,
such that]P’Z{’gyr [o: MP(p) > sVal(Q,ar) —¢] < 1.
For all strategies o, there exist 6 compatible with A and Ty, and a reward function r,
such that PZI‘?Z,T [0: MP(p) >sVal(Q,ar)] <1—~.

Proof sketch. Observe that the MEC is not a good EC. However, it does contain the GECs
with states {q1,¢2} and {gs, ¢4} respectively. Now, since those two GECs are separated by qo,
whose priority is 1, any winning strategy must at some point stop playing to gp and commit
to a single GEC. Thus, the learning of the global EC can only last for a finite number of
steps. It is then straightforward to argue that near-optimality with high-probability is the
best achievable guarantee. |

4.3 General surely-good automata

In this section, we generalize our approach from single-EC automata to general automata.
We will argue that, under a sure parity constraint, we can achieve a near-optimal mean
payoff with high probability in any MEC (S, 8) in which we end up with non-zero probability.
That is, given that the event Inf C S, defined as the set of all runs that eventually always
stay within S, has non-zero probability measure.

» Theorem 16. Consider a surely-good automaton A= (Q,A,T,p) and some Tmin € (0,1].
For all e,y € (0,1) there exists a strategy o such that for all qo € Q, for all § compatible
with A and Ty, and all reward functions r, we have

0 = PARITY for all o € Runs® (AF) and

P?‘??,r [0: MP(0) > sVal(S,5) —¢|Inf C S| > 11— for all (S,8) € MEC4,, such that

(S, B) is weakly good and]P’qog [Inf C S] > 0.
Proof sketch. The strategy o we construct follows a parity-winning strategy opa, until a

state contained in a weakly good MEC, that has not been visited before, is entered. In this
case, the strategy follows 7 (the strategy from Proposition 14). Observe that when 7 switches

J. Kretinsky, G. A. Pérez, J.-F. Raskin

to Opar (a parity-winning strategy) it may exit the end component. If this happens, then the
component is marked as visited and op,, is followed until a new — not previously visited —
maximal good end component is entered. In that case, we switch to 7 once more. Crucially,
the new strategy o ignores MECs that are revisited <

» Remark (On the choice of MECs to reach). The strategy constructed for the proof of
Theorem 16 has to deal with leaving a MEC due to the fallbacks to the parity-winning
strategy opar. However, surprisingly, instead of actually following op,y, upon entering a new
MEC it has to restart the process of achieving a satisfactory mean-payoff. Indeed, otherwise
the overall mass of sub-optimal runs from various MECs (each smaller than «) could get
concentrated in a single MEC, thus violating the advertised guarantees.

The strategy could be simplified as follows. First, we follow any strategy to reach a
bottom MEC (BMEC) — that is, a MEC from which no other MEC is reachable. By definition,
the winning strategy can be played here and the MEC cannot be escaped. Therefore, in
the BMEC we run the strategy as described, and after the fallback we indeed simply follow
Opar- If we did not reach a BMEC after a long time, we could switch to the fallback, too.
While this strategy is certainly simpler, our general strategy has the following advantage.
Intuitively, we can force the strategy to stay in any current good MEC, even if it is not
bottom, and thus maybe achieve a more satisfactory mean-payoff. Further, whenever we
want, we can force the strategy to leave the current MEC and go to a lower one. For instance,
if the current estimate of the mean payoff is lower than what we hope for, we can try our luck
in a lower MEC. We further comment on the choice of unknown MECs in the conclusions.

5 Learning for MP under an Almost-Sure Parity Constraint

In this section, we turn our attention to learning strategies that must ensure a parity objective
not with certainty (as in previous section) but almost surely, i.e. with probability 1. As
winning almost surely is less stringent, we can hope both for a stricter yardstick (i.e. better
target values) and also better ways of achieving such high values. We show here that this is
indeed the case. Additionally, we argue that several important learning results can now be
obtained with finite-memory strategies.

As previously, we make the hypothesis that we have removed from A all states from
which the parity objective cannot be forced with probability 1 (no such state can ever be
entered). Note that to compute the set of states to remove, we do not need the knowledge
of § but only the support as given by A. States to remove can be computed in polynomial
time using graph-based algorithms (see, e.g., [5]). An automaton A which contains only
almost-surely winning states for the parity objective is called almost-surely good.

We have, as in the previous section, that for all automata A there exists a memoryless
deterministic strategy o such that for all gg € @, for all § compatible with A, for all r, the
measure of the subset of o € Runs® (A7}) such that ¢ = PARITY is equal to 1 (see e.g. [5]).
Such a strategy is said to be uniformly almost-sure winning (for the parity objective). In the
sequel, we denote such a strategy op3,.

We now study the design of learning strategies for mean-payoff optimization under
almost-sure parity constraints for increasingly complex cases.

8:13

CONCUR 2018

8:14

Learning-Based Mean-Payoff Optimization in an Unknown Parity MDP

5.1 The case of a good end component

Consider an automaton A = (Q, A, T, p) such that (Q,ar) is a GEC, and some 7, € (0, 1].

Yardstick. For this case, we use as a yardstick the optimal expected mean-payoff value:
Val(Q, ar) = sup, E%, [MP] for any ¢y € Q.
5,

Learning strategies. We start by noting that o, from Section 3 also ensures that the parity
objective is satisfied almost surely when exercised in a GEC.

» Proposition 17. One can compute a sequence (L;, O;)ien such that for the resulting strategy
Oso we have that for all qo € Q, for all 6 compatible with A and wmin, and for all reward
functions r, we have Pﬁ’go: [PARITY] = 1 and]P’ifgo: [o: MP(o) > Val(Q,ar)] = 1.

Proof. By Proposition 10, one can choose parameter sequences such that L; > |Q| for all
1 € N and so that we obtain the second part of the claim. Then, since in every episode we
have a non-zero probability of visiting a minimal even priority state, we obtain the first part
of the claim as a simple consequence of the second Borel-Cantelli lemma. |

We now turn to learning using finite memory only. Consider parameters €,y € (0,1). Let
7 = min{Tymin, Ne/a} for 1./, as defined for Lemma 5. The strategy 7a, that we construct
does the following.
1. First, it computes ¢’ such that ¢’ ~"7 ¢ with probability at least 1 — v and a reward

function 7’ by following an exploration strategy A for ar during J steps (see Lemma 7).
2. Then, it computes a unichain deterministic expectation-optimal strategy UI(E/;P for Ags

and repeats the following forever: follow 01(3/113 for O steps, then follow A for |Q] steps.
Using the fact that, in a finite MC with a single BSCC, almost all runs obtain the expected
mean payoff and the assumption that the EC is good, one can then prove the following result.

» Proposition 18. For all e,y € (0,1) one can compute L,O € N such that for the resulting
strateqy Tan, for all qo € @, for all & compatible with A and mwin, and for all reward functions
r, we have Pﬁ’fﬁn [PARITY] =1 and IP’:’Z’THD [o: MP(p) > Val(Q,ar) —¢] >1—17.

5,7 8,7

Optimality. Obviously, the result of Proposition 17 is optimal as we obtain the best possible
value with probability one. We claim that the result of Proposition 18 is also optimal as we
have seen that when we use finite learning, we cannot do better than e-optimality with high
probability, this can be proved on the example of Fig. 2 with a similar argument to the one
that has been developed for the proof of Proposition 15.

5.2 The case of a single end component

Consider an almost-surely-good automaton A = (@, A, T, p) such that (Q,ar) is an EC and
some i € (0, 1]. The EC is not necessarily good but as the automaton is almost-surely-good,
then we have the analogue of Lemma 13 in this context.

» Lemma 19. For all almost-surely-good automata A = (Q, A, T,p) such that (Q,ar) is an
EC there ezists (S, 8) C (Q, ar) such that (S, B) is a GEC in As, for all 6 compatible with
A and all reward functions r, i.e. (Q,ar) is weakly good.

J. Kretinsky, G. A. Pérez, J.-F. Raskin

Yardstick. As a yardstick for this case, we use the following value: asVal(Q, ar) def

max{Val(S,) | (S,6) C (Q,ar) and (S5, 3) is a GEC}. That is, asVal(Q, ar) is the best
expected mean-payoff value that can be obtained in a GEC included in the EC. Such a good
EC exists by Lemma 19.

Learning strategy. We will now prove an analogue of Proposition 14. For any given

g,7 € (0,1) we define the strategy o as follows.

1. First, it follows an exploration strategy A for ar during sufficiently many steps (say K) to
compute an approximation ¢’ of § such that ¢’ ~"=/4 § with probability at least 1 — v/2;
and a reward function r’ (see Lemma 7).

2. Next, it selects a GEC (S,) with maximal value &% (see Lemma 19) and computes for
it a strategy 7 as in Proposition 18 with £1/2 and /2.

3. Finally, o follows A until (S, 3) is reached, then switches to .

» Proposition 20. For all e,y € (0,1) one can construct a finite-memory strategy o such
that for all gy € Q, for all & compatible with A and Ty, and for all reward functions r, we
have P?‘(‘jé',r [PARITY] = 1 and Pi‘f;r [o: MP(0) > asVal(Q,ar) —¢] > 1—1.

See the remark in Sect. 4.3 for a comment on the finite-memory implementability of o.

Optimality. Using the same example and reasoning as in Proposition 15, we can show that
this result is optimal and cannot be improved. Also note that using infinite memory would
not help as shown with the example of Fig. 2, where the learning needs to be finite and
enforcing the almost sure parity does not require infinite memory.

5.3 General almost-surely-good automata

We now generalize our approach to general almost-surely-good automata.

» Theorem 21. Consider an almost-surely-good automaton A = (Q,A,T,p) and some
Tmin € (0,1]. For all e,y € (0,1) one can compute a finite-memory strategy o such that for
all go € Q, for all & compatible with A and T, and all reward functions r, we have

]P"jfgr [PARITY] = 1 and

P?‘(‘JE’,T [0: MP(p) > asVal(S,3) — ¢ |Inf C S] > 1—7 for all (S,3) € MEC 4, such that

(S,B) is weakly good and qué'r [Inf C S] > 0.

as

Proof sketch. The argument to prove the above result is simple: o follows a strategy op,

that ensures satisfying the parity objective almost surely. Then, if the run reaches a state
contained in a weakly good MEC, ¢ switches to 7 as described in Proposition 20. |

See the remark in Sect. 3.1 for a word on how to modify o to favour some unknown MECs.

6 Conclusion

As future work, we would like to study different configurations resulting from relaxations of
the assumptions we make in this work (i.e. full support, mmin, and bounded reward). Further,
we would like to obtain model-free learning algorithms ensuring the same guarantees we
give here. Finally, we have left open the choice of strategy driving the visits to MECs in
Theorems 16 and 21 (as long as it satisfies the parity objective). Indeed, the question of
computing an “optimal” such strategy in view of the unknown components of the MDP can
be addressed in different ways. One such way would be to model the problem as a Canadian
traveler problem [24].

8:15

CONCUR 2018

8:16

Learning-Based Mean-Payoff Optimization in an Unknown Parity MDP

—— References

1

10

11

12

Shaull Almagor, Orna Kupferman, and Yaron Velner. Minimizing expected cost under
hard boolean constraints, with applications to quantitative synthesis. In Josée Desharnais
and Radha Jagadeesan, editors, 27th International Conference on Concurrency Theory,
CONCUR 2016, August 23-26, 2016, Québec City, Canada, volume 59 of LIPIcs, pages
9:1-9:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.
CONCUR.2016.9.

Mohammed Alshiekh, Roderick Bloem, Riidiger Ehlers, Bettina Koénighofer, Scott Niekum,
and Ufuk Topcu. Safe reinforcement learning via shielding. CoRR, abs/1708.08611, 2017.
arXiv:1708.08611.

Benjamin Aminof and Sasha Rubin. First-cycle games. Information and Compution,
254:195-216, 2017. doi:10.1016/j.1ic.2016.10.008.

Krzysztof R. Apt and Erich Grédel. Lectures in game theory for computer scientists. Cam-
bridge University Press, 2011.

Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on rein-
forcement learning. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-
11 August 2017, volume 70 of Proceedings of Machine Learning Research, pages 449-458.
PMLR, 2017. URL: http://proceedings.mlr.press/v70/bellemarel7a.html.

Julien Bernet, David Janin, and Igor Walukiewicz. Permissive strategies: from parity games
to safety games. ITA, 36(3):261-275, 2002. doi:10.1051/ita:2002013.

Raphagl Berthon, Mickael Randour, and Jean-Francois Raskin. Threshold constraints with
guarantees for parity objectives in Markov decision processes. In Ioannis Chatzigiannakis,
Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on
Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland,
volume 80 of LIPIcs, pages 121:1-121:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2017. doi:10.4230/LIPIcs.ICALP.2017.121.

Tomés Bréazdil, Krishnendu Chatterjee, Martin Chmelik, Vojtech Forejt, Jan Kretinsky,
Marta Z. Kwiatkowska, David Parker, and Mateusz Ujma. Verification of markov decision
processes using learning algorithms. In Automated Technology for Verification and Anal-
ysis - 12th International Symposium, ATVA 2014, Sydney, NSW, Australia, November
3-7, 2014, Proceedings, volume 8837 of Lecture Notes in Computer Science, pages 98—114.
Springer, 2014.

Tomés Brazdil, Antonin Kucera, and Petr Novotny. Optimizing the expected mean
payoff in energy Markov decision processes. In Automated Technology for Verification
and Analysis - 14th International Symposium, ATVA 2016, Chiba, Japan, October 17-20,
2016, Proceedings, volume 9938 of Lecture Notes in Computer Science, pages 32—49, 2016.
doi:10.1007/978-3-319-46520-3.

Véronique Bruyere, Emmanuel Filiot, Mickael Randour, and Jean-Francois Raskin. Meet
your expectations with guarantees: Beyond worst-case synthesis in quantitative games. In
Ernst W. Mayr and Natacha Portier, editors, 31st International Symposium on Theoretical
Aspects of Computer Science (STACS 2014), STACS 2014, March 5-8, 2014, Lyon, France,
volume 25 of LIPIcs, pages 199-213. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2014. doi:10.4230/LIPIcs.STACS.2014.199.

Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. De-
ciding parity games in quasipolynomial time. In Hamed Hatami, Pierre McKenzie, and
Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on The-
ory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 252-263.
ACM, 2017. doi:10.1145/3055399.3055409.

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.9
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.9
http://arxiv.org/abs/1708.08611
http://dx.doi.org/10.1016/j.ic.2016.10.008
http://proceedings.mlr.press/v70/bellemare17a.html
http://dx.doi.org/10.1051/ita:2002013
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.121
http://dx.doi.org/10.1007/978-3-319-46520-3
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.199
http://dx.doi.org/10.1145/3055399.3055409

J. Kretinsky, G. A. Pérez, J.-F. Raskin

13

14

15

16

17

18

19

20

21

22

23

Krishnendu Chatterjee. Concurrent games with tail objectives. Theoretical Computer
Science, 388(1-3):181-198, 2007. doi:10.1016/j.tcs.2007.07.047.

Krishnendu Chatterjee. Robustness of structurally equivalent concurrent parity games. In
Lars Birkedal, editor, Foundations of Software Science and Computational Structures - 15th
International Conference, FOSSACS 2012, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April
1, 2012. Proceedings, volume 7213 of Lecture Notes in Computer Science, pages 270-285.
Springer, 2012. doi:10.1007/978-3-642-28729-9_18.

Krishnendu Chatterjee and Laurent Doyen. Energy and mean-payoff parity markov de-
cision processes. In Mathematical Foundations of Computer Science 2011 - 36th In-
ternational Symposium, MFCS 2011, Warsaw, Poland, August 22-26, 2011. Proceed-
ings, volume 6907 of Lecture Notes in Computer Science, pages 206—218. Springer, 2011.
doi:10.1007/978-3-642-22993-0.

Krishnendu Chatterjee, Petr Novotny, Guillermo A. Pérez, Jean-Francois Raskin, and
Dorde Zikelic. Optimizing expectation with guarantees in POMDPs. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Fran-
cisco, California, USA., pages 3725-3732. AAAI Press, 2017. URL: http://www.aaai.
org/Library/AAAI/aaail7contents.php.

Lorenzo Clemente and Jean-Francois Raskin. Multidimensional beyond worst-case and
almost-sure problems for mean-payoff objectives. In 80th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 257-268.
IEEE Computer Society, 2015. doi:10.1109/LICS.2015.33.

Przemyslaw Daca, Thomas A. Henzinger, Jan Kretinsky, and Tatjana Petrov. Faster
statistical model checking for unbounded temporal properties. In Tools and Algorithms
for the Construction and Analysis of Systems - 22nd International Conference, TACAS
2016, Held as Part of the Furopean Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, vol-
ume 9636 of Lecture Notes in Computer Science, pages 112-129. Springer, 2016. doi:
10.1007/978-3-662-49674-9.

Alexandre David, Peter Gjgl Jensen, Kim Guldstrand Larsen, Axel Legay, Didier Lime,
Mathias Grund Sgrensen, and Jakob Haahr Taankvist. On time with minimal expected cost!
In Automated Technology for Verification and Analysis - 12th International Symposium,
ATVA 2014, Sydney, NSW, Australia, November 3-7, 2014, Proceedings, volume 8837 of
Lecture Notes in Computer Science, pages 129-145. Springer, 2014.

Hugo Gimbert. Pure stationary optimal strategies in Markov decision processes. In Wolf-
gang Thomas and Pascal Weil, editors, STACS 2007, 24th Annual Symposium on Theo-
retical Aspects of Computer Science, Aachen, Germany, February 22-24, 2007, Proceed-
ings, volume 4393 of Lecture Notes in Computer Science, pages 200-211. Springer, 2007.
doi:10.1007/978-3-540-70918-3_18.

Sebastian Junges, Nils Jansen, Christian Dehnert, Ufuk Topcu, and Joost-Pieter Katoen.
Safety-constrained reinforcement learning for MDPs. In Marsha Chechik and Jean-Frangois
Raskin, editors, Tools and Algorithms for the Construction and Analysis of Systems - 22nd
International Conference, TACAS 2016, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-
8, 2016, Proceedings, volume 9636 of Lecture Notes in Computer Science, pages 130—146.
Springer, 2016. doi:10.1007/978-3-662-49674-9_8.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement learning:
A survey. J. Artif. Intell. Res., 4:237-285, 1996. doi:10.1613/jair.301.

James R. Norris. Markov chains. Cambridge series in statistical and probabilistic mathe-
matics. Cambridge University Press, 1998.

8:17

CONCUR 2018

http://dx.doi.org/10.1016/j.tcs.2007.07.047
http://dx.doi.org/10.1007/978-3-642-28729-9_18
http://dx.doi.org/10.1007/978-3-642-22993-0
http://www.aaai.org/Library/AAAI/aaai17contents.php
http://www.aaai.org/Library/AAAI/aaai17contents.php
http://dx.doi.org/10.1109/LICS.2015.33
http://dx.doi.org/10.1007/978-3-662-49674-9
http://dx.doi.org/10.1007/978-3-662-49674-9
http://dx.doi.org/10.1007/978-3-540-70918-3_18
http://dx.doi.org/10.1007/978-3-662-49674-9_8
http://dx.doi.org/10.1613/jair.301

8:18

Learning-Based Mean-Payoff Optimization in an Unknown Parity MDP

24
25
26

27

28

29

30

31

32

33

34

Christos H. Papadimitriou and Mihalis Yannakakis. Shortest paths without a map. Theo-
retical Computer Science, 84(1):127-150, 1991.

Martin L. Puterman. Markov Decision Processes. Wiley-Interscience, 2005.

Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach (3. internat.
ed.). Pearson Education, 2010. URL: http://vig.pearsoned.com/store/product/1,
1207, store-12521_isbn-0136042597,00.html.

Eilon Solan. Continuity of the value of competitive Markov decision processes. Journal of
Theoretical Probability, 16(4):831-845, 2003.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an introduction.
Adaptive computation and machine learning. MIT Press, 2018. URL: http://www.
incompleteideas.net/book/the-book-2nd.html.

Wolfgang Thomas. On the synthesis of strategies in infinite games. In STACS, pages 1-13,
1995. doi:10.1007/3-540-59042-0_57.

Leslie G. Valiant. A theory of the learnable. In Richard A. DeMillo, editor, Proceedings
of the 16th Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1984,
Washington, DC, USA, pages 436-445. ACM, 1984. doi:10.1145/800057.808710.

Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs.
In 26th Annual Symposium on Foundations of Computer Science, Portland, Oregon, USA,
21-23 October 1985, pages 327-338. IEEE Computer Society, 1985. doi:10.1109/SFCS.
1985.12.

Christopher J. C. H. Watkins and Peter Dayan. Technical note g-learning. Machine Learn-
ing, 8:279-292, 1992. doi:10.1007/BF00992698.

Min Wen, Riidiger Ehlers, and Ufuk Topcu. Correct-by-synthesis reinforcement learn-
ing with temporal logic constraints. In 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS 2015, Hamburg, Germany, September 28 - Octo-
ber 2, 2015, pages 4983-4990. IEEE, 2015. URL: http://ieeexplore.ieee.org/xpl/
mostRecentIssue. jsp?punumber=7347169.

Min Wen and Ufuk Topcu. Probably approximately correct learning in stochastic games
with temporal logic specifications. In Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016,
pages 3630-3636. IJCAI/AAAI Press, 2016. URL: http://www.ijcai.org/Proceedings/
2016.

http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0136042597,00.html
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0136042597,00.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://dx.doi.org/10.1007/3-540-59042-0_57
http://dx.doi.org/10.1145/800057.808710
http://dx.doi.org/10.1109/SFCS.1985.12
http://dx.doi.org/10.1109/SFCS.1985.12
http://dx.doi.org/10.1007/BF00992698
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7347169
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7347169
http://www.ijcai.org/Proceedings/2016
http://www.ijcai.org/Proceedings/2016

Deciding Probabilistic Bisimilarity Distance One
for Probabilistic Automata

Qiyi Tang

Department of Computing, Imperial College, London, United Kingdom

Franck van Breugel
Department of Electrical Engineering and Computer Science, York University, Toronto, Canada

—— Abstract
Probabilistic bisimilarity, due to Segala and Lynch, is an equivalence relation that captures which
states of a probabilistic automaton behave exactly the same. Deng, Chothia, Palamidessi and
Pang proposed a robust quantitative generalization of probabilistic bisimilarity. Their probabil-
istic bisimilarity distances of states of a probabilistic automaton capture the similarity of their
behaviour. The smaller the distance, the more alike the states behave. In particular, states are
probabilistic bisimilar if and only if their distance is zero.

Although the complexity of computing probabilistic bisimilarity distances for probabilistic
automata has already been studied and shown to be in NP N coNP and PPAD, we are not
aware of any practical algorithm to compute those distances. In this paper we provide several
key results towards algorithms to compute probabilistic bisimilarity distances for probabilistic
automata. In particular, we present a polynomial time algorithm that decides distance one.
Furthermore, we give an alternative characterization of the probabilistic bisimilarity distances as
a basis for a policy iteration algorithm.

2012 ACM Subject Classification Mathematics of computing — Markov processes, Theory of
computation — Concurrency

Keywords and phrases probabilistic automaton, probabilistic bisimilarity, distance
Digital Object ldentifier 10.4230/LIPIcs. CONCUR.2018.9
Funding Natural Sciences and Engineering Research Council of Canada

Acknowledgements The authors would like to thank the referees for their detailed and construct-
ive feedback.

1 Introduction

Behavioural equivalences, such as bisimilarity, are one of the cornerstones of concurrency
theory. Recall that a behavioural equivalence ~ C S x S, where S is the set of states of the
model, satisfies

s~ s
if s~tthent~s

if s~tandt~wuthen s ~u

for all s, t, u € S. If s ~ ¢ then states s and ¢ behave the same.

As first observed by Giacalone, Jou and Smolka [17], behavioural equivalences are not
robust for models that contain quantitative information such as probabilities and time. This
lack of robustness is caused by the discrepancy between the discrete nature of behavioural
© Qiyi Tang and Franck van Breugel;

37 licensed under Creative Commons License CC-BY
29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No.9; pp.9:1-9:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2

Probabilistic Bisimilarity Distance One

equivalence and the continuous nature of the quantitative information on the which the beha-
vioural equivalence relies. In particular, even small changes to the quantitative information
may cause behaviourally equivalent states become inequivalent or vice versa.

Giacalone et al. proposed behavioural pseudometrics as a robust quantitative generalization
of behavioural equivalences. A behavioural pseudometric d : S x S — [0, 1] satisfies

d(s,t) =0 if and only if s ~ ¢
d(sat) = d(ta 5)
d(s,u) <d(s,t)+ d(t,u)

for all s, t, u € S. The distance d(s,t) measures the similarity of the behaviour of states s
and t. The smaller this distance, the more alike the states behave. Distance zero captures
that states are behaviourally equivalent.

In this paper, we focus on probabilistic automata. This model was first studied by Segala
in [27]. Tt captures both nondeterminism (and, hence, concurrency) and probabilities. Let us
consider a simple example.

The states of a probabilistic automaton are labelled. These labels provide a partition of the
states so that states satisfying the same basic properties of interest are in the same partition.
In the above example, the labels are represented by colours. Each state has one or more
probabilistic transitions. For example, the state ¢ has a single probabilistic transition that
takes state t to itself with probability one. State f has two probabilistic transitions. The
one takes state f to state h with probability one. The other represents a fair coin toss, that
is, it transitions to state h with probability % and to state t with probability % Also state b
has two transitions, one of which represents a biased coin toss.

Segala and Lynch [28] introduced probabilistic bisimilarity. This behavioural equivalence
for probabilistic automata generalises the one introduced by Larsen and Skou [25]. The
latter is applicable to models without nondeterminism, known as labelled Markov chains.
States s and t of a probabilistic automaton are probabilistic bisimilar if for each outgoing
probabilistic transition of state s there exists a matching outgoing probabilistic transition
of state ¢, and vice versa. Two probabilistic transitions match if they both transition to
each probabilistic bisimilarity equivalence class with the exact same probability. States f
and b in the above example are not probabilistic bisimilar. Although the transition from
state f to state h can be matched by the transition from state b to state h, the probabilistic
transitions representing a fair and biased coin toss do not match since the probabilities are
slightly different.

Deng, Chothia, Palamidessi and Pang [12] introduced a behavioural pseudometric for
probabilistic automata that generalises probabilistic bisimilarity. The Hausdorff metric [18]
and the Kantorovich metric [22] are key ingredients of this pseudometric. The former is used

Q. Tang and F. van Breugel

to capture nondeterminism. This idea dates back to the work of De Bakker and Zucker [4].
The latter was first used by Van Breugel and Worrell [7] to capture probabilistic behaviour.

On the one hand, the behaviours of the states h and ¢ of the above example are very different

since their labels are different. As a result, their probabilistic bisimilarity distance is one.

On the other hand, the behaviours of the states f and b are very similar, which is reflected
1

by the fact that these states have probabilistic bisimilarity distance 15;-

Tracol, Desharnais and Zhioua [34] also introduced a behavioural pseudometric for
probabilistic automata. Their probabilistic bisimilarity distances generalise probabilistic
bisimilarity as well, but are different from the ones introduced by Deng et al. An example
showing the difference can be found in [34, Example 5]. To compute their probabilistic
bisimilarity distances, they developed an iterative algorithm. In each iteration, a maximum
flow problem needs to be solved. The resulting algorithm is polynomial time.

The complexity of computing the probabilistic bisimilarity distances for probabilistic
automata a la Deng et al. was first studied by Fu [15]. He showed that these probabilistic
bisimilarity distances are rational. Furthermore, he proved that the problem of deciding
whether the distance of two states is smaller than a given rational is in NP N coNP. The
proof can be adapted to show that the decision problem is in UP N coUP [16]. Recall that
UP contains those problems in NP with a unique accepting computation. Van Breugel and
Worrell [8] have shown that the problem of computing the probabilistic bisimilarity distances
is in PPAD, which is short for polynomial parity argument in a directed graph.

For the behavioural pseudometric of Deng et al., states are probabilistic bisimilar if and
only if they have distance zero. Since probabilistic bisimilarity can be decided in polynomial
time, as shown by Baier [2], distance zero can be decided in polynomial time as well. In
Section 5 we present a polynomial time algorithm that decides distance one.

As we have already shown in [32] in the context of labelled Markov chains, being able to
decide distance zero and distance one in polynomial time has significant impact on computing
probabilistic bisimilarity distances. For example, we can determine in polynomial time how
many, if any, distances are non-trivial, that is, greater than zero and smaller than one. The
technical details in this paper are considerably more involved than those in [32].

Deng et al. define their pseudometric as a least fixed point. In Section 4 we present an
alternative characterization of the probabilistic bisimilarity distances. This characterization is

similar to the one presented for labelled Markov chains by Chen, Van Breugel and Worrell [9].

The latter characterization provided the foundation for the policy iteration algorithm to
compute the probabilistic bisimilarity distances for labelled Markov chains by Bacci, Bacci,
Larsen and Mardare [1] (see also [31]). Our alternative characterization plays a key role in
the correctness proof of our algorithm.

2 Order and Distances

In this section, we provide some definitions and results from the literature about orders and
distances that we will use in the remainder of this paper. For more details we refer the reader
to, for example, [11] and [3]. Given a set S, we denote the set of functions from S x S to
[0,1] by [0,1]%%5. As in the work of Desharnais et al. [13], we endow the set [0, 1]5* with
the following natural order.

» Definition 1. The relation = C [0,1]%*5 x [0,1]%*5 is defined by
dCeif d(s,t) <e(s,t) for all s,t € S.

» Proposition 2. ([0,1]%*% C) is a complete lattice.

9:3

CONCUR 2018

9:4

Probabilistic Bisimilarity Distance One

Proof. See, for example, [13, Lemma 3.2]. <

Let (X, <) be an ordered set. Let f: X — X. Following [11, Definition 8.14], we define
the following three notions:

x € X is a fized point of f if f(z) =z,

x € X is a pre-fized point of f if f(z) <z, and

x € X is a post-fized point of f if x < f(x).
A function f : X — X is monotone if for all z, y € X, x < y implies f(x) < f(y). The
following result is known as the Knaster-Tarski fixed point theorem [24, 33].

» Theorem 3. Let X be a complete lattice and let f : X — X be a monotone function.
(a) f has a greatest fized point.

(b) The greatest fized point of f is the greatest post-fixed point of f.

(c) f has a least fized point.

(d) The least fized point of f is the least pre-fized point of f.

Proof. See, for example, [11, Theorem 2.35] and [11, Theorem 8.20)]. <

We denote the greatest and least fixed point of a function f by v f and pf, respectively.
Given a set X, we denote the set of subsets of X by 2%. The correctness of our iterative
algorithm to decide distance one relies on the following theorem.

» Theorem 4. Let X be a finite set and let ® : 2% — 2% be a monotone function.
(a) pu® = 0" () for somen € N.

(b) v® = ®"(X) for some n € N.

(c) If Y C pu® then p® = " (Y) for some n € N.

Proof. See, for example, [10, Lemma 8. |
The set [0, 1]9%5 also carries the following natural metric.
» Definition 5. The function || - — - || : [0, 1]5%% x [0,1]5*% — [0, 1] is defined by

|ld —e|| = sup |d(s,t) —e(s,1)].
s,tesS

» Proposition 6. ([0,1]9%5 |- — - ||) is a nonempty complete metric space.
Proof. See, for example, [3, Section 1.1.2]. <

Let (X,d) be a metric space and ¢ € (0,1]. A function f: X — X is ¢-Lipschitz if for
all z, y € X, d(f(x), f(y)) < ed(x,y). A 1-Lipschitz function is also called nonexpansive. A
function is contractive if it is ¢-Lipschitz for some ¢ € (0,1). The following result is known as
Banach’s fixed point theorem [5].

» Theorem 7. Let X be a nonempty complete metric space and f : X — X a contractive
function. Then f has a unique fixed point.

Proof. See, for example, [3, Theorem 1.34]. <
The Hausdorff metric [18] is defined as follows.

» Definition 8. The function H : [0, 1]X*X — [0,1]2" *2" is defined by

H(d)(M,N) = ind in d
(d)(M,N) maX{gg;\};ggg (1), maz min (uw)}

Q. Tang and F. van Breugel

Given a nonempty finite set X, we denote the set of probability distributions on X by
Distr(X). For p € Distr(X), we define its support by support(u) = {z € X | u(z) >0}.

» Definition 9. Let p, v € Distr(X). The set Q(u,v) of couplings of p and v is defined by

Qp,v) = ¢ w € Distr(X x X) Z w(z,y) = u(y) and Z w(z,y) =v(z)
reX yeX

In general, the set Q(u,v) is infinite. The set of vertices of the convex polytope Q(u, V)
is denoted by V(Q(u,v)). The latter set is finite (see, for example, [23, page 259]). This fact
will be crucial in the proof of Lemma 20. The Kantorovich metric [22] is defined as follows.

» Definition 10. The function K : [0, 1]X*X — [0, 1]Pistr(X)xDistr(X) jg defined by

min Z w(u,v) d(u,v).

K(@(v)= mi
weV(Quv)) =

The Hausdorff metric and the Kantorovich metric are key ingredients of the definition of
the probabilistic bisimilarity distances, as we will see in the next section.

3 Probabilistic Automata

Also in this section, we recall some definitions and results from the literature. In particular,
we introduce the model of interest, probabilistic automata, its best known behavioural
equivalence, probabilistic bisimilarity, and its quantitative generalization. Probabilistic
automata were first studied in the context of concurrency by Segala [27].

» Definition 11. A probabilistic automaton is a tuple (S, L, —,) consisting of
a nonempty finite set S of states,
a nonempty finite set L of labels,
a finitely branching transition relation — C S x Distr(S), and
a labelling function £ : S — L.

Instead of (s, u) € —, we write s — p. A transition relation is finitely branching if for
all s € S, the set { u € Distr(S) | s — p } is nonempty and finite. For the remainder of this
paper we fix a probabilistic automaton (S, L, —, £).

In order to define probabilistic bisimilarity, we first show how a relation on states can be
lifted to a relation on distributions over states. This notion of lifting is due to Jonsson and
Larsen [21].

» Definition 12. The lifting of a relation R C S x S is the relation Rt C Distr(S) x Distr(S)
defined by (i, v) € RY if there exists w € V(Q(u, v)) such that support(w) C R.

Probabilistic bisimilarity, a notion due to Segala and Lynch [28], is introduced next.

States are probabilistic bisimilar if they have the same label and each probabilistic transition

of the one state can be matched by a probabilistic transition of the other state, and vice versa.

Two probabilistic transitions match if they transition with ezactly the same probability to
states that behave ezactly the same.

» Definition 13. An equivalence relation R C S x S is a probabilistic bisimulation if for all
s, t €S, if (s,t) € R then
U(s) = £(1),

9:5

CONCUR 2018

9:6

Probabilistic Bisimilarity Distance One

for all s — p there exists ¢ — v such that (u,v) € Rt and
for all t — v there exists s — p such that (v,) € R
Probabilistic bisimilarity, denoted ~, is the largest probabilistic bisimulation.

For a proof that a largest probabilistic bisimulation exists, we refer the reader to, for
example, [6, Proposition 4.3]. Relying on exact matching is the cause for a lack of robustness.
To address this shortcoming, we define a quantitative generalization of probabilistic bisimil-
arity, the probabilistic bisimilarity distances, as the least fixed point of the function A;. To
prove an alternative characterization of the probabilistic bisimilarity distances in the next
section, we also introduce a family of discounted versions of A, namely A, with ¢ € (0,1).

» Definition 14. Let ¢ € (0,1]. The function A, : [0,1]5*% — [0,1]%*9 is defined by

! if £(s) # £(t)
Ac(d)(s,t) = { cH(K@)({p|s—ph{v|t—v}) otherwise.

» Proposition 15. For all ¢ € (0, 1], the function A, is monotone.
Proof. See [12, Lemma 2.10]. <

Since ([0, 1]9%5) is a complete lattice according to Proposition 2 and A, is a monotone
function by Proposition 15, we can conclude from Theorem 3(c) that A, has a least fixed
point .. The fact that the probabilistic bisimilarity distances A, provide a quantitative
generalization of probabilistic bisimilarity is captured by the following theorem due to Deng
et al. [12].

» Theorem 16. For all s, t € S, pAi(s,t) =0 if and only if s ~ t.

Proof. See [12, Corollary 2.14]. <

4 An Alternative Characterization

In the previous section, we defined the probabilistic bisimilarity distances as a least fixed
point. Next, we present an alternative characterization. This generalizes the characterization
of probabilistic bisimilarity distances for labelled Markov chains due to Chen et al. [9,
Theorem 8]. First, we partition the set of state pairs as follows.

S2 = {(s,) €S xS|s~t}

{
$7 = {(s,) €8x S| ls) £ (1))
§2 = (Sx8)\ (U8

Note that, due to Theorem 16 the state pairs in S3 have distance zero. From Definition 14
we can infer that the state pairs in S7 have distance one. The state pairs in S7 cannot have
distance zero, again due to Theorem 16, but can have any distance in the interval (0, 1],
including distance one.

The characterization can be viewed as a two player game, a max player and a min player,
similar to the one presented in [8]. The game can be considered a quantitative generalization
of the game that characterizes bisimilarity (see [30]). In this turn based game, starting in
a pair of states (s,t), the max player chooses a probabilistic transition from either s or t.
Subsequently, the min player chooses a probabilistic transition from the other state and also
chooses a coupling. For example, if the max player picks s — p and the min player picks
t — v, then the min player also has to choose w € V(Q(u,v)). This will be formalized in

Q. Tang and F. van Breugel

Definition 17. Recall that such a coupling w is a probability distribution on S x .S. From a
coupling w the game moves to state pair (u,v) with probability w(u,v).
Consider, for example, the following probabilistic automaton.

f

Note that the states s and u are probabilistic bisimilar. The corresponding game graph can
be depicted as follows.

1

N[—=

Since the game will be used to characterize the probabilistic bisimilarity distances, the state
pairs for which we can easily determine their distance have no outgoing edges in the game
graph. In particular, state pairs with different labels, which have distance one, and state
pairs that are probabilistic bisimilar, which have distance zero, have no outgoing edges.

The objective of the max player is to maximize the expectation of reaching a state pair
with different labels. The min player tries to minimize this expectation. In the above example,
the max player tries to reach the state pair (s,v), whereas the min player tries to avoid that
from happening. The policies, also known as strategies, for the max and min player are
introduced next.

» Definition 17. The set A of mazx policies is defined by

V(s,t) € S3:
A=< A€ (S?— (Sx Distr(S9))) | (v € Distr(S) : A(s,t) = (s,v) At = V)V
(3p € Distr(S) : A(s,t) = (t,) Ns — p)

The set Z of min policies is defined by

I— { I € (S x Distr(S)) — Distr(S x S)) V(s,v) € S x Distr(S) : 3u € Distr(S) : }

I(s,v) e V(Qu,v)) ANs = i

Given a policy A for the max player and a policy I for the min player, we define the value
function as the least fixed point of the function F‘f"l. This least fixed point captures the

expectation of reaching a state pair with different labels if both players use the given policies.

We also introduce a family of discounted versions of I‘f 1 namely 4 with ¢ € (0,1), that
we will use later in this section.

9:7

CONCUR 2018

9:8

Probabilistic Bisimilarity Distance One

» Definition 18. Let A € A, I € Z and ¢ € (0,1]. The function T2 : [0, 1]5%9 — [0, 1]5*%
is defined by

0 if (s,t) € S?
1 if (s,t) € S%
c Z I(A(s,t))(u,v) d(u,v) otherwise.

u,veS

L (d)(s,t) =

» Proposition 19. For all A € A, I € Z and ¢ € (0, 1], the function I'* is monotone and
c-Lipschitz.

From Theorem 3(c) we can conclude that '/ has a least fixed point, which we denote
by pul'241. In the remainder of this section we will show that there exist an optimal max
policy A* and an optimal min policy I* such that the corresponding value function captures
the probabilistic bisimilarity distances. In the above game graph, the red edge represents
the optimal max policy and the blue edges represent the optimal min policy. The proof of
pA = uff*’l* consists of two parts. First, we prove that there exists an optimal min policy.

» Lemma 20. 3/ € Z: VA€ A: ul'{" T pA,.

Proof. Towards the construction of I* € Z, let s € S and v € Distr(S). Since we restrict
our attention to finitely branching probabilistic automata,

s,y = argmin K (puAq)(u, v) (1)

S— L

exists. Because the set V(Q(us,1,v)) is nonempty and finite, we can define

I"(s,v) = argmin Y w(u,v) ph(u,v). (2)
WEV (Uptsv1)) mes

By construction I* € 7.

Let A € A. Since ul“f’]* is the least pre-fixed point of Ff’l* according to Theorem 3(d),
to conclude that uFf’I C pA; it suffices to show that pA; is a pre-fixed point of I"f’l ,
that is, I"f’l (pA1) C pAq. Let s,t € S. We distinguish three cases.

If (s,t) € S3, then

P () (s,1) = 0
= pAq(s,t) [Theorem 16]

If (s,t) € S?, then

M (uA) (s, 1) = 1
= A1(pAr)(s,t)
= pAq(s,t).

Otherwise, (s,t) € S7. Without any loss of generality, we assume that A(s,t) = (s,v)

Q. Tang and F. van Breugel

with ¢ = v. Then

TP () (s,0) = Y I (Als, 1) (u,0) s (u, 0)

u,vES

= Z I*(s,v)(u,v) uAq(u,v) [A(s,t) = (s,v)]

u,vES

in Z w(u,v) pAq(u,v) [(2)]

m
weV(Q2ps,v) u,vES

= K(I'LA].)(IU’Sﬂ/? V)
= min K (pAs)(u,v) - [(1)]

< max min K (puAq)(u, v)

t—v s—=pu

<HK@pA)){pls=ph{vit=v))
= Al(ﬂAl)(87t>
= pAq(s,t). <

In the remainder of this paper, we denote the optimal min policy constructed in the
above proof by I*. It remains to prove that there exists an optimal max policy. The proof of
this second part turns out to be more involved than the proof of the first part contained in
above lemma. The proof has the following three major components.

For all A € A and I € 7, the value function ul"f’[is the limit of the discounted value

functions ul'2+f. This result is inspired by [14, Theorem 4.4.1].

Similarly, the probabilistic bisimilarity distances captured by pA; are the limit of their

discounted counterparts represented by pA..

There exists an optimal max policy in the discounted setting.

Combining the above three components, we arrive at an optimal max policy. The first two
components are formalized next.

» Proposition 21. For all A € A and I € Z, limepy pI'A7 = plM and limeyy pA. = pA,.

The major component of the proof consists of showing that there exists an optimal max
policy in the discounted setting.

» Proposition 22. For all c € (0,1), 3A € A:VI € T: pA, C pul'A1.

Proof. Let c € (0,1). Let s, t € S. If

max min K (pA.) (i, v) > maxmin K (pd.)(p, v) (3)

s—u t—v t—=v s—pu

then we define A% (s,t) by

A(s,t) = (t,argmaxrtgin K(uAJ(u,V)) .

S—

Because the probabilistic automaton is finitely branching, the above exists. Otherwise, we
define A%(s,t) by

Ax(s,t) = (s,argmaxmin K(pAc)(u, V)) .

t—y STH

By construction, A} € A.

9:9

CONCUR 2018

9:10

Probabilistic Bisimilarity Distance One

Let I € Z. Since ([0,1]9%5 |- — - ||) is a nonempty complete metric space according

to Proposition 6 and the functlon I‘ ! is contractive by Prop081t10n 19, we can conclude

from Theorem 7 that F ! has a unique fixed pomt Therefore, pl'c Aol s not only the least
fixed point but also the greatest ﬁxed point of F ef . According to Theorem 3(b) uI‘ ol
the greatest post-fixed point of FC el Hence to conclude that HA C ,uI‘ el it sufﬁceb to
show that pA. is a post-fixed point of rite , ! that is, pA. C rie (,uAc). Let s, t € S. We
distinguish three cases.
If (s,t) € S3, then
“Ac(sa t) < MAI(Sa t)
=0 [Theorem 16]

=T (uA) (s,).
If (s,t) € S, then
BA(5,1) = Ac(pA)(s,t)
=1
=T (uA) (5, 1).

Otherwise, (s,t) € S2. Without loss of any generality, assume that A*(s,¢) = (¢,). This
assumption implies that (3) and

Ar(pAc)(s, 1) = min K(pAc) (4, v). (4)
Hence,

BA(s,t) = Ac(pAc)(s,t)

c A1 (pAc)(s, t)

= cmin K(plc)(p,v) [(4)]

c Z T(AL(s,t)(u,v) pAc(u,v)

u,vES

IN

= T (WA (s, 1)
= T8 (AL (s, 1), <
Combining the above three components, we obtain the second part of the proof.
» Lemma 23. 3A € A:VI €T : pA, C pli.
Proof. According to Proposition 22,

C NI‘A"’I (5)

n+1

Since the set A is finite, the sequence (A4,)nen has a subsequence (A,(n))nen that is constant,
that is, there exists A* € A such that for all n € N, A;(,) = A*. From Proposition 21 we
can conclude that

hm HA oy = pA; and hm uI‘Au(n) ;LI”{"I.

o(n)+1 c(n)+1

From (5) we can deduce that VI € T : pA; C ,u,l“f*’j. <

© o N o o A W N e

o

Q. Tang and F. van Breugel 9:11

In the remainder of this paper, we denote the optimal max policy that satisfies Lemma 23
by A*. Combining Lemma 20 and 23, we arrive at the following alternative characterization
of the probabilistic bisimilarity distances.

» Theorem 24. pA; = /,LI‘{‘*’I*.

5 Deciding Distance One

In this section, we present an algorithm to compute the set D; of state pairs that have
distance one, that is

Dy ={(s,t) € Sx S| puAi(s,t)=1}.
The key ingredient of our algorithm is the following function.
» Definition 25. The function A : 25%5 x 25%5 _ 25%5 ig defined by

s = p:Vt = v :Ywe V(Qu,v)):
support(w) C X A support(w) NY # BV
It —v:Vs—pu:VweV(Qu,r)):

AX,Y)=S7U{ (s,t) € SF)
support(w) € X Asupport(w)NY # 0

The set A(X,Y’) contains all state pairs with different labels and those state pairs for
which there exists a move by the max player so that every subsequent move of the min
player always ends up in X and with some positive probability in Y. The function A has the
following monotonicity properties.

» Proposition 26. For all X, Y, ZC S x S with X CY,
(a) A(Z X) C A(Z,Y).
(b) uZ ANX,2) C uzZ AY,Z).

Since (259, C) is a complete lattice and for each X C S x S the function AY.A(X,Y)
is monotone, the least fixed point pY.A(X,Y) exists according to Theorem 3(c). The set
pY.A(X,Y) contains all state pairs (s,t) for which there exists a max policy such that for
all min policies, (s,t) can reach a state pair with different labels and all state pairs reachable
from (s,t) are element of X.

Since the function AX.uY.A(X,Y) is monotone as well, we can conclude from The-
orem 3(a) that the greatest fixed point v X.uY.A(X,Y) exists. The set vX.uY.A(X,Y)
contains all state pairs (s,t) for which there exists a max policy such that for all min policies,
all state pairs reachable from (s,t) can reach a state pair with different labels. In the next
section, we will prove that v X . puY.A(X,Y") captures the set D;. According to Theorem 4(a)
and (b), these greatest and least fixed points can be obtained iteratively as follows.

X.=8x%x8
do
Ye=10
do

V=Y.

Y. = A(X.,Y,)
while Y, # Y.
X, =Xc
Xc :Yc

while X, # X,

CONCUR 2018

9:12

Probabilistic Bisimilarity Distance One

The inner loop (line 3-7) computes the least fixed point uY.A(X.,Y). The outer loop
(line 1-10) computes the greatest fixed point v X.uY.A(X,Y’), which equals Dy as we will
prove in the next section. Due to the monotonicity of A we can conclude that both the
inner and outer loop terminate after at most |S|? iterations. To conclude that the above
algorithm is polynomial time, it remains to show that A(X,,Y},) in line 6 can be computed
in polynomial time.

» Proposition 27. For all p, v € Distr(S) and X C S x S,

Yw € V(Q(p, v)) : support(w) C X if and only if K(d)(u,v) =1
and

Yw € V(Q(p,v)) : support(w) N X # 0 if and only if K(d)(u,v)>0

where

d(s.1) :{ 1 if (s, t) e X

0 otherwise.

Computing K (d)(u,v) boils down to solving a minimum cost network flow problem,
where d captures the cost. This problem can be solved in polynomial time using, for example,
Orlin’s network simplex algorithm [26]. Hence, A(X.,Y,) can be computed in polynomial
time.

6 Correctness Proof

To conclude that the algorithm presented in the previous section is correct, it remains to
show that v X.uY.A(X,Y) equals D;. We start by providing an iterative characterization of
vX.pY AX)Y).

» Definition 28. For each i € N, the set X; C S x S is defined by

[Sxs if i =0
" wYA(X;_1,Y) otherwise.

For each i, j € N, the set Yij C S x S is defined by

© T AX, YT otherwise.

The above definition differs from the iterative algorithm presented in the previous section
in that Y? = D; whereas the algorithm starts its iteration towards the least fixed point
from ().

» Proposition 29.

(a) X, =vX.uY.A(X,Y) for some m € N.
(b) Y2 = pY.A(X,,,Y) for some n € N.
(c) X, =Y

m*

Proof sketch. Part (a) follows from Theorem 4(b) and Proposition 26(b). Part (b) can be
proved as follows. First, we observe that

Dl g HY-A(Xma Y) - Xm (6)

by part (a). The desired result follows from the latter fact and Theorem 4(c) and Proposi-
tion 26(a). Part (c) follows from part (a) and (b). <

Q. Tang and F. van Breugel 9:13

From part (a) of the above proposition and (6) we can conclude that it suffices to prove
Xm € Dy.

» Definition 30. For each 0 < i < n, the set Z; C S x S is defined by

Zi =Y\ Y.

/—T\

Z1
SN_ZO//S?

Xm

» Proposition 31.

(@) Forall0 <i<mn, Z; C Sr?.

(b) Forall0<i<j<n, Z;NZ;=0.

(C) U0§i<n Zz = Xm \ D,l.

(d) Forall 0 <i<mn, Y, =Di1UUyc;i Zj-
According to Proposition 31(b) and (c), the sets Zy, ..., Z,,—1 form a partition of X, \ D;.

» Proposition 32. For all 0 < i <n and (s,t) € Z;,
Js — p:Vt — v :Vw € V(Qp,v)) : support(w) C X, Asupport(w) NY # OV (7)
It — v Vs — p:VYw € V(Qv, 1)) : support(w) € X,, Asupport(w) NY, # () (8)
Based on the above proposition, we construct a max policy A'.
» Definition 33. The function A" : S% — (S x Distr(S)) is defined by
(t, 1) if (s,t) € Z; and (7)

Al(s,t) =< (s,v) if (s,t) € Z; and (8)
A*(s,t) if (s,t) € SF\ (X \ D1).

Given the max policy A’ and an arbitrary min policy I, from Proposition 31(d) and 32
we can conclude that each state pair in Z; can reach a state pair in Dy or Z; with j <.
Consequently, each state pair in Z; can reach a state pair in D;. Given the max policy A’
and the optimal min policy I*, we define the function ¥ as follows.

» Definition 34. The function W : [0, 1]5%% — [0,1]5*9 is defined by

By = L T @0s,0) i (5,1) € Xy
, 0 otherwise

» Proposition 35. The function ¥ is monotone.

Since ([0,1]°*9,C) is a complete lattice and ¥ is monotone, ¥ has a greatest fixed
point vV and a least fixed point u¥ by Theorem 3(a) and (c¢). Next, we will show that ¥
has a unique fixed point.

CONCUR 2018

9:14

Probabilistic Bisimilarity Distance One

» Proposition 36. ¥ has a unique fixed point.

Proof sketch. It is sufficient to prove that p¥ = vV. Let

m =max{vV(s,t) — p¥(s,t) | (s,t) €S xS}
M ={(s,t) € S xS |vU(s,t) — p¥(s,t)=m}

We can show that m = 0 and, hence, we can conclude that p¥ = vV. <

From the fact that ¥ has a unique fixed point and the alternative characterization of the
probabilistic bisimilarity distances presented in the previous section, we can infer the main
result of this section.

» Theorem 37. D; = vX.uY A(X,Y).

Proof sketch. We can show that the function d € S x S — [0, 1] defined by

1 if (s,t) € Xy
0 otherwise

d(s,t) = {
is a fixed point of W. Let (s,t) € X,,. Then

pAq(s,t) > uI‘f/’I*(s,t) [Lemma 20]
=p¥(s,t) [(s1) € X
=d(s,t) [d is a fixed point of ¥ and Proposition 36)
=1 [(s,1) € Xp]

Hence, (s,t) € D;. Therefore, X,, € Dy. According to (6), D; C X,,. Thus, X,, = D;.
Proposition 29(a) completes the proof. <

7 Conclusion

Chen et al. [9] have provided an alternative characterization of the probabilistic bisimilarity
distances for labelled Markov chains. This characterization forms the basis for the algorithm
to compute the probabilistic bisimilarity distances for labelled Markov chains by Bacci et al.
[1]. Their algorithm is similar to Howard’s policy iteration algorithm [20]. In this paper we
have presented an alternative characterization of the probabilistic bisimilarity distances for
probabilistic automata. In future work, we plan to use this characterization as the foundation
for an algorithm to compute the probabilistic bisimilarity distances for probabilistic automata
based on the policy iteration algorithm due to Hoffman and Karp [19].

As shown by Baier [2], probabilistic bisimilarity distance zero for probabilistic automata
can be decided in polynomial time. In this paper we have shown that distance one can also
be decided in polynomial time. As a consequence, we can determine in polynomial time
how many, if any, distances are non-trivial, that is, greater than zero and smaller than one.
As we have already shown in [32] in the context of labelled Markov chains, being able to
decide distance zero and distance one in polynomial time has significant impact on computing
probabilistic bisimilarity distances for labelled Markov chains. The algorithm by Bacci et
al. [1], that does not decide distance one before computing the non-trivial distances using
policy iteration, can compute distances for labelled Markov chains up to 150 states. For one
such labelled Markov chain, their algorithm takes more than 49 hours. Our algorithm that
we present in [32] decides distance zero and distance one before using policy iteration to

Q. Tang and F. van Breugel

compute the non-trivial distances. Our algorithm takes 13 milliseconds instead of 49 hours.
Furthermore, our algorithm can compute distances for labelled Markov chains with more
than 10,000 states in less than 50 minutes.

Consider the following probabilistic automaton.

This probabilistic automaton induces the following game graph.

n! vertices

If i and v are both the uniform distribution on n elements, then the vertices of Q(u,v) can
be viewed as permutations (see, for example, [29, Theorem 8.4]). As a result, from the state
pair (s,t) after one move by the max player and one move by the min player, n! vertices
can be reached. Hence, we may encounter an exponential blow-up when we transform a
probabilistic automaton into a game. As a consequence, it is not immediately obvious which
results from game theory can be transferred to our setting. We leave this for future research.

To prove Lemma 23, which provides the second part of the proof of the alternative
characterization of the probabilistic bisimilarity distances, we rely on the discounted functions
A, and F?z’l for ¢ € (0,1). In particular, in the proof of Proposition 22 we use the fact
that F?:’I has a unique fixed point. If we were able to prove that Ffl*’] has a unique fixed
point, then we would be able to give a proof of Lemma 23 that does not rely on discounted
functions. We also leave that for future research.

—— References

1 Giorgio Bacci, Giovanni Bacci, Kim Larsen, and Radu Mardare. On-the-fly exact computa-
tion of bisimilarity distances. In Nir Piterman and Scott Smolka, editors, Proceedings of the
19th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, volume 7795 of Lecture Notes in Computer Science, pages 1-15, Rome, Italy,
2013. Springer-Verlag.

2 Christel Baier. Polynomial time algorithms for testing probabilistic bisimulation and simula-
tion. In Rajeev Alur and Thomas Henzinger, editors, Proceedings of the 8th International
Conference on Computer Aided Verification, volume 1102 of Lecture Notes in Computer
Science, pages 50-61, New Brunswick, NJ, USA, 1996. Springer-Verlag.

3 Jaco de Bakker and Erik de Vink. Control flow semantics. MIT Press, Cambridge, MA,
USA, 1996.

9:15

CONCUR 2018

9:16

Probabilistic Bisimilarity Distance One

10

11

12

13

14

15

16
17

18
19

20

21

Jaco de Bakker and Jeffery Zucker. Denotational semantics of concurrency. In Proceed-
ings of the 14th Annual ACM Symposium on Theory of Computing, pages 153-158, San
Francisco, 1982. ACM.

Stefan Banach. Sur les opérations dans les ensembles abstraits et leurs applications aux
equations intégrales. Fundamenta Mathematicae, 3:133—-181, 1922.

Franck van Breugel. Probabilistic bisimilarity distances. SIGLOG News, 4(4):33-51, 2017.
Franck van Breugel and James Worrell. Towards quantitative verification of probabilistic
systems. In Fernando Orejas, Paul Spirakis, and Jan van Leeuwen, editors, Proceedings of
28th International Colloquium on Automata, Languages and Programming, volume 2076 of
Lecture Notes in Computer Science, pages 421-432, Crete, 2001. Springer-Verlag.

Franck van Breugel and James Worrell. The complexity of computing a bisimilarity pseudo-
metric on probabilistic automata. In Franck van Breugel, Elham Kashefi, Catuscia Palam-
idessi, and Jan Rutten, editors, Horizons of the Mind — A Tribute to Prakash Panangaden,
volume 8464 of Lecture Notes in Computer Science, pages 191-213. Springer-Verlag, 2014.
Di Chen, Franck van Breugel, and James Worrell. On the complexity of computing probabil-
istic bisimilarity. In Lars Birkedal, editor, Proceedings of the 15th International Conference
on Foundations of Software Science and Computational Structures, volume 7213 of Lecture
Notes in Computer Science, pages 437-451, Tallinn, Estonia, 2012. Springer-Verlag.
Edmund Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT Press, Cambridge,
MA, USA, 1999.

Brian Davey and Hilary Priestley. Introduction to lattices and order. Cambridge University
Press, Cambridge, United Kingdom, 2002.

Yuxin Deng, Tom Chothia, Catuscia Palamidessi, and Jun Pang. Metrics for action-labelled
quantitative transition systems. In Antonio Cerone and Herbert Wiklicky, editors, Pro-
ceedings of the 3rd Workshop on Quantitative Aspects of Programming Languages, volume
153(2) of Electronic Notes in Theoretical Computer Science, pages 79-96, Edinburgh, Scot-
land, 2005. Elsevier.

Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. The metric
analogue of weak bisimulation for probabilistic processes. In Proceedings of the 17th Annual
IEEE Symposium on Logic in Computer Science, pages 413-422, Copenhagen, Denmark,
2002. IEEE.

Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer-Verlag, New
York, NY, USA, 1997.

Hongfei Fu. Computing game metrics on Markov decision processes. In Artur Czumaj, Kurt
Mehlhorn, Andrew Pitts, and Roger Wattenhofer, editors, Proceedings of the 39th Inter-
national Colloquium on Automata, Languages, and Programming, volume 7392 of Lecture
Notes in Computer Science, pages 227-238, Warwick, UK, 2012. Springer-Verlag.

Hongfei Fu. Personal communication, 2013.

Alessandro Giacalone, Chi-Chang Jou, and Scott Smolka. Algebraic reasoning for probab-
ilistic concurrent systems. In Proceedings of the IFIP WG 2.2/2.3 Working Conference on
Programming Concepts and Methods, pages 443—-458, Sea of Gallilee, Israel, 1990. North-
Holland.

Felix Hausdorff. Grundziige der Mengenlehre. Von Veit & Comp., Leipzig, 1914.

Alan Hoffman and Richard Karp. On nonterminating stochastic games. Management
Science, 12(5):359-370, 1966.

Ronald Howard. Dynamic Programming and Markov Processes. The MIT Press, Cambridge,
MA, USA, 1960.

Bengt Jonsson and Kim Larsen. Specification and refinement of probabilistic processes. In
Proceedings of the 6th Annual Symposium on Logic in Computer Science, pages 266277,
Amsterdam, The Netherlands, 1991. IEEE.

Q. Tang and F. van Breugel

22

23

24

25

26

27

28

29

30

31

32

33

34

Leonid Kantorovich. On the transfer of masses (in Russian). Doklady Akademii Nauk,
5(1):1-4, 1942. Translated in Management Science, 5(1):1-4, 1958.

Viktor Klee and Christoph Witzgall. Facets and vertices of transportation polytopes. In
George Dantzig and Arthur Veinott, editors, Proceedings of 5th Summer Seminar on the
Mathematis of the Decision Sciences, volume 11 of Lectures in Applied Mathematics, pages
257-282, Stanford, CA, USA, 1967. AMS.

Bronistaw Knaster. Un théoréeme sur les fonctions d’ensembles. Annales de la Société
Polonaise de Mathématique, 6:133-134, 1928.

Kim Larsen and Arne Skou. Bisimulation through probabilistic testing. In Proceedings of
the 16th Annual ACM Symposium on Principles of Programming Languages, pages 344-352,
Austin, TX, USA, 1989. ACM.

James Orlin. A polynomial time primal network simplex algorithm for minimum cost flows.
Mathematical Programming, 78(2):109-129, 1997.

Roberto Segala. Modeling and verification of randomized distributed real-time systems. PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1995.

Roberto Segala and Nancy Lynch. Probabilistic simulations for probabilistic processes. In
Bengt Jonsson and Joachim Parrow, editors, Proceedings of the 5th International Confer-
ence on Concurrency Theory, volume 836 of Lecture Notes in Computer Science, pages
481-496, Uppsala, Sweden, 1994. Springer-Verlag.

Denis Serre. Matrices: theory and applications. Springer-Verlag, New York, NY, USA,
2010.

Colin Stirling. Bisimulation, modal logic and model checking games. Logic Journal of the
IGPL, 7(1):103-124, 1999.

Qiyi Tang and Franck van Breugel. Computing probabilistic bisimilarity distances via
policy iteration. In Josée Desharnais and Radha Jagadeesan, editors, Proceedings of the
27th International Conference on Concurrency Theory, volume 59 of Leibniz International
Proceedings in Informatics, pages 22:1-22:15, Quebec City, QC, Canada, 2016. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik.

Qiyi Tang and Franck van Breugel. Deciding probabilistic bisimilarity distance one for
labelled Markov chains. In Hana Chockler and Georg Weissenbacher, editors, Proceedings
of the 30th International Conference on Computer Aided Verification, volume 10981 of
Lecture Notes in Computer Science, pages 681-699, Oxford, UK, 2018. Springer-Verlag.
Alfred Tarski. A lattice-theoretic fixed point theorem and its applications. Pacific Journal
of Mathematics, 5(2):285-309, 1955.

Mathieu Tracol, Josée Desharnais, and Abir Zhioua. Computing distances between probab-
ilistic automata. In Mieke Massink and Gethin Norman, editors, Proceedings 9th Workshop
on Quantitative Aspects of Programming Languages, volume 57 of Electronic Proceedings
in Theoretical Computer Science, pages 148-162, Saarbriicken, Germany, 2011. Elsevier.

9:17

CONCUR 2018

Non-deterministic Weighted Automata on
Random Words

Jakub Michaliszyn

University of Wroctaw

Jan Otop

University of Wroclaw

—— Abstract
We present the first study of non-deterministic weighted automata under probabilistic semantics.
In this semantics words are random events, generated by a Markov chain, and functions computed
by weighted automata are random variables. We consider the probabilistic questions of computing
the expected value and the cumulative distribution for such random variables.

The exact answers to the probabilistic questions for non-deterministic automata can be irra-
tional and are uncomputable in general. To overcome this limitation, we propose an approxima-
tion algorithm for the probabilistic questions, which works in exponential time in the automaton
and polynomial time in the Markov chain. We apply this result to show that non-deterministic
automata can be effectively determinised with respect to the standard deviation metric.

2012 ACM Subject Classification Theory of computation — Automata over infinite objects,
Theory of computation — Quantitative automata, Mathematics of computing — Markov net-
works

Keywords and phrases quantitative verification, weighted automata, expected value

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2018.10

Acknowledgements This work was supported by the National Science Centre (NCN), Poland
under grant 2014/15/D/ST6/04543. We would like to thank anonymous reviewers for their
valuable comments on this paper. Our special thanks go to Giinter Rote who pointed out a

blooper in an earlier version of our running example.

1 Introduction

Weighted automata are finite automata in which transitions carry weights [13]. We study
here weighted automata (on finite and infinite words) whose semantics is given by value
functions (such as sum or average) [8]. In such a weighted automaton transitions are labeled
with rational numbers and hence every run yields a sequence of rationals, which the value
function aggregates into a single (real) number. This number is the value of the run, and the
value of a word is the infimum over values of all accepting runs on that word.

The value function approach has been introduced to express quantitative system proper-
ties (performance, energy consumption, etc.) and it serves as a foundation for quantitative
verification [8, 18]. Basic decision questions for weighted automata are quantitative counter-
parts of the emptiness and universality questions obtained by imposing a threshold on the
values of words.

Probabilistic semantics. The emptiness and the universality problems correspond to the
best-case and the worst-case analysis. For the average-case analysis, weighted automata are
considered under probabilistic semantics, in which words are random events generated by a
© Jakub Michaliszyn and Jan Otop;

37 licensed under Creative Commons License CC-BY
29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 10; pp. 10:1-10:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2

Non-deterministic Weighted Automata on Random Words

Markov chain [7, 9]. In this setting, functions from words to reals computed by deterministic
weighted automata are measurable and hence can be considered as random variables. The
fundamental probabilistic questions are to compute the expected value and the cumulative
distribution for a given automaton and a Markov chain.

The deterministic case. Weighted automata under probabilistic semantics have been
studied only in the deterministic case. In [7], a close relationship between weighted automata
under probabilistic semantics and weighted Markov chains has been established. For a
weighted automaton A and a Markov chain M representing the distribution over words, the
probabilistic problems for A and M coincide with the probabilistic problem of the weighted
Markov chain A x M. Weighted Markov chains have been intensively studied with single
and multiple quantitative objectives [3, 15, 24, 10]. The above reduction does not extend to
non-deterministic weighted automata [9, Example 30].

Significance of nondeterminism. Non-deterministic weighted automata are provably more
expressive than their deterministic counterpart [8]. Many important system properties can
be expressed with weighted automata only in the nondeterministic setting. This includes
minimal response time, minimal number of errors and the edit distance problem [18], which
serves as the foundation for the specification repair framework from [5].

Non-determinism can also arise as a result of abstraction. The exact systems are
often too large and complex to operate on and hence they are approximated with smaller
non-deterministic models [11]. The abstraction is especially important for multi-threaded
programs, where the explicit model grows exponentially with the number of threads [17].

Our contributions

We study non-deterministic weighted automata under probabilistic semantics. We work with
weighted automata as defined in [8], where a value function f is used to aggregate weights
along a run, and the value of the word is the infimum over values of all runs. (The infimum
can be changed to supremum as both definitions are dual). We primarily focus on the two
most interesting value functions: the sum of weights over finite runs, and the limit average
over infinite runs. The main results presented in this paper are as follows.
We show that the answers to the probabilistic questions for weighted automata with
the sum and limit-average value functions can be irrational (Theorem 5) and cannot be
computed by any effective representation (Theorem 6).
We establish approximation algorithms for the probabilistic questions for weighted
automata with the sum and limit-average value functions. The approximation is #P-
complete for (total) weighted automata with the sum value function (Theorem 10), and
it is PSPACE-hard and solvable in exponential time for weighted automata with the
limit-average value function (Theorem 16).
We show that weighted automata with the limit-average value function can be approxim-
ately determinised (Theorem 18). Given an automaton .4 and € > 0, we show how to
compute a deterministic automaton Ap such that the expected difference between the
values returned by both automata is at most e.

Applications

We briefly discuss applications of our contributions in quantitative verification.

J. Michaliszyn and J. Otop

The expected-value question corresponds to the average-case analysis in quantitative
verification [7, 9]. Using results from this paper, we can perform the average-case analysis
with respect to quantitative specifications given by non-deterministic weighted automata.
The universality problem for non-deterministic automata, which asks whether all words
have the value below a given threshold, forms a basis for some quantitative-model-
checking frameworks [8]. Unfortunately, the universality problem is undecidable for
weighted automata with the sum or the limit average values functions. The distribution
question can be considered as a computationally-attractive variant of universality, i.e., we
ask whether almost-all words have value below some given threshold. We show that if the
threshold can be approximated, the distribution question can be computed effectively.

Weighted automata have been used to formally study online algorithms [2]. Online
algorithms have been modeled by deterministic weighted automata, which make choices
based solely on the past, while offline algorithms have been modeled by non-deterministic
weighted automata. Relating deterministic and non-deterministic models allowed for
formal verification of the worst-case competitiveness ratio of online algorithms. Using
the result from our paper, we can extend the analysis from [2] to the average-case
competitiveness.

Related work

Probabilistic verification of qualitative properties. Probabilistic verification asks for the
probability of the sets of traces satisfying a given property. For non-weighted automata, it
has been extensively studied [26, 12, 3] and implemented [22, 19]. The prevalent approach in
this area is to work with deterministic automata, and apply determinisation as needed. To
obtain better complexity bounds, the probabilistic verification problem has been directly
studied for unambiguous Biichi automata in [4]; the authors explain there the potential
pitfalls in the probabilistic analysis of non-deterministic automata.

Weighted automata under probabilistic semantics. Probabilistic verification of weighted
automata and their extensions has been studied in [9]. All automata considered there are
deterministic.

Markov Decision Processes (MDPs). MDPs are a classical extension of Markov chains,
which allow to model control in a stochastic environment [3, 15]. In MDPs probabilistic and
non-deterministic transitions are interleaved. Intuitively, the non-determinism in MDPs is
resolved based on the past, i.e., already generated events. In our setting, non-deterministic
weighted automata work over completely generated words and hence non-determinism may
be resolved based on following letters, considered as future events.

Approximation determinisation. As weighted automata are not determinisable, Boker and
Henzinger [6] studied approzimate determinisation defined as follows. The distance dg,p
between weighted automata A;, Ay is defined as dgyp (A1, A2) = sup,, |A1(w) — A2 (w)]. A
nondeterministic weighted automaton A can be approzimately determinised if for every
€ > 0 there exists a deterministic automaton Ap such that dg,p(A, Ap) < e. Unfortunately,
weighted automata with the limit average value function cannot be approximately determ-
inised [6]. In this work we show that the approximate determinisation is possible for the
standard deviation metric dsiq defined as dgiq(A1, A2) = E(| A1 (w) — A (w)]).

10:3

CONCUR 2018

10:4

Non-deterministic Weighted Automata on Random Words

2 Preliminaries

Given a finite alphabet X of letters, a word w is a finite or infinite sequence of letters. We
denote the set of all finite words over ¥ by ¥*, and the set of all infinite words over ¥ by
Y. For a word w, we define w[i] as the i-th letter of w, and we define wli, j] as the subword
wliJw[i + 1] ... w[j] of w. We use the same notation for other sequences defined later on. By
|w| we denote the length of w.

A (non-deterministic) finite automaton (NFA) is a tuple (3, Q, Qo, F,0) consisting of an
input alphabet X , a finite set of states), a set of initial states Qg C Q, a set of final states
F, and a finite transition relation 6 C Q x ¥ x Q.

We denote by d(g,a) the set of states {¢’ | 0(¢q,a,q’)} and by (S, a) the set of states
Uges (g;). We extend this to 6: 29 x £* — 29 in the following way: 3\(5, €) = S (where ¢
is the empty word) and 6(S, aw) = 0(8(S, a), w), i.e., (S, w) is the set of states reachable
from S via § over the word w.

Weighted automata. A weighted automaton is a finite automaton whose transitions are
labeled by rational numbers called weights. Formally, a weighted automaton is a tuple
(2, Q,Qo, F,0,C), where the first five elements are as in the finite automata, and C: § — Q
is a function that defines weights of transitions. An example of a weighted automaton is
depicted in Figure 1.

The size of a weighted automaton A, denoted by |Al, is [Q| + (0| + =, ./ , len(C(q, a,q)),
where len is the sum of the lengths of the binary representations of the numerator and the
denominator of a given rational number.

A run 7 of an automaton A on a word w is a sequence of states 7[0]7[1] ... such that 7[0]
is an initial state and for each ¢ we have (w[i — 1], w[é],w[i]) € 0. A finite run 7 of length & is
accepting if and only if the last state 7[k] belongs to the set of accepting states F. As in [8],
we do not consider w-accepting conditions and assume that all infinite runs are accepting.
Every run 7 of an automaton A on a (finite or infinite) word w defines a sequence of weights
of successive transitions of A as follows. Let (C(m))[i] be the weight of the -th transition,
ie., C(n[i — 1], w[i], w[i]). Then, C(m) = (C(7)[i])1<i<|w|- A value functions f is a function
that assigns real numbers to sequences of rational numbers. The value f(7) of the run 7 is
defined as f(C()).

The value of a (non-empty) word w assigned by the automaton A, denoted by £ 4(w), is
the infimum of the set of values of all accepting runs on w. The value of a word that has
no (accepting) runs is infinite. To indicate a particular value function f that defines the
semantics, we will call a weighted automaton A an f-automaton.

Value functions. We consider the following value functions. For finite runs, functions MIN
and MAX are defined in the usual manner, and the function SUM is defined as

|C ()]

SuM(r) = Zi:l (C(m))i]

For infinite runs we consider the supremum SUP and infimum INF functions (defined like
Max and MIN but on infinite runs) and the limit average function LIMAVG defined as

LIMAVG(7) = lim sup AvG(w[0, k])

k—o0

where for finite runs 7 we have AvG(m) = Sum(n)/|C(7)].

J. Michaliszyn and J. Otop

2.1 Probabilistic semantics

A (finite-state discrete-time) Markov chain is a tuple (3, S, so, F), where ¥ is the alphabet
of letters, S is a finite set of states, sg is an initial state, F: S x X x S+ [0, 1] is an edge
probability function, which for every s € S satisfies that ZaEE,s’GS E(s,a,s’) = 1. By
M| = [S|+ |E| + 32, ;.o len(E(q,a,q")) we denote the size of the Markov chain M. An
example of a single-state Markov chain is depicted in Figure 1.

The probability of a finite word u w.r.t. a Markov chain M, denoted Pp (u), is the
sum of probabilities of paths from sg labeled by u, where the probability of a path is the
product of probabilities of its edges. For basic open sets u - X% = {uw | w € ¥}, we have
Pa(u - X¥) = Paq(u), and then the probability measure over infinite words defined by M
is the unique extension of the above measure (by Carathéodory’s extension theorem [14]).
We will denote the unique probability measure defined by M as P4, and the associated
expectation measure as E . For example, for the Markov chain M presented in Figure 1, we
have that Paq(ab) = 1, and so Pao({w € {a,b}* | w[0,1] = ab}) = 1, whereas Pr((X) =0
for any finite set of infinite words X.

A terminating Markov chain M7 is a tuple (X, S, so, E,T), where 3, S and sq are as
usual, E: S x (XU {e}) x S+ [0,1] is the edge probability function, such that if E(s,a,t),
then a = € if and only if t € T, and for every s € S we have ZaEZU{e},s/ES E(s,a,s') =1,
and T is a set of terminating states such that the probability of reaching a terminating state
from any state s is positive. Notice that the only e-transitions in a terminating Markov chain
are those that lead to a terminating state.

The probability of a finite word u w.r.t. M, denoted Pz (u), is the sum of probabilities
of paths from sg labeled by u such that the only terminating state on this path is the last one.
Notice that Pz is a probability distribution on finite words whereas Py is not (because
the sum of probabilities may exceed 1).

Automata as random variables. A weighted automaton defines the function £ 4(w): X% —
R that assigns values to words. This function is measurable for all the automata types we
consider in this paper (see Remark 2 below). Thus, this function can be interpreted as
random variables w.r.t. the probabilistic space we consider. Hence, for a given automaton A
and a Markov chain M, we consider the following quantities:

Ear(A) — the expected value of the random variable defined by A w.r.t. the probability
measure defined by M.

Da,a(A) = Pp({w | La(w) < A}) — the (cumulative) distribution function of the random
variable defined by A w.r.t. the probability measure defined by M.

In the finite words case, the expected value E yr and the distribution D r 4 are defined
in the same manner.

» Remark 1 (Bounds on the expected value and the distribution). Both quantities can be
easily bounded: the value of the distribution function is always between 0 and 1. For a
LiMAvG-automaton A, we have Ex(A) € [ming, max4] U {00}, where minyg and max4
denote the minimal and the mazimal weight of A. For a SuM-automaton A, we have
Em(A) € [La - ming, Ly - max 4] U {oo}, where Layg is the expected length of a word
generated by M (it can be computed in a standard way [16, Section 11.2]). In both cases,
Er(A) = oo if and only if the probability of the set of words with no accepting runs in A is
positive. Note that we consider no w-accepting conditions, and hence all infinite runs of SUM-
automata are accepting. Still there can be infinite words, on which a given SUM-automaton
has no infinite runs. We show in Section 3.2 that the distribution and expected value may
be irrational, even for integer weights and uniform distributions.

10:5

CONCUR 2018

10:6

Non-deterministic Weighted Automata on Random Words

a:0.5,b:0.5
b:0 b:1
:1,b:0) @KV\QDD :0,0:1 e
“ mv a:0 “
Figure 1 The automaton A = {{a,b},{¢,%,®},{qa,w},0,5,C}, where & =

{(qﬂd a, qa)? (qﬂ«7 b7 qa)7 (qﬂ7 b7 qI)a ((Jz, a, Qa)7 (an a, Qb), (qb, a, QI), (qb, a, qb), (qb, b7 Qb)} and C such that
C(4ga;b,94) = C(gv,a,qp) = C(Ga, b, qz) = C(ga,a,qp) = 1 and for all other inputs the value of C is
0 (left) and the Markov chain M = {{a, b}, {so},{so}, £} where E always returns 0.5 (right).

» Remark 2 (Measurability of functions represented by automata). For automata on finite
words, INF-automata and SUP-automata, measurability of L 4 is straightforward. To show
that L4(w): X¥ — R is measurable for any non-deterministic LIMAVG-automaton A, it
suffices to show that for every x € R, the preimage E;l(—oo, x] is measurable. Let Q be the
set of states of A. Consider the set X% x Q“. We can define a subset A, C 3¢ x Q¥ of
the pairs, the word and the run on it, where the value of the run is less than or equal to x.
The set A, can be presented as a countable intersection of open sets, and hence it is Borel.
Observe that E;l(foo,:r] is the projection of A, on the first component 3“. The projection
of a Borel set is analytic, which is measurable [20]. Thus, L 4 defined by a non-deterministic
LiMAvVG-automaton is measurable.

The above proof of measurability requires some knowledge of descriptive set theory. We
will give a direct proof of measurability of L 4 in the paper (Theorem 16).

2.2 Computational questions

We consider the following basic computational questions:

The expected value question: Given an f-automaton .4 and a (terminating) Markov chain
M, compute Epq(A).

The distribution question: Given an f-automaton A, a (terminating) Markov chain M
and a threshold A, compute D 4(A).

Each of the above questions have its decision variant (useful for lower bounds), where
instead of computing the value we ask whether the value is less than a given threshold ¢.
The above questions have their approximate variants:

The approzimate expected value question: Given an f-automaton A, a (terminating)
Markov chain M, € > 0, compute a number 7 such that |n — Ex(A)| < e

The approzimate distribution question: Given an f-automaton A, a (terminating) Markov
chain M, a threshold X and € > 0 compute a number 7 € [Dpq,4(A — €), Dag,a(X+¢€)].

In the later case, we use the Skorokhod’s notion. One could expect there “n € [Daq, _4(N) —
€, Dar,4(N) + €]” instead. However, this would lead to undecidable approximation in the
LiMAvG case (cf. Theorem 6).

3 Basic properties

Consider an f-automaton A, a Markov chain M and a set of words X. We denote by

Eam(A | X) the expected value of A w.r.t. M restricted only to words in the set X (see [14]).
The following says that we can disregard a set of words with probability 0 (e.g. containing

only some of the letters under uniform distribution) while computing the expected value.

J. Michaliszyn and J. Otop

» Fact 3. If P(X) =1 then Epq(A) = Epq(A | X).

The proof is rather straightforward; the only interesting case is when there are some
words not in X with infinite values. But for all the functions we consider, one can show that
in this case there is a set of words with infinite value that has a non-zero probability, and
therefore Exq(A) = Epm(A | X) = 0.

One important corollary of Fact 3 is that if M is, for example, uniform, then because the
set Y of ultimately-periodic words (i.e., words of the form vw*) has probability 0, we have
Em(A) =Em(A| 29\ Y). This suggests a possibility that the expected value may not be
realised by any ultimately periodic word. We exemplify this in Remark 13.

3.1 Example of computing expected value by hand

Consider a LIMAvVG-automaton A and a Markov chain M depicted in Figure 1. We encourage
the reader to take a moment to study this automaton and try to figure out its expected
value.

The idea behind A is as follows. Assume that 4 is in a state ¢; for some [€ {a,b}. Then,
it reads a word up to the first occurrence a subword ba, where it has a possibility to go to ¢,
and then to non-deterministically choose g, or ¢, as the next state. Since going to ¢, and
back to q; costs the same as staying in ¢;, we will assume that the automaton always goes to
q. in such a case. When an automaton is in the state ¢, and has to read a word w = a’b*,
then average cost of a run on w is]i—k if the run goes to ¢, and J% otherwise. So the run
with the lowest value is the one that goes to ¢, if j > k and ¢, otherwise.

To compute the expected value of the automaton, we focus on the set X of words w
such that for each positive n € N there are only finitely many prefixes of w of the form
w'albF such that IWJI% > % Notice that this means that w contains infinitely many a
and infinitely many b. It can be proved in a standard manner that Py (X) = 1.

Let w € X be a random event, which is a word generated by M. Since w contains
infinitely many letters a and b, it can be partitioned in the following way. Let w = wywows . . .
be a partition of w such that each w; for i > 0 is of the form a’b* for j > 0,k > 0, and for
i > 1 we also have j > 0. For example, the partition of w = baaabbbaabbbaba . .. is such that
w1 = b, we = aaabbb, wy = aabbb, wy = ab, Let s; = |wiws ... w;|.

We now define a run m,, on w as follows:

R 4 O o Y4 o 90

where the length of each block of ¢; is |w;| — 1, ¢¥ = q, and ¢ = q, if w; = a/b* for some
j > k and ¢}"=q, otherwise. It can be shown by a careful consideration of all possible runs
that this run’s value is the infimum of values of all the runs on this word.

» Lemma 4. £ 4(w) = LIMAVG(7y).

By Fact 3 and Lemma 4, it remains to compute the expected value of LIMAVG ({7, | w €
X1}). As the expected value of the sum is the sum of expected values, we can state that

Ep(LIMAVG ({1 | w € X})) = limsup - Y Eam ({(Cma))li] | w € X})

s—o00 S

It remains to compute E g ((C(my,)[i]). If 4 is large enough (and since the expected value
does not depend on a finite number of values, we assume that it is), the letter m,[¢] is in
some block wy = a?b*. There are j + k possible letters in this block, and the probability that

10:7

CONCUR 2018

10:8

Non-deterministic Weighted Automata on Random Words

the letter 7, [i] is an ith letter in such a block is 2~ U+F+2) (7427 because the block has to
be maximal, so we need to include the letters before the block and after the block). So the
probability that a letter is in a block a’b* is]Jf,fm The average cost of a such a letter is
%, as there are j + k letters in this block and the block contributes min(j, k) to the
sum.

It can be analytically checked that

e} e} +k . (,k) o o0 . (’k) 1
ZZ QJJ‘+k+2 ’ m;n+Jk :ZZ% ~3

j=1k=1 j=1k=1

We can conclude that B (LIMAVG(r,)) = & and, by Lemma 4, Exq(A) = 3.

The bottom line is that even for such a simple automaton with only one strongly connected
component consisting of three states (and two of them being symmetrical), the analysis is
complicated. On the other hand, we conducted a simple Monte Carlo experiment in which we
computed the value of this automaton on 10000 random words of length 222 generated by M,
and observed that the obtained values are in the interval [0.3283,0.3382], with the average of
0.33336, which is a good approximation of the expected value 0.(3). This foreshadows our
results for LIMAvG-automata: we show that computing the expected value is, in general,
impossible, but it is possible to approximate it with arbitrary precision. Furthermore,
the small variation of the results is not accidental — we show that for strongly-connected
LiMAVG-automata, almost all words have the same value (which is equal to the expected
value).

3.2 Irrationality of the distribution and the expected value

We argue that the exact values of Epq(A) and Dy, 4(N) for SuM-automata and LIMAVG-
automata may be irrational.

For the rest of this section we assume that the distribution of words is uniform. In the
infinite case, this means that the Markov chain contains a single state where it loops over
any letter with probability ﬁ, where ¥ is the alphabet. In the finite case, this amounts to a
terminating Markov chain with one regular state and one terminating state; it loops over
any letter in the non-terminating state with probability \Elﬁ or go to the terminating state

over ¢ with probability \2|1+1' Below we omit the Markov chain as it is fixed (for a given
alphabet).

We define a SuM-automaton A (Figure 2) over the alphabet ¥ = {a,#} such that
A(w) = 0 if w = a#a’# ... #a*" and A(w) < —1 otherwise. Such an automaton basically
picks a block with an inconsistency and verifies it. For example, if w contains a block
#a'Hta’#, the automaton A first assigns —2 to each letter a and upon # it switches to the
mode in which it assigns 1 to each letter a. Then, A returns the value j — 2 - 4. Similarly, we
can encode the run that returns the value 2 - ¢ — 5. Therefore, all the runs return 0 if and
only if each block of a’s is twice as long as the previous block. Finally, A checks whether the
first block of a’s has length 1 and returns —1 otherwise.

A word of the form a#a?# ...#a?" has length 2" + n — 1 and its probability is
32" 4n) (as the probability of any given word with n letters over a two-letters alphabet is
3~(+D). Therefore, the probability ~ that a word is of the form a#ta?# ... #a®" is equal
to > 07, 3-(@""4n) Observe that ~v written in base 3 has arbitrary long sequences of 0’s
and hence its representation is acyclic. Thus, v is irrational. Observe that v =1 — D 4(—1).
Therefore, D 4(—1) is irrational.

J. Michaliszyn and J. Otop

Figure 2 The automaton A from Section 3.2. States g and ¢ are initial and states but ¢ are
accepting. Any word that starts with # or aa has the value at most —1 because of a run that starts
in gr. For all other words, the runs starting in gr have value —1. The accepting runs starting in ¢
have negative value only if the input word contains a (maximal) subword a’#a’ such that j # 2.

For the expected value, we construct A’ such that for every word w we have £ 4/ (w) =
min(L4(w),—1). This can be done by adding to A an additional initial state gg, which
starts an automaton that assigns to all words value —1. Observe that A4 and A’ differ only
on words w of the form a#ta?# ... #a*", where A(w) = 0 and A’'(w) = —1. On all other
words, both automata return the same values. Therefore, E(A) — E(A") = . It follows that
at least one of the values E(A), E(A’) is irrational.

The same construction works for LIMAvG. We take A (resp., A’) and we convert it
to a LIMAvVG-automaton A. (resp., AL) over ¥ = X U {$}. The new letter $ resets the
automaton, i.e., A (resp., AL,) has transitions from the final states of A (resp., A’) to its
initial states labeled with §. We can show that 1 — D 4_(—1) and E(A) — E(AL,) over the
uniform distribution are equal to v and hence D 4__ (—1) is irrational and one of the values
E(Ax), E(AL,) is irrational.

» Theorem 5. There exist a SUM-automaton and a LIMAVG-automaton whose distributions
and expected values w.r.t. the uniform distribution are irrational.

4 The exact value problems

In this section we consider the probabilistic questions for non-deterministic SUM-automata
and LIMAvG-automata, i.e., the problems of computing the exact values of the expected
value Exq(A) and the distribution Dy, _4(A) w.r.t. a Markov chain M and an f-automaton
A. We showed that these values may be irrational. But one can perhaps argue that there
might be some representation of irrational numbers that can be employed to avoid this
problem. We prove that this is not the case by showing that computing the exact value to
any representation with decidable equality of two numbers is not possible. The proof is by a
(Turing) reduction from the quantitative universality problem for SuM-automata:

The quantitative universality problem for SUM-automata: Given a SUM-automaton with
weights —1, 0 and 1, decide whether for all words w we have £4(w) < 0.

The quantitative universality problem for SUM-automata is undecidable [21, 1].

10:9

CONCUR 2018

10:10

Non-deterministic Weighted Automata on Random Words

We first discuss reductions to the probabilistic problems for SUM-automata. Consider an
instance of the quantitative universality problem, which is a SUM-automaton A. If there is a
word w with the value greater than 0, then P(w) > 0, and thus D4(0) < 1. Otherwise, clearly
D 4(0) = 1. Therefore, solving the universality problem amounts to computing whether the
D4(0) = 1, and thus the latter problem is undecidable. For the expected value, we construct
a SuM-automaton A’ such that for every word w we have £ 4 (w) = min(L4(w),0). Observe
that E(A) = E(A’) if and only if for every word w we have L 4(w) < 0, i.e., the answer
to the universality problem is YES. Therefore, there is no Turing machine, which given a
SuM-automaton A computes E(A).

For LIMAVG case, we construct a LIMAVG-automaton A, from the SUM-automaton A,
by connecting all accepting states (of A) with all initial states by transitions of weight 0
labeled by an auxiliary letter #. For the expected value we construct AL from A’ in the
same way. Again, the distribution D 4__(0) = 1 if and only if for all words we have £ 4(w) < 0.
Then, observe that E(As) = E(AL,) if and only if for every word w we have £4(w) < 0.
Therefore, there is no Turing machine computing the expected value or the distribution of a
given LIMAVG-automaton.

» Theorem 6. The expected value and the distribution of (non-deterministic) SUM-automata
(resp., LIMAVG-automnata) are uncomputable even for the uniform distribution.

4.1 Extrema automata

We discuss the distribution problem for MIN-, MAX-, INF- and SuP-automata, where MIN
and MAX return the minimal and the maximal (resp.) element of a finite sequence, and
INF and SUP return the minimal and the maximal (resp.) element of an infinite sequence.
The expected value of an automaton can be easily computed based on the distribution as
there are only finitely many possible values of a run (each possible value is a label of some
transition).

» Theorem 7. For MIN-, MAX-, INF- and SuP-automata A and a Markov chain M, the
distribution problem can be solved in exponential time in |A| and polynomial time in |M]|.

Proof. We discuss the case of f = INF as the other cases are similar. Consider an INF-
automaton A. For each weight x of A, we can construct a (non-deterministic) w-automaton
A, that accepts only words of value greater than z — we take A, remove the transitions of
weight at most x, and drop all the weights. Therefore, the set of words with the value greater
than « is regular, and hence it is measurable. We can compute its probability p, w.r.t. M
in exponential time in |A| and polynomial in |[M| [3]. Note that p, =1 — Dy a(x). <

5 The approximation problems

We start the discussion on the approximation problems by showing a hardness result that
holds for a wide range of value functions. We say that a function is O-preserving if its value
is 0 whenever the input consists only of 0s. Notice that functions such as Sum, LIMAvVG,
MiN, MAX, INF, SUP and virtually all the functions from the literature [8] are 0-preserving.
The hardness results follow from the fact that accepted words have finite values, which we
can force to be 0, while words without accepting runs have infinite values.

The answers in the approximation problems are numbers and to study the lower bounds,
we consider their decision variants, called the separation problems. In these variants, the
input is enriched with numbers a,b such that b — a > 2¢ and the instance is such that

J. Michaliszyn and J. Otop

Em(A) € [a,b] (resp. Dy(A) € [a,b]), and the question is whether Eprq(A) < a (resp.

Dam(A) < a). Note that having an algorithm computing one of the approximate problems

(for the distribution or the expected value), we can use it to decide the separation question.

Conversely, using the separation problem as an oracle, we can perform binary search on the
domain to compute solve the corresponding approximation problem in polynomial time.

» Theorem 8. For a O-preserving function f, the separation problems for non-deterministic
f-automata are PSPACE-hard.

Total automata. Theorem 8 gives us a general hardness result, which is due to accepting
conditions rather than values returned by weighted automata. In the following, we focus
on weights and we assume that weighted automata are total, i.e., they accept all the words
(resp., almost all the words in the infinite-word case). For SUM-automata under the totality
assumption, the approximate probabilistic questions become #P-complete.

» Theorem 9. The approximate expected value and the approximate distribution questions
for non-deterministic total SUM-automata are #P-complete.

The lower bound can be obtained by a reduction from the problem of counting the number
of satisfying assignment of a given propositional formula ¢ in Conjunctive Normal Form
(CNF) [25, 23], which is #P-complete. We construct an automaton that, for a formula with
n variables, accepts only words of length n that encode valuations that make the formula
satisfied. It follows that the expected value of the automaton equals 3~ ("1 . €. where
3=(n+1) is the probability of generating a word of length n under uniform distribution and C
is the number of variable assignments satisfying ¢.

The upper bound follows the idea that the probability that M” emits a word of length
greater than n decreases exponentially with n. This means that there is N of polynomial
size such that the distribution (resp., the expected value) of A and the distribution (resp.,
the expected value) of A over words up to length N differ by less than e. Based on this, we
can build a Turing machine that imitates the distribution of M7 over words up to length N
with its non-deterministic computations.

We show that the approximation problem for LIMAvVG-automata is PSPACE-hard over
the class of total automata.

» Theorem 10. The separation problems for non-deterministic total LIMAVG-automata are
PSPACE-hard.

Proof. Given a non-deterministic finite-word automaton A, we construct an infinite-word
LiMAvG-automaton A, from A in the following way. We introduce an auxiliary symbol #

and we add transitions labeled by # between any final state of A and any initial state of A.

Then, we label all transitions of A, with 0. Finally, we connect all non-accepting states of
A with an auxiliary state ggnk, which is a sink state with all transitions of weight 1. The
automaton A is total.

Observe that if A is universal, then A, has a run of value 0 on every word. Otherwise,
if A rejects a word w, then upon reading a subword #w#, the automaton A, reaches gsink,
i.e., the value of the whole word is 1. Almost all words contain an infix #w# and hence
almost all words have value 1. |

10:11

CONCUR 2018

10:12

Non-deterministic Weighted Automata on Random Words

6 Approximating LimAvg-automata in exponential time

The case of LIMAVG is significantly more complex than the other cases. First, we restrict our
attention to recurrent LIMAvG-automata and the uniform distribution over infinite words.
Then, we comment on the extension to all distributions given by Markov chains. Finally, we
show the proof for all LIMAvVG-automata over probability measures given by Markov chains.

6.1 Recurrent automata

A non-deterministic LIMAvG-automaton A = (X, @, Qo, d) is recurrent if and only if for every

o~

set S C @ such that |S| =1 or §(Qp,w) = S for some word w, there is a finite word u such
that 0(S, u) = Qo.

For every A, which is strongly connected as a graph, there exists a set of initial states T'
with which it becomes recurrent. Moreover, the probability of words accepted by A is either
0 or 1. Indeed, consider A as an unweighted w-automaton and construct a deterministic
w-automaton AP through the power-set construction applied to A. Note that AP has a
single bottom strongly-connected component (BSCC) and Qg belongs to that component.
Conversely, for any strongly connected automaton A, if Qg belongs to the BSCC of AP,
then A is recurrent. Moreover, since AP has a single BSCC, for almost all words, all runs
end up in that BSCC and hence the probability of the set of words having any infinite run in
A is either 0 or 1.

6.2 Nearly-deterministic approximations

While words are generated by a Markov chain letter by letter, the run on that word can be
defined only when the complete word is generated. This precludes application of standard
techniques for probabilistic verification, which relies on the fact that the word and the run
on it are generated simultaneously [26, 12, 3].

Key ideas. Our main idea is to change the non-determinism to bounded look-ahead. This
must be inaccurate, as the expected value of a deterministic automaton with bounded
look-ahead is always rational, whereas Theorem 5 shows that the values of non-deterministic
automata may be irrational. Nevertheless, we show that bounded look-ahead is sufficient to
approzimate the probabilistic questions for recurrent automata (Lemma 11). Furthermore, the
approximation can be done effectively (Lemma 14), which in turn gives us an exponential-time
approximation algorithm for recurrent automata (Lemma 15).

Jumping runs. Let £ > 0. A k-jumping run £ of A on a word w is an infinite sequence
of states such that for every ¢ there is a run 7 of A on w such that &[ki, k(1 + 1) — 1] =
wlki, k(i 4+ 1) — 1].

A block of a k-jumping run is a sequence &[ki, k(i + 1) — 1] for some i; positions k, 2k, ...
are jumps, where the sequence £ need not obey the transition relation of A.

The cost C of a transition of a k-jumping run £ within a block is defined as usual, while
the cost of a jump is defined as the minimal weight of .A. The value of a k-jumping run ¢ is
defined as the limit average computed for such costs.

Optimal and block-deterministic jumping runs. We say that a k-jumping run £ on a word
w is optimal if its value is the infimum over values of all k-jumping runs on w. We show that
optimal k-jumping runs can be constructed nearly deterministically, i.e., only looking ahead
to see the whole current block.

J. Michaliszyn and J. Otop

For every S C Q and u € ¥* we fix a run £g,, on u starting in one of states of S, which
has the minimal average weight. Then, given a word w € X, we define a k-jumping run &
as follows. We divide w into k-letter blocks w1, us, ... and we put & = £s,,us €5, us - - -» Where
So ={qo} and for i > 0, S; is the set of states reachable from ¢ on the word uy ...u;. The
run &, is a k-jumping run and it is indeed optimal. We call such runs block-deterministic
— they can be constructed based on finite memory — the set of reachable states S; and the
current block of the input word.

Since all runs of A are in particular k-jumping runs, the value of (any) optimal k-jumping
run on w is less or equal to A(w). We show that for recurrent LIMAvG-automata, the values
of k-jumping runs on w converge to A(w) as k tends to infinity. To achieve this, we construct
a run of A which tries to “follow” a given jumping run, i.e., after most all of the jumps it is
able to synchronize with the jumping run quickly.

» Lemma 11. Let A be a recurrent LIMAVG-automaton. For every e > 0, there exists k
such that for almost all words w, the value A(w) and the value an optimal k-jumping run on
w differ by at most €. The value k is doubly-exponential in |A| and polynomial in %

6.3 Random variables

Given a recurrent LIMAvG-automaton A and k > 0, we define a function g[k] : 3% — R
such that g[k](w) is the value of some optimal k-jumping run &, on w. We can pick &, to
be block-deterministic and hence g[k] corresponds to a Markov chain M[k]. More precisely,
we define M[k] labeled by ©* such that for every word w, the limit average of the path in
M]k] labeled by blocks of w (i.e., blocks w[1, kJw[k 4+ 1,2k] ...) equals g[k](w). Moreover, the
distribution of blocks ¥* is uniform and hence M k] corresponds to g[k] over the uniform
distribution over X.. The Markov chain M k] is a labeled weighted Markov chain [15], such
that its states are all subsets of @, the set of states of A. For each state S C Q and u € X*,
the Markov chain M has an edge (S, S(S, u)) of probability ﬁ The weight of an edge
(S, S8’) labeled by w is the minimal average of weights of any run from some state of S to
some state of S’ over the word w.
We have the following:

» Lemma 12. Let A be a recurrent LIMAVG-automaton and k > 0. (1) The functions g[k]

and L 4 are random variables. (2) For almost all words w we have glk](w) = E(g[k]) and
La(w) =E(La)-

Proof. Since A is recurrent, M[k] has a single BSCC and hence M [k] and g[k] return the
same value for almost all words [15]. This implies that the preimage through g[k] of each set
has measure 0 or 1, and hence g[k] is measurable [14]. Lemma 11 implies that (measurable
functions) g[k] converge to £ 4 with probability 1, and hence £ 4 is measurable [14]. As the
limit of g[k], £4 also has the same value for almost all words. |

» Remark 13. The automaton A from the proof of Theorem 5 is recurrent (it resets after
each $), so the value of A on almost all words is irrational. Yet, for every ultimately periodic
word vw*, the value of A is rational. This means that while the expected value is realised by
almost all words, it is not realised by any ultimately periodic word.

6.4 Approximation algorithms

We show that the expected value of g[k| can be efficiently approximated. The approximation
is exponential in the size of A, but only logarithmic in k& (which is doubly-exponential due to
Lemma 11).

10:13

CONCUR 2018

10:14

Non-deterministic Weighted Automata on Random Words

» Lemma 14. Given a recurrent LIMAVG-automaton A, k = 2! and € > 0, the expected
value E(g[k]) can be approximated up to € in exponential time in |A|, logarithmic time in k
and polynomial time in %

Lemma 11 and Lemma 14 imply the following;:

» Lemma 15. Given a recurrent LIMAVG-automaton A, Markov chain M, € > 0 and X € Q,
we can compute e-approximations of the distribution Daq, a(N) and the expected value Epq(A)
in ezponential time in |A| and polynomial time in M| and L.

Proof. For uniform distributions, by Lemma 11, for every ¢ > 0, there exists k such that
|E(A) — E(g[k])| < £. The value k is doubly-exponential in |A| and polynomial in 1. Then,
Lemma 14, we can compute 7 such that |y — E(g[k])| < § in exponential time in |A| and
polynomial in % Thus, « differs from E(A) by at most e. Since almost all words have the
same value, we can approximate D 4(A) by comparing A with ~, i.e., 1 is an e-approximation
of D4(N) if A <, and otherwise 0 is an e-approximation of D 4 ().

The case of the nonuniform distributions can be solved similarly, by encoding the Markov
chain in the automaton. <

We lift Lemma 15 from recurrent to all LiIMAvVG-automata and formally show that
L4 X% — R is measurable. To do so, we take the product of a given automaton and Markov
chain and observe that its BSCC correspond to recurrent automata. A careful analysis allows
to compute the values for the whole automata based on the values for the BSCC.

» Theorem 16. (1) For a non-deterministic LIMAVG-automaton A the function L4 : X% —
R is measurable. (2) Given a non-deterministic LIMAVG-automaton A, Markov chain M,
€>0, and A € Q, we can e-approzimate the distribution Dag 4(X) and the expected value
E(A) in exponential time in |A| and polynomial time in |[M| and .

7 Determinising and approximating LimAvg-automata

For technical simplicity, we assume that the distribution of words is uniform. However, the
results presented here extend to all distributions given by Markov chains.

Recall that for the LIMAVG automata, the value of almost all words, whose optimal runs
end up in the same SSC, is the same. This means that there is a finite set of values (not
greater than the number of SSCs of the automaton) such that almost all the words have
their values in this set.

LiMAvG-automata are not determinisable [8]. We say that a non-deterministic LIMAVG-
automaton A is weakly determinisable if there is a deterministic LIMAvG-automaton B
such that A and B have the same value over almost all the words. From [9] we know
that deterministic automata return rational values for almost all the words, so not all
LiMmAvG-automata are weakly determinisable. However, we can show the following.

» Theorem 17. A LIMAVG-automaton A is weakly determinisable if and only if it returns
rational values for almost all words.

Proof sketch. Assume an automaton A with SSCs C1,...,C,,. For each i let v; be defined
as the expected value of A when its set of initial states is C; and the run is bounded to stay
in C;. If A has no such runs for some C;, then v; = oco.

We now construct a deterministic automaton B with rational weights using the standard
power-set construction. We define the cost function such that the cost of any transition from

J. Michaliszyn and J. Otop

a state Y is the minimal value v; such that v; is rational and Y contains a state from C;. If
there are no such v;, then we set the cost to the maximal cost of A. Roughly speaking, B
tracks in which SSCs A can be and the weight corresponds to the SSC with the lowest value.

To see that B weakly determinises A observe that for almost all words w, a run with the
lowest value over w ends in some SSC and its value then equals the expected value of this
component, which is rational as the value of this word is rational. |

A straightforward corollary is that every non-deterministic LIMAvVG-automaton can be
weakly determinised by an LiIMAvVG-automaton with real weights.

Theorem 17 does not provide an implementable algorithm for weakly-determinisation,
because of the hardness of computing the values v;. It is possible, however, to approximate
this automaton. We say that a deterministic LIMAVG-automaton B e-approzimates A if for
almost every word w we have that Lp(w) € [L4(w) — €, La(w) + €].

» Theorem 18. For every e > 0 and a non-deterministic LIMAVG-automaton A, one can
compute in exponential time a deterministic LIMAVG-automaton that e-approximates A.

The proof of this theorem is similar to the proof of Theorem 17, except now it is enough
to approximate the values v;, which can be done in exponential time.

—— References

1 Shaull Almagor, Udi Boker, and Orna Kupferman. What’s decidable about weighted auto-
mata? In ATVA, pages 482-491. LNCS 6996, Springer, 2011.

2 Benjamin Aminof, Orna Kupferman, and Robby Lampert. Reasoning about online al-
gorithms with weighted automata. ACM Transactions on Algorithms (TALG), 6(2):28,
2010.

3 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.

4 Christel Baier, Stefan Kiefer, Joachim Klein, Sascha Kliippelholz, David Miiller, and James
Worrell. Markov chains and unambiguous biichi automata. In CAV 2016, pages 23-42.
Springer, 2016.

5 Michael Benedikt, Gabriele Puppis, and Cristian Riveros. Regular repair of specifications.
In LICS 2011, pages 335-344, 2011.

6 Udi Boker and Thomas A. Henzinger. Approximate determinization of quantitative auto-
mata. In FSTTCS 2012, pages 362-373. Schloss Dagstuhl - Leibniz-Zentrum fuer Inform-
atik, 2012.

7 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. A survey of stochastic
games with limsup and liminf objectives. In ICALP 2009, pages 1-15, 2009.

8 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages.
ACM TOCL, 11(4):23, 2010.

9 Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Quantitative automata under
probabilistic semantics. In LICS 2016, pages 76-85. ACM, 2016.

10 Krishnendu Chatterjee, Mickael Randour, and Jean-Frangois Raskin. Strategy synthesis
for multi-dimensional quantitative objectives. In CONCUR 2012, pages 115-131, 2012.

11 Edmund Clarke, Thomas Henzinger, Helmut Veith, and Roderick. Bloem. Handbook of
Model Checking. Springer International Publishing, 2016.

12 Costas Courcoubetis and Mihalis Yannakakis. The complexity of probabilistic verification.
J. ACM, 42(4):857-907, 1995.

13 Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted Automata.
Springer, 1st edition, 2009.

14 William Feller. An introduction to probability theory and its applications. Wiley, 1971.

10:15

CONCUR 2018

10:16

Non-deterministic Weighted Automata on Random Words

15
16

17

18

19

20

21

22

23
24

25

26

Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer, 1996.
Charles Miller Grinstead and James Laurie Snell. Introduction to probability. American
Mathematical Soc., 2012.

Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. Predicate abstraction and
refinement for verifying multi-threaded programs. In POPL 2011, pages 331-344, 2011.
Thomas A. Henzinger and Jan Otop. Model measuring for discrete and hybrid systems.
Nonlinear Analysis: Hybrid Systems, 23:166-190, 2017.

Andrew Hinton, Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM: A
tool for automatic verification of probabilistic systems. In TACAS 2006, pages 441-444,
2006.

Alexander Kechris. Classical descriptive set theory, volume 156. Springer Science & Busi-
ness Media, 2012.

Daniel Krob. The equality problem for rational series with multiplicities in the trop-
ical semiring is undecidable. Int. J. Algebr. Comput., 4(3):405-426, 1994. doi:10.1142/
S0218196794000063.

Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Quantitative analysis with the
probabilistic model checker PRISM. FElectr. Notes Theor. Comput. Sci., 153(2):5-31, 2006.
Christos H Papadimitriou. Computational complexity. Wiley, 2003.

Mickael Randour, Jean-Francois Raskin, and Ocan Sankur. Percentile queries in multi-
dimensional markov decision processes. In CAV 2015, pages 123-139, 2015.

Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci.,
8(2):189-201, 1979.

Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs.
In FOCS 1985, pages 327-338. IEEE Computer Society, 1985.

http://dx.doi.org/10.1142/S0218196794000063
http://dx.doi.org/10.1142/S0218196794000063

Ergodic Mean-Payoff Games for the Analysis of
Attacks in Crypto-Currencies

Krishnendu Chatterjee

IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
krishnendu.chatterjee@ist.ac.at

Amir Kafshdar Goharshady

IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
amir.goharshady@ist.ac.at

Rasmus Ibsen-Jensen

IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
ribsen@ist.ac.at

Yaron Velner

Hebrew University of Jerusalem, Jerusalem, Israel
yaron.welner@mail.huji.ac.il

—— Abstract

Crypto-currencies are digital assets designed to work as a medium of exchange, e.g., Bitcoin,
but they are susceptible to attacks (dishonest behavior of participants). A framework for the
analysis of attacks in crypto-currencies requires (a) modeling of game-theoretic aspects to analyze
incentives for deviation from honest behavior; (b) concurrent interactions between participants;
and (c) analysis of long-term monetary gains. Traditional game-theoretic approaches for the
analysis of security protocols consider either qualitative temporal properties such as safety and
termination, or the very special class of one-shot (stateless) games. However, to analyze general
attacks on protocols for crypto-currencies, both stateful analysis and quantitative objectives
are necessary. In this work our main contributions are as follows: (a) we show how a class
of concurrent mean-payoff games, namely ergodic games, can model various attacks that arise
naturally in crypto-currencies; (b) we present the first practical implementation of algorithms for
ergodic games that scales to model realistic problems for crypto-currencies; and (c) we present
experimental results showing that our framework can handle games with thousands of states and
millions of transitions.

2012 ACM Subject Classification Software and its engineering — Formal software verification
Keywords and phrases Crypto-currency, Quantitative Verification, Mean-payoff Games
Digital Object Identifier 10.4230/LIPIcs. CONCUR.2018.11

Related Version A full version of the paper is available at [10], https://arxiv.org/abs/1806.
03108.

Acknowledgements The research was partially supported by Vienna Science and Technology
Fund (WWTF) Project ICT15-003, Austrian Science Fund (FWF) NFN Grant No S11407-N23
(RiSE/SHINE), ERC Starting Grant (279307: Graph Games), and an IBM PhD Fellowship.

© Krishnendu Chatterjee, Amir K. Goharshady, Rasmus Ibsen-Jensen, and Yaron Velner;
37 licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).

Editors: Sven Schewe and Lijun Zhang; Article No. 11; pp. 11:1-11:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:krishnendu.chatterjee@ist.ac.at
mailto:amir.goharshady@ist.ac.at
mailto:ribsen@ist.ac.at
mailto:yaron.welner@mail.huji.ac.il
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.11
https://arxiv.org/abs/1806.03108
https://arxiv.org/abs/1806.03108
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2

Ergodic Mean-Payoff Games for the Analysis of Attacks in Crypto-Currencies

1 Introduction

Economic effects of security violations. Traditionally, automated security analysis of
protocols using game-theoretic frameworks focused on qualitative properties, such as safety
or liveness [26, 16, 1], to ensure absolute security. In many cases absolute security is too
expensive, and security violations are inevitable. In such scenarios rather than security,
the economic implications of violations should be accounted for. In general, economic
consequences of security violations are hard to measure. However, there is a new application
area of crypto-currencies, in which the economic impact of an attack can be measured in
terms of the number of coins that are lost. These currencies have considerable market value,
in the order of hundreds of billions of dollars [18], thus developing a framework to formally
analyze the security violations and their economic consequences for crypto-currencies is an
interesting problem.

Crypto-currencies. There are many active crypto-currencies today, some with considerable
market values. Currently, the main crypto-currency is Bitcoin with a value of over 150 billion
dollars at the time of writing [18]. Virtually all of these currencies are free from outside
governance and authority and are not controlled by any central bank. Instead, they work
based on the decentralized blockchain protocol. This protocol, which was first developed for
monetary transactions in Bitcoin [31], sets down the rules for creating new units of currency
and valid transactions. However, it only defines the outcomes of actions taken by involved
parties and cannot dictate the actions themselves. So, the whole ecosystem operates in a
game-theoretic manner. The lack of an authority also leads to irreversibility of transactions,
so if an amount of currency is transferred unintentionally or due to a bug, it cannot be
reclaimed. This, together with the huge market values, makes it imperative to develop formal
methods for quantifying the economic consequences before deploying the protocols.

Dishonest interaction. The fact that protocols define only the outcomes of actions and do
not force the actions themselves, means that in some scenarios they might give one of the
parties unfair or unintended advantage over others and an incentive to act dishonestly, i.e. to
take an unintended action. Such behavior is called an attack. We succinctly describe some
attacks.
The most fundamental attack in every crypto-currency is double-spending, where one party
could in some circumstances use the same coin twice in two different purchases. While this
vulnerability is inherent in every blockchain protocol, people still use crypto-currencies as
the probability (and the economic consequences) of such an attack can be bounded over
time.
Another line of attacks follow from dishonest behavior of the blockchain miners who are
responsible for the underlying security of the blockchain protocol and are rewarded for
their operations. It was shown that undesirable behavior, such as block withholding [19]
or selfish mining [20], could increase the dishonest miner’s reward, at the expense of other
(honest) miners. We explain the block withholding attack in more detail in Section 5.1.

Research Questions. Analyzing attacks on crypto-currencies requires a formal framework
to handle: (a) game-theoretic aspects and incentives for dishonest behavior; (b) simul-
taneous interaction of the participants; and (c¢) quantitative properties corresponding to
long-term monetary gains and losses. These properties cannot be obtained from standard
temporal or qualitative properties which have been the focus of previous game-theoretic

K. Chatterjee, A. K. Goharshady, R. Ibsen-Jensen, and Y. Velner

frameworks [26, 16]. On the other hand, game-theoretic incentives are also analyzed in
the security community (e.g., see [8]), but their methods are normally considering the very
special case of one-shot (stateless) or short-term games. One-shot games cannot model the
different states of the ecosystem or the history of actions taken.

Concurrent mean-payoff games. These games were introduced in the seminal work of
Shapley [37], and later extended by Gillette [22]. A concurrent mean-payoff game is played
by two players over a finite state space, where at each state both players simultaneously
choose actions. The transition to the next state is determined by their joint actions, and each
transition is assigned a reward. The goal of one player is to maximize the long-run average of
the rewards, and the other player tries to minimize it. These games provide a very natural and
general framework to study stateful games with simultaneous interactions and quantitative
objectives. They lead to a very elegant and mathematically rich framework, and the theoretical
complexity of such games has been studied for six decades [37, 22, 5, 24, 30, 14, 23]. However,
the analysis of concurrent mean-payoff games is computationally intractable and no practical
(such as strategy-iteration) algorithms exist to solve these games. FExisting algorithmic
approaches either require the theory of reals and quantifier elimination [14] or have doubly-
exponential time complexity in the number of states [23].

Our contributions. Our main contributions are as follows:

1. Modeling. We propose to model long-term (infinite-horizon) economic aspects of security
violations as concurrent mean-payoff games, between the attacker and the defender. The
guaranteed payoff in the game corresponds to the maximal loss of the defender. In
particular, for blockchain protocols, where the utility of every transition is naturally
measurable, we show how to model various interesting scenarios as a sub-class of concurrent
mean-payoff games, namely, concurrent ergodic games. In these games all states are
visited infinitely often with probability 1.

2. Practical implementation. Second, while for concurrent ergodic games a theoretical
algorithm (strategy-iteration algorithm) exists that does not use theory of reals and
quantifier elimination, no previous implementation exists. Moreover, the implementation
of the theoretical algorithm poses practical challenges: (a) the algorithm guarantees
convergence only in the limit; and (b) the algorithm requires high numerical precision and
the straightforward implementation of the algorithm does not converge in practice. We
present (i) a simple stopping criterion for approximation, and (ii) resolve the numerical
precision problem; and to our knowledge present the first practical implementation of a
solver for concurrent ergodic games.

3. Experimental results. Finally, we present experimental results and show that the
solver for ergodic games scales to thousands of states and nearly a million transitions
to model realistic analysis problems from crypto-currencies. Note that in comparison,
approaches for general concurrent mean-payoff games cannot handle even ten transitions
(see the Remark in Section 3). Thus we present orders of magnitude of improvement.

2 Crypto-Currencies

Monetary system. A crypto-currency is a monetary system that allows secure transactions
of currency units and dictates how new units are formed. Each transaction has a unique id
and the following components: (i) a set of inputs; and (ii) a set of outputs and (iii) locking
scripts. Each input has a pointer to an output of a previous transaction, and each output

11:3

CONCUR 2018

11:4

Ergodic Mean-Payoff Games for the Analysis of Attacks in Crypto-Currencies

tr — Alice

- f— !
Da—

tz — Bob]

Figure 1 The longest chain dictates that the transaction tz belongs to Bob.

has an assigned monetary value. A locking script on an output defines a condition for using
the funds stored in that output, e.g. the need for a digital signature. An input can only use
funds of an output by passing its locking script.

Validity. A transaction is valid if these conditions hold: (a) the total value brought by the
outputs is greater than or equal to the total value of the inputs; (b) the inputs have not been
spent before; (c) the inputs satisfy locking scripts.

A transaction-based system is not secure if transactions are sent directly between users to
transfer units. While validity conditions are enough to make sure that only valid recipients
could redirect units they once truly held, there is nothing in the transactions themselves to
limit the user from spending the same output twice (in two different transactions). For this
purpose a public ledger of all valid transactions, called a blockchain, is maintained.

Blockchain. A ledger is a distributed database that maintains a growing ordered list of valid
transactions. Its main novelty is that it enforces consensus among untrusted and possibly
adversarial parties [31]. In Bitcoin (and most other major crypto-currencies) the public
ledger is implemented as a series of blocks of transactions, each containing a reference to its
previous block, and is hence called a blockchain. A consensus on the chain is obtained by a
decentralized pseudonymous protocol. Any party tries to collect new transactions, form a
block and add it to the chain (this process is called block mining). However, in order to do
so, they must solve a challenging computational puzzle (which depends on the last block of
the chain). The process of choosing the next block is as follows:
1. The first announced valid block that solves the puzzle is added to the chain.
2. If two valid blocks are found approximately at the same time (depending on network
latency), then there is a temporary fork in the chain.
Every party is free to choose either fork, and try to extend it. Hence, the underlying
structure of the blockchain is a tree. At any given time, the longest path in the tree, aka the
longest chain, is the consensus blockchain (see Figure 1). Due to the random nature of the
computational puzzle one branch will eventually become strictly longer than the other, and
all parties will adopt it.

Mining process. The puzzle asks for a block consisting of valid transactions, hash of the
previous block and an arbitrary integer nonce, whose hash is less than a target value. The
random nature of the hash function dictates a simple strategy for mining: try random nonces
until a solution is found. So the chance of a miner to find the next block is proportional to
their computational power.

Incentives for mining. There are two incentives for miners: (i) Every transaction can
donate to the miner who finds a new block that contains it, (ii) Each block creates a certain
number of new coins which are then given to the miner.

K. Chatterjee, A. K. Goharshady, R. Ibsen-Jensen, and Y. Velner

Pool mining. To lower the variance of their revenue, miners often collaborate in pools [35, 8].
The pools have a manager who collects the rewards from valid blocks found by the members
and allocates funds to them in proportion to the amount of work they did. Members prove
their work by sending partial solution blocks, which are blocks with valid transactions but
lower difficulty level, i.e., the hash of the block is not smaller than the network threshold,
but it is lower than some threshold that was defined by the manager. As a result, pool
members obtain lower variance in rewards, but have a small drop in expected revenue to
cover the manager’s fee. Members will get the same reward for a partial and full solution,
but the member cannot claim the full block reward for themselves. More precisely, a block
also dictates where the block reward goes to. Hence, even if a member broadcasts the new
block, the reward will still go to the manager.

Proof of stake mining. An emerging criticism over the huge amount of energy that is

wasted in the mining process led to development of proof of stake protocols. In proof of stake

mining the miner is elected with probability that is proportional to their stake in the network

(i.e., number of coin units he holds), rather than their computation power. Current proof of

stake protocols assume a synchronous setting [32, 40, 28] where a miner is chosen in every

time slot tg. However, they differ in the way they reach consensus. We study a simplified

version of [28].

1. At time ¢y a miner is randomly elected. She broadcasts the next block.

2. Until time tg + t other miners who receive the block, verify it and if it were valid, sign it
and broadcast the signature.

3. The block is added to the chain only if a majority of the network sign it.

To encourage honest behavior, the elected miner and signers get rewards when the suggested

block is accepted.

3 Concurrent and Ergodic Games

Probability distributions. For a finite set A, a probability distribution on A is a function
6: A —[0,1] such that), 0(a) = 1. We denote the set of probability distributions on A
by D(A). Given a distribution 6 € D(A), we denote by Supp(d) = {x € A | §(z) > 0} the
support of the distribution.

Concurrent game structures. A concurrent stochastic game structure G = (S, A,T'1,T'y, 6)
has the following components:
A finite state space S and a finite set A of actions (or moves).
Two move assignments 'y, T'y: S — 24\ (). For i € {1,2}, assignment T'; associates with
each state s € S the non-empty set T';(s) C A of moves available to Player ¢ at state s.
A probabilistic transition function 6: S x Ax A — D(S), which associates with every state
s € S and moves a1 € I';(s) and a2 € T'a(s), a probability distribution d(s, a1, az) € D(S)
for the successor state.
We denote by n the number of states (i.e., n = |S|), and by m the maximal number of actions
available for a player at a state (i.e., m = maxscgs max{|['1(s)],|T2(s)|}). The size of the
transition relation of a game structure is defined as

|6| = EsES ZaleFl(s) ZagEFg(s) ‘Supp(é(&al?a’z))' < n®-m?.

Plays. At every state s € S, Player 1 chooses a move a; € I';(s), and simultaneously and
independently Player 2 chooses a move as € I'y(s). The game then proceeds to the successor
state ¢ with probability (s, a1, a2)(t), for all t € S. A path or a play of G is an infinite

11:5

CONCUR 2018

11:6

Ergodic Mean-Payoff Games for the Analysis of Attacks in Crypto-Currencies

X, X, ¥z X, X, X, X, X, X, V2
,—x, x,%‘l ’—x. x,vzj' ‘ ’—x, x,v}T ‘ yix, X, vz‘l
F—R, s, 1—> F—R. s, 1—> F—R. s, 1—>f F—R. s, 1—>
P, R, 1—> P, R, 1—>| P, R, 1—>f P, R, 1—>
—S.P.1—> S, P.1—> —S.P.1—>| —S. P, 1—>

-1 1

f«—S, R, 1— f«—S, R, 1— j«<—5S, R, 1— [«<—S, R, 1—|
-2 —rP1—] f«—R, P, 1— 0 [«<—R, P, 1— [«—R, P, 1—| 2
«—P, 5, 1— f«—P, 5, 1— <P, 5 1— f[«<—P, 5, 1—|

vz
R

R
Sy

| o il o

Figure 2 A repetitive rock-paper-scissors game.

sequence m = ((so,a,al), (s1,ai,a}), (s2,a},a3)...) of states and action pairs such that for
all k > 0 we have (i) a¥ € T';(sy); and (ii) sg11 € Supp(8(s,a¥,ak)). We denote by II the
set of all paths.

» Example 1. Consider a repetitive game of rock-paper-scissors, consisting of an infinite
number of laps, in which each lap is made of a number of rounds as illustrated in Figure
2. When a lap begins, the two players play rock-paper-scissors repetitively until one of
them wins 3 rounds more than her opponent, in which case she wins the current lap of the
game and a new lap begins. In each round, the winner is determined by the usual rules of
rock-paper-scissors, i.e. rock beats scissors, scissors beat paper and paper beats rock. In case
of a tie, each player wins the round with probability %

Here we have S = {—2,-1,0,1,2} and I'y =T'; = {R, P,S}. The game starts at state 0
and state s corresponds to the situation where Player 1 has won s rounds more than Player 2
in the ongoing lap. Edges in the figure correspond to possible transitions in the game. Each
edge is labeled with three values aq, as, p to denote that the game will transition from the
state at the beginning of the edge to the state at its end with probability p if the two players
decide on actions a; and as, respectively. For example, there is an edge from state 2 to state
0 labeled R, S, 1, which corresponds to §(2,R,S)(0) = 1. In the figure, we use X, X in place
of a1, as to denote that they are equal. Hence every play in this game corresponds to an
infinite walk on the graph in Figure 2.

Strategies. A strategy is a recipe to extend prefixes of a play. Formally, a strategy for
Player i is a mapping o;: (S x A x A)* x S — D(A) that associates with every finite sequence
x € (S x A x A)* of state and action pairs, representing the past history of the game, and
the current state s in S, a probability distribution o;(« - s) used to select the next move. The
strategy o; can only prescribe moves that are available to Player 4; that is, for all sequences
x € (S x Ax A)* and states s € S, we require Supp(o;(z - s)) C I';(s). We denote by ¥;
the set of all strategies for Player i. Once the starting state s and the strategies o; and
o9 for the two players have been chosen, then the probabilities of measurable events are
uniquely defined [39]. For an event A C II, we denote by Pr?"?2(A) the probability that a
path belongs to A when the game starts from s and the players use the strategies oy and os.
We call a pair of strategies (o1,02) € X1 X Yo a strategy profile.

Stationary (memoryless) and positional strategies. In general, strategies use randomiza-
tion, and can use finite or even infinite memory to remember the history. Simpler strategies,
that either do not use memory, or randomization, or both, are significant, as they are simple
to implement and interpret. A strategy o; is stationary (or memoryless) if it is independent
of the history but only depends on the current state, i.e., for all z, 2’ € (S x A x A)* and all
s € S, we have o;(x - s) = o;(2’ - s), and thus can be expressed as a function o; : S — D(A).

K. Chatterjee, A. K. Goharshady, R. Ibsen-Jensen, and Y. Velner

A strategy is pure if it does not use randomization, i.e., for any history there is a unique
action a that is played with probability 1. A pure stationary strategy o; is called positional,
and denoted as a function o; : S — A.

Mean-payoff objectives. We consider maximizing limit-average (or mean-payofl) objectives

for Player 1, and the objective of Player 2 is the opposite (i.e., the games are zero-sum).

We consider concurrent games with a reward function R : § x A x A — R that assigns
a reward value R(s,a1,az) for all s € S, a1 € T'1(s), and az € I'y(s). For a path 7 =
((s0,a9,a3), (s1,a},al),...), the average for T steps is Avgp(m) = & ST ' R(s;, al, ab), and
the limit-inferior average (resp. limit-superior average) is defined as follows: LimInfAvg(r) =
liminfr_, oo Avgyp(m) (resp. LimSupAvg(m) = limsupy_, ., Avgp(m)). We denote concurrent
mean-payoff games as CMPGs.

» Example 2. Consider the game in Figure 2. In this game, Player 1 wins a lap whenever
a red edge is crossed. Therefore, in order to capture the number of laps won by Player 1,
rewards can be assigned as: R(2,R,S) = R(2,P,R) = R(2,5,P)=1; R(2,X,X) = % and 0
in all other cases.

Values and e-optimal strategies. Given a CMPG G and a reward function R, the lower
value v, (resp. the upper value Ts) at a state s is defined as follows:
v, = SUpP,, ey, info,ex, EIV72[LimInfAvg]; Ty = inf,,ex, sup,, cs, EJ*72[LimSupAvg].
The determinacy result of [30] shows that the upper and lower values coincide and give
the value of the game denoted as vs. For € > 0, a strategy o1 for Player 1 is e-optimal if we
have v, — e < inf,,ex, E7-72[LimInfAvg].

Ergodic Games. A CMPG G is ergodic if for all states s,t € S, for all strategy profiles
(01,092), if we start at s, then ¢ is visited infinitely often with probability 1 in the random
walk 77192, The game in Figure 2 is not ergodic. If Player 1 keeps playing rock and Player 2
scissors, then the states —1 and —2 are visited at most once. However, a more realistic
version of this game is also ergodic.

» Example 3. Consider two players playing the repetitive game of rock-paper-scissors over
a network, e.g. the Internet. The game is loaded on a central server that asks the players for
their moves and provides them with rewards and information about changes in the state of
the game. Given that the network is not perfect, there is always a small probability that one
of the players is unable to announce his move in time to the server. In such cases, the player
will lose the current round. Assume that this scenario happens with probability € > 0. Then
all probabilities in Figure 2 have to be multiplied by (1 — ¢) and new transitions, which are
not under players’ control and are a result of uncertainty in the network connection, should
be added to the game. These new transitions are illustrated in Figure 3. Here a star can be
replaced by any permissible action of the players. It is easy to check that this variant of the
game is ergodic, given that starting from any state, there is a positive probability of visiting
any other state within 3 steps using the new transitions only.

Results about general CMPGs. The main results for CMPGs are as follows:

1. The celebrated result of existence of values was established in [30].

2. For CMPGs, stationary or finite-memory strategies are not sufficient for optimality,
and even in CMPGs with three states (the well-known Big Match game), very complex
infinite-memory strategies are required for e-optimality [5].

11:7

CONCUR 2018

11:8

Ergodic Mean-Payoff Games for the Analysis of Attacks in Crypto-Currencies

% e2—> % e2—> ", €2—> "% e2—>|

f—*, %, e/2— fe—*, %, e2— f—*, % e/2— fe—*, *, e/2—|

-2 0 2

Figure 3 Transitions due to network connectivity issues in the repetitive RPS.

3. The value problem, that given a CMPG, a state s, and a threshold A, asks whether
the value at state s is at least A, can be decided in PSPACE [14]; and also in m27"
time, which is doubly exponential in the worst case, but polynomial-time in m, for n
constant [23]. Both the above algorithms use the theory of reals and quantifier elimination
for analysis.

» Remark (Inefficiency). The quantifier elimination approach for general CMPGs considers
formulas in the theory of reals with alternation, where the variables represent the trans-
itions [14]. With as few as ten transitions, quantifier elimination produces formulas with
hundreds of variables over the existential theory of reals. In turn, the existential theory of
reals has exponential-time complexity, is notoriously hard to solve, and its existing solvers
cannot handle hundreds of variables. Hence, CMPGs with as few as ten transitions are not
tractable.

Results about ergodic CMPGs. The main results for ergodic CMPGs are as follows:

1. Stationary optimal strategies exist[24], but positional strategies are not sufficient for
optimality. For precise strategy complexity see [13].

2. Even in ergodic games, values and probabilities of optimal strategies can be irrational [13],
and hence the relevant question is the approximation problem of values which is solvable
in non-deterministic polynomial-time [13].

3. The most well-known algorithm for ergodic mean-payoff games is the Hoffman-Karp
strategy-iteration algorithm [24]. See [10] for a more detailed treatment of this algorithm.

Note that since in ergodic games, every state is reached from every other state with probabil-

ity 1, the value at all states is the same.

4 Modeling Framework

In this section we present an abstract framework to model economical consequences of attacks
with mean-payoff games. In particular we show how broad classes of attacks can be modeled
as ergodic games. In the next section we present concrete examples that arise from blockchain
protocols.

4.1 Mean-payoff games modeling

We describe two aspects of mean-payoff games modeling.

1. Game graph modeling. Graph games are a standard model for reactive systems as well as
protocols. The states and transitions of the graph represent states and transitions of the
reactive system, and paths in the graphs represent traces of the system [33, 34]. Similarly,
in modeling of protocols with different variables for the agents, the states of the game
represent various scenarios of the protocols along with the valuation of the variables. The
transitions represent a change of the scenario along with change in the valuation of the
variables (for example see [16] for game graph modeling of protocols for digital-contract

signing).

K. Chatterjee, A. K. Goharshady, R. Ibsen-Jensen, and Y. Velner

2. Mean-payoff objective modeling. In mean-payoff objectives, the costs (or rewards) of
every transition can represent, for example, delays, execution times, cost of context
switches, cost of concurrency, or monetary gains and losses. The mean-payoff objective
represents the long-term average of the rewards or the costs. The mean-payoff objective
has been used for synthesis of better reactive systems [7], synthesis of synchronization
primitives for concurrent data-structures to minimize average context-switch costs [9],
model resource-usage in container analysis and frequency of function calls [15], as well as
analysis of energy-related objectives [3, 2, 21].

4.2 Crypto-currency Protocols as Mean-payoff Games

We describe how to apply the general framework of CMPGs to crypto-currencies:
General setting. We propose to analyze protocols as a game between a defender and an

attacker. The defender and the attacker have complete freedom to decide on their moves.

The decisions of the other parties in the ecosystem can be modeled as stochastic choices
that are not adversarial to either of the players.

Reward function. The reward function will reflect the monetary gain or loss of the
defender. The attacker gain is not modeled as we consider the worst-case scenario in
which the attacker’s objective is to minimize the defender’s utility.

States. States of the game can represent the information that is relevant for the analysis
of the protocol, such as the abstract state of the blockchain.

Stochastic transitions. Probabilities over the transitions can model true stochastic
processes e.g., mining, or abstract complicated situations where the exact behavior cannot
be directly computed (see Section 5.2) or in order to simulate the social behavior of a
group (see Section 5.1).

Concurrent interactions. Concurrent games are used when both players decide on their
action simultaneously or when a single action models a behavior that continues over a
time period and the players can only reason about their opponent’s behavior after a while
(Sections 5.1 and 5.2).

Result of the game. In this work we want to reason on defender’s security in a protocol
wrt a malicious attacker who aims to decrease defender’s gain at any cost. The result of
the mean-payoff game will describe the inevitable expected loss that the defender will
have in the presence of an attacker and defender’s strategy describes the best way to
defend himself against such an attacker.

4.3 Modeling with Ergodic Games

In this section we describe two classes of attacks, which can be naturally modeled with
ergodic games. Our description here is high-level and informal, and concrete instances are
considered in the next section. The attacks we describe are in a more general setting than
crypto-currencies; however, for crypto-currencies the economic consequences are more natural
to model.

First class of attacks. In the first class of attacks the setting consists of two companies and
the revenues of the companies depend on the number of users each has. Thus states represent
the number of users. Each company can decide to attack its competing company. Performing
an attack entails some economic costs, however it could increase the number of users of the
attacking company at the expense of the attacked one. For example, consider two competing
social networks, Alice and Bob. Alice can decide to launch a distributed-denial-of-service

11:9

CONCUR 2018

11:10

Ergodic Mean-Payoff Games for the Analysis of Attacks in Crypto-Currencies

(DDOS) attack on Bob, and vice-versa. Such attacks entail a cost, but provide incentives for
Bob users to switch to Alice. The rewards depend on the network revenues (i.e., number
of users) and on the amount of funds the company decides to spend for the attack. The
migration of users is a stochastic process that is biased towards the stronger network, but
with smaller probability some users migrate to the other network. Thus the game is ergodic.
This class represents pool attacks in the context of crypto-currencies (Sections 5.1 and 5.3).

Second class of attacks. Consider the scenario where the state of the game represents
aspects of the dynamic network topology. The network evolves over the course of the time,
and the actions of the participants also affect the network topology. However, the effect of
the actions only makes local changes. The combination of the global changes and the local
effects still ensure that different network states can be reached, and the game is ergodic.
Attacks in such a scenario where the network topology determines the outcome of attack
can be modeled as ergodic games. This class of attacks represent the zero-confirmation
double-spending attack in the context of crypto-currencies (see Section 5.2).

5 Formal Modeling of Real Attacks

In this section we show how to model several real-world examples. These examples were
described in the literature but were never analyzed as stateful games.

5.1 Block Withholding Pool Attack

Pools are susceptible to the classic block withholding attack [35], where a miner sends only
partial solutions to the pool manager and discards full solutions. In this section we analyze
block withholding attacks among two pools, pool A and pool B. We describe how pool
A can attack pool B, and the converse direction is symmetric. To employ the pool block
withholding attack, pool A registers at pool B as a regular miner. It receives tasks from
pool B and transfers them to some of its own miners. Following the notions in [19], we
call these infiltrating miners, and their mining power is called infiltration rate. When pool
A’s infiltrating miners deliver partial solutions, pool A’s manager submits them to pool B’s
manager and proves the portion of work they did. When the infiltrating miners deliver a full
solution, the attacking pool manager discards it.

At first, the total revenue of the victim pool does not change (as its effective mining rate
was not changed), but the same sum is now divided among more miners. Thus, since the
pool manager fees are nominal (fixed percentage of the total revenue [4]), in the short term,
the manager of the victim pool will not lose. The attacker’s mining power is reduced, since
some of its miners are used for block withholding, but it earns additional revenue through
its infiltration of the other pool. Finally, the total effective mining power in the system is
reduced, causing the blockchain protocol to reduce the difficulty. Hence, in some scenarios,
the attacker can gain, even in the short run, from performing the attack [19].

In the long run, if miners see a decrease in their profits (since they have to split the same
revenue among more participants), it is likely that they consider to migrate to other pools.
As a result, the victim pool’s total revenue will decrease.

Our modeling. We aim to capture the long term consequences of pool attacks. We have
two pools A and B, where B is the victim pool and A is the malicious pool who wishes to
decrease B’s profits. There is also a group of miners C' who are honest and represent the
rest of the network. In return, pool B can defend itself by attacking back. To simulate the

K. Chatterjee, A. K. Goharshady, R. Ibsen-Jensen, and Y. Velner

long term effect, in every round pool members from A and B may migrate from one pool to
another or to and from C. The migration is a stochastic process that favors the pool with
maximum profitability for miners. We note that given sufficient amount of time (say a week),
a pool manager can evaluate with very high probability the fraction of infiltrating miners in
his pool. This can be done by looking at the ratio between full and partial solutions. Hence,
in retrospect of a week, the pools are aware of each other’s decisions, but within this week
there is uncertainty. Therefore, we use concurrent games to analyze the worst case scenario
for pool B.

» Theorem 4. Consider a pair of pools A and B capable of attacking each other. Let C be
the pool of remaining miners. If the miners in each pool migrate stochastically according to
the attractiveness levels (as detailed below), then B can ensure a revenue of at least v on
average per round, against any behavior of A, where v is the value of the concurrent ergodic
game described below.

5.1.1 Details of Modeling

We provide details of our modeling on some of the attacks to demonstrate how they can be

thought of in terms of ergodic games. Details of all other attacks can be found in [10].
Game states. We consider two pools, A and B and assume that any miner outside these
two is mining independently for himself. Each state is defined by two values, i.e. the
fractions of total computation power that belongs to A and B. We use a discretized version
of this idea to model the game in a finite number of states and let S = {1,2,...,n}?

and define € = #ﬂ, where a state (i1,42) € S corresponds to the case where pool A
owns a fraction a;, = i1€ = 273_1 of the total hash power and pool B controls a fraction
Bi, = i2e = 2;11 of it. In this case the miners who work independently own a fraction

Yiris = 1 — a4, — B4, of the total hash power.

Actions at each state. Each pool can choose how much of its hash power it devotes
to attacking the other pool. More formally, at each state s = (i1,42), pool A has i;
choices of actions and T';(s) = {a?,al,a?,...,a "'} where a] corresponds to attacking
pool B with a fraction je of the total computing power of the network. Similarly
Ta(s) = {a9,as,a3, ..., a1}

Rewards. We want the rewards to model the revenue (profit) of pool A, denoted by
ra, so we let R(s,a’,al) = ra(s,ai,d)), for a; € T'1(s),az € Ty(s). We write r4
instead of r4(s,at, a%) when there is no risk of confusion. We define rp and r¢ similarly
and normalize the revenues: r4 + rg + rc = 1. To compute these values, we define
“attractiveness”. The attractiveness of a pool is its revenue divided by the total computing
power of its miners. If pool A chooses the action ai and pool B chooses the action a%,
then pool A is using a fraction o’ = ie of the total network computing power to attack
B and is receiving a corresponding fraction of B’s revenue while not contributing to it.

Therefore the attractiveness of pool B will be equal to: attrg = BlBa" Similarly we have
attra = %ﬁ” where 3/ = je.

Now consider the sources for pool A’s revenue. It either comes from A’s own mining
process or from collecting shares of B’s revenue, therefore:

ra=(a—a)+a xattrg,

and similarly 75 = (8 —) + 8’ X attra. The previous four equations provide us with a
system of linear equations which we can solve to obtain the values of r4, rp, attr 4 and

attrg. Since a fraction o/ 4+ ' of total computation power is used on attacking other

pools, we have: attrc = ﬁ,_ﬁ,

11:11

CONCUR 2018

11:12

Ergodic Mean-Payoff Games for the Analysis of Attacks in Crypto-Currencies

Game transitions (6). Miners migrate between pools and a pool gains or loses mining
power based on its attractiveness. If a pool is the most attractive option among the
two, it gains € new mining power with probability % retains its current power with
probability % and loses € power with probability %. On the other hand a pool that is not
the most attractive option loses € power with probability %, retains its current power
with probability % and attracts ¢ new mining power with probability % These values
were chosen for the purpose of demonstration of our algorithm and our implementation
results. In practice, one can obtain realistic probabilities experimentally.

FErgodicity. The game is ergodic because for each two states s = (s1,$2) and s’ = (], s5)
where |s; — s1| < 1 and |sy — sh| < 1, there is at least 5z probability of going from s to s’
no matter what choices the players make.

Proof of Theorem 4. Ergodicity was established in the final part above. The rest follows
from the modeling and the determinacy result.

5.2 Zero-confirmation Double-spending

Nowadays, Bitcoin is increasingly used in “fast payments” such as online services, ATM
withdrawals and vending machines [17], where the payment is followed by fast delivery of
goods. While the blockchain consensus is appropriate for slow payments, it requires tens
of minutes to confirm a transaction and is therefore inappropriate for fast payments. We
consider a transaction confirmed when it is added to the blockchain and several blocks are
added after it. This mechanism is essential for the detection of double-spending attacks in
which an adversary attempts to use some of her coins for two or more payments. However,
even in the absence of a confirmation, it is far from trivial to perform a double-spending
attack. In a double spending attack, the attacker publishes two transactions that consume
the same input. The attack is successful only if the victim node received one transaction
and provided the goods before he became aware of the other, but eventually the latter was
added to the blockchain. In an ideal world the attacker can increase his odds by broadcasting
one transaction directly to the victim and the other at a far apart location, while on the
other hand the victim can defend itself by deploying several nodes in the network in strategic
locations. In the real world, however, the full topology of the network is never known to
either of the parties. Nevertheless, based on history and network statistics one can estimate
the odds of a successful attack given the current state of the network [6].

The victim has to decide on a policy for accepting zero-confirmation transactions. In
particular he has to decide on the probability of whether to wait for a confirmation or not.
If he waits for confirmation, then the payment is guaranteed, but customer satisfaction is
damaged, and as a result the utility is smaller than the actual payment. If he does not wait
for a confirmation, then the payment might be double spent. In the long term, the victim
could decide to change the topology of the network. As it does not have full control over the
topology, the outcome of the change is stochastic. Moreover, even when the victim does not
initiate a change, the network topology is dynamic and keeps changing all the time. Hence,
the odds of a successful attack are constantly changing in small stochastic steps.

Our modeling. We aim to analyze the worst case long run loss of the victim. In our model
we abstract the network topology state and consider only the odds of successful double
spending. We consider a scenario where the victim’s honest customers typically purchase
goods worth 10 units per round. In every round, the victim decides on a policy for accepting
fast payment, and the attacker, concurrently, unaware of the victim’s policy, has to decide the

K. Chatterjee, A. K. Goharshady, R. Ibsen-Jensen, and Y. Velner

size of the attack. After every round, the victim decides if he wants to do a thorough change
in the network topology. If he decides on a change, then the next state is chosen uniformly
from all possible states (this represents the fact that neither players has full knowledge on
the topology). If he decides to make no change, then the network state might still change,
due to the dynamic nature of the network. In this case the next state is with high probability
either the current state, or a state which is slightly better or slightly worse for the victim,
but with low probability the state changes completely to an arbitrary state in the network
(as sometimes small changes in the topology have big impact). The rewards stem from the
outcome of each round in the following way: The payment is the sum of the honest customer
purchases and the payment of the attacker (if it gets into the blockchain). The reward is the
payment minus some penalty in case the victim has decided to wait for a confirmation. The
fact that the network state is constantly changing makes our model ergodic.

» Theorem 5 (Proof in [10]). Consider a seller and an attacker in the zero-confirmation
double spending problem. The seller can ensure profit of at least v on average per round,
where v is the value of the corresponding CMPG.

5.3 Proof of Stake Pool Attack

Proof of stake protocols let miners centralize their stakes in a pool. In such pools the
withholding attack is not relevant as mining does not require physical resources. However,
pool A might attack an opponent pool B by not signing or broadcasting its blocks. A
successful attack would prevent the block from getting signed by a majority of the network
and result in a loss of mining fees for B and can encourage miners to migrate from B. An
unsuccessful attack decreases A’s signing revenue.

Our modeling. We assume a setting similar to that of Section 5.1, where there are two
opponent pools A and B, and the rest of the network consists of honest pools who sign every
block that arrives on time. The states of the game are the stakes of each pool, namely « for
pool A and § for pool B. In every round, with probability 1 — (a4) neither of the pools is
elected to mine a block, and no decisions are made. Otherwise, with probability ﬁ pool A
is elected and otherwise pool B is elected. When a pool is elected, the other pool decides
whether to sign and broadcast the resulting block or not. In addition the network state and

connectivity induce a distribution over the fraction of honest miners that receive the block.

If the block is accepted, then its creator is rewarded with mining fees, and the other pool
will get its signing fees only if it signed the block.

» Theorem 6 (Proof in [10]). Consider two pools A and B in a proof of stake mining system
that can choose to attack each other by not signing blocks mined by the other pool. Consider
that the rest of the metwork consists of independent miners who observe published blocks
according to a predefined probability distribution and sign every valid block they observe. If
the miners migrate according to the attractiveness levels (as described in Section 5.1), then

B can ensure an average revenue of v against any behavior of A, where v is the value of the
corresponding CMPG.

6 Implementation and Experimental Results

Implementation. We have implemented the strategy-iteration algorithm for ergodic games

(see [10] for pseudo-code and more details). The implementation is available at http://ist.

ac.at/~akafshda/concur2018. To the best of our knowledge, this is the first implementation

11:13

CONCUR 2018

http://ist.ac.at/~akafshda/concur2018
http://ist.ac.at/~akafshda/concur2018

11:14

Ergodic Mean-Payoff Games for the Analysis of Attacks in Crypto-Currencies

Table 1 Experimental results for block-withholding pool attack (left), zero-confirmation double-

spending (center) and proof of stake pool attack (right).

‘ #T ‘ States ‘ #S1 ‘ Time(s) ‘ ‘ #T ‘ States ‘ #S1 ‘ Time(s) ‘ ‘ 4T ‘ States ‘ I ‘ Time(s) ‘

17050 100 4 69 19940 100 2 426
6076 99 18 471
56252 196 2 291 40040 200 2 800 20056 275 s 1338

135252 289 2 389 60140 300 2 1141
31744 396 9 2520

236000 400 2 1059 80240 400 2 1586
. . A 44764 539 4 1073

331816 484 2 3880 100340 500 2 2069
77500 891 16 22125

508032 576 2 6273 120440 600 2 1253
119164 1331 27 32636

720954 676 2 17014 140540 700 2 2999
966281 784 2 53103 160640 800 2 3496 169756 1859 10 31597
. 262384 2816 12 89599

1269450 900 2 100435 180740 900 2 3917

of this algorithm. The straightforward implementation of the strategy-iteration algorithm

for ergodic games has two practical problems, which we describe below.

1.

No stopping criteria. First, the strategy-iteration algorithm only guarantees convergence
of values in the limit, and since values and probabilities in strategies can be irrational,
convergence cannot be guaranteed in a finite number of steps. Hence we need a stopping
criterion for approximation.

. Numerical precision issues. Second, the stationary strategies in each iteration are obtained

by solving LPs, which has numerical errors, and the probabilities sum to less than 1.
If these errors remain, they cascade over iterations, and do not ensure convergence in
practice for large examples. Hence we need to ensure numerical precision on top of the
strategy-iteration algorithm.

Our solution for the above two problems are as follows:

1. Stopping criteria. We first observe that the value sequence which is obtained converges

from below to the value of the game. In other words, the value sequence provide a lower
bound to the lower value of the game. Hence we consider a symmetric version which is the
strategy-iteration algorithm for player 2, and run each iteration of the two algorithms in
sequence. The version for player 2 provides a lower bound on the lower value for player 2,
and thus from that we can obtain an upper bound on the upper value of player 1. Since
the upper and lower values coincide, we thus have both an upper and lower bound on the
values, and once the difference is smaller than € > 0, then the algorithm has correctly
approximated the value within € and can stop and return the value and the strategy
obtained as approximation.

. Numerical precision. For numerical precision, instead of obtaining the results from the

linear program, we obtain the set of tight and slack constraints, where the tight constraints
represent the constraints where equality is obtained, and the other constraints are slack
ones. From the tight constraints, which are equalities, we obtain the result using Gaussian
elimination, which provides more precise values to the solution. We also tried other
heuristics, such as adding the remaining probability to the greatest probability action,
which led to similar results on convergence.

Experimental Results. Our experimental results are reported in Table 1. We show number

of transitions in the game (#T), number of states in the game, the running time and number
of strategy iterations (#SI). It is noteworthy that in all cases the number of iterations
required is quite small. We also note that since the number of iterations is small, the crucial
computational step is every iteration, where many LPs are solved. The outputs provided the
following results (more details in [10]):

K. Chatterjee, A. K. Goharshady, R. Ibsen-Jensen, and Y. Velner 11:15

For the block withholding pool attack game, the algorithm could guarantee a mean-payoff
of 0.49 for the victim pool. In absence of an attacker the mean-payoff will be 1.

For the zero-confirmation double-spending game, the algorithm verified that the seller
is guaranteed to maintain at least half of her revenue, i.e., in presence of a malicious
attacker, the value for the seller converges to 5 as the number of states increase, while it
is 10 in absence of it.

For the proof of stake pool attack game, by increasing the number of states, i.e., by
refining the discretization, the guaranteed value (game value) decreases and tends to zero.
In absence of an attacker, a pool A can achieve an expected payoff of 11s4 at a turn
where s4 is the stake it holds.

7 Related Work

Pools attack. The danger of a block withholding attack is as old as Bitcoin pools. The
attack was described by Rosenfeld [35], as pools were becoming a dominant player in
Bitcoin. While it was obvious that a pool is vulnerable to a malicious attacker, Eyal [19]
showed that in some circumstances a pool can benefit by attacking another pool, and
thus pool mining is vulnerable also in the presence of rational attackers. However, the
analysis only considered the short term, i.e., the profit that the pool can get only in the
short period after the attack. Laszka et al. [29] studied the long term impact of pools
attack. In their framework miners are allowed to migrate from one pool to another. They
analyzed the steady equilibrium in which the size of the pools become stable (although
there is no guarantee that the game will converge to such a scenario). Our framework is
the first to allow analysis of long term impacts without convergence assumptions.

Zero-confirmation double-spending. Zero-confirmation double-spending was experiment-
ally analyzed by Karame et al. [25] who gave numerical figures for the odds of successful
double spending for different network states. However, their analysis did not consider
that the victim may change his connectivity state. Our work is the first analysis of the
long term impact of this attack.

Stateful analysis. A stateful analysis of blockchain attacks was done by Sapirshtein et
al. [36] and by Sompolinsky and Zohar [38]. In their analysis the different states of the
blockchain were taken into account during the attack. The analysis was done using MDPs
in which only the attacker decides on his actions and the victim follows a predefined
protocol. A recent work [11] also considers abstraction-refinement for finite-horizon
games based on smart contracts. However, it neither considers long-term behavior, nor
mean-payoff objectives, nor can it model attacks such as double-spending and interactions
between pools.

Quantitative verification with mean-payoff games. The mean-payoff games problem has
been studied extensively as a theoretical problem [33, 34]. It has also been studied in
the context of verification and synthesis for performance related issues [7, 9, 15, 3, 2, 21].
However, all these works focus on turn-based games, and none of them consider concurrent
games. To the best of our knowledge concurrent mean-payoff games have not been studied
in the setting of security that we consider, where the quantitative objective is as crucial
as safety critical issues. Practical implementation of algorithms for ergodic CMPGs do
not exist in the literature.

CONCUR 2018

11:16

Ergodic Mean-Payoff Games for the Analysis of Attacks in Crypto-Currencies

8 Conclusion and Future Work

In this work we considered concurrent mean-payoff games, and in particular the subclass
of ergodic games, to analyze attacks on crypto-currencies. There are several interesting
directions to pursue: First, various notions of rationality are relevant to analyze games where
the attacker is rational, rather than malicious, and aims to maximize his own utility instead
of minimizing the defender’s utility (e.g., secure-equilibria [12] or other related notions).
Second, we consider two-player games, and the extension to multi-player games to model
crypto-currency attacks is another interesting problem. Third, the modeling assumptions
should be empirically validated and the parameters used to generate the games, e.g. the rates
of migration, should be empirically obtained. Fourth, we consider the rest of the network to
be neutral and stochastic. An interesting extension would be to consider a rational network,
possibly consisting of coalitions of cooperating miners, as defined e.g. in [27].

—— References

1 M. Abadi and P. Rogaway. Reconciling two views of cryptography. In Proceedings of
the IFIP International Conference on Theoretical Computer Science, pages 3-22. Springer,
2000.

2 C. Baier, C. Dubslaff, J. Klein, S. Klippelholz, and S Wunderlich. Probabilistic model
checking for energy-utility analysis. In Horizons of the Mind. A Tribute to Prakash
Panangaden - Essays Dedicated to Prakash Panangaden on the Occasion of His 60th Birth-
day, pages 96-123, 2014.

3 C. Baier, S. Kliippelholz, H. de Meer, F. Niedermeier, and S. Wunderlich. Greener bits:
Formal analysis of demand response. In ATVA, pages 323-339, 2016.

4 Bitcoin Wiki. Comparison of mining pools, 2017. URL: http://en.bitcoin.it/
Comparison_of_mining_ pools.

5 D. Blackwell and T. Ferguson. The big match. The Annals of Mathematical Statistics,
39(1):159-163, 1968.

6 blockcypher.com. Confidence factor, 2017. URL: http://dev.blockcypher.com/
#confidence-factor.

7 R. Bloem, K. Chatterjee, T.A. Henzinger, and B. Jobstmann. Better quality in synthesis
through quantitative objectives. In CAV, pages 140-156, 2009.

8 J. Bonneau, A. Miller, J. Clark, A. Narayanan, J.A. Kroll, and E.W. Felten. Sok: Re-
search perspectives and challenges for bitcoin and cryptocurrencies. In IEEE Symposium
on Security and Privacy, pages 104-121. IEEE, 2015.

9 P. Cerny, K. Chatterjee, T.A. Henzinger, A. Radhakrishna, and R. Singh. Quantitative
synthesis for concurrent programs. In CAV, pages 243-259, 2011.

10 K. Chatterjee, A.K. Goharshady, R. Ibsen-Jensen, and Y. Velner. Ergodic mean-payoff
games for the analysis of attacks in crypto-currencies. arXiv, 2018. arXiv:1806.03108.

11 K. Chatterjee, A.K. Goharshady, and Y. Velner. Quantitative analysis of smart contracts.
In ESOP, pages 739-767, 2018.

12 K. Chatterjee, T.A. Henzinger, and M. Jurdzinski. Games with secure equilibria. In LICS,
pages 160-169, 2004.

13 K. Chatterjee and R. Ibsen-Jensen. The complexity of ergodic mean-payoff games. In
ICALP II, pages 122-133, 2014.

14 K. Chatterjee, R. Majumdar, and T. A. Henzinger. Stochastic limit-average games are in
EXPTIME. Int. J. Game Theory, 37(2):219-234, 2008.

15 K. Chatterjee, A. Pavlogiannis, and Y. Velner. Quantitative interprocedural analysis. In
POPL, pages 539-551, 2015.

http://en.bitcoin.it/Comparison_of_mining_pools
http://en.bitcoin.it/Comparison_of_mining_pools
http://dev.blockcypher.com/#confidence-factor
http://dev.blockcypher.com/#confidence-factor
http://arxiv.org/abs/1806.03108

K. Chatterjee, A. K. Goharshady, R. Ibsen-Jensen, and Y. Velner

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37
38

39

40

K. Chatterjee and V. Raman. Assume-guarantee synthesis for digital contract signing.
Formal Asp. Comput., 26(4):825-859, 2014.

CNN Money. Bitcoin’s uncertain future as currency, 2011. URL: http://money.cnn. com/
video/technology/2011/07/18/t_bitcoin_currency.cnnmoney/.

coinmarketcap.com. Crypto-currency market capitalizations, 2017. URL: http://
coinmarketcap.com/.

I. Eyal. The miner’s dilemma. In IEEE Symposium on Security and Privacy, pages 89-103.
IEEE, 2015.

I. Eyal and E.G. Sirer. Majority is not enough: Bitcoin mining is vulnerable. In Financial
Cryptography and Data Security, 2014.

V. Forejt, M. Z. Kwiatkowska, and D. Parker. Pareto curves for probabilistic model check-
ing. In ATVA, pages 317-332, 2012.

D. Gillette. Stochastic games with zero stop probabilitites. In CTG, pages 179-188. Prin-
ceton University Press, 1957.

K. A. Hansen, M. Koucky, N. Lauritzen, P. B. Miltersen, and E. P. Tsigaridas. Exact
algorithms for solving stochastic games: extended abstract. In STOC, pages 205214,
2011.

A.J. Hoffman and R.M. Karp. On nonterminating stochastic games. Management Sciences,
12(5):359-370, 1966.

G. Karame, E. Androulaki, and S. Capkun. Two bitcoins at the price of one? double-
spending attacks on fast payments in bitcoin. TACR Cryptology ePrint Archive, 2012:248,
2012.

S. Kremer and J.F. Raskin. A game-based verification of non-repudiation and fair exchange
protocols. Journal of Computer Security, 2003.

Marta Z. Kwiatkowska, David Parker, and Aistis Simaitis. Strategic analysis of trust models
for user-centric networks. In SR, pages 53-59, 2013.

J. Kwon. Tendermint: Consensus without mining, 2015. URL: https://blog.ethereun.

org/2015/08/01/introducing-casper-friendly-ghost/.

A. Laszka, B. Johnson, and J. Grossklags. When bitcoin mining pools run dry. In Inter-
national Conference on Financial Cryptography and Data Security, pages 63-77. Springer,
2015.

J.F. Mertens and A. Neyman. Stochastic games. [JGT, 10:53-66, 1981.

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

NxtCommunity. Nxt whitepaper, 2014. URL: http://bravenewcoin.com/assets/
Whitepapers/NxtWhitepaper-v122-rev4.pdf.

A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL, pages 179-190.
ACM Press, 1989.

P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems. IEEE Trans-
actions on Control Theory, 77:81-98, 1989.

Meni Rosenfeld. Analysis of bitcoin pooled mining reward systems. arXiv preprint
arXiv:1112.4980, 2011.

A. Sapirshtein, Y. Sompolinsky, and A. Zohar. Optimal selfish mining strategies in bitcoin.
arXiv preprint arXiv:1507.06183, 2015.

L.S. Shapley. Stochastic games. PNAS, 39:1095-1100, 1953.

Y. Sompolinsky and A. Zohar. Bitcoin’s security model revisited. CoRR, abs/1605.09193,
2016.

M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state systems. In
FOCS, pages 327-338. IEEE, 1985.

V. Zamfir. Introducing casper, the friendly ghost, 2015. URL: https://blog.ethereun.

org/2015/08/01/introducing-casper-friendly-ghost/.

11:17

CONCUR 2018

http://money.cnn.com/video/technology/2011/07/18/t_bitcoin_currency.cnnmoney/
http://money.cnn.com/video/technology/2011/07/18/t_bitcoin_currency.cnnmoney/
http://coinmarketcap.com/
http://coinmarketcap.com/
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
http://bravenewcoin.com/assets/Whitepapers/NxtWhitepaper-v122-rev4.pdf
http://bravenewcoin.com/assets/Whitepapers/NxtWhitepaper-v122-rev4.pdf
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/

Bounded Context Switching for Valence Systems

Roland Meyer

TU Braunschweig, Germany
roland.meyer@tu-braunschweig.de
https://orcid.org/0000-0001-8495-671X

Sebastian Muskalla

TU Braunschweig, Germany
s.muskalla@tu-braunschweig.de
https://orcid.org/0000-0001-9195-7323

Georg Zetzsche!

IRIF (Université Paris-Diderot, CNRS), France

zetzsche@irif. fr
https://orcid.org/0000-0002-6421-4388

—— Abstract

We study valence systems, finite-control programs over infinite-state memories modeled in terms
of graph monoids. Our contribution is a notion of bounded context switching (BCS). Valence
systems generalize pushdowns, concurrent pushdowns, and Petri nets. In these settings, our
definition conservatively generalizes existing notions. The main finding is that reachability within
a bounded number of context switches is in NP, independent of the memory (the graph monoid).
Our proof is genuinely algebraic, and therefore contributes a new way to think about BCS. In
addition, we exhibit a class of storage mechanisms for which BCS reachability belongs to P.

2012 ACM Subject Classification Theory of computation — Parallel computing models, Theory
of computation — Formal languages and automata theory, Theory of computation — Logic and
verification

Keywords and phrases valence systems, graph monoids, bounded context switching

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2018.12

Related Version The full version is available on arXiv [47], https://arxiv.org/abs/1803.
09703.

1 Introduction

Bounded context switching (BCS) is an under-approximate verification technique typically
applied to safety properties. It was introduced for concurrent and recursive programs [50].
There, a context switch happens if one thread leaves the processor for another thread to be
scheduled. The analysis explores the subset of computations where the number of context
switches is bounded by a given constant. Empirically, it was found that safety violations
occur within few context switches [48, 45]. Algorithmically, the complexity of the analysis
drops from undecidable to NP [50, 26]. The idea received considerable interest from both
practice and theory, a detailed discussion of related work can be found below.

L Supported by a fellowship of the Fondation Sciences Mathématiques de Paris and partially funded by
the DeLTA project (ANR-16-CE40-0007).

© Roland Meyer, Sebastian Muskalla, and Georg Zetzsche;

licensed under Creative Commons License CC-BY
29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 12; pp. 12:1-12:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:roland.meyer@tu-braunschweig.de
https://orcid.org/0000-0001-8495-671X
mailto:s.muskalla@tu-braunschweig.de
https://orcid.org/0000-0001-9195-7323
mailto:zetzsche@irif.fr
https://orcid.org/0000-0002-6421-4388
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.12
https://arxiv.org/abs/1803.09703
https://arxiv.org/abs/1803.09703
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2

Bounded Context Switching for Valence Systems

Our contribution is a generalization of bounded context switching to programs operating
over arbitrary memories. To be precise, we consider valence systems, finite-control programs
equipped with a potentially infinite-state memory modeled as a monoid [23, 56, 57]. In valence
systems, both the data domain and the operations are represented by monoid elements, and
an operation o will change the current memory value m to the product m - 0. Of course, the
monoid has to be given in some representation.

We consider so-called graph monoids that capture the memories commonly found in
programs, like stacks, counters, and tapes, but also combinations thereof. A graph monoid is
represented by a graph. Each vertex is interpreted as a symbol (say ¢) on which the operations
push (ct) and pop (¢™) are defined. A computation is a sequence of such operations. The
edges of the graph define an independence relation among the symbols that is used to
commute the corresponding operations in a computation. To give an example, if ¢ and d are
independent, the computation d*.c*.d~ acts on two counters ¢ and d and yields the values
1 and 0, respectively. Pushdowns are represented by valence systems over graphs without
edges and concurrent pushdowns by complete m-partite graphs (for m stacks). Petri nets
yield complete graphs, blind counter systems complete graphs with self-loops on all vertices.

Our definition of context switches concentrates on the memory and does not reference the
control flow. This frees us from having to assume a notion of thread, and makes the analysis
applicable to sequential programs as well. We define a context switch as two consecutive
operations in a computation that act on different and independent (in the above sense)
symbols. This conservatively generalizes existing notions and yields intuitive behavior where
a notion of context switch is not defined. When modeling concurrent pushdowns, a context
switch indeed corresponds to switching the stack. For Petri nets and blind counter systems,
it means switching the counter. Note, however, that the restriction can be applied to all
memories expressible in terms of graph monoids.

Our main result shows that reachability within a bounded number of context switches
is in NP, for all graph monoids. The result requires a uniform representation for the
computations over very different memories. We prove that a computation can always be split
into quadratically-many blocks (in the number of context switches) — independent of the
monoid. These blocks behave like single operations in that they commute or form inverses
(in the given monoid). With this decomposition result, we develop an automata-theoretic
approach to checking reachability. A more elaborate explanation of the proof approach can
be found in Section 3, where we have the required terminology at hand.

In addition, we investigate the precise complexity of the problem for individual graph
monoids. While there are graph monoids for which our problem is NP-complete (such as
those corresponding to the setting of concurrent pushdowns), we show that for an important
subclass, those induced by transitive forests, the problem can be solved in polynomial time.
Moreover, we describe those graph monoids for which the problem is NL-complete.

Taking a step back, our approach provides the first algebraic view to context-bounded
computation, and hence enriches the tool box so far containing graph-theoretic interpretations
and logical encodings of computations. We elaborate on the related work.

Related Work. There are two lines of work on BCS that are closely related to ours in that
they apply to various memory structures. Aiswarya [6] and Madhusudan and Parlato [46]
define a graph-theoretic interpretation of computations that manipulate a potentially infinite
memory. They restrict the analysis to computations where graph-based measures like
the split-width or the tree-width are bounded, and obtain general decidability results by
reductions to problems on tree automata. The graph interpretation has been applied to multi

R. Meyer, S. Muskalla, and G. Zetzsche

pushdowns [7], timed systems [9, 10], and has been generalized to controller synthesis [8].
It also gives a clean formulation of existing restrictions and uniformizes the corresponding
analysis algorithms, in particular for [50, 36, 37, 40, 31]. Different from under-approximations
based on split- or tree-width, we are able to handle counters, even nested within stacks. We
cannot handle, however, the queues to which those technique apply. Indeed, our main result is
NP-completeness whereas graph-based analyses may have a higher complexity. Our approach
thus applies to an incomparable class of models. Moreover, it contributes an algebraic view
to bounded computations that complements the graph-theoretic interpretation.

The second line of related work are reductions of reachability under BCS to satisfiability
in existential Presburger arithmetic [26, 30]. Hague and Lin propose an expressive model,
concurrent pushdowns communicating via reversal-bounded counters. Their main result is
NP-completeness, like in our setting. The model does not admit the free combination of stacks
and counters that we support. The way it is presented, we in turn do not handle reversal
boundedness, where the counters may change as long as the mode (increasing/decreasing)
does not switch too often. Our approach should be generalizable to reversal boundedness by
replacing the emptiness test in the free automata reduction of Section 5 by a satisfiability
check, using [53]. The details remain to be worked out. Besides providing an incomparable
class of models, our approach complements the logical view to computations.

Reductions to existential Presburger arithmetic often restrict the set of computations by
an intersection with a bounded language [29], like in [26, 5]. The importance of bounded
languages for under-approximation has been observed by Ganty et al. [28, 25].

Besides the above unifying approaches, there has been a body of work on generalizations
of BCS, towards exploring a larger set of computations [36, 41, 24, 12, 52, 2] and handling
more expressive programming models [37, 14, 31, 16]. An unconventional instantance of
the former direction are restrictions to the network topology [15]. As particularly relevant
instantiations of the latter, the BCS under-approximation has been applied to programs
operating on relaxed memories [13, 4] and programs manipulating data bases [3].

The practical work on BCS concentrated on implementing fast context-bounded analyses.
Sequentialization techniques [51] were successful in bridging the gap between the parallel
program at hand and the available tooling, which is often limited to sequential programs. The
idea is to translate the BCS instance into a sequential safety verification problem. The first
sequentialization for BCS has been proposed in [42], [38] gave a lazy formulation, and [17] a
systematic study of when sequentialization can be achieved. The approach now applies to full
C-programs [33] and has won the concurrency track in the softare verification competition.
Current work is on parallelizing the analysis by further restricting the interleavings and in
this way obtaining instances that are easier to solve [49].

Also with the goal of parallelization, recent works study the multi-variate complexity of
context-bounded analyses. While [26, 27] focus on P and NP, [20] studies fixed-parameter
tractability, and [21] the fine-grained complexity. The goal of the latter work is to achieve
an analysis of comlexity 2¥poly(n), with k a parameter and n the input size. Ideally, this
analysis could be performed by 2* independent threads, each solving a poly-time problem.

Our results contribute to a line of work on valence systems over graph monoids [57].
They have previously been studied with respect to elimination of silent transitions [55], semi-
linearity of Parikh images [19], decidability of unrestricted reachability [58], and decidability
of first-order logic with reachability [23]. See [56] for a general overview.

12:3

CONCUR 2018

12:4

Bounded Context Switching for Valence Systems

2 Valence Systems over Graph Monoids

We introduce the basics on graph monoids and valence systems following [57].

Graph Monoids. Let G = (V,I) be an undirected graph, without parallel edges, but possibly
with self-loops. This means I C V x V, which we refer to as the independence relation,
is symmetric but neither necessarily reflexive nor necessarily anti-reflexive. We use infix
notation and write o1 I o2 for (01,02) € I.

To understand how the graph induces a monoid (a memory), think of the nodes o € V'
as stack symbols or counters. To each symbol o, we associate two operations, a positive
operation o that can be understood as push o or increment o and a negative operation o~
pop o or decrement o. We call + and — the polarity of the operation. By ot we denote an
arbitrary element from {o",0"}. Let O = {o",0™ | 0 € V'} denote the set of all operations.
We refer to sequences of operations from O* as computations. We lift the independence
relation to operations by setting 01% I 0o%F if 01 I 05. We also write vy I vy for vy, v, € OF
if the operations in the computations are pairwise independent, and similar for subsets of
operations Oy I Oy with 01,05 C O.

We obtain the monoid by factorizing the set of all computations. The congruence
will identify computations that order independent operations differently. Moreover, it will
implement that o™ followed by o~ should have no effect, like a push followed by a pop.
Formally, we define & as the smallest congruence (with respect to concatenation) on O*
containing 01F.0oF 2 0y F

The graph monoid for graph G is Mg = O* /~. For a word w € O*, we use [w]y € Mg
to denote its equivalence class. Multiplication is [u]y - [v]m = [u.v]m, which is well-defined as

01T for all 01 I 05 and 0T.0~ = ¢ for all o.

2 is a congruence. The neutral element of Mg is the equivalence class of ¢, 1y = [e]m-

Recall that an element x of a monoid M is called right-invertible if there is y € M such
that x - y = 1,. We lift this notation to O* by saying that w € O* is right-invertible if its
equivalence class [w]y € Mg is.

Valence Systems. Given a graph G, a valence system over the graph monoid Mg is a pair
A = (Q,—), where @Q is a finite set of control states and - C Q x (O U {e}) x Q is a set
of transitions. A transition g — ¢ is labeled by an operation on the memory. We write
1 — q2 if the label is €, indicating that no operation is executed. The size of A is |A]| = |—|.
We use O(A) to access the set of operations that label transitions in A.

A configuration of A is a tuple (¢, w) € QxO* consisting of a control state and the sequence
of storage operations that has been executed. We will restrict ourselves to configurations
where w is right-invertible. More precisely, in (¢, w) a transition ¢; 2y ¢o is enabled if ¢ = ¢
and w.z is right-invertible. In this case, the transition leads to the configuration (go,w.z),
and we write (q,w) — (g2, w.z). A run is a sequence of consecutive transitions.

This restriction to right-invertible configurations is justified by the definition of the
reachability problem for valence systems. It asks, given a valence system with two states
Qinits fin, Whether we can reach g¢g, with neutral memory from g with neutral memory,
i.e. whether there is a run from (ginit, €) to (¢fin, w) with [w]m = 1m. To be able to reach
such a configuration (gpn,w) from some configuration (g, w’), w’ has to be right-invertible.

Examples. Figure 1 depicts various graphs. The graph monoid of each of these graph
models a commonly used storage mechanism, i.e. it represents the behavior of the storage.
(a) Valence systems for this graph are pushdown systems over the stack alphabet {a, b, c}.

R. Meyer, S. Muskalla, and G. Zetzsche

° 1y 1, p2 2 C2

(a) (b) (c) (d)

Figure 1 Various examples of graphs representing commonly used storage mechanism.

(b) Valence systems for this graph can be seen as concurrent pushdown systems with two
stacks, each over a binary alphabet.

(c) Petri nets resp. vector addition systems with four counters/places p1,pa, ps, ps can be
modeled as valence systems for this graph. Since the valence system labels transitions
by single increments or decrements, the transition multiplicities are encoded in unary.

(d) Integer vector addition systems resp. blind counter automata with counters ¢y, ca, c3
(that may assume negative values) can be seen as valence systems for this graph.

What about Queues? Let us quickly comment on why it is hard to fit queues into this
framework. An appealing aspect of valence automata over graph monoids is that by using the
monoid identity as the target for reachability problems (resp. as an acceptance condition [19,
55, 57, 58]), we can realize a range of storage mechanisms by only varying the underlying
monoid. This is because in the mechanisms that we can realize, the actions (or compositions
of actions) that transform the empty storage into the empty storage are precisely those that
equal the identity transformation.

In order to keep this aspect, we would need to construct a monoid whose generators can
be interpreted as queue actions so that a sequence of generators transforms the empty queue

into the empty queue if and only if this sequence evaluates to the identity of the monoid.

This, however, is not possible: Suppose that a and b represent enqueue operations and that
a and b are the corresponding dequeue operations. Each of the action sequences a.a and
b.b transforms the empty queue into the empty queue, but a.b.b.a does not (it is undefined
on the empty queue). Hence, in the monoid, we would want to have aa = 1, bb = 1, but
abba # 1, which violates associativity. Hence, although it is possible to model queue behavior
in a monoid [32, 34, 35], one would need a different target element (or set).

3 Bounded Context Switching

We introduce a notion of bounded context switching that applies to all valence systems, over
arbitrary graph monoids. The idea is to let a new context start with an operation that is

independent of the current computation, and hence intuitively belongs to a different thread.

We elaborate on the notion of dependence.

We call a set of symbols V! C V dependent, if it does not contain 01,09 € V', 01 # 09
with 07 I 0. A set of operations @' C O is dependent if its underlying set of symbols
{o] ot €O oro~ €0} is. A computation is dependent if it is over a dependent set of
operations. A valence system is said to be dependent if the operations labeling the transitions
form a dependent set.

» Definition 3.1. Given w € O7, its context decomposition is defined inductively: If w is
dependent, w is a single context and does not decompose. Else, the first context w; of w is
the (non-empty) maximal dependent prefix of w. Then, the context decomposition of w is

12:5

CONCUR 2018

12:6

Bounded Context Switching for Valence Systems

w = wy,..., W, Where wo, ..., w; is the context decomposition of the rest of the word. The
number of context switches in w, cs(w), is the number of contexts minus one. For technical
reasons, it will be convenient to define cs(e) = —1.

We study reachability under a restricted number of context switches.

Reachability under bounded context switching (BCSREACH)
Given: Valence system A, initial state gy, final state gg,, bound & in unary.
Decide: s there a run from (g, €) to (¢fin, w) so that [wly = 1y and cs(w) < k7

In all abovementioned graph monoids, the restriction has an intuitive meaning that generalizes
existing results. Using the finite states, our notion of BCS also permits a finite shared memory
among the threads. In addition, our definition applies to all storage structures expressible in
terms of graph monoids, including combinations like stacks of counters.

» Lemma 3.2. (BCSREACH) yields the following restriction:

(1) On pushdowns, the notion does not incur a restriction.

(2) On concurrent pushdowns, the notion corresponds to changing the stack k-times and
hence yields the original definition [50].

(3) On Petri nets and blind counters, the notion corresponds to changing the counter k-times.

Our main result is this.
» Theorem 3.3. (BCSREACH) is in NP, independent of the storage graph.

Note that the NP upper bound matches the lower bound in the case of concurrent push-
downs [39]. We consider the proof technique the main contribution of the paper. Different
from existing approaches, which are based on graph interpretations of computations or
encodings into Presburger, ours is of algebraic nature. With an algebraic analysis, given in
Section 4, we simplify the problem of checking whether a given computation reduces to one,
[wlm = 1. We show that such a reduction exists if and only if the computation admits
a decomposition into so-called blocks that reduce to one in a strong sense. There are two
surprising aspects about the block decomposition. First, the strong reduction is defined
by either commuting two blocks or canceling them if they are inverses. This means the
blocks behave like operations, despite being full subcomputations. Second, the decomposition
yields only quadratically-many blocks in the number of context switches (important for
NP-membership). The block decomposition is the main technical result of the paper.

The second step, presented in Section 5, is a symbolic check for whether a computation
exists whose block decomposition admits a strong reduction. We rely on automata-theoretic
techniques to implement the operations of a strong reduction. Key is a saturation based on
which we give a complete check of whether two automata accept blocks that are inverses.

4 Block Decomposition

In this section, we show how to decompose a computation that reduces to the neutral element
into polynomially-many blocks such that the decomposition admits a syntactic reduction to €.
The size of the decomposition will only depend on the number of contexts of the computation
and not on its length. This result will later provide the basis for our algorithm.

To be precise, we restrict ourselves to computations with so-called irreducible contexts.
In the next section, we will prove that the restriction to this setting is sufficient.

R. Meyer, S. Muskalla, and G. Zetzsche

» Definition 4.1. We call a computation w € O* irreducible if it cannot be written as
w = w'.a.wr.baw” such that a = o, b = 0~ and o commutes with every symbol in w;, or
a=o0",b=0",01I 0and o commutes with every symbol in w;.

In other words, a computation is irreducible if we cannot eliminate a pair oT.0~ after using
commutativity. This is in fact the standard definition of irreducibility in the so-called trace
monoid, which we do not introduce here.

Our goal is to decompose irreducible contexts such that the decomposition of all contexts
in the computation admits a syntactic reduction defined as follows.

» Definition 4.2 ([44]). Let wy,ws,...,w, be a sequence of computations in O*. A free
reduction is a finite sequence of applications of the following rewriting rules to consecutive
entries of the sequence that transforms wy,...,w, into the empty sequence.

(FRI) w;,w; — frec € , applicable if [w;.w;lm = 1.
(FR2) w;, w; = free wj, w; , applicable if w; I w;
We call wy,ws, ..., w, freely reducible if it admits a free reduction.

Being freely reducible is a strictly stronger property than [w;.ws. wy]m = 1y It means
that the sequence can be reduced to 1y by block-wise canceling, Rule (FR1), and swapping
whole blocks, Rule (FR2). Indeed, consider 01 7.02™, 027,01~ where no two symbols commute.
We have [017.027.027.017]m = 1y, but the sequence is not freely reducible.

The decomposition of a computation w with [w]y = 1y into its single operations is always
freely reducible. The main result of this section is that for a computation with irreducible
contexts, we can always find a freely-reducible decomposition whose length is independent of
the length of the computation.

» Theorem 4.3. Let w be a computation with [wly = 1y and let w = wy ... wy, be its decom-
position into irreducible contexts. There is a decomposition of each w; = w; 1.W; 2 ... W;m,
such that m; < k — 1 and the sequence

W11, W1,2y -+ Wlmy, W2,1, W22+« , W2 imgy -y Wk, 1, Wk,2, -+« + y Wk my
1s freely reducible.

Note that the number of words occurring in the decomposition is bounded by k2. Theorem 4.3
can be seen as a strengthened version of Lemma 3.10 from [44]: We use the bound on the

number of contexts to obtain a polynomial-size decomposition instead of an exponential one.

However, the proofs of the two results are vastly different.

Constructing a Freely-Reducible Decomposition. The rest of this section will be dedicated

to the proof of Theorem 4.3. Let w € O* be the computation of interest with [w]y = L.

We assume that it has length n and w = w; ... wy is its decomposition into contexts. For
the first part of the proof, we do not require that each w; is irreducible. As [w]y = 1y, w

can be transformed into € by finitely often swapping letters and canceling out operations.

We formalize this by defining transition rules, similar to the definition of a free reduction.

For the technical development, it will be important to keep track of the original position
of each operation in the computation. To this end, we see w as a word over O x {1,...,n},
i.e. we identify the ' operation a of w with the tuple (a,). For ease of notation, we
th gperation of w. The annotation of letters by their original position
will be preserved under the transition rules.

write w(z] for the =z

12:7

CONCUR 2018

12:8

Bounded Context Switching for Valence Systems

» Definition 4.4. A reduction of w is a finite sequence of applications of the following

rewriting rules that transforms w into into €.

(R1) v wlz]wy].w” +peq w' w” | applicable if wz] = o*, wly] = 0~ for some o.

(R2) w'.w(r].wly].w” +peq w'.w” , applicable if wlz] = 0™, wly] = o™ for o I o.

(R3) w'.wlz]wly]w” = req w'wly].wlx].w”, applicable if w(x] € 01, wy] € oo™ for 01 I 09,
01 # 09.

If a word u can be transformed into v using these rules, we write u —7_, v. Note that a

reduction of w to € can be seen as a free reduction of the sequence we obtain by decomposing

w into single operations.

» Lemma 4.5. For a word w, we have [wly = 1y iff w admits a reduction.

Consequently, we may fix a reduction m = w 7, € that transforms w into €. The following
definitions will depend on this fixed .

» Definition 4.6. We define a relation R, that relates positions of w that cancel in =, i.e.
wlz] Re wly] if w.wzlwly]lw” e w' w” or wwly]awz].w” e w w' is used in 7 .
We lift it to infixes of w by defining inductively

t151 Ry sota if there are contexts w; = w;1.t1.51.w;2 and w; = wjq.52.82.w;2

of w such that s;1 R, s and t1 R to .

An infix u of a context w; is called a cluster if there is an infix v’ of a context w; such that
u R, u/. Moreover, if u is a maximal cluster in w;, then it is called a block.

Note that R, is symmetric by definition. In the following, when we write s1 R, so, we will
assume that s; appears before s5 in w, i.e. w = w'.s1.w"”.s0.w"”’. We now show that each
context has a unique decomposition into blocks. Afterwards, we will see that the resulting
block decomposition is the decomposition required by Theorem 4.3.

» Lemma 4.7. FEvery context has a unique factorization into blocks.

To prove the lemma, we show that each position belongs to at least one block and to at most
one block. We call the unique factorization of a context w; into blocks the block decomposition
of w; (induced by 7) and denote it by

Wi = Wi 1y s Wi, -

The block decomposition of w (induced by) is the concatenation of the block decompositions
of its contexts,

W=W1 1y Wimyy---sWk1ye-osWkmy -

Note that if u is a block and uw R, v, then v is a block as well. Therefore, R, is a one-to-one
correspondence of blocks. It remains to prove that the block decomposition of w admits a
free reduction. We will show that we can inductively cancel out blocks pairwise, starting
with an innermost pair. Being innermost is formalized by the following relation.

» Definition 4.8. We define relation <,, on R -related pairs of blocks by (s1 Rr $2) <w
(t1 Ry to) if w = wM t1.w® 51w 5503 t5.0®) for appropriately chosen w®, ... w®.
A pair s; R, s2 minimal wrt. this order is called minimal nesting in w.

R. Meyer, S. Muskalla, and G. Zetzsche

Note that we still assume that all letters are annotated by their position. This means if
w® .. w® exist, they are uniquely determined.

» Lemma 4.9. <., has a minimal nesting.

The next lemma states that s; R so implies that s, is (a representative of) a right inverse
of s;. While we already know that the operations in s; cancel with those in s, it could
ostensibly be the case that [so]wm is a left-inverse to [s1]m.

» Lemma 4.10. If sy R, so, then [s1.S2]m = 1y

» Proposition 4.11. Let m: w —)_, € be a reduction of w. The block decomposition of w
induced by 7 is freely reducible.

Proof. If w = ¢, then there is nothing to do. Otherwise, w decomposes into at least two
blocks. We proceed by induction on the number of blocks. In the base case, let us assume

that w = u, v is the block decomposition, where u R, v has to hold. Using Lemma 4.10,

FR1
u,v Mfme ¢ is the desired free reduction.

In the inductive step, we pick a minimal nesting s; R, so in w. As argued in Lemma 4.9,
this is always possible. We may write

W= W1 ...W;HS1Wiy ... W5 S2Wj, ... Wk .
— ——

context w; context w;

Since s1 R, s, we know that by definition of R, 7 has to move each letter from s; next to
the corresponding letter of sy or vice versa.

Let us consider the effect of m on the infix w;, ... w;,. Without further arguments, the
reduction 7 could cancel some letters inside this infix, and it can swap the remaining letters
with the letters in sy or so. In fact, there can be no canceling within w;, ... w;,, as s1 Ry s2
was chosen to be a minimal nesting: Assume that w;, ...w;, contains some letters a,b
with a R, b. Pick the unique blocks u,v to which they belong, and note that we have
(u Ry v) <y (51 Ry s2), i.e. (u Ry v) <y (51 Rr $2) and (u,v) # (s1, s2), a contradiction to
the minimality of s1 R ss.

Hence, the reductions needs to swap all letters in w;, ... w;, with s; or s; and we have

1
s1 L wi, ... wj, I s3. We construct a free reduction as follows:

W1 ... Wi STWip Wi41 «« - Wj—1W5, S2Wy, - . . Wi

*

(FR2)

free Wy .. Wiy Wi, Wi41 -+ - Wj—1W5, 81852W5, - . . Wi

(FR1) ’
——free W1...W;;Wit1...Wj—1Wj, ... W =W .

The applications of Rule (FR2) are valid as s1 I w;, ... w;, I so holds. The application of
Rule (FR1) to s1,s9 is valid by Lemma 4.10.

Let us denote by w’ the result of these reduction steps. We consider the reduction 7’ that
is obtained by restricting 7 to transitions that work on letters still present in w’. Indeed, 7’
reduces w’ to . In particular, for each operation in w’, the operation it cancels with is the
same in 7 and 7’. Consequently, the relation R, is the restriction of R, to the operation still
occurring in w’, and the block decomposition of w’ induced by 7’ is the block decomposition
of m minus the blocks s1, so that have been removed.

We may apply induction to obtain that w’ admits a free reduction. We prepend the
above reduction steps to this free reduction to obtain the desired reduction for w.

12:9

CONCUR 2018

12:10

Bounded Context Switching for Valence Systems

We emphasize the fact that we have not used in the proof that the w; are contexts. This
is important, as the context decompositions of w and w’ can differ substantially. Potentially,
we have that w consists of four contexts, w = wq, s1, wa, 3, but after canceling s; with so,
w1 and wy merge to a single context, w’ = wi.ws. As we have preserved R, and its induced
block decomposition, this does not hurt the validity of the proof. |

A Bound on the Number of Blocks. It remains to prove the desired bound on the number
of blocks. To this end, we will exploit that each context w; is irreducible.

» Proposition 4.12. Let w be a computation with irreducible contexts and m: w =), , € a
reduction. In the block decomposition of w induced by 7, m; < k — 1 holds for all 3.

We prove the proposition in the form of two lemmas.
» Lemma 4.13. The relation R, never relates blocks from the same context.

The following lemma allows us to bound the number of blocks in a context by the total
number k of contexts.

» Lemma 4.14. For any two contexts w; and w;, there is at most one block in w; that is
R -related to a block in w;.

Proof. Towards a contradiction, assume that some context contains two blocks that are
R.-related to a block from the same context. Let us consider the minimal i such that w;
contains such blocks. Let w; be the context to which the two blocks are related. By the
choice of ¢, w; occurs in w before w; does.

We pick sq,t; as a pair of blocks in w; canceling with blocks from w; with minimal
distance, i.e. w; = w;, syw;,t1w;, where w;, contains no block that is canceled by some block
in w;j. Let s2,t3 be the blocks in w; such that s; R sa, t; R t2. We have to distinguish
two cases, depending on the order of occurrence of s» and ¢3 in w;. In the first case, we have
wj = wj, tawj, sowj, and thus

w=w...W;—1 wilslwiztlwiS Wi41 .- Wj-1 wjltgijSijS Wjg1 .. W -
————— ~—_———

context w; context w;

Our goal is to show that w;, and w;, have to be empty. We then obtain sit; Rr t2s2, a
contradiction to the definition of blocks as maximal R,-related infixes in each context.

We start by assuming that w;, contains some operation b. As 7 reduces w to €, w contains
some operation ¢ that b cancels with. We first note that ¢ cannot be contained in w;, as we
have chosen s1,t; such that w;, contains no block that cancels with a block of w;. Assume
that ¢ is contained in the prefix wy ... w;—1w;,. Reduction 7 either needs to swap b or ¢
with s1, or it needs to swap sz with b (to cancel s1). In any case, by definition of 4,
this means s; contains an operation that commutes with b and is distinct from b. However,
this is impossible, as s; and b are contained in the same context w;, and contexts do not
contain distinct independent symbols. For the same reason, ¢ cannot be contained in the
suffix wj, w1 ... wy.

If ¢ is contained in the infix w;y; ... wj—1, ™ needs to swap b with ¢;, or ¢ with ¢;, or
to with c. In any case, this means ¢; contains an operation that commutes with b and is
distinct from b. However, this is impossible, as t; and b are contained in the same context
w;, and contexts do not contain distinct independent symbols.

Consequently w;, needs to be empty. Let us assume that w;, contains an operation
b, and let ¢ denote the operation it cancels with. As for w;,, we can show that ¢ can

R. Meyer, S. Muskalla, and G. Zetzsche

neither be contained in the prefix w; ... w;—1w;,, nor in the suffix wj,w;41 ... wy, nor in the
infix wit1 ... wj—1. We conclude that wj, is also empty and obtain a contradiction to the
maximality of the blocks as explained above.

It remains to consider the second case, i.e. w; = wj, sowj,taw;, and

w=w...W;—1 wilslwiztlwig Wig1 .- Wji—1 Wy, Sgwjztg’sz Wj41 .. Wk -
————— N—————

context w; context w;

Reduction 7 either needs to swap s; with ¢; or equivalently sy with ¢;. Again by definition
of +,¢4, this means there is an operation a in s; and an operation b in t; such that a I b
and a, b have distinct symbols. Since s1,t; and so,t2 belong to the same context, this is
impossible. |

Lemma 4.13 and Lemma 4.14 together prove Proposition 4.12, finishing the proof of Theo-
rem 4.3.

5 Decision Procedure

Given a valence system A with states gns and gpn, and a bound k, we give an algorithm that
checks whether there is a run from (ginit,€) to (¢fin, w) such that [wlm = Iy and cs(w) < k.

Implementing Irreducibility. The theory we have developed above applies to irreducible
contexts. To determine the irreducible versions of contexts in A, we define a saturation
operation on valence systems. The algebraic idea behind the saturation is the following.

» Lemma 5.1. Let w be a dependent computation. Then w can be turned into an irreducible
computation by applying the following rules: oT.0~ + € and, provided o I 0, 0=.07 €.

To see the lemma, note that in a dependent computation, reducible operations ot and o~
cannot be separated by an operation on a different symbol. Hence, o™ and o~ are placed
side by side (potentially after further reductions). If o I o does not hold, the first rule is
sufficient for the reduction. If o I o does holds, we may find 0~.0" and need both rules.

The saturation operation implements these two rules. Since Lemma 5.1 assumes a
dependent computation, we consider a dependent valence system B = (P, ~). The saturation
is the valence system sat(B) = (P, ~sq:) with the same set of control states. The transitions
are defined by requiring ~ C ~»,,; and exhaustively applying the following rules:

4 _
(1) If py % sat P D 2 sat P2, add an e-transition p; ~=sqas po.

- +
(2) I p1 o0 p 70y D' % sat P2 and 0 I 0, add an e-transition py ~ 4 Po.
Here, p ~%,, p’ denotes that p’ is reachable from p by a sequence of e-transitions.

» Remark. In the worst case, we add |P|” many transitions.

» Lemma 5.2. There is a computation (q1,€) — (g2,u) in B if and only if there is a
computation (q1,€) — (go,v) with v irreducible and u = v in sat(B).

The valence system A = (Q,—) of interest may not be dependent. We will determine
dependent versions of it (one for each context) by restricting to a dependent set of operations
O C O. The restriction is defined by A[0'] = (Q,— N (Q x (O’ U{e}) x Q)).

12:11

CONCUR 2018

12:12

Bounded Context Switching for Valence Systems

Representing Block Decompositions. Theorem 4.3 considers a computation decomposed
into irreducible contexts wy to wy. It shows that each context w; can be further decomposed
into at most k& blocks such that the overall sequence of blocks w1, ..., Wk m, freely reduces
to 1pr. Our goal is to represent the block decompositions of all candidate computations in a
finite way. To this end, we analyze the result more closely.

The decomposition into contexts means there are dependent sets O1,..., O, C O such
that each context w; only uses operations from the set O;. The decomposition into blocks
means there are n = k? computations v; to v, and states g; to g,_1 such that v; leads from
¢i—1 to g; with go = @it and ¢, = gfn. The last thing to note is that a block itself does
not have to be right-invertible. This means we should represent block decompositions by
(non-deterministic finite) automata rather than valence systems.

We define, for each pair of states ¢;,qs € @, each dependent set of operations O,, C O,
and each subset Op; C O,y the automaton

N(QZv qf, Ocona Obl) = gnfa(qia qf, Sat(A[Ocon])[Ole .

Function 2nfa understands the given valence system sat(A[Ocon])[Opi] as an automaton, with
the first parameter as the initial and the second as the final state. The set O, will be the
operations used in the context of interest. As these operations are dependent, sat(A[Ocon))
will include the irreducible versions of all computations in A[O.,,], Lemma 5.2. The second
restriction to Oy, identifies the operations of one block in the context.

With this construction at hand, we define our representation of block decompositions.

» Definition 5.3. A test for the given (BCSREACH)-instance is a sequence Ny, ..., N, of
n = k?* automata N; = N(gi—1,¢, O;,0;;) with j = [£1, g0 = Ginit, and gn = Gfin-

The following lemma links Theorem 4.3 and the notion of tests. With Theorem 4.3, we have
to check whether there is a computation w from ¢, to gan, with c¢s(w) < k whose block
decomposition admits a free reduction. With the analysis above, such a computation exists
iff there is a test N1 to N,, whose automata accept the blocks in the decomposition.

» Lemma 5.4. We have (qinit, €) = (qfin, w) with cs(w) < k and [wly =1 in A iff there is
a test N1,..., N, and computations vi € L(N1) to v, € L(N,,) that freely reduce to ly.

Determining Free Reducibility. Given a test Ny,..., N,, we have to check whether the
automata accept computations that freely reduce to 1p;. To get rid of the reference to single
computations, we now define a notion of free reduction directly on sequences of automata.
This means we have to lift the following operations from computations to automata. On
computations v and v, a free reduction may check commutativity, v I v, and whether the
computations are inverses, [u]y - [v]y = 1y. Consider N,, and N, from Ny, ..., N,.

Rather than checking whether N,, and N, accept computations that commute, the free
reduction on automata will check whether the alphabets are independent, O(N,,) I O(N,).
To see that this yields a complete procedure, note that Lemma 5.4 existentially quantifies over
all tests, and hence all sets of operations to construct N, and N,. If there are computations
u and v that commute in the free reduction, we can construct the automata N, and N, by
restricting to the letters in these words. This will still guarantee u € L(N,,) and v € L(N,).

To check whether N,, and N, accept computations that multiply up to 1y, we rely on
the syntactic inverse. Consider a computation u that contains negative operations o~ only
for symbols with o I o. In this case, the syntactic inverse sinv(u) is defined by reversing the
letters and inverting the polarity of operations. The operation is not defined otherwise. The
following lemma is immediate.

R. Meyer, S. Muskalla, and G. Zetzsche

» Lemma 5.5. Ifu,v € O* are irreducible, dependent with [u]y-[vlm = 1m, then v = sinv(u).

The idea is to admit v as the inverse of u if v = sinv(u) holds. The equality will of course
entail that v is the inverse of u, for any pair of computations. Lemma 5.5 moreover shows
that for irreducible, dependent computations the check is complete. Since N, and N, are
dependent and saturated, it will be complete (Lemma 5.2) to use the syntactic inverse also
on the level of automata.

The definition swaps initial and final state, turns around the transitions, removes the
negative operations on non-commutative symbols, and inverts the polarity of the others.
Formally, the syntactic inverse yields sinv(Ny) = (Q, qu,fin, remswap(— o), qu,init). The
reverse relation contains (go, 0%, q1) € —5 1 iff (¢1,0%¢z) € —,,. Function remswap removes
transitions with operations o~ for which o I o does not hold and inverts the remaining
polarities. The construction guarantees that sinv(L(N,)) = L(sinv(N,)). With this, the
check of whether N,, and N, contain computations v and v with v = sinv(u) amounts to
checking whether N, and sinv(N,) have a computation in common.

» Lemma 5.6. There are u € L(N,,),v € L(N,) with v = sinv(u) iff LIN,)NL(sinv(N,)) #
0.

The analogue of the free reduction defined on automata is the following definition.

» Definition 5.7. A free automata reduction on a test Ny to N, is a sequence of operations
(FRA].) Ni,Nj > free €, if £(N]) N L',(sz'nv(Ni)) #* 0.

(FRA2) Ni,Nj — free Nj,Ni, if O(Nl) I O(NJ)

Since we quantify over all tests, free automata reductions are complete as follows.

» Lemma 5.8. There is a test Ny, ..., N, and computations uy € L(N7) to u,, € L(N,,) that
freely reduce to 1y iff there is a test Ny, ..., N, that admits a free automata reduction to €.

Together, Lemma 5.4 and Lemma 5.8 yield a decision procedure for (BCSREACH). We guess
a suitable test and for this test a suitable free automata reduction. The restrictions, the
saturation, the automata conversion, and the independence and disjointness tests require time
polynomial in |A| + k. Moreover, the free automata reduction contains polynomially-many
(in k) steps. Together, this yields membership in NP and proves Theorem 3.3.

6 Complexity for Fixed Graphs

We have seen that reachability under bounded context switching can always be decided in
NP, even if the graph describing the storage mechanism is part of the input. In this section,
we study how the complexity of the problem depends on the storage mechanism, i.e. the
graph. We fix the graph G and consider the problem BCSREACH(G). We will see that for
some graphs, the complexity is lower than NP: We exhibit a class of graphs G for which
BCSREACH(G) is solvable in polynomial time and we describe those graphs for which the
problem is NL-complete. Of course, for any graph G, the problem BCSREACH(G) is NL-hard,
because reachability in directed graphs is. In some cases, we also have an NL upper bound.

A loop-free graph is a clique if any two distinct vertices are adjacent. By G~ we denote
the graph obtained from G by removing all self-loops. If G~ is a clique, then valence systems
over (G are systems with access to a fixed number of independent counters, some of which
are blind and some of which are partially blind.

» Theorem 6.1. If G= is a clique, then BCSREACH(G) is NL-complete. Otherwise,
BCSREACH(G) is P-hard.

12:13

CONCUR 2018

12:14

Bounded Context Switching for Valence Systems

————Oo— 0

(a) The graph P4. (b) The graph C4.

Figure 2 The graphs P4 and C4.

In some cases, BCSREACH is P-complete. A loop-free graph is a transitive forest if it
is obtained from the empty graph using disjoint union and adding a universal vertex. A
universal vertex is a vertex that is adjacent to all other vertices. Adding one means that we
take a graph G = (V,I) and add a new vertex v ¢ V and make it adjacent to every vertex in
G. Hence, we obtain (VU {v}, I U{{u,v}|ueV}).

» Theorem 6.2. If G~ is a transitive forest, then BCSREACH(G) is in P.

In the area of graph monoids, transitive forests are an important subclass. For many decision
problems, they characterize those graphs for which the problem becomes decidable [58, 43]
or tractable [44]. Intuitively, the storage mechanisms represented by graphs G where G~ is
a transitive forest are those obtained by building stacks and adding counters, see [58, 57].

If G = (V,1) is a graph, then H is an induced subgraph of G if H is isomorphic to a graph
(V' I'), where V' CVand I' ={e € I | e C V'}. See Fig. 2 for the graphs C4 and P4.

» Theorem 6.3. If C4 is an induced subgraph of G—, then BCSREACH(G) is NP-complete.

It is an old combinatorial result that a simple graph is a transitive forest if and only if it
does not contain the two graphs P4 and C4 as induced subgraphs [54]. Hence, if one could
also show that BCSREACH(G) is NP-hard when G~ = P4, then Theorem 6.2 would cover
all cases with polynomial complexity (unless P = NP). However, we currently do not know
whether BCSREACH(P4) is NP-hard.

Proof Sketches. The rest of this section is devoted to sketching the proofs of Theorems 6.1,
6.2, and 6.3. The first step is a reformulation of the problem BCSREACH(G) if G is obtained
from two disjoint graphs Gog and G; by drawing edges everywhere between Gy and Gj.
Suppose G; = (V;, I;) is a graph for ¢ = 0,1 such that V5 N V; = 0. Then the graph Gy x G,
is defined as (V,I), where V =V, UV; and I = I U I; U {{vg,v1} | vo € Vo, v1 € V1 }.

The reformulation also involves valence automata, which can read input. Let G = (V,I)
be a graph and let O = {o",07 | 0 € V}. A walence automaton over G is a tuple
A=(Q,%,q0, FE,qy), where Q is a finite set of states, ¥ is an alphabet, gy € Q is its initial
state, E C Q x (X U{e}) x (OU{e}) x Q is its set of transitions, and g5 € Q is its final
state. A configuration is a tuple (q,u,v), where ¢ € Q, u € ¥*, and v € O*, where v is
right-invertible. Intuitively, a transition (g, s, w, ¢’) changes the state from ¢ to ¢’, reads the
input s, and puts w into the storage. We write (q, u,v) — (¢’,u’,v") if there is a transition
(¢,8,w,q") such that v’ = us and v = vw. For any k € N, the language accepted by A with
at most k context switches is denoted L (A) and defined as the set of all v € o* such that
from (qo, €, ¢€), we can reach (gy, u, w) for some w € O* with [w]y = 1y and es(w) < k. The
following problem will be used to reformulate BCSREACH(G x H).

Intersection under bounded context switching (BCSINT (G, H))
Given: Alphabet 3, valence automata A, B over graphs G, H, resp.,

with input alphabet 3, and bounds k, £, m in unary.
Decide: s the intersection £ (A) N L,(B) N X=" non-empty?

R. Meyer, S. Muskalla, and G. Zetzsche

We are now ready to state the reformulation, which is not difficult to prove.

» Proposition 6.4. If G = Gy x Gy, then BCSREACH(G) is logspace-interreducible with
BCSINT(Gy, G1).

We can use Proposition 6.4 to show that adding a universal vertex does not change the
complexity.

> Proposition 6.5. If G has a universal vertex v, then
BCSREACH(G) reduces to BCSREACH(G \ v) in logspace.

This can be deduced from Proposition 6.4 as follows. If v is a universal vertex, then
G = (G\v) x H, where H is a one-vertex graph. In this situation, a valence automaton
over H is equivalent to a one-counter automaton (OCA). It is folklore that an n-state OCA

accepts a word of length m if and only if it does so with counter values at most O((mn)?) [22].
We can thus compute in logspace a finite automaton for the language R = L£,(B) N L™,

This means, our instance of BCSINT(G \ v, H) reduces to emptiness of L£;(A4) N R. Using
the automaton for R, this is easily turned into an instance of BCSREACH(G \ v). Note
that Proposition 6.5 yields the upper bound of Theorem 6.1. The P-hardness follows from
P-hardness of reachability in pushdown automata.

The P upper bound in Theorem 6.2 follows from Proposition 6.5 and the following.

» Proposition 6.6. If BCSREACH(G,) is in P for i = 0,1, then BCSREACH(Gy U G1) is in
P as well.

Proposition 6.6 is shown using a saturation procedure similar to the one in Section 5. In the
latter, we shortcut paths that read two (complementary) instructions. Here, in contrast, we
find states p, g between which there is an arbitrarily long path that reads instructions w over
one graph G; for i = 0,1 such that [w]y = 1y and e¢s(w) < k. Then, we add an e-transition
between p and q.

Finally, let us comment on the NP-hardness in Theorem 6.3. If G = C4, this is the
well-known NP-hardness of reachability under bounded context switching. If G contains
self-loops, we employ Proposition 6.4: If G~ = C4, then G = Gg x G; for some graphs
where each G; contains two non-adjacent vertices. In this case, it is known that that valence
automata over G; accept the same languages as those over G; [58, 57]. Therefore, the
formulation in terms of BCSINT(Gy, G) allows us to conclude hardness.

7 Conclusion

We have shown that for every storage represented by a graph monoid, reachability under
bounded context switches (BCSREACH) is decidable in NP. To this end, we show that
after some preprocessing in a saturation procedure, any computation with bounded context
switches decomposes into quadratically many blocks. These blocks then cancel and commute
with each other so as to reduce to the identity element. Thus, one can guess a decomposition
into blocks and verify the cancellation and commutation relations among them.

For the subclass of graph monoids whose underlying simple graph is a transitive forest, we
have provided a polynomial-time algorithm (Theorem 6.2). However, we leave open whether
there are other graph monoids for which the problem is in P.

One has NP-hardness in the case that the underlying simple graph contains C4 as an
induced subgraph, which corresponds to the classical case of bounded context switching in
concurrent recursive programs. Since transitive forests are precisely those simple graphs

12:15

CONCUR 2018

12:16

Bounded Context Switching for Valence Systems

that contain neither C4 nor P4 as induced subgraphs [54], showing NP-hardness for P4
would imply that Theorem 6.2 captures all graphs with polynomial-time algorithms (unless
P = NP). Unfortunately, the known hardness techniques for problems involving graph groups
or Mazurkiewicz traces over P4 [1, 43, 44, 58] do not seem to apply.

Moreover, there is a variety of under-approximations for concurrent recursive programs [36,

11, 18, 41, 24, 12, 52]. Tt appears to be a promising direction for future research to study

generalizations of these under-approximations to valence systems.

—— References

1

10

11

12

13

14

15

16

17

18

1J. J. Aalbersberg and H. J. Hoogeboom. Characterizations of the decidability of some
problems for regular trace languages. Mathematical Systems Theory, 22(1):1-19, 1989.

P. A. Abdulla, C. Aiswarya, and M. F. Atig. Data multi-pushdown automata. In CONCUR,
volume 85 of LIPIcs, pages 38:1-38:17. Dagstuhl, 2017.

P. A. Abdulla, C. Aiswarya, M. F. Atig, M. Montali, and O. Rezine. Recency-bounded
verification of dynamic database-driven systems. In PODS, pages 195-210. ACM, 2016.

P. A. Abdulla, M. F. Atig, A. Bouajjani, and T. P. Ngo. Context-bounded analysis for
POWER. In TACAS, volume 10206 of LNCS, pages 56-74. Springer, 2017.

P. A. Abdulla, M. F. Atig, R. Meyer, and M. S. Salehi. What’s decidable about availability
languages? In FSTTCS, volume 45 of LIPIcs, pages 192-205. Dagstuhl, 2015.

C. Aiswarya. Verification of communicating recursive programs via split-width. PhD thesis,
Ecole normale supérieure de Cachan, France, 2014.

C. Aiswarya, P. Gastin, and K. N. Kumar. MSO decidability of multi-pushdown systems
via split-width. In CONCUR, volume 7454 of LNCS, pages 547-561. Springer, 2012.

C. Aiswarya, P Gastin, and K. N. Kumar. Controllers for the verification of communicating
multi-pushdown systems. In CONCUR, volume 8704 of LNCS, pages 297-311. Springer,
2014.

S. Akshay, P. Gastin, and S. N. Krishna. Analyzing timed systems using tree automata. In
CONCUR, volume 59 of LIPIcs, pages 27:1-27:14. Dagstuhl, 2016.

S. Akshay, P. Gastin, S. N. Krishna, and I. Sarkar. Towards an efficient tree automata
based technique for timed systems. In CONCUR, volume 85 of LIPIcs, pages 39:1-39:15.
Dagstuhl, 2017.

M. F. Atig, B. Bollig, and P. Habermehl. Emptiness of multi-pushdown automata is 2etime-
complete. In DLT, volume 5257 of LNCS, pages 121-133. Springer, 2008.

M. F. Atig, A. Bouajjani, K. N. Kumar, and P. Saivasan. On bounded reachability analysis
of shared memory systems. In FSTTCS, volume 29 of LIPIcs, pages 611-623. Dagstuhl,
2014.

M. F. Atig, A. Bouajjani, and G. Parlato. Getting rid of store-buffers in TSO analysis. In
CAV, volume 6806 of LNCS, pages 99-115. Springer, 2011.

M. F. Atig, A. Bouajjani, and S. Qadeer. Context-bounded analysis for concurrent pro-
grams with dynamic creation of threads. In TACAS, volume 5505 of LNCS, pages 107-123.
Springer, 2009.

M. F. Atig, A. Bouajjani, and T. Touili. On the reachability analysis of acyclic networks
of pushdown systems. In CONCUR, volume 5201 of LNCS, pages 356-371. Springer, 2008.
A. Bouajjani and M. Emmi. Bounded phase analysis of message-passing programs. STTT,
16(2):127-146, 2014.

A. Bouajjani, M. Emmi, and G. Parlato. On sequentializing concurrent programs. In SAS,
volume 6887 of LNCS, pages 129-145. Springer, 2011.

L. Breveglieri, A. Cherubini, C. Citrini, and S. Crespi-Reghizzi. Multi-push-down languages
and grammars. Int. J. Found. Comput. Sci., 7(3):253-292, 1996.

R. Meyer, S. Muskalla, and G. Zetzsche

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

P. Buckheister and Georg Zetzsche. Semilinearity and context-freeness of languages ac-
cepted by valence automata. In MFCS, volume 8087 of LNCS, pages 231-242. Springer,
2013.

P. Chini, J. Kolberg, A. Krebs, R. Meyer, and P. Saivasan. On the complexity of bounded
context switching. In ESA, volume 87 of LIPIcs, pages 27:1-27:15. Dagstuhl, 2017.

P. Chini, R. Meyer, and P. Saivasan. Fine-grained complexity of safety verification. In
TACAS, volume 87 of LNCS. Springer, 2018.

D. Chistikov, W. Czerwinski, P. Hofman, M. Pilipczuk, and M. Wehar. Shortest paths in
one-counter systems. In FOSSACS, pages 462-478, 2016.

E. D’Osualdo, R. Meyer, and G. Zetzsche. First-order logic with reachability for infinite-
state systems. In LICS, pages 457-466. ACM, 2016.

M. Emmi, S. Qadeer, and Z. Rakamaric. Delay-bounded scheduling. In POPL, pages
411-422. ACM, 2011.

J. Esparza, P. Ganty, and R. Majumdar. A perfect model for bounded verification. In
LICS, pages 285-294. IEEE, 2012.

J. Esparza, P. Ganty, and T. Poch. Pattern-based verification for multithreaded programs.
ACM ToPLaS, 36(3):9:1-9:29, 2014.

F. Furbach, R. Meyer, K. Schneider, and M. Senftleben. Memory-model-aware testing: A
unified complexity analysis. ACM Trans. Embedded Comput. Syst., 14(4):63:1-63:25, 2015.
P. Ganty, R. Majumdar, and B. Monmege. Bounded underapproximations. In CAV, volume
6174 of LNCS, pages 600—614. Springer, 2010.

S. Ginsburg and E. Spanier. Bounded ALGOL-like languages. Trans. Amer. Math. Soc.,
113:333—368, 1964.

M. Hague and A. W. Lin. Synchronisation- and reversal-bounded analysis of multithreaded
programs with counters. In CAV, volume 7358 of LNCS, pages 260-276. Springer, 2012.
A. Heussner, J. Leroux, A. Muscholl, and G. Sutre. Reachability analysis of communicating
pushdown systems. LMCS, 8(3), 2012.

Martin Huschenbett, Dietrich Kuske, and Georg Zetzsche. The monoid of queue actions.
Semigroup Forum, 95:475-508, 2017.

O. Inverso, T. L. Nguyen, B. Fischer, S. La Torre, and G. Parlato. Lazy-CSeq: A context-
bounded model checking tool for multi-threaded C-programs. In ASE, pages 807-812. IEEE,
2015.

C. Kécher. Rational, recognizable, and aperiodic sets in the partially lossy queue monoid.
In STACS, LIPIcs, pages 45:1-45:14. Dagstuhl, 2018.

C. Kécher and D. Kuske. The transformation monoid of a partially lossy queue. In CSR,
volume 10304 of Lecture Notes in Computer Science, pages 191-205. Springer, 2017.

S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive languages.
In LICS, pages 161-170. IEEE, 2007.

S. La Torre, P. Madhusudan, and G. Parlato. Context-bounded analysis of concurrent
queue systems. In TACAS, volume 4963 of LNCS, pages 299-314. Springer, 2008.

S. La Torre, P. Madhusudan, and G. Parlato. Reducing context-bounded concurrent reach-
ability to sequential reachability. In CAV, volume 5643 of LNCS, pages 477-492. Springer,
2009.

S. La Torre, P. Madhusudan, and G. Parlato. The language theory of bounded context-
switching. In LATIN, pages 96-107. Springer, 2010.

S. La Torre, P. Madhusudan, and G. Parlato. Model-checking parameterized concurrent
programs using linear interfaces. In CAV, volume 6174 of LNCS, pages 629-644. Springer,
2010.

12:17

CONCUR 2018

12:18

Bounded Context Switching for Valence Systems

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56
57

58

S. La Torre and M. Napoli. Reachability of multistack pushdown systems with scope-
bounded matching relations. In CONCUR, volume 6901 of LNCS, pages 203-218. Springer,
2011.

A. Lal and T. W. Reps. Reducing concurrent analysis under a context bound to sequential
analysis. In CAV, volume 5123 of LNCS, pages 37-51. Springer, 2008.

M. Lohrey and B. Steinberg. The submonoid and rational subset membership problems for
graph groups. Journal of Algebra, 320(2):728-755, 2008.

M. Lohrey and G. Zetzsche. Knapsack in graph groups. Theory of Computing Systems,
62:192-246, 2018.

S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: A comprehensive study on
real world concurrency bug characteristics. In ASPLOS, pages 329-339. ACM, 2008.

P. Madhusudan and G. Parlato. The tree width of auxiliary storage. In POPL, pages
283-294. ACM, 2011.

R. Meyer, S. Muskalla, and G. Zetzsche. Bounded Context Switching for Valence Systems.
ArXiv e-prints, 2018. arXiv:1803.09703.

M. Musuvathi and S. Qadeer. Iterative context bounding for systematic testing of multi-
threaded programs. In PLDI, pages 446-455. ACM, 2007.

T. L. Nguyen, P. Schrammel, B. Fischer, S. La Torre, and G. Parlato. Parallel bug-finding
in concurrent programs via reduced interleaving instances. In ASE, pages 753-764. IEEE,
2017.

S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In
TACAS, volume 3440 of LNCS, pages 93—107. Springer, 2005.

S. Qadeer and D: Wu. KISS: Keep it simple and sequential. In PLDI, pages 14-24. ACM,
2004.

E. Tomasco, O. Inverso, B. Fischer, S. La Torre, and G. Parlato. Verifying concurrent pro-
grams by memory unwinding. In TACAS, volume 9035 of LNCS, pages 551-565. Springer,
2015.

K. N. Verma, H. Seidl, and T. Schwentick. On the complexity of equational Horn clauses.
In CADE, volume 3632 of LNCS, pages 337-352. Springer, 2005.

E. S. Wolk. A note on "the comparability graph of a tree". Proceedings of the American
Mathematical Society, 16(1):17-20, 1965.

G. Zetzsche. Silent transitions in automata with storage. In ICALP, volume 7966 of LNCS,
pages 434-445. Springer, 2013.

G. Zetzsche. Monoids as storage mechanisms. Bulletin of the EATCS, 120:237-249, 2016.
G. Zetzsche. Monoids as Storage Mechanisms. PhD thesis, Technische Universitit Kaiser-
slautern, 2016.

G. Zetzsche. The emptiness problem for valence automata over graph monoids, 2018. To
appear in Information and Computation.

http://arxiv.org/abs/1803.09703

Alternating Nonzero Automata

Paulin Fournier
LS2N, Université de Nantes, France

Hugo Gimbert
CNRS, LaBRI, Université de Bordeaux, France

—— Abstract

We introduce a new class of automata on infinite trees called alternating nonzero automata, which
extends the class of non-deterministic nonzero automata. The emptiness problem for this class
is still open, however we identify a subclass, namely limited choice, for which we reduce the
emptiness problem for alternating nonzero automata to the same problem for non-deterministic
ones, which implies decidability. We obtain, as corollaries, algorithms for the satisfiability of a
probabilistic temporal logic extending both CTL* and the qualitative fragment of pCTL*.

2012 ACM Subject Classification Theory of computation — Complexity theory and logic
Keywords and phrases zero-automata, probabilities, temporal logics

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2018.13

Funding Both authors received support for this work from the French ANR projet “Stoch-MC”.

Acknowledgements The authors wish to thank Mikotaj Bojanczyk, Henryk Michalewski and
Matteo Mio for interesting discussions on TMSO-+ZERO as well as zero- and nonzero-automata;
and the referees for their helpful comments.

1 Introduction

The theory of automata on infinite trees is rooted in Rabin’s seminal theorem which estab-
lishes an effective correspondence between the monadic second order logic (MSO) theory
of the infinite binary tree and the non-deterministic automata on this tree [18]. In this
correspondence, the satisfiability of the logic is dual to the emptiness of the algorithm and
both these algorithmic problems are mutually reducible to one another.

This elegant setting has been partially extended to probabilistic logics [13, 6, 14, 15, 2] and
automata with probabilistic winning conditions [18,17, 1, 7, 2]. In this paper we make another
step in this direction: we show a correspondence between the logic CTL*[3,V, P~¢, P_;] and
nonzero alternating automata with limited choice. Moreover we show that the emptiness
problem of the automata is decidable and obtain as a corollary the decidability of the
satisfiability of the logic.

Automata. Alternating nonzero automata are an alternating version of non-deterministic
nonzero automata introduced in [3], which themselves are equivalent to non-deterministic
zero automata introduced in [2].

An alternating nonzero automaton takes as input a binary tree. Some states of the
automaton are controlled by Eve, while other states are controlled by Adam, and the player
controlling the current state chooses the next transition. Some transitions are local transitions,
in which case the automaton stays on the same node of the input tree while other are split
© Paulin Fournier and Hugo Gimbert;

oY licensed under Creative Commons License CC-BY
29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 13; pp. 13:1-13:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2

Alternating Nonzero Automata

transitions in which case the automaton proceeds to the left son or to the right son of the
current node with equal probability %

This interaction between Eve and Adam is seen as a game where Eve and Adam play
according to some strategies. Once the strategies are fixed, one obtains a Markov chain whose
trajectories are all possible plays consistent with the strategies. The winner is determined
with respect to winning conditions introduced in [2, 3], using a total order on the set of
states (used to compute the limsup of a play which is the largest state seen infinitely often
during the play) and three subsets of states, respectively called the sure, almost-sure and
positive states. Eve wins if and only if the three acceptance conditions hold:

sure winning: every play has limsup in sure states; and
almost-sure winning: almost-every play has limsup in almost-sure states; and

positive winning: whenever the play enters a positive state there is positive probability that
the play never exits positive states.
The input tree is accepted by the alternating automaton iff Eve has a winning strategy.

Alternating nonzero automata generalize both classical alternating automata with parity
conditions [8, 16] (when all states are almost-sure and positive) as well as non-deterministic
nonzero automata [3] (in case Eve controls all states).

We do not know whether the emptiness problem for these automata is decidable or not,
however we show that the answer is positive for the subclass of alternating nonzero automata
with limited choice for Adam. In these automata, some choices of Adam are canonical, at
most one in every state, and Adam may perform at most a bounded number of non-canonical
choices during a single play.

First, we show that the emptiness problem for alternating nonzero automata with limited
choice for Adam is in NEXPTIMEN co-NEXPTIME (Theorem 22). The proof is an EXPTIME
reduction to the emptiness problem for non-deterministic automata. This proof relies on the
positional determinacy of the acceptance games for Eve (Lemma 10) and a characterization
of positional winning strategies for Eve (Lemmas 12, 13 and 17).

Second, we show that in the particular case where the sure winning condition is a Biichi
condition, emptiness of non-deterministic nonzero automata is in PTIME (Theorem 3). It
follows that, in case of a trivial sure winning condition, emptiness of alternating nonzero
automata with limited choice for Adam is in EXPTIME (Theorem 22).

Logic. The temporal logic CTL* introduced by Emerson and Halpern [9] and its fragments
CTL and LTL are prominent tools to specify properties of discrete event systems.

A variant of CTL* is the logic pCTL* [11] in which the universal and existential path
quantifiers are replaced by probabilistic path quantifiers which set upper or lower bounds on
the probability of a path property in a Markov chain. For example the formula Pzé (FGa)
specify that with probability at least % eventually all the visited states are labelled with a.
To our knowledge, the satisfiability problem for this logic is an open problem.

However, for the qualitative fragment of pCTL*, where only two probabilistic quantifiers
P.o and P_; are available, the satisfiability is decidable [6]. In a variant of pCTL* called
pECTL the path subformula are replaced by deterministic Biichi automaton, and the
satisfiability of the qualitative fragment is 2-EXPTIME complete [6], the same complexity as
for CTL* [19].

Remark that neither pCTL* nor pECTL includes the path operators V and 3, thus these
two logics are incomparable in expressivity with CTL*. For example, on the alphabet {a,b},
the CTL* formula ¢y = VFG—b, and the pCTL* formula ¢o = P_;(FG—b) specify, that

P. Fournier and H. Gimbert

every branch, respectively almost-every branch, of the model has finitely many b. Neither ¢
can be expressed in pCTL* nor ¢5 can be expressed in CTL*.

In this paper, we consider the logic CTL*[3,V, P~(,P—1] which is an extension of both
CTL* and qualitative pCTL*and establish several properties of this logic.

The satisfiability by an arbitrary Y-labelled Markov chain reduces to the satisfiability by
(2 U {o})-labelled a binary tree with o a fresh letter (Theorem 24).

The satisfiability of CTL*[3,V, Ps¢,P—1] reduces to the emptiness of alternating nonzero

automata with finite choice for Adam thus it is decidable in 3-NEXPTIMENCO-3-NEXPTIME.

In the variant ECTL[3,V, Psg,P=1], where path formula are deterministic Biichi automata,
this reduction gives a 2-NEXPTIMEN co-2-NEXPTIME complexity and for the fragment
CTL[3,V,P~¢,P—1] the complexity is NEXPTIMEN co-NEXPTIME (Theorem 23).

For the fragments CTL*[Ps,P—;], ECTL[Ps(,P—1] and CTL[Ps¢,P—;] (i.e. qualitative
pCTL*, pECTL and pCTL respectively), the Fy acceptance condition of the automaton is a
Biichi condition, and we retrieve the optimal complexity bounds of [6, 5], i.e. 3-EXPTIME,
2-EXPTIME and EXPTIME, respectively.

A motivation for the study of alternating nonzero automata is the recent research on the
logic TMSO-+ZERO. The logic TMSO+ZERO is an extension of Monadic second-order logic on
infinite binary trees with a new probabilistic operator [14, 15, 2]. The satisfiability of this
logic is reducible to the emptiness problem for nonzero non-deterministic automata [2] which
is decidable [3]. Since CTL*[3,V,Pso,P_1] is a fragment of TMSO+ZERO, this result implies

that the satisfiability of CTL*[3,V,Psq,P—1] is decidable with non-elementary complexity.

The reduction to the emptiness of alternating nonzero automata given in the present paper
provides a better complexity bound.

2 Alternating nonzero automata

An alternating nonzero automaton on a finite alphabet ¥ is a finite-state machine processing
binary trees, equipped with a game semantics: every tree is either accepted or rejected by
the machine depending on who wins the acceptance game on the tree.

Trees. A X-labelled binary tree (or X-tree for short) is a function ¢ : {0,1}* — X. An
element n € {0,1}* is called a node of the tree and has exactly two sons n0 and nl. We
use the usual notions of ancestors and descendants. A node n' is (strictly) below n if n is a
(strict) prefix of n’. A path in the tree is a finite or infinite sequence of nodes ng,nq, ... such
that for every k the node ng11 is a son of the node n.

A branch b is an element of {0,1}*. If a node n is a prefix of b we say that n belongs to b
or that b visits n. The set of branches is equipped with the uniform probability measure,
denoted p, corresponding to an infinite random walk taking at each step either direction 0 or
1 with equal probability %

A set of nodes T' C {0,1}* is a subtree if it contains a node r, called the root of T, such
that every node n € T is a descendant of v, T' contains all nodes on the path from r to n. A
subtree is full if T' contains all descendants of r.

Automata. An alternating nonzero automaton on alphabet X is presented as a tuple
A = (Qv q0, QEv QA7 _>7 FV7 Flv F>O) Where:
@ is a finite set of states, equipped with a total order <, containing the initial state qq.

(QE,Q4a) is a partition of @ into Eve and Adam states.

13:3

CONCUR 2018

13:4

Alternating Nonzero Automata

— is the set of transitions, there are two types of transitions: local transitions which are
tuples (g, a,q') with ¢,¢' € Q and a € 3, denoted ¢ —, ¢; and split transitions which
are tuples (¢, a, o, q1) € @ x X x Q*, denoted ¢ —4 (g0, q1)-

Fy, Fy and Fs are subsets of () defining the acceptance condition.

The input of such an automaton is an infinite binary tree ¢ : {0,1}* — . The source
(resp. the target) of a local transition ¢ —, ¢’ is ¢ (resp ¢’). The source (resp. the targets) of
a split transition ¢ —4 (go,q1) is ¢ (resp go and ¢1). A state is said to be controlled by Eve
or Adam whether it belongs to Qg or @ 4. The controller of a transition is the controller of
its source state. We always assume that

(HC) the automaton is complete: for every state ¢ and letter a there is at least one
transition with source ¢ on a.

The (HC) condition makes it easier to define the game semantics of the automaton.

Game semantics. The acceptance of an input binary tree by the automaton is defined by
mean of a stochastic game between Eve and Adam called the acceptance game.

The game of acceptance of a binary tree ¢t : {0,1}* — 3 by A is a two-player stochastic
game with perfect information played by two strategic players Eve and Adam. The vertices
of the game are all pairs (n,q) where n € {0,1}* is a node of the infinite binary tree and ¢ is
a state of the automaton. The game starts in the initial vertex (e, o).

Each vertex (n, q) is controlled by either Eve or Adam depending on whether ¢ € Qg or
q € Q4. The controller of the current state chooses any transition with source ¢ and letter
t(n). Intuitively, depending on whether the transition is a local or a split transition, the
automaton stays on the current node n or move with equal probability % to either node n0
or nl. If the transition is a local transition ¢ —(,) ¢’, the new vertex of the game is (n,q’).
If the transition is a split transition g —(,) (ro,r1) then the new vertex is chosen randomly
with equal probability % between vertices (n0,rg) or (nl,r1).

A play is a finite or infinite sequence of vertices 7 = (ng, qo)(n1,q1).... We denote
first(7) = (no, go) and last(w) = (n, q,) (for finite plays).

A strategy for Eve associates with every finite play whose last vertex is controlled by
Eve a transition with source g, and letter ¢(ny) (such a transition always exists since the
automaton is complete). Strategies for Adam are defined in a symmetric way. Strategies of
Eve are usually denoted o while strategies for Adam are denoted .

Measuring probabilities. Once both players Eve and Adam have chosen some strategies o
and 7, this defines naturally a non-homogenous Markov chain whose states are the vertices
of the game. According to Tulcea theorem, if we equip the set of plays with the o-field
generated by cylinders, then there is a unique probability measure P?” such that after a
play m = (no,qo) - - - (ng, qx), if 6(7) denotes the transition chosen by Eve or Adam after 7
(depending on whether g, € Qg or gx € Q4), the probability to go to vertex (ng41,qr+1) is:

1 if 6(m) is the local transition gx —¢(ny) Gr+1

nk+1 = nk0 and qx41 =10 ;07

ol

if §(m) is the split transition gx —4(n,,) (70,71) and
nk+1 = ngl and g1 =11 .

0 otherwise .

This way we obtain a probability measure P?" on the set of infinite plays.

P. Fournier and H. Gimbert

Consistency and reachability. If a finite play 7 is the prefix of another finite or infinite play
7' we say that 7’ is a continuation of w. A finite 7 play is consistent with a strategy o or, more
simply, is a o-play if there exists a strategy 7 such that = may occur in the non-homogenous
Markov chain induced by ¢ and 7. In this case, the number N of split transitions which
occurred in 7 is exactly the depth of the node of last(w) and P?7 ({ continuations of = }) =

2=N_ A vertex w is o-reachable if there exists a finite o-play from the initial vertex to w.

An infinite play is consistent with o if all its prefixes are.

Bounded vs. unbounded plays. There are two kinds of infinite plays: bounded plays are
plays whose sequence of nodes is ultimately constant, or equivalently which ultimately use
only local transitions while unbounded plays use infinitely many split transitions.

Bounded plays consistent with ¢ and 7 are the atoms of P?": a play 7 is bounded and
consistent with o and 7 iff P>7({x}) > 0.

In this paper we will focus on subclasses of automata whose structural restrictions forbids
the existence of bounded plays (see the (NLL) hypothesis below).

So in practice, every play m = (ng,qo)(n1,q1) ... we consider will visit a sequence of
nodes ng, ny,na, ... which enumerates all finite prefixes of an infinite branch b € {0,1}* of
the binary tree, in a weakly increasing order: for every index i either n;y; = n; (the player
controlling (n;, ¢;) played a local transition) or n;1; = n;d for some d € {0,1} (the player
controlling (n;, g;) played a split transition and the play followed direction d).

Winning strategies and language. Whether Eve wins the game is defined as follows. The
limsup of an infinite play (ng,qo)(n1,q1) ... is limsup, ¢; i.e. the largest automaton state
visited infinitely often. An infinite play 7’ is a positive continuation of 7 if all states of 7’
visited after m belongs to FLg.
Eve wins with o against 7 if the three following conditions are satisfied.
Sure winning. Every play consistent with ¢ and 7 has limsup in Fy.
Almost-sure winning. Almost-every play consistent with ¢ and 7 has limsup in F}.
Positive winning. For every finite play 7 consistent with ¢ and 7 whose last state belongs
to FLg, the set of positive continuations of = has nonzero probability.

A Biichi condition is a set of states R C () which is upper-closed with respect to < .

Then a play has limsup in R iff it visits R infinitely often.
We say that Eve wins the acceptance game if she has a winning strategy i.e. a strategy
which wins the acceptance game against any strategy of Adam.

» Definition 1 (Acception and language). A binary tree is accepted by the automaton if Eve
has a winning strategy in the acceptance game. The language of the automaton is the set of
its accepted trees.

We are interested in the following decision problem:
Emptiness problem: Given an automaton, decide whether its language is empty or not.
Alternation and the use of game semantics makes the following closure properties trivial.

» Lemma 2 (Closure properties). The class of languages recognized by alternating nonzero
automata is closed under union and intersection.

Normalization. We assume all automata to be normalized in the sense where they satisfy:
(N1) every split transition whose source is in F has at least one successor in Fsg; and
(N2) every local transition whose source is in Fx(has its target in Fsq as well.

13:5

CONCUR 2018

13:6

Alternating Nonzero Automata

We can normalize an arbitrary automaton by removing all transitions violating (N1)
and (IN2). This will not change the language because such transitions are never used by
positively winning strategies of Eve. This normalization could lead to a violation of the
completeness hypothesis, (HC). In this case we can also delete the corresponding states
without modifying the language of the automaton.

If one would drop (HC) then the game graph may have dead-ends and the rules of the
game would have to be extended to handle this case, typically the player controlling the
state in the dead-end loses the game. This extension does not bring any extra expressiveness
to our model of automaton, we can always make an automaton complete by adding local
transitions leading to losing absorbing states.

Moreover, we assume:

(N3) F; CFy .
This is w.l.o.g. since replacing F; with F} N Fy does not modify the language of the automaton.

Non-deterministic nonzero automata Non-deterministic zero automata were introduced
in [2], followed by a variant of equivalent expressiveness, non-deterministic nonzero au-
tomata [4, Lemma 5]. In those automata, Adam is a dummy player, i.e. Q4 = 0 and
moreover all transitions are split-transitions.

» Theorem 3. The emptiness problem for non-deterministic nonzero automata is in NPNCONP.
If Fy is a Biichi condition then emptiness can be decided in PTIME.

The first statement is established in [3, Theorem 3]. The second statement is proved in
the appendix. The proof idea is as follows. Assume the alphabet to be a singleton, which
is w.l.o.g. for non-deterministic automata. The existence of a winning strategy for Eve
can be witnessed by a subset W C) which contains the initial state and two positional
winning strategies 01,09 : W — W x W. Strategy o1 should be almost-surely and positively
winning while strategy o2 should be surely winning. These two strategies can be combined
into a (non-positional) strategy for Eve which satisfies the three objectives, thus witnesses
non-emptiness of the automaton.

3 An example: the language of PUCE trees

A {a, b}-tree is positively ultimately constant everywhere (PUCE) if for every node n,
i) the set of branches visiting n and with finitely many a-nodes has > 0 probability; and
ii) the set of branches visiting n and with finitely many b-nodes has > 0 probability.

No regular tree is PUCE. There are two cases. If the regular tree has a node n which is
the root of a full subtree labelled with a single letter (either a or b) then clearly the tree is
not PUCE. Otherwise, by a standard pumping argument, every node labelled a (resp. b) has
a descendant labelled b (resp. a) at some depth < |S|, where S is the set of states of the
regular tree. But in this second case from every node n there is probability at least ﬁ to
reach a descendant with a different label, thus almost-every branch of the regular tree has
infinitely many a and b, and the tree is not PUCE either.

There exists a PUCE tree. However it is possible to build a non-regular tree ¢t whose every
node satisfies both i) and 7). For that, we combine together two partial non-regular trees.
Let H C {0,1}* be a subset of nodes such that a) the set of branches which visit no node in

P. Fournier and H. Gimbert

H has probability %7 b) every node in {0,1}* is either a descendant or an ancestor of a node
in H, but not both (H is a cut).

To obtain ¢, we combine two partial trees t, and ¢, whose domain is {0,1}* \ (H{0,1}")
and t, is fully labeled with a while ¢; is fully labelled with b. Since H is a cut, the nodes in
H are exactly the leaves of t, and t;,. To obtain ¢, we plug a copy of t, on every leaf of ¢,
and a copy of t, on every leaf of ¢,. Then from every node, according to b) there is non-zero
probability to enter either ¢, or ¢, and according to a) there is non-zero probability to stay
in there forever.

An automaton recognizing PUCE trees. We can design one automaton for each of the
two conditions and combine them together with an extra state controlled by Adam (cf proof
of Lemma 2). We provide an alternating nonzero automaton checking condition ii), the
automaton for condition i) is symmetric. The state space is: Q@ = {s < w < g < t}.

Intuitively, Adam uses states s to search for a node n from which condition ii) does not
hold. Once on node n, Adam switches to state w and challenges Eve to find a path to an
a-node n’ which is the root of an a-labelled subtree T,, of > 0 probability. For that Eve
navigates the tree in state w to node n’, switches to state g on node n’, stays in g as long as
the play stays in T, and switches definitively to § whenever leaving T;,.

Formally, the only state controlled by Adam is s, i.e. @4 = {s}, from which Adam can
choose, independently of the current letter, between two split transitions s — (s,f) and
s — (#,s) and a local transition s — w. The state f is absorbing. From state w, Eve can
guess the path to n’ using the split transitions: w — (f,w) w — (w,f) .

Once n' is reached Eve can switch to state g with a local transition w — g and, whenever
the current node is an a-node, she can choose among three split transitions: g —, (g,9) ¢ —a
(9,8) g —a (§,9) to identify T,.

The acceptance conditions are: Fy = F; = Q \ {w} and Fso = {g}, so that from w Eve
is forced to eventually switch to g (otherwise limsup = w ¢ Fy) and the a-subtree labelled
by g must have positive probability for Eve to win. Adam may never exit the pathfinding
state s, in which case Eve wins.

4 Deciding emptiness of automata with limited choice for Adam

In this section, we introduce the class of automata with limited choice for Adam, and show
that emptiness of these automata is decidable.

For that we rely on a characterization of positional strategies of Eve which satisfy the
surely and almost-surely winning conditions (Lemma 12, Lemma 13) and the positively
winning condition (Lemma 17). Then we represent the positional strategies of Eve as
labelled trees, called strategic trees (Definition 18). Finally, we show that the language of
strategic trees whose corresponding positional strategy is winning can be recognized by a
non-deterministic nonzero automaton (Theorem 19).

4.1 Automata with limited choice for Adam

In the rest of the paper, we focus on the class of automata with limited choice for Adam. Our
motivation is that these automata capture the logic we are interested in and their acceptance
games have good properties. In particular the existence of positional winning strategies for
Eve is one of the key properties used to decide emptiness.

To define the class of automata with limited choice for Adam, we rely on the transition
graph of the automaton.

13:7

CONCUR 2018

13:8

Alternating Nonzero Automata

» Definition 4 (Equivalent and transient states). The transitions of the automaton define
a directed graph called the transition graph and denoted G_,. The vertices of G_, are @
and the edges are labelled with ¥, those are all triplets (¢, a,) such that ¢ —, 7 is a local
transition or such that ¢ —, (r,¢') or ¢ =, (¢, r) is a split transition for some state ¢’.

Two states g, r are equivalent, denoted ¢ = r, if they are in the same connected component
of G_,. A state is transient if it does not belong to any connected component of G_,, or
equivalently if there is no cycle on this state in G_,.

» Definition 5. An automaton has limited choice for Adam if for every state g controlled
by Adam, all transitions with source ¢ are local transitions; and for every letter a, at most
one of the (local) transitions ¢ —, ¢’ satisfies ¢ = ¢’. Such a transition is called a canonical
transition.

In a limited choice for Adam automaton, the only freedom of choice of Adam, apart
from playing canonical transitions, is deciding to go to a lower connected component of the
transition graph. This non-canonical decision can be done only finitely many times, hence
the name limited choice.

In the classical (non-probabilistic) theory of alternating automata, similar notions of lim-
ited alternation have already been considered, for example hesitant alternating automata [12].

» Definition 6 (Canonical plays and transient vertices). A canonical play is a play in which
Adam only plays canonical transitions. A vertex (n,q) of an acceptance game is transient if
it has no immediate successor (n’,¢’) (by a local or a split transition) such that ¢ = ¢'.

In the acceptance game of an automaton with limited choice for Adam, every infinite
play visit finitely many transient vertices and has a canonical suffix.

The automaton recognizing PUCE trees described in Section 3 has not limited choice
for Adam, since Adam can play the non-local transitions s — (s,) and s — (f, s). However,
it is an easy exercise to turn this automaton into an automaton with limited choice for
Adam recognizing the same language: add a new state e controlled by Eve from which Eve
has a single split transition e — (s, s). This new state e belongs to both Fy and Fj. From
s Adam can choose between two local transitions: the canonical transition s — e (keep
navigating in the tree) or the transient transition s — w (start verification).

The no local loop assumption. We assume that every automata with limited choice for

Adam also satisfies:

(NLL) the automaton has no local loop: there is no letter a and sequence of local transitions
qo —a @1 —ra " —ra ¢ Such that go = g;.

Under the hypothesis (NLL), for every infinite play 7 there is a unique branch of the binary

tree b € {0,1}* whose every prefix is visited by m. We say that 7 projects to b. It is direct

that, under the hypothesis (NLL), the measures on plays and on branches are linked.

» Lemma 7. Under the hypothesis (NLL), given a tree t, two strategies o and T in the
acceptance game and X is a measurable set of plays we have that P77 (X) = u(X) where p
is the usual uniform measure on the set of branches of t and X is the set of infinite branches

that X projects to.
Moreover, assuming (NLL) does not reduce expressiveness.

» Lemma 8. Given an automaton A with limited choice for Adam and set of states Q
one can effectively construct another automaton A’ with limited choice for Adam satisfying
(NLL) and recognizing the same language.

P. Fournier and H. Gimbert

The interest of the (NLL) assumption is to make the acceptance game acyclic, which
in turn guarantees positional determinacy for Eve, as shown in the next section. The
transformation performed in the proof of Lemma 8 creates an exponential blowup of the
state space of the automaton, which is bad for complexity. We could do without this blowup
by dropping the (NLL) assumption, in which case Eve might need one extra bit of memory
in order to implement local loops with priority in Fy \ Fj.

However, we prefer sticking to the (NLL) assumption, which makes the alternating
automata and their accepting games simpler and is anyway not restrictive when it comes
to translating temporal logics into alternating automata: the natural translation produces
automata with no local loop.

4.2 Positional determinacy of the acceptance game

A crucial property of automata with limited choice for Adam is that their acceptance games
are positionally determined for Eve.

» Definition 9 (Positional strategies). A strategy o of Eve in an acceptance game is positional

if for every finite plays 7,7’ whose last vertices are controlled by Fve and coincide, i.e.

last(m) = last(n") € {0,1}* x Qg, then o(r) = o(7).

» Lemma 10 (Positional determinacy for Eve). Fuvery acceptance game of an automaton
with limited choice for Adam is positionally determined for Eve: if Eve wins then she has a
positional winning strategy.

Sketch of proof. Since the (NLL) hypothesis is assumed, the underlying acceptance game
is acyclic. The construction of a positional winning strategy o’ from a (non-positional)
winning strategy o relies on the selection of a canonical way of reaching a o-reachable vertex
w with a o-play 7m(w) and setting o’ (w) = o(7(w)). <

4.3 On winning positional strategies of Eve

In the next section we show how to use use automata-based techniques to decide the existence
of a (positional) winning strategy for Eve. These techniques rely on characterizing whether a
positional strategy of Eve is surely, almost-surely and positively winning.

4.3.1 Surely and almost-surely winning conditions
We characterize (almost-)surely winning strategies.

» Definition 11 (g-branches). Let ¢ € Q and o a strategy. An infinite branch of the binary
tree is a g-branch in o if at least one o-play which projects to this branch has limsup gq.

» Lemma 12. Assume the automaton has limited choice for Adam. Let o be a positional
strategy for Eve. Then o is surely winning iff for every q € (Q \ Fy) there is no g-branch in
0. Moreover o is almost-surely winning iff for every q € (Q \ F1) the set of g-branches in o
has measure 0.

Whether a branch is a ¢g-branch can be checked by computing a system of o-indexes.

Intuitively, all o-reachable vertices receives a finite index, such that along a o-play the index
does not change except when Adam performs a non-canonical move or when two plays merge
on the same vertex, in which case the smallest index is kept. After a non-canonical move of
Adam, a new play may start in which case it receives a fresh index not used yet in the current
neither in the parent node. For this less than 2|@Q| indices are required. The important
properties of o-indexes are:

13:9

CONCUR 2018

13:10

Alternating Nonzero Automata

» Lemma 13 (Characterization of g-branches). Every positional strategy o of Eve can be
associated with a function o : {0,1}* xQ — {0,1,...,2|Q)], oo}Q with the following properties.

First, o can be computed on-the-fly along a branch. For every node n denote o, the
restriction of o on {n} x Q. Then o(e) only depends on o.. And for every node n and
d €{0,1}, o(nd) only depends on o(n) and opg.

Second, a vertex (n,q) is reachable from the initial vertex by a o-play iff o(n)(q) is finite.

Third, let b € {0,1}* be an infinite branch of the binary tree, visiting successively the
nodes ng,ny,Na,.... Denote R*(b) the set of pairs (k,q) € {0,...,2|Q|} x Q such that:
k € o(n;)(Q) for every i € N except finitely many; and k = o(n;)(q) for infinitely many
i€ N.

Finally, for every state q, the branch b is a q-branch if and only if there exists k €
{0,1,...,2|Q|} such that ¢ = max{r € Q| (k,r) € R=(b)}.

4.3.2 Checking the positively winning condition

In order to check with a non-deterministic automaton whether a positional strategy is
positively winning, we rely on the notion of positive witnesses. The point of positive witnesses
is to turn the verification of up to |@Q| positively-winning conditions - depending on the
decisions of Adam, there may be up to |@Q| different o-reachable vertices on a given node -
into a single one. This single condition can then be checked by a non-deterministic nonzero
automaton equipped with a single positively-winning condition.

Everywhere thick subtrees. We need the notion of everywhere thick subtrees. We measure
sets of infinite branches with the uniform probability measure p on {0,1}*.

» Definition 14 (Everywhere thick sets of nodes). For every set T C {0,1}* of nodes denote
T the set of branches in {0,1}* whose every prefix belongs to T. Then T is everywhere
thick if starting from every node n € T there is nonzero probability to stay in T, i.e. if

u (:Fm {0, 1}w) > 0.
Everywhere thick subtrees are almost everywhere.

» Lemma 15. Let P C {0,1}* be a measurable set of infinite branches. Assume u(P) > 0.
Then there exists an everywhere thick subtree T, with root € such that T C P.

The proof relies on the inner-regularity of p, so that P can be assumed to be a closed set,
i.e. a subtree from which we can prune leaves whose subtree has probability 0.

Positive witnesses. Positive witnesses can be used to check whether a strategy is positively
winning:

» Definition 16 (Positive plays and witnesses). Let t be a X-labelled binary tree and o a
positional strategy of Eve in the acceptance game of t. Let Z be the set of o-reachable
vertices whose state is in Fiq.

A play is positive if all vertices it visits belong to {0,1}* X F~q. A positive witness for
is a pair (W, E) where: W C Z are the active vertices, and E C {0,1}* x {0,1} is the set of
positive edges, and they have the following properties.

a) From every vertex z € Z there is a positive and canonical finite o-play starting in z which
reaches a vertex in W or a transient vertex.

P. Fournier and H. Gimbert

b) Let z = (n,q) € W. Then (n,0) € E or (n,1) € E, or both. If z — 2’ is a local transition
then 2z’ € W as well whenever (¢ € Qg and z — 2’ is consistent with o) or (¢ € Q@4 and
z — 2’ is canonical). If z is controlled by Eve and o(z) is a split transition ¢ — (qo, q1)
then ((n,0) € E = (n0,qp) € W) and ((n,1) € E = (nl,q1) € W).

c) The set of nodes {nd € {0,1}* | (n,d) € E} is everywhere thick.

» Lemma 17 (Characterization of positively winning strategies). Assume the automaton has
limited choice for Adam. A positional strategy o for Eve is positively winning iff there exists
a positive witness for o.

4.4 Deciding emptiness

A Y-labelled binary tree t and a positional strategy o in the corresponding acceptance game
generate a tree Ty, : {0,1}* — (QUQ x Q)?=.

For every vertex (n,q) controlled by Eve, if o(n, q) is a local transition ¢ —(,) ¢’ then
Ti,0(n)(q) = ¢’ and if o(n, q) is a split transition ¢ —(,) (g0, q1) then T} 5(n)(q) = (g0, q1)-

» Definition 18 (Strategic tree). A tree T': {0,1}* — (Q U Q x Q)= is strategic if there
exists a tree ¢ : {0,1}* — ¥ and a positional strategy ¢ for Eve such that 7' =T, , .

We are interested in the strategic trees associated to winning strategies. The rest of the
section is dedicated to the proof of the following theorem.

» Theorem 19. Fix an alternating nonzero automata with limited choice for Adam. The
language of strategic trees T; , such that o wins the acceptance game of t can be recognized
by a non-deterministic nonzero automaton of size exponential in |Q|. If Fy = Q in the
alternating automaton, then the sure condition of the non-deterministic automaton is Biichi.

Proof. The characterizations of surely, almost-surely and positively winning strategies given
in lemmas 12, 13 and 17 can be merged as follows.

» Corollary 20. Let o be a positional strateqy o for Eve. For every branch b denote
M(b) = {max{q | (k,q) € R*(b)} |k €0...2|Q|}.

Then o is winning if and only if for every branch b, M(b) C Fy; for almost-every branch
b, M(b) C Fi; and there exists a positive witness for .

First of all, the non-deterministic automaton B checks whether the input tree is a strategic
tree, for that it guesses on the fly the input tree ¢ : {0,1}* — ¥ by guessing on node n the
value of ¢(n) and checking that for every ¢ € QE, ¢ =) T(n)(q) is a transition of the
automaton.

On top of that B checks the three conditions of Corollary 20. For the first two conditions,
it computes (asymptotically) along every branch b the value of R*°(b) and thus of M (b). For
that the automaton relies on a Last Appearance Record memory (LAR) [10] whose essential
properties are:

» Lemma 21 (LAR memory [10]). Let C be a finite set of symbols. There exists a deterministic
automaton on C called the LAR memory on C with the following properties. First, the set
of states, denoted @Q, has size < |C’\|C|+1 and is totally ordered. Second, for every u € C*¥
denote L™ (u) the set of letters seen infinitely often in u and LAR(u) the largest state seen
infinitely often during the computation on u. Then L% (u) can be inferred from LAR(u),
precisely there is a mapping ¢ : Q — 2 such that: Yu € C¥, L>®(u) = ¢(LAR(u)) .

13:11

CONCUR 2018

13:12

Alternating Nonzero Automata

In order to compute R (b) along a branch b, the non-deterministic automaton B computes
deterministically on the fly the o-index of the current node n, as defined in Lemma 13, and
implements a LAR memory on the alphabet C = {0,...,2|Q|} x (QU {L}).

When visiting node n, B injects into the LAR memory all pairs (o(g), ¢) such that ¢ € Q
and o(q) # oo plus all pairs (k, L) such that k & o(n)(Q). For every branch b, the set R*(b)
is equal to all pairs (k,q) seen infinitely often such that (k, L) is seen only finitely often.
Thus, the LAR memory can be used to check the first two conditions of Corollary 20, more
details are given at the end of the proof.

For now, we describe how the non-deterministic automaton B checks whether there exists
a positive witness (W, E) (Definition 16). Denote by Z the set of o-reachable vertices whose
state is in F5¢. On node n the automaton guesses (resp. computes) the vertices of W (resp.
Z) of the current node and guesses the elements of E by storing three sets of states: W,, =
{a€Q|(n,q) eW} Zy ={q € F>o | 0(n,q) <oo}; and E, = {b € {0,1} | (n,b) € E}.

Then B checks conditions a), b) and ¢) in the definition of a positive witness as follows.

B checks condition a) in the definition of a positive witness by guessing on the fly for
every vertex in Z a canonical positive o-play to a vertex which is either transient or in W,
in which case we say the canonical positive play terminates.

For that B maintains an ordered list P, of states. On the root node, P. is Z. \ W.. When
the automaton performs a transition, it guesses for each state ¢ in P, and direction b, a
successor sq, such that (nbg, sq) can be reached from (g, n) by a positive canonical o-play. In
direction b, every state ¢ for which b, # b is removed from the list, while every state ¢ for
which b, = b is replaced by the corresponding s,. Then all states in Z,,;, are added at the
end of the list. In case of duplicates copies of the same state in the list, only the first copy is
kept. In case the head of the list is in W,,; or is transient, a Biichi condition is triggered and
the head is moved at the back of the list. Finally, all entries of the list which are in W,,;, are
removed.

This way, condition a) holds iff the Biichi condition is triggered infinitely often on every
branch. We discuss below how to integrate this Biichi condition in the sure accepting
condition of the automaton.

B checks condition b) in the definition of a positive witness by entering an absorbing
error state as soon as
1) there is some local transition (n,q) —) (n,q") such that ¢ € W, and (¢ € Qg and

z — Z' is consistent with o) or (¢ € Q4 and z — 2’ is canonical); or
2) there is some g € W, controlled by Eve and b € F,, such that o(n,q) is a split transition

q —i(n) (QO7 Q1) but g g W
The guessed sets W, are bound to satisfy condition 1) and condition 2) is checked by storing
a subset of Q.

B checks condition c) in the definition of a positive witness by triggering the positive
acceptance condition whenever it moves in direction b on a node n such that b € F,,.

The sure and almost-sure acceptance condition are defined as follows. The Biichi condition
necessary for checking condition a) in the definition of a positive witness is integrated in
the LAR memory, for that we add to the alphabet C' of the LAR memory a new symbol T
which is injected in the LAR memory whenever the Biichi condition is triggered. The order
between states of B is induced by the order of the LAR memory.

This way, according to Lemma 21, the largest state seen infinitely often along a branch b
reveals whether T was seen infinitely often, and reveals the value of R (b) (the set of pairs
(k, q) seen infinitely often such that (k, L) was seen finitely often) hence of M (b) as well. The
state is surely (resp. almost-surely) accepting iff T was seen infinitely often and M (b) C Fy

P. Fournier and H. Gimbert

(resp. M(b) C Fy). In case Fy = @ in the alternating automaton then the sure condition
boils down to the Biichi condition.

According to Corollary 20, and by construction of B, the computation of B is accepting
iff the input is a strategic tree whose corresponding strategy of Eve is winning. <

» Theorem 22. Emptiness of alternating nonzero automata with limited choice for Adam is
decidable in NEXPTIMENco-NEXPTIME. If Fy = Q, emptiness can be decided in EXPTIME.

Proof. Emptiness of an alternating automaton reduces to the emptiness of a non-deterministic
automaton of exponential size. This non-deterministic automaton guesses on-the-fly a tree
{0,1}* = (QU Q x Q)?F and checks it is a winning strategic tree, using the automaton
given by Theorem 19. In case the alternating automaton is Fy-trivial, the sure condition of
the non-deterministic automaton is Biichi (Theorem 19). We conclude with Theorem 3. <«

5 Satisfiability of CTL*[3,V, P~o, P_,]

Our result on alternating nonzero automata can be applied to decide the satisfiability of the
logic CTL*[3,V,P~q,P—1], a generalization of CTL* which integrates both deterministic and
probabilistic state quantifiers.

Markov chains. The models of CTL*[3,V, Ps,P_1] formulas are Markov chains. A Markov
chain with alphabet ¥ is a tuple M = (S, p,t) where S is the (countable) set of states,
p: S — A(S) are the transition probabilities and t : S — ¥ is the labelling function.

For every state s € S, there is a unique probability measure denoted P4 s on S“ such
that Pay,s(sSY) = 1 and for every sequence Sp---$pSn+1 € S*, Pars(So -+ - SnSn+15%) =
D(Sns Snt1) - Pats(s081 -+ - $p5¢). When M is clear from the context this probability measure
is simply denoted Ps. A path in M is a finite or infinite sequence of states spsp - -+ such that
Vn € N, p(sn, Snt1) > 0 .. We denote Pathy((so) the set of such paths.

A binary tree t : {0,1}* — ¥ is seen as a specific type of Markov chain, where from every
node n € {0,1}* there is equal probability % to perform transitions to n0 or nl.

Syntax. For a fixed alphabet 3, there are two kinds of formula: state formula (typically
denoted) and path formula (denoted ¢), generated by the following grammar:

Yu=T|LlaeX | YA [VY [|IP[Vo|Pso(9) | P=1(0)
pu=t| =g oNG| OV | Xo|PUG |G .

Semantics. Let M = (S,t,p) a Markov chain. We define simultaneously and inductively
the satisfaction M, s |= 1 of a state formula ¢ by a state s € S and the satisfaction M, w = ¢
of a path formula ¢ by a path w € Pathys. When M is clear from the context, we simply

write s = ¢ and w = ¢.
If a state formula is produced by one of the rules T | L | p | Y AW | ¥ V) | 0, its
satisfaction is defined as usual. If ¢ is a path formula and ¢ € {36, Ve, P~o(¢), P=1(¢)} then

s k3o if Jw € Pathap(s), w = ¢
s E=Vo if Vw € Pathp(s),w E ¢
sEPWw(@P) if Pags(w e Pathp(s) |wkE=¢) ~b .

The satisfaction of a path formula ¢ by an infinite path w = sps1 -+ € Patha(sg) is
defined as follows. If ¢ is produced by one of the rules —¢ | d A ¢ | ¢ V ¢ then its satisfaction

13:13

CONCUR 2018

13:14

Alternating Nonzero Automata

1 1 1

T . a ¥ a . a
/ / o /
b= b= b=
1\2%“3 1\2%0 1\2ic

Figure 1 A model of (V(G3(TUa))) A (P>o(G—a)).

is defined as usual. If ¢ is a state formula (rule ¢ :=) then w = 9 if so = ¢ . Otherwise,
¢ e{X@', G, p1Uds} where ¢, ¢y and ¢ are path formulas. For every integer k, we denote
w(k] the path spsg+1--- € Pathag(sg). Then:

w k= X¢' it wll] = ¢’
w = Go' if Vi € N,wli] = ¢’
w k= $1U¢s if 3n € N, (VO < i < n,wli] = ¢1 Awln] = ¢2).

The Markov chain given in Figure 1 satisfies the formula (V(G3(TUa))) A (Pso(G—a)).

A formula for PUCE trees. The language of PUCE trees introduced in Section 3 can be
described by the following CTL*[3,V, P, P—;] formula:

VG (P5o(TU(Ga)) APso(TU(G-D))) -

Variants and fragments. A formula of CTL*[3,V, P, P—1] belongs to the fragment CTL
if in each of its state subformula 9 of type 3¢ | V¢ | Pso(@) | P=1(¢) the path formula ¢ has
type X' | ' Uy" | G’ where ' and ¢ are state subformulas.

In the variant ECTL, every path formula ¢ is described as the composition of a determin-
istic Biichi automata on some alphabet {0, 1}]f with k state subformulas. A path satisfies ¢
if the Biichi automaton accepts the sequence of letters obtained by evaluating the k state
subformulas on every state along the path. This variant augments both the expressivity and
the conciseness of the logic at the cost of a less intuitive syntax. For more details see [6].

We are also interested in the fragments where the operators 3 and V are not used, i.e.
the qualitative fragments of the logics pCTL*, pECTL and pCTL.

Satisfiability problem. A Markov chain M satisfies a formula £ at state s, or equivalently
(M, s) is a model of &, if M, s = £. We are interested in the problem:
MC-SAT: given a formula, does it have a model?

This logic is an extension of monadic second-order logic on infinite binary trees with
a new probabilistic operator [14, 15, 2]. The satisfiability of this logic is reducible to the
emptiness problem for nonzero non-deterministic automata [2] which is decidable [3]. Since
CTL*[3,V,Pso,P_4] is a fragment of TMSO+ZERO, this result implies that the satisfiability
of CTL*[3,V,Psq,P—4] is decidable with non-elementary complexity. The reduction to the
emptiness of alternating nonzero automata given in the present paper provides a better
complexity bound.

» Theorem 23. For CTL*[3,V,Psq,P_1] the satisfiability problem is in 3-NEXPTIME N

co-3-NEXPTIME. The following table summarizes complexities of the satisfiability problem for
various fragments and variants of CTL*[3,V,Pso,P=1]:

CTL* ECTL CTL
[3,V,Pso,P—] 3-NEXPTIME N co-3-NEXPTIME 2-NEXPTIME N co-2-NEXPTIME NEXPTIME N co-NEXPTIME
[P~o,P=1] 3-EXPTIME [6] (qualitative pCTL*) | 2-EXPTIME [6] (qualitative pECTL) | EXPTIME [5] (qualitative pCTL)

P. Fournier and H. Gimbert

According to [5, 6], the complexities for ECTL[Ps,P—;] and CTL[P~q,P_;] are optimal.
The first step in the proof of Theorem 23 is a linear-time reduction from MC-SAT to:
BIN-SAT: given a formula, does it have a model among binary trees?

» Theorem 24. Any formula & of CTL*[3,V,Pso,P=1] on alphabet ¥ can be effectively
transformed into a formula & of linear size on alphabet ¥ U {o} such that § is MC-SAT
iff & is BIN-SAT. As a consequence, MC-SAT linearly reduces to BIN-SAT. This
transformation preserves the fragment CTL*[Psq,P—1].

The second step is a standard translation from logic to alternating automata [12].

» Lemma 25. For every formula & of CTL*[3,V,Psq,P_1] (resp. ECTL[3,V,Pso,P_1]),
there is an alternating automaton A with limited choice for Adam whose language is the set
of binary trees satisfying the formula at the root. The automaton is effectively computable,
of size O(QQIE‘) (resp. O(2KEN)). If ¢ is a CTL formula, the size of A is O(|€]). In case the
formula does not use the 3 and ¥ operators, the Fy condition is trivial i.e. Fy = Q.

Proof of Theorem 23. All the complexity results are obtained by reduction of MC-SAT to
the emptiness problem for an alternating nonzero automaton with limited choice for Adam,
which is decidable in NEXPTIMENcO-NEXPTIME (Theorem 22). The size of the automaton
varies from doubly-exponential to linear size depending on whether the formula is in CTL*,
ECTL or CTL (Lemma 25). In case the formula does not use the deterministic operators 3
and V (i.e. for qualitative pCTL*, pECTL and pCTL) the Fy condition of the alternating
automaton is trivial thus its emptiness is decidable in EXPTIME (Theorem 22). |

Conclusion

We have introduced the class of alternating nonzero automata, proved decidability of the
emptiness problem for the subclass of automata with limited choice for Adam and obtained
as a corollary algorithms for the satisfiability of a temporal logic extending both CTL* and
the qualitative fragment of pCTL*.

A natural direction for future work is to find more general classes of alternating nonzero
automata with a decidable emptiness problem, which requires some more insight on the
properties of the acceptance games, in particular the existence of positional strategies in the
acceptance game.

—— References

1 Christel Baier, Marcus Grofier, and Nathalie Bertrand. Probabilistic w-automata. J. ACM,
59(1):1, 2012.

2 Mikotaj Bojanczyk. Thin MSO with a probabilistic path quantifier. In 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy, pages 96:1-96:13, 2016.

3 Mikotaj Bojanczyk, Hugo Gimbert, and Edon Kelmendi. Emptiness of zero automata is
decidable. CoRR, abs/1702.06858, 2017. URL: http://arxiv.org/abs/1702.06858.

4 Mikolaj Bojanczyk, Hugo Gimbert, and Edon Kelmendi. Emptiness of zero automata is
decidable. In 44th International Colloquium on Automata, Languages, and Programming,
ICALP 2017, July 10-14, 2017, Warsaw, Poland, pages 106:1-106:13, 2017.

5 Tomaés; Bréazdil, Vojtech Forejt, Jan Kretinsky, and Antonin Kucera. The satisfiability
problem for probabilistic CTL. In Proc. of LICS, pages 391-402, 2008.

13:15

CONCUR 2018

http://arxiv.org/abs/1702.06858

13:16

Alternating Nonzero Automata

10

11

12

13

14

15

16

17
18
19

Tom4s Brazdil, Vojtéch Forejt, and Antonin Kucera. Controller synthesis and verifica-
tion for markov decision processes with qualitative branching time objectives. Automata,
Languages and Programming, pages 148—159, 2008.

Arnaud Carayol, Axel Haddad, and Olivier Serre. Randomization in automata on infinite
trees. ACM Trans. Comput. Log., 15(3):24:1-24:33, 2014.

Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. J. ACM,
28(1):114-133, January 1981.

E Allen Emerson and Joseph Y Halpern. Sometimes and not never revisited: on branching
versus linear time temporal logic. Journal of the ACM (JACM), 33(1):151-178, 1986.
Yuri Gurevich and Leo Harrington. Trees, automata, and games. In Proceedings of
STOC’82, pages 60-65, New York, NY, USA, 1982. ACM.

Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability. Formal
aspects of computing, 6(5):512-535, 1994.

Orna Kupferman, Moshe Y Vardi, and Pierre Wolper. An automata-theoretic approach to
branching-time model checking. Journal of the ACM (JACM), 47(2):312-360, 2000.
Daniel Lehmann and Saharon Shelah. Reasoning with time and chance. Information and
Control, 53(3):165-1983, 1982.

Henryk Michalewski and Matteo Mio. Measure quantifier in monadic second order logic.
In Proc. of LFCS 2016, pages 267-282, 2016. doi:10.1007/978-3-319-27683-0_19.
Henryk Michalewski, Matteo Mio, and Mikotaj Bojanczyk. On the regular emptiness prob-
lem of subzero automata. In Proc. of ICE 2016, Heraklion, Greece, 8-9 June 2016., pages
1-23, 2016.

David E. Muller and Paul E. Schupp. Alternating automata on infinite trees. The-
oretical Computer Science, 54(2):267 — 276, 1987. doi:http://dx.doi.org/10.1016/
0304-3975(87)90133-2.

A. Paz. Introduction to probabilistic automata. Academic Press, 1971.

M. O. Rabin. Probabilistic automata. Information and Control, 6(3):230-245, 1963.
Moshe Y Vardi and Larry Stockmeyer. Improved upper and lower bounds for modal logics
of programs. In Proceedings of the seventeenth annual ACM symposium on Theory of
computing, pages 240-251. ACM, 1985.

http://dx.doi.org/10.1007/978-3-319-27683-0_19
http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(87)90133-2
http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(87)90133-2

Affine Extensions of Integer Vector Addition
Systems with States

Michael Blondin'

Technische Universitat Miinchen, Germany

blondin@in.tum.de
https://orcid.org/0000-0003-2914-2734

Christoph Haase

University of Oxford, United Kingdom
christoph.haase@cs.ox.ac.uk
https://orcid.org/0000-0002-5452-936X

Filip Mazowiecki?
LaBRI, Université de Bordeaux, France
filip.mazowiecki@u-bordeaux.fr

——— Abstract

We study the reachability problem for affine Z-VASS, which are integer vector addition systems
with states in which transitions perform affine transformations on the counters. This problem
is easily seen to be undecidable in general, and we therefore restrict ourselves to affine Z-VASS
with the finite-monoid property (afmp-Z-VASS). The latter have the property that the monoid
generated by the matrices appearing in their affine transformations is finite. The class of afmp-Z-
VASS encompasses classical operations of counter machines such as resets, permutations, transfers
and copies. We show that reachability in an afmp-Z-VASS reduces to reachability in a Z-VASS
whose control-states grow polynomially in the size of the matrix monoid. Our construction shows
that reachability relations of afmp-Z-VASS are semilinear, and in particular enables us to show
that reachability in Z-VASS with transfers and Z-VASS with copies is PSPACE-complete.

2012 ACM Subject Classification Theory of computation — Logic and verification, Theory of
computation — Automata over infinite objects, Theory of computation — Complexity classes

Keywords and phrases Vector addition systems, affine transformations, reachability, semilinear
sets, computational complexity

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2018.14

Acknowledgements We are thankful to James Worrell for insightful discussions on transfer

VASS.

1 Introduction

Vector addition systems with states (VASS) are a fundamental model of computation com-
prising a finite-state controller with a finite number of counters ranging over the natural
numbers. When a transition is taken, a counter can be incremented or decremented provided
that the resulting counter value is greater than or equal to zero. Since the counters of a

L Supported by the Fonds de recherche du Québec — Nature et technologies (FRQNT).

2 This study has been carried out with financial support from the French State, managed by the French
National Research Agency (ANR) in the frame of the “Investments for the future” Programme IdEx
Bordeaux (ANR-10-IDEX-03-02).

© Michael Blondin, Christoph Haase, and Filip Mazowiecki;
37 licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 14; pp. 14:1-14:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:blondin@in.tum.de
https://orcid.org/0000-0003-2914-2734
mailto:christoph.haase@cs.ox.ac.uk
https://orcid.org/0000-0002-5452-936X
mailto:filip.mazowiecki@u-bordeaux.fr
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2

Affine Extensions of Integer Vector Addition Systems with States

VASS are unbounded, a VASS gives rise to an infinite transition system. One of the biggest
advantages of VASS is that most of the standard decision problems such as configuration
reachability and coverability are decidable [26, 32, 27, 29]. Those properties make VASS and
their extensions a prime choice for reasoning about and modelling concurrent, distributed
and parametrised systems, see e.g. the recent surveys by Abdulla and Delzanno [2, 15].

In order to increase their modelling power, numerous extensions of plain VASS have
been proposed and studied in the literature over the last 25 years. Due to the infinite-state
nature of VASS, even minor extensions often cross the undecidability frontier. For example,
while in the extension of VASS with hierarchical zero-tests on counters both reachability and
coverability remain decidable [37, 10], all important decision problems for VASS with two
counters which can arbitrarily be tested for zero become undecidable [33]. Another example
is the extension of VASS with resets and transfers. In a reset VASS, transitions may set
a counter to zero, whereas transfer VASS generalise reset VASS and allow transitions to
move the contents of a counter onto another. While it was initially widely believed that
any extension of VASS either renders both reachability and coverability undecidable, reset
and transfer VASS have provided an example of an extension which leads to an undecidable
reachability [5] yet decidable coverability problem [16]. Nevertheless, the computational costs
for those extensions are high: while coverability is EXPSPACE-complete for VASS [30, 35],
it becomes Ackermann-complete in the presence of resets and transfers [38, 19]. For practical
purposes, the extension of VASS with transfers is particularly useful since transfer VASS allow
for reasoning about broadcast protocols and multi-threaded non-recursive C programs [17, 25].
It was already observed in [17] that transfer VASS can be viewed as an instance of so-called
affine VASS. An affine VASS is an extended VASS with transitions labelled by pairs (A, b),
where A is a d x d matrix over the integers and b € Z% is an integer vector. A transition
switches the control-state while updating the configuration of the counters v € N¢ to A-v+b,
provided that A-v+b > 0; otherwise, the transition is blocked. Transfer VASS can be viewed
as affine VASS in which the columns of all matrices are d-dimensional unit vectors [17].

Due to the symbolic state-explosion problem and Ackermann-hardness of coverability,
standard decision procedures for transfer VASS such as the backward algorithm [1] do not
per se scale to real-world instances. In recent years, numerous authors have proposed the use
of over-approximations in order to attenuate the symbolic state-explosion problem for VASS
and some of their extensions (see, e.g., [18, 6, 8]). Most commonly, the basic idea is to relax
the integrality or non-negativity condition on the counters and to allow them to take values
from the integers or non-negative rational numbers. It is easily seen that if a configuration is
not reachable under the relaxed semantics, then the configuration is also not reachable under
the standard semantics. Hence, those over-approximations can, for instance, be used in order
to prune the sets of minimal basis elements in every iteration of the backward algorithm.
In this paper, we investigate reachability in integer over-approximations of affine VASS,
i.e., affine VASS in which a configuration of the counters is a point in Z?, and in which all
transitions are non-blocking. Subsequently, we refer to such VASS as affine Z-VASS.

Main contributions

We focus on affine Z-VASS with the finite-monoid property (afmp-Z-VASS), i.e. where the
matrix monoid generated by all matrices occurring along transitions in the affine Z-VASS is
finite. By a reduction to reachability in Z-VASS, we obtain decidability of reachability for
the whole class of afmp-Z-VASS and semilinearity of their reachability relations.

More precisely, we show that reachability in an afmp-Z-VASS can be reduced to reach-
ability in a Z-VASS whose size is polynomial in the size of the original afmp-Z-VASS and
in the size of the finite monoid M generated by the matrices occurring along transitions,

M. Blondin, C. Haase, and F. Mazowiecki

denoted by ||M]|. For all classes of affine transformations considered in the literature, ||M||
is bounded exponentially in the dimension of the matrices. This enables us to deduce a
general PSPACE upper bound for extensions of Z-VASS such as transfer Z-VASS and copy
Z-VASS. By a slightly more elaborated analysis of this construction, we are also able to
provide a short proof of the already known NP upper bound for reset Z-VASS [21].

We also show that a PSPACE lower bound of the reachability problem already holds
for the extension of reset Z-VASS with permutations. This gives PSPACE-completeness of
some interesting classes such as transfer Z-VASS and copy Z-VASS. Finally, we show that
an affine Z-VASS that allows for both transfers and copies may not have the finite-monoid
property, and the reachability problem for this class becomes undecidable. All complexity
results obtained in this paper are summarized in Figure 1.

Related work

Our work is primarily related to the work of Finkel and Leroux [20], Tosif and Sangnier [24],
Haase and Halfon [21], and Cadilhac, Finkel and McKenzie [12, 13]. In [20], Finkel and Leroux
consider a model more general than affine Z-VASS in which transitions are additionally
equipped with guards which are Presburger formulas defining admissible sets of vectors in
which a transition does not block. Given a sequence of transitions ¢, Finkel and Leroux
show that the reachability set obtained from repeatedly iterating o, i.e., the acceleration
of o, is definable in Presburger arithmetic. Note that the model of Finkel and Leroux does
not allow for control-states and the usual tricks of encoding each control-state by a counter
or all control-states into three counters [22] do not work over Z since transitions are non
blocking. Iosif and Sangnier [24] investigated the complexity of model checking problems
for a variant of the model of Finkel and Leroux with guards defined by convex polyhedra
and with control-states over a flat structure. Haase and Halfon [21] studied the complexity
of the reachability, coverability and inclusion problems for Z-VASS and reset Z-VASS, two
submodels of the affine Z-VASS that we study in this paper. In [12, 13], Cadilhac, Finkel
and McKenzie consider an extension of Parikh automata to affine Parikh automata with
the finite-monoid restriction like in our paper. These are automata recognizing boolean
languages, but the finite-monoid restriction was exploited in a similar way to obtain some
decidability results in that context. We finally remark that our models capture variants of
cost register automata that have only one + operation [4, 3].

Structure of the paper

We introduce general notations and affine Z-VASS in Section 2. In Section 3, we give the
reduction from afmp-Z-VASS to Z-VASS. Subsequently, in Section 4 we show that afmp-
Z-VASS have semilinear reachability relations and discuss semilinearity of affine Z-VASS
in general. In Section 5, we show the PSPACE and NP upper bounds of the reachability
problem for some classes of afmp-Z-VASS; and in Section 6 we show PSPACE-hardness and
undecidability results for some classes of affine Z-VASS. Some concluding remarks will be
made in Section 7.

2 Preliminaries

General notation

For every n € N, we write [n] for the set {1,2,...,n}. For every © = (1,22, ...,24) € Z% and
every i € [d], we write (i) = z;. We denote the identity matrix and the zero-vector by I and
0 in every dimension, as there will be no ambiguity. For every & € Z% and A € Z%*?, we define

14:3

CONCUR 2018

14:4

Affine Extensions of Integer Vector Addition Systems with States

Undecidable

Affine Z-VASS

T

Transfer + copy Z-VASS

Infinite monoids

Transfer Z-VASS Copy Z-VASS

PSPACE-complete \ /

Reset + permutation Z-VASS

NP-complete

y
/

Reset Z-VASS Permutation Z-VASS

Finite monoids

/
\

Z-VASS

Decidable

Figure 1 Classification of the complexity of reachability in affine Z-VASS in terms of classes
of matrices. The rectangular regions below and above the horizontal dashed line correspond to
classes of matrices with finite and infinite monoids respectively. The green rectangular dotted region
and the red elliptical striped region correspond to the classes where reachability is decidable and
undecidable, respectively. The blue elliptical region and the orange elliptical region correspond to
the classes where reachability is NP-complete and PSPACE-complete respectively. Reachability in
permutation Z-VASS is NP-hard and belongs to PSPACE.

the maz-norm of and A as ||x| = max{|x(i)| : i € [d]} and |A| = max{||A;] : i € [d]}
where A; denotes the i'" column of A. We assume that numbers are represented in binary,
hence the entries of vectors and matrices can be exponential in the size of their encodings.

Affine Integer VASS

An affine integer vector addition system with states (affine Z-VASS) is a tuple V = (d,Q, T
where d € N, Q is a finite set and T C @ x Z%*? x Z¢ x Q. Let us fix such a V. We call d the
dimension of V and the elements of @) and T respectively control-states and transitions. For
every transition t = (p, A, b, q), let src(t) = p, tgt(t) = ¢, M(t) = A and A(t) = b, and let
fi: Z% — 7% be the affine transformation defined by f;(z) = A -x+b. The size of V, denoted
V], is defined as [V| = d + |Q| + | T|| where ||T| = 35, d* - [log([|M(1)]| + A + 1)].
A configuration of V is a pair (q,v) € Q x Z% which we write as q(v). For every t € T
and p(u),q(v) € Q x Z¢, we write p(u) iN q(v) if p = sre(t), ¢ = tgt(t) and v = fi(u).
We naturally extend — to sequences of transitions as follows. For every w € T and

M. Blondin, C. Haase, and F. Mazowiecki

11
,0
00
Figure 2 Example of a transfer + copy Z-VASS V which does not have the finite-monoid property.

p(u),q(v) € Q x Z%, we write p(u) = g(v) if either |w| = 0 and p(u) = g(v), or |w| =k > 0
and there exist po(uo), p1(u1),- - ., pr(ur) € Q x Z% such that

p(u) = po(ug) = pr(ur) =2 -+ =5 p(ug) = q(v).

We write p(u) =+ q(v) if there exists some w € T* such that p(u) > g(v). The relation =
is called the reachability relation of V. If p(u) it g(v), then we say that w is a run from
p(u) to q(v), or simply a run if the source and target configurations are irrelevant. We also
say that w is a path from p to ¢, and if p = ¢ then we say that w is a cycle.

Let M(V) = {M(t):t € T} and A(V) = {A(t) : t € T}. If V is clear from the context,
we sometimes simply write M and A. The monoid of V, denoted My, or sometimes simply
M, is the monoid generated by M(V), i.e. it is the smallest set that contains M(V), is
closed under matrix multiplication, and contains the identity matrix. We say that a matrix
A € 74%4 is respectively a (i) reset, (ii) permutation, (iii) transfer, (iv) copyless, or (v) copy
matrix if A € {0,1}%*?¢ and

(i) A does not contain any 1 outside of its diagonal;
(ii) A has exactly one 1 in each row and each column;
(iii) A has exactly one 1 in each column;

(iv) A has at most one 1 in each column;
(v) A has exactly one 1 in each row.

Similarly, we say that V is respectively a reset, permutation, transfer, copyless, or copy
Z-VASS if all matrices of M (V) are reset, permutation, transfer, copyless, or copy matrices.
The monoids of such affine Z-VASS are finite and respectively of size at most 2%, d!, d?,
(d+1)¢ and d?. Copyless Z-VASS correspond to a model of copyless cost-register automata
studied in [3] (see the remark below). If M (V) only contains the identity matrix, then V
is simply called a Z-VASS. We define [My| = |My| - d? - max{log(||A] +1) : A € My}.
Note that ||My | = |My]-d? for any monoid obtained from one of the above matrices types.

A class of matrices C is a union |J,;~, Cq where Cq is a finitely generated, but possibly
infinite, submonoid of Z* for every d > 1. We say that V belongs to a class C of Z-VASS if
My, C C. If each Cy is finite, then we say that this class of affine Z-VASS has the finite-monoid
property (afmp-Z-VASS). For two classes C and C’ we write C 4+ C’ to denote the smallest
set D = |J,>; Da such that Dy is a monoid that contains both C4 and C) for every d > 1.
Notice that this operation does not preserve finiteness and for example the class of transfer
+ copy matrices is infinite (see Figure 2 and Section 6).

We discuss the Z-VASS V in Figure 2 to give some intuition behind the names transfer
and copy Z-VASS. The transition from p to ¢ is a copy transition and the transition from ¢ to
p is a transfer transition. Notice that for every vector (x,y) € Z2, we have p(z,y) — q(x,),
i.e. the value of the first counter is copied to the second counter. Similarly, for the other

14:5

CONCUR 2018

14:6

Affine Extensions of Integer Vector Addition Systems with States

transition we have ¢(z,y) — p(z +y,0), that is the value of the second counter is transferred
to the first counter (resetting its own value to 0). Let A and B be the two matrices used in
V. Note that (A - B)" is the matrix with all entries equal to 2" ~!, and hence My, is infinite.

» Remark. The variants of affine Z-VASS that we consider are related to cost register
automata (CRA) with only the + operation [4, 3] and without an output function. These
are deterministic models with states and registers that upon reading an input, update their
registers in the form = < y+ ¢, where z, y are registers and c is an integer. An affine Z-VASS
does not read any input, but is nondeterministic. Thus, one can identify an affine Z-VASS
with a CRA that reads sequences of transitions as words. In particular, the restrictions
imposed on the studied CRAs correspond to copy Z-VASS [4] and copyless Z-VASS [3].

Decision problems
We consider the reachability and the coverability problems parameterized by classes of
matrices C:
Reach¢ (reachability problem)
GIVEN: an affine Z-VASS V = (d,Q,T) and configurations p(u), g(v) such that My, C C.

DECIDE: whether p(u) = ¢(v)?

Cover¢ (coverability problem)
GIVEN: an affine Z-VASS V = (d,Q,T) and configurations p(u), g(v) such that My, C C.

DECIDE: whether there exists v’ € Z% such that p(u) = ¢(v’) and v' > v ?

For standard VASS (where configurations cannot hold negative values), the coverability
problem is considered much simpler than the reachability problem. However, for affine
Z-VASS, these two problems coincide as observed in [21, Lemma 2]: the two problems are
inter-reducible in logarithmic space at the cost of doubling the number of counters. Therefore
we will only study the reachability problem in this paper.

3 From affine Z-VASS with the finite-monoid property to Z-VASS

The main result of this section is that every affine Z-VASS V with the finite monoid can be
simulated by a Z-VASS with twice the number of counters whose size is polynomial in ||M||
and |V|. More formally, we show the following:

» Theorem 1. For every afmp-Z-VASS V = (d,Q,T) there exist a Z-VASS V' = (d',Q’',T")
and p',q' € Q' such that

d=2-d,

Q' <4- M- 1Ql,

17| < 8d - [M]* - Q] + IM[|* - [|T,

p(u) = q(v) in V if and only if p'(u,0) = ¢'(0,v) in V.
Moreover, V', p' and ¢’ are effectively computable from V.

» Corollary 2. The reachability problem for afmp-7Z-VASS is decidable.

Proof. By Theorem 1, it suffices to construct, for a given afmp-Z-VASS V, the Z-VASS V'
and to test for reachability in V’. It is known that reachability for Z-VASS is in NP [21]. To
effectively compute V' it suffices to provide a bound for || My . It is known that if | M| is
finite then it is bounded by a computable function, which is an exponential tower (see [31]),
and hence || My | is also computable. <

M. Blondin, C. Haase, and F. Mazowiecki

For the remainder of this section, let us fix some affine Z-VASS V such that M, is
finite. We proceed as follows to prove Theorem 1. First, we introduce some notations and
intermediary lemmas characterizing reachability in affine Z-VASS. Next, we give a construction
that essentially proves the special case of Theorem 1 where the initial configuration is of the
form p(0). Finally, we prove Theorem 1 by extending this construction to the general case.

It is worth noting that proving the general case is not necessary if one is only interested
in deciding reachability. Indeed, an initial configuration p(v) can be turned into one of the
form p’(0) by adding a transition that adds v. The reason for proving the general case is
that it establishes a stronger relation that allows us to prove semilinearity of afmp-Z-VASS
reachability relations in Section 4.

3.1 A characterization of reachability

For every 0 € T*, t € T and u € Z%, let

def

M) =1, e(u) = u,
M(ot) = M(t) - M(o), ot(u) = M(t) - o(u) + A(t).

Intuitively, for any sequence w € T™*, w(w) is the effect of w on u, regardless of whether w is an
actual path of the underlying graph. A simple induction yields the following characterization:

» Lemma 3. For every w € T* and p(u), q(v) € Q x Z%, it is the case that p(u) ~> q(v) if
and only if
(a) w is a path from p to q in the underlying graph of V, and
(b) v =w(u).

Testing for reachability with Lemma 3 requires evaluating w(w). This value can be
evaluated conveniently as follows:

» Lemma 4. For every w € T* and w € Z%, the following holds:

k
w(uw) = M(w)-u+ Z M(wiy1wiys - wg) - Aw;). (1)

i=1
Moreover, w(u) = M (w) - u + w(0).
Proof of Lemma 4. We prove (1) by induction on k. The base case follows from e(u) =

u=I-u+0=M() u+0. Assume that £ > 0 and that the claim holds for sequences of
length k£ — 1. For simplicity we denote o Wy ... wp_1. We have:

w(u) = cwg(u)

= M(wg) - o(u) + A(wy) (2)
k-1
= M(wy) - (M(U) U+ Z M (wip1wig2 - wp—1) - A(W)) + A(wy,) (3)
k-1

= M(wk) . M(O’) - U+ Z M(wk) . M(wi+1wi+2 ce wk_l) . A(wz) + A(wk)
k—1
= M(owy) ~u—|—ZM(wi+1w,-+2~~wk) - A(w;) + Awy) (4)
k
=M(w)-u+ Yy Mwip1wiys- - wg) - Adw;)

=1

14:7

CONCUR 2018

14:8

Affine Extensions of Integer Vector Addition Systems with States

where (2), (3) and (4) follow respectively by definition of cwy(u), by induction hypothesis
and by definition of M (cwy).

The last part of the lemma follows from applying (1) to w(0) and w(u), and observing
that subtracting them results in w(u) — w(0) = M(w) - u. <

Observe that Lemma 4 is trivial for the particular case of Z-VASS. Indeed, we obtain
w(u) =u+ Zle A(w;), which is the sum of transition vectors as expected for a Z-VASS.

3.2 Reachability from the origin

We make use of Lemmas 3 and 4 to construct a Z-VASS V' = (d,Q’,T") for the special case
of Theorem 1 where the initial configuration is of the form p(0). The states and transitions
of V' are defined as:

Q' =QxM,
T" = {((sre(t), A), L, B - A(t), (tgt(t),B)) : A,Be M,t € T and B- M(t) = A}.

The idea behind V' is to simulate a path w of V forward while evaluating w(0) backwards.
The latter can be evaluated as the sum identified in Lemma 4 provided that V' initially
“knows” M (w). More formally, V' and V are related as follows:

» Proposition 5.

(a) For every w € T* if p(0) 2 q(v) in V, then p'(0) = ¢ (v) in V', where p' = (p, M (w))
and ¢ = (¢,1).

(b) If p'(0) = ¢/ (v) in V', where p’ = (p,A) and ¢’ = (q,1), then there exists w € T* such
that M(w) = A and p(0) = q(v) in V.

Proof. (a) By Lemma 3, V has a path w € T* such that w(0) = v. Let k= |w|. For every

i€ [k+1], let
Ai déf M(wiwiﬂ te ’U)k)

with the convention that Ax,; = I. For every i € [k], let
bi d:ef Ai+1 . A(’UJZ),

w) = ((sre(w;i), Ag), 1, by, (tgt(w;), Aiy1)).

We claim that w' = wjw)---w), is such that (p, A) LN (¢, Ag+1) in V'. Note that the
validity of the claim completes the proof since A; = M (w) and Ay =1

It follows immediately from the definition of 7" that w} € T for every i € [k] and hence
that w’ is a path from (p, A;) to (¢, Ax). By Lemma 3, it remains to show that w'(0) = v:

k
w'(0) = Z M (wj qwy o w)) - Alw)) (by Lemma 4 applied to w’(0))
i=1
k
= Z A(w}) (by M (w}) =1 for every i € [k])
i=1
k
= Z A Alw;) (by definition of A(w?}))
i=1
k
= Z M(w;y1wigo - wk) . A(wi) (by definition of A;;1)
i=1

= w(0) (by Lemma 4 applied to w(0)).

M. Blondin, C. Haase, and F. Mazowiecki

(b) Similarly, by Lemma 3, there exists a path w’ of V' such that w'(0) = v, and it

suffices to exhibit a path w € T™ from p to ¢ in V such that w(0) = v and M(w) = A.

def

Let k = |w'|. For every i € [k], let w} = ((pi, As), 1L, b;, (¢;,B;)). By definition of T”, for
every i € [k], there exists a (possibly non unique) transition ¢; € T such that src(t) = p;,
tgt(t) = ¢;, by = B; - A(t;) and B, - M (¢;) = A;. We set w = tyty - -ty It is readily seen
that w is a path from p to ¢. To prove w(0) = v and M(w) = A, Lemma 4 can be applied
as in the previous implication. |

3.3 Reachability from an arbitrary configuration

We now construct the Z-VASS V" = (2d,Q"”,T") of Theorem 1 which is obtained mostly
from V’. The states of V" are defined as

Q" EQiUQXMXMUQx M)UQ;

where Q; = {¢; : ¢ € Q} and Q; = {qs : ¢ € Q}. To simplify the notation, given two
vectors u, v € Z¢ we write (u,v) for the vector of Z2? equal to w on the first d components
and equal to v on the last d components. The set T" consists of five disjoint subsets of
transitions Tinit U Tsimul U Tend U Tmuit U Thnal Working in five sequential stages. Intuitively,
these transitions allow V" to guess a matrix Agyess, to simulate a path w of V such that
Agess = M (w), to compute w(0) and finally to compute w(0) + Agyess - U-

The first set of transitions is defined as:

ﬂnit d:ef {(Q77Ia (070)a (Q7C7C)) VS Qa Ce M}

Its purpose is to move from @; to @ x M x M, thereby storing two copies of the guessed
matrix Aguess- The second set is defined as:

Tyma = {((p, A, C),L,(0,b),(¢,B,C)) : C € M, ((p,A),Lb,(¢,B)) € T'}.

Its purpose is to simulate 7" in the two first components of Q x M x M and to remember
Aguess in the third component. The third set is defined as:

def

Tena = {((%L C)vlv (070)7 (Q7C)) : ((LI’ C) € QH}7

and its purpose is to move from @ x M x M to @ x M, thus guessing the end of a run in
V', i.e. by reaching I. The fourth set is defined as:

Tt = {((q,C),1L, (—e;,C - €;),(¢,C)): g€ Q,C e M,i € [d}U
{((Q7C)7Ia (e'i7 -C- ei)7 (qa C)) 1q € ch S MaZ € [d]}a

where e; is the unit vector such that e;(¢) = 1. The purpose of Ty is to compute Agyess - .
Finally, Thpna is defined as:

def

Tﬁnal = {((qac)ala (an)aqf) 1q e Q7 C S M}a

and its purpose is to move from @ x M to @y, guessing the end of the matrix multiplication
performed with Ti,,1s.
We may now prove Theorem 1:

14:9

CONCUR 2018

14:10

Affine Extensions of Integer Vector Addition Systems with States

Proof of Theorem 1. First, note that we obtain

Q" = 2+ M+ [IM]) - @]
<4-MIP-1Ql,

1Tl =2 (M- QI+ [IMI] - T +1Q"] + 2d - [|M]] - |Q]
< IMI* NI+ 8d - [|M]17 - QI

where we use the fact that ||77| < || M]|? - ||T]| - max{[|A]| : A € M} < | M| |T|.

It remains to show that p(u) = g(v) in V if and only if p;(u, 0) = ¢s(0,v) in V".

=) By Lemma 3, there exists a path w of V such that w(u) = v. By definition of
Tinit, Tsimu and Teng, and by Proposition 5, it is the case that p;(u, 0) X r(w,w(0)) where
r = (g, M(w)). The transitions of Tyt allow to transform (w,w(0)) into (0,w(0)+ M (w)-u).
Thus, using Thnal, we can reach the configuration gr(w(0) + M (w) - w). This concludes the
proof since w(u) = w(0) + M(w) - w by Lemma 4.

<) The converse implication follows the same steps as the previous one. It suffices to
observe that the first part of a run of V" defines the value w(0), while the second part of the
run defines M (w) - u. <

4 Semilinearity of affine Z-VASS

We say that a subset of Z¢ is semilinear if it is definable by a Presburger formula [34], i.e.
by a formula of FO(Z, +, <), the first-order logic over Z with addition and order. Semilinear
sets capture precisely finite unions of sets of the form b+N-p; +N-ps+...+ N pg, and are
closed under basic operations such as finite sums, intersection and complement. Semilinear
sets are important in formal verification, in particular because satisfiability of Presburger
formulas is decidable [34] and in NP for the existential fragment [11].

The results of Section 3 allow us to show that any affine Z-VASS with the finite-monoid
property has a semilinear reachability relation:

» Theorem 6. Given an afmp-Z-VASSY = (d,Q,T) andp,q € Q, it is possible to compute an
ezistential Presburger formula @y p q of size at most O(poly(|V|, |[My|])) such that vy p 4(u,)
holds if and only if p(u) = q(v) in V.

Proof. By Theorem 1, there exist an effectively computable Z-VASS V' = (d',Q’,T’) and
P',q € Q" suchthat d'=2-d, Q| <4-|M|*-|Q, [T"]] < 8d-[|IM]|]*- Q|+ [|M[|*- | T|| and

p(u) = g(v) in V if and only if p/(u,0) = ¢'(0,v) in V' (5)

By [21, Sect. 3], we can compute an existential Presburger formula 1 of linear size in)’
such that o (x, ', y,y') holds if and only if p/(x,x’') = ¢/(y,y’) in V. By (5), the formula
Oy pq(T,y) £ ¥(x,0,0,y) satisfies the theorem. <

It was observed in [20, 9] that the reachability relation of a Z-VASS V = (d,Q,T), such
that |Q| = |M (V)| = 1, is semilinear if and only if My, is finite. Theorem 6 shows that if we
do not bound the number of states and matrices, i.e. drop the assumption |Q| = [M (V)| =1,
then the left implication remains true. It is natural to ask whether the right implication also
remains true.

Let V; and Vs be the affine Z-VASS illustrated in Figure 3 from left to right respectively.
Note that My, and M, are both infinite due to the matrix made only of 1s. Moreover,
the reachability relations of V; and Vs are semilinear since the former can reach any target

M. Blondin, C. Haase, and F. Mazowiecki

(ol L
(%R G

Figure 3 Examples of affine Z-VASS with infinite monoids and semilinear reachability relations.

configuration from any initial configuration, and since the latter can only generate finitely
many vectors due to the zero matrix. Since V; has a single control-state, |M (V1)| = |[M(V2)| =
2 and A(Vz2) = {0}, any simple natural extension of the characterization of semilinearity in
terms of the number of control-states, matrices and vectors fails.

It is worth noting that an affine Z-VASS with an infinite monoid may have a non semilinear
reachability relation. Indeed, Figure 2 depicts a transfer + copy Z-VASS with an infinite
monoid and such that {v : p(1,1) = ¢(v)} = {(2",2") : n € N}, which is known to be non
semilinear.

5 Complexity of reachability

In this section, we use the results of Section 3 to show that reachability belongs to PSPACE
for a large class of afmp-Z-VASS encompassing all variants of Section 2. Moreover, we give a
novel proof to the known NP membership of reachability for reset Z-VASS.

» Theorem 7. LetC = Ud21 Cq be a class of matrices such that Cq is finite for everyd > 1. If
there exists a polynomial poly such ||Cq|| < 2P°Y(D for every d > 1, then Reache € PSPACE.

» Corollary 8. The reachability problem of reset, permutation, transfer, copy and copyless
Z-VASS is in PSPACE.

Proof of Theorem 7. Let V = (d,Q,T) be an affine Z-VASS from class C. Let V' =
(d,Q',T") be the Z-VASS obtained from V in Theorem 1. Recall that, by Theorem 1,
p(u) = ¢(v) in V if and only if p’(u,0) = ¢(0,v) in V'. Therefore, it suffices to check the
latter for determining reachability in V.

We invoke a result of [7] on the flattability of Z-VASS. By [7, Prop. 3], p'(z) = ¢'(y) in
V' if and only if there exist k < |T'|, ag, B1, 1, .., Bk, ar € (T')* and e € N¥ such that

() p'(a) D)y
(ii) B; is a cycle for every i € [k], and
(iii) apBray - Bray is a path from p’ to ¢’ of length at most 2 - |Q'| - |T7].

For every w € (T")*, let A(w) = Zyﬂl A(w;). By Lemma 4 (see the remark below
the proof of Lemma 4), we have w(u) = u + A(w) for every u € Z¢. Thus, by Lemma 3,
checking (i), assuming (iii), amounts to testing whether e is a solution of the following system
of linear Diophantine equations:

k

T+ Y Alw)+ (AB) AB) - ABr)-e=y. (6)

=0

14:11

CONCUR 2018

14:12

Affine Extensions of Integer Vector Addition Systems with States

def

Let m = 2-]Q’|-|T"|. Since |T”| < ||T’|| and by Theorem 1, we have m < 128-d-|My|>-|Q|*-
| 7|, and hence by M(V) C C4 and by assumption on Cg, m < 128 - d - (20P°W(4))> . |Q[2 - ||T|.

We describe a polynomial-space non deterministic Turing machine A for testing whether
p'(x) = ¢'(y) in V'. The proof follows from NPSPACE = PSPACE. Machine A guesses
k < |T’|, a path 7 = apfB1a1 - - - Bray of length at most m from p’ to ¢/, and e € N¥| and
tests whether (6) holds for 7. Note that we are not given V', but V, so we must be careful
for the machine to work in polynomial space.

Instead of fully constructing V' and fully guessing 7, we do both on the fly, and also
construct A(ag), A(B1), ..., A(Brk), A(ax) on the fly as partial sums as we guess w. Note
that to ensure that each 3; is a cycle, we do not need to fully store [3; but only its starting
control-state. Moreover, note that ||A(a;)||, |A(G)] < m - max{||A(t)| : ¢t € T} for every i,
and hence each «; and §; has a binary representation of polynomial size in |V).

By [14, Prop. 4], (6) has a solution if and only if it has a solution e € N* such that

k o
el < ((k+ 1) - max{||A(B) 1 i € [K]} + [zl + yll + D> A + 1) ~

=0

Since d’ = 2 - d, this means that we can guess a vector e € N¥ whose binary representation is
of polynomial size, and that we can thus evaluate (6) in polynomial time. |

» Theorem 9 ([21]). The reachability problem for reset Z-VASS belongs to NP.

Proof. Let V = (d,Q,T) be a reset Z-VASS. The proof does not follow immediately from
Theorem 1 because My, can be of size up to 2¢. We will analyze the construction used in
the proof of Theorem 1, where reachability in V is effectively reduced to reachability in a
Z-VASS V' = (d',Q',T"). Recall that Q' = Q; U (Q x My) U (Q x My x My)UQy, and
thus that the size of V' depends only on the sizes of @ and M.

It follows from the proof of Theorem 1 and Proposition 5 that for every run p;(u,0) 5
gr(0,v) in V', there is a corresponding run p(u) 2 g(v) in V for some w € T* of length
k > 0. Moreover, the only states of the form (Q, A,B) or (@, A) occurring along the run
contain matrices A, B € My, of the form A; = M (w;w;y1 - wy) for ¢ € [k + 1]. Recall that
by definition, for every i € [k], A; = A;41 - B for some B € My,. Since My, consists of
reset matrices, it holds that Ay, Ao, ..., Ay is monotonic, i.e. if A; has a 1 somewhere on
its diagonal, then A,;,; also contains 1 in that position. It follows that A, Ag, ..., Agyq is
made of at most d + 1 matrices.

To prove the NP upper bound we proceed as follows. We guess at most d + 1 matrices of
My, that could appear in sequence Ay, Ay, ..., Ax1. We construct the Z-VASS V' as in
Theorem 1, but we discard each control-state of)’ containing a matrix not drawn from the
guessed matrices. Since the constructed Z-VASS is of polynomial size, reachability can be
verified in NP [21]. <

» Remark. Observe that the proof of Theorem 9 holds for any class of affine Z-VASS with a
finite monoid such that every path of its Cayley graph contains at most polynomially many
different vertices. For a reset Z-VASS of dimension d, the number of vertices on every path
of the Cayley graph is bounded by d + 1.

M. Blondin, C. Haase, and F. Mazowiecki

6 Hardness results for reachability

It is known that the reachability problem for Z-VASS is already NP-hard [21], which means
that reachability is NP-hard for all classes of affine Z-VASS. In this section, we show that
PSPACE-hardness holds for some classes, matching the PSPACE upper bound derived in

Section 5. Moreover, we observe that reachability is undecidable for transfer + copy Z-VASS.

» Theorem 10. The reachability problem for permutation + reset Z-VASS is PSPACE-hard.

Proof. We give a reduction from the membership problem of linear bounded automata,
which is known to be PSPACE-complete (see, e.g., [23, Sect. 9.3 and 13]). Let A =
(P,3,T,6,¢™, ¢*, ¢*) be a linear bounded automaton, where:

P is the set of states,

> C T is the input alphabet,

I" is the tape alphabet,

¢ is the transition function, and

q

ini pace grei are the initial, accepting and rejecting states respectively.

The transition function is a mapping § : P x I' = P x I x {LEFT, R1GHT}. The intended
meaning of a transition d(p,a) = (¢,b, D) is that whenever A is in state p and holds letter a
at the current position of its tape, then A overwrites a with b and moves to state ¢ and to
the next tape position in direction D.

Let us fix the word that we will check for membership w € X" (so |w| = n). We construct
an affine Z-VASS V = (d,Q,T) and configurations r(u) and ’'(v) such that A accepts w if
and only if 7(u) = ' (v).

We set d = n - IT'| + 1 and associate a counter to each position of w and each letter of
the tape alphabet I', plus one additional counter. For readability, we denote these counters
respectively as x; , and y, where 7 € [n] and @ € I'. The idea is to maintain, for every i € [n],
a single “token” among counters {z; , : @ € I'} in order to represent the current letter in the
ith tape cell of A. The initial vector is w € {0,1}¢ such that u(y) = 0 and u(z; ,) = 1 if and
only if w; = a for every i € [n] and a € T.

The control-states of V are defined as:

def

Q= {rpi:pePicn}U{rpia:pe€Picn,acT}U{rac}

The purpose of states of the form 7, ; is to store the current state p and tape cell i of A.

States of the form 7, ; , are intermediary control-states and the state rq.. will be the target
control-state.

We associate transitions to every triple (p, a,i) € P xT'x [n], which denotes a configuration
of A: the automaton is in state p in position 7, where letter a is stored. Let us fix a transition
d(p,a) = (¢,b,D); and let j =i+ 1 if D = RIGHT, and j =i — 1 if D = LEFT. For every
i € [n], if j € [n] then we add to T the transitions

(Tp7i7 A0, 7“1071',11) and (rpai#l’ B,0, TqJ)v (7)

where A is a permutation matrix that swaps the values of x; , and z; 3; and B resets x; , for
every o € I'\ {b}. The two transitions are depicted on the left of Figure 4 (for D = Right).
The purpose of the first transition is to simulate the transition of A, upon reading @ in tape
cell i and state p, by moving the i*" “token” from Ziq to ;5. Note that this transition
may be faulty, i.e. it can simulate reading letter a even though tape cell ¢ contains another
letter. The purpose of the second transition is to detect such faulty behaviour: if the first

14:13

CONCUR 2018

14:14

Affine Extensions of Integer Vector Addition Systems with States

SwWap Ti,a reset T; o

A and z; m for every o # b A mo et Tia—1
T'pji N pisa N qi+1 , ’
v - y—y+1

Figure 4 Left: transitions of V simulating transition §(p, a) = (g, b, Right) of A. Right: transitions
to verify whether the accepting state has been reached with no error during the simulation.

100 101 by
Dbl 010][,0 01 01, |0b
b\ b, 100 mooo 0

p > S q

O—(@ O ®

Figure 5 Gadget (on the right) made of copy and transfer transitions simulating the doubling
transition on the left.

transition is taken and tape cell i does not contain a, then due to the resets, all counters of
{%;q:a €T} end up in 0, and the " “token” is lost.

Recall that in the initial vector u € {0,1}¢ there were exactly n counters with 1 and
> ie(q (@) = n. By construction of V, all configurations reachable from 7gumi 1(u), using
transitions defined in (7), have vectors in {0,1}% with at most n counters equal to 1. They
have exactly n counters equal to 1 only if all corresponding transitions were valid for the
automaton .A. We conclude that A accepts w if and only if there exist i € [n] and u’ € {0,1}¢
such that rgmi 1 (u) it Trgace ;(u') and Eie[d] u'(i) = n.

To test whether such index 7 and vector v exist, we add some transitions to T as illustrated
on the right of Figure 4. For every ¢ € [n], we add to T the transition (rgace ;,I,0,7acc). For
every i € [n] and a € T', we add to T the transition (racc, I, b, 7acc) where b is the vector
whose only non zero components are b(z; ,) = —1 and b(y) = 1. The purpose of these
transitions is to (weakly) transfer the values of all counters to y. Recall that v is the vector
whose only non zero component is v(y) = n. We conclude that the language of A accepts w
if and only if 7gini 1 (6) = Tace(v). <

» Corollary 11. The reachability problem is PSPACE-complete for permutation + reset
Z-VASS, transfer Z-VASS and copy Z-VASS.

Proof. The hardness for permutation + reset Z-VASS follows from Theorem 10, and the
upper bound for transfer Z-VASS and copy Z-VASS follows from Theorem 7. It remains to
argue that transfers and copies can both simulate permutations and resets. By definition,
permutation matrices are also transfer and copy matrices. Resetting a counter x can be
simulated by adding an extra counter y. In the case of transfers, it suffices to transfer z to y
and to allow for y to be arbitrarily incremented or decremented. In the case of copies, it
suffices to keep y = 0 at all times and to copy y onto x. |

» Proposition 12 ([36]). The reachability problem for transfer + copy Z-VASS is undecidable,
even when restricted to three counters.

Proof. Reichert [36] gives a reduction from the Post correspondence problem over the
alphabet {0, 1} to reachability in affine Z-VASS with two counters. The trick of the reduction
is to represent two binary sequences as the natural numbers the sequences encode, one in
each counter. If we add an artificial 1 at the beginning of the two binary sequences, then
these sequences are uniquely determined by their numerical values. We only need to be

M. Blondin, C. Haase, and F. Mazowiecki

able to double the counter values, which corresponds to shifting the sequences. This can be
achieved using the following matrices:

def 2 O def 1 O
D1 = <O 1) and D2 = <0 2> .

The only matrices used in the construction of Reichert are I, Dy and Ds. The two last
matrices can be simulated by a gadget made of copy and transfer matrices and by introducing
a third counter. This gadget is depicted in Figure 5 for the case of matrix D;. The other
gadget is symmetric. Note that if a run enters control-state p of the gadget with vector
(x,y,0), then it leaves control-state ¢ in vector (2z + b1,y + bs,0) as required. <

» Remark. A monoid M is positive if it contains only matrices with non negative entries.
The classes of Section 2 and the matrices used in Proposition 12 have this property. The
coverability problem for affine VASS with positive (and possibly infinite) monoids is known
to be decidable in Ackermann time [19]. Recall that coverability and reachability are inter-
reducible for affine Z-VASS. Thus, Proposition 12 gives an example of a decision problem,
namely coverability, which is more difficult for affine Z-VASS than for affine VASS.

7 Conclusion

We have shown that the reachability problem for afmp-Z-VASS reduces to the reachability
problem for Z-VASS, i.e. every afmp-Z-VASS V can be simulated by a Z-VASS of size
polynomial in |V| and || My||. In particular, this allowed us to establish that the reachability
relation of any afmp-Z-VASS is semilinear.

For all of the variants we studied — reset, permutation, transfer, copy and copyless Z-VASS
— the size of ||My || is of exponential size, thus yielding a PSPACE upper bound on their
reachability problems. We do not know whether an exponential bound on || My|| holds for
any class of afmp-Z-VASS. We are aware that the work of [31] provides an exponential tower
upper bound. Moreover, an exponential upper bound holds when My, is generated by a
single matrix [24]; and when M, is a group then we have an exponential bound but only on
|My| (see [28] for an exposition on the group case).

For all the classes of afmp-Z-VASS studied in this paper, we have shown that the
reachability problem is either PSPACE-complete or NP-complete, with the exception of
permutation Z-VASS reachability which lies between NP and PSPACE, and whose precise
complexity remains open.

Another interesting open question is whether reachability is undecidable for every class of
infinite matrix monoids, i.e. is the top rectangular region of Figure 1 equal to the red ellipse?

—— References

1 Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. General decidab-
ility theorems for infinite-state systems. In Proc. 11%* Annual IEEE Symposium on Logic
in Computer Science (LICS), pages 313-321, 1996. doi:10.1109/LICS.1996.561359.

2 Parosh Aziz Abdulla and Giorgio Delzanno. Parameterized verification. International
Journal on Software Tools for Technology Transfer, 18(5):469-473, 2016. doi:10.1007/
s10009-016-0424-3.

3 Rajeev Alur, Adam Freilich, and Mukund Raghothaman. Regular combinators for string
transformations. In Proc. Joint Meeting of the 23" EACSL Annual Conference on Com-
puter Science Logic (CSL) and the 29" ACM/IEEE Symposium on Logic in Computer
Science (LICS), pages 9:1-9:10, 2014. doi:10.1145/2603088.2603151.

14:15

CONCUR 2018

http://dx.doi.org/10.1109/LICS.1996.561359
http://dx.doi.org/10.1007/s10009-016-0424-3
http://dx.doi.org/10.1007/s10009-016-0424-3
http://dx.doi.org/10.1145/2603088.2603151

14:16

Affine Extensions of Integer Vector Addition Systems with States

10

11

12

13

14

15

16

17

18

19

Rajeev Alur and Mukund Raghothaman. Decision problems for additive regular functions.
In Proc. 40*" International Colloquium on Automata, Languages, and Programming (IC-
ALP), pages 37-48, 2013. doi:10.1007/978-3-642-39212-2_7.

Toshiro Araki and Tadao Kasami. Some decision problems related to the reachability
problem for Petri nets. Theoretical Computer Science, 3(1):85-104, 1976. doi:10.1016/
0304-3975(76)90067-0.

Konstantinos Athanasiou, Peizun Liu, and Thomas Wahl. Unbounded-thread program
verification using thread-state equations. In Proc. 8" International Joint Conference on
Automated Reasoning (IJCAR), pages 516-531, 2016. doi:10.1007/978-3-319-40229-1_
35.

Michael Blondin, Alain Finkel, Stefan Goller, Christoph Haase, and Pierre McKenzie.
Reachability in two-dimensional vector addition systems with states is PSPACE-complete.
In Proc. 30" Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages
32-43, 2015. doi:10.1109/LICS.2015.14.

Michael Blondin and Christoph Haase. Logics for continuous reachability in Petri nets
and vector addition systems with states. In Proc. 32"% Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), pages 1-12, 2017. doi:10.1109/LICS.2017.8005068.
Bernard Boigelot. Symbolic Methods for Exploring Infinite State Spaces. PhD thesis, Uni-
versité de Liege, Belgium, 1998.

Rémi Bonnet. Theory of Well-Structured Transition Systems and Extended Vector-Addition
Systems. PhD thesis, Ecole normale supérieure de Cachan, France, 2013.

I. Borosh and L. B. Treybig. Bounds on positive integral solutions of linear diophantine
equations. Proceedings of the American Mathematical Society, 55(2):299-304, 1976. doi:
10.2307/2041711.

Michaél Cadilhac, Alain Finkel, and Pierre McKenzie. Bounded Parikh automata. In-
ternational Journal of Foundations of Computer Science, 23(8):1691-1710, 2012. doi:
10.1142/50129054112400709.

Michagl Cadilhac, Alain Finkel, and Pierre McKenzie. Unambiguous constrained automata.
International Journal of Foundations of Computer Science, 24(7):1099-1116, 2013. doi:
10.1142/50129054113400339.

Dmitry Chistikov and Christoph Haase. The taming of the semi-linear set. In Proc. 43™ In-
ternational Colloquium on Automata, Languages, and Programming (ICALP), pages 128:1—
128:13, 2016. doi:10.4230/LIPIcs.ICALP.2016.128.

Giorgio Delzanno. A unified view of parameterized verification of abstract models of broad-
cast communication. International Journal on Software Tools for Technology Transfer,
18(5):475-493, 2016. doi:10.1007/s10009-016-0412-7.

Catherine Dufourd, Alain Finkel, and Philippe Schnoebelen. Reset nets between decidab-
ility and undecidability. In Proc. 25" International Colloquium on Automata, Languages
and Programming (ICALP), pages 103-115, 1998. doi:10.1007/BFb0055044.

E. Allen Emerson and Kedar S. Namjoshi. On model checking for non-deterministic infinite-
state systems. In Proc. 13" Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pages 70-80, 1998. doi:10.1109/LICS.1998.705644.

Javier Esparza, Rusldan Ledesma-Garza, Rupak Majumdar, Philipp J. Meyer, and Filip
Niksic. An SMT-based approach to coverability analysis. In Proc. 26" International
Conference on Computer Aided Verification (CAV), pages 603-619, 2014. doi:10.1007/
978-3-319-08867-9_40.

Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Schnoebelen. Acker-
mannian and primitive-recursive bounds with Dickson’s lemma. In Proc. 26" Annual
IEEE Symposium on Logic in Computer Science (LICS), pages 269-278, 2011. doi:
10.1109/LICS.2011.39.

http://dx.doi.org/10.1007/978-3-642-39212-2_7
http://dx.doi.org/10.1016/0304-3975(76)90067-0
http://dx.doi.org/10.1016/0304-3975(76)90067-0
http://dx.doi.org/10.1007/978-3-319-40229-1_35
http://dx.doi.org/10.1007/978-3-319-40229-1_35
http://dx.doi.org/10.1109/LICS.2015.14
http://dx.doi.org/10.1109/LICS.2017.8005068
http://dx.doi.org/10.2307/2041711
http://dx.doi.org/10.2307/2041711
http://dx.doi.org/10.1142/S0129054112400709
http://dx.doi.org/10.1142/S0129054112400709
http://dx.doi.org/10.1142/S0129054113400339
http://dx.doi.org/10.1142/S0129054113400339
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.128
http://dx.doi.org/10.1007/s10009-016-0412-7
http://dx.doi.org/10.1007/BFb0055044
http://dx.doi.org/10.1109/LICS.1998.705644
http://dx.doi.org/10.1007/978-3-319-08867-9_40
http://dx.doi.org/10.1007/978-3-319-08867-9_40
http://dx.doi.org/10.1109/LICS.2011.39
http://dx.doi.org/10.1109/LICS.2011.39

M

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

. Blondin, C. Haase, and F. Mazowiecki

Alain Finkel and Jéréme Leroux. How to compose Presburger-accelerations: Applic-
ations to broadcast protocols. In Proc. 22" Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), pages 145-156, 2002. doi:
10.1007/3-540-36206-1_14.

Christoph Haase and Simon Halfon. Integer vector addition systems with states. In Proc.
8t International Workshop on Reachability Problems (RP), pages 112-124, 2014. doi:
10.1007/978-3-319-11439-2_9.

John E. Hopcroft and Jean-Jacques Pansiot. On the reachability problem for 5-dimensional
vector addition systems. Theoretical Computer Science, 8:135-159, 1979. doi:10.1016/
0304-3975(79)90041-0.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.

Radu Iosif and Arnaud Sangnier. How hard is it to verify flat affine counter systems
with the finite monoid property? In Proc. 14 International Symposium on Automated
Technology for Verification and Analysis (ATVA), pages 89-105, 2016. doi:10.1007/
978-3-319-46520-3_6.

Alexander Kaiser, Daniel Kroening, and Thomas Wahl. A widening approach to multith-
readed program verification. ACM Transactions on Programming Languages and Systems,
36(4):14:1-14:29, 2014. doi:10.1145/2629608.

Richard M. Karp and Raymond E. Miller. Parallel program schemata. Journal of Computer
and System Sciences, 3(2):147-195, 1969. doi:10.1016/50022-0000(69)80011-5.

S. Rao Kosaraju. Decidability of reachability in vector addition systems (preliminary ver-
sion). In Proc. 14" Annual ACM Symposium on Theory of Computing (STOC), pages
267-281, 1982. doi:10.1145/800070.802201.

James Kuzmanovich and Andrey Pavlichenkov. Finite groups of matrices whose entries
are integers. The American Mathematical Monthly, 109(2):173-186, 2002. doi:10.2307/
2695329.

Jérome Leroux. Vector addition systems reachability problem (a simpler solution). In The
Alan Turing Centenary Conference, pages 214-228, 2012.

Richard J. Lipton. The reachability problem requires exponential space. Technical Re-
port 63, Department of Computer Science, Yale University, 1976.

Arnaldo Mandel and Imre Simon. On finite semigroups of matrices. Theoretical Computer
Science, 5(2):101-111, 1977. doi:10.1016/0304-3975(77)90001-9.

Ernst W. Mayr. An algorithm for the general Petri net reachability problem. SIAM Journal
on Computing, 13(3):441-460, 1984. doi:10.1137/0213029.

Marvin Lee Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.
Mojzesz Presburger. Uber die Vollstandigkeit eines gewissen Systems der Arithmetik ganzer
Zahlen, in welchem die Addition als einzige Operation hervortritt. Comptes Rendus du I°"
Congreés des mathématiciens des pays slaves, pages 192-201, 1929.

Charles Rackoff. The covering and boundedness problems for vector addition systems.
Theoretical Computer Science, 6:223-231, 1978. doi:10.1016/0304-3975(78)90036-1.
Julien Reichert. Reachability games with counters: decidability and algorithms. PhD thesis,
Ecole normale supérieure de Cachan, France, 2015.

Klaus Reinhardt. Reachability in Petri nets with inhibitor arcs. FElectronic Notes in The-
oretical Computer Science, 223:239-264, 2008. doi:10.1016/j.entcs.2008.12.042.
Philippe Schnoebelen. Revisiting Ackermann-hardness for lossy counter machines and reset
Petri nets. In Proc. 35" International Symposium Mathematical Foundations of Computer
Science (MFCS), pages 616628, 2010. doi:10.1007/978-3-642-15155-2_54.

14:17

CONCUR 2018

http://dx.doi.org/10.1007/3-540-36206-1_14
http://dx.doi.org/10.1007/3-540-36206-1_14
http://dx.doi.org/10.1007/978-3-319-11439-2_9
http://dx.doi.org/10.1007/978-3-319-11439-2_9
http://dx.doi.org/10.1016/0304-3975(79)90041-0
http://dx.doi.org/10.1016/0304-3975(79)90041-0
http://dx.doi.org/10.1007/978-3-319-46520-3_6
http://dx.doi.org/10.1007/978-3-319-46520-3_6
http://dx.doi.org/10.1145/2629608
http://dx.doi.org/10.1016/S0022-0000(69)80011-5
http://dx.doi.org/10.1145/800070.802201
http://dx.doi.org/10.2307/2695329
http://dx.doi.org/10.2307/2695329
http://dx.doi.org/10.1016/0304-3975(77)90001-9
http://dx.doi.org/10.1137/0213029
http://dx.doi.org/10.1016/0304-3975(78)90036-1
http://dx.doi.org/10.1016/j.entcs.2008.12.042
http://dx.doi.org/10.1007/978-3-642-15155-2_54

Verifying Quantitative Temporal Properties of
Procedural Programs

Mohamed Faouzi Atig
Uppsala University, Sweden
Ahmed Bouajjani'

IRIF, Paris Diderot University, France
K. Narayan Kumar?

Chennai Mathematical Institute and UMI RELAX, India

Prakash Saivasan
TU Braunschweig, Germany

—— Abstract

We address the problem of specifying and verifying quantitative properties of procedural pro-
grams. These properties typically involve constraints on the relative cumulated costs of executing
various tasks (by invoking for instance some particular procedures) within the scope of the execu-
tion of some particular procedure. An example of such properties is “within the execution of each
invocation of procedure P, the time spent in executing invocations of procedure @ is less than
20% of the total execution time”. We introduce specification formalisms, both automata-based
and logic-based, for expressing such properties, and we study the links between these formalisms
and their application in model-checking. On one side, we define Constrained Pushdown Systems
(CPDS), an extension of pushdown systems with constraints, expressed in Presburger arithmetics,
on the numbers of occurrences of each symbol in the alphabet within invocation intervals (sub-
computations between matching pushes and pops), and on the other side, we introduce a higher
level specification language that is a quantitative extension of CaRet (the Call-Retu