
29th International Conference on
Concurrency Theory

CONCUR 2018, September 4–7, 2018, Beijing, China

Edited by

Sven Schewe
Lijun Zhang

LIPIcs – Vo l . 118 – CONCUR 2018 www.dagstuh l .de/ l ip i c s

Editors
Sven Schewe Lijun Zhang
Department of Computer Science State Key Laboratory of Computer Science
University of Liverpool Institute of Software Chinese Academy of Sciences
Liverpool, UK Beijing, China
sven.schewe@liverpool.ac.uk zhanglj@ios.ac.cn

ACM Classification 2012
Theory of Computation

ISBN 978-3-95977-087-3

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-087-3.

Publication date
August, 2018

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.CONCUR.2018.0

ISBN 978-3-95977-087-3 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-087-3
http://www.dagstuhl.de/dagpub/978-3-95977-087-3
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.0
http://www.dagstuhl.de/dagpub/978-3-95977-087-3
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Susanne Albers (TU München)
Christel Baier (TU Dresden)
Javier Esparza (TU München)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (University Bordeaux)
Catuscia Palamidessi (INRIA)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Thomas Schwentick (TU Dortmund)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

CONCUR 2018

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

Preface
Sven Schewe and Lijun Zhang . 0:ix–0:x

Invited Contributions

The Siren Song of Temporal Synthesis
Moshe Y. Vardi . 1:1–1:1

Bisimulations for Probabilistic and Quantum Processes
Yuxin Deng . 2:1–2:14

Is Speed-Independent Mutual Exclusion Implementable?
Rob van Glabbeek . 3:1–3:1

Verifying Arithmetic Assembly Programs in Cryptographic Primitives
Andy Polyakov, Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang 4:1–4:16

Coalgebraic Theory of Büchi and Parity Automata: Fixed-Point Specifications,
Categorically

Ichiro Hasuo . 5:1–5:2

Regular Papers

Universal Safety for Timed Petri Nets is PSPACE-complete
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Radu Ciobanu, Richard Mayr, and
Patrick Totzke . 6:1–6:15

It Is Easy to Be Wise After the Event: Communicating Finite-State Machines
Capture First-Order Logic with “Happened Before”

Benedikt Bollig, Marie Fortin, and Paul Gastin . 7:1–7:17

Learning-Based Mean-Payoff Optimization in an Unknown MDP under
Omega-Regular Constraints

Jan Křetínský, Guillermo A. Pérez, and Jean-François Raskin 8:1–8:18

Deciding Probabilistic Bisimilarity Distance One for Probabilistic Automata
Qiyi Tang and Franck van Breugel . 9:1–9:17

Non-deterministic Weighted Automata on Random Words
Jakub Michaliszyn and Jan Otop . 10:1–10:16

Ergodic Mean-Payoff Games for the Analysis of Attacks in Crypto-Currencies
Krishnendu Chatterjee, Amir Kafshdar Goharshady, Rasmus Ibsen-Jensen, and
Yaron Velner . 11:1–11:17

Bounded Context Switching for Valence Systems
Roland Meyer, Sebastian Muskalla, and Georg Zetzsche . 12:1–12:18

Alternating Nonzero Automata
Paulin Fournier and Hugo Gimbert . 13:1–13:16

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:vi Contents

Affine Extensions of Integer Vector Addition Systems with States
Michael Blondin, Christoph Haase, and Filip Mazowiecki . 14:1–14:17

Verifying Quantitative Temporal Properties of Procedural Programs
Mohamed Faouzi Atig, Ahmed Bouajjani, K. Narayan Kumar, and
Prakash Saivasan . 15:1–15:17

Narrowing down the Hardness Barrier of Synthesizing Elementary Net Systems
Ronny Tredup and Christian Rosenke . 16:1–16:15

Up-To Techniques for Behavioural Metrics via Fibrations
Filippo Bonchi, Barbara König, and Daniela Petrişan . 17:1–17:17

Completeness for Identity-free Kleene Lattices
Amina Doumane and Damien Pous . 18:1–18:17

Reachability in Parameterized Systems: All Flavors of Threshold Automata
Jure Kukovec, Igor Konnov, and Josef Widder . 19:1–19:17

Selective Monitoring
Radu Grigore and Stefan Kiefer . 20:1–20:16

Synchronizing the Asynchronous
Bernhard Kragl, Shaz Qadeer, and Thomas A. Henzinger . 21:1–21:17

A Semantics for Hybrid Iteration
Sergey Goncharov, Julian Jakob, and Renato Neves . 22:1–22:17

GPU Schedulers: How Fair Is Fair Enough?
Tyler Sorensen, Hugues Evrard, and Alastair F. Donaldson . 23:1–23:17

Linear Equations with Ordered Data
Piotr Hofman and Sławomir Lasota . 24:1–24:17

A Coalgebraic Take on Regular and ω-Regular Behaviour for Systems with
Internal Moves

Tomasz Brengos . 25:1–25:18

Relating Syntactic and Semantic Perturbations of Hybrid Automata
Nima Roohi, Pavithra Prabhakar, and Mahesh Viswanathan . 26:1–26:16

Updating Probabilistic Knowledge on Condition/Event Nets using Bayesian
Networks

Benjamin Cabrera, Tobias Heindel, Reiko Heckel, and Barbara König 27:1–27:17

Reachability in Timed Automata with Diagonal Constraints
Paul Gastin, Sayan Mukherjee, and B. Srivathsan . 28:1–28:17

Parameterized complexity of games with monotonically ordered ω-regular
objectives

Véronique Bruyère, Quentin Hautem, and Jean-François Raskin 29:1–29:16

A Universal Session Type for Untyped Asynchronous Communication
Stephanie Balzer, Frank Pfenning, and Bernardo Toninho . 30:1–30:18

Verification of Immediate Observation Population Protocols
Javier Esparza, Pierre Ganty, Rupak Majumdar, and Chana Weil-Kennedy 31:1–31:16

Contents 0:vii

The Satisfiability Problem for Unbounded Fragments of Probabilistic CTL
Jan Křetínský and Alexej Rotar . 32:1–32:16

Automatic Analysis of Expected Termination Time for Population Protocols
Michael Blondin, Javier Esparza, and Antonín Kučera . 33:1–33:16

On Runtime Enforcement via Suppressions
Luca Aceto, Ian Cassar, Adrian Francalanza, and Anna Ingólfsdóttir 34:1–34:17

Regular Separability of Well-Structured Transition Systems
Wojciech Czerwiński, Sławomir Lasota, Roland Meyer, Sebastian Muskalla,
K. Narayan Kumar, and Prakash Saivasan . 35:1–35:18

Separable GPL: Decidable Model Checking with More Non-Determinism
Andrey Gorlin and C. R. Ramakrishnan . 36:1–36:16

(Metric) Bisimulation Games and Real-Valued Modal Logics for Coalgebras
Barbara König and Christina Mika-Michalski . 37:1–37:17

The Complexity of Rational Synthesis for Concurrent Games
Rodica Condurache, Youssouf Oualhadj, and Nicolas Troquard 38:1–38:15

Logics Meet 1-Clock Alternating Timed Automata
Shankara Narayanan Krishna, Khushraj Madnani, and Paritosh K. Pandya 39:1–39:17

Progress-Preserving Refinements of CTA
Massimo Bartoletti, Laura Bocchi, and Maurizio Murgia . 40:1–40:19

Automated Detection of Serializability Violations Under Weak Consistency
Kartik Nagar and Suresh Jagannathan . 41:1–41:18

Effective Divergence Analysis for Linear Recurrence Sequences
Shaull Almagor, Brynmor Chapman, Mehran Hosseini, Joël Ouaknine, and
James Worrell . 42:1–42:15

CONCUR 2018

Preface

This volume contains the proceedings of the 29th Conference on Concurrency Theory, which
was held in Beijing, China, on September 4–7, 2018. CONCUR 2018 was organised by the
Institute of Software, Chinese Academy of Sciences.

CONCUR is a forum for the development and dissemination of leading research in
concurrency theory and its applications. Its aim is to bring together researchers, developers,
and students to exchange and discuss latest theoretical developments and learn about
challenging practical problems. CONCUR is the reference annual event for researchers in the
field.

The principal topics include basic models of concurrency such as abstract machines,
domain-theoretic models, game-theoretic models, process algebras, graph transformation
systems, Petri nets, hybrid systems, mobile and collaborative systems, probabilistic systems,
real-time systems, biology-inspired systems, and synchronous systems; logics for concurrency
such as modal logics, probabilistic and stochastic logics, temporal logics, and resource logics;
verification and analysis techniques for concurrent systems such as abstract interpretation,
atomicity checking, model checking, race detection, pre-order and equivalence checking,
run-time verification, state-space exploration, static analysis, synthesis, testing, theorem
proving, type systems, and security analysis; distributed algorithms and data structures:
design, analysis, complexity, correctness, fault tolerance, reliability, availability, consistency,
self-organisation, self-stabilisation, protocols. The theoretical foundations of more applied
topics like architectures, execution environments, and software development for concurrent
systems such as geo-replicated systems, communication networks, multiprocessor and multi-
core architectures, shared and transactional memory, resource management and awareness,
compilers and tools for concurrent programming, programming models such as component-
based, object- and service-oriented can also be found at CONCUR.

This edition of the conference attracted 101 full paper submissions, and we thank the
authors for their interest in CONCUR 2018. After careful reviewing and discussions, the
Program Committee selected 37 papers for presentation at the conference. Each submission
was reviewed by at least three reviewers who wrote detailed evaluations and gave insightful
comments. We warmly thank the members of the Program Committee and the additional
reviewers for their excellent work, including the constructive discussions. The full list of
reviewers is available as part of these proceedings.

The conference programme was greatly enriched by the invited talks by Moshe Vardi,
Yuxin Deng, Rob van Glabbeek, and Bow-Yaw Wang, as well as the tutorial delivered by
Ichiro Hasuo. We thank the speakers for having accepted our invitation and their excellent
presentations.

This year, the conference was jointly organised with the 16th International Conference
on Formal Modelling and Analysis of Timed Systems (FORMATS), the 15th International
Conference on Quantitative Evaluation of SysTems (QEST), and the fourth Symposium on
Dependable Software Engineering (SETTA) in an overarching event, CONFESTA, organised
by the Institute of Software, Chinese Academy of Sciences.

CONFESTA included four more satellite events: the combined 25th International Work-
shop on Expressiveness in Concurrency and 15th Workshop on Structural Operational
Semantics (EXPRESS/SOS), the 3rd International workshop on TIming Performance engin-
eering for Safety critical systems (TIPS’18), the 7th IFIP WG 1.8 Workshop on Trends in
Concurrency Theory (TRENDS), and the 8th Young Researchers Workshop on Concurrency
29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:x Preface

Theory (YR-CONCUR). as well as a number of tutorials. CONFESTA was preceeded by
two further associated events, a Summer School on Formal Methods and a CAP Project
Workshop.

The CONCUR proceedings are available for open access via LIPIcs, and we thank the staff
from Schloss Dagstuhl, in particular Michael Wagner, for helping us with the preparation.
Last, but not least, we thank the authors and the participants for making this year’s CONCUR
a successful and inspiring event.

Sven Schewe (University of Liverpool)
Lijun Zhang (Institute of Software, Chinese Academy of Sciences)

Committees

Programme Committee

Parosh Abdulla
Uppsala University (Sweden)

Christel Baier
TU Dresden (Germany)

Roderick Bloem
Graz University of Technology (Austria)

Ahmed Bouajjani
IRIF, University Paris Diderot (France)

Taolue Chen
Birkbeck, University of London (UK)

Yu-Fang Chen
Academia Sinica (Taiwan)

Alessandro Cimatti
Fondazione Bruno Kessler (Italy)

Pedro R. D’Argenio
Universidad Nacional de Córdoba -
CONICET (Argentina)

Josée Desharnais
Université Laval (Canada)

Wan Fokkink
Vrije Universiteit Amsterdam (The
Netherlands)

Erich Grädel
RWTH Aachen University (Germany)

Ichiro Hasuo
National Institute of Informatics (Japan)

Fei He
Tsinghua University (China)

Anna Ingólfsdóttir
Reykjavík University (Iceland)

Stefan Kiefer
University of Oxford (UK)

Shankara Narayanan Krishna
IIT Bombay (India)

Antonín Kučera
Masaryk University (Czech Republic)

Salvatore La Torre
Università degli Studi di Salerno (Italy)

Jérôme Leroux
CNRS (France)

Parthasarathy Madhusudan
University of Illinois at Urbana-Champaign
(USA)

Rupak Majumdar
MPI-SWS (Germany)

Radu Mardare
Aalborg University (Denmark)

Roland Meyer
TU Braunschweig (Germany)

Angelo Montanari
University of Udine (Italy)

Sriram Sankaranarayanan
University of Colorado, Boulder (USA)

Alexandra Silva
University College London (UK)

Ana Sokolova
University of Salzburg (Austria)

Mariëlle Stoelinga
University of Twente (The Netherlands)

Franck van Breugel
York University (Canada)

Verena Wolf
Saarland University (Germany)

Co-Chairs

Sven Schewe
University of Liverpool (UK)

Lijun Zhang
Institute of Software, Chinese Academy of
Sciences (China)

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:xii Committees

Steering Committee

Jos Baeten
Centrum Wiskunde & Informatica (CWI)
(The Netherlands)

Pedro R. D’Argenio
Universidad Nacional de Córdoba
(Argentina)

Javier Esparza
Technische Universität München (Germany)

Joost-Pieter Katoen
RWTH Aachen (Germany)

Kim G. Larsen
Aalborg University (Denmark)

Ugo Montanari
Università di Pisa (Italy)

Catuscia Palamidessi
INRIA and LIX, École Polytechnique
(France)

Local Organisers

Teng Fei
Institute of Software, Chinese Academy of
Sciences (China)

David N. Jansen
Institute of Software, Chinese Academy of
Sciences (China)

Yongjian Li
Institute of Software, Chinese Academy of
Sciences (China)

Yi Lv
Institute of Software, Chinese Academy of
Sciences (China)

Andrea Turrini
Institute of Software, Chinese Academy of
Sciences (China)

Shuling Wang
Institute of Software, Chinese Academy of
Sciences (China)

Peng Wu
Institute of Software, Chinese Academy of
Sciences (China)

Bai Xue
Institute of Software, Chinese Academy of
Sciences (China)

Rongjie Yan
Institute of Software, Chinese Academy of
Sciences (China)

Li Zhang
Institute of Software, Chinese Academy of
Sciences (China)

Xueyang Zhu
Institute of Software, Chinese Academy of
Sciences (China)

Local Organisation Chair

Zhilin Wu
Institute of Software, Chinese Academy of
Sciences (China)

Publicity Co-Chairs

Ernst Moritz Hahn
University of Liverpool (UK)

Meng Sun
Peking University (China)

List of External Reviewers

Luca Aceto

Dan Alistarh

Baskar Anguraj

Stavros Aronis

S. Arun-Kumar

Mohamed Faouzi Atig

Giorgio Bacci

Giovanni Bacci

Michael Backenköhler

Eric Badouel

Nikhil Balaji

Borja Balle

Francesco Belardinelli

Dietmar Berwanger

František Blahoudek

Laura Bocchi

Marco Bozzano

Laura Bozzelli

Tomas Brazdil

Simon Castellan

Ilaria Castellani

Pablo Castro

Didier Caucal

Mariano Ceccato

Rohit Chadha

Liqian Chen

Xin Chen

Peter Chini

Corina Cirstea

Emanuele D’Osualdo

Vrunda Dave

David de Frutos Escrig

Giorgio Delzanno

Stéphane Demri

Catalin Dima

Brijesh Dongol

Cezara Dragoi

Clemens Dubslaff

Jérémy Dubut

Constantin Enea

Gidon Ernst

Marco Faella

Uli Fahrenberg

Nathanaël Fijalkow

Brendan Fong

Ignacio Fábregas

Pierre Ganty

Paul Gastin

Simon Gay

Sergey Goncharov

Alexander Graf-Brill

Alberto Griggio

Gerrit Grossmann

Stefan Göller

Vojtěch Havlena

Frédéric Herbreteau

Lukas Holik

Hung-Wei Hsu

Omar Inverso

Ahmed Irfan

Rinat Iusupov

Petr Jancar
29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:xiv External Reviewers

Nils Jansen

Claude Jard

Peter Gjøl Jensen

Thomas Kahl

Benjamin Lucien Kaminski

Anja Karl

Joachim Klein

Bettina Koenighofer

Clemens Kupke

Marcel Kyas

Charalampos Kyriakopoulos

Rom Langerak

Kung-Kiu Lau

Marijana Lazic

Ondřej Lengál

Christoph Lenzen

Hsin-Hung Lin

Alexander Lück

Khushraj Madnani

Konstantinos Mamouras

Richard Mayr

Filip Mazowiecki

Alberto Molinari

J. Garrett Morris

Mohammad Mousavi

Sergio Mover

Sebastian Muskalla

Elisabeth Neumann

Jan Obdrzalek

Oded Padon

Vincent Penelle

Adriano Peron

Kirstin Peters

Gustavo Petri

Thomas Place

Gabriele Puppis

David Pym

Jorge A. Pérez

Hadi Ravanbakhsh

Vojtech Rehak

Antoine Rollet

Jurriaan Rot

Marco Roveri

Enno Ruijters

Prakash Saivasan

Pietro Sala

Tetsuya Sato

Sylvain Schmitz

Lutz Schröder

Roberto Segala

Ilya Sergey

Mahsa Shirmohammadi

David Sprunger

Daniel Stan

Caleb Stanford

Ivan Stojic

Eijiro Sumii

Grégoire Sutre

Toru Takisaka

Qiyi Tang

Peter Thiemann

Chun Tian

Simone Tini

Stefano Tonetta

Tigran Tonoyan

Andrea Turrini

External Reviewers 0:xv

Henning Urbat

Jaco van de Pol

Rob van Glabbeek

Dominik Velan

Walter Vogler

Masaki Waga

Hengfeng Wei

Tim Willemse

Sebastian Wolff

Nicolás Wolovick

James Worrell

Bo Wu

Zhilin Wu

Sascha Wunderlich

Akihisa Yamada

Shaofa Yang

Fabio Zanasi

Georg Zetzsche

CONCUR 2018

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Authors 0:xvii

List of Authors

Parosh Aziz Abdulla
Uppsala University
Sweden
parosh@it.uu.se

Luca Aceto
Reykjavik University
Iceland
luca@ru.is

Shaull Almagor
Oxford University, UK
United Kingdom
shaull.almagor@mail.huji.ac.il

Mohamed Faouzi Atig
Uppsala University
Sweden
mohamed_faouzi.atig@it.uu.se

Stephanie Balzer
Carnegie Mellon University
United States
balzers@cs.cmu.edu

Massimo Bartoletti
Università degli Studi di Cagliari
Italy
bart@unica.it

Michael Blondin
Technical University of Munich
Germany
blondin@in.tum.de

Laura Bocchi
University of Kent
United Kingdom
L.Bocchi@kent.ac.uk

Benedikt Bollig
LSV, ENS Cachan, CNRS
France
bollig@lsv.ens-cachan.fr

Filippo Bonchi
University of Pisa
Italy
filippo.bonchi@ens-lyon.fr

Ahmed Bouajjani
IRIF, University Paris Diderot
France
abou@irif.fr

Tomasz Brengos
Warsaw University of Technology
Poland
t.brengos@mini.pw.edu.pl

Véronique Bruyère
University of Mons
Belgium
veronique.bruyere@umons.ac.be

Benjamin Cabrera
University of Duisburg-Essen
Germany
benjamin.cabrera@uni-due.de

Ian Cassar
University of Malta & Reykjavik University
Malta & Iceland
ian.cassar.10@um.edu.mt

Brynmor Chapman
MIT CSAIL & EECS, Cambridge, MA
United States
brynmor@mit.edu

Krishnendu Chatterjee
Institute of Science and Technology (IST)
Austria
krish.chat@gmail.com

Radu Ciobanu
The University of Edinburgh
United Kingdom
R.Ciobanu@sms.ed.ac.uk

Rodica Condurache
Universite Paris Est, Creteil, and
Universite Libre de Bruxelles
France & Belgium
rodica.bozianu@gmail.com

Wojciech Czerwinski
University of Warsaw
Poland
wczerwin@mimuw.edu.pl

CONCUR 2018

0:xviii Authors

Yuxin Deng
East China Normal University
China
yxdeng@sei.ecnu.edu.cn

Alastair Donaldson
Imperial College London
United Kingdom
alastair.donaldson@imperial.ac.uk

Amina Doumane
CNRS - ENS Lyon
France
Amina.Doumane@ens-lyon.fr

Javier Esparza
Technical University of Munich
Germany
esparza@in.tum.de

Hugues Evrard
Imperial College London
United Kingdom
h.evrard@imperial.ac.uk

Marie Fortin
LSV, ENS Paris-Saclay,
CNRS, Université Paris-Saclay
France
marie.fortin@lsv.fr

Paulin Fournier
LS2N, Université de Nantes
France
paulin.fournier@gmail.com

Adrian Francalanza
University of Malta
Malta
adrian.francalanza@um.edu.mt

Pierre Ganty
IMDEA Software Institute
Spain
pierre.ganty@imdea.org

Paul Gastin
LSV, ENS Paris-Saclay,
CNRS, Université Paris-Saclay
France
gastin@lsv.fr

Hugo Gimbert
CNRS, LABRI, Bordeaux
France
hugo.gimbert@labri.fr

Amir Kafshdar Goharshady
IST Austria
Austria
goharshady@ist.ac.at

Sergey Goncharov
FAU Erlangen-Nürnberg
Germany
Sergey.Goncharov@fau.de

Andrey Gorlin
Stony Brook University
United States
agorlin@cs.stonybrook.edu

Radu Grigore
University of Kent
United Kingdom
radugrigore@gmail.com

Christoph Haase
University of Oxford
United Kingdom
Christoph.Haase@cs.ox.ac.uk

Ichiro Hasuo
National Institute of Informatics
Japan
i.hasuo@acm.org

Quentin Hautem
UMONS
Belgium
quentin.hautem@umons.ac.be

Reiko Heckel
University of Leicester
United Kingdom
reiko@mcs.le.ac.uk

Tobias Heindel
DIKU, University of Copenhagen
Denmark
tobias.heindel@googlemail.com

Thomas A. Henzinger
IST Austria
Austria
tah@ist.ac.at

Authors 0:xix

Piotr Hofman
University of Warsaw
Poland
piotrek.hofman@gmail.com

Mehran Hosseini
University of Oxford
United Kingdom
mehran.hosseini@cs.ox.ac.uk

Rasmus Ibsen-Jensen
IST Austria
Austria
ribsen@ist.ac.at

Anna Ingolfsdottir
Reykjavik University
Iceland
annai@ru.is

Suresh Jagannathan
Purdue University
United States
suresh@cs.purdue.edu

Julian Jakob
FAU Erlangen-Nürnberg
Germany
Julian.Jakob@fau.de

Kartik Nagar
Purdue University
United States
nagark@purdue.edu

Stefan Kiefer
University of Oxford
United Kingdom
stefan.kiefer@cs.ox.ac.uk

Barbara König
Universität Duisburg-Essen
Germany
barbara_koenig@uni-due.de

Igor Konnov
INRIA Nancy (LORIA)
France
igor.konnov@inria.fr

Bernhard Kragl
IST Austria
Austria
bkragl@ist.ac.at

Jan Křetínský
Technical University of Munich
Germany
jan.kretinsky@gmail.com

Antonin Kučera
Masaryk University
Czechia
tony@fi.muni.cz

Jure Kukovec
Vienna University of Technology
Austria
jkukovec@forsyte.at

K Narayan Kumar
Chennai Mathematical Institute
India
kumar@cmi.ac.in

Sławomir Lasota
University of Warsaw
Poland
sl@mimuw.edu.pl

Khushraj Madnani
IIT Bombay
India
khushraj@cse.iitb.ac.in

Rupak Majumdar
Max Planck Institute for Software Systems
Germany
rupak@mpi-sws.org

Richard Mayr
The University of Edinburgh
United Kingdom
rmayr@staffmail.ed.ac.uk

Filip Mazowiecki
LaBRI, Université de Bordeaux
France
filip.mazowiecki@u-bordeaux.fr

Roland Meyer
TU Braunschweig
Germany
roland.meyer@tu-bs.de

Jakub Michaliszyn
University of Wroclaw
Poland
jakub.michaliszyn@gmail.com

CONCUR 2018

0:xx Authors

Christina Mika-Michalski
University Duisburg-Essen
Germany
christine.mika@uni-due.de

Sayan Mukherjee
Chennai Mathematical Institute
India
sayanm@cmi.ac.in

Maurizio Murgia
University of Kent
United Kingdom
M.Murgia@kent.ac.uk

Sebastian Muskalla
TU Braunschweig
Germany
s.muskalla@tu-bs.de

Renato Neves
INESC TEC (HASLab) and
University of Minho
Portugal
nevrenato@di.uminho.pt

Jan Otop
University of Wrocław
Poland
jotop@cs.uni.wroc.pl

Joel Ouaknine
Max Planck Institute for Software Systems
Germany
joel@mpi-sws.org

Youssouf Oualhadj
Université Paris Est Créteil
France
youssouf.oualhadj@lacl.fr

Paritosh Pandya
TIFR
India
pandya@tifr.res.in

Guillermo Perez
Université libre de Bruxelles
Belgium
gperezme@ulb.ac.be

Daniela Petrisan
Université Paris Diderot - Paris 7
France
daniela.petrisan@gmail.com

Frank Pfenning
Carnegie Mellon University
United States
fp@cs.cmu.edu

Andy Polyakov
The OpenSSL project
Sweden
appro@openssl.org

Damien Pous
CNRS - ENS Lyon
France
Damien.Pous@ens-lyon.fr

Pavithra Prabhakar
Kansas State University
United States
pprabhakar@ksu.edu

Shaz Qadeer
Microsoft
United States
qadeer@microsoft.com

C. R. Ramakrishnan
Stony Brook University
United States
cram@cs.stonybrook.edu

Jean-Francois Raskin
Université Libre de Bruxelles
Belgium
jraskin@ulb.ac.be

Nima Roohi
University of Pennsylvania
United States
roohi2@cis.upenn.edu

Christian Rosenke
University of Rostock
Germany
christian.rosenke@uni-rostock.de

Alexej Rotar
Technical University of Munich
Germany
alexejrotar@gmail.com

Authors 0:xxi

Krishna S
IIT Bombay
India
krishnas@cse.iitb.ac.in

Prakash Saivasan
TU Braunschweig
Germany
p.saivasan@tu-bs.de

Tyler Sorensen
Imperial College London
United Kingdom
t.sorensen15@imperial.ac.uk

B Srivathsan
Chennai Mathematical Institute
India
sri@cmi.ac.in

Qiyi Tang
York University, Toronto
Canada
qiyitang@eecs.yorku.ca

Bernardo Toninho
Universidade NOVA de Lisboa
Portugal
btoninho@gmail.com

Patrick Totzke
University of Edinburgh
United Kingdom
p.totzke@ed.ac.uk

Ronny Tredup
University of Rostock
Germany
ronny.tredup2@uni-rostock.de

Nicolas Troquard
Free University of Bozen
Italy
nicolas.troquard@unibz.it

Ming-Hsien Tsai
Academia Sinica
Taiwan
mhtsai208@gmail.com

Franck van Breugel
York University, Toronto
Canada
franck@eecs.yorku.ca

Rob van Glabbeek
CSIRO
Australia
rvg@cs.stanford.edu

Moshe Y. Vardi
Rice University
USA
vardi@cs.rice.edu

Yaron Velner
Tel Aviv University
Israel
yaron172@yahoo.com

Mahesh Viswanathan
University of Illinois at Urbana-Champaign
United States
vmahesh@illinois.edu

Bow-Yaw Wang
Academia Sinica
Taiwan
bywang@iis.sinica.edu.tw

Josef Widder
Vienna University of Technology
Austria
widder@forsyte.at

James Worrell
University of Oxford
United Kingdom
jbw@cs.ox.ac.uk

Bo-Yin Yang
Academia Sinica
Taiwan
by@crypto.tw

Georg Zetzsche
IRIF, CNRS & Université Paris-Diderot
France
zetzsche@irif.fr

CONCUR 2018

The Siren Song of Temporal Synthesis
Moshe Y. Vardi1

Department of Computer Science, Rice University, Houston, TX, USA
vardi@cs.rice.edu

Abstract
One of the most significant developments in the area of design verification over the last three
decade is the development of algorithmic methods for verifying temporal specification of finite-
state designs. A frequent criticism against this approach, however, is that verification is done after
significant resources have already been invested in the development of the design. Since designs
invariably contains errors, verification simply becomes part of the debugging process. The critics
argue that the desired goal is to use temporal specification in the design development process in
order to guarantee the development of correct designs. This is called temporal synthesis. In this
talk I will review 60 years of research on the temporal synthesis problem, describe the automata-
theoretic approach developed to solve this problem, and describe both successes and failures of
this research program [1, 2].

2012 ACM Subject Classification Software and its engineering

Keywords and phrases Formal Methods, Temporal Synthesis

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.1

Category Invited Talk

References
1 Shufang Zhu, Lucas M. Tabajara, Jianwen Li, Geguang Pu, and Moshe Y. Vardi. A symbolic

approach to safety LTL synthesis. In Proc. 13th Int’l Haifa Verification Conf. on Hardware
and Software: Verification and Testing, volume 10629 of Lecture Notes in Computer Science,
pages 147–162. Springer, 2017. doi:10.1007/978-3-319-70389-3_10.

2 Shufang Zhu, Lucas M. Tabajara, Jianwen Li, Geguang Pu, and Moshe Y. Vardi. Symbolic
LTLf synthesis. In Proc. 26th Int’l Joint Conf. on Artificial Intelligence, pages 1362–1369.
ijcai.org, 2017. doi:10.24963/ijcai.2017/189.

1 Work supported in part by NSF Expeditions in Computing project “ExCAPE: Expeditions in Computer
Augmented Program Engineering”.

© Moshe Y. Vardi;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 1; pp. 1:1–1:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vardi@cs.rice.edu
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.1
http://dx.doi.org/10.1007/978-3-319-70389-3_10
http://dx.doi.org/10.24963/ijcai.2017/189
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Bisimulations for Probabilistic and Quantum
Processes
Yuxin Deng1

Shanghai Key Laboratory of Trustworthy Computing,
MOE International Joint Lab of Trustworthy Software,
and International Research Center of Trustworthy Software,
East China Normal University, Shanghai, China
yxdeng@sei.ecnu.edu.cn

https://orcid.org/0000-0003-0753-418X

Abstract
Bisimulation is a fundamental concept in the classical concurrency theory for comparing the
behaviour of nondeterministic processes. It admits elegant characterisations from various per-
spectives such as fixed point theory, modal logics, game theory, coalgebras etc. In this paper,
we review some key ideas used in the formulations and characterisations of reasonable notions of
bisimulations for both probabilistic and quantum processes. To some extent the transition from
probabilistic to quantum concurrency theory is smooth and natural. However, new ideas need
also to be introduced. We have not yet reached the stage of formally verifying quantum commu-
nication protocols and quantum algorithms using bisimulations implemented by automatic tools.
We discuss some recent efforts in this direction.

2012 ACM Subject Classification Theory of computation → Process calculi, Theory of compu-
tation → Operational semantics, Theory of computation → Modal and temporal logics

Keywords and phrases Bisimulations, probabilistic processes, quantum processes

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.2

Category Invited Paper

1 Introduction

Bisimulation [39, 37] is a fundamental concept in the classical concurrency theory as it admits
beautiful characterisations in terms of fixed points, modal logics, co-algebras, pseudometrics,
games, decision algorithms, etc. Its generalisation in the probabilistic setting is initiated
by Larsen and Skou in [36] and has subsequently been widely investigated in probabilistic
concurrency theory. One of the main contributions of [36] is the introduction of a lifting
operation that converts a relation between states to a relation between distributions over
states. Later on, the lifting operation is shown to be closely related to some prominent
concepts in mathematics such as the Kantorovich metric [33, 45] and the maximum network
flow problem [1]; the latter is crucial for designing algorithms to check if two states are
bisimilar.

The probabilistic bisimulation nicely defined in [36] has natural characterisations by
probabilistic extensions of Hennessy-Milner logic [28]; see e.g. [36, 14, 15, 40, 10, 30, 26, 12, 4].
Most characterisations employ some modalities indexed with numbers. A typical modal

1 Supported by the National Natural Science Foundation of China (61672229) and Shanghai Municipal
Natural Science Foundation (16ZR1409100).

© Yuxin Deng;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 2; pp. 2:1–2:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yxdeng@sei.ecnu.edu.cn
https://orcid.org/0000-0003-0753-418X
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2 Bisimulations for Probabilistic and Quantum Processes

formula, dated back to [36], is 〈a〉pφ, where p is a probability value. A state s satisfies this
formula if the probability that s can make an a-labelled transition to the set of states satisfying
φ exceeds p. In [44] van Breugel et al. generalise the characterisation of [36] to labelled
Markov processes, i.e. reactive probabilistic processes [36, 46] with continuous state spaces,
and surprisingly, without using any modality indexed with numbers. Usually, the simpler
the logical characterisation, the more difficult its completeness proof, since constructing
distinguishing formulae for non-bisimilar states with fewer modalities is more challenging.
Van Breugel et al. prove such an elegant result by using some advanced machinery such
as the Lawson topology on probabilistic powerdomains [31] and Banach algebras. However,
if we confine ourselves to discrete rather than continuous state spaces, as in e.g. [36], the
characterisation result given in [44] has a very elementary proof [7].

Since probabilistic behaviour is prevalent in quantum computation, it is natural to invest-
igate how a quantum concurrency theory can be built upon the probabilistic concurrency
theory. Notice that the operational semantics of many quantum systems can be defined in
terms of probabilistic labelled transition systems, which allows us to define quantum bisimu-
lations in a very intuitive way by extending probabilstic bisimulations with a requirement
on demanding equal environments when comparing two quantum processes. However, to
check quantum bisimulations, we need to appeal to the instantiation of quantum variables
by quantum systems. What’s worse, to check whether or not two quantum processes are
bisimilar, we need to consider arbitrarily chosen quantum states, which appears infeasible
in practice because quantum states constitute a continuum. Fortunately, it is possible to
overcome this difficulty by introducing a symbolic semantics and its associated symbolic
quantum bisimulations [20] that are equivalent to the usual concrete bisimulations. This
opens the door to design effective algorithms to check quantum bisimulations.

A distinctive feature of quantum computation is entailed by the no-cloning theorem
in quantum mechanics. Namely, quantum resources are linear from a type-theoretic point
of view. It is then particularly meaningful to study linear contextual equivalence, which
is a special form of contextual equivalence as the behaviours of programs are observed by
executing them only once. In [8], it is shown that for higher-order quantum programs, linear
contextual equivalence can be precisely captured by a distribution-based bisimilarity, which
is weaker than the usual state-based bisimilarity. Of course, distribution-based bisimulations
can also be defined for probabilistic processes, but in the quantum setting they become a
more important coinductive proof technique.

The rest of the paper is structured as follows. In Section 2, we review the formal model
of probabilistic labelled transition systems, the lifting operation, some of its equivalent
formulations, state-based and distribution-based bisimulations. In Section 3 we introduce a
quantum process algebra, discuss state-based and distribution-based quantum bisimulations,
and symbolic bisimulations. Finally, we conclude in Section 4.

2 Probabilistic Bisimulation

In this section, we introduce the model of probabilistic labelled transition systems, the key
concept of lifting operation, the state-based and distribution-based bisimulations.

2.1 Probabilistic Labelled Transition Systems
Let S be a countable set. A (discrete) probability (sub)distribution over set S is a function
∆ : S → [0, 1] with size |∆| =

∑
s∈S ∆(s) ≤ 1. It is a (full) distribution if |∆| = 1. Its

support, written d∆e, is the set {s ∈ S | ∆(s) > 0}. Let Dsub(S) and D(S) denote the set of

Y. Deng 2:3

a

2/3

τ1/3

a

a

τ

τ

2/3

1/3 2/3

1/3

τ

(a) (b)

Figure 1 Example pLTSs.

all subdistributions and distributions over S, respectively. We use ε to stand for the empty
subdistribution, that is ε(s) = 0 for any s ∈ S. We write s for the point distribution for
state s, satisfying s(t) = 1 if t = s, and 0 otherwise. If pi ≥ 0 and ∆i is a distribution for
each i in some finite index set I, then

∑
i∈I pi ·∆i is given by

(
∑
i∈I

pi ·∆i)(s) =
∑
i∈I

pi ·∆i(s) .

If
∑
i∈I pi = 1 then this is easily seen to be a distribution in D(S).

I Definition 1. A probabilistic labelled transition system (pLTS) is defined as a triple
〈S,A,→〉, where S is a set of states, A is a set of actions, and the transition relation → is a
subset of S ×A×D(S).

A non-probabilistic labelled transition system (LTS) may be viewed as a degenerate pLTS
– one in which only point distributions are used. We often write s α−→ ∆ in place of
(s, α,∆) ∈→.

In order to visualise pLTSs, we often draw them as directed graphs. Given that in a
pLTS transitions go from states to distributions, we need to introduce additional edges to
connect distributions back to states, thereby obtaining a bipartite graph. States are therefore
represented by nodes of the form • and distributions by nodes of the form ◦. For any state s
and distribution ∆ with s α−→ ∆ we draw an edge from s to ∆, labelled with α. Consequently,
the edges leaving a •-node are all labelled with actions from A. For any distribution ∆
and state s in d∆e, the support of ∆, we draw an edge from ∆ to s, labelled with ∆(s).
Consequently, the edges leaving a ◦-node are labelled with positive real numbers that sum to
1. Sometimes we partially unfold this graph by drawing the same nodes multiple times; in
doing so, all outgoing edges of a given instance of a node are always drawn, but not necessarily
all incoming edges. Edges labelled by probability 1 occur so frequently that it makes sense
to omit them, together with the associated nodes ◦ representing point distributions.

Two example pLTSs are described this way in Figure 1, where diagram (b) depicts the
initial part of the pLTS obtained by unfolding the one in diagram (a).

CONCUR 2018

2:4 Bisimulations for Probabilistic and Quantum Processes

For each state s, the outgoing transition s
α−→ ∆ represents the nondeterministic

alternatives available in the state s. The nondeterministic choices provided by s are supposed
to be resolved by the environment, which is often formalised by a scheduler or an adversary.
On the other hand, the probabilistic choices in the underlying distribution ∆ are made by the
system itself. Therefore, for each state s, the environment chooses some outgoing transition
s

α−→ ∆. Then the action α is performed, the system resolves the probabilistic choice, and
subsequently with probability ∆(s′) the system reaches state s′.

If we impose the constraint that for any state s and action α at most one outgoing
transition from s is labelled α, then we obtain the special class of pLTSs called reactive (or
deterministic) pLTSs that are the probabilistic counterpart to deterministic LTSs. Formally,
a pLTS is reactive if for each s ∈ S, α ∈ A we have that s α−→ ∆ and s α−→ ∆′ imply ∆ = ∆′.

2.2 Lifting Relations
In the probabilistic setting, formal systems are usually modelled as distributions over states.
To compare two systems involves the comparison of two distributions. So we need a way of
lifting relations on states to relations on distributions. This is used, for example, to define a
notion of probabilistic bisimulation as we shall see soon. A few approaches of lifting relations
have appeared in the literature. We will take the one from [11], and show its coincidence
with two other approaches.

I Definition 2. Given two sets S and T and a binary relation R ⊆ S×T , the lifted relation
R† ⊆ D(S)×D(T) is the smallest relation that satisfies:
(1) s R t implies s R† t
(2) (Linearity) ∆i R† Θi for all i ∈ I implies (

∑
i∈I pi ·∆i) R† (

∑
i∈I pi ·Θi), where I is a

finite index set and
∑
i∈I pi = 1.

There are alternative presentations of Definition 2. One example is given below.

I Proposition 3. Let ∆ and Θ be two distributions over S and T , respectively, and R⊆ S×T .
Then ∆ R† Θ if and only if there are two collections of states, {si}i∈I and {ti}i∈I , and a
collection of probabilities {pi}i∈I , for some finite index set I, such that

∑
i∈I pi = 1 and ∆,Θ

can be decomposed as follows:
(1) ∆ =

∑
i∈I pi · si

(2) Θ =
∑
i∈I pi · ti

(3) For each i ∈ I we have si R ti.

From Definition 2, the next two propositions follow. In fact, they are sometimes used in the
literature as definitions of lifting relations instead of being properties (see e.g. [43, 36, 13, 41]).

I Proposition 4.
(1) Let ∆ and Θ be distributions over S and T , respectively. Then ∆ R† Θ if and only if there

is a probability distribution on S × T , with support a subset of R, such that ∆ and Θ are
its marginal distributions. In other words, there exists a weight function w : S×T → [0, 1]
such that
a. ∀s ∈ S :

∑
t∈T w(s, t) = ∆(s)

b. ∀t ∈ T :
∑
s∈S w(s, t) = Θ(t)

c. ∀(s, t) ∈ S × T : w(s, t) > 0⇒ s R t.
(2) Let ∆ and Θ be distributions over S and R be an equivalence relation. Then ∆ R† Θ if

and only if ∆(C) = Θ(C) for all equivalence classes C ∈ S/R, where ∆(C) stands for
the accumulation probability

∑
s∈C ∆(s).

Y. Deng 2:5

Given a binary relation R⊆ S × T and a set S′ ⊆ S, we write R(S′) for the set
{t ∈ T | ∃s ∈ S′ : s R t}. A set S′ is R-closed if R(S′) ⊆ S′.

I Proposition 5. Let ∆ and Θ be distributions over finite sets S and T , respectively.
(1) ∆ R† Θ if and only if ∆(S′) ≤ Θ(R(S′)) for all S′ ⊆ S.
(2) If R is a preorder, then ∆ R† Θ if and only if ∆(S′) ≤ Θ(S′) for each R-closed set

S′ ⊆ S.

Besides the above interesting properties, the lifting operation has an intrinsic connection
with some important concepts in mathematics, notably the Kantorovich metric [33]. For
example, it turns out that our lifting of binary relations from states to distributions nicely
corresponds to the lifting of metrics from states to distributions by using the Kantorovich
metric. In addition, the lifting operation is closely related to the maximum flow problem in
optimisation theory. This observation initially made by Baier et al. is crucial for designing
decision algorithms for probabilistic bisimulations and simulations [1, 48].

2.3 Probabilistic Bisimulation
With a solid base of the lifting operation, we can proceed to define a probabilistic version of
bisimulation. Let s and t be two states in a pLTS. We say t can simulate the behaviour of s
if whenever the latter can exhibit some action, say a, and lead to distribution ∆ then the
former can also perform a and lead to a distribution, say Θ, which then in turn can mimic
∆ in successor states. We are interested in defining a relation between two states, but it is
expressed by invoking a relation between two distributions. To formalise the mimicking of
one distribution by the other, we make use of the lifting operation investigated in Section 2.2.

I Definition 6. A relation R⊆ S × S is a probabilistic simulation if s R t implies
if s a−→ ∆ then there exists some Θ such that t a−→ Θ and ∆ R† Θ.

If both R and R−1 are probabilistic simulations, then R is a probabilistic bisimulation.
The largest probabilistic bisimulation, denoted by ∼s, is called (state-based) probabilistic
bisimilarity.

Let’s look at the two pLTSs in Figure 1. It is easy to check that the top node in diagram (a)
and that in diagram (b) are related by ∼s.

Various characterisations of probabilistic bisimilarity by probabilistic versions of Hennessy-
Milner logic [28] have appeared in the literature. In particular, if we confine ourselves to
reactive pLTSs, then there are neat logical characterisations even without negation. For
example, Desharnais et al. [14] uses a logic with the following grammar

ϕ ::= > | ϕ ∧ ϕ | 〈a〉qϕ

where q is any rational number in the unit interval [0, 1] and a ranges over the fixed set of
labels of a given reactive pLTS. The formula > can always be satisfied. The formula ϕ ∧ ϕ
stands for the usual conjunction. The formula 〈a〉qϕ is satisfied by state s if the probability
that s can make an a-labelled transition to the set of states satisfying ϕ exceeds p. The
characterisation result of [14] holds for reactive pLTSs with continuous state spaces. For
reactive pLTSs with countable state spaces, a simpler proof of that result is given in [12].
Most other characterisations also employ modalities indexed with numbers. This fits in our
intuition: if two states are not bisimilar, then they may satisfy a property with different
probabilities, so by fiddling with the numbers we can construct a formula that can tell apart
the two states. The only exception is the one given in [44], which shows that, for reactive
probabilistic processes, probabilistic bisimilarity can be characterised by a surprisingly simple
logic.

CONCUR 2018

2:6 Bisimulations for Probabilistic and Quantum Processes

Let L be the set of formulae defined by the grammar

φ ::= > | 〈φ, φ〉 | 〈a〉φ

where a ranges over the set of labels of a reactive pLTS. A state s satisfies a formula φ with
certain probability, given by Pr(s, φ) defined as follows:

Pr(s,>) = 1
Pr(s, 〈φ1, φ2〉) = Pr(s, φ1) · Pr(s, φ2)

Pr(s, 〈a〉φ) =
{ ∑

s′∈S ∆(s′) · Pr(s′, φ) if s a−→ ∆
0 otherwise.

We call 〈φ1, φ2〉 a conjunction of two formulae φ1 and φ2, which models the copying capacity of
probabilistic testing originally considered in [36]. Note that conjunction is given the arithmetic
interpretation as multiplication, which differs from many other logical characterisations of
probabilistic bisimilarity. The formula 〈a〉φ measures the probability that a state performs
action a and then its successor states sastisfy φ.

The logic L induces a natural logical equivalence, written =L, by letting s1 =L s2 if
Pr(s1, φ) = Pr(s2, φ) for any φ ∈ L and states s1 and s2. In [44] van Breugel et al. consider
labelled Markov processes with continuous state spaces and they show that probabilistic
bisimilarity coincides with the above notion of logical equivalence. Their proof involves
advanced machinery such as the Lawson topology on probabilistic powerdomains [31] and
Banach algebras. If we confine ourselves to finite-state reactive pLTSs, it is possible to avoid
all the advanced machinery and give an elementary proof of the coincidence of ∼s with =L,
as recently demonstrated in [7].

2.4 Distribution-Based Bisimulation
In Definition 6 we compare the behaviour of two states, and then resort to the lifting
operation when talking about the simulation of one distribution by another. Alternatively, it
is possible to consider subdistributions as first-class citizens and directly define a relation that
compares subdistributions. In order to do so, we first define a transition relation between
subdistributions.

I Definition 7. With a slight abuse of notation, we also use the notation a−→ to stand for
the transition relation between subdistributions, which is the smallest relation satisfying the
following three rules:
(1) if s a−→ ∆ then s a−→ ∆;
(2) if s 6 a−→ then s a−→ ε;
(3) if ∆i

a−→ Θi for all i ∈ I then (
∑
i∈I pi ·∆i)

a−→ (
∑
i∈I pi ·Θi), where I is a finite index

set and
∑
i∈I pi ≤ 1.

Note that if ∆ a−→ ∆′ then some (not necessarily all) states in the support of ∆ can perform
action a. Those states that cannot enable action a contribute nothing for ∆′.

I Definition 8. Let ∼d⊆ Dsub(S)×Dsub(S) be the largest symmetric relation such that if
∆ ∼d Θ then |∆| = |Θ| and ∆ a−→ ∆′ implies the existence of some Θ′ such that Θ a−→ Θ′
and ∆′ ∼d Θ′.

The distribution-based bisimilarity ∼d is shown in [6] as a sound and complete coinductive
proof technique for linear contextual equivalence, a natural extensional behavioural equival-
ence for functional programs. In the literature there are several proposals of distribution-based
bisimilarities [23, 26, 9, 17, 29], and some typical ones are compared in [16].

Y. Deng 2:7

3 Quantum Bisimulation

In this section, we will see that quantum bisimulations can be obtained by extending
probabilistic bisimulations in a smooth way.

As is well known, it is very difficult to guarantee the correctness of classical communication
protocols at the design stage, and some simple protocols were eventually found to have
fundamental flaws. One expects that the design of complex quantum protocols is at least
as error-prone, if not more, than in the classical case. Bisimulation and its associated
coinduction proof technique have also been explored in quantum concurrency theory.

Due to the presence of measurements, quantum processes exhibit probabilistic behaviour.
It is then natural to define the operational semantics of a quantum process in turns of a
pLTS, on which the probabilistic bisimulations we discussed before, with some modifications,
may play a role in providing a coinduction proof technique for quantum processes. Note that
in the quantum setting, bisimulations are defined to be relations over configurations that
are pairs of a quantum process and a density operator describing the state of environment
quantum systems. Below we illustrate this idea in the framework of a quantum process
algebra.

3.1 Quantum Bisimulation for qCCS
We first briefly review the syntax and semantics of a quantum extension of value-passing
CCS [37, 25], called qCCS, studied in [18, 47, 19, 21], and the definition of open bisimulation
between qCCS processes presented in [5]; the idea can be applied in other quantum process
algebras such as CQP [24] and QPAlg [32].

We assume three types of data in qCCS: Bool for booleans, real numbers Real for classical
data, and qubits Qbt for quantum data. Let cVar , ranged over by x, y, . . . , be the set of
classical variables, and qVar , ranged over by q, r, . . . , the set of quantum variables. It is
assumed that cVar and qVar are both countably infinite. We assume a set Exp of classical
data expressions over Real, which includes cVar as a subset and is ranged over by e, e′, . . . ,
and a set of boolean-valued expressions BExp, ranged over by b, b′, We further assume
that only classical variables can occur free in both data expressions and boolean expressions.
Let cChan be the set of classical channel names, ranged over by c, d, . . . , and qChan the
set of quantum channel names, ranged over by c, d, We often abbreviate a sequence of
distinct variables {q1, . . . , qn} into q̃.

Based on these notations, the syntax of qCCS terms can be given by the Backus-Naur
form

U ::= nil | K(ẽ, q̃) | α.U | U + U | U‖U | if b then U

α ::= τ | c?x | c!e | c?q | c!q | E [q̃] | M [q̃;x]

where c ∈ cChan, x ∈ cVar , c ∈ qChan, q ∈ qVar , q̃ ⊆ qVar , e ∈ Exp, ẽ ⊆ Exp, τ is the silent
action, b ∈ BExp, K(x̃, q̃) is a process constant with a defining equation K(x̃, q̃) def= U , and
E and M are respectively a trace-preserving super-operator and a non-degenerate projective
measurement applying on the Hilbert space associated with the systems q̃. In this paper, we
assume all super-operators are completely positive.

The notion of free classical variables in quantum processes, denoted by fv(·), can be
defined in the usual way with the only modification that the quantum measurement prefix
M [q̃;x] has binding power on x. A quantum process term U is closed if fv(U) = ∅. We let U ,
ranged over by U, V, · · · , be the set of all qCCS terms, and P, ranged over by P,Q, · · · , the
set of closed terms.

CONCUR 2018

2:8 Bisimulations for Probabilistic and Quantum Processes

The process constructs we give here are quite similar to those in classical CCS, and they
also have similar intuitive meanings: nil stands for a process which does not perform any
action; c?x and c!e are respectively classical input and classical output, while c?q and c!q
are their quantum counterparts. E [q̃] denotes the action of performing the super-operator E
on the qubits q̃ while M [q̃;x] measures the qubits q̃ according to M and the measurement
outcome is substituted for the classical variable x. The binary sum + models nondeterministic
choice: U + V behaves like either U or V depending on the choice of the environment. ‖
denotes the usual parallel composition. Finally, if b then U is the standard conditional
choice where U can be executed only if b is tt.

We now turn to the operational semantics of qCCS. For each quantum variable q ∈ qVar ,
we assume a 2-dimensional Hilbert space Hq to be the state space of the q-system. For any
S ⊆ qVar , we denote HS =

⊗
q∈S Hq. In particular, H = HqVar is the state space of the

whole environment consisting of all the quantum variables. Note that H is a countably-infinite
dimensional Hilbert space.

Suppose P is a closed quantum process. A pair of the form 〈P, ρ〉 is called a configuration,
where ρ ∈ D(H) is a density operator on H (As H is infinite dimensional, ρ should be
understood as a density operator on some finite dimensional subspace of H which contains
Hqv(P)). The set of configurations is denoted by Con, and ranged over by C,D, · · · . Let

Act = {τ} ∪ {c?v, c!v | c ∈ cChan, v ∈ Real} ∪ {c?r, c!r | c ∈ qChan, r ∈ qVar}.

Let D(Con), ranged over by ∆,Θ, · · · , be the set of all finite-supported probabilistic
distributions over Con. Then the operational semantics of qCCS can be given by the pLTS
〈Con,Act,−→〉, where −→ ⊆ Con×Act×D(Con) is the smallest relation satisfying some
inference rules. Here we select two rules related to super-operator application and quantum
measurements; the others can be found in [5].

(Oper)

〈E [q̃].P, ρ〉 τ−→ 〈P, Eq̃(ρ)〉

(Meas)

M =
∑
i∈I λiE

i pi = tr(Eiq̃ρ)
〈M [q̃;x].P, ρ〉 τ−→

∑
i∈I pi〈P [λi/x], Ei

q̃
ρEi

q̃
/pi〉

In rule (Meas), Eiq̃ denotes the operator Ei acting on the quantum systems q̃ and tr(Eiq̃ρ)
stands for the trace of Eiq̃ρ. This rule tells us that a measurement on the quantum system q̃

entails a probabilistic transition; each candidate configuration 〈P [λi/x], Eiq̃ρEiq̃/pi〉 occurs
with probability tr(Eiq̃ρ).

Let C = 〈P, ρ〉. We use the notation qv(C) := qv(P) for free quantum variables and
env(C) := trqv(P)(ρ) for partial traces. Let ∆ =

∑
i∈I pi · 〈Pi, ρi〉. We write E(∆) for the

distribution
∑
i∈I pi · 〈Pi, E(ρi)〉. In addition, we let qv(∆) :=

⋃
i∈I qv(Pi) and env(∆) :=∑

i∈I pi · trqv(Pi)(ρi).

I Definition 9. A symmetric relation R ⊆ Con× Con is called an open bisimulation if for
any C,D ∈ Con, C R D implies that
(1) qv(C) = qv(D), and env(C) = env(D),
(2) for any trace-preserving super-operator E acting onH

qv(C) (Again, E should be understood
as a super-operator on some finite dimensional subspace of H

qv(C)), whenever E(C) α−→ ∆,
there exists Θ such that E(D) α−→ Θ and ∆ R† Θ.

Two quantum configurations C and D are open bisimilar, denoted by C ∼o D, if there exists
an open bisimulation R such that C R D.

Here we are using exactly the same lifting operation as that in the probabilistic case
(cf. Definition 2). The above definition is inspired by the work of Sangiorgi [42], where a

Y. Deng 2:9

〈Q, ρ〉

τ

τ

〈P, ρ〉

❄

〈nil, |0〉q〈0| ⊗ trq(ρ)〉 〈nil, |0〉q〈0| ⊗ trq(ρ)〉
❄

❄

〈Q0, |0〉q〈0| ⊗ trq(ρ)〉 〈Q1, |1〉q〈1| ⊗ trq(ρ)〉

τ

〈nil, |0〉q〈0| ⊗ trq(ρ)〉
❄

τ

p1p0

❄

〈I[q].nil, |0〉q〈0| ⊗ trq(ρ)〉

τ

Figure 2 pLTSs for the two ways of setting a quantum system to |0〉.

notion of bisimulation is defined for the π-calculus [38, 42] by treating name instantiation
in an “open” style (name instantiation happens before any transition). Here we deal with
super-operator application in an “open” style, but the instantiation of variables can be in an
“early” style (variables are instantiated when input actions are performed). For example, the
operational semantics given in [5] is essentially an early semantics.

To illustrate the operational semantics and open bisimulation presented in this section,
we give a simple example.

I Example 10. This example shows two alternative ways of setting a quantum system to
the pure state |0〉. Let P def= Set0[q].I[q].nil and

Q
def= M0,1[q;x].(if x = 0 then I[q].nil + if x = 1 then X [q].nil),

where Set0 = {|0〉〈0|, |0〉〈1|},M0,1 is the 1-qubit measurement according to the computational
basis {|0〉, |1〉}, I is the identity super-operator, and X is the Pauli-X super-operator. For
any ρ ∈ D(H), the pLTSs rooted by 〈P, ρ〉 and 〈Q, ρ〉 respectively are depicted in Figure 2
where

Q0
def= if 0 = 0 then I[q].nil + if 0 = 1 then X [q].nil,

Q1
def= if 1 = 0 then I[q].nil + if 1 = 1 then X [q].nil,

and pi = tr(|i〉〈i|q · ρ). Note that both P and Q are free of quantum input. We can show
P ∼o Q easily by verifying that the relation R∪R−1, where

R = {(〈P, ρ〉, 〈Q, ρ〉), (〈I[q].nil, ρ0〉, 〈Q0, ρ0〉),
(〈I[q].nil, ρ0〉, 〈Q1, ρ1〉), (〈nil, ρ0〉, 〈nil, ρ0〉) : ρ ∈ D(H)}

and ρi = |i〉〈i|q ⊗ trqρ, is an open bisimulation.

3.2 A Useful Proof Technique
In Definition 9 super-operator application and transitions are considered at the same time.
In fact, we can separate the two issues and approach the concept of open bisimulation in an
incremental way, which turns out to be very useful when proving that two configurations are
bisimilar.

I Definition 11. A relation R⊆ Con × Con is closed under super-operator application if
C R D implies E(C) R E(D) for any trace-preserving super-operator E acting on H

qv(C).

CONCUR 2018

2:10 Bisimulations for Probabilistic and Quantum Processes

I Definition 12. A relation R ⊆ Con × Con is a ground simulation if C R D implies that
qv(C) = qv(D), env(C) = env(D), and

whenever C α−→ ∆, there is some distribution Θ with D α−→ Θ and ∆ R† Θ.
A relation R is a ground bisimulation if both R and R−1 are ground simulations.

The following property is shown in [5].

I Proposition 13. ∼o is the largest ground bisimulation that is closed under all super-operator
applications.

Proposition 13 provides us with a useful proof technique: in order to show that two config-
urations C and D are open bisimilar, it suffices to exhibit a binary relation including the
pair (C,D), and then to check that the relation is a ground bisimulation and is closed under
all super-operator application. This is analogous to a proof technique of open bisimulation
for the π-calculus [42], where name instantiation is playing the same role as super-operator
application here.

3.3 Distribution-Based Quantum Bisimulation
The distribution-based bisimulation defined in Section 2.4 can also be extended to the
quantum setting.

I Definition 14. A relation R ⊆ D(Con)×D(Con) is a distribution-based ground simulation
if ∆ R Θ implies that qv(∆) = qv(Θ), env(∆) = env(Θ), and

whenever ∆ α−→ ∆′, there is some subdistribution Θ′ with Θ α−→ Θ′ and ∆′ R Θ′.
A relation R is a distribution-based ground bisimulation if both R and R−1 are distribution-
based ground simulations.

A relation R is a distribution-based bisimulation if it is a distribution-based ground
bisimulation, and is closed under super-operator applications.

Note that the distribution-based bisimulation given in Definition 14 is slightly coarser
than that considered in [22], for the same reason as the comparison of the corresponding
probabilistic bisimulations [16].

In quantum mechanics, a fundamental principle is the no-cloning theorem of quantum
resources. From a type-theoretic point of view, quantum resources are linear and can be
described by linear types in quantum programming languages. How to define appropriate
program equivalences for this kind of languages is an interesting problem. In [8] a linear
contextual equivalence is introduced to compare the behaviour of quantum programs. Two
notions of bisimilarity, a state-based and a distribution-based are introduced as proof
techniques for reasoning about higher-order quantum programs. Both notions of bisimilarity
are sound with respect to the linear contextual equivalence, but only the distribution-based
one turns out to be complete.

3.4 Symbolic Bisimulations
The quantum bisimulations introduced so far, either state-based or distribution-based, are
generalised from the corresponding probabilistic bisimulations naturally and smoothly. A
major problem with them is that they all resort to the instantiation of quantum variables
by quantum states. As a result, to check whether or not two processes are bisimilar, we
have to accompany them with arbitrarily chosen quantum states, and check if the resultant
configurations are bisimilar. Note that all quantum states constitute a continuum. Therefore,
it seems that the verification of quantum bisimulations is infeasible from an algorithmic point
of view.

Y. Deng 2:11

Recall that for classical process algebras, Hennessy and Lin [27] introduced a notion of
symbolic bisimulation to deal with possibly infinite classical data sets. As a quantum extension
of value-passing CCS, the quantum process algebra qCCS has both (possibly infinite) classical
data domain and (doomed-to-be infinite) quantum data domain. To overcome the additional
difficulty caused by the infinity of all quantum states, we can make use of super-operator
valued distributions, which allow us to fold the operational semantics of qCCS into a symbolic
version and thus provide us with a notion of symbolic bisimulation. To check the symbolic
bisimilarity of two quantum processes, only a finite number of process-superoperator pairs
need to be considered, without appealing to quantum states. This idea has been successful in
developing an algorithm to check the state-based ground bisimulation for quantum processes
[20]. It would be interesting to purse this line of research so as to develop algorithms of
checking the symbolic versions of other quantum bisimulations.

4 Concluding Remarks

We have briefly reviewed a few ingredients for formulating reasonable notions of probabilistic
and quantum bisimulations.

(1) The lifting operation is the key of defining state-based probabilistic and quantum bisimu-
altions. It is mathematically interesting in itself because of the close connection with the
Kantorovich metric and the maximum network flow problem.

(2) Distribution-based bisimulation is more relevant to quantum processes because it offers
a coinductive proof technique for linear contextual equivalene, and linear resources are
prominent in quantum computation.

(3) The symbolic approach is promising to yield feasible algorithms of checking quantum
bisimulations.

There is a huge amount of literature on probabilistic bisimulations, and the current paper
is by no means a complete survey. A more detailed account of probabilistic bisimulations is
given in [4, Chapter3]. For quantum processes, a branching bisimulation is firstly proposed
in [35]. However, it is not a congruence because it is not preserved by parallel composition.
Quantum bisimulations that are congruence relations are given in [19, 20] and independently
in [3]. Both of them are defined for concrete quantum transition systems, and are difficult
to check with algorithms, which motivated the introduction of symbolic bisimulations for
quantum processes [20].

In [34] a semi-automated tool is developed to verify security proofs based on a weak
bisimulation similar to that given in Definition 9 for a finite fragment of qCCS. In that tool,
security parameters and quantum states are represented as symbols, and some user-defined
equations are used as rewriting rules for simplification. This differs from the symbolic
semantics discussed in Section 3.4 as the latter is more in line with the idea investigated in
[27] for value-passing CCS.

In the future, we believe that distribution-based symbolic bisimulations would be promising
to be used in software tools in support of verifying quantum communication protocols. Some
efforts are made in [22], which considers distribution-based bisimulations and the proofs are
manual when reasoning about the behavioural equivalence of quantum processes. In order
to deal with advanced protocols such as the quantum key distribution protocol BB84 [2], it
would be helpful to have some tool support, for which symbolic semantics could play a role.

CONCUR 2018

2:12 Bisimulations for Probabilistic and Quantum Processes

References
1 Christel Baier, Bettina Engelen, and Mila E. Majster-Cederbaum. Deciding bisimilarity and

similarity for probabilistic processes. Journal of Computer and System Sciences, 60(1):187–
231, 2000.

2 C.H. Bennett and G. Brassard. Quantum cryptography: Public key distribution and coin
tossing. In Proceedings of IEEE International Conference on Computers, Systems and
Signal Processing, pages 175–179, 1984.

3 T.A.S. Davidson. Formal verification techniques using quantum process calculus. PhD
thesis, University of Warwick, 2011.

4 Yuxin Deng. Semantics of Probabilistic Processes: An Operational Approach. Springer,
2015.

5 Yuxin Deng and Yuan Feng. Open bisimulation for quantum processes. In Proceedings of
the 7th IFIP International Conference on Theoretical Computer Science, volume 7604 of
LNCS, pages 119–133. Springer, 2012.

6 Yuxin Deng and Yuan Feng. Bisimulations for probabilistic linear lambda calculi. In
Proceedings of the 11th IEEE International Symposium on Theoretical Aspects of Software
Engineering, pages 1–8. IEEE Computer Society, 2017.

7 Yuxin Deng and Yuan Feng. Probabilistic bisimilarity as testing equivalence. Information
and Computation, 257:58–64, 2017.

8 Yuxin Deng, Yuan Feng, and Ugo Dal Lago. On coinduction and quantum lambda calculi.
In Proceedings of the 26th International Conference on Concurrency Theory, volume 42 of
LIPIcs, pages 427–440. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

9 Yuxin Deng and Matthew Hennessy. On the semantics of Markov automata. Information
and Computation, 222:139–168, 2013.

10 Yuxin Deng and Rob van Glabbeek. Characterising probabilistic processes logically. In
Proceedings of the 17th International Conference on Logic for Programming, Artificial In-
telligence and Reasoning, volume 6397 of LNCS, pages 278–293. Springer, 2010.

11 Yuxin Deng, Rob van Glabbeek, Matthew Hennessy, and Carroll Morgan. Testing finit-
ary probabilistic processes (extended abstract). In Proceedings of the 20th International
Conference on Concurrency Theory, volume 5710 of LNCS, pages 274–288. Springer, 2009.

12 Yuxin Deng and Hengyang Wu. Modal characterisations of probabilistic and fuzzy bisimula-
tions. In Proceedings of the 16th International Conference on Formal Engineering Methods,
volume 8829 of LNCS, pages 123–138. Springer, 2014.

13 Josée Desharnais. LabelledMarkovProcesses. PhD thesis, McGillUniversity, 1999.
14 Josée Desharnais, Abbas Edalat, and Prakash Panangaden. Bisimulation for labelled

Markov processes. Information and Computation, 179(2):163–193, 2002.
15 Josée Desharnais, V. Gupta, R. Jagadeesan, and Prakash Panangaden. Approximating

labelled Markov processes. Information and Computation, 184(1):160–200, 2003.
16 Wenjie Du, Yuxin Deng, and Daniel Gebler. Behavioural pseudometrics for nondetermin-

istic probabilistic systems. In Proceedings of the the 2nd International Symposium on De-
pendable Software Engineering: Theories, Tools, and Applications, volume 9984 of LNCS,
pages 67–84. Springer, 2016.

17 Christian Eisentraut, Jens Chr. Godskesen, Holger Hermanns, Lei Song, and Lijun Zhang.
Probabilistic bisimulation for realistic schedulers. In Proceedings of the 20th International
Symposium on Formal Methods, volume 9109 of LNCS, pages 248–264. Springer, 2015.

18 Y Feng, R Duan, Z Ji, and M Ying. Probabilistic bisimulations for quantum processes.
Information and Computation, 205(11):1608–1639, 2007.

19 Y Feng, R Duan, and M Ying. Bisimulations for quantum processes. In Mooly Sagiv,
editor, Proceedings of the 38th ACM Symposium on Principles of Programming Languages,
pages 523–534, Austin, Texas, USA, 2011.

Y. Deng 2:13

20 Yuan Feng, Yuxin Deng, and Mingsheng Ying. Symbolic bisimulation for quantum pro-
cesses. ACM Transactions on Computational Logic, 15(2):1–32, 2014.

21 Yuan Feng, Runyao Duan, and Mingsheng Ying. Bisimulation for Quantum Processes.
ACM Transactions on Programming Languages and Systems, 34(4):1–43, 2012.

22 Yuan Feng and Mingsheng Ying. Toward automatic verification of quantum cryptographic
protocols. In 26th International Conference on Concurrency Theory, volume 42 of LIPIcs,
pages 441–455. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

23 Yuan Feng and Lijun Zhang. When equivalence and bisimulation join forces in probabilistic
automata. In Proceedings of the 19th International Symposium on Formal Methods, volume
8442 of LNCS, pages 247–262. Springer, 2014.

24 Simon J. Gay and Rajagopal Nagarajan. Communicating quantum processes. In Pro-
ceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 145–157. ACM, 2005.

25 M Hennessy and A. Ingólfsdóttir. A theory of communicating processes value-passing.
Information and Computation, 107(2):202–236, 1993.

26 Matthew Hennessy. Exploring probabilistic bisimulations, part I. Formal Aspects of Com-
puting, 24(4-6):749–768, 2012.

27 Matthew Hennessy and Huimin Lin. Symbolic bisimulations. Theoretical Computer Science,
138(2):353–389, 1995.

28 Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32(1):137–161, 1985.

29 Holger Hermanns, Jan Krcál, and Jan Kretínský. Probabilistic bisimulation: Naturally on
distributions. In Proceedings of the 25th International Conference on Concurrency Theory,
volume 8704 of LNCS, pages 249–265. Springer, 2014.

30 Holger Hermanns, Augusto Parma, Roberto Segala, Björn Wachter, and Lijun Zhang. Prob-
abilistic logical characterization. Information and Computation, 209(2):154–172, 2011.

31 C. Jones. Probabilistic nondeterminism. PhD thesis, University of Edinburgh, 1990.
32 Philippe Jorrand and Marie Lalire. Toward a quantum process algebra. In Proceedings of

the First Conference on Computing Frontiers, pages 111–119. ACM, 2004.
33 L. Kantorovich. On the transfer of masses (in Russian). Doklady Akademii Nauk, 37(2):227–

229, 1942.
34 Takahiro Kubota, Yoshihiko Kakutani, Go Kato, Yasuhito Kawano, and Hideki Sakurada.

Semi-automated verification of security proofs of quantum cryptographic protocols. Journal
of Symbolic Computation, 73:192–220, 2016.

35 Marie Lalire. Relations among quantum processes: bisimilarity and congruence. Mathem-
atical Structures in Computer Science, 16(3):407–428, 2006.

36 Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing. Information
and Computation, 94:1–28, 1991.

37 Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
38 Robin Milner. Communicating and mobile systems - the Pi-calculus. Cambridge University

Press, 1999.
39 David Park. Concurrency and automata on infinite sequences. In Proceedings of the 5th

GI Conference, volume 104 of LNCS, pages 167–183. Springer, 1981.
40 Augusto Parma and Roberto Segala. Logical characterizations of bisimulations for discrete

probabilistic systems. In Proceedings of the 10th International Conference on Foundations
of Software Science and Computational Structures, volume 4423 of LNCS, pages 287–301.
Springer, 2007.

41 J. Sack and Lijun Zhang. A general framework for probabilistic characterizing formulae.
In Proceedings of the 13th International Conference on Verification, Model Checking, and
Abstract Interpretation, volume 7148 of LNCS, pages 396–411. Springer, 2012.

CONCUR 2018

2:14 Bisimulations for Probabilistic and Quantum Processes

42 Davide Sangiorgi. A theory of bisimulation for the pi-calculus. Acta Informatica, 33(1):69–
97, 1996.

43 Roberto Segala and Nancy Lynch. Probabilistic simulations for probabilistic processes. In
Proceedings of the 5th International Conference on Concurrency Theory, volume 836 of
LNCS, pages 481–496. Springer, 1994.

44 Franck van Breugel, Michael W. Mislove, Joël Ouaknine, and James Worrell. Domain
theory, testing and simulation for labelled Markov processes. Theoretical Computer Science,
333(1-2):171–197, 2005.

45 Franck van Breugel and James Worrell. An algorithm for quantitative verification of prob-
abilistic transition systems. In Proceedings of the 12th International Conference on Con-
currency Theory, volume 2154 of LNCS, pages 336–350. Springer, 2001.

46 Rob J. van Glabbeek, Scott A. Smolka, Bernhard Steffen, and Chris M. N. Tofts. Reactive,
generative, and stratified models of probabilistic processes. In Proceedings of the 5th Annual
Symposium on Logic in Computer Science, pages 130–141. IEEE Computer Society, 1990.

47 M Ying, Y Feng, R Duan, and Z Ji. An algebra of quantum processes. ACM Transactions
on Computational Logic, 10(3):1–36, 2009.

48 Lijun Zhang, Holger Hermanns, Friedrich Eisenbrand, and David N. Jansen. Flow faster:
Efficient decision algorithms for probabilistic simulations. Logical Methods in Computer
Science, 4(4):1–43, 2008.

Is Speed-Independent Mutual Exclusion
Implementable?
Rob van Glabbeek
Data61, CSIRI, Sydney, Australia
rvg@cs.stanford.edu

Abstract
A mutual exclusion algorithm is called speed independent if its correctness does not depend
on the relative speed of the components. Famous mutual exclusion protocols such as Dekker’s,
Peterson’s and Lamport’s bakery are meant to be speed independent.

In this talk I argue that speed-independent mutual exclusion may not be implementable on
standard hardware, depending on how we believe reading and writing to a memory location is
really carried out. It can be implemented on electrical circuits, however.

This builds on previous work showing that mutual exclusion cannot be accurately modelled
in standard process algebras.

2012 ACM Subject Classification Theory of computation → Concurrency

Keywords and phrases Mutual exclusion, speed independence, concurrent reading and writing,
liveness, justness

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.3

Category Invited Talk

© Robert J. van Glabbeek;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 3; pp. 3:1–3:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rvg@cs.stanford.edu
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Verifying Arithmetic Assembly Programs in
Cryptographic Primitives
Andy Polyakov
The OpenSSL project
appro@openssl.org

Ming-Hsien Tsai1

Academia Sinica, Taiwan
mhtsai208@gmail.com

Bow-Yaw Wang2

Academia Sinica, Taiwan
bywang@iis.sinica.edu.tw

Bo-Yin Yang3

Academia Sinica, Taiwan
by@crypto.tw

Abstract
Arithmetic over large finite fields is indispensable in modern cryptography. For efficienty, these op-
erations are often implemented in manually optimized assembly programs. Since these arithmetic
assembly programs necessarily perform lots of non-linear computation, checking their correctness
is a challenging verification problem. We develop techniques to verify such programs automat-
ically in this paper. Using our techniques, we have successfully verified a number of assembly
programs in OpenSSL. Moreover, our tool verifies the boringSSL Montgomery Ladderstep (about
1400 assembly instructions) in 1 hour. This is by far the fastest verification technique for such
programs.

2012 ACM Subject Classification Software and its engineering → Formal software verification

Keywords and phrases Formal verification, Cryptography, Assembly Programs

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.4

Category Invited Talk

1 Introduction

Cryptographic primitives are the building blocks of computer security. They are indispensable
in various encryption, authentication, and key exchange protocols. Underneath these critical
primitives, arithmetic over large finite fields is necessitated by modern cryptography. Efficiency
of arithmetic operations such as addition and multiplication is crucial to practical applicability
of cryptographic primitives due to their wide usage. Consequently, these operations are
implemented by low-level languages (such as C or assembly). Indeed, more than forty
arithmetic assembly subroutines for different architectures are found in the OpenSSL NIST

1 partially supported by the Academia Sinica Project AS-106-TP-A06
2 partially supported by the Academia Sinica Project AS-106-TP-A06
3 partially supported by the MOST Project 105-2221-E-001-014-MY3

© Andy Polyakov, Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 4; pp. 4:1–4:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:appro@openssl.org
mailto:mhtsai208@gmail.com
mailto:bywang@iis.sinica.edu.tw
mailto:by@crypto.tw
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 Verifying Arithmetic Assembly Programs in Cryptographic Primitives

P-256 elliptic curve cryptographic library. Each is manually optimized to attain the best
performance.

Since cryptographic primitives rely on arithmetic operations over large finite fields, correct
implementations of such operations are essential to computer security. For implementations
written in C, source codes are compiled into executable binary codes. Certified compilation
(for instance, the CompCert project) is necessary to ensure correctness after C codes are
verified. Even so, hand-optimized assembly implementations are still significantly more
efficient than C implementations (up to two times faster for the OpenSSL NIST P-256
Intel Broadwell microarchitecture). Manually optimized assembly implementations for
arithmetic operations are typical in practical cryptography. We verify such low-level codes
for cryptographic primitives in this paper.

Several obstacles must be overcome. Different architectures have different instruction sets.
Even for the same architecture (x86_64), different microarchitectures may have different
instruction sets (Broadwell versus its predecessors). Since one would like to develop verification
techniques across different instruction sets, a unified framework is preferred. Code sizes also
vary from operations significantly. From a dozen of instructions (multiplication by two) to
more than a thousand (group operation in elliptic curves), these assembly implementations
must be verified with reasonable resources. Last but not least, several assembly programs
realize non-linear multiplication over large finite fields. Such algebraic properties are hard
to verify by bit blasting. Existing SMT solvers for the bit-vector theory cannot verify the
multiplication of two 256-bit numbers. New techniques have to be developed for assembly
codes in this special domain.

We propose a domain specific language CryptoLine for modeling assembly programs
across different architectures. The language contains instructions used in implementations of
arithmetic operations. Different from assembly languages, operands and flags are explicit
in CryptoLine for clarity. CryptoLine moreover allows users to specify program properties
with assertions, pre- and post-conditions. Using CryptoLine, assembly programs of different
arithmetic operations from the OpenSSL cryptographic library are modeled and specified. We
feel CryptoLine is a suitable abstraction for assembly programs in cryptographic primitives.

Rewriting assembly codes in CryptoLine can be a daunting task. Moreover, assembly
programs can be written in various ways. For example, assembly code fragments can be
put in the asm statement in GNU C compilers; the OpenSSL library allows programmers to
write portable assembly codes with its Perl scripts. Instead of writing parsers for various
assembly development environments, we extract assembly codes from execution traces. Since
CryptoLine is designed to model assembly programs, each assembly instruction can be
translated to CryptoLine statements straightforwardly. Using a simple Python script,
extracted assembly codes are converted to CryptoLine programs automatically. Users can
transform their assembly programs to CryptoLine programs for verification via simple
scripts. Usability of our work is greatly improved.

For verification, we consider conjunctions of range and algebraic predicates. Range
predicates specify program variable ranges with the unsigned bit-vector theory; they are
resolved by SMT solvers rather straightforwardly. Algebraic predicates specify algebraic
properties among program variables; they are reduced to instances of the ideal membership
problem through a series of transformations. Instances of the ideal membership problem
are sent to and solved by computer algebra systems. Our hybrid technique decomposes
verification problems and takes advantages of recent developments in SMT solving and
computer algebra. It opens new opportunities in verifying non-linear arithmetic computation
in cryptographic programs.

A. Polyakov, M. Tsai, B. Wang, and B. Yang 4:3

We report case studies in OpenSSL, boringSSL, and mbedTLS. For OpenSSL, we verify
eight assembly subroutines converted from execution traces in the OpenSSL NIST P-256
cryptographic library. These subroutines perform arithmetic computation including but not
limited to square and multiplication over the Galois field GF (2256−2224 +2192 +296−1). The
Montegomery multiplication subroutine over arbitrary 256-bit Montgomery primes is also
verified. For boringSSL, the multiplication and square subroutines over GF (2255 − 19) are
verified, as well as the Montgomery Ladderstep subroutine for X25519 (≈ 1400 instructions).
For mbedTLS, the multiplication subroutine accepts any size of inputs and involves both
assembly and C code. The execution traces are extracted and verified.

Related Work. A domain-specific language bvCryptoLine has been proposed to model low-
level mathematical constructs in cryptographic programs [16]. Programs in bvCryptoLine
can be verified automatically by a certified approach. Both the certified approach and
ours reduce the verification problem to SMT problems and ideal membership problems.
However, we introduce new instructions in our domain-specific language so that more low-
level arithmetic programs can be verified. Unlike the certified approach which verifies
programs in bvCryptoLine, we target on real industrial programs and provide scripts for
the extraction of assembly codes from execution traces and for the translation from assembly
codes to our domain-specific language. Although our approach is not certified, it verifies
programs much faster than the certified approach does. The tool gfverif [6] has been used
to automatically verify a C implementation of the Montgomery Ladderstep. In gfverif,
range properties and algebraic properties are verified separatedly by a specialized range
analysis and by the Sage computer-algebra system. A drawback of gfverif is that programs
not written in the constructs provided by gfverif cannot be verified.

A hand-optimized assembly implementation of the Montgomery Ladderstep has been
verified by a semi-automatic approach [8] with SMT solvers. As non-linear arithmetic
operations are hard for SMT solvers to verify, the semi-automatic approach requires manual
program annotation to reduce verification problems to smaller ones and Coq proofs for some
theorems about modulo operation. Similarly, several mathematical constructs have been
re-implemented in F* [18] and Vale [7] and to be verified using a combination of SMT solving
and manual proofs.

Fiat-Crypto can synthesize correct-by-construction assembly codes for mathematical
constructs but the synthesized codes are not as efficient as hand-optimized assembly im-
plementations [9]. Various implementations of mathematical constructs, hash functions,
and random number generators have been formalized and manually verified in proof assis-
tants [1, 3, 2, 14, 13, 4, 5, 17]. Cryptol/SAW can automatically verify several cryptographic
implementations in C and Java against their reference implementations but the correctness
of the reference implementations is not proven [15].

After preliminaries (Section 2), the domain specific language CryptoLine for crypto-
graphic assembly programs is presented in Section 3. Our verification algorithm is given in
Section 4. Case studies are reported in Section 5. Section 6 concludes the presentation.

2 Preliminaries

Let N be the set of non-negative integers and Z the set of integers. [n] = {0, 1, . . . , n} for
n ∈ N. Fix a set ~v = {x, y, z, . . .} of variables and a set ~c = {a, b, c, . . .} of carry flags such
that ~v ∩ ~c = ∅. Let ~x = ~v ∪ ~c. Z[~x] denotes the set of polynomials over ~x with coefficients in
Z. A set I ⊆ Z[~x] is an ideal if f + g ∈ I for every f, g ∈ I; and h× f ∈ I for every h ∈ Z[~x]
and f ∈ I. Given G ⊆ Z[~x], 〈G〉 is the minimal ideal containing G; G are the generators of
〈G〉. The ideal membership problem is to decide if f ∈ I for a given ideal I and f ∈ Z[~x].

CONCUR 2018

4:4 Verifying Arithmetic Assembly Programs in Cryptographic Primitives

Num ::= 0 | 1 | 2 | · · ·
Var ::= ~v

Flag ::= ~c

Expr ::= Num | Var | Flag |
Expr+Expr | Expr−Expr |
Expr×Expr

(a) Expressions.

APred ::= > | APred ∧APred |
Expr = Expr | Expr ≡ Expr mod Expr |

RPred ::= > | RPred ∧ RPred |
Expr <w Expr | Expr ≤w Expr

(b) Predicates.

Figure 1 Syntax of Expressions and Predicates.

3 Domain Specific Language – CryptoLine

CryptoLine is designed to model and specify arithmetic assembly programs in cryptograhpic
primitives. Arithmetic over large finite fields is essential to modern cryptography. In practice,
it is necessary to perform arithmetic computation with numbers in hundreds of bits lest
security may be compromised due to cryptoanalysis. We analyze real arithmetic assembly
programs, identify a small subset of assembly instructions, and formalize the subset in our
domain specific language CryptoLine. In order to specify properties about programs,
the language is enriched with statements like Assert and Assume. We detail the design of
CryptoLine in this section.

3.1 Syntax
As in low-level cryptographic programs, numbers are non-negative in CryptoLine. The
language also allows variables and binary flags. Expressions are only used in property
specifications. They admit arithmetic operators +, −, and × (Figure 1a). Property specifi-
cations are divided into two classes: algebraic and range predicates. An algebraic predicate
is a conjunction of equalities or modulo equalities. A range predicate is a conjunction of
finite-width comparisons4. For instance, Expr <w Expr means the w-bit less-than relation
between two expressions in Figure 1b.

CryptoLine statements contain assembly instructions used in arithmetic computation5.
They even have a similar syntax: mnemonic, destination variables, and source arguments in
order (Figure 2a). Set is the assignment statement. The Cmov statement is the conditional
assignment. Mul is the half multiplication whereas Mulf is the full multiplication. Add! is the
addition statement without setting the carry flag. Add is the addition statement with setting
the carry flag. Adc is the addition with carry statement. Similarly, Sub! is the subtraction
statement without setting the borrow flag, Sub is the subtraction with setting the borrow
flag, and Sbb is the subtraction with borrow statement. A predicate consists of an algebraic
and a range predicate separated by ‖ (Figure 2b). The Assert statement asserts a predicate.
The Assume statement assumes a predicate. A program is a sequence of statements. Finally,
a specification contains a program with two predicates as the pre- and post-conditions.

4 Range predicates such as negation, equality, and disjunction are also allowed in our implementation.
Expressions allowed in a range predicate also include signed/unsigned remainder, bit-wise and, bit-wise
or, and bit-wise xor.

5 Instructions such as setting a binary flag, clearing a binary flag, and instructions in [16] are also allowed
in our implementation.

A. Polyakov, M. Tsai, B. Wang, and B. Yang 4:5

Stmt ::= SetVarArg | CmovVarFlagArgArg |
Add!VarArgArg | AddFlagVarArgArg |
Sub!VarArgArg | SubFlagVarArgArg |
AdcFlagVarArgArgFlag | MulVarArgArg |
SbbFlagVarArgArgFlag | MulfVarVarArgArg |
AssertPred | AssumePred

(a) Statements.

Arg ::= Num | Var
Prog ::= Stmt; | Stmt; Prog
Pred ::= RPred‖APred
Spec ::= (|Pred|)Prog(|Pred|)

(b) Programs and Specifications.

Figure 2 Syntax of Programs and Specifications.

1: Set r0 x0;
2: Set r1 x1;
3: Set r2 x2;
4: Set r3 x3;
5: Set r5 x4;

6: Add! r0 r0 4503599627370458;
7: Add! r1 r1 4503599627370494;
8: Add! r2 r2 4503599627370494;
9: Add! r3 r3 4503599627370494;
10: Add! r4 r4 4503599627370494;

11: Sub! r0 r0 y0;
12: Sub! r1 r1 y1;
13: Sub! r2 r2 y2;
14: Sub! r3 r3 y3;
15: Sub! r4 r4 y4;

Figure 3 Subtraction sub.

Example. Consider the CryptoLine program for the subtraction over GF (2255 − 19) in
X25519. In Figure 3, each element in the finite field is represented by five 51-bit numbers.
Each 51-bit number is a limb of the representation. The program first assigns the minuend
(xi’s) to the result (ri’s). It then adds 4503599627370458 = 252 − 38 to the lowest limb and
4503599627370494 = 252 − 2 to other limbs of the result. Finally, the program subtracts the
subtrahend (yi’s) from the result.

In order to specify the subtraction program, let radix51 (`4 , `3 , `2 , `1 , `0) denote

`4 × 251×4 + `3 × 251×3 + `2 × 251×2 + `1 × 251×1 + `0.

That is, radix51 (`4 , `3 , `2 , `1 , `0) is the element represented by `i’s. We have the following
specification for the program in Figure 3:

(|
∧4
i=0 xi ≤64 251 + 215 ∧

∧4
i=0 yi ≤64 251 + 215 ‖>|)

sub

(|
∧4
i=0 ri <64 254 ‖ radix51 (x4, x3, x2, x1, x0)− radix51 (y4, y3, y2, y1, y0)

≡ radix51 (r4, r3, r2, r1, r0) mod 2255 − 19 |).

Given each limb of the minuend and subtrahend slightly greater than 251, the specification
says the subtraction program computes the difference over GF (2255− 19) with the result less
than 254. To see why the subtraction program satisfies the algebraic specification, observe
that radix51 (251−1, 251−1, 251−1, 251−1, 251−19) = 2255−19. Hence radix51 (252−2, 252−
2, 252−2, 252−2, 252−38) = 2×(2255−19). That is, the subtraction program adds 2×(2255−19)
to the minuend and then subtracts the subtrahend. Since the algebraic specification only
requires modulo equality, the program is indeed correct. Adding 2× (2255 − 19) does not
induce the propagation of carry flags during addition. It moreover prevents borrow flag
propagation during subtraction.

3.2 Semantics
Let W be a architecture-dependent parameter: W = 264 for 64-bit architectures; W = 232

for 32-bit architectures. A state is a mapping from Var to [W − 1] and from Flag to {0, 1},

CONCUR 2018

4:6 Verifying Arithmetic Assembly Programs in Cryptographic Primitives

and ⊥ is the designated error state. The error state does not satisfy any predicate. Figure 4
gives the operational semantics of each statement.

The semantics for CryptoLine is standard for unsigned bounded arithmetic. The Set
statement updates the value of a variable in a state. Cmov updates a variable by the given
flag. Add! updates a variable by the sum of arguments if the sum is smaller than W, and
otherwise results in the error state (overflows in this case). Add and Adc update a flag and a
variable by the sum of arguments. Sub! updates a variable by the difference of arguments if
the difference is non-negative, and otherwise results in the error state (underflows in this
case). Sub and Sbb update a flag and a variable by the difference of arguments. For the half
multiplication Mul, it is an error if the higher bits of the product is non-zero (overflows in
this case). The full multiplication Mulf always terminates successfully if the two updated
variables are different. Assert results in the error state if the current state does not satisfy
the given predicate. Assume ensures the new state satisfying the given predicate. Finally,
the error state always propagates.

Let σ and τ be states. The semantics of a program is inductively defined as follows.
σ

stmt−−−→ τ is defined in Figure 4. σ stmt;prog−−−−−−→ τ if there is a state λ such that σ stmt−−−→ λ and
λ

prog−−−→ τ . We call a program prog safe with respect to a predicate P if for every σ and τ ,
σ |= P and σ prog−−−→ τ imply τ 6= ⊥. We write |= (|P‖Q|)prog(|P ′‖Q′|) if for every σ, τ with
σ |= P ∧Q and σ prog−−−→ τ , we have τ |= P ′ ∧Q′. Note that 6|= (|P‖Q|)prog(|P ′‖Q′|) if there is
an assertion failure during execution.

Example (continued). The subtraction program will never reach the error state. For
example, consider the variable r0. The statement at line 1 assigns r0 the value of x0,
which is smaller than 251 + 215 by the precondition. The Add! statement at line 6 assigns
r0 a value between 4503599627370458 = 252 − 38 and 251 + 215 + 4503599627370458 =
251 + 215 + 252 − 38 < 264. Thus the Add! statement never goes to the error state. Finally,
observe y0 ≤ 251 + 215 ≤ 252 − 38 ≤ r0 after line 6. The Sub! statement at line 11 therefore
never goes to the error state.

4 Verifying CryptoLine Programs

We want to check if |= (|P‖Q|)prog(|P ′‖Q′|) for a given specification (|P‖Q|)prog(|P ′‖Q′|) with
range predicates P, P ′ and algebraic predicates Q,Q′. Firstly, we transform the specification
to static single assignments where variables are indexed such that no input variables are
assigned and every variable is assigned at most once. As CryptoLine programs are
straight-line, the transformation can be done easily so that the validity of specification is
preserved. In this section, we will assume the specification (|P‖Q|)prog(|P ′‖Q′|) is in static
single assignments and write x(i) to explicitly indicate a variable x with index i when needed.

Secondly, we need to ensure that all assertions in prog are valid. Consider the first
assertion AssertP ′′‖Q′′ in prog and let prog = prog1 ; AssertP ′′‖Q′′; prog2 . We verify the
validity of this assertion by checking if |= (|P‖Q|)prog1 (|P ′′‖Q′′|) is valid. Once the assertion
is valid, it is safe to be removed when verifying prog. Therefore all the assertion checking
can be reduced to specification checking of programs without assertions. In this section, we
will assume there is no assertion in prog.

Finally, observe |= (|P‖>|)prog(|P ′‖>|) and |= (|P‖Q|)prog(|>‖Q′|) imply |= (|P‖Q|)prog
(|P ′‖Q′|). The specification (|P‖>|)prog(|P ′‖>|) involves only range predicates; and the
specification (|P‖Q|)prog(|>‖Q′|) concerns only algebraic properties. We therefore divide the
verfication task into two parts: range and algebraic properties.

A. Polyakov, M. Tsai, B. Wang, and B. Yang 4:7

[[n]]σ = n [[x]]σ = σ(x), for x ∈ ~v [[c]]σ = σ(c), for c ∈ ~c
σ

Set x u−−−−−−−−→ σ[x 7→ [[u]]σ]
σ

Cmov x b u v−−−−−−−−→ σ[x 7→ R] where R = [[u]]σ if [[b]]σ = 1; [[v]]σ if [[b]]σ = 0
σ

Add! x u v−−−−−−−−→ σ′ where R = [[u]]σ + [[v]]σ and σ′ = σ[x 7→ R]
if R/W = 0;⊥ otherwise

σ
Add b x u v−−−−−−−−→ σ[b, x 7→ R/W,R mod W] where R = [[u]]σ + [[v]]σ

σ
Adc b x u v c−−−−−−−−→ σ[b, x 7→ R/W,R mod W] where R = [[u]]σ + [[v]]σ + [[c]]σ

σ
Sub! x u v−−−−−−−−→ σ′ where R = [[u]]σ − [[v]]σ and σ′ = σ[x 7→ R]

if [[u]]σ ≥ [[v]]σ;⊥ otherwise
σ

Sub b x u v−−−−−−−−→ σ[b, x 7→ B,R mod W] where R = [[u]]σ − [[v]]σ +W and B = 0 if
[[u]]σ ≥ [[v]]σ; 1 otherwise

σ
Sbb b x u v c−−−−−−−−→ σ[b, x 7→ B,R mod W] where R = [[u]]σ − [[v]]σ − [[c]]σ +W and B

= 0 if [[u]]σ ≥ [[v]]σ + [[c]]σ; 1 otherwise
σ

Mul x u v−−−−−−−−→ σ′ where R = [[u]]σ × [[v]]σ and σ′ = σ[x 7→ R]
if R/W = 0;⊥ otherwise

σ
Mulf x y u v−−−−−−−−→ σ[x, y 7→ R/W,R mod W] if x 6= y and R = [[u]]σ × [[v]]σ

σ
AssertP‖Q−−−−−−−−→ σ′ where σ′ = σ if σ |= P ∧Q;⊥ otherwise

σ
AssumeP‖Q−−−−−−−−→ σ if σ |= P ∧Q

⊥ stmt−−−−−−−−→ ⊥ where stmt ∈ Stmt

Figure 4 Semantics.

4.1 Range Properties
Range properties are amenable to analysis by bit blasting. We therefore reduce the problem
of deciding |= (|P‖>|)prog(|P ′‖>|) to SMT solving. More specifically, we construct a formula
Ψ in the bit vector theory such that Ψ is satisfiable if and only if 6|= (|P‖>|)prog(|P ′‖>|). An
SMT solver is then employed to check range properties. Since the reduction is standard,
details are omitted here (see, for instance, [12]). Note that 6|= (|P‖>|)prog(|P ′‖>|) may be
caused by the violation of the post-condition or by the violation of program safety (that
is, overflow/underflow of some program statement). Therefore, safety check of prog is also
encoded in Ψ by the same way as in [16]) and |= (|P‖>|)prog(|P ′‖>|) actually indicates that
prog is safe with respect to P .

4.2 Algebraic Properties
Algebraic properties, especially those involving non-linear multiplication, are not suitable
for SMT solving. In order to effectively verify algebraic properties, we propose modular
polynomial abstraction. In modular polynomial abstraction, program behaviors are modeled
by solutions to systems of modular polynomial equations. Checking algebraic properties is
reduced to modular polynomial equation entailments. The modular polynomial equation
entailment problem in turn is reduced to the ideal membership problem. The ideal member-
ship problem is widely studied in commutative algebra. Decision procedures for the ideal
membership problem are available in computer algebra systems. We hence employ computer
algebra systems to verify algebraic properties.

CONCUR 2018

4:8 Verifying Arithmetic Assembly Programs in Cryptographic Primitives

Set x u ↪→ x− u = 0
Cmov x b u v ↪→ x− (b× u+ (1− b)× v) = 0
Add! x u v ↪→ x− (u+ v) = 0
Add b x u v ↪→ (x+ b×W)− (u+ v) = 0 ∧ b× (1− b) = 0
Adc b x u v c ↪→ (x+ b×W)− (u+ v + c) = 0 ∧ b× (1− b) = 0
Sub! x u v ↪→ x− (u− v) = 0
Sub b x u v ↪→ (x− b×W)− (u− v) = 0 ∧ b× (1− b) = 0
Sbb b x u v c ↪→ (x− b×W)− (u− v − c) = 0 ∧ b× (1− b) = 0
Mul x u v ↪→ x− (u× v) = 0
Mulf x y u v ↪→ (x×W + y)− (u× v) = 0
Assert P‖Q ↪→ >
Assume P‖Q ↪→ poly(Q)

Figure 5 Modular Polynomial Equations.

In the following, the three transformations from the verification problem of algebraic
properties on CryptoLine programs to the ideal membership problem are explained. We
first show how to transform program behaviors to systems of modular polynomial equations.
The algebraic property verification problem is then reduced to the modular polynomial
equation entailment problem. Finally, we explicate how to solve the entailment problem by
the ideal membership problem in commutative algebra.

4.2.1 Modular Polynomial Equations
Let f(~x), g(~x) ∈ Z[~x]. A modular polynomial equation is of the form f(~x) = 0 or f(~x) ≡
0 mod g(~x). A system of modular polynomial equations is denoted by

∧k
i=1 fi(~x) = 0 ∧∧l

i=1 gi(~x) ≡ 0 mod hi(~x) where fi(~x), gi(~x), hi(~x) ∈ Z[~x] for all i. A state σ is a solution
to a modular polynomial equation (written σ |= f(~x) = 0 or σ |= f(~x) ≡ 0 mod g(~x)) if
the equation holds under the valuation σ. A state σ is a solution to a system of modular
polynomial equations if it is a solution to every equations in the system.

Our first task is to describe program behaviors. Consider the transformation from
CryptoLine statements to systems of modular polynomial equations (Figure 5). Set is
transformed to the equation stating that the updated variable is equal to the argument. For
Cmov, the argument b can be either 0 or 1. Hence its corresponding equation identifying the
updated variable to u or v by the value of b. Add! and Sub! are transformed to equations
respectively mimicing the addition and the subtraction. In addition to the equations for the
updated variable and flag, Add, Adc, Sub, Sbb also have equations restricting the values of
flags to be 0 or 1. Mul and Mulf are transformed to equations mimicing the multiplication.
Assert is verified as another specification and is ignored. Finally, AssumeP‖Q is transformed
to poly(Q). Given Q ∈ Z[~x], poly(Q) is Q with e1 = e2 replaced by e1 − e2 = 0 and
e1 ≡ e2 mod e3 replaced by e1 − e2 ≡ 0 mod e3.

We have the following theorem for the transformation from CryptoLine to a system of
modular polynomial equations.

I Theorem 1. For each stmt ↪→ Φ in Figure 5 and non-error states σ and τ , we have
σ

stmt−−−→ τ implies τ |= Φ.

A. Polyakov, M. Tsai, B. Wang, and B. Yang 4:9

1: Set r(0)
0 x

(0)
0 ;

2: Set r(0)
1 x

(0)
1 ;

3: Set r(0)
2 x

(0)
2 ;

4: Set r(0)
3 x

(0)
3 ;

5: Set r(0)
5 x

(0)
4 ;

6: Add! r(1)
0 r

(0)
0 4503599627370458;

7: Add! r(1)
1 r

(0)
1 4503599627370494;

8: Add! r(1)
2 r

(0)
2 4503599627370494;

9: Add! r(1)
3 r

(0)
3 4503599627370494;

10: Add! r(1)
4 r

(0)
4 4503599627370494;

11: Sub! r(2)
0 r

(1)
0 y

(0)
0 ;

12: Sub! r(2)
1 r

(1)
1 y

(0)
1 ;

13: Sub! r(2)
2 r

(1)
2 y

(0)
2 ;

14: Sub! r(2)
3 r

(1)
3 y

(0)
3 ;

15: Sub! r(2)
4 r

(1)
4 y

(0)
4 ;

Figure 6 sub in static single assignments.

Sketch. We only show the proof for two statements here. Suppose σ Add b x u v−−−−−−−−→ τ . If
[[u]]σ + [[v]]σ < W , [[b]]τ = 0 and [[x]]τ = [[u]]σ + [[v]]σ. Otherwise, we have [[b]]τ = 1 and
[[x]]τ = [[u]]σ + [[v]]σ −W . As statements are in static single assignments, [[u]]τ = [[u]]σ and
[[v]]τ = [[v]]σ. Hence τ |= (x+ b×W)− (u+ v) = 0 and τ |= b× (1− b) = 0 in both cases.

Now suppose σ Cmov x b u v−−−−−−−−→ τ . If [[b]]σ = 1, [[x]]τ = [[u]]σ = [[b]]σ× [[u]]σ. Otherwise [[b]]σ = 0
and [[x]]τ = [[v]]σ = (1−[[b]]σ)×[[v]]σ. As statements are in static single assignments, [[b]]τ = [[b]]σ,
[[u]]τ = [[u]]σ and [[v]]τ = [[v]]σ. In both cases, we have τ |= x− (b× u+ (1− b)× v) = 0. J

By the assumption that programs are in static single assignments and Theorem 1, a
system of modular polynomial equations whose solutions are program execution traces is
constructed. More formally, we have the following corollary:

I Corollary 2. Suppose stmt1 ; stmt2 ; · · · ; stmtn is in static single assignments. Let σ and τ
be non-error states with σ stmt1 ;stmt2 ;··· ;stmtn−−−−−−−−−−−−−→ τ. Suppose stmti ↪→ Φi (Figure 5) for every
1 ≤ i ≤ n. Then τ |=

∧n
i=1 Φi.

Example (continued). Let us compute the system of modular polynomial equations for
the subtraction program in Figure 3. We rewrite the program in static single assignments
(Figure 6). The specification concerning algebraic properties, denoted by aspecsub, is rewritten
as well:

(| ∧4
i=0 x

(0)
i ≤64 251 + 215 ∧

∧4
i=0 y

(0)
i ≤64 251 + 215 ‖>|)

sub

(|>‖ radix51 (x(0)
4 , x

(0)
3 , x

(0)
2 , x

(0)
1 , x

(0)
0)− radix51 (y(0)

4 , y
(0)
3 , y

(0)
2 , y

(0)
1 , y

(0)
0)

≡ radix51 (r(2)
4 , r

(2)
3 , r

(2)
2 , r

(2)
1 , r

(2)
0) mod 2255 − 19

|)

For each statement in the static single assignments, we apply the transformation in Figure 5.
Figure 7 shows the corresponding modular polynomial equations.

4.2.2 Modular Polynomial Equation Entailment
Let Φ and Φ′ be systems of modular polynomial equations with variables over ~x. A modular
polynomial entailment is a formula of the form ∀~x(Φ =⇒ Φ′). Given a modular polynomial
entailment, the modular polynomial entailment problem is to decide whether the entailment
holds in the theory of integers. Given systems of modular polynomial equations describ-
ing program behaviors and intended algebraic properties, it is standard to transform the
verification problem to an instance of the modular polynomial entailment problem.

CONCUR 2018

4:10 Verifying Arithmetic Assembly Programs in Cryptographic Primitives

1: r
(0)
0 − x(0)

0 = 0 ∧
2: r

(0)
1 − x(0)

1 = 0 ∧
3: r

(0)
2 − x(0)

2 = 0 ∧
4: r

(0)
3 − x(0)

3 = 0 ∧
5: r

(0)
4 − x(0)

4 = 0 ∧
6: r

(1)
0 −(r(0)

0 + 4503599627370458)=0 ∧
7: r

(1)
1 −(r(0)

1 + 4503599627370494)=0 ∧
8: r

(1)
2 −(r(0)

2 + 4503599627370494)=0 ∧

9: r
(1)
3 −(r(0)

3 +4503599627370494)=0 ∧
10: r

(1)
4 −(r(0)

4 +4503599627370494)=0 ∧
11: r

(2)
0 − (r(1)

0 − y(0)
0) = 0 ∧

12: r
(2)
1 − (r(1)

1 − y(0)
1) = 0 ∧

13: r
(2)
2 − (r(1)

2 − y(0)
2) = 0 ∧

14: r
(2)
3 − (r(1)

3 − y(0)
3) = 0 ∧

15: r
(2)
4 − (r(1)

4 − y(0)
4) = 0

Figure 7 System of Modular Polynomial Equations Φsub for sub.

I Theorem 3. Given a specification (|P‖Q|)prog(|>‖Q′|) in static single assignments and
the corresponding system of modular polynomial equations Φprog for prog where there is no
Assert statement, if prog is safe with respect to P and ∀~x(poly(Q) ∧ Φprog =⇒ poly(Q′))
holds, then |= (|P‖Q|)prog(|>‖Q′|).

Example (continued). We apply Theorem 3 to verify algebraic properties on the subtraction
program in Figure 3. Recall the system of modular polynomial equations Φsub for the program
in Figure 7. If we can show

∀~x

[
> ∧ Φsub =⇒ radix51 (x(0)

4 , x
(0)
3 , x

(0)
2 , x

(0)
1 , x

(0)
0)− radix51 (y(0)

4 , y
(0)
3 , y

(0)
2 , y

(0)
1 , y

(0)
0)

−radix51 (r(2)
4 , r

(2)
3 , r

(2)
2 , r

(2)
1 , r

(2)
0) ≡ 0 mod 2255 − 19

]
,

denoted by entsub, then |= aspecsub.
Our next task is to solve the modular polynomial entailment problem. It is known how

to replace modular polynomial equations with polynomial equations and hence simplify the
modular polynomial entailment problem [11]. In the following, we review the simplication
for the sake of completeness.

Let ei(~x), fj(~x), nj(~x)gk(~x), hl(~x),ml(~x) ∈ Z[~x] for i ∈ [I], j ∈ [J], k ∈ [K], and l ∈ [L].
Consider the instance of the modular polynomial entailment problem:

∀~x[
∧
i∈[I]

ei(~x) = 0 ∧
∧
j∈[J]

fj(~x) ≡ 0 mod nj(~x) =⇒∧
k∈[K]

gk(~x) = 0 ∧
∧
l∈[L]

hl(~x) ≡ 0 mod ml(~x)]

Its consequent has K + L+ 2 modular polynomial equations. We decompose the problem
into K + L+ 2 instances of the modular polynomial entailment problem. Each instance is of
the form

∀~x[
∧
i∈[I]

ei(~x) = 0 ∧
∧
j∈[J]

fj(~x) ≡ 0 mod nj(~x) =⇒ g(~x) = 0]; or

∀~x[
∧
i∈[I]

ei(~x) = 0 ∧
∧
j∈[J]

fj(~x) ≡ 0 mod nj(~x) =⇒ h(~x) ≡ 0 mod m(~x)].

For the first form, we expand the modular polynomial equations and obtain

∀~x[
∧
i∈[I]

ei(~x) = 0 ∧
∧
j∈[J]

[∃dj .fj(~x)− dj · nj(~x) = 0] =⇒ g(~x) = 0],

A. Polyakov, M. Tsai, B. Wang, and B. Yang 4:11

〈 2255 − 19, r(0)
0 − x(0)

0 , r
(0)
1 − x(0)

1 , r
(0)
2 − x(0)

2 , r
(0)
3 − x(0)

3 , r
(0)
4 − x(0)

4 ,

r
(1)
0 − r(0)

0 − 4503599627370458, r(1)
1 − r(0)

1 − 4503599627370494,
r

(1)
2 − r(0)

2 − 4503599627370494, r(1)
3 − r(0)

3 − 4503599627370494,
r

(1)
4 − r(0)

4 − 4503599627370494,
r

(2)
0 − r(1)

0 + y
(0)
0 , r

(2)
1 − r(1)

1 + y
(0)
1 , r

(2)
2 − r(1)

2 + y
(0)
2 , r

(2)
3 − r(1)

3 + y
(0)
3 ,

r
(2)
4 − r(1)

4 + y
(0)
4 ,

〉

Figure 8 Ideal for Checking Algebraic Property on Subtraction.

which in turn is equivalent to

∀~x∀~d[
∧
i∈[I]

ei(~x) = 0 ∧
∧
j∈[J]

fj(~x)− dj · nj(~x) = 0 =⇒ g(~x) = 0].

Similarly, we obtain the following entailment for the second form:

∀~x∀~d[
∧
i∈[I]

ei(~x) = 0 ∧
∧
j∈[J]

fj(~x)− dj · nj(~x) = 0 =⇒ h(~x) ≡ 0 mod m(~x)].

Note that antecedents in both forms are but polynomial equations. In order to solve the
modular polynomial entailment problem, it suffices to solve the following forms:

∀~x[
∧
i∈[I]

ei(~x) = 0 =⇒ g(~x) = 0] (1)

∀~x[
∧
i∈[I]

ei(~x) = 0 =⇒ h(~x) ≡ 0 mod m(~x)] (2)

4.2.3 Solving Modular Polynomial Equation Entailment Problem
There is an interesting connection between solving the formula (2) and the ideal membership
problem. Suppose h(~x) ∈ 〈ei(~x),m(~x)〉i∈[I]. By the definition of ideal, h(~x) is a linear
combination of ei(~x) and m(~x). Hence, there are c(~x), ci(~x) ∈ Z[~x] such that

h(~x) = c(~x) ·m(~x) +
∑
i∈[I]

ci(~x) · ei(~x).

When ei(~x) = 0 for every i ∈ [I], we have h(~x) = c(~x) ·m(~x), that is, h(~x) ≡ 0 mod m(~x).
The following theorem summarizes the connection:

I Theorem 4 ([11]). Let ei(~x), g(~x), h(~x),m(~x) ∈ Z[~x] for i ∈ [I].
1. The formula (1) holds if g(~x) is in the ideal 〈ei(~x)〉i∈[I];
2. The formula (2) holds if h(~x) is in the ideal 〈ei(~x),m(~x)〉i∈[I].

Example (continued). Recall that we would like to establish entsub. By Theorem 4, it
suffices to show radix51 (x(0)

4 , x
(0)
3 , x

(0)
2 , x

(0)
1 , x

(0)
0) − radix51 (y(0)

4 , y
(0)
3 , y

(0)
2 , y

(0)
1 , y

(0)
0) −

radix51 (r(2)
4 , r

(2)
3 , r

(2)
2 , r

(2)
1 , r

(2)
0) is in the ideal from Figure 8.

4.2.4 Completeness
The reduction from the algebraic verification problem to the ideal membership problem is
sound but incomplete. There are instances of (1) or (2) whose corresponding ideal membership
problems do not hold.

CONCUR 2018

4:12 Verifying Arithmetic Assembly Programs in Cryptographic Primitives

4.2.5 Optimization
The ideal membership problem typically becomes harder when the number of polynomials
grows [10]. To reduce the number of polynomials, we apply variable substitution same as
in [16]. For the instruction Set x u and its corresponding modular polynomial equation
x − u = 0, we remove the equation and replace x with u in all other modular polynomial
equations. Other instructions that update only one variable are processed similarly. Consider
Mulf x y u v and its corresponding modular polynomial equation (x×W + y)− (u× v) = 0
for an example of instructions that update two variables. Since (x×W + y)− (u× v) = 0
implies y = u × v − x ×W , we remove the equation and replace y with u × v − x ×W in
all other modular polynomial equations. For an AssumeP‖Q statement with an equation
e1 − e2 = 0 in poly(Q), we identify a variable x and an expression e such that e1 − e2 = 0 if
and only if x = e. Then e1 − e2 = 0 is removed after replacing x with e.

Example (continued). By the optimization, it suffices to show

radix51 (x(0)
4 , x

(0)
3 , x

(0)
2 , x

(0)
1 , x

(0)
0)− radix51 (y(0)

4 , y
(0)
3 , y

(0)
2 , y

(0)
1 , y

(0)
0)−

radix51 (x(0)
4 + 4503599627370494− y(0)

4 , x
(0)
3 + 4503599627370494− y(0)

3 ,

x
(0)
2 + 4503599627370494− y(0)

2 , x
(0)
1 + 4503599627370494− y(0)

1 ,

x
(0)
0 + 4503599627370458− y(0)

0)

is in the ideal of 〈2255 − 19〉.

5 Evaluation

We have implemented our approach in OCaml. Followed by a case study on Montgomery mul-
tiplication in this section, the verification of arithmetic assembly programs in cryptographic
libraries is reported.

5.1 Montgomery Multiplication
Consider modulo arithmetic computation over Zm. Since results must be in Zm, a modulo
operation is necessary. For modulo addition or subtraction, it is relatively easy since results
are obtained by subtracting or adding m respectively. For modulo multiplication, the naïve
algorithm requires division. This is inefficient. Consider, for instance, modulo arithmetic
computation over Z93. Let a = 79 and b = 39. We have a + b = 118 and 118 − 93 = 25.
Hence (a + b) mod 93 = 25. But a × b = 79 × 39 = 3081. Since 3081 = 93 × 33 + 12. We
obtain (79× 39) mod 93 = 12 by division.

To avoid inefficient division, cryptographic programs perform modulo arithmetic com-
putation over Zm in Montgomery forms. Two numbers R and m′ with gcd(R,m) = 1 and
mm′ ≡ −1 mod R are chosen by programmers. For any a ∈ Zm, its Montgomery repre-
sentation is aR mod m. For modulo addition and subtraction, it is still easy to compute
in Montgomery forms since (a ± b)R ≡ aR ± bR mod m. For modulo multiplication, one
would like to compute the Montgomery representation abR mod m from the representations
aR mod m and bR mod m of a and b respectively. Yet aR · bR ≡ abR2 mod m. It appears
that one has to multiply the inverse of R and then modulo m to obtain the result.

Surprisingly, Montgomery proposed a reduction algorithm which multiplies the inverse
of R and modulo m simultaneously. The following computation performs the Montgomery

A. Polyakov, M. Tsai, B. Wang, and B. Yang 4:13

reduction on a number T in Montgomery representation:

n = ((T mod R)×m′) mod R
t = (T + n×m)/R
r = if t ≥ m then t−m else t

We will illustrate by an example. Choose (m,R,m′) = (93, 100, 43). We have gcd(100, 93) = 1
and 93 × 43 ≡ −1 mod 100. The numbers a and b in Montgomery representation are
7900 mod 93 = 88 and 3900 mod 93 = 87 respectively (two hard divisions). To perform the
Montegomery reduction on T = 88× 87 = 7656, we compute n = ((7656 mod 100)× 43) mod
100 = (56×43) mod 100 = 2408 mod 100 = 8. t = (7656+8×93)/100 = 8400/100 = 84. Since
84 < m = 93, we obtain the product 84 in Montgomery representation. To compute ab mod m,
we perform Montgomery reduction again on T = 84. Thus n = ((84 mod 100)×43) mod 100 =
(84× 43) mod 100 = 3612 mod 100 = 12 and t = (84 + 12× 93)/100 = 1200/100 = 12. Since
12 < 93, we have (79× 39) mod 93 = 12 as before. Observe that only two hard divisions are
necessary for computing Montgomery representations of 79 and 39. Modulo 100 and dividing
multiples of 100 by 100 are trivial. If a number of arithmetic operations are required (as in
the case for cryptographic primitives), computation in Montgomery representation is much
more efficient than textbook algorithms. Cryptographic libraries subsequently implement
arithmetic in Montgomery representation.

Assembly subroutines in OpenSSL go even further than that. Previously, we compute
multiplication 88 × 87 followed by reduction to perform one Montgomery multiplication.
In practice, multiplication and reduction are performed simultaneously in Montgomery
multiplication. OpenSSL moreover uses the multi-limb Montegomery multiplication algorithm
where R can be a large power of 2. Consider the four-limb Montgomery multiplication with
64-bit limbs. m is hence a 256-bit number. Choose R = 2256. Define radix64 (`3 , `2 , `1 , `0)
to be the expression

`3 × 264×3 + `2 × 264×2 + `1 × 264×1 + `0.

Let m = radix64 (m3,m2,m1,m0), x = radix64 (x3, x2, x1, x0), y = radix64 (y3, y2, y1, y0)
and m′ ∈ [264 − 1] be inputs and r = radix64 (r3, r2, r1, r0) the output. The four-limb
Montgomery multiplication subroutine bn_mul_mont_4 in OpenSSL has the following
specification:

(|>‖m0 ≡ 1 mod 2 ∧m′ ×m+ 1 ≡ 0 mod 264|)
r = bn_mul_mont_4(x, y,m,m′)

(|>‖x× y ≡ r × 2256 mod m|)

The precondition m0 ≡ 1 mod 2 is equivalent to gcd(m, 264) = 1. On input numbers
x = aR mod m and y = bR mod m in Montgomery representation, the output r satisfies
xy ≡ abR2 ≡ rR mod m. That is, r ≡ abR mod m. The output r is the product of a and b
in Montgomery representation.

The Montgomery multiplication subroutine for x86_64 is invoked by the C fragment:

bn_mul_mont(r, x, y, m, m’, n_limbs);

where x, y, m, m’ are arrays of 64-bit unsigned integer and n_limbs is the number of limbs.
We compile the C code and link it with the OpenSSL cryptographic library. The program
execution trace is then extracted by gdb along with effective addresses automatically. For
4-limb bn_mul_mont_4 (n_limbs = 4), there are about 350 assembly instructions. As an
illustration, the following three instructions load the value of m’, y[0], and x[0] to the
registers r8, rbx, and rax respectively.

CONCUR 2018

4:14 Verifying Arithmetic Assembly Programs in Cryptographic Primitives

mov (%r8),%r8 #! EA = L0x6060e0
mov (%r12),%rbx #! EA = L0x6060a0
mov (%rsi),%rax #! EA = L0x606080

For each instruction, we write a Python script to translate it to a CryptoLine statement.
Here are the corresponding CryptoLine code for the three instructions:

Set r8 L0x6060e0;
Set rbx L0x6060a0;
Set rax L0x606080;

In our automatic translation, each memory cell is a variable identified by its address. Each
register is also a variable with the same name. Since effective addresses are obtained from
gdb, indirect memory operands (such as -0x10(%rsp,%r15,8)) are translated to variables
corresponding to their effective addresses. It remains to initialize memory cells for inputs.

1: Set L0x606080 x0; 5: Set L0x6060a0 y0; 9: Set L0x6060c0 m0;
2: Set L0x606088 x1; 6: Set L0x6060a8 y1; 10: Set L0x6060c8 m1;
3: Set L0x606090 x2; 7: Set L0x6060b0 y2; 11: Set L0x6060d0 m2;
4: Set L0x606098 x3; 8: Set L0x6060b8 y3; 12: Set L0x6060d8 m3;

13: Set L0x6060e0 m′;

The Assert and Assume statements are indispensable in verifying bn_mul_mont. Consider
the following fragment extracted from the assembly subroutine:

1 : Set rbx y0; 4 : Mulf rdx rax rbx rax; 7 : Mulf unused rbp r10 rbp;
2 : Set rax x0; 5 : Set r10 rax; 8 : Mulf rdx rax rbp rax;
3 : Set rbp m′; 6 : Set rax m0; 9 : Add! carry r10 rax r10;

At line 5, we have r10 ≡ y0 × x0 mod 264. At line 7, rbp ≡ y0 × x0 ×m′ mod 264. At line 8,
rax ≡ y0×x0×m′×m0 mod 264. Finally at line 9, we have r10 ≡ (y0×x0×m′×m0)+(y0×
x0) ≡ (y0×x0)× (m′×m0 + 1) mod 264. From the precondition m′×m+ 1 ≡ 0 mod 264, we
have m′ × radix64 (m3,m2,m1,m0) + 1 ≡ 0 mod 264 and m′ ×m0 + 1 ≡ 0 mod 264. Hence
r10 ≡ (y0 × x0)× (m′ ×m0 + 1) ≡ 0 mod 264. Now r10 is a 64-bit register. r10 ≡ 0 mod 264

implies r10 = 0 on x86_64. Its value can be safely discarded. The equality is essential to the
proof of correctness in the Montgomery multiplication program.

Although r10 ≡ 0 mod 264 can be verified by modular polynomial equation entailment,
the algebraic technique fails to prove r10 = 0. In order to verify bn_mul_mont_, we add two
instructions following the code fragment: Assert>‖r10 ≡ 0 mod 264 and Assume>‖r10 = 0.
The Assert statement is automatically verified; the Assume statement is safe because r10 ≡
0 mod 264 implies r10 = 0 when r10 is a 64-bit register.

5.2 Arithmetic in Cryptographic Libraries
We have successfully verified assembly codes extracted from the arithmetic programs in
cryptographic libraries OpenSSL, boringSSL, and mbedTLS. The extracted traces are not
affected by the inputs in all programs except mbedTLS. The big integer multiplication in
mbedTLS contains a loop with undetermined iterations in C for propagating carry chains.
For this multiplication, we extracted and verified assembly codes for different cases of carry
chains but only report two cases with longest carry chains. All the verification tasks are
performed on a Linux machine with a 3.47GHz CPU and 128GB memory. We use Boolector

A. Polyakov, M. Tsai, B. Wang, and B. Yang 4:15

Table 1 Experimental Results.

library program ln assert range alg total

OpenSSL

ecp_nistz256_add 89 0.44 4.17 0.03 4.63
ecp_nistz256_sub 88 - 18.54 ~0 18.55

ecp_nistz256_from_mont 82 - 0.41 0.02 0.45
ecp_nistz256_mul_mont 192 - 21.49 0.03 21.53
ecp_nistz256_mul_mont+ 153 - 15.43 0.03 15.47
ecp_nistz256_mul_by_2 49 - 0.05 0.02 0.08
ecp_nistz256_sqr_mont 148 - 16.43 0.03 16.47
ecp_nistz256_sqr_mont+ 131 - 22.50 0.03 22.54

x86_64_mont_2 228 832.60 13.41 0.03 846.05
x86_64_mont_4 490 8279.87 523.27 0.91 8804.06

boringSSL
x25519_x86_64_mul 226 - 28.73 0.03 28.78
x25519_x86_64_sqr 171 - 6.14 0.03 6.18

x25519_x86_64_ladderstep 1459 - 2921.82 107.93 3029.78

mbedTLS
mbedtls_mpi_mul_mpi_2 76 0.46 0.42 0.03 0.92
mbedtls_mpi_mul_mpi_4 249 12.85 9.27 0.02 22.16

2.4.0 for SMT solving and use Singular 4.1.0 for ideal membership solving. Table 1 shows
the verification results. For each arithmetic program, we report the number of lines (ln)
in CryptoLine (including the specification), the time in seconds for assertion checking
(assert), range checking (range), algebraic checking (alg), and overall verification (total). A
“-” in the assertion column indicates that the program contains no assertion. In OpenSSL,
two versions of ecp_nistz256_mul_mont and ecp_nistz256_sqr_mont are availble: one for
typical x86_64 microarchitectures, the other for Broadwell microarchitecture (annotated
by “+” in the table). For multiplication, we verified 2- and 4-limb versions in OpenSSL
(x86_64_mont_*) and mbedTLS (mbedtls_mpi_mul_mpi_*).

To the best of our knowledge, our work is the first on automatically verifying assembly
codes extracted from low-level arithmetic implementations of industrial cryptographic libraries.
Most of the other works verified re-implementations of arithmetic operations written in
high-level languages. In the most related work [16], an implementation of the Montgomery
Ladderstep in bvCryptoLine was verified in days. With our approach, the implementation
of the Montgomery Ladderstep in boringSSL can be verified in 1 hour.

6 Conclusion

We have described a domain-specific language CryptoLine for modeling arithmetic assembly
programs in cryptographic primitives across different instruction sets. Scripts have been
developed to extract execution traces from programs as assembly codes and to translate
assembly codes to CryptoLine. A specification for a program in CryptoLine is divided into
range predicates and algebraic predicates. While range predicates are verified by SMT solving,
algebraic predicates are verified via transformation to ideal membership problems solved by
computer algebra systems. We have implemented our verification approach to successfully
verified several arithmetic programs in cryptographic libraries OpenSSL, boringSSL, and
mbedTLS.

We are working on a certified translator to accurately generate CryptoLine codes from
different assembly. The case studies in mbedTLS expose limitations of verifying cryptographic
codes with CryptoLine. We would like to extend our techniques to such programs.

CONCUR 2018

4:16 Verifying Arithmetic Assembly Programs in Cryptographic Primitives

References
1 Reynald Affeldt. On construction of a library of formally verified low-level arithmetic

functions. Innovations in Systems and Software Engineering, 9(2):59–77, 2013.
2 Reynald Affeldt and Nicolas Marti. An approach to formal verification of arithmetic func-

tions in assembly. In Mitsu Okada and Ichiro Satoh, editors, Advances in Computer Science,
volume 4435 of LNCS, pages 346–360. Springer, 2007.

3 Reynald Affeldt, David Nowak, and Kiyoshi Yamada. Certifying assembly with formal
security proofs: The case of BBS. Science of Computer Programming, 77(10–11):1058–
1074, 2012.

4 Andrew W. Appel. Verification of a cryptographic primitive: SHA-256. ACM Transactions
on Programming Languages and Systems, 37(2):7:1–7:31, 2015. doi:10.1145/2701415.

5 Lennart Beringer, Adam Petcher, Katherine Q. Ye, and Andrew W. Appel. Verified correct-
ness and security of openssl HMAC. In USENIX Security Symposium 2015, pages 207–221.
USENIX Association, 2015.

6 Daniel J. Bernstein and Peter Schwabe. gfverif: Fast and easy verification of finite-field
arithmetic, 2016. URL: http://gfverif.cryptojedi.org.

7 B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch, B. Parno, A. Rane,
S. Setty, and L. Thompson. Vale: Verifying high-performance cryptographic assembly code.
In USENIX Security Symposium 2017, pages 917–934. USENIX Association, 2017.

8 Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Peter Schwabe, Ming-Hsien Tsai, Bow-
Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang. Verifying curve25519 software. In Gail-Joon
Ahn, Moti Yung, and Ninghui Li, editors, CCS, pages 299–309. ACM, 2014.

9 Fiat-crypto. https://github.com/mit-plv/fiat-crypto, 2015. Accessed: 2017-05-19.
10 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman and company, 1979.
11 John Harrison. Automating elementary number-theoretic proofs using Gröbner bases. In

Frank Pfenning, editor, CADE, volume 4603 of LNCS, pages 51–66. Springer, 2007.
12 D. Kroening and O. Strichman. Decision Procedures - an algorithmic point of view. EATCS.

Springer, 2008.
13 Magnus O. Myreen and Gregorio Curello. Proof pearl: A verified bignum implementation

in x86-64 machine code. In Certified Programs and Proofs, volume 8307 of LNCS, pages
66–81. Springer, 2013. doi:10.1007/978-3-319-03545-1_5.

14 Magnus O. Myreen and Michael J. C. Gordon. Hoare logic for realistically modelled machine
code. In Orna Grumberg and Michael Huth, editors, TACAS, volume 4424 of LNCS, pages
568–582. Springer, 2007.

15 Aaron Tomb. Automated verification of real-world cryptographic implementations. IEEE
Security & Privacy, 14(6):26–33, 2016. doi:10.1109/MSP.2016.125.

16 Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang. Certified verification of algebraic
properties on low-level mathematical constructs in cryptographic programs. In David Evans,
Tal Malkin, and Dongyan Xu, editors, CCS. ACM, 2017.

17 Katherine Q. Ye, Matthew Green, Naphat Sanguansin, Lennart Beringer, Adam Petcher,
and Andrew W. Appel. Verified correctness and security of mbedtls HMAC-DRBG. In
CCS, pages 2007–2020. ACM, 2017. doi:10.1145/3133956.3133974.

18 Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and Benjamin
Beurdouche. HACL*: A verified modern cryptographic library. In CCS, pages 1789–1806.
ACM, 2017. doi:10.1145/3133956.3134043.

http://dx.doi.org/10.1145/2701415
http://gfverif.cryptojedi.org
https://github.com/mit-plv/fiat-crypto
http://dx.doi.org/10.1007/978-3-319-03545-1_5
http://dx.doi.org/10.1109/MSP.2016.125
http://dx.doi.org/10.1145/3133956.3133974
http://dx.doi.org/10.1145/3133956.3134043

Coalgebraic Theory of Büchi and Parity Automata:
Fixed-Point Specifications, Categorically
Ichiro Hasuo
National Institute of Informatics, Japan
i.hasuo@acm.org

https://orcid.org/0000-0002-8300-4650

Abstract
Coalgebra is a categorical modeling of state-based dynamics. Final coalgebras – as categorical
greatest fixed points – play a central role in the theory; somewhat analogously, most coalgeb-
raic proof techniques have been devoted to greatest fixed-point properties such as safety and
bisimilarity. In this tutorial, I introduce our recent coalgebraic framework that accommodates
those fixed-point specifications which are not necessarily the greatest. It does so specifically by
characterizing the accepted languages of Büchi and parity automata in categorical terms. We
present two characterizations of accepted languages. The proof for their coincidence offers a
unique categorical perspective of the correspondence between (logical) fixed-point specifications
and the (combinatorial) parity acceptance condition.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects

Keywords and phrases Coalgebra, category theory, fixed-point logic, automata, Büchi automata,
parity automata

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.5

Category Invited Tutorial

Funding Supported by ERATO HASUO Metamathematics for Systems Design Project (No. JP-
MJER1603), JST; Grants-in-Aid No. 15KT0012 & 15K11984, JSPS; and the JSPS-INRIA Bilat-
eral Joint Research Project “CRECOGI.”

Studies of automata, and state-based transition systems in general, have been shed a fresh
categorical light in the 1990s by the theory of coalgebra [7, 5]. In the theory, a state-based
dynamics is modeled by a coalgebra, that is, an arrow c : X → FX in a category C; and this
simple modeling has produced numerous results that capture mathematical essences and
provide general techniques.

Final coalgebras as “categorical greatest fixed points” play a central role in the theory of
coalgebra. Somewhat analogously, most coalgebraic proof methods have focused on greatest
fixed-point properties – a notable example being a span-based categorical characterization of
bisimilarity.

In this tutorial, I will outline our recent results [10, 8] about how we can accommodate,
in the theory of coalgebra, those fixed-point properties which are not necessarily the greatest.
This takes the concrete form of characterizing the accepted languages of Büchi and parity
automata in the language of category theory. Our framework, based on the so-called Kleisli
approach to coalgebraic trace semantics [6, 4, 2, 1], is generic and covers both automata with
nondeterministic and probabilistic branching. It covers both word and tree automata, too.

© Ichiro Hasuo;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 5; pp. 5:1–5:2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:i.hasuo@acm.org
https://orcid.org/0000-0002-8300-4650
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 Coalgebraic Theory of Büchi and Parity Automata

We present two characterizations of the accepted languages of Büchi and parity automata.
The first one is called logical fixed points; it is formulated in terms of the order-enriched
structure of the underlying Kleisli category (where the monad in question models branching
type) [10]. The second one, called categorical fixed points, utilizes nested datatypes specified
by a functor. The latter resembles repeated application of (co)free (co)monads. We exhibit a
proof for the coincidence of the two characterizations. What arises through it is a categorical
perspective of one of the key observations that underpin the recent developments in computer
science – namely the fact that the combinatorial notion of parity acceptance condition
represents logical specifications given by nested and alternating fixed points.

The tutorial is based on the speaker’s joint works with Corina Cîrstea, Bart Jacobs,
Shunsuke Shimizu, Ana Sokolova, and Natsuki Urabe [2, 3, 8, 10]. A detailed account of the
technical material of the tutorial will be given in a forthcoming paper [9].

References
1 Corina Cîrstea. Canonical coalgebraic linear time logics. In Lawrence S. Moss and

Pawel Sobocinski, editors, 6th Conference on Algebra and Coalgebra in Computer Science,
CALCO 2015, June 24-26, 2015, Nijmegen, The Netherlands, volume 35 of LIPIcs, pages
66–85. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.
CALCO.2015.66.

2 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace semantics via coinduction.
Logical Methods in Comp. Sci., 3(4:11), 2007.

3 Ichiro Hasuo, Shunsuke Shimizu, and Corina Cîrstea. Lattice-theoretic progress meas-
ures and coalgebraic model checking. In Rastislav Bodik and Rupak Majumdar, editors,
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages
718–732. ACM, 2016. doi:10.1145/2837614.2837673.

4 B. Jacobs. Trace semantics for coalgebras. In J. Adámek and S. Milius, editors, Coalgebraic
Methods in Computer Science, volume 106 of Elect. Notes in Theor. Comp. Sci. Elsevier,
Amsterdam, 2004.

5 Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation,
volume 59 of Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 2016. doi:10.1017/CBO9781316823187.

6 J. Power and D. Turi. A coalgebraic foundation for linear time semantics. In Category
Theory and Computer Science, volume 29 of Elect. Notes in Theor. Comp. Sci. Elsevier,
Amsterdam, 1999.

7 J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comp. Sci., 249:3–80,
2000.

8 Natsuki Urabe and Ichiro Hasuo. Categorical Büchi and parity conditions via alternating
fixed points of functors. In Corina Cîrstea, editor, Proc. Coalgebraic Methods in Computer
Science - 14th IFIP WG 1.3 International Workshop, CMCS 2018, Lect. Notes Comp. Sci.,
2018. to appear, preprint available at arxiv.org/abs/1803.06811.

9 Natsuki Urabe, Shunsuke Shimizu, and Ichiro Hasuo. Coalgebraic theory of Büchi and
parity automata: Fixed-point specifications, categorically (tentative). forthcoming.

10 Natsuki Urabe, Shunsuke Shimizu, and Ichiro Hasuo. Coalgebraic trace semantics for
buechi and parity automata. In Josée Desharnais and Radha Jagadeesan, editors, 27th
International Conference on Concurrency Theory, CONCUR 2016, August 23-26, 2016,
Québec City, Canada, volume 59 of LIPIcs, pages 24:1–24:15. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016.

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.66
http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.66
http://dx.doi.org/10.1145/2837614.2837673
http://dx.doi.org/10.1017/CBO9781316823187

Universal Safety for Timed Petri Nets is
PSPACE-complete
Parosh Aziz Abdulla
Uppsala University, Sweden

Mohamed Faouzi Atig
Uppsala University, Sweden

Radu Ciobanu
University of Edinburgh, UK

Richard Mayr
University of Edinburgh, UK

Patrick Totzke
University of Edinburgh, UK

https://orcid.org/0000-0001-5274-8190

Abstract
A timed network consists of an arbitrary number of initially identical 1-clock timed automata,
interacting via hand-shake communication. In this setting there is no unique central controller,
since all automata are initially identical. We consider the universal safety problem for such
controller-less timed networks, i.e., verifying that a bad event (enabling some given transition) is
impossible regardless of the size of the network.

This universal safety problem is dual to the existential coverability problem for timed-arc
Petri nets, i.e., does there exist a number m of tokens, such that starting with m tokens in a
given place, and none in the other places, some given transition is eventually enabled.

We show that these problems are PSPACE-complete.

2012 ACM Subject Classification Theory of computation → Timed and hybrid models

Keywords and phrases timed networks, safety checking, Petri nets, coverability

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.6

Funding This work was supported by the EPSRC, grant EP/M027651/1.

1 Introduction

Background. Timed-arc Petri nets (TPN) [4, 16, 3, 8, 13] are an extension of Petri nets
where each token carries one real-valued clock and transitions are guarded by inequality
constraints where the clock values are compared to integer bounds (via strict or non-strict
inequalities). The known models differ slightly in what clock values newly created tokens
can have, i.e., whether newly created tokens can inherit the clock value of some input token
of the transition, or whether newly created tokens always have clock value zero. We consider
the former, more general, case.

Decision problems associated with the reachability analysis of (extended) Petri nets
include Reachability (can a given marking reach another given marking?) and Coverability
(can a given marking ultimately enable a given transition?).

While Reachability is undecidable for all these TPN models [15], Coverability is decidable
using the well-quasi ordering approach of [1, 10] and complete for the hyper-Ackermannian

© Parosh Aziz Abdulla, Mohamed Faouzi Atig, Radu Ciobanu, Richard Mayr, and Patrick Totzke;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 6; pp. 6:1–6:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5274-8190
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Universal Safety for Timed Petri Nets is PSPACE-complete

complexity class Fωωω [12]. With respect to Coverability, TPN are equivalent [7] to (linearly
ordered) data nets [14].

The Existential Coverability problem for TPN asks, for a given place p and transition
t, whether there exists a number m such that the marking M(m) def= m · {(p,0)} ultimately
enables t. Here, M(m) contains exactly m tokens on place p with all clocks set to zero
and no other tokens. This problem corresponds to checking safety properties in distributed
networks of arbitrarily many (namely m) initially identical timed processes that communicate
by handshake. A negative answer certifies that the “bad event” of transition t can never
happen regardless of the number m of processes, i.e., the network is safe for any size. Thus
by checking existential coverability, one solves the dual problem of Universal Safety. (Note
that the m timed tokens/processes are only initially identical. They can develop differently
due to non-determinacy in the transitions.)

The corresponding problem for timed networks studied in [2] does not allow the dynamic
creation of new timed processes (unlike the TPN model which can increase the number of
timed tokens), but considers multiple clocks per process (unlike our TPN with one clock per
token).

The TPN model above corresponds to a distributed network without a central controller,
since initially there are no tokens on other places that could be used to simulate one. Adding
a central controller would make Existential Coverability polynomially inter-reducible with
normal Coverability and thus complete for Fωωω [12] (and even undecidable for > 1 clocks
per token [2]).

Aminof et. al. [6] study the model checking problem of ω-regular properties for the
controller-less model and in particular claim an EXPSPACE upper bound for checking
universal safety. However, their result only holds for discrete time (integer-valued clocks)
and they do not provide a matching lower bound.

Our contribution. We show that Existential Coverability (and thus universal safety) is
decidable and PSPACE-complete. This positively resolves an open question from [2] regarding
the decidability of universal safety in the controller-less networks. Moreover, a symbolic
representation of the set of coverable configurations can be computed (using exponential
space).

The PSPACE lower bound is shown by a reduction from the iterated monotone Boolean
circuit problem. (It does not follow directly from the PSPACE-completeness of the reachability
problem in timed automata of [5], due to the lack of a central controller.)

The main ideas for the PSPACE upper bound are as follows. First we provide a logspace
reduction of the Existential Coverability problem for TPN to the corresponding problem
for a syntactic subclass, non-consuming TPN. Then we perform an abstraction of the real-
valued clocks, similar to the one used in [3]. Clock values are split into integer parts and
fractional parts. The integer parts of the clocks can be abstracted into a finite domain, since
the transition guards cannot distinguish between values above the maximal constant that
appears in the system. The fractional parts of the clock values that occur in a marking
are ordered sequentially. Then every marking can be abstracted into a string where all
the tokens with the i-th fractional clock value are encoded in the i-th symbol in the string.
Since token multiplicities do not matter for existential coverability, the alphabet from which
these strings are built is finite. The primary difficulty is that the length of these strings
can grow dynamically as the system evolves, i.e., the space of these strings is still infinite
for a given TPN. We perform a forward exploration of the space of reachable strings. By
using an acceleration technique, we can effectively construct a symbolic representation of the
set of reachable strings in terms of finitely many regular expressions. Finally, we can check
existential coverability by using this symbolic representation.

P.A. Abdulla, M. Atig, R. Ciobanu, R. Mayr, and P. Totzke 6:3

2 Timed Petri Nets

We use N and R≥0 to denote the sets of nonnegative integers and reals, respectively. For
n ∈ N we write [n] for the set {0, . . . , n}.

For a set A, we use A∗ to denote the set of words, i.e. finite sequences, over A, and write ε
for the empty word. If R is a regular expression over A then L(R) ⊆ A∗ denotes its language.

A multiset over a set X is a function M : X → N. The set X⊕ of all (finitely supported)
multisets over X is partially ordered pointwise (by ≤). The multiset union of M,M ′ ∈ X⊕
is (M ⊕M ′) ∈ X⊕ with (M ⊕M ′)(α) def= M(α) +M ′(α) for all α ∈ X. If M ≥M ′ then the
multiset difference (M 	M ′) is the unique M ′′ ∈ X⊕ with M = M ′ ⊕M ′′. We will use a
monomial representation and write for example (α + β3) for the multiset (α 7→ 1, β 7→ 3).
For a multiset M and a number m ∈ N we let m ·M denote the m-fold multiset sum of
M . We further lift this to sets of numbers and multisets on the obvious fashion, so that in
particular N · S def= {n ·M | n ∈ N,M ∈ S}.

Timed Petri nets are place/transition nets where each token carries a real value, sometimes
called its clock value or age. Transition firing depends on there being sufficiently many tokens
whose value is in a specified interval. All tokens produced by a transition either have age 0,
or inherit the age of an input-token of the transition. To model time passing, all token ages
can advance simultaneously by the same (real-valued) amount.

I Definition 1 (TPN). A timed Petri net (TPN) N = (P, T,Var , G,Pre,Post) consists of
finite sets of places P , transitions T and variables Var , as well as functions G,Pre,Post
defining transition guards, pre– and postconditions, as follows.

For every transition t ∈ T , the guard G(t) maps variables to (open, half-open or closed)
intervals with endpoints in N∪{∞}, restricting which values variables may take. All numbers
are encoded in unary. The precondition Pre(t) is a finite multiset over (P × Var). Let
Var(t) ⊆ Var be the subset of variables appearing positively in Pre(t). The postcondition
Post(t) is then a finite multiset over (P × ({0} ∪Var(t))), specifying the locations and clock
values of produced tokens. Here, the symbolic clock value is either 0 (demanding a reset to
age 0), or a variable that appeared already in the precondition.

A marking is a finite multiset over P × R≥0.

I Example 2. The picture below shows a place/transition representation of an TPN with
four places and one transition. Var(t) = {x, y}, Pre(t) = (p, x)2 + (q, y), G(t)(x) = [0, 5],
G(t)(y) =]1, 2] and Post(t) = (r, y)3 + (s, 0).

0 ≤ x ≤ 5
1 < y ≤ 2

t
p

q

r

s

x2

y

y3

0

The transition t consumes two tokens from place p, both of which have the same clock value
x (where 0 ≤ x ≤ 5) and one token from place q with clock value y (where 1 < y ≤ 2). It
produces three tokens on place r who all have the same clock value y (where y comes from
the clock value of the token read from q), and another token with value 0 on place s.

There are two different binary step relations on markings: discrete steps −→t which fire
a transition t as specified by the relations G,Pre, and Post, and time passing steps −→d for
durations d ∈ R≥0, which simply increment all clocks by d.

CONCUR 2018

6:4 Universal Safety for Timed Petri Nets is PSPACE-complete

I Definition 3 (Discrete Steps). For a transition t ∈ T and a variable evaluation π : Var →
R≥0, we say that π satisfies G(t) if π(x) ∈ G(t)(x) holds for all x ∈ Var . By lifting π to
multisets over (P ×Var) (respectively, to multisets over (P × ({0} ∪Var)) with π(0) = 0)
in the canonical way, such an evaluation translates preconditions Pre(t) and Post(t) into
markings π(Pre(t)) and π(Post(t)), where for all p ∈ P and c ∈ R≥0,

π(Pre(t))(p, c) def=
∑

π(v)=c

Pre(t)(p, v) and π(Post(t))(p, c) def=
∑

π(v)=c

Post(t)(p, v).

A transition t ∈ T is called enabled in markingM , if there exists an evaluation π that satisfies
G(t) and such that π(Pre(t)) ≤ M . In this case, there is a discrete step M −→t M

′ from
marking M to M ′, defined as M ′ = M 	 π(Pre(t))⊕ π(Post(t)).

I Definition 4 (Time Steps). Let M be a marking and d ∈ R≥0. There is a time step
M −→d M

′ to the marking M ′ with M ′(p, c) def= M(p, c − d) for c ≥ d, and M ′(p, c) def= 0,
otherwise. We also refer to M ′ as (M + d).

We write −→Time for the union of all timed steps, −→Disc for the union of all discrete
steps and simply −→ for −→Disc ∪ −→Time . The transitive and reflexive closure of −→ is ∗−→.
Cover (M) denotes the set of markings M ′ for which there is an M ′′ ≥M ′ with M ∗−→M ′′.

We are interested in the existential coverability problem (∃COVER for short), as follows.

Input: A TPN, an initial place p and a transition t.
Question: Does there exist M ∈ Cover (N · {(p, 0)}) that enables t?

We show that this problem is PSPACE-complete. Both lower and upper bound will be shown
(w.l.o.g., see Lemma 8) for the syntactic subclass of non-consuming TPN, defined as follows.

I Definition 5. A timed Petri net (P, T,Var , G,Pre,Post) is non-consuming if for all t ∈ T ,
p ∈ P and x ∈ Var it holds that both 1) Pre(t)(p, x) ≤ 1, and 2) Pre(t) ≤ Post(t).

In a non-consuming TPN, token multiplicities are irrelevant for discrete transitions. Intuitively,
having one token (p, c) is equivalent to having an inexhaustible supply of such tokens.

The first condition is merely syntactic convenience. It asks that each transition takes at
most one token from each place. The second condition in Definition 5 implies that for each
discrete step M −→t M

′ we have M ′ ≥ M . Therefore, once a token (p, c) is present on a
place p, it will stay there unchanged (unless time passes), and it will enable transitions with
(p, c) in their precondition.

Wherever possible, we will from now on therefore allow ourselves to use the set notation
for markings, that is simply treat markings M ∈ (P × R≥0)⊕ as sets M ⊆ (P × R≥0).

3 Lower Bound

PSPACE-hardness of ∃COVER does not follow directly from the PSPACE-completeness of
the reachability problem in timed automata of [5]. The non-consuming property of our TPN
makes it impossible to fully implement the control-state of a timed automaton. Instead our
proof uses multiple timed tokens and a reduction from the iterated monotone Boolean circuit
problem [11].

A depth-1 monotone Boolean circuit is a function F : {0, 1}n → {0, 1}n represented
by n constraints: For every 0 ≤ i < n there is a constraint of the form i′ = j ⊗ k, where
0 ≤ j, k < n and ⊗ ∈ {∧,∨}, which expresses how the next value of bit i depends on the

P.A. Abdulla, M. Atig, R. Ciobanu, R. Mayr, and P. Totzke 6:5

Truej

Truei

Truek

Falsej

Falsei

Falsek

x = y = 1i.B

x = 1 i.L

x = 1 i.R

x

y

0

x

0

x

0

Figure 1 The transitions i.B, i.R and i.L that simulate the update of bit i according to constraint
i′ = j ∧ k. All transitions demand that incoming tokens are of age exactly 1 and only tokens of age
0 are produced.

current values of bits j and k. For every bitvector v ∈ {0, 1}n, the function F then satisfies
F (v)[i] def= v[j]⊗ v[k]. It is PSPACE-complete to check whether for a given vector v ∈ {0, 1}n
there exists a number m ∈ N such that Fm(v)[0] = 1.

Towards a lower bound for ∃COVER (Theorem 7) we construct a non-consuming TPN
as follows, for a given circuit. The main idea is to simulate circuit constraints by transitions
that reset tokens of age 1 (encoding v) to fresh ones of age 0 (encoding F (v)), and let time
pass by one unit to enter the next round.

For every bit 0 ≤ i < n, the net contains two places Truei and Falsei. A marking Mv ≤
P × R≥0 is an encoding of a vector v ∈ {0, 1}n if for every 0 ≤ i < n the following hold.
1. (Truei, 0) ∈Mv ⇐⇒ v[i] = 1.
2. (Falsei, 0) ∈Mv ⇐⇒ v[i] = 0.
3. If (p, c) ∈Mv then c = 0 or c ≥ 1.

Note that in particular one cannot have both (Truei, 0) and (Falsei, 0) in Mv. For every
constraint i′ = j ∧ k we introduce three transitions, i.L, i.R, and i.B, where

Pre(i.B) def= (Truej , x) + (Truek, y) Post(i.B) def= Pre(i.B) + (Truei, 0)

Pre(i.L) def= (Falsej , x) Post(i.L) def= Pre(i.L) + (Falsei, 0)

Pre(i.R) def= (Falsek, x) Post(i.R) def= Pre(i.R) + (Falsei, 0)

and the guard for all transitions is G(x) = G(y) = 1. See Figure 1 for an illustration. For
disjunctions i′ = j ∨ k the transitions are defined analogously, with True and False inverted.
The correctness proof of our construction rests on the following simple observation.

I Lemma 6. If F (v) = v′ then for every encoding Mv of v, there exists an encoding Mv′ of
v′ such that Mv −→1

∗−→Disc Mv′ . Conversely, if Mv −→1
∗−→Disc Mv′ for encodings Mv and

Mv′ of v and v′ respectively, then F (v) = v′.

Proof. For the first part, we construct a sequence M0 −→Disc M1 −→Disc . . . −→Disc Mn−1
where M0

def= (Mv + 1) and every step Mi−1 −→Disc Mi adds tokens simulating the ith
constraint of F . Since the TPN is non-consuming, we will have that Mi ≥ (Mv + 1), for
all i < n. Consider now constraint i′, and assume w.l.o.g. that i′ = j ∧ k (the other case is
analogous). There are two cases depending on v′[i].

1. Case v′[i] = 1. By our assumption that F (v) = v′ we know that v[j] = 1 and v[k] = 1.
So (Truej , 1) ∈ (Mv + 1) ≤Mi−1 and (Truek, 1) ∈ (Mv + 1) ≤Mi−1. By construction of
the net, there is a transition i.B with Pre(i.B) = (Truej , 1) + (Truek, 1) and Post(i.B) =
Pre(i.B) + (Truei, 0). This justifies step Mi−1 −→i.B Mi and therefore that (Truei, 0) ∈

CONCUR 2018

6:6 Universal Safety for Timed Petri Nets is PSPACE-complete

Mi ≤Mn−1. Also notice that no marking reachable fromM0 using only discrete steps can
contain the token (Falsei, 0). This is because these can only be produced by transitions
requiring either (Falsej , 1) or (Falsek, 1), which are not contained in M0 by assumption
that Mv encodes v. Therefore (Falsei, 0) /∈Mn−1.

2. Case v′[i] = 0. W.l.o.g., v[j] = 0. Therefore, (Falsej , 1) ∈ (Mv + 1) ≤ Mi−1.
By construction of the net, there exists transition i.L with Pre(i.L) = (Falsej , 1)
and Post(i.L) = Pre(i.L) + (Falsei, 0). This justifies the step Mi−1 −→i.L Mi, with
(Falsei, 0) ∈Mi ≤Mn−1. Notice again that no marking reachable from M0 using only
discrete steps can contain the token (Truei, 0). This is because these can only be pro-
duced by transitions i.B, requiring both (Truej , 1), (Truek, 1) ∈ M0, contradicting our
assumptions. Hence, (Truei, 0) /∈Mn−1.

We conclude that the constructed marking Mn−1 is an encoding of v′.
For the other part of the claim, assume that there exist markings Mv and Mv′ which

are encodings of vectors v and v′, respectively, with Mv −→1
∗−→Disc Mv′ . We will show that

F (v) = v′. Recall that F (v)[i] def= v[j]⊗ v[k], where 0 ≤ j, k < n and ⊗ ∈ {∧,∨}. We will
show for each i < n that v′[i] = v[j]⊗ v[k]. Again, consider the constraint i′, and assume
w.l.o.g. that i′ = j ∧ k (the other case is analogous). There are two cases.
1. Case v′[i] = 1. By definition of a marking encoding, we have that (Truei, 0) ∈ Mv.

By construction, there is a transition i.B with Pre(i.B) = (Truej , 1) + (Truek, 1) and
Post(i.B) = Pre(i.B) + (Truei, 0). By assumption, it holds that (Mv + 1) ∗−→Disc M

′
v,

where Mv −→1 (Mv + 1). Note that (Truej , 1) ∈ (Mv + 1) and (Truek, 1) ∈ (Mv + 1).
Hence, we have that v[j] = 1 and v[k] = 1, and therefore that F (v)[i] = v′[i] = v[j]∧v[k].

2. Case v′[i] = 0. Then (Falsei, 0) ∈ Mv and, since this token can only be produced by
transitions i.L or i.R, either (Falsej , 1) ∈ (Mv + 1) or (Falsek, 1) ∈ (Mv + 1).
Therefore (Falsej , 0) ∈ (Mv) or (Falsek, 0) ∈ (Mv) and because Mv is an encoding of v,
this means that either v[j] = 0 or v[k] = 0. Therefore, F (v′)[i] = v[j] ∧ v[k] = 0. J

I Theorem 7. ∃COVER is PSPACE-hard for non-consuming TPN.

Proof. For a given monotone Boolean circuit, define a non-consuming TPN as above. By
induction on m ∈ N using Lemma 6, we derive that there exists m ∈ N with Fm(v) = v′

and v′[0] = 1 if, and only if, there exists encodings Mv of v and Mv′ of v′, with Mv
∗−→Mv′ .

Moreover, if there is a marking M such that Mv
∗−→M and 0 ∈ frac(M), where M contains

a token of age 0, then M ≤Mv′ for some encoding Mv′ of a vector v′ = Fm(v). This means
that it suffices to add one transition t with Pre(t) = (True0, 0) whose enabledness witnesses
the existence of a reachable encoding Mv′ containing a token (True0, 0). By the properties
above, there exists m ∈ N with Fm(v) = v′ and v′[0] = 1 iff Mv

∗−→Mv′
t−→. J

This lower bound holds even for discrete time TPN, e.g. [9], because the proof uses only
timed steps with duration d = 1.

4 Upper Bound

We start by observing that we can restrict ourselves, without loss of generality, to non-
consuming TPN (Definition 5) for showing the upper bound. Intuitively, since we start with
an arbitrarily high number of tokens anyway, it does not matter how many of them are
consumed by transitions during the computation, since some always remain.

P.A. Abdulla, M. Atig, R. Ciobanu, R. Mayr, and P. Totzke 6:7

I Lemma 8. The ∃COVER problem for TPN logspace-reduces to the ∃COVER problem for
non-consuming TPN. That is, for every TPN N and for every place p and transition t of N ,
one can construct, using logarithmic space, a non-consumimg TPN N ′ together with a place
p′ and transition t′ of N ′, so that there exists M ∈ CoverN (N · {(p, 0)}) enabling t in N if
and only if there exists M ′ ∈ CoverN ′(N · {(p′, 0)}) that enables t′ in N ′.

4.1 Region Abstraction
We recall a constraint system called regions defined for timed automata [5]. The version for
TPN used here is similar to the one in [3].

Consider a fixed, nonconsuming TPN N = (P, T,Var , G,Pre,Post). Let cmax be the
largest finite value appearing in transition guards G. Since different tokens with age
> cmax cannot be distinguished by transition guards, we consider only token ages below
or equal to cmax and treat the integer parts of older tokens as equal to cmax + 1. Let
int(c) def= min{cmax + 1, bcc} and frac(c) def= c − bcc for a real value c ∈ R≥0. We will work
with an abstraction of TPN markings as words over the alphabet Σ def= 2P×[cmax+1]. Each
symbol X ∈ Σ represents the places and integer ages of tokens for a particular fractional
value.

I Definition 9. Let M ⊆ P × R≥0 be a marking and let frac(M) def= {frac(c) | (p, c) ∈ M}
be the set of fractional clock values that appear in M .

Let S ⊂ [0, 1[be a finite set of real numbers with 0 ∈ S and frac(M) ⊆ S and let
f0, f1, . . . , fn, be an enumeration of S so that fi−1 < fi for all i ≤ n. The S-abstraction of
M is

absS(M) def= x0x1 . . . xn ∈ Σ∗

where xi
def= {(p, int(c)) | (p, c) ∈ M ∧ frac(c) = fi} for all i ≤ n. We simply write abs(M)

for the shortest abstraction, i.e. with respect to S = {0} ∪ frac(M).

I Example 10. The abstraction of marking M = {(p, 2.1), (q, 2.2), (p, 5.1), (q, 5.1)} is
abs(M) = ∅ {(p, 2), (p, 5), (q, 5)} {(q, 2)}. The first symbol is ∅, because M contains no
token with an integer age (i.e., no token whose age has fractional part 0). The second and
third symbols represent sets of tokens with fractional values 0.1 and 0.2, respectively.

Clocks with integer values play a special role in the behavior of TPN, because the
constants in the transition guards are integers. Thus we always include the fractional part 0
in the set S in Definition 9.

We use a special kind of regular expressions over Σ to represent coverable sets of TPN
markings as follows.

I Definition 11. A regular expression E over Σ represents the downward-closed set of TPN
markings covered by one that has an abstraction in the language of E:

[[E]] def= {N | ∃M∃S. M ≥ N ∧ absS(M) ∈ L(E)}.

An expression is simple if it is of the form E = x0x1 . . . xk where for all i ≤ k either
xi ∈ Σ or xi = yi

∗ for some yi ∈ Σ. In the latter case we say that xi carries a star. That is,
a simple expression is free of Boolean combinators and uses only concatenation and Kleene
star. We will write x̂i to denote the symbol in Σ at position i: it is xi if xi ∈ Σ and yi
otherwise.

CONCUR 2018

6:8 Universal Safety for Timed Petri Nets is PSPACE-complete

I Remark 12. Notice that for all simple expressions α, β so that |α| > 0, we have that
[[α∅β]] = [[αβ]]. However, unless α has length 0 or is of the form α = ∅α′, we have [[∅α]] 6= [[α]].
This is because a marking M that contains a token (p, c) with frac(c) = 0 has the property
that all abstractions absS(M) = x0 . . . xk of M have x0 6= ∅.

The following lemmas express the effect of TPN transitions at the level of the region
abstraction. Lemmas 13 and 15 state that maximally firing of discrete transitions (the
relation ∗−→Disc) is computable and monotone. Lemmas 16 and 17 state how to represent
timed-step successor markings.

I Lemma 13. For every non-consuming TPN N there are polynomial time computable
functions f : Σ× Σ× Σ→ Σ and g : Σ× Σ× Σ→ Σ with the following properties.
1. f and g are monotone (w.r.t. subset ordering) in each argument.
2. f(α, β, x) ⊇ x and g(α, β, x) ⊇ x for all α, β, x ∈ Σ.
3. Suppose that E = x0x1 . . . xk is a simple expression, α def= x0 and β

def=
⋃
i>0 x̂i, and

E′ = x′0x
′
1 . . . x

′
k is the derived expression defined by conditions:

a. x′0
def= f(α, β, x0),

b. x′i
def= g(α, β, x̂i)∗ for i > 0,

c. x′i carries a star iff xi does.
Then [[E′]] = {M ′′ | ∃M ∈ [[E]] ∧M ∗−→Disc M

′ ≥M ′′}.

I Definition 14. We will write SAT (E) def= E′ for the successor expression E′ of E guaranteed
by Lemma 13. I.e., SAT (E) is the saturation of E by maximally firing discrete transitions.

Notice that by definition it holds that [[E]] ⊆ [[SAT (E)]] ⊆ Cover ([[E]]), and consequently
also that Cover ([[SAT (E)]]) = Cover ([[E]]).

I Lemma 15. Suppose that X = x0x1 . . . xk is a simple expression of length k + 1 with
SAT(X) = x′0x

′
1 . . . x

′
k and x0, x

′
0 ∈ Σ. Let Y = y0α1y1α2 . . . αkyk be a simple expression

with SAT (Y) = y′0α
′
1y
′
1α
′
2 . . . α

′
ky
′
k and y0, y

′
0 ∈ Σ.

If x̂i ⊆ ŷi for all i ≤ k then x̂′i ⊆ ŷ′i for all i ≤ k.

Proof. The assumption of the lemma provides that αx
def= x0 ⊆ αy

def= y0 and βx
def=⋃

k≥i>0 x̂i ⊆ βy
def=
⋃
k≥i>0 ŷi. Therefore, by Item 1 of Lemma 13, we get that

x′0 = f(αx, βx, x0) ⊆ f(αy, βy, y0) = y′0

and similarly, for all k ≥ i ≥ 0, that x̂′i = g(αx, βx, x̂i) ⊆ g(αy, βy, ŷi) = ŷ′i. J

For x ∈ Σ we write (x+ 1) def= {(p, int(n+ 1)) | (p, n) ∈ x} for the symbol where token
ages are incremented by 1.

I Lemma 16. [[∅E]] = {M ′ | ∃M ∈ [[E]] ∧M −→d M
′ ∧ d < 1−max(frac(M))}.

I Lemma 17. Let αz be a simple expression where ẑ = z ∈ Σ (the rightmost symbol is
not starred). Then, [[(z + 1)α]] contains a marking N if, and only if, there exists markings
N ′ ≥ N and M , and a set S ⊆ [0, 1[so that
1. |S| = |αz|
2. absS(M) ∈ L(αz)
3. M −→d N

′ for d = 1−max(S).

P.A. Abdulla, M. Atig, R. Ciobanu, R. Mayr, and P. Totzke 6:9

Proof. Suppose markings N,N ′,M , a set S ⊆ [0, 1[and d ∈ R≥0 so that the conditions 1
to 3 are satisfied. Let S′ def= {0} ∪ {s + d | s ∈ S \ {d}}. Then, |S′| = |S| and absS′(N ′) ∈
L((z + 1)α), which witnesses that N ∈ [[(z + 1)α]].

Conversely, let N ∈ [[(z + 1)α]] be a non-empty marking. If |α| = 0, then N ∈ [[(z + 1)]]
and so absS(N) ∈ L((z + 1)) for S def= frac(N) = {0}. This means that M −→1 N = (M + 1)
for a marking M with absS(M) ∈ L(z) = L(αz).

If |α| > 0, pick some marking N ′ ≥ N and set S′ so that absS′(N ′) = (z + 1)w, for some
word w ∈ L(α). Then we must have that |S′| = |(z + 1)α| > 1 and so d def= min(S′ \ {0})
exists. Let S def= {s− d | s ∈ S′} ∪ {1− d} and M be the unique marking with M −→d N

′.
Notice that 1− d = max(S). It follows that absS(M) = wz ∈ L(αz). J

We will often use the following simple fact, which is a direct consequence of Lemma 17.

I Corollary 18. [[(z + 1)α]] ⊆ Cover ([[αz]]).

Finally, the following lemma will be the basis for our exploration algorithm.

I Lemma 19. Let αx∗0 be a simple expression with SAT (αx∗0) = αx∗0. Then Cover ([[αx∗0]]) =
[[αx∗0]] ∪ Cover ([[(x0 + 1)αx∗0]]).

Proof. For the right to left inclusion notice that [[αx∗0]] ⊆ Cover ([[αx∗0]]) trivially holds.
For the rest, we have [[(x0 + 1)αx∗0]] ⊆ Cover ([[αx∗0]]) by Corollary 18, and therefore
Cover ([[(x0 + 1)αx∗0]]) ⊆ Cover (Cover ([[αx∗0]])) = Cover ([[αx∗0]]). For the left to right
inclusion, we equivalently show that

Cover ([[αx∗0]]) \ [[αx∗0]] ⊆ Cover ([[(x0 + 1)αx∗0]]) (1)

Using the assumption that SAT (αx∗0) = αx∗0, the set on the left contains everything coverable
from [[αx∗0]] by a sequence that starts with a (short) time step. It can therefore be written as

Cover ({N1 | ∃N0 ∈ [[αx∗0]] ∧N0 −→d N1 ∧ 0 < d < 1−max(frac(N0))}).

By Lemma 16 and because [[∅α]] ⊆ [[Xα]] for all X ∈ Σ and α ∈ Σ∗, we conclude that indeed,
Cover ([[αx∗0]]) \ [[αx∗0]] ⊆ Cover ([[∅αx∗0]]) ⊆ Cover ([[(x0 + 1)αx∗0]]). J

4.2 Acceleration
We propose an acceleration procedure based on unfolding expressions according to Lemma 19
(interleaved with saturation steps to guarantee its premise) and introducing new Kleene
stars to keep the length of intermediate expressions bounded. This procedure (depicted in
Algorithm 1), is used to characterize an initial subset of the coverability set.

Given a length-2 simple expression S0 where the rightmost symbol is starred, the algorithm
will first saturate (Definition 14, in line 1), and then alternatingly rotate a copy of the
rightmost symbol (Lemma 17), and saturate the result (see lines 2, 3, 6). Since each such
round extends the length of the expression by one, we additionally collapse them (in line 7)
by adding an extra Kleene star to the symbol at the second position. The crucial observation
for the correctness of this procedure is that the subsumption step in line 7 does not change
the cover sets of the respective expressions.

Observe that Algorithm 1 is well defined because the SAT(Si) are computable by
Lemma 13. Termination is guaranteed by the following simple observation.

CONCUR 2018

6:10 Universal Safety for Timed Petri Nets is PSPACE-complete

Algorithm 1 Accelerate.
Input: a simple expression S0 = x1x

∗
0 (of length 2 and with last symbol starred)

Output: simple expressions S1, Si and R, of lengths 2, 4, and 2, respectively.
1: S1

def= x1
1(x1

0)∗ = SAT (x1x
∗
0)

2: S2
def= x2

2x
2
1(x2

0)∗ = SAT ((x1
0 + 1)S1)

3: S3
def= x3

3x
3
2x

3
1(x3

0)∗ = SAT ((x2
0 + 1)S2)

4: i← 3
5: repeat
6: xi+1

i+1x
i+1
i xi+1

i−1x
i+1
1 (xi+1

0)∗ def= SAT ((xi0 + 1)Si)
7: Si+1

def= xi+1
i+1(xi+1

i)∗xi+1
1 (xi+1

0)∗
8: i← i+ 1
9: until Si = Si−1

10: R def= (xi1 + 1)(xii−1)∗
11: return S1, Si, R

x∗0x1 start

(x1
0)∗x1

1 S1 = SAT (x1x
∗
0)

(x1
0)∗x1

1(x1
0 + 1) (x1

0 + 1)S1

(x2
0)∗x2

1x2
2 S2 = SAT ((x1

0 + 1)S1)

(x2
0)∗x2

1x2
2(x2

0 + 1) (x2
0 + 1)S2

(x3
0)∗x3

1x3
2x3

3 S3 = SAT ((x2
0 + 1)S2)

(x3
0)∗x3

1x3
2x3

3(x3
0 + 1) (x3

0 + 1)S3

(x4
0)∗x4

1x4
2x4

3x4
4 SAT ((x3

0 + 1)S3)

(x4
0)∗x4

1(x4
3)∗x4

4 S4

(x4
0)∗x4

1(x4
3)∗x4

4(x4
0 + 1) (x4

0 + 1)S4

(x5
0)∗x5

1(x5
3)∗x5

4x5
5 SAT ((x4

0 + 1)S4)

(x5
0)∗x5

1(x5
4)∗x5

5 S5

...
...

...
...

...
...

line

1:

2:

3:

6:

7:

6:

7:

Figure 2 A Run of Algorithm 1 (initial steps). The column on the left indicates the line of code,
the middle depicts the current expression and the column on the right recalls its origin. Gray bars
indicate that the respective symbols are equal. Arrows denote (set) inclusion between symbols.
The gray vertical arrows indicate inclusions due to saturation (Lemma 13), as claimed in item 1 of
Lemma 20. Red and blue arrows indicate derived inclusions (as stated in Lemma 20).

P.A. Abdulla, M. Atig, R. Ciobanu, R. Mayr, and P. Totzke 6:11

I Lemma 20. Let xij ∈ Σ be the symbols computed by Algorithm 1. Then
1. xi+1

j ⊇ xij, for all i > j ≥ 0.
2. xii ⊇ xi−1

i−1 and xi+1
i ⊇ xii−1, for all i ≥ 3.

Proof. The first item is guaranteed by Point 2 of Lemma 13. In particular this means that
xi+1

0 ⊇ xi0 and therefore that (xi+1
0 + 1) ⊇ (xi0 + 1) for all i ≥ 0 (indicated as red arrows in

Figure 2). The second item now follows from this observation by Lemma 15. J

I Lemma 21 (Termination). Algorithm 1 terminates with i ≤ 4 · |P | · (cmax + 1).

Proof. From Lemma 20 we deduce that for all i ≥ 2, the expression Si+1 is point-wise larger
than or equal to Si with respect to the subset ordering on symbols. The claim now follows
from the observation that all expressions Si≥3 have length 4 and that every symbol xi ∈ Σ
can only increase at most |P | · (cmax + 1) times. J

I Lemma 22 (Correctness). Suppose that S1, S`, R be the expressions computed by Algorithm 1
applied to the simple expression x1x

∗
0. Then Cover ([[x1x

∗
0]]) = [[S1]] ∪ [[S`]] ∪ Cover ([[R]]).

Proof. Let S1, . . . S` denote the expressions defined in lines 1,2,3, and 7 of the algorithm. That
is, ` is the least index i such that Si+1 = Si. We define a sequence Ei of expressions inductively,
starting with E1

def= S1 and if Ei = eiie
i
i−1 . . . e

i
0, we let Ei+1

def= ei+1
i+1e

i+1
i ei+1

i−1 . . . e
i+1
0

def=
SAT ((êi0 + 1)Ei). Here, the superscript indicates the position of a symbol and not iteration.
This is the sequence of expressions resulting from unfolding Lemma 19, interleaved with
saturation steps, just in line 6 of the algorithm. That is, the expressions Ei are not collapsed
(line 7) and instead grow in length with i. Still, E1 = S1, E2 = S2 and E2 = S3, but E4 6= S4,
because the latter is the result of applying the subsumption step of line 7 in our algorithm.
Notice that Cover ([[x1x

∗
0]]) =

(⋃
k−1≥i≥1[[Ei]]

)
∪ Cover ([[Ek]]) holds for all k ∈ N. We will

use that⋃
i≥2

[[Ei]] =
⋃
i≥2

[[Si]] = [[S`]]. (2)

We start by observing that for all i, j ∈ N it holds that eij = xij . For i ≤ 3 this holds trivially by
definition of Ei = Si. For larger i, this can be seen by induction using Lemma 13. Towards the
first equality in Equation (2), let Sji be the expression resulting from Si = xii(xii−1)∗xi1(xi0)∗

by unfolding the first star j times. That is, Sji
def= xii(xii−1)(j)xi1(xi0)∗, where the superscript

(j) denotes j-fold concatenation. Clearly, [[Si]] =
⋃
j≥0[[Sji]] and so the ⊇-direction of the first

equality in Equation (2) follows by

[[Sji]] = [[xii(xii−1)(j)xi1(xi0)∗]] ⊆ [[xi+ji+j

(
xi+ji+j−1x

i+j
i+j−2 . . . x

i+j
i

)
xi+1

1 (xi+1
0)∗]]

⊆ [[xi+ji+j

(
xi+ji+j−1x

i+j
i+j−2 . . . x

i+j
i

)(
xi+ji−1 . . . x

i+j
2

)
xi+1

1 (xi+j0)∗]]

= [[Ei+j]],

where the first inclusion is due to Lemma 20. The same helps for the other direction:

[[Ei]] = [[xiixii−1x
i
i−2 . . . x

i
2x
i
1x
i
0]] ⊆ [[xii(xii−1)(i−2)

xi1x
i
0]] = [[Si−2

i]] = [[Si]], (3)

which completes the proof of the first equality in Equation (2). The second equality holds
because [[Si]] ⊆ [[Si+1]] for all i ≥ 2, by Lemma 20, and by definition of S` = S`+1. As a next
step we show that

Cover ([[S`]]) = [[S`]] ∪ Cover ([[R]]) (4)

CONCUR 2018

6:12 Universal Safety for Timed Petri Nets is PSPACE-complete

First observe that [[R]] = [[(x`1 + 1)(x``−1)∗]] = [[(x`1 + 1)x``(x``−1)∗]] and consequently,

Cover ([[R]]) = Cover
(

[[(x`1 + 1)x``(x``−1)∗]]
)

⊆ Cover
(

[[x``(x``−1)∗x`1]]
)

⊆ Cover
(

[[x``(x``−1)∗x`1(x`0)∗]]
)

= Cover ([[S`]])

where the first equation follows by Corollary 18 and the second because L
(
x``(x``−1)∗x`1

)
⊆

L
(
x``(x``−1)∗x`1(x`0)∗

)
. For the left to right inclusion in Equation (4), consider a marking

M ∈ Cover ([[S`]]) \ [[S`]]. We show that M ∈ Cover ([[R]]). Recall that Cover ([[S`]]) consists
of all those markings M so that there exists a finite path

M0
∗−→Disc M

′
0
d1−→Time M1

∗−→Disc M
′
1
d2−→Time M2 . . .M

′
k−1

∗−→Disc Mk

alternating between timed and (sequences of) discrete transition steps, with M0 ∈ [[S`]],
Mk ≥M and all di ≤ max(frac(M ′i)).

By our choice of M , there must be a first expression in the sequence which is not a
member of [[S`]]. Since [[SAT (S`)]] = [[S`]], we can assume an index i > 0 so that Mi /∈ [[S`]]
but M ′i−1 ∈ [[S`]] that is, the step that takes us out of [[S`]] is a timed step.

Because [[S`]] =
⋃
i≥2[[Si]], it must hold that M ′i−1 ∈ [[Sj]] = [[xjj(x

j
j−1)∗xj1(xj0)∗]] for some

index j ≥ 2. We claim that it already holds that

M ′i−1 ∈ [[xjj(x
j
j−1)

∗
xj1]]. (5)

Suppose not. If di < max(frac(M ′i−1)) then Mi ∈ [[∅Sj]] ⊆ [[Sj]] by Lemma 16, contradiction.
Otherwise, if di = max(frac(M ′i−1)), notice that every abstraction absS(M ′i−1) ∈ L(Sj) must
have |S| = 4. So by Lemma 17, Mi ∈ [[(xj0 + 1)Sj]]. But then again

[[(xj0 + 1)Sj]] ⊆ [[SAT ((xj0 + 1)Sj)]] ⊆ [[Sj+1]], (6)

contradicting our assumption that Mi /∈ [[S`]]. Therefore Equation (5) holds. By Lemma 17
we derive that Mi ∈ [[(xj1 + 1)xjj(x

j
j−1)∗]] = [[(xj1 + 1)(xjj−1)∗]] ⊆ [[(x`1 + 1)(x``−1)∗]] = [[R]].

This concludes the proof of Equation (4).

Notice that by Lemma 19 we have that

Cover ([[x1x
∗
0]]) = [[SAT (x1x

∗
0)]] ∪ Cover ([[SAT (x1x

∗
0)]]) = [[S1]] ∪ Cover ([[S1]]). (7)

Analogously, we get for every i ≥ 1 that

Cover ([[Ei]]) = [[SAT (Ei)]] ∪ Cover
(
[[SAT ((xi0 + 1)Ei)]]

)
= [[Ei]] ∪ Cover ([[Ei+1]]) (8)

This used Lemma 19 and the fact that SAT (Ei) = Ei by construction. Using Equation (8)
and that [[Ei]] ⊆ [[Ei+1]] for i ≥ 2, we deduce

Cover ([[S1]]) = Cover ([[E1]]) = [[E1]] ∪

⋃
i≥2

Cover ([[Ei]])

. (9)

P.A. Abdulla, M. Atig, R. Ciobanu, R. Mayr, and P. Totzke 6:13

Finally we can conclude the desired result as follows.

Cover ([[x1x
∗
0]]) (7)= [[S1]] ∪ Cover ([[S1]]) (9)= [[S1]] ∪ Cover

⋃
i≥2

[[Ei]]


(2)= [[S1]] ∪ Cover ([[S`]])
(4)= [[S1]] ∪ [[S`]] ∪ Cover ([[R]]) J

4.3 Main Result
The following theorem summarizes our main claims regarding the ∃COVER problem.

I Theorem 23. Consider an instance of ∃COVER with N = (P, T,Var , G,Pre,Post) a
non-consuming TPN where cmax is the largest constant appearing in the transition guards G
encoded in unary, and let p be an initial place and t be a transition.
1. The number of different simple expressions of length m is B(m) def= 2(|P |·(cmax+2)·m)+m.
2. It is possible to compute a symbolic representation of the set of markings coverable from

some marking in the initial set N · {(p, 0)}, as a finite set of simple expressions. I.e.,
one can compute simple expressions S1, . . . , S` s.t.

⋃
1≤i≤`[[Si]] = Cover (N · {(p, 0)}) and

where ` ≤ 3 ·B(2). Each of the Si has length either 2 or 4.
3. Checking if there exists M ∈ Cover (N · {(p, 0)}) with M −→t can be done in O(|P | ·cmax)

deterministic space.

Proof. For Item 1 note that a simple expression is described by a word where some symbols
have a Kleene star. There are |Σ|m different words of length m and 2m possibilities to attach
stars to symbols. Since the alphabet is Σ def= 2P×[cmax+1] and |[cmax + 1]| = cmax + 2, the
result follows.

Towards Item 2, we can assume w.l.o.g. that our TPN is non-consuming by Lemma 8,
and thus the region abstraction introduced in Section 4.1 applies. In particular, the initial
set of markings N · {(p, 0)} is represented exactly by the expression S0

def= {(p, 0)}∅∗ where
∅ ∈ Σ is the symbol corresponding to the empty set. That is, we have [[S0]] = N · {(p, 0)} and
thus Cover ([[S0]]) = Cover (N · {(p, 0)}).

The claimed expressions Si are the result of iterating Algorithm 1 until a previously seen
expression is revisited. Starting at i = 0 and S0

def= {(p, 0)}∅∗, each round will set Si+1, Si+2
and Si+3 to the result of applying Algorithm 1 to Si, and increment i to i+ 3.

Notice that then all Si are simple expressions of length 2 or 4 and that in particular, all
expressions with index divisible by 3 are of the form ab∗ for a, b ∈ Σ. Therefore after at most
B(2) iterations, an expression S` is revisited (with ` ≤ 3B(2)). Finally, an induction using
Lemma 22 provides that

⋃
1≤i≤`[[Si]] = Cover (N · {(p, 0)}).

Towards Item 3, we modify the above algorithm for the ∃COVER problem with the
sliding window technique. The algorithm is the same as above where instead of recording
all the expressions S1, . . . , S`, we only store the most recent ones and uses them to decide
whether the transition t is enabled. If the index i reaches the maximal value of 3 ·B(2) we
return unsuccessfully.

The bounded index counter uses O(log(B(2))) space; Algorithm 1 uses space O(log(B(5)))
because it stores only simple expressions of length ≤ 5. The space required to store the three
expressions resulting from each application of Algorithm 1 is O(3 · log(B(4))). For every
encountered simple expression we can check in logarithmic space whether the transition t is
enabled by some marking in its denotation. Altogether the space used by our new algorithm
is bounded by O(log(B(5))). By Item 1, this is O(|P | · (cmax + 2)) = O(|P | · cmax). J

CONCUR 2018

6:14 Universal Safety for Timed Petri Nets is PSPACE-complete

I Corollary 24. The ∃COVER problem for TPN is PSPACE-complete.

Proof. The PSPACE lower bound was shown in Theorem 7. The upper bound follows from
Lemma 8 and Item 3 of Theorem 23. J

5 Conclusion and Future Work

We have shown that Existential Coverability (and its dual of universal safety) is PSPACE-
complete for TPN with one real-valued clock per token. This implies the same complexity for
checking safety of arbitrarily large timed networks without a central controller. The absence
of a central controller makes a big difference, since the corresponding problem with a central
controller is complete for Fωωω [12].

It remains an open question whether these positive results for the controller-less case can
be generalized to multiple real-valued clocks per token. In the case with a controller, safety
becomes undecidable already for two clocks per token [2].

Another question is whether our results can be extended to more general versions of
timed Petri nets. In our version, clock values are either inherited, advanced as time passes,
or reset to zero. However, other versions of TPN allow the creation of output-tokens with
new non-deterministically chosen non-zero clock values, e.g., the timed Petri nets of [3, 4]
and the read-arc timed Petri nets of [8].

References

1 Parosh Aziz Abdulla, Karlis Čerāns, Bengt Jonsson, and Yih-Kuen Tsay. Algorithmic ana-
lysis of programs with well quasi-ordered domains. Information and Computation, 160(1–
2):109–127, 2000.

2 Parosh Aziz Abdulla, Johann Deneux, and Pritha Mahata. Multi-clock timed networks. In
Annual IEEE Symposium on Logic in Computer Science (LICS), pages 345–354, 2004.

3 Parosh Aziz Abdulla, Pritha Mahata, and Richard Mayr. Dense-timed Petri nets: Checking
Zenoness, token liveness and boundedness. Logical Methods in Computer Science, 3(1),
2007.

4 Parosh Aziz Abdulla and Aletta Nylén. Timed Petri nets and BQOs. In International
Conference on Application and Theory of Petri Nets (ICATPN), volume 2075 of LNCS,
pages 53–70. Springer, 2001.

5 R. Alur and D. L. Dill. A theory of timed automata. tcs, 126(2):183–235, 1994.
6 Benjamin Aminof, Sasha Rubin, Florian Zuleger, and Francesco Spegni. Liveness of para-

meterized timed networks. In International Colloquium on Automata, Languages and Pro-
gramming (ICALP), volume 9135 of LNCS, 2015.

7 Rémi Bonnet, Alain Finkel, Serge Haddad, and Fernando Rosa-Velardo. Comparing Petri
data nets and timed Petri nets. Technical Report LSV-10-23, LSV Cachan, 2010.

8 Patricia Bouyer, Serge Haddad, and Pierre-Alain Reynier. Timed Petri nets and timed
automata: On the discriminating power of Zeno sequences. In International Colloquium
on Automata, Languages and Programming (ICALP), pages 420–431. Springer, 2006.

9 David de Frutos Escrig, Valentín Valero Ruiz, and Olga Marroquín Alonso. Decidability of
properties of timed-arc Petri nets. In International Conference on Application and Theory
of Petri Nets (ICATPN), volume 1825 of LNCS, pages 187–206. Springer, 2000.

10 Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere!
tcs, 256(1–2):63–92, 2001.

11 Eric Goles, Pedro Montealegre, Ville Salo, and Ilkka Törmä. PSPACE-completeness of
majority automata networks. Theor. Comput. Sci., 609(1):118–128, 2016.

P.A. Abdulla, M. Atig, R. Ciobanu, R. Mayr, and P. Totzke 6:15

12 Serge Haddad, Sylvain Schmitz, and Philippe Schnoebelen. The ordinal recursive complex-
ity of timed-arc Petri nets, data nets, and other enriched nets. In Annual IEEE Symposium
on Logic in Computer Science (LICS), pages 355–364, 2012.

13 Lasse Jacobsen, Morten Jacobsen, Mikael H. Møller, and Jiří Srba. Verification of timed-
arc Petri nets. In International Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM), volume 6543 of LNCS, pages 46–72, 2011.

14 Ranko Lazić, Tom Newcomb, Joël Ouaknine, A.W. Roscoe, and James Worrell. Nets with
tokens which carry data. Fundamenta Informaticae, 88(3):251–274, 2008.

15 Valentin Valero Ruiz, Fernando Cuartero Gomez, and David de Frutos Escrig. On non-
decidability of reachability for timed-arc Petri nets. In International Workshop on Petri
Nets and Performance Models. IEEE Computer Society, 1999.

16 Jiří Srba. Timed-arc Petri nets vs. networks of timed automata. In International Conference
on Application and Theory of Petri Nets (ICATPN), volume 3536 of LNCS, pages 385–402.
Springer, 2005.

CONCUR 2018

It Is Easy to Be Wise After the Event:
Communicating Finite-State Machines Capture
First-Order Logic with “Happened Before”
Benedikt Bollig
LSV, CNRS & ENS Paris-Saclay, Université Paris-Saclay, Cachan, France
bollig@lsv.fr

Marie Fortin
LSV, CNRS & ENS Paris-Saclay, Université Paris-Saclay, Cachan, France
fortin@lsv.fr

Paul Gastin
LSV, CNRS & ENS Paris-Saclay, Université Paris-Saclay, Cachan, France
gastin@lsv.fr

Abstract
Message sequence charts (MSCs) naturally arise as executions of communicating finite-state
machines (CFMs), in which finite-state processes exchange messages through unbounded FIFO
channels. We study the first-order logic of MSCs, featuring Lamport’s happened-before relation.
We introduce a star-free version of propositional dynamic logic (PDL) with loop and converse.
Our main results state that (i) every first-order sentence can be transformed into an equivalent
star-free PDL sentence (and conversely), and (ii) every star-free PDL sentence can be translated
into an equivalent CFM. This answers an open question and settles the exact relation between
CFMs and fragments of monadic second-order logic. As a byproduct, we show that first-order
logic over MSCs has the three-variable property.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases communicating finite-state machines, first-order logic, happened-before
relation

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.7

Related Version A full version of the paper is available at [2], https://arxiv.org/abs/1804.
10076.

Funding Partly supported by ANR FREDDA (ANR-17-CE40-0013) and UMI RELAX.

1 Introduction

First-order (FO) logic can be considered, in many ways, a reference specification language. It
plays a key role in automated theorem proving and formal verification. In particular, FO logic
over finite or infinite words is central in the verification of reactive systems. When a word is
understood as a total order that reflects a chronological succession of events, it represents
an execution of a sequential system. Apart from being a natural concept in itself, FO logic
over words enjoys manifold characterizations. It defines exactly the star-free languages and
coincides with recognizability by aperiodic monoids or natural subclasses of finite (Büchi,
respectively) automata (cf. [8, 31] for overviews). Moreover, linear-time temporal logics are

© Benedikt Bollig, Marie Fortin, and Paul Gastin;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 7; pp. 7:1–7:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bollig@lsv.fr
mailto:fortin@lsv.fr
mailto:gastin@lsv.fr
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.7
https://arxiv.org/abs/1804.10076
https://arxiv.org/abs/1804.10076
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 It Is Easy to Be Wise After the Event

usually measured against their expressive power with respect to FO logic. For example, LTL
is considered the yardstick temporal logic not least due to Kamp’s famous theorem, stating
that LTL and FO logic are expressively equivalent [21].

While FO logic on words is well understood, a lot remains to be said once concurrency
enters into the picture. When several processes communicate through, say, unbounded first-in
first-out (FIFO) channels, events are only partially ordered and a behavior, which is referred
to as a message sequence chart (MSC), reflects Lamport’s happened-before relation: an event
e happens before an event f if, and only if, there is a “message flow” path from e to f [23].
Communicating finite-state machines (CFMs) [5] are to MSCs what finite automata are to
words: a canonical model of finite-state processes that communicate through unbounded
FIFO channels. Therefore, the FO logic of MSCs can be considered a canonical specification
language for such systems. Unfortunately, its study turned out to be difficult, since algebraic
and automata-theoretic approaches that work for words, trees, or Mazurkiewicz traces do
not carry over. In particular, until now, the following central problem remained open:

Can every first-order sentence be transformed into an equivalent
communicating finite-state machine, without any channel bounds?

Partial answers were given for CFMs with bounded channel capacity [14,20,22] and for
fragments of FO that restrict the logic to bounded-degree predicates [4] or to two variables [1].

In this paper, we answer the general question positively. To do so, we make a detour
through a variant of propositional dynamic logic (PDL) with loop and converse [11, 29].
Actually, we introduce star-free PDL, which serves as an interface between FO logic and
CFMs. That is, there are two main tasks to accomplish:
(i) Translate every FO sentence into a star-free PDL sentence.
(ii) Translate every star-free PDL sentence into a CFM.

Both parts constitute results of own interest. In particular, step (i) implies that, over
MSCs, FO logic has the three-variable property, i.e., every FO sentence over MSCs can be
rewritten into one that uses only three different variable names. Note that this is already
interesting in the special case of words, where it follows from Kamp’s theorem [21]. It is also
noteworthy that star-free PDL is a two-dimensional temporal logic in the sense of Gabbay et
al. [12,13]. Since every star-free PDL sentence is equivalent to some FO sentence, we actually
provide a (higher-dimensional) temporal logic over MSCs that is expressively complete for
FO logic.1 While step (i) is based on purely logical considerations, step (ii) builds on new
automata constructions that allow us to cope with the loop operator of PDL.

Combining (i) and (ii) yields the translation from FO logic to CFMs. It follows that CFMs
are expressively equivalent to existential MSO logic. Moreover, we can derive self-contained
proofs of several results on channel-bounded CFMs whose original proofs refer to involved
constructions for Mazurkiewicz traces (cf. Section 5).

Related Work. Let us give a brief account of what was already known on the relation
between logic and CFMs. In the 60s, Büchi, Elgot, and Trakhtenbrot proved that finite
automata over words are expressively equivalent to monadic second-order logic [6, 10, 32].
Note that finite automata correspond to the special case of CFMs with a single process.

This classical result has been generalized to CFMs with bounded channels: Over uni-
versally bounded MSCs (where all possible linear extensions meet a given channel bound),
deterministic CFMs are expressively equivalent to MSO logic [20, 22]. Over existentially

1 It is open whether there is an equivalent one-dimensional one.

B. Bollig, M. Fortin, and P. Gastin 7:3

bounded MSCs (some linear extension meets the channel bound), CFMs are still expressively
equivalent to MSO logic [14], but inherently nondeterministic [15]. The proofs of these
characterizations reduce message-passing systems to finite-state shared-memory systems so
that deep results from Mazurkiewicz trace theory [9] can be applied.

This generic approach is no longer applicable when the restriction on the channel capacity
is dropped. Actually, in general, CFMs do not capture MSO logic [4]. On the other hand, they
are expressively equivalent to existential MSO logic when we discard the happened-before
relation [4] or when restricting to two first-order variables [1]. Both results rely on normal
forms of FO logic, due to Hanf [19] and Scott [17], respectively. However, MSCs with the
happened-before relation are structures of unbounded degree (while Hanf’s normal form
requires structures of bounded degree), and we consider FO logic with arbitrarily many
variables (while Scott’s normal form only applies to two-variable logic). That is, neither
approach is applicable in our case.

Finally, there exists a translation of a loop-free PDL into CFMs [3]. As our star-free PDL
has a loop operator, we cannot exploit [3] either.

Outline. In Section 2, we recall basic notions such as MSCs, FO logic, and CFMs. Moreover,
we state one of our main results: the translation of FO formulas into CFMs. Section 3
presents star-free PDL and proves that it captures FO logic. In Section 4, we establish the
translation of star-free PDL into CFMs. We conclude in Section 5 mentioning applications
of our results. Some proof details can be found in the long version [2].

2 Preliminaries

We consider message-passing systems in which processes communicate through unbounded
FIFO channels. We fix a nonempty finite set of processes P and a nonempty finite set of
labels Σ. For all p, q ∈ P such that p 6= q, there is a channel (p, q) that allows p to send
messages to q. The set of channels is denoted Ch.

In the following, we define message sequence charts, which represent executions of a
message-passing system, and logics to reason about them. Then, we recall the definition of
communicating finite-state machines and state one of our main results.

2.1 Message Sequence Charts
A message sequence chart (MSC) (over P and Σ) is a graph M = (E,→,C, loc, λ) with
nonempty finite set of nodes E, edge relations →,C ⊆ E × E, and node-labeling functions
loc : E → P and λ : E → Σ. An example MSC is depicted in Figure 1. A node e ∈ E is an
event that is executed by process loc(e) ∈ P . In particular, Ep := {e ∈ E | loc(e) = p} is the
set of events located on p. The label λ(e) ∈ Σ may provide more information about e such
as the message that is sent/received at e or “enter critical section” or “output some value”.

Edges describe causal dependencies between events:
The relation → contains process edges. They connect successive events executed by
the same process. That is, we actually have → ⊆

⋃
p∈P (Ep × Ep). Every process p is

sequential so that →∩ (Ep×Ep) must be the direct-successor relation of some total order
on Ep. We let ≤proc :=→∗ and <proc :=→+.
The relation C contains message edges. If e C f , then e is a send event and f is the
corresponding receive event. In particular, (loc(e), loc(f)) ∈ Ch. Each event is part
of at most one message edge. An event that is neither a send nor a receive event is
called internal. Moreover, for all (p, q) ∈ Ch and (e, f), (e′, f ′) ∈ C ∩ (Ep × Eq), we have
e ≤proc e

′ iff f ≤proc f
′ (which guarantees a FIFO behavior).

CONCUR 2018

7:4 It Is Easy to Be Wise After the Event

e0

g0

e1

f0

e2

g1

f1

g2

e3

f2

f3

g3

e4

g5

e5

f4

f5

g4

e6

g6

e7

f6

f7

g7

p3

p2

p1

Figure 1 A message sequence chart (MSC).

We require that →∪C be acyclic (intuitively, messages cannot travel backwards in time).
The associated partial order is denoted ≤ := (→∪C)∗ with strict part < = (→∪C)+. We
do not distinguish isomorphic MSCs. Let MSC(P,Σ) denote the set of MSCs over P and Σ.

Actually, MSCs are very similar to the space-time diagrams from Lamport’s seminal
paper [23], and ≤ is commonly referred to as the happened-before relation.

It is worth noting that, when P is a singleton, an MSC with events e1 → e2 → . . .→ en
can be identified with the word λ(e1)λ(e2) . . . λ(en) ∈ Σ∗.

I Example 1. Consider the MSC from Figure 1 over P = {p1, p2, p3} and Σ = { , ,�}. We
have, for instance, Ep1 = {e0, . . . , e7}. The process relation is given by ei → ei+1, fi → fi+1,
and gi → gi+1 for all i ∈ {0, . . . , 6}. Concerning the message relation, we have e1 C f0,
e4 C g5, etc. Moreover, e2 ≤ f3, but neither e2 ≤ f1 nor f1 ≤ e2.

2.2 MSO Logic and Its Fragments
Next, we give an account of monadic second-order (MSO) logic and its fragments. Note that
we restrict our attention to MSO logic interpreted over MSCs. We fix an infinite supply
Vevent = {x, y, . . .} of first-order variables, which range over events of an MSC, and an infinite
supply Vset = {X,Y, . . .} of second-order variables, ranging over sets of events. The syntax
of MSO (we consider that P and Σ are fixed) is given as follows:

Φ ::= p(x) | a(x) | x = y | x→ y | xC y | x ≤ y | x ∈ X | Φ ∨ Φ | ¬Φ | ∃x.Φ | ∃X.Φ

where p ∈ P , a ∈ Σ, x, y ∈ Vevent, and X ∈ Vset. We use the usual abbreviations to also
include implication =⇒, conjunction ∧, and universal quantification ∀. Moreover, the relation
x ≤proc y can be defined by x ≤ y ∧

∨
p∈P p(x) ∧ p(y). We write Free(Φ) the set of free

variables of Φ.
Let M = (E,→,C, loc, λ) be an MSC. An interpretation (for M) is a mapping ν : Vevent ∪

Vset → E ∪ 2E assigning to each x ∈ Vevent an event ν(x) ∈ E, and to each X ∈ Vset a set
of events ν(X) ⊆ E. We write M,ν |= Φ if M satisfies Φ when the free variables of Φ are
interpreted according to ν. Hereby, satisfaction is defined in the usual manner. In fact,
whetherM,ν |= Φ holds or not only depends on the interpretation of variables that occur free
in Φ. Thus, we may restrict ν to any set of variables that contains at least all free variables.
For example, for Φ(x, y) = (x C y), we have M, [x 7→ e, y 7→ f] |= Φ(x, y) iff e C f . For a
sentence Φ ∈ MSO (without free variables), we define L(Φ) := {M ∈MSC(P,Σ) |M |= Φ}.

We say that two formulas Φ and Φ′ are equivalent, written Φ ≡ Φ′, if, for all MSCs
M = (E,→,C, loc, λ) and interpretations ν : Vevent ∪ Vset → E ∪ 2E , we have M,ν |= Φ iff
M,ν |= Φ′.

B. Bollig, M. Fortin, and P. Gastin 7:5

Let us identify two important fragments of MSO logic: First-order (FO) formulas do
not make use of second-order quantification (however, they may contain formulas x ∈ X).
Moreover, existential MSO (EMSO) formulas are of the form ∃X1 . . . ∃Xn.Φ with Φ ∈ FO.

Let F be MSO or EMSO or FO and let R ⊆ {→,C,≤}. We obtain the logic F [R] by
restricting F to formulas that do not make use of {→,C,≤} \R. Note that F = F [→,C,≤].
Moreover, we let L(F [R]) := {L(Φ) | Φ ∈ F [R] is a sentence}.

Since the reflexive transitive closure of an MSO-definable binary relation is MSO-definable,
MSO and MSO[→,C] have the same expressive power: L(MSO[→,C,≤]) = L(MSO[→,C]).
However, MSO[≤] (without the message relation) is strictly weaker than MSO [4].

I Example 2. We give an FO formula that allows us to recover, at some event f , the most
recent event e that happened in the past on, say, process p. More precisely, we define the
predicate latestp(x, y) as x ≤ y∧p(x)∧∀z

(
(z ≤ y∧p(z)) =⇒ z ≤ x

)
. The “gossip language”

says that process q always maintains the latest information that it can have about p. Thus,
it is defined by Φgossip

p,q = ∀x∀y.
(
(latestp(x, y)∧ q(y)) =⇒

∨
a∈Σ(a(x)∧ a(y))

)
∈ FO3[≤]. For

example, for P = {p1, p2, p3} and Σ = { , ,�}, the MSC M from Figure 1 is contained in
L(Φgossip

p1,p3
). In particular, M, [x 7→ e5, y 7→ g5] |= latestp1(x, y) and λ(e5) = λ(g5) = .

2.3 Communicating Finite-State Machines
In a communicating finite-state machine, each process p ∈ P can perform internal actions of
the form 〈a〉, where a ∈ Σ, or send/receive messages from a finite set of messages Msg. A
send action 〈a, !qm〉 of process p writes message m ∈ Msg to channel (p, q), and performs
a ∈ Σ. A receive action 〈a, ?qm〉 reads message m from channel (q, p). Accordingly, we let
Actp(Msg) := {〈a〉 | a ∈ Σ} ∪ {〈a, !qm〉 | a ∈ Σ, m ∈ Msg, q ∈ P \ {p}} ∪ {〈a, ?qm〉 | a ∈ Σ,
m ∈ Msg, q ∈ P \ {p}} denote the set of possible actions of process p.

A communicating finite-state machine (CFM) over P and Σ is a tuple ((Ap)p∈P ,Msg,Acc)
consisting of a finite set of messages Msg and a finite-state transition system Ap = (Sp, ιp,∆p)
for each process p, with finite set of states Sp, initial state ιp ∈ Sp, and transition relation
∆p ⊆ Sp ×Actp(Msg)× Sp. Moreover, we have an acceptance condition Acc ⊆

∏
p∈P Sp.

Given a transition t = (s, α, s′) ∈ ∆p, we let source(t) = s and target(t) = s′ denote
the source and target states of t. In addition, if α = 〈a〉, then t is an internal transition
and we let label(t) = a. If α = 〈a, !qm〉, then t is a send transition and we let label(t) = a,
msg(t) = m, and receiver(t) = q. Finally, if α = 〈a, ?qm〉, then t is a receive transition with
label(t) = a, msg(t) = m, and sender(t) = q.

A run ρ of A on an MSC M = (E,→,C, loc, λ) ∈ MSC(P,Σ) is a mapping associating
with each event e ∈ Ep a transition ρ(e) ∈ ∆p, and satisfying the following conditions:
1. for all events e ∈ E, we have label(ρ(e)) = λ(e),
2. for all →-minimal events e ∈ E, we have source(ρ(e)) = ιp, where p = loc(e),
3. for all process edges (e, f) ∈ →, we have target(ρ(e)) = source(ρ(f)),
4. for all internal events e ∈ E, ρ(e) is an internal transition, and
5. for all message edges eC f , ρ(e) and ρ(f) are respectively send and receive transitions

such that msg(ρ(e)) = msg(ρ(f)), receiver(ρ(e)) = loc(f), and sender(ρ(f)) = loc(e).
To determine whether ρ is accepting, we collect the last state sp of every process p. If Ep 6= ∅,
we let sp = target(ρ(e)), where e is the last event of Ep. Otherwise, sp = ιp. We say that ρ
is accepting if (sp)p∈P ∈ Acc.

The language L(A) of A is the set of MSCs M such that there exists an accepting run of
A on M . Moreover, L(CFM) := {L(A) | A is a CFM}. Recall that, for these definitions, we
have fixed P and Σ.

CONCUR 2018

7:6 It Is Easy to Be Wise After the Event

One of our main results states that CFMs and EMSO logic are expressively equivalent.
This solves a problem that was stated as open in [15]:

I Theorem 3. L(EMSO[→,C,≤]) = L(CFM).

It is standard to prove L(CFM) ⊆ L(EMSO[→,C]): The formula guesses an assignment
of transitions to events in terms of existentially quantified second-order variables (one for
each transition) and then checks, in its first-order kernel, that the assignment is indeed an
(accepting) run. As, moreover, the class L(CFM) is closed under projection, the proof of
Theorem 3 comes down to the proposition below (whose proof is spread over Sections 3
and 4). Note that the translation from FO[→,C,≤] to CFMs is inherently non-elementary,
already when |P | = 1 [28].

I Proposition 4. L(FO[→,C,≤]) ⊆ L(CFM).

3 Star-Free Propositional Dynamic Logic

In this section, we introduce a star-free version of propositional dynamic logic and show that
it is expressively equivalent to FO[→,C,≤]. This is the second main result of the paper.
Then, in Section 4, we show how to translate star-free PDL formulas into CFMs.

3.1 Syntax and Semantics

Originally, propositional dynamic logic (PDL) has been used to reason about program
schemas and transition systems [11]. Since then, PDL and its extension with intersection
and converse have developed a rich theory with applications in artificial intelligence and
verification [7, 16,18,24,25]. It has also been applied in the context of MSCs [3, 27].

Here, we introduce a star-free version of PDL, denoted PDLsf . It will serve as an “interface”
between FO logic and CFMs. The syntax of PDLsf and its fragment PDLsf [Loop] is given by
the following grammar:

PDLsf = PDLsf [Loop,∪,∩, c]

PDLsf [Loop] ξ ::= Eϕ | ξ ∨ ξ | ¬ξ

ϕ ::= p | a | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ | Loop(π)

π ::=→ | ← | Cp,q | C−1
p,q |

ϕ−→ | ϕ←− | jumpp,r | {ϕ}? | π · π π ∪ π | π ∩ π | πc

where p, r ∈ P , q ∈ P \ {p}, and a ∈ Σ. We refer to ξ as a sentence, to ϕ as an event formula,
and to π as a path formula. We name the logic star-free because we use the operators
(∪,∩, c, ·) of star-free regular expressions instead of the regular-expression operators (∪, ·, ∗)
of classical PDL. However, the formula ϕ−→, whose semantics is explained below, can be seen
as a restricted use of the construct π∗.

A sentence ξ is evaluated wrt. an MSC M = (E,→,C, loc, λ). An event formula ϕ is
evaluated wrt. M and an event e ∈ E. Finally, a path formula π is evaluated over two events.
In other words, it defines a binary relation JπKM ⊆ E × E. We often write M, e, f |= π

to denote (e, f) ∈ JπKM . Moreover, for e ∈ E, we let JπKM (e) := {f ∈ E | (e, f) ∈ JπKM}.
When M is clear from the context, we may write JπK instead of JπKM . The semantics of
sentences, event formulas, and path formulas is given in Table 1.

B. Bollig, M. Fortin, and P. Gastin 7:7

Table 1 The semantics of PDLsf .

M |= Eϕ if M, e |= ϕ for some event e ∈ E

M |= ¬ξ if M 6|= ξ M |= ξ1 ∨ ξ2 if M |= ξ1 or M |= ξ2

M, e |= p if loc(e) = p M, e |= 〈π〉ϕ if ∃f ∈ JπKM (e) : M,f |= ϕ

M, e |= a if λ(e) = a M, e |= Loop(π) if (e, e) ∈ JπKM

M, e |= ¬ϕ if M, e 6|= ϕ M, e |= ϕ1 ∨ ϕ2 if M, e |= ϕ1 or M, e |= ϕ2

J→KM := {(e, f) ∈ E × E | e→ f} JCp,qKM := {(e, f) ∈ Ep × Eq | eC f}

J←KM := {(f, e) ∈ E × E | e→ f} JC−1
p,qKM := {(f, e) ∈ Eq × Ep | eC f}

Jjumpp,rKM := Ep × Er J{ϕ}?KM := {(e, e) | e ∈ E : M, e |= ϕ}

J ϕ−→KM := {(e, f) ∈ E × E | e <proc f and ∀g ∈ E: e <proc g <proc f =⇒ M, g |= ϕ}

J ϕ←−KM := {(e, f) ∈ E × E | f <proc e and ∀g ∈ E: f <proc g <proc e =⇒ M, g |= ϕ}

Jπ1 · π2KM := {(e, g) ∈ E × E | ∃f ∈ E : (e, f) ∈ Jπ1KM ∧ (f, g) ∈ Jπ2KM}

Jπ1 ∪ π2KM := Jπ1KM ∪ Jπ2KM JπcKM := (E × E) \ JπKM

Jπ1 ∩ π2KM := Jπ1KM ∩ Jπ2KM

I Example 5. Consider again the MSC M from Figure 1 and the path formula π =
C−1
p1,p3
→Cp1,p2→Cp2,p3→. We have M, g5 |= Loop(π). Moreover, (e2, e5) ∈ J−→KM but

(e2, e6) 6∈ J−→KM .

We use the usual abbreviations for sentences and event formulas such as implication and
conjunction. Moreover, true := p ∨ ¬p (for some arbitrary process p ∈ P) and false := ¬true.
Finally, we define the event formula 〈π〉 := 〈π〉 true, and the path formulas +−→ := true−−→ and
∗−→ := +−→∪ {true}?.

Note that there are some redundancies in the logic. For example (letting ≡ denote logical
equivalence), → ≡ false−−−→, π1 ∩ π2 ≡ (πc

1 ∪ πc
2)c, and Loop(π) ≡ 〈{true}? ∩ π〉. Some of them

are necessary to define certain subclasses of PDLsf . For every R ⊆ {Loop,∪,∩, c}, we let
PDLsf [R] denote the fragment of PDLsf that does not make use of {Loop,∪,∩, c} \ R. In
particular, PDLsf = PDLsf [Loop,∪,∩, c]. Note that, syntactically, ∗−→ is not contained in
PDLsf [Loop] since union is not permitted.

3.2 Main Results

Let FO3[→,C,≤] be the set of formulas from FO[→,C,≤] that use at most three different
first-order variables (however, a variable can be quantified and reused several times in a
formula). The main result of this section is that, for formulas with zero or one free variable,
the logics FO[→,C,≤], FO3[→,C,≤], PDLsf , and PDLsf [Loop] are expressively equivalent.

Consider FO[→,C,≤] formulas Φ0, Φ1(x) and Φ2(x, y) with respectively zero, one, and
two free variables (hence, Φ0 is a sentence). Consider also some PDLsf sentence ξ, event
formula ϕ, and path formula π. The respective formulas are equivalent, written Φ0 ≡ ξ,

CONCUR 2018

7:8 It Is Easy to Be Wise After the Event

Φ1(x) ≡ ϕ, and Φ2(x, y) ≡ π, if, for all MSCs M and all events e, f in M , we have

M |= Φ0 iff M |= ξ

M, [x 7→ e] |= Φ1(x) iff M, e |= ϕ

M, [x 7→ e, y 7→ f] |= Φ2(x, y) iff M, e, f |= π

We start with a simple observation, which can be shown easily by induction:

I Proposition 6. Every PDLsf formula is equivalent to some FO3[→,C,≤] formula. More
precisely, for every PDLsf sentence ξ, event formula ϕ, and path formula π, there exist some
FO3[→,C,≤] sentence ξ̃, formula ϕ̃(x) with one free variable, and formula π̃(x, y) with two
free variables, respectively, such that, ξ ≡ ξ̃, ϕ ≡ ϕ̃(x), and π ≡ π̃(x, y).

The main result is a strong converse of Proposition 6:

I Theorem 7. Every FO[→,C,≤] formula with at most two free variables is equivalent to
some PDLsf formula. More precisely, for every FO[→,C,≤] sentence Φ0, formula Φ1(x) with
one free variable, and formula Φ2(x, y) with two free variables, there exist some PDLsf [Loop]
sentence ξ, PDLsf [Loop] event formula ϕ, and PDLsf [Loop] path formulas πij, respectively,
such that, Φ0 ≡ ξ, Φ1(x) ≡ ϕ, and Φ2(x, y) ≡

⋃
i

⋂
j πij.

From Theorem 7 and Proposition 6, we deduce that FO has the three variable property:

I Corollary 8. L(FO[→,C,≤]) = L(FO3[→,C,≤]).

3.3 From FO to PDLsf

In the remainder of this section, we give the translation from FO to PDLsf . We start with
some basic properties of PDLsf . First, the converse of a PDLsf formula is definable in PDLsf
(easy induction on π).

I Lemma 9. Let R ⊆ {Loop,∪,∩, c} and π ∈ PDLsf [R] be a path formula. There exists
π−1 ∈ PDLsf [R] such that, for all MSCs M , Jπ−1KM = JπK−1

M = {(f, e) | (e, f) ∈ JπKM}.

Given a PDLsf [Loop] path formula π, we denote by Comp(π) the set of pairs (p, q) ∈ P×P
such that there may be a π-path from some event on process p to some event on process q.
Formally, we let Comp(→) = Comp(←) = Comp(ϕ−→) = Comp(ϕ←−) = Comp({ϕ}?) = id, where
id = {(p, p) | p ∈ P}; Comp(Cp,q) = Comp(C−1

q,p) = {(p, q)}; Comp(jumpp,r) = {(p, r)}; and
Comp(π1 · π2) = Comp(π2) ◦ Comp(π1) = {(p, r) | ∃q : (p, q) ∈ Comp(π1), (q, r) ∈ Comp(π2)}.

Notice that, for all path formulas π ∈ PDLsf [Loop], the relation Comp(π) is either empty
or a singleton {(p, q)} or the identity id. Moreover, M, e, f |= π implies (loc(e), loc(f)) ∈
Comp(π). Therefore, all events in JπK(e) are on the same process, and if this set is nonempty
(i.e., if M, e |= 〈π〉), then minJπK(e) and maxJπK(e) are well-defined.

I Example 10. Consider the MSC from Figure 1 and π = +−→Cp1,p2→Cp2,p3→. We have
Comp(π) = {(p1, p3)}. Moreover, minJπK(e2) = g4 and maxJπK(e2) = g5.

We say that π ∈ PDLsf [Loop] is monotone if, for all MSCs M and events e, f such
that M, e |= 〈π〉, M,f |= 〈π〉, and e ≤proc f , we have minJπK(e) ≤proc minJπK(f) and
maxJπK(e) ≤proc maxJπK(f). Lemmas 11 and 12 are easily shown by simultaneous induction.

I Lemma 11. Let π1, π2 ∈ PDLsf [Loop] be path formulas, and π = π1 · π2. For all MSCs M
and events e such that M, e |= 〈π〉, we have

minJπK(e) = minJπ2K(minJπ1 · {〈π2〉}?K(e)) and
maxJπK(e) = maxJπ2K(maxJπ1 · {〈π2〉}?K(e)) .

B. Bollig, M. Fortin, and P. Gastin 7:9

I Lemma 12. All PDLsf [Loop] path formulas are monotone.

The following crucial lemma states that, for all path formulas π ∈ PDLsf [Loop] and
events e in some MSC, JπK(e) contains precisely the events that lie in the interval between
minJπK(e) and maxJπK(e) and that satisfy 〈π−1〉.

I Lemma 13. Let π be a PDLsf [Loop] path formula. For all MSCs M and events e such
that M, e |= 〈π〉, we have

JπK(e) = {f ∈ E | minJπK(e) ≤proc f ≤proc maxJπK(e) ∧M,f |= 〈π−1〉} .

Proof. The left-to-right inclusion is trivial. We prove the right-to-left inclusion by induction
on π. The base cases are immediate.

Assume that π = π1 · π2. For illustration, consider the figure below.

e

h1

h2

minJπ1{〈π2〉}?K(e) =: f1 g1 := maxJπ1{〈π2〉}?K(e)

minJπ2K(f1) =: f2

minJπ1π2K(e) =
g2 := maxJπ2K(g1)

= maxJπ1π2K(e)
maxJπ2K(f1) minJπ2K(g1)

≤proc ≤proc

<proc <proc≤proc ≤proc

π1 π1π−1
1

π−1
2π2 π2π2 π2

We let f1 = minJπ1{〈π2〉}?K(e), f2 = minJπ2K(f1), g1 = maxJπ1{〈π2〉}?K(e), and g2 =
maxJπ2K(g1). By Lemma 11, we have f2 = minJπ1π2K(e) and g2 = maxJπ1π2K(e). Let
h2 ∈ E such that f2 ≤proc h2 ≤proc g2 and M,h2 |= 〈(π1π2)−1〉. If h2 ≤proc maxJπ2K(f1),
then by induction hypothesis, M,f1, h2 |= π2, and we obtain M, e, h2 |= π1π2. Simil-
arly, if minJπ2K(g1) ≤proc h2, then M, g1, h2 |= π2 and M, e, h2 |= π1π2. So assume
maxJπ2K(f1) <proc h2 <proc minJπ2K(g1). Since M,h2 |= 〈π−1

2 π−1
1 〉, there exists h1 such

that M,h1, h2 |= π2 and M,h1 |= 〈π−1
1 〉. Moreover, minJπ2K(h1) ≤proc h2 <proc minJπ2K(g1),

hence h1 ≤proc g1 by Lemma 12 (notice that g1 and h1 must be on the same process).
Similarly, maxJπ2K(f1) <proc h2 ≤proc maxJπ2K(h1), hence f1 ≤proc h1. We then have
f1 ≤proc h1 ≤proc g1, and M,h1 |= 〈π−1

1 〉. By induction hypothesis, M, e, h1 |= π1. Hence,
M, e, h2 |= π1π2. J

Using Lemma 13, we can give a characterization of JπcK(e) (when π ∈ PDLsf [Loop]) that
also relies on intervals delimited by minJπK(e) and maxJπK(e). More precisely, JπcK(e) is
the union of the following sets (see figure below): (i) the interval of all events to the left
of minJπK(e), (ii) the interval of all events to the right of maxJπK(e), (iii) the set of events
located between minJπK(e) and maxJπK(e) and satisfying ¬ 〈π−1〉, (iv) all events located on
other processes than minJπK(e) and maxJπK(e).

(i)

(iii)

(ii)

e

〈π−1〉〈π−1〉 〈π−1〉 〈π−1〉

min π max π

This description of JπcK(e) can be used to rewrite πc as a union of PDLsf [Loop] formulas.
In a first step, we show that, if π is a PDLsf [Loop] formula, then the relation {(e,minJπK(e))}
can also be expressed in PDLsf [Loop] (and similarly for max).

CONCUR 2018

7:10 It Is Easy to Be Wise After the Event

I Lemma 14. Let R = ∅ or R = {Loop}. For every path formula π ∈ PDLsf [R], there exist
PDLsf [R] path formulas min π and max π such that M, e, f |= min π iff f = minJπK(e), and
M, e, f |= max π iff f = maxJπK(e).

Proof. We construct, by induction on π, formulas min (π · {ψ}?) for all PDLsf [R] event
formulas ψ. For π ∈ {→,←,Cp,q,C−1

p,q, {ϕ}?}, we let min (π · {ψ}?) = π · {ψ}?. Then,

min (ϕ−→ · {ψ}?) = ϕ∧¬ψ−−−−→ · {ψ}?

min (ϕ←− · {ψ}?) = ϕ←− · {ψ ∧ (¬ϕ ∨ ¬ 〈 ϕ←−〉ψ)}?

min (jumpp,q · {ψ}?) = jumpp,q · {ψ ∧ ¬ 〈
+←−〉ψ}?

min (π1 · π2 · {ψ}?) = min (π1 · {〈π2〉ψ}?) ·min (π2 · {ψ}?) .

The construction of max π is similar. J

We are now ready to prove that any boolean combination of PDLsf [Loop] formulas is
equivalent to a positive one, i.e., one that does not use complement.

I Lemma 15. For all path formulas π ∈ PDLsf [Loop], there exist PDLsf [Loop] path formulas
(πi)1≤i≤|P |2+3 such that πc ≡

⋃
1≤i≤|P |2+3 πi.

Proof. We show πc ≡ σ, where

σ = (min π · +←−) ∪ (max π · +−→) ∪ (π · +−→ · {¬ 〈π−1〉}?) ∪
⋃

(p,q)∈P 2

{¬ 〈π〉 q}? · jumpp,q .

Let M = (E,→,C, loc, λ) be an MSC and e, f ∈ E. We write p = loc(e), q = loc(f). Let
us show that M, e, f |= πc iff M, e, f |= σ. If M, e |= ¬ 〈π〉 q, then both M, e, f |= πc and
M, e, f |= σ hold. In the following, we assume thatM, e |= 〈π〉 q, and thus that minJπK(e) and
maxJπK(e) are well-defined and on process q. Again, if f <proc minJπK(e) or maxJπK(e) <proc f ,
then both M, e, f |= πc and M, e, f |= σ hold. And if minJπK(e) ≤proc f ≤proc maxJπK(e),
then, by Lemma 13, we have M, e, f |= πc iff M,f |= ¬ 〈π−1〉, iff M, e, f |= σ. J

The rest of this section is dedicated to the proof of Theorem 7, stating that every
FO[→,C,≤] formula with at most two free variables can be translated into an equivalent
PDLsf formula. As we proceed by induction, we actually need a more general statement,
which takes into account arbitrarily many free variables:

I Proposition 16. Every formula Φ ∈ FO[→,C,≤] with at least one free variable is equivalent
to a boolean combination of formulas of the form π̃(x, y), where π ∈ PDLsf [Loop] and
x, y ∈ Free(Φ).

Proof. In the following, we will simply write π(x, y) for π̃(x, y), where π̃(x, y) is the FO
formula equivalent to π as defined in Proposition 6. The proof is by induction. For convenience,
we assume that Φ is in prenex normal form. If Φ is quantifier free, then it is a boolean
combination of atomic formulas. For x, y ∈ Vevent, atomic formulas are translated as follows:

p(x) ≡ {p}?(x, x) x→ y ≡ →(x, y) x = y ≡ {true}?(x, y)

a(x) ≡ {a}?(x, x) xC y ≡
∨

(p,q)∈Ch

Cp,q(x, y)

Moreover, x ≤ y is equivalent to the disjunction of the formulas
(
π ·Cp1,p2 ·

+−→·Cp2,p3 · · ·
+−→·

Cpm−1,pm
· π′
)
(x, y), where 1 ≤ m ≤ |P |, p1, . . . , pm ∈ P are such that pi 6= pi+1 for all

i ∈ {1, . . . ,m− 1}, and π, π′ ∈ { +−→, {true}?}.

B. Bollig, M. Fortin, and P. Gastin 7:11

Universal quantification. We have ∀x.Ψ ≡ ¬∃x.¬Ψ. Since we allow boolean combinations,
dealing with negation is trivial. Hence, this case reduces to existential quantification.

Existential quantification. Suppose that Φ = ∃x.Ψ. If x is not free in Ψ, then Φ ≡ Ψ and
we are done by induction. Otherwise, assume that Free(Ψ) = {x1, . . . , xn} with n > 1 and
that x = xn. By induction, Ψ is equivalent to a boolean combination of formulas of the form
π(y, z) with y, z ∈ Free(Ψ). We transform it into a finite disjunction of formulas of the form∧
j πj(yj , zj), where yj = xi1 and zj = xi2 for some i1 ≤ i2. To do so, we first eliminate

negation using Lemma 15. The resulting positive boolean combination is then brought into
disjunctive normal form. Note that this latter step may cause an exponential blow-up so that
the overall construction is nonelementary (which is unavoidable [28]). Finally, the variable
ordering can be guaranteed by replacing πj with π−1

j whenever needed.
Now, Φ = ∃xn.Ψ is equivalent to a finite disjunction of formulas of the form∧
j∈I

πj(yj , zj) ∧ ∃xn.
(∧
j∈J

πj(yj , xn) ∧
∧
j∈J′

πj(xn, xn)
)

︸ ︷︷ ︸
=: Υ

for three finite, pairwise disjoint index sets I, J, J ′ such that yj ∈ {x1, . . . , xn−1} for all
j ∈ I ∪ J , and zj ∈ {x1, . . . , xn−1} for all j ∈ I. Notice that Free(Υ) ⊆ {x1, . . . , xn−1}. If
J = ∅, then2

Υ ≡
∨

p,q∈P

(
jumpp,q · {

∧
j∈J′

Loop(πj)}? · jumpq,p
)

(x1, x1) .

So assume J 6= ∅. Set

Υ′ :=
∨
k,`∈J


∧
j∈J((min πj) ·

∗−→ · (min πk)−1)(yj , yk)

∧
∧
j∈J((max π`) ·

∗−→ · (max πj)−1)(y`, yj)

∧ (πk · {ψ}? · π−1
`)(yk, y`)


where ψ =

∧
j∈J 〈π

−1
j 〉 ∧

∧
j∈J′ Loop(πj). We have Free(Υ′) = Free(Υ) ⊆ {x1, . . . , xn−1}.

I Claim 17. We have Υ ≡ Υ′.

Intuitively, by Lemma 13, we know that Υ holds iff the intersection of the intervals
[minJπjK(yj),maxJπjK(yj)] contains some event satisfying ψ. The formula Υ′ identifies some
πk such that minJπkK(yk) is maximal (first line), some π` such that maxJπ`K(y`) is minimal
(second line), and tests that there exists an event xn satisfying ψ between the two (third
line). This is illustrated in the figure below.

yj

min πj max πj

y`

min π`

max π`

ykmin πk

max πk

xn

2 In this case, Υ is a sentence whereas x1 is free in the right hand side. Notice that ≡ does not require
the two formulas to have the same free variables.

CONCUR 2018

7:12 It Is Easy to Be Wise After the Event

Thus, Υ is equivalent to some positive combination of formulas π(x, y) with π ∈
PDLsf [Loop] and x, y ∈ {x1, . . . , xn−1} = Free(Φ), therefore, so is Φ. Note that the two
formulas

(
(min πj) ·

∗−→ · (min πk)−1)(yj , yk) and
(
(max π`) ·

∗−→ · (max πj)−1)(y`, yj) are not
PDLsf [Loop] formulas (since ∗−→ is not). However, they are disjunctions of PDLsf [Loop]
formulas, for instance,

(
(min πj) ·

∗−→ · (min πk)−1)(yj , yk) ≡
(
(min πj) · (min πk)−1)(yj , yk)∨(

(min πj) ·
+−→ · (min πk)−1)(yj , yk). J

We are now able to prove the main result relating FO[→,C,≤] and PDLsf [Loop].

Proof of Theorem 7. Let Φ2(x1, x2) be an FO[→,C,≤] formula with two free variables.
We apply Proposition 16 to Φ2(x1, x2) and obtain a boolean combination of path formulas
π(y, z) with y, z ∈ {x1, x2}. First, we bring it into a positive boolean combination using
Lemma 15. Next, we replace formulas π(x1, x1) with

∨
p,q({Loop(π)}? · jumpp,q)(x1, x2).

Similarly, π(x2, x2) is replaced with
∨
p,q(jumpp,q · {Loop(π)}?)(x1, x2). Also, π(x2, x1) is

replaced with π−1(x1, x2). Finally, we transform it into disjunctive normal form: we obtain
Φ1(x1, x2) ≡

∨
i

∧
j πij(x1, x2), which concludes the proof in the case of two free variables.

Next, let Φ1(x) be an FO[→,C,≤] formula with one free variable. As above, applying
Proposition 16 to Φ1(x) and then Lemma 15, we obtain PDLsf [Loop] path formulas πij such
that Φ1(x) ≡

∨
i

∧
j πij(x, x). Now, M, [x 7→ e] |= πij(x, x) iff M, e |= Loop(πij). Hence,

Φ(x) ≡
∨
i

∧
j Loop(πij).

Finally, an FO[→,C,≤] sentence Φ0 is a boolean combination of formulas of the form
∃x.Φ1(x). Applying the theorem to Φ1(x), we obtain an equivalent PDLsf [Loop] event formula
ϕ. Then, we take ξ = Eϕ, which is trivially equivalent to ∃x.Φ1(x). J

4 From PDLsf[Loop] to CFMs

Letter-to-letter MSC transducers. For the translation of FO[→,C,≤] sentences into CFMs,
we will need to introduce MSC transducers to handle subformulas with one free variable, or,
equivalently, PDLsf [Loop] event formulas. More precisely, we will associate with an event
formula ϕ a transducer that evaluates ϕ at all events, and outputs 1 when the formula holds,
and 0 otherwise.

Let Γ be a nonempty finite output alphabet. A (nondeterministic) letter-to-letter MSC
transducer (or simply, transducer) A over P and from Σ to Γ is a CFM over P and
Σ× Γ. The transducer A accepts the relation JAK = {

(
(E,→,C, loc, λ), (E,→,C, loc, γ)

)
|

(E,→,C, loc, λ× γ) ∈ L(A)}. Transducers are closed under product and composition, using
standard constructions:

I Lemma 18. Let A be a transducer from Σ to Γ, and A′ a transducer from Σ to Γ′. There
exists a transducer A×A′ from Σ to Γ× Γ′ such that

JA×A′K =
{(

(E,→,C, loc, λ), (E,→,C, loc, γ × γ′)
)
|(

(E,→,C, loc, λ), (E,→,C, loc, γ)
)
∈ JAK,(

(E,→,C, loc, λ), (E,→,C, loc, γ′)
)
∈ JA′K

}
.

I Lemma 19. Let A be a transducer from Σ to Γ, and A′ a transducer from Γ to Γ′. There
exists a transducer A′ ◦ A from Σ to Γ′ such that

JA′◦AK = JA′K◦JAK = {(M,M ′′) | ∃M ′ ∈MSC(P,Γ) : (M,M ′) ∈ JAK, (M ′,M ′′) ∈ JA′K} .

B. Bollig, M. Fortin, and P. Gastin 7:13

Translation of PDLsf [Loop] Event Formulas into CFMs. For a PDLsf [Loop] event formula
ϕ and an MSCM = (E,→,C, loc, λ) over P and Σ, we define an MSCMϕ = (E,→,C, loc, γ)
over P and {0, 1}, by setting γ(e) = 1 if M, e |= ϕ, and γ(e) = 0 otherwise. Our goal is to
construct a transducer Aϕ such that JAϕK = {(M,Mϕ) |M ∈MSC(P,Σ)}.

We start with the case of formulas from PDLsf [∅], i.e., without Loop. A straightforward
induction shows:

I Lemma 20. Let ϕ be a PDLsf [∅] event formula. There exists a transducer Aϕ such that
JAϕK = {(M,Mϕ) |M ∈MSC(P,Σ)}.

Next, we look at a single loop where the path π ∈ PDLsf [∅] is of the form min π′ or max π′.
This case will be simpler than general loop formulas, because of the fact that Jmin π′K(e) is
always either empty or a singleton. Recall that, in addition, min π′ is monotone.

I Lemma 21. Let π be a PDLsf [∅] path formula of the form π = min π′ or π = max π′, and let
ϕ = Loop(π). There exists a transducer Aϕ such that JAϕK = {(M,Mϕ) |M ∈MSC(P,Σ)}.

Proof. We can assume that Comp(π) ⊆ id. We define Aϕ as the composition of three
transducers that will guess and check the evaluation of ϕ. More precisely, Aϕ will be obtain
as an inverse projection α−1, followed by the intersection with an MSC language K, followed
by a projection β.

We first enrich the labeling of the MSC with a color from Θ = { , , , }. Intuitively,
colors and will correspond to a guess that the formula ϕ is satisfied, and colors and
to a guess that the formula is not satisfied. Consider the projection α : MSC(P,Σ×Θ)→
MSC(P,Σ) which erases the color from the labeling. The inverse projection α−1 can be
realized with a transducer A, i.e., JAK = {(α(M ′),M ′) |M ′ ∈MSC(P,Σ×Θ)}.

Define the projection β : MSC(P,Σ×Θ)→MSC(P, {0, 1}) by β((E,→,C, loc, λ× θ)) =
(E,→,C, loc, γ), where γ(e) = 1 if θ(e) ∈ { , }, and γ(e) = 0 otherwise. The projection β
can be realized with a transducer A′′: we have JA′′K = {(M ′, β(M ′)) |M ′ ∈MSC(P,Σ×Θ)}.

Finally, consider the language K ⊆MSC(P,Σ×Θ) of MSCs M ′ = (E,→,C, loc, λ× θ)
satisfying the following two conditions:
1. Colors and alternate on each process p ∈ P : if e1 < · · · < en are the events in

Ep ∩ θ−1({ , }), then θ(ei) = if i is odd, and θ(ei) = if i is even.
2. For all e ∈ E, θ(e) ∈ { , } iff there exists f ∈ E such that M, e, f |= π and θ(e) = θ(f).
The first property is trivial to check with a CFM. Using Lemma 20, we can easily show
that the second property can also be checked with a CFM. We deduce that there is a
transducer A′ such that JA′K = {(M ′,M ′) |M ′ ∈ K}. We let Aϕ = A′′ ◦A′ ◦A. Notice that
JAϕK = {(α(M ′), β(M ′)) |M ′ ∈ K}. From the following two claims, we deduce immediately
that JAϕK = {(M,Mϕ) |M ∈MSC(P,Σ)}.

I Claim 22. For all M ∈MSC(P,Σ), there exists M ′ ∈ K with α(M ′) = M .

Let M = (E,→,C, loc, λ) ∈MSC(P,Σ). Let E1 = {e ∈ E |M, e |= ϕ} and E0 = E \ E1.
Consider the graph G = (E, {(e, f) |M, e, f |= π}). Since π = min π′ or π = max π′, every
vertex has outdegree at most 1, and, by Lemma 12, there are no cycles except for self-loops.
So the restriction of G to E0 is a forest, and there exists a 2-coloring χ : E0 → { , } such
that, for all e, f ∈ E0 with M, e, f |= π, we have χ(e) 6= χ(f). There exists θ : E → Θ such
that θ(e) = χ(e) for e ∈ E0, and θ(e) ∈ { , } for e ∈ E1 is such that Condition 1 of the
definition of K is satisfied. It is easy to see that Condition 2 is also satisfied. Indeed, if
θ(e) ∈ { , }, then e ∈ E1 and M, e, e |= π. Now, if θ(e) /∈ { , }, then e ∈ E0 and either
M, e 6|= 〈π〉 or, by definition of χ, we have θ(e) 6= θ(f) for the unique f such that M, e, f |= π.

CONCUR 2018

7:14 It Is Easy to Be Wise After the Event

I Claim 23. For all M ′ ∈ K, we have β(M ′) = Mϕ, where M = α(M ′).

Let M ′ = (E,→,C, loc, λ× θ) ∈ K and M = α(M ′). Suppose towards a contradiction
that Mϕ 6= β(M) = (E,→,C, loc, γ). By Condition 2, for all e ∈ E such that γ(e) = 0, we
have M, e 6|= ϕ. So there exists f0 ∈ E such that γ(f0) = 1 and M,f0 6|= ϕ. Notice that
θ(f0) ∈ { , }. For all i ∈ N, let fi+1 be the unique event such that M,fi, fi+1 |= π. Such
an event exists by Condition 2, and is unique since π = min π′ or π = max π′. Note that,
for all i, θ(fi+1) = θ(fi) ∈ { , }. Suppose f0 <proc f1 (the case f1 <proc f0 is similar). By
Condition 1, there exists g0 such that f0 <proc g0 <proc f1 and {θ(f0), θ(g0)} = { , }. Again,
for all i ∈ N, let gi+1 be the unique event such that M, gi, gi+1 |= π. Note that all f0, f1, . . .

have the same color, in { , }, and all g0, g1, . . . carry the complementary color. Thus, fi 6= gj
for all i, j ∈ N. But, by Lemma 12, this implies f0 <proc g0 <proc f1 <proc g1 <proc · · · , which
contradicts the fact that we deal with finite MSCs. J

The general case is more complicated. We first show how to rewrite an arbitrary loop
formula using loops on paths of the form max π or (max π) · +←−. Intuitively, this means
that loop formulas will only be used to test, given an event e such that e′ = maxJπK(e) is
well-defined and on the same process as e, whether e′ <proc e, e′ = e, or e <proc e

′. Indeed,
we have M, e |= Loop((max π) · +←−) iff e <proc maxJπK(e).

I Lemma 24. For all PDLsf [Loop] path formulas π,

Loop(π) ≡ Loop(max π) ∨
(
〈π−1〉 ∧ Loop((max π) · +←−) ∧ ¬Loop((min π) · +←−)

)
.

Proof. The result follows from Lemma 13. Indeed, if we have M, e |= Loop(π) and M, e 6|=
Loop(max π), then minJπK(e) ≤proc e <proc maxJπK(e) and M, e |= 〈π−1〉, hence M, e |=
〈π−1〉 ∧ Loop((max π) · +←−)∧¬Loop((min π) · +←−). Conversely, if M, e |= Loop(max π), then
M, e |= Loop(π), and if M, e |= (〈π−1〉 ∧ Loop((max π) · +←−) ∧ ¬Loop((min π) · +←−)), then
M, e |= 〈π−1〉 and minJπK(e) ≤proc e <proc maxJπK(e), hence M, e, e |= π, i.e., M, e |=
Loop(π). J

Notice that, since min π ≡ max (min π), the formula Loop((min π) · +←−) can also be seen
as a special case of a Loop((max π′) · +←−) formula.

I Theorem 25. For all PDLsf [Loop] event formulas ϕ, there exists a transducer Aϕ such
that JAϕK = {(M,Mϕ) |M ∈MSC(P,Σ)}.

Proof. By Lemma 24, we can assume that all loop subformulas in ϕ are of the form
Loop((max π) · +←−) or Loop(max π) (notice that min π = max min π). We prove Theorem 25
by induction on the number of loop subformulas in ϕ. The base case is stated in Lemma 20.

Let ψ = Loop(π′) be a subformula of ϕ such that π′ contains no loop subformulas and
Comp(π′) ⊆ id. Let us show that there exists Aψ such that JAψK = {(M,Mψ) | M ∈
MSC(P,Σ)}. If π′ = max π, then we apply Lemma 21. Otherwise, π′ = (max π) · +←− for
some PDLsf [∅] path formula π. So we assume from now on that ψ = Loop((max π) · +←−).

We start with some easy remarks. Let p ∈ P be some process and e ∈ Ep. A necessary
condition for M, e |= ψ is that M, e |= 〈π〉 ∧¬Loop(max π). Also, it is easy to see that
M, e |= Loop(min (+−→ · π−1)) is a sufficient condition for M, e |= ψ.

We let Eπp be the set of events e ∈ Ep satisfying 〈π〉 p. For all e ∈ Eπp we let e′ =
Jmax πK(e) ∈ Ep. The transducer Aψ will establish, for each e ∈ Eπp , whether e′ <proc e,
e′ = e, or e <proc e

′, and it will output 1 if e <proc e
′, and 0 otherwise. The case e′ = e means

B. Bollig, M. Fortin, and P. Gastin 7:15

M, e |= Loop(max π) and can be checked with the help of Lemma 21. So the difficulty is to
distinguish between e′ <proc e and e <proc e

′ when M, e |= 〈π〉 ∧¬Loop(max π).
The following two claims rely on Lemma 12:

I Claim 26. Let f be the minimal event in Eπp (assuming this set is nonempty). Then,
M,f |= ψ iff M,f |= Loop(min (+−→ · π−1)).

I Claim 27. Let e, f be consecutive events in Eπp , i.e., e, f ∈ Eπp and M, e, f |= ¬ 〈π〉−−−→.
1. If M, e 6|= ψ, then [M,f |= ψ iff M,f |= Loop(min (+−→ · π−1))].
2. If M, e |= ψ, then [M,f 6|= ψ iff M,f |= Loop(max π) ∨ Loop(max ((max π)· ¬ 〈π〉−−−→))].

To conclude the proof, let ϕ1 = 〈π〉, ϕ2 = Loop(max π), ϕ3 = Loop(min (+−→ · π−1)), and
ϕ4 = Loop(max ((max π)· ¬ 〈π〉−−−→)). By Lemmas 20 and 21, we already have transducers Aϕi

for i ∈ {1, 2, 3, 4}. We let Aψ = A ◦ (Aϕ1 ×Aϕ2 ×Aϕ3 ×Aϕ4), where, at an event f labeled
(b1, b2, b3, b4), the transducer A outputs 1 if b3 = 1 or if (b1, b2, b3, b4) = (1, 0, 0, 0) and the
output was 1 at the last event e on the same process satisfying ϕ1 (to do so, each process
keeps in its state the output at the last event where b1 was 1), and 0 otherwise.

Consider the formula ϕ′ over Σ×{0, 1} obtained from ϕ by replacing ψ by
∨
a∈Σ(a, 1), and

all event formulas a, with a ∈ Σ, by (a, 0)∨ (a, 1). It contains fewer Loop operators than ϕ, so
by induction hypothesis, we have a transducer Aϕ′ for ϕ′. We then let Aϕ = Aϕ′ ◦(AId×Aψ),
where AId is the transducer for the identity relation. J

Proof of Proposition 4. By Theorem 7, every FO[→,C,≤] formula Φ(x) with a single free
variable is equivalent to some PDLsf [Loop] state formula, for which we obtain a transducer
AΦ using Theorem 25. It is easy to build from AΦ CFMs for the sentences ∀x.Φ(x) and
∃x.Φ(x). Closure of L(CFM) under union and intersection takes care of disjunction and
conjunction. J

5 Discussion

Though the translation of EMSO/FO formulas into CFMs is interesting on its own, it allows
us to obtain some difficult results for bounded CFMs as corollaries. We will briefly sketch
some of them. For details, we refer to [2].

First, note that, for a given channel bound, the set of existentially bounded MSCs is
FO-definable (essentially due to [26]). By Theorem 3, we obtain [14, Proposition 5.14] stating
that this set is recognized by some CFM. Second, we obtain [14, Proposition 5.3], a Kleene
theorem for existentially bounded MSCs, as a corollary of Theorem 3 in combination with a
linearization normal form from [30].

Since (bounded) MSCs can be seen as a special case of Mazurkiewicz traces [9], we also get
Zielonka’s theorem [33] (though a weaker, nondeterministic version, and without guarantee
on the size of the constructed automaton).

We leave open whether there is a one-dimensional temporal logic over MSCs, with a finite
set of FO-definable modalities, that is expressively complete for FO[→,C,≤].

References
1 B. Bollig, M. Fortin, and P. Gastin. Communicating finite-state machines and two-variable

logic. In 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018),
volume 96 of Leibniz International Proceedings in Informatics, pages 17:1–17:14. Leibniz-
Zentrum für Informatik, 2018.

CONCUR 2018

7:16 It Is Easy to Be Wise After the Event

2 B. Bollig, M. Fortin, and P. Gastin. It is easy to be wise after the event: Commu-
nicating finite-state machines capture first-order logic with "happened before". CoRR,
abs/1804.10076, 2018. arXiv:1804.10076.

3 B. Bollig, D. Kuske, and I. Meinecke. Propositional dynamic logic for message-passing
systems. Logical Methods in Computer Science, 6(3:16), 2010.

4 B. Bollig and M. Leucker. Message-passing automata are expressively equivalent to EMSO
logic. Theoretical Computer Science, 358(2-3):150–172, 2006.

5 D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of the ACM,
30(2), 1983.

6 J. Büchi. Weak second order logic and finite automata. Z. Math. Logik, Grundlag. Math.,
5:66–62, 1960.

7 G. De Giacomo and M. Lenzerini. Boosting the correspondence between description logics
and propositional dynamic logics. In Proceedings of the 12th National Conference on Arti-
ficial Intelligence, Seattle, WA, USA, July 31 - August 4, 1994, Volume 1., pages 205–212.
AAAI Press / The MIT Press, 1994.

8 V. Diekert and P. Gastin. First-order definable languages. In Jörg Flum, Erich Grädel, and
Thomas Wilke, editors, Logic and Automata: History and Perspectives, volume 2 of Texts
in Logic and Games, pages 261–306. Amsterdam University Press, 2008.

9 V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, Singapore,
1995.

10 C. C. Elgot. Decision problems of finite automata design and related arithmetics. Trans-
actions of the American Mathematical Society, 98:21–52, 1961.

11 M. J. Fischer and R. E. Ladner. Propositional Dynamic Logic of regular programs. Journal
of Computer and System Sciences, 18(2):194–211, 1979.

12 D. M. Gabbay. Expressive functional completeness in tense logic. In Uwe Mönnich, editor,
Aspects of Philosophical Logic: Some Logical Forays into Central Notions of Linguistics
and Philosophy, pages 91–117. Springer Netherlands, Dordrecht, 1981.

13 D. M. Gabbay, I. Hodkinson, and M. A. Reynolds. Temporal Logic: Mathematical Found-
ations and Computational Aspects, vol. 1. Oxford University Press, 1994.

14 B. Genest, D. Kuske, and A. Muscholl. A Kleene theorem and model checking al-
gorithms for existentially bounded communicating automata. Information and Compu-
tation, 204(6):920–956, 2006.

15 B. Genest, D. Kuske, and A. Muscholl. On communicating automata with bounded chan-
nels. Fundamenta Informaticae, 80(1-3):147–167, 2007.

16 S. Göller, M. Lohrey, and C. Lutz. PDL with intersection and converse: satisfiability and
infinite-state model checking. Journal of Symbolic Logic, 74(1):279–314, 2009.

17 E. Grädel and M. Otto. On logics with two variables. Theoretical Computer Science,
224(1-2):73–113, 1999.

18 J. Y. Halpern and Y. Moses. A guide to completeness and complexity for modal logics of
knowledge and belief. Artif. Intell., 54(2):319–379, 1992.

19 W. Hanf. Model-theoretic methods in the study of elementary logic. In J. W. Addison,
L. Henkin, and A. Tarski, editors, The Theory of Models. North-Holland, Amsterdam, 1965.

20 J. G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni, and P. S. Thiagarajan. A
theory of regular MSC languages. Information and Computation, 202(1):1–38, 2005.

21 H. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of California,
Los Angeles, 1968.

22 D. Kuske. Regular sets of infinite message sequence charts. Information and Computation,
187:80–109, 2003.

23 L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, 1978.

http://arxiv.org/abs/1804.10076

B. Bollig, M. Fortin, and P. Gastin 7:17

24 M. Lange. Model checking propositional dynamic logic with all extras. Journal of Applied
Logic, 4(1):39–49, 2006.

25 M. Lange and C. Lutz. 2-ExpTime lower bounds for Propositional Dynamic Logics with
intersection. Journal of Symbolic Logic, 70(5):1072–1086, 2005.

26 M. Lohrey and A. Muscholl. Bounded MSC Communication. Information and Computation,
189(2):160–181, 2004.

27 R. Mennicke. Propositional dynamic logic with converse and repeat for message-passing
systems. Logical Methods in Computer Science, 9(2:12):1–35, 2013.

28 L. J. Stockmeyer. The Complexity of Decision Problems in Automata Theory and Logic.
PhD thesis, MIT, 1974.

29 R. S. Streett. Propositional dynamic logic of looping and converse. In Proceedings of
STOC’81, pages 375–383. ACM, 1981.

30 P. S. Thiagarajan and I. Walukiewicz. An expressively complete linear time temporal logic
for Mazurkiewicz traces. Inf. Comput., 179(2):230–249, 2002.

31 W. Thomas. Languages, automata and logic. In A. Salomaa and G. Rozenberg, editors,
Handbook of Formal Languages, volume 3, pages 389–455. Springer, 1997.

32 B. A. Trakhtenbrot. Finite automata and monadic second order logic. Siberian Math. J,
3:103–131, 1962. In Russian; English translation in Amer. Math. Soc. Transl. 59, 1966,
23–55.

33 W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O. — Informatique
Théorique et Applications, 21:99–135, 1987.

CONCUR 2018

Learning-Based Mean-Payoff Optimization in an
Unknown MDP under Omega-Regular Constraints

Jan Křetínský
Technische Universität München, Munich, Germany
jan.kretinsky@in.tum.de

https://orcid.org/0000-0002-8122-2881

Guillermo A. Pérez1

Université libre de Bruxelles, Brussels, Belgium
gperezme@ulb.ac.be

https://orcid.org/0000-0002-1200-4952

Jean-François Raskin2

Université libre de Bruxelles, Brussels, Belgium
jraskin@ulb.ac.be

Abstract
We formalize the problem of maximizing the mean-payoff value with high probability while satisfy-
ing a parity objective in a Markov decision process (MDP) with unknown probabilistic transition
function and unknown reward function. Assuming the support of the unknown transition func-
tion and a lower bound on the minimal transition probability are known in advance, we show that
in MDPs consisting of a single end component, two combinations of guarantees on the parity and
mean-payoff objectives can be achieved depending on how much memory one is willing to use.
(i) For all ε and γ we can construct an online-learning finite-memory strategy that almost-surely
satisfies the parity objective and which achieves an ε-optimal mean payoff with probability at
least 1 − γ. (ii) Alternatively, for all ε and γ there exists an online-learning infinite-memory
strategy that satisfies the parity objective surely and which achieves an ε-optimal mean payoff
with probability at least 1 − γ. We extend the above results to MDPs consisting of more than
one end component in a natural way. Finally, we show that the aforementioned guarantees are
tight, i.e. there are MDPs for which stronger combinations of the guarantees cannot be ensured.

2012 ACM Subject Classification Theory of computation → Logic and verification, Theory of
computation → Reinforcement learning

Keywords and phrases Markov decision processes, Reinforcement learning, Beyond worst case

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.8

Related Version A full version is available at https://arxiv.org/abs/1804.08924.

Funding This research was funded in part by the Czech Science Foundation grant No. 18-11193S,
the German Research Foundation (DFG) project 383882557 “Statistical Unbounded Verification”,
the ERC Starting grant 279499 “inVEST”, the ARC (Fédération Wallonie-Bruxelles) project
“Non-Zero Sum Game Graphs: Applications to Reactive Synthesis and Beyond”, and the EOS
(FNRS-FWO) project 30992574 “Verifying Learning Artificial Intelligence Systems”.

1 G. A. Pérez has been supported by an F.R.S.-FNRS Aspirant fellowship.
2 J.-F. Raskin is Professeur Francqui de Recherche funded by the Francqui foundation.

© Jan Křetínský, Guillermo A. Pérez, and Jean-François Raskin;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 8; pp. 8:1–8:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jan.kretinsky@in.tum.de
https://orcid.org/0000-0002-8122-2881
mailto:gperezme@ulb.ac.be
https://orcid.org/0000-0002-1200-4952
mailto:jraskin@ulb.ac.be
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.8
https://arxiv.org/abs/1804.08924
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Learning-Based Mean-Payoff Optimization in an Unknown Parity MDP

1 Introduction

Reactive synthesis and online reinforcement learning. Reactive systems are systems that
maintain a continuous interaction with the environment in which they operate. When
designing such systems, we usually face two partially conflicting objectives. First, to ensure
a safe execution, we want some basic and critical properties to be enforced by the system no
matter how the environment behaves. Second, we want the reactive system to be as efficient
as possible given the actual observed behaviour of the environment in which the system
is executed. As an illustration, let us consider a robot that needs to explore an unknown
environment as efficiently as possible while avoiding any collision. While operating at low
speed makes it easier to avoid collisions, it will impair its ability to explore the environment
quickly even if the environment is clear of other objects.

There has been, in the past, a large research effort to define mathematical models and
algorithms in order to address the two objectives above, but in isolation only. To synthesize
safe control strategies, two-player zero-sum games with omega-regular objectives have been
proposed [29, 4]. Reinforcement-learning (RL, for short) algorithms for partially-specified
Markov decision processes (MDPs) have been proposed (see e.g. [32, 22, 26, 28]) to learn
strategies that reach (near-)optimal performance in the actual environment in which the
system is executed. In this paper, we want to answer the following question: How efficient
can online-learning techniques be if only correct executions, i.e. executions that satisfy a
specified omega-regular objective, are explored during execution? So, we want to understand
how to combine synthesis and RL to construct systems that are safe, yet, at the same time,
can adapt their behaviour according to the actual environment in which they execute.

Problem statement. In order to answer in a precise way the question above, we consider
a model halfway between the fully-unknown models considered in RL and the full-known
models used in verification. To be precise, we consider as input an MDP with rewards whose
transition probabilities are not known and whose rewards are discovered on the fly. That is,
the input is the support of the unknown transition function of the MDP. This is natural from
the point of view of verification since: we may be working with an underspecified system,
its qualitative behaviour may have already been observed, or we may not trust all given
probability values. As optimization objective on this MDP, we consider the mean-payoff
function, and to capture the sure omega-regular constraint we use a parity objective.

Contributions. Given a lower bound πmin on the minimal transition probability, we show
that, in partially-specified MDPs consisting of a single end component (EC), two combinations
of guarantees on the parity and mean-payoff objectives can be achieved. (i) For all ε and
γ, we show how to construct a finite-memory strategy which almost-surely satisfies the
parity objective and which achieves an ε-optimal mean payoff with probability at least 1− γ
(Prop. 20). (ii) For all ε and γ, we show how to construct an infinite-memory strategy
which satisfies the parity objective surely and which achieves an ε-optimal mean payoff with
probability at least 1− γ (Prop. 14). We also extend our results to MDPs consisting of more
than one EC in a natural way (Thms. 21 and 16) and study special cases that allow for
improved optimality results as in the case of good ECs (Props. 11 and 17). Finally, we show
that there are partially-specified MDPs for which stronger combinations of the guarantees
cannot be ensured.

Our usage of πmin follows [9, 18] where it is argued that it is necessary for the statistical
analysis of unbounded-horizon properties and realistic in many scenarios.

J. Křetínský, G. A. Pérez, J.-F. Raskin 8:3

q0 : 2 q1 : 1 q2 : 0

a : r0

b : r0

a

1− x : 0 x : r1

a : r0

q0 : 0

q3 : 0

q4 : 1

q1 : 1

q2 : 1

a x : 0

a : 0

1− x : 1

a : 1

by : 0

a : 0

1− y : 1

a : 1

Figure 1 Two automata, representing unknown MDPs, are depicted in the figure. Actions
label edges from states (circles) to distributions (squares); a probability-reward pair, edges from
distributions to states; an action-reward pair, Dirac transitions; a name-priority pair, states.

Example: almost-sure constraints. Consider the MDP on the right-hand side of Fig. 1
for which we know the support of the transition function but not the probabilities x and
y (for simplicity the rewards are assumed to be known). First, note that while there is no
surely winning strategy for the parity objective in this MDP, playing action a forever in q0
guarantees to visit state q3 infinitely many times with probability one, i.e. this is a strategy
that almost-surely wins the parity objective. Clearly, if x > y then it is better to play b for
optimizing the mean-payoff, otherwise, it is better to play a. As x and y are unknown, we
need to learn estimates x̂ and ŷ for those values to make a decision. This can be done by
playing a and b a number of times from q0 and by observing how many times we get up and
how many times we get down. If x̂ > ŷ, we may choose to play b forever in order to optimize
our mean payoff. We then face two difficulties. First, after the learning episode, we may
instead observe x̂ < ŷ while x ≥ y. This is because we may have been unlucky and observed
statistics that differ from the real distribution. Second, playing b always is not an option
if we want to satisfy the parity objective with probability 1 (almost surely). In this paper,
we give algorithms to overcome these two problems and compute a finite-memory strategy
that satisfies the parity objective with probability 1 and is close to the optimal expected
mean-payoff value with high probability.

The finite-memory learning strategy produced by our algorithm works as follows in this
example. First, it chooses n ∈ N large enough so that trying a and b from q0 as many as n
times allows it to learn x̂ and ŷ such that |x̂−x| ≤ ε and |ŷ− y| ≤ ε with probability at least
1− γ. Then, if x̂ > ŷ the strategy plays b for K steps and then a once. K is chosen large
enough so that the mean payoff of any run will be ε-close to the best obtainable expected
mean payoff with probability at least 1 − γ. Furthermore, as a is played infinitely many
times, the upper-right state will be visited infinitely many times with probability 1. Hence,
the strategy is also almost-surely satisfying the parity objective.

In the sequel we also show that if we allow for learning all along the execution of the
strategy then we can get, on this example, the exact optimal value and satisfy the parity
objective almost surely. However, to do so, we need infinite memory.

Related works. In [11, 17, 8, 16], we initiated the study of a mathematical model that
combines MDPs and two-player zero sum games. With this new model, we provide formal
grounds to synthesize strategies that guarantee both some minimal performance against
any adversary and a higher expected performance against a given expected behaviour of
the environment, thus essentially combining the two traditional standpoints from games
and MDPs. Following this approach, in [1], Almagor et al. study MDPs equipped with a
mean-payoff and parity objective. They study the problem of synthesizing a strategy that

CONCUR 2018

8:4 Learning-Based Mean-Payoff Optimization in an Unknown Parity MDP

ensures an expected mean-payoff value that is as large as possible while satisfying a parity
objective surely. In [15], Chatterjee and Doyen study how to enforce almost surely a parity
objective together with threshold constraint on the expected mean-payoff. See also [10], where
mean-payoff MDPs with energy constraints are studied. In all those works, the transition
probability and the reward function are known in advance. In contrast, we consider the more
complex setting in which the reward function is discovered on the fly during execution time
and the transition probabilities need to be learned.

In [19, 33, 21, 2], RL is combined with safety guarantees. In those works, there is a
MDP with a set of unsafe states that must be avoided at all cost. This MDP is then
restricted to states and actions that are safe and cannot lead to unsafe states. Thereafter,
classical RL is exercised. The problem that is considered there is thus very similar to the
problem that we study here with the difference that they only consider safety constraints.
For safety constraints, the reactive synthesis phase and the RL can be entirely decoupled
with a two-phase algorithm. A simple two-phase approach cannot be applied to the more
general setting of parity objectives. In our more challenging setting, we need to intertwine the
learning with the satisfaction of the parity objective in a non trivial way. It is easy to show
that reducing parity to safety, as in [7], could lead to learning strategies that are arbitrary far
from the optimal value that our learning strategies achieve. In [34], Topcu and Wen study
how to learn in a MDP with a discounted-sum (and not mean-payoff) function and liveness
constraints expressed as deterministic Büchi automata that must be enforced almost surely.
Contrary to our setting, they do not consider general omega-regular specifications expressed
as parity objectives nor sure satisfaction.

Finally, in [9], we apply RL to MDPs where even the topology is unknown. Only πmin
and, for convenience, the size of the state space is given. There, we optimize the probability
to satisfy an omega-regular property; however, no mean payoff is involved.

Structure of the paper. In Sect. 2, we introduce the necessary preliminaries. In Sect. 3,
we study online finite and infinite-memory learning strategies for mean-payoff objectives
without omega-regular constraints. In Sect. 4, we study strategies for mean-payoff objectives
under a parity constraint that must be enforced surely. In Sect. 5, we study strategies for
mean-payoff objectives under a parity constraint that must be enforced almost surely.

2 Preliminaries

Let S be a finite set. We denote by D (S) the set of all (rational) probabilistic distributions
on S, i.e. the set of all functions f : S → Q≥0 such that

∑
s∈S f(s) = 1. For sets A and B

and functions g : A→ D (S) and h : A× B → D (S), we write g(s|a) and h(s|a, b) instead
of g(a)(s) and h(a, b)(s) respectively. The support of a distribution f ∈ D (S) is the set
supp (f) def= {s ∈ S | f(s) > 0}. The support of a function g : A → D (S) is the relation
R ⊆ A× S such that (a, s) ∈ R def⇐⇒ g(s|a) > 0.

2.1 Markov chains

I Definition 1 (Markov chains). A Markov chain C (MC, for short) is a tuple (Q, δ, p, r)
where Q is a (potentially countably infinite) set of states, δ is a (probabilistic) transition
function δ : Q→ D (Q), p : Q→ N is a priority function, and r : supp (δ)→ [0, 1] ∩Q is an
(instantaneous) reward function.

J. Křetínský, G. A. Pérez, J.-F. Raskin 8:5

A run of an MC is an infinite sequence of states q0q1 · · · ∈ Qω such that δ(qi+1|qi) > 0 for
all 0 ≤ i. We denote by Runsq0(C) the set of all runs of C that start with the state q0.

Consider an initial state q0. The probability of every measurable event A ⊆ Runsq0(C) is
well-defined [31, 25]. We denote by Pq0C [A] the probability of A; for a measurable function
f : Runsq0(C) → R, we write Eq0C [f] for the expected value of the function f under the
probability measure Pq0C [·] (see [23, 25] for a detailed definition of these classical notions).

Parity and mean payoff. Consider a run % = q0q1 . . . of C. We say % satisfies the parity
objective, written % |= Parity, if the minimal priority of states along the run is even. That
is to say % |= Parity def⇐⇒ lim inf{p(qi) | i ∈ N} is even. In a slight abuse of notation, we
sometimes write Parity to refer to the set of all runs of an MC which satisfy the parity
objective {% ∈ Runsq0(C) | % |= Parity}. The latter set of runs is clearly measurable.

The mean-payoff function MP is defined for all runs % = q0q1 . . . of C as follows MP(%) def=
lim infj∈N>0

1
j

∑j−1
i=0 r(qi, qi+1). This function is readily seen to be Borel definable [13], thus

also measurable.

2.2 Markov decision processes
I Definition 2 (Markov decision processes). A (finite discrete-time) Markov decision process
M (MDP, for short) is a tuple (Q,A, α, δ, p, r) where Q is a finite set of states, A a finite
set of actions, α : Q → P (A) a function that assigns to q its set of available actions,
δ : Q × A → D (Q) a (partial probabilistic) transition function with δ(q, a) defined for all
q ∈ Q and all a ∈ α(q), p : Q→ N a priority function, and r : supp (δ)→ [0, 1] ∩Q a reward
function. We make the assumption that α(q) 6= ∅ for all q ∈ Q, i.e. there are no deadlocks.

A history h in an MDP is a finite state-reward-action sequence that ends in a state and
respects α, δ, and r, i.e. if h = q0a0x0 . . . ak−1xk−1qk then ai ∈ α(qi), δ(qi+1|qi, ai) > 0, and
r(qi, ai, qi+1), for all 0 ≤ i < k. We write last(h) to denote the state qk. For two histories
h, h′, we write h < h′ if h is a proper prefix of h′.

I Definition 3 (Strategies). A strategy σ in an MDP M = (Q,A, α, δ, p, r) is a function
σ : (Q ·A ·Q)∗Q→ D (A) such that σ(a|h) > 0 =⇒ a ∈ α(last(h)).

We write that a strategy σ is memoryless if σ(h) = σ(h′) whenever last(h) = last(h′);
deterministic if for all histories h the distribution σ(h) is Dirac.

Throughout this work we will speak of steps, episodes, and following strategies. We write
that σ follows τ (from the history h = q0a0x0 . . . qk) during n steps if for all h′ = q′0a

′
0x
′
0 . . . q

′
`,

such that h < h′ and ` ≤ k + n, we have that σ(h′) = τ(h′). An episode is simply a finite
sequence of consecutive steps, i.e. a finite infix of the history, during which one or more
strategies may have been sequentially followed.

A stochastic Mealy machine T is a tuple (M,m0, fu, fo) where M is a (potentially
countably infinite) set of memory elements, m0 ∈ M is the initial memory element, fu :
M ×Q×Q→M is an update function, and fo : M ×Q→ D (A) is an output function. The
machine T is said to implement a strategy σ if for all histories h = q0a0x0 . . . ak−1xk−1qk we
have σ(h) = fo(mk, qk), where mk is inductively defined as mi = fu(mi−1, qi−1, xi−1) for all
i ≥ 1. It is easy to see that any strategy can be implemented by such a machine. A strategy
σ is said to have finite memory if there exists a stochastic Mealy machine that implements it
and such that its set M of memory elements is finite.

A (possibly infinite) state-action sequence h = q0a0x0q1a1x1 . . . is consistent with strategy
σ if σ(ai|q0a0x0 . . . ai−1xi−1qi) > 0 for all i ≥ 0.

CONCUR 2018

8:6 Learning-Based Mean-Payoff Optimization in an Unknown Parity MDP

From MDPs to MCs. The MDPM and a strategy σ implemented by the stochastic Mealy
machine (M,m0, fu, f0) induce the MCMσ = (Q′, δ′, p′, r′) whereQ′ = (Q×M×A)∪(Q×M);
δ′(〈q′,m′, a′〉|s) = fo(a′|m, q) · δ(q′|q, a′) for any s ∈ {〈q,m, a〉, 〈q,m〉} and a′ ∈ α(q) with
(q, a′, q′) ∈ supp (δ) and m′ = fu(m, q, r(q, a′, q′)); p′(〈q,m, a〉) = p′(〈q,m〉) = p(q); and
r′(s, 〈q′,m′, a′〉) = r(q, a, q′) for any s ∈ {〈q,m, a〉, 〈q,m〉}. For convenience, we write Pq0Mσ [·]
instead of P〈q0,m0〉

Mσ [·].
A strategy σ is said to be unichain ifMσ has a single recurrent class, i.e. a single bottom

strongly-connected component (BSCC).

End components. Consider a pair (S, β) where S ⊆ Q and β : S → P (A) gives a subset of
actions allowed per state (i.e. β(q) ⊆ α(q) for all q ∈ S). Let G(S,β) be the directed graph
(S,E) where E is the set of all pairs (q, q′) ∈ S×S such that δ(q′|q, a) > 0 for some a ∈ β(q).
We say (S, β) is an end component (EC) if the following hold: if a ∈ β(s), for (s, a) ∈ S ×A,
then supp (δ(s, a)) ⊆ S; and the graph G(S,β) is strongly connected. Furthermore, we say the
EC (S, β) is good (for the parity objective) (a GEC, for short) if the minimal priority over all
states from S is even; weakly good if it contains a GEC.

For ECs (S, β) and (S′, β′), let us denote by (S, β) ⊆ (S′, β′) the fact that S ⊆ S′ and
β(s) ⊆ β′(s) for all s ∈ S. We denote by MECM the set of all maximal ECs (MECs) in
M with respect to ⊆. It is easy to see that for all (S, ·), (S′, ·) ∈ MECM we have that
S ∩ S′ = ∅, i.e. every state belongs to at most one MEC.

Model learning and robust strategies. In this work we will “approximate” the stochastic
dynamics of an unknown EC in an MDP. Below, we formalize what we mean by approximation.

I Definition 4 (Approximating distributions). LetM = (Q,A, α, δ, p, r) be an MDP, (S, β)
an EC, and ε ∈ (0, 1). We say δ′ is ε-close to δ in (S, β), denoted δ′ ∼ε(S,β) δ, if
|δ′(q′|q, a)− δ(q′|q, a)| ≤ ε for all q, q′ ∈ S and all a ∈ β(q). If the inequality holds for
all q, q′ ∈ Q and all a ∈ α(q), then we write δ′ ∼ε δ.

A strategy σ is said to be (uniformly) expectation-optimal if for all q0 ∈ Q we have
Eq0Mσ [MP] = supτ E

q0
Mτ [MP]. The following result captures the idea that some expectation-

optimal strategies for MDPs whose transition function have the same support are “robust”.
That is, when used to play in another MDP with the same support and close transition
functions, they achieve near-optimal expectation.

I Lemma 5 (Follows from [27, Theorem 6] and [14, Theorem 5]). Consider values ε, ηε ∈ (0, 1)
such that ηε ≤ ε·πmin

24|Q| ; a transition function δ′ such that supp (δ) = supp (δ′) and δ ∼ηε δ′
where πmin is the minimal nonzero probability value from δ and δ′; and a reward function
r′ such that max{|r(q, a, q′) − r′(q, a, q′)| : (q, a, q′) ∈ supp (δ)} ≤ ε

4 . For all memoryless
deterministic expectation-optimal strategies σ in (Q,A, α, δ′, p, r′), for all q0 ∈ Q, it holds
that |Eq0Mσ [MP]− supτ E

q0
Mτ [MP]| ≤ ε.

We say a strategy σ such as the one in the result above is ε-robust-optimal (with respect to
the expected mean payoff).

2.3 Automata as proto-MDPs
We study MDPs with unknown transition and reward functions. It is therefore convenient to
abstract those values and work with automata.

J. Křetínský, G. A. Pérez, J.-F. Raskin 8:7

I Definition 6 (Automata). A (finite-state parity) automaton A is a tuple (Q,A, T, p) where
Q is a finite set of states, A is a finite alphabet of actions, T ⊆ Q× A×Q is a transition
relation, and p : Q→ N is a priority function. We make the assumption that for all q ∈ Q
we have (q, a, q′) ∈ T for some (a, q′) ∈ A×Q.

A transition function δ : Q × A → D (Q) is then said to be compatible with A if
∀(q, a) ∈ Q × A : supp (δ(q, a)) = {q′ | T (q, a, q′)}. For a transition function δ compatible
with A and a reward function r : T → [0, 1]∩Q, we denote by Aδ,r the MDP (Q,A, αT , δ, p, r)
where a ∈ αT (q) def⇐⇒ ∃(q, a, q′) ∈ T . It is easy to see that the sets of ECs of MDPs
(Q,A, αT , δ, p, r) and (Q,A, αT , δ′, p, r′) coincide for all δ′ compatible with A and all reward
functions r′. Hence, we will sometimes speak of the ECs of an automaton.

Example: sure-constraints. Consider the (variable-labelled-)automaton on the left-hand
side of Fig. 1. Note that playing a forever surely wins the parity objective from everywhere
but it may not be optimal for the expected mean payoff. To play optimally, we need to
learn about the values r1, r2, and x. Assume that we play for n steps a and b uniformly
at random when in state q0. This will probably allows us to reach q1 and q2 a number of
times, and so to learn r0 and r1, and compute an estimation x̂ of x. If x̂ · r1 > r0, we may
want to conclude that the optimal strategy is to always play b from q0. But we face here
two major difficulties. First, after the learning episode of n steps, we can observe x̂ · r1 > r0
while x · r1 ≤ r0, this is because we may have been unlucky and observed statistics that
differ from the real distribution. Second, playing b always is not an option if we want to
surely satisfy the parity objective. In this paper, we give algorithms to overcome the two
problems. In our example, the strategy constructed by our algorithm will do the following:
given ε, γ ∈ (0, 1), choose n ∈ N large enough, learn x̂ such that |x̂− x| ≤ ε with probability
more than 1− γ, then if x̂ · r1 ≤ r0, play a forever. Otherwise, keep playing b for longer and
longer episodes. If during one of these episodes, the state q2 is not visited (i.e. the parity
objective is endangered as the minimal priority seen during the episode is odd) switch to
playing a forever.

Transition-probability lower bound. Let πmin ∈ [0, 1] ∩Q be a transition-probability lower
bound. We say that δ is compatible with πmin if for all (q, a, q′) ∈ Q×A×Q we have that:
either δ(q′|q, a) ≥ πmin or δ(q′|q, a) = 0.

3 Learning for MP: the Unconstrained Case

In this section, we focus on the design of optimal learning strategies for the mean-payoff
function in the unconstrained single-end-component case. That is, we have an unknown
strongly connected MDP with no parity objective.

We consider, in turn, learning strategies that use finite and infinite memory. Whereas
classical RL algorithms focus on achieving an optimal expected value (see, e.g., [32]; cf. [6]),
we prove here that a stronger result is achievable: one can ensure – using finite memory only
– outcomes that are close to the best expected value with high probability. Further, with
infinite memory the optimal outcomes can be ensured with probability 1. In both cases, we
argue that our results are tight.

For the rest of this section, let us fix an automaton A = (Q,A, T, p) such that (Q,αT) is
an EC, and some πmin ∈ (0, 1].

CONCUR 2018

8:8 Learning-Based Mean-Payoff Optimization in an Unknown Parity MDP

Yardstick. Let δ be a transition function compatible with A and πmin, and r be a reward
function. The optimal expected mean-payoff value that is achievable in the unique EC
(Q,αT) is defined as Val(Q,αT) def= supσ E

q0
Aσ
δ,r

[MP] for any q0 ∈ Q. Indeed, it is well known
that this value is the same for all states in the same EC.

Note that this value can always be obtained by a memoryless deterministic [20] and
unichain [11] expectation-optimal strategy when δ and r are known. We will use this value
as a yardstick for measuring the performance of the learning strategies we describe below.

Model learning. Our strategies learn approximate models of δ and r to be able to compute
near-optimal strategies. To obtain those models, we use an approach based on ideas
from probably approximately correct (PAC) learning. Namely, we will execute a random
exploration of the MDP for some number of steps and obtain an empirical estimation of its
stochastic dynamics, see e.g. [30]. We say that a memoryless strategy λ is a (uniform random)
exploration strategy for a function β : Q→ P (A) if λ(a|q) = 1/|β(q)| for all q ∈ Q, a ∈ α(q)
such that a ∈ β(q) and λ(a|q) = 0 otherwise. Each time the random exploration enters a
state q and chooses an action a, we say that it performs an experiment on (q, a), and if the
state reached is q′ then we say that the result of the experiment is q′. Furthermore, the value
r(q, a, q′) is then known to us. To learn an approximation δ′ of the transition function δ, and
to learn r, the learning strategy remembers statistics about such experiments. If the random
exploration strategy is executed long enough then it collects sufficiently many experiment
results to accurately approximate the transition function δ and the exact reward function r
with high probability.

The next lemma gives us a bound on the number of |Q|-step episodes for which we need
to exercise such a strategy to obtain the desired approximation with at least some given
probability. It can be proved via a simple application of Hoeffding’s inequality.

I Lemma 7. For all ECs (S, β) and all ε, γ ∈ (0, 1) one can compute n ∈ N (exponential in
|Q| and polynomial in |A|, π−1

min, ln(γ−1), and ε−1) such that following an exploration strategy
for β during n (potentially non-consecutive) episodes of |Q|-steps suffices to collect enough
information to be able to compute a transition function δ′ such that P

[
δ′ ∼ε(S,β) δ

]
≥ 1− γ.

3.1 Finite memory
We now present a family of finite memory strategies σfin that force, given any ε, γ ∈ (0, 1),
outcomes with a mean payoff that is ε-close to the optimal expected value with probability
higher than 1− γ. The strategy σfin is defined as follows.
1. First, σfin follows the model-learning strategy above for L steps, according to Lemma 7,

in order to obtain an approximation δ′ of δ such that δ′ ∼η δ with probability at least
1− γ. A reward function r′ is also constructed from the observed rewards.

2. Then, σfin follows a memoryless deterministic expectation-optimal strategy τ for Aδ′,r′ .
The following result tells us that if the learning phase is sufficiently long, then we can obtain,
with σfin, a near-optimal mean payoff with high probability.

I Proposition 8. For all ε, γ ∈ (0, 1), one can compute L ∈ N such that for the resulting
finite memory strategy σfin, for all q0 ∈ Q, for all δ compatible with A and πmin, and for all
reward functions r, we have Pq0Aσfin

δ,r

[% : MP(%) ≥ Val(Q,αT)− ε] ≥ 1− γ.

Proof. We will make use of Lemma 5. For that purpose, let η = min{πmin, ηε} where ηε is
as in the statement of the lemma. Next, we set L = |Q|n where n is as dictated by Lemma 7
using η and γ. By Lemma 7, with probability at least 1− γ our approximation δ′ is such

J. Křetínský, G. A. Pérez, J.-F. Raskin 8:9

that δ′ ∼η δ. Since η ≤ πmin, it follows that supp (δ) = supp (δ′) and we now have learned r,
again with probability 1− γ. Finally, since η ≤ ηε, Lemma 5 implies the desired result. J

I Remark (Finite-memory implementability). Note that σfin, as we described it previously, is
not immediately seen to be a computable finite stochastic Mealy machine. Let us consider
all possible histories of length L. Observe that this set is not finite because of the unknown
rewards which can range over arbitrary rational numbers in [0, 1]. However, we can finitize
the set by focusing only on rewards of bounded representation size by imposing an upper-
bound on the bitsize of their representation (truncating the rest off observed rewards) while
still satisfying the hypotheses of Lemma 5. Now, for all such histories we can compute an
approximation δ′ of δ and an approximation r′ of the observed reward function r. Using that
information, the required finite-memory expectation-optimal strategy τ can be computed.
We encode these (finitely many) strategies into the machine implementing σfin so that it only
has to choose which one to follow forever after the (finite) learning phase has ended. Hence,
one can indeed construct a finite-memory strategy realizing the described strategy.

Optimality. The following tells us that we cannot do better with finite memory strategies.

I Proposition 9. Let A be the single-EC automaton on the right-hand side of Fig. 1 and
πmin ∈ (0, 1]. For all ε, γ ∈ (0, 1), the following two statements hold.

For all finite memory strategies σ, there exist δ compatible with A and πmin, and a reward
function r, such that Pq0Aσ

δ,r
[% : MP(%) ≥ Val(Q,αT)− ε] < 1.

For all finite memory strategies σ, there exist δ compatible with A and πmin, and a reward
function r such that Pq0Aσ

δ,r
[% : MP(%) < Val(Q,αT)] ≥ γ.

Proof sketch. With a finite-memory strategy we cannot satisfy a stronger guarantee than
being ε-optimal with probability at least 1 − γ in this example. Indeed, as we can only
use finite memory, we can only learn imprecise models of δ and r. That is, we will always
have a non-zero probability to have approximated x or y arbitrarily far from their actual
values. It should then be clear that neither optimality with high probability nor almost-sure
ε-optimality can be achieved. J

3.2 Infinite memory
While we have shown that probably approximately optimal is the best that can be obtained
with finite memory learning strategies, we now establish that with infinite memory, one can
guarantee almost sure optimality.

To this end, we define a strategy σ∞ which operates in episodes consisting of two phases:
learning and optimization. In episode i ∈ N, the strategy does the following.
1. It first follows an exploration strategy λ for αT during Li steps, there exist models δi

and ri based on the experiments obtained throughout the
∑i
j=0 Lj steps during which λ

has been followed so far.
2. Then, σ∞ follows a unichain memoryless deterministic expectation-optimal strategy σδiMP

for Aδi,ri during Oi steps.
One can then argue that σ∞ can be instantiated so that in every episode the finite average
obtained so far gets ever close to Val(Q,αT) with ever higher probability. This is achieved by
choosing the Li as an increasing sequence so that the approximations δi get ever better with
ever higher probability. Then, the Oi are chosen so as to compensate for the past history, for
the time before the induced MC reaches its limit distribution, and for the future number of
steps that will be spent learning in the next episode. The latter then allows us to use the
Borel-Cantelli lemma to show that in the unknown EC we can obtain its value almost surely.

CONCUR 2018

8:10 Learning-Based Mean-Payoff Optimization in an Unknown Parity MDP

I Proposition 10. One can compute a sequence (Li, Oi)i∈N such that Li ≥ |Q| for all i ∈ N;
additionally the resulting strategy σ∞ is such that for all q0 ∈ Q, for all δ compatible with A
and πmin, and for all reward functions r, we have Pq0Aσ∞

δ,r

[% : MP(%) ≥ Val(Q,αT)] = 1.

Optimality. Note that σ∞ is optimal since it obtains with probability 1 the best value that
can be obtained when the MDP is fully known, i.e. when δ and r are known in advance.

4 Learning for MP under a Sure Parity Constraint

We show here how to design learning strategies that obtain near-optimal mean-payoff values
while ensuring that all runs satisfy a given parity objective with certainty.

First, we note that all such learning strategies must avoid entering states q from which
there is no strategy to enforce the parity objective with certainty. Hence, we make the
hypothesis that all such states have been removed from the automaton A, and so we assume
that for all q0 ∈ Q there exists a strategy σpar such that for all functions δ compatible with
A, for all reward functions r, and for all % ∈ Runsq0(Aσδ,r), we have % |= Parity. It is worth
noting that, in fact, there exists a memoryless deterministic strategy such that the condition
holds for all q0 ∈ Q [4, 3]. Notice the swapping of the quantifiers over the initial states
and the strategy, this is why we say it is uniformly winning (for the parity objective). The
set of states to be removed, along with a uniformly winning strategy, can be computed in
quasi-polynomial time [12]. We say that an automaton with no states from which there is no
winning strategy is surely good.

We study the design of learning strategies for mean-payoff optimization under sure parity
constraints for increasingly complex cases.

4.1 The case of a single good EC
Consider a surely-good automaton A = (Q,A, T, p) such that (Q,αT) is a GEC, i.e. the
minimal priority of a state in the EC is even, and some πmin ∈ (0, 1].

Yardstick. For this case, we use as yardstick the optimal expected mean-payoff value:
Val(Q,αT) = supσ E

q0
Aσ
δ,r

[MP] .

Learning strategy. We show here that it is possible to obtain an optimal mean-payoff with
high probability. Note that our solution extends a result given by Almagor et al. [1] for known
MDPs. The main idea behind our solution is to use the strategy σ∞ from Proposition 10 in
a controlled way: we verify that during all successive learning and optimization episodes, the
minimal parity value that is visited is even. If during some episode, this is not the case, then
we resort to a strategy σpar that enforces the parity objective with certainty. Such σpar is
guaranteed to exist as A is surely good.

I Proposition 11. For all γ ∈ (0, 1), there exists a strategy σ such that for all q0 ∈ Q, for
all δ compatible with A and πmin, and for all reward functions r, we have % |= Parity for
all % ∈ Runsq0(Aσδ,r) and Pq0Aσ

δ,r
[% : MP(%) ≥ Val(Q,αT)] ≥ 1− γ.

Proof sketch. We modify σ∞ so as to “give up” on optimizing the mean payoff if the minimal
even priority has not been seen during a long sequence of episodes. This will guarantee that
the measure of runs which give up on the mean-payoff optimization is at most γ.

J. Křetínský, G. A. Pérez, J.-F. Raskin 8:11

First, recall that we can instantiate σ∞ so that Li ≥ |Q| for all i ∈ N. Hence, with some
probability ζ > 0, during every learning phase, we visit a state with even minimal priority. We
can then find a sequence n1, n2, · · · ∈ Nω of natural numbers such that

∏∞
j=i(1−ζnj) ≥ 1−γ,

for some i ∈ N. Given this sequence, we apply the following monitoring. If for ` ∈ N we write
N`

def=
∑`−1
k=1 nk, then at the end of the `-th episode we verify that during some learning phase

from LN` , LN`+1, . . . , LN`+n` we have visited a state with minimal even priority, otherwise
we switch to a parity-winning strategy forever. J

Optimality. The following proposition tells us that the guarantees from Proposition 11 are
indeed optimal w.r.t. our chosen yardstick.

I Proposition 12. Let A be the single-GEC automaton on the left-hand side of Fig. 1 and
πmin ∈ (0, 1]. For all parity-winning strategies σ, there exist δ compatible with A and πmin,
and a reward function r, such that Pq0Aσ

δ,r
[% : MP(%) ≥ Val(Q,αT)] < 1.

Proof sketch. Consider a reward function such that r0 = 0 and r1 = 1 and an arbitrary δ. It
is easy to see that Val(Q,αT) = 1. However, any strategy that ensures the parity objective
is satisfied surely must be such that, with probability γ > 0, it switches to follow a strategy
q2 7→ (a 7→ 1) forever. Hence, with probability at least γ its mean-payoff is sub-optimal. J

4.2 The case of a single EC
We now turn to the case where the surely-good automaton A = (Q,A, T, p) consists of a
unique, not necessarily good, EC (Q,αT). Let us also fix some πmin ∈ (0, 1].

An important observation regarding single-end-component MDPs that are surely good is
that they contain at least one GEC as stated in the following lemma.

I Lemma 13. For all surely-good automata A = (Q,A, T, p) such that (Q,αT) is an EC
there exists (S, β) ⊆ (Q,αT) such that (S, β) is a GEC in Aδ,r for all δ compatible with A
and all reward functions r, i.e. (Q,αT) is weakly good.

Yardstick. Let δ and r be fixed in the single EC, our yardstick for this case is defined as
follows: sVal(Q,αT) def= maxq∈Q sup

{
EqAσ

δ,r
[MP]

∣∣∣ σ is a parity-winning strategy
}
. That is

sVal(Q,αT) is the best MP expectation value that can be obtained from a state q ∈ Q with
a parity-winning strategy. It is remarkable to note that we take the maximal value over all
states in Q. As noted by Almagor et al. [1], this value is not always achievable even when δ
and r are a priori known, but it can be approached arbitrarily close.

Learning strategy. The following proposition tells us that we can obtain a value close to
sVal(Q,αT) with arbitrarily high probability while satisfying the parity objective surely.

I Proposition 14. For all ε, γ ∈ (0, 1) there exists a strategy σ such that for all q0 ∈ Q, for
all δ compatible with A and πmin, and for all reward functions r, we have % |= Parity for
all % ∈ Runsq0(Aσδ,r) and Pq0Aσ

δ,r
[% : MP(%) ≥ sVal(Q,αT)− ε] ≥ 1− γ.

Proof sketch. We define a strategy σ as follows. Let η = min{πmin, ηε/2} for ηε/2 as defined
for Lemma 5. The strategy σ plays as follows.
1. It first computes δ′ such that δ′ ∼η δ with probability at least 1 − γ/4 and a reward

function r′ by following an exploration strategy λ for αT during J0 steps (see Lemma 7).

CONCUR 2018

8:12 Learning-Based Mean-Payoff Optimization in an Unknown Parity MDP

q0 : 1q1 : 2q2 : 2 q3 : 2 q4 : 2

a

b b

aa a b b

Figure 2 An automaton for which it is impossible to learn to obtain near-optimal mean-payoff
almost surely or optimal mean-payoff with high probability, while satisfying the parity objective.
For clarity, probability and reward placeholders have been omitted.

2. It then selects a contained maximal good EC (MGEC) with maximal expected mean-
payoff value (see Lemma 13) and tries to reach it with probability at least 1− γ/4 by
following λ during J1 steps.

3. Finally, if the component is reached, it follows a strategy τ as in Proposition 11 with γ/4
from then onward.

If the learning “fails” or if the component is not reached, the strategy reverts to following
a winning strategy forever. (A failed learning phase is one in which the approximated
distribution function does not have T as its support.) J

Optimality. The following states that we cannot improve on the result of Proposition 14.

I Proposition 15. Let A be the single-EC automaton in Fig. 2 and πmin ∈ (0, 1]. For all
ε, γ ∈ (0, 1), the two following statements hold.

For all strategies σ, there exist δ compatible with A and πmin, and a reward function r,
such that Pq0Aσ

δ,r
[% : MP(%) ≥ sVal(Q,αT)− ε] < 1.

For all strategies σ, there exist δ compatible with A and πmin, and a reward function r,
such that Pq0Aσ

δ,r
[% : MP(%) ≥ sVal(Q,αT)] < 1− γ.

Proof sketch. Observe that the MEC is not a good EC. However, it does contain the GECs
with states {q1, q2} and {q3, q4} respectively. Now, since those two GECs are separated by q0,
whose priority is 1, any winning strategy must at some point stop playing to q0 and commit
to a single GEC. Thus, the learning of the global EC can only last for a finite number of
steps. It is then straightforward to argue that near-optimality with high-probability is the
best achievable guarantee. J

4.3 General surely-good automata
In this section, we generalize our approach from single-EC automata to general automata.
We will argue that, under a sure parity constraint, we can achieve a near-optimal mean
payoff with high probability in any MEC (S, β) in which we end up with non-zero probability.
That is, given that the event Inf ⊆ S, defined as the set of all runs that eventually always
stay within S, has non-zero probability measure.

I Theorem 16. Consider a surely-good automaton A = (Q,A, T, p) and some πmin ∈ (0, 1].
For all ε, γ ∈ (0, 1) there exists a strategy σ such that for all q0 ∈ Q, for all δ compatible
with A and πmin, and all reward functions r, we have

% |= Parity for all % ∈ Runsq0(Aσδ,r) and
Pq0Aσ

δ,r
[% : MP(%) ≥ sVal(S, β)− ε | Inf ⊆ S] ≥ 1− γ for all (S, β) ∈ MECAδ,r such that

(S, β) is weakly good and Pq0Aσ
δ,r

[Inf ⊆ S] > 0.

Proof sketch. The strategy σ we construct follows a parity-winning strategy σpar until a
state contained in a weakly good MEC, that has not been visited before, is entered. In this
case, the strategy follows τ (the strategy from Proposition 14). Observe that when τ switches

J. Křetínský, G. A. Pérez, J.-F. Raskin 8:13

to σpar (a parity-winning strategy) it may exit the end component. If this happens, then the
component is marked as visited and σpar is followed until a new – not previously visited –
maximal good end component is entered. In that case, we switch to τ once more. Crucially,
the new strategy σ ignores MECs that are revisited J

I Remark (On the choice of MECs to reach). The strategy constructed for the proof of
Theorem 16 has to deal with leaving a MEC due to the fallbacks to the parity-winning
strategy σpar. However, surprisingly, instead of actually following σpar, upon entering a new
MEC it has to restart the process of achieving a satisfactory mean-payoff. Indeed, otherwise
the overall mass of sub-optimal runs from various MECs (each smaller than γ) could get
concentrated in a single MEC, thus violating the advertised guarantees.

The strategy could be simplified as follows. First, we follow any strategy to reach a
bottom MEC (BMEC) – that is, a MEC from which no other MEC is reachable. By definition,
the winning strategy can be played here and the MEC cannot be escaped. Therefore, in
the BMEC we run the strategy as described, and after the fallback we indeed simply follow
σpar. If we did not reach a BMEC after a long time, we could switch to the fallback, too.
While this strategy is certainly simpler, our general strategy has the following advantage.
Intuitively, we can force the strategy to stay in any current good MEC, even if it is not
bottom, and thus maybe achieve a more satisfactory mean-payoff. Further, whenever we
want, we can force the strategy to leave the current MEC and go to a lower one. For instance,
if the current estimate of the mean payoff is lower than what we hope for, we can try our luck
in a lower MEC. We further comment on the choice of unknown MECs in the conclusions.

5 Learning for MP under an Almost-Sure Parity Constraint

In this section, we turn our attention to learning strategies that must ensure a parity objective
not with certainty (as in previous section) but almost surely, i.e. with probability 1. As
winning almost surely is less stringent, we can hope both for a stricter yardstick (i.e. better
target values) and also better ways of achieving such high values. We show here that this is
indeed the case. Additionally, we argue that several important learning results can now be
obtained with finite-memory strategies.

As previously, we make the hypothesis that we have removed from A all states from
which the parity objective cannot be forced with probability 1 (no such state can ever be
entered). Note that to compute the set of states to remove, we do not need the knowledge
of δ but only the support as given by A. States to remove can be computed in polynomial
time using graph-based algorithms (see, e.g., [5]). An automaton A which contains only
almost-surely winning states for the parity objective is called almost-surely good.

We have, as in the previous section, that for all automata A there exists a memoryless
deterministic strategy σ such that for all q0 ∈ Q, for all δ compatible with A, for all r, the
measure of the subset of % ∈ Runsq0(Aσµ,r) such that % |= Parity is equal to 1 (see e.g. [5]).
Such a strategy is said to be uniformly almost-sure winning (for the parity objective). In the
sequel, we denote such a strategy σas

par.
We now study the design of learning strategies for mean-payoff optimization under

almost-sure parity constraints for increasingly complex cases.

CONCUR 2018

8:14 Learning-Based Mean-Payoff Optimization in an Unknown Parity MDP

5.1 The case of a good end component
Consider an automaton A = (Q,A, T, p) such that (Q,αT) is a GEC, and some πmin ∈ (0, 1].

Yardstick. For this case, we use as a yardstick the optimal expected mean-payoff value:
Val(Q,αT) = supσ E

q0
Aσ
δ,r

[MP] for any q0 ∈ Q.

Learning strategies. We start by noting that σ∞ from Section 3 also ensures that the parity
objective is satisfied almost surely when exercised in a GEC.

I Proposition 17. One can compute a sequence (Li, Oi)i∈N such that for the resulting strategy
σ∞ we have that for all q0 ∈ Q, for all δ compatible with A and πmin, and for all reward
functions r, we have Pq0Aσ∞

δ,r

[Parity] = 1 and Pq0Aσ∞
δ,r

[% : MP(%) ≥ Val(Q,αT)] = 1.

Proof. By Proposition 10, one can choose parameter sequences such that Li ≥ |Q| for all
i ∈ N and so that we obtain the second part of the claim. Then, since in every episode we
have a non-zero probability of visiting a minimal even priority state, we obtain the first part
of the claim as a simple consequence of the second Borel-Cantelli lemma. J

We now turn to learning using finite memory only. Consider parameters ε, γ ∈ (0, 1). Let
η = min{πmin, ηε/4} for ηε/4 as defined for Lemma 5. The strategy τfin that we construct
does the following.
1. First, it computes δ′ such that δ′ ∼η δ with probability at least 1 − γ and a reward

function r′ by following an exploration strategy λ for αT during J steps (see Lemma 7).
2. Then, it computes a unichain deterministic expectation-optimal strategy σδ′

MP for Aδ′,r′

and repeats the following forever: follow σδ
′

MP for O steps, then follow λ for |Q| steps.
Using the fact that, in a finite MC with a single BSCC, almost all runs obtain the expected
mean payoff and the assumption that the EC is good, one can then prove the following result.

I Proposition 18. For all ε, γ ∈ (0, 1) one can compute L,O ∈ N such that for the resulting
strategy τfin, for all q0 ∈ Q, for all δ compatible with A and πmin, and for all reward functions
r, we have Pq0Aτfin

δ,r

[Parity] = 1 and Pq0Aτfin
δ,r

[% : MP(%) ≥ Val(Q,αT)− ε] ≥ 1− γ.

Optimality. Obviously, the result of Proposition 17 is optimal as we obtain the best possible
value with probability one. We claim that the result of Proposition 18 is also optimal as we
have seen that when we use finite learning, we cannot do better than ε-optimality with high
probability, this can be proved on the example of Fig. 2 with a similar argument to the one
that has been developed for the proof of Proposition 15.

5.2 The case of a single end component
Consider an almost-surely-good automaton A = (Q,A, T, p) such that (Q,αT) is an EC and
some πmin ∈ (0, 1]. The EC is not necessarily good but as the automaton is almost-surely-good,
then we have the analogue of Lemma 13 in this context.

I Lemma 19. For all almost-surely-good automata A = (Q,A, T, p) such that (Q,αT) is an
EC there exists (S, β) ⊆ (Q,αT) such that (S, β) is a GEC in Aδ,r for all δ compatible with
A and all reward functions r, i.e. (Q,αT) is weakly good.

J. Křetínský, G. A. Pérez, J.-F. Raskin 8:15

Yardstick. As a yardstick for this case, we use the following value: asVal(Q,αT) def=
max{Val(S, β) | (S, β) ⊆ (Q,αT) and (S, β) is a GEC}. That is, asVal(Q,αT) is the best
expected mean-payoff value that can be obtained in a GEC included in the EC. Such a good
EC exists by Lemma 19.

Learning strategy. We will now prove an analogue of Proposition 14. For any given
ε, γ ∈ (0, 1) we define the strategy σ as follows.
1. First, it follows an exploration strategy λ for αT during sufficiently many steps (say K) to

compute an approximation δ′ of δ such that δ′ ∼ηε/4 δ with probability at least 1− γ/2;
and a reward function r′ (see Lemma 7).

2. Next, it selects a GEC (S, β) with maximal value ± ε4 (see Lemma 19) and computes for
it a strategy τ as in Proposition 18 with ε1/2 and γ/2.

3. Finally, σ follows λ until (S, β) is reached, then switches to τ .

I Proposition 20. For all ε, γ ∈ (0, 1) one can construct a finite-memory strategy σ such
that for all q0 ∈ Q, for all δ compatible with A and πmin, and for all reward functions r, we
have Pq0Aσ

δ,r
[Parity] = 1 and Pq0Aσ

δ,r
[% : MP(%) ≥ asVal(Q,αT)− ε] ≥ 1− γ.

See the remark in Sect. 4.3 for a comment on the finite-memory implementability of σ.

Optimality. Using the same example and reasoning as in Proposition 15, we can show that
this result is optimal and cannot be improved. Also note that using infinite memory would
not help as shown with the example of Fig. 2, where the learning needs to be finite and
enforcing the almost sure parity does not require infinite memory.

5.3 General almost-surely-good automata
We now generalize our approach to general almost-surely-good automata.

I Theorem 21. Consider an almost-surely-good automaton A = (Q,A, T, p) and some
πmin ∈ (0, 1]. For all ε, γ ∈ (0, 1) one can compute a finite-memory strategy σ such that for
all q0 ∈ Q, for all δ compatible with A and πmin, and all reward functions r, we have

Pq0Aσ
δ,r

[Parity] = 1 and
Pq0Aσ

δ,r
[% : MP(%) ≥ asVal(S, β)− ε | Inf ⊆ S] ≥ 1− γ for all (S, β) ∈ MECAδ,r such that

(S, β) is weakly good and Pq0Aσ
δ,r

[Inf ⊆ S] > 0.

Proof sketch. The argument to prove the above result is simple: σ follows a strategy σas
par

that ensures satisfying the parity objective almost surely. Then, if the run reaches a state
contained in a weakly good MEC, σ switches to τ as described in Proposition 20. J

See the remark in Sect. 3.1 for a word on how to modify σ to favour some unknown MECs.

6 Conclusion

As future work, we would like to study different configurations resulting from relaxations of
the assumptions we make in this work (i.e. full support, πmin, and bounded reward). Further,
we would like to obtain model-free learning algorithms ensuring the same guarantees we
give here. Finally, we have left open the choice of strategy driving the visits to MECs in
Theorems 16 and 21 (as long as it satisfies the parity objective). Indeed, the question of
computing an “optimal” such strategy in view of the unknown components of the MDP can
be addressed in different ways. One such way would be to model the problem as a Canadian
traveler problem [24].

CONCUR 2018

8:16 Learning-Based Mean-Payoff Optimization in an Unknown Parity MDP

References
1 Shaull Almagor, Orna Kupferman, and Yaron Velner. Minimizing expected cost under

hard boolean constraints, with applications to quantitative synthesis. In Josée Desharnais
and Radha Jagadeesan, editors, 27th International Conference on Concurrency Theory,
CONCUR 2016, August 23-26, 2016, Québec City, Canada, volume 59 of LIPIcs, pages
9:1–9:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.
CONCUR.2016.9.

2 Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum,
and Ufuk Topcu. Safe reinforcement learning via shielding. CoRR, abs/1708.08611, 2017.
arXiv:1708.08611.

3 Benjamin Aminof and Sasha Rubin. First-cycle games. Information and Compution,
254:195–216, 2017. doi:10.1016/j.ic.2016.10.008.

4 Krzysztof R. Apt and Erich Grädel. Lectures in game theory for computer scientists. Cam-
bridge University Press, 2011.

5 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
6 Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on rein-

forcement learning. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-
11 August 2017, volume 70 of Proceedings of Machine Learning Research, pages 449–458.
PMLR, 2017. URL: http://proceedings.mlr.press/v70/bellemare17a.html.

7 Julien Bernet, David Janin, and Igor Walukiewicz. Permissive strategies: from parity games
to safety games. ITA, 36(3):261–275, 2002. doi:10.1051/ita:2002013.

8 Raphaël Berthon, Mickael Randour, and Jean-François Raskin. Threshold constraints with
guarantees for parity objectives in Markov decision processes. In Ioannis Chatzigiannakis,
Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on
Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland,
volume 80 of LIPIcs, pages 121:1–121:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2017. doi:10.4230/LIPIcs.ICALP.2017.121.

9 Tomás Brázdil, Krishnendu Chatterjee, Martin Chmelik, Vojtech Forejt, Jan Kretínský,
Marta Z. Kwiatkowska, David Parker, and Mateusz Ujma. Verification of markov decision
processes using learning algorithms. In Automated Technology for Verification and Anal-
ysis - 12th International Symposium, ATVA 2014, Sydney, NSW, Australia, November
3-7, 2014, Proceedings, volume 8837 of Lecture Notes in Computer Science, pages 98–114.
Springer, 2014.

10 Tomás Brázdil, Antonín Kucera, and Petr Novotný. Optimizing the expected mean
payoff in energy Markov decision processes. In Automated Technology for Verification
and Analysis - 14th International Symposium, ATVA 2016, Chiba, Japan, October 17-20,
2016, Proceedings, volume 9938 of Lecture Notes in Computer Science, pages 32–49, 2016.
doi:10.1007/978-3-319-46520-3.

11 Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin. Meet
your expectations with guarantees: Beyond worst-case synthesis in quantitative games. In
Ernst W. Mayr and Natacha Portier, editors, 31st International Symposium on Theoretical
Aspects of Computer Science (STACS 2014), STACS 2014, March 5-8, 2014, Lyon, France,
volume 25 of LIPIcs, pages 199–213. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2014. doi:10.4230/LIPIcs.STACS.2014.199.

12 Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. De-
ciding parity games in quasipolynomial time. In Hamed Hatami, Pierre McKenzie, and
Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on The-
ory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 252–263.
ACM, 2017. doi:10.1145/3055399.3055409.

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.9
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.9
http://arxiv.org/abs/1708.08611
http://dx.doi.org/10.1016/j.ic.2016.10.008
http://proceedings.mlr.press/v70/bellemare17a.html
http://dx.doi.org/10.1051/ita:2002013
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.121
http://dx.doi.org/10.1007/978-3-319-46520-3
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.199
http://dx.doi.org/10.1145/3055399.3055409

J. Křetínský, G. A. Pérez, J.-F. Raskin 8:17

13 Krishnendu Chatterjee. Concurrent games with tail objectives. Theoretical Computer
Science, 388(1-3):181–198, 2007. doi:10.1016/j.tcs.2007.07.047.

14 Krishnendu Chatterjee. Robustness of structurally equivalent concurrent parity games. In
Lars Birkedal, editor, Foundations of Software Science and Computational Structures - 15th
International Conference, FOSSACS 2012, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April
1, 2012. Proceedings, volume 7213 of Lecture Notes in Computer Science, pages 270–285.
Springer, 2012. doi:10.1007/978-3-642-28729-9_18.

15 Krishnendu Chatterjee and Laurent Doyen. Energy and mean-payoff parity markov de-
cision processes. In Mathematical Foundations of Computer Science 2011 - 36th In-
ternational Symposium, MFCS 2011, Warsaw, Poland, August 22-26, 2011. Proceed-
ings, volume 6907 of Lecture Notes in Computer Science, pages 206–218. Springer, 2011.
doi:10.1007/978-3-642-22993-0.

16 Krishnendu Chatterjee, Petr Novotný, Guillermo A. Pérez, Jean-François Raskin, and
Dorde Zikelic. Optimizing expectation with guarantees in POMDPs. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Fran-
cisco, California, USA., pages 3725–3732. AAAI Press, 2017. URL: http://www.aaai.
org/Library/AAAI/aaai17contents.php.

17 Lorenzo Clemente and Jean-François Raskin. Multidimensional beyond worst-case and
almost-sure problems for mean-payoff objectives. In 30th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 257–268.
IEEE Computer Society, 2015. doi:10.1109/LICS.2015.33.

18 Przemyslaw Daca, Thomas A. Henzinger, Jan Kretínský, and Tatjana Petrov. Faster
statistical model checking for unbounded temporal properties. In Tools and Algorithms
for the Construction and Analysis of Systems - 22nd International Conference, TACAS
2016, Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, vol-
ume 9636 of Lecture Notes in Computer Science, pages 112–129. Springer, 2016. doi:
10.1007/978-3-662-49674-9.

19 Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen, Axel Legay, Didier Lime,
Mathias Grund Sørensen, and Jakob Haahr Taankvist. On time with minimal expected cost!
In Automated Technology for Verification and Analysis - 12th International Symposium,
ATVA 2014, Sydney, NSW, Australia, November 3-7, 2014, Proceedings, volume 8837 of
Lecture Notes in Computer Science, pages 129–145. Springer, 2014.

20 Hugo Gimbert. Pure stationary optimal strategies in Markov decision processes. In Wolf-
gang Thomas and Pascal Weil, editors, STACS 2007, 24th Annual Symposium on Theo-
retical Aspects of Computer Science, Aachen, Germany, February 22-24, 2007, Proceed-
ings, volume 4393 of Lecture Notes in Computer Science, pages 200–211. Springer, 2007.
doi:10.1007/978-3-540-70918-3_18.

21 Sebastian Junges, Nils Jansen, Christian Dehnert, Ufuk Topcu, and Joost-Pieter Katoen.
Safety-constrained reinforcement learning for MDPs. In Marsha Chechik and Jean-François
Raskin, editors, Tools and Algorithms for the Construction and Analysis of Systems - 22nd
International Conference, TACAS 2016, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-
8, 2016, Proceedings, volume 9636 of Lecture Notes in Computer Science, pages 130–146.
Springer, 2016. doi:10.1007/978-3-662-49674-9_8.

22 Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement learning:
A survey. J. Artif. Intell. Res., 4:237–285, 1996. doi:10.1613/jair.301.

23 James R. Norris. Markov chains. Cambridge series in statistical and probabilistic mathe-
matics. Cambridge University Press, 1998.

CONCUR 2018

http://dx.doi.org/10.1016/j.tcs.2007.07.047
http://dx.doi.org/10.1007/978-3-642-28729-9_18
http://dx.doi.org/10.1007/978-3-642-22993-0
http://www.aaai.org/Library/AAAI/aaai17contents.php
http://www.aaai.org/Library/AAAI/aaai17contents.php
http://dx.doi.org/10.1109/LICS.2015.33
http://dx.doi.org/10.1007/978-3-662-49674-9
http://dx.doi.org/10.1007/978-3-662-49674-9
http://dx.doi.org/10.1007/978-3-540-70918-3_18
http://dx.doi.org/10.1007/978-3-662-49674-9_8
http://dx.doi.org/10.1613/jair.301

8:18 Learning-Based Mean-Payoff Optimization in an Unknown Parity MDP

24 Christos H. Papadimitriou and Mihalis Yannakakis. Shortest paths without a map. Theo-
retical Computer Science, 84(1):127–150, 1991.

25 Martin L. Puterman. Markov Decision Processes. Wiley-Interscience, 2005.
26 Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach (3. internat.

ed.). Pearson Education, 2010. URL: http://vig.pearsoned.com/store/product/1,
1207,store-12521_isbn-0136042597,00.html.

27 Eilon Solan. Continuity of the value of competitive Markov decision processes. Journal of
Theoretical Probability, 16(4):831–845, 2003.

28 Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an introduction.
Adaptive computation and machine learning. MIT Press, 2018. URL: http://www.
incompleteideas.net/book/the-book-2nd.html.

29 Wolfgang Thomas. On the synthesis of strategies in infinite games. In STACS, pages 1–13,
1995. doi:10.1007/3-540-59042-0_57.

30 Leslie G. Valiant. A theory of the learnable. In Richard A. DeMillo, editor, Proceedings
of the 16th Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1984,
Washington, DC, USA, pages 436–445. ACM, 1984. doi:10.1145/800057.808710.

31 Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs.
In 26th Annual Symposium on Foundations of Computer Science, Portland, Oregon, USA,
21-23 October 1985, pages 327–338. IEEE Computer Society, 1985. doi:10.1109/SFCS.
1985.12.

32 Christopher J. C. H. Watkins and Peter Dayan. Technical note q-learning. Machine Learn-
ing, 8:279–292, 1992. doi:10.1007/BF00992698.

33 Min Wen, Rüdiger Ehlers, and Ufuk Topcu. Correct-by-synthesis reinforcement learn-
ing with temporal logic constraints. In 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS 2015, Hamburg, Germany, September 28 - Octo-
ber 2, 2015, pages 4983–4990. IEEE, 2015. URL: http://ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=7347169.

34 Min Wen and Ufuk Topcu. Probably approximately correct learning in stochastic games
with temporal logic specifications. In Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016,
pages 3630–3636. IJCAI/AAAI Press, 2016. URL: http://www.ijcai.org/Proceedings/
2016.

http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0136042597,00.html
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0136042597,00.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://dx.doi.org/10.1007/3-540-59042-0_57
http://dx.doi.org/10.1145/800057.808710
http://dx.doi.org/10.1109/SFCS.1985.12
http://dx.doi.org/10.1109/SFCS.1985.12
http://dx.doi.org/10.1007/BF00992698
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7347169
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7347169
http://www.ijcai.org/Proceedings/2016
http://www.ijcai.org/Proceedings/2016

Deciding Probabilistic Bisimilarity Distance One
for Probabilistic Automata
Qiyi Tang
Department of Computing, Imperial College, London, United Kingdom

Franck van Breugel
Department of Electrical Engineering and Computer Science, York University, Toronto, Canada

Abstract
Probabilistic bisimilarity, due to Segala and Lynch, is an equivalence relation that captures which
states of a probabilistic automaton behave exactly the same. Deng, Chothia, Palamidessi and
Pang proposed a robust quantitative generalization of probabilistic bisimilarity. Their probabil-
istic bisimilarity distances of states of a probabilistic automaton capture the similarity of their
behaviour. The smaller the distance, the more alike the states behave. In particular, states are
probabilistic bisimilar if and only if their distance is zero.

Although the complexity of computing probabilistic bisimilarity distances for probabilistic
automata has already been studied and shown to be in NP ∩ coNP and PPAD, we are not
aware of any practical algorithm to compute those distances. In this paper we provide several
key results towards algorithms to compute probabilistic bisimilarity distances for probabilistic
automata. In particular, we present a polynomial time algorithm that decides distance one.
Furthermore, we give an alternative characterization of the probabilistic bisimilarity distances as
a basis for a policy iteration algorithm.

2012 ACM Subject Classification Mathematics of computing → Markov processes, Theory of
computation → Concurrency

Keywords and phrases probabilistic automaton, probabilistic bisimilarity, distance

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.9

Funding Natural Sciences and Engineering Research Council of Canada

Acknowledgements The authors would like to thank the referees for their detailed and construct-
ive feedback.

1 Introduction

Behavioural equivalences, such as bisimilarity, are one of the cornerstones of concurrency
theory. Recall that a behavioural equivalence ∼ ⊆ S × S, where S is the set of states of the
model, satisfies

s ∼ s
if s ∼ t then t ∼ s
if s ∼ t and t ∼ u then s ∼ u

for all s, t, u ∈ S. If s ∼ t then states s and t behave the same.
As first observed by Giacalone, Jou and Smolka [17], behavioural equivalences are not

robust for models that contain quantitative information such as probabilities and time. This
lack of robustness is caused by the discrepancy between the discrete nature of behavioural

© Qiyi Tang and Franck van Breugel;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 9; pp. 9:1–9:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 Probabilistic Bisimilarity Distance One

equivalence and the continuous nature of the quantitative information on the which the beha-
vioural equivalence relies. In particular, even small changes to the quantitative information
may cause behaviourally equivalent states become inequivalent or vice versa.

Giacalone et al. proposed behavioural pseudometrics as a robust quantitative generalization
of behavioural equivalences. A behavioural pseudometric d : S × S → [0, 1] satisfies

d(s, t) = 0 if and only if s ∼ t
d(s, t) = d(t, s)
d(s, u) ≤ d(s, t) + d(t, u)

for all s, t, u ∈ S. The distance d(s, t) measures the similarity of the behaviour of states s
and t. The smaller this distance, the more alike the states behave. Distance zero captures
that states are behaviourally equivalent.

In this paper, we focus on probabilistic automata. This model was first studied by Segala
in [27]. It captures both nondeterminism (and, hence, concurrency) and probabilities. Let us
consider a simple example.

ff

tt

bb

hh
1
2

1
2

51
100

49
100

1

1

1 1

The states of a probabilistic automaton are labelled. These labels provide a partition of the
states so that states satisfying the same basic properties of interest are in the same partition.
In the above example, the labels are represented by colours. Each state has one or more
probabilistic transitions. For example, the state t has a single probabilistic transition that
takes state t to itself with probability one. State f has two probabilistic transitions. The
one takes state f to state h with probability one. The other represents a fair coin toss, that
is, it transitions to state h with probability 1

2 and to state t with probability 1
2 . Also state b

has two transitions, one of which represents a biased coin toss.
Segala and Lynch [28] introduced probabilistic bisimilarity. This behavioural equivalence

for probabilistic automata generalises the one introduced by Larsen and Skou [25]. The
latter is applicable to models without nondeterminism, known as labelled Markov chains.
States s and t of a probabilistic automaton are probabilistic bisimilar if for each outgoing
probabilistic transition of state s there exists a matching outgoing probabilistic transition
of state t, and vice versa. Two probabilistic transitions match if they both transition to
each probabilistic bisimilarity equivalence class with the exact same probability. States f
and b in the above example are not probabilistic bisimilar. Although the transition from
state f to state h can be matched by the transition from state b to state h, the probabilistic
transitions representing a fair and biased coin toss do not match since the probabilities are
slightly different.

Deng, Chothia, Palamidessi and Pang [12] introduced a behavioural pseudometric for
probabilistic automata that generalises probabilistic bisimilarity. The Hausdorff metric [18]
and the Kantorovich metric [22] are key ingredients of this pseudometric. The former is used

Q. Tang and F. van Breugel 9:3

to capture nondeterminism. This idea dates back to the work of De Bakker and Zucker [4].
The latter was first used by Van Breugel and Worrell [7] to capture probabilistic behaviour.
On the one hand, the behaviours of the states h and t of the above example are very different
since their labels are different. As a result, their probabilistic bisimilarity distance is one.
On the other hand, the behaviours of the states f and b are very similar, which is reflected
by the fact that these states have probabilistic bisimilarity distance 1

100 .
Tracol, Desharnais and Zhioua [34] also introduced a behavioural pseudometric for

probabilistic automata. Their probabilistic bisimilarity distances generalise probabilistic
bisimilarity as well, but are different from the ones introduced by Deng et al. An example
showing the difference can be found in [34, Example 5]. To compute their probabilistic
bisimilarity distances, they developed an iterative algorithm. In each iteration, a maximum
flow problem needs to be solved. The resulting algorithm is polynomial time.

The complexity of computing the probabilistic bisimilarity distances for probabilistic
automata a la Deng et al. was first studied by Fu [15]. He showed that these probabilistic
bisimilarity distances are rational. Furthermore, he proved that the problem of deciding
whether the distance of two states is smaller than a given rational is in NP ∩ coNP. The
proof can be adapted to show that the decision problem is in UP ∩ coUP [16]. Recall that
UP contains those problems in NP with a unique accepting computation. Van Breugel and
Worrell [8] have shown that the problem of computing the probabilistic bisimilarity distances
is in PPAD, which is short for polynomial parity argument in a directed graph.

For the behavioural pseudometric of Deng et al., states are probabilistic bisimilar if and
only if they have distance zero. Since probabilistic bisimilarity can be decided in polynomial
time, as shown by Baier [2], distance zero can be decided in polynomial time as well. In
Section 5 we present a polynomial time algorithm that decides distance one.

As we have already shown in [32] in the context of labelled Markov chains, being able to
decide distance zero and distance one in polynomial time has significant impact on computing
probabilistic bisimilarity distances. For example, we can determine in polynomial time how
many, if any, distances are non-trivial, that is, greater than zero and smaller than one. The
technical details in this paper are considerably more involved than those in [32].

Deng et al. define their pseudometric as a least fixed point. In Section 4 we present an
alternative characterization of the probabilistic bisimilarity distances. This characterization is
similar to the one presented for labelled Markov chains by Chen, Van Breugel and Worrell [9].
The latter characterization provided the foundation for the policy iteration algorithm to
compute the probabilistic bisimilarity distances for labelled Markov chains by Bacci, Bacci,
Larsen and Mardare [1] (see also [31]). Our alternative characterization plays a key role in
the correctness proof of our algorithm.

2 Order and Distances

In this section, we provide some definitions and results from the literature about orders and
distances that we will use in the remainder of this paper. For more details we refer the reader
to, for example, [11] and [3]. Given a set S, we denote the set of functions from S × S to
[0, 1] by [0, 1]S×S . As in the work of Desharnais et al. [13], we endow the set [0, 1]S×S with
the following natural order.

I Definition 1. The relation v ⊆ [0, 1]S×S × [0, 1]S×S is defined by

d v e if d(s, t) ≤ e(s, t) for all s, t ∈ S.

I Proposition 2. 〈[0, 1]S×S ,v〉 is a complete lattice.

CONCUR 2018

9:4 Probabilistic Bisimilarity Distance One

Proof. See, for example, [13, Lemma 3.2]. J

Let 〈X,≤〉 be an ordered set. Let f : X → X. Following [11, Definition 8.14], we define
the following three notions:

x ∈ X is a fixed point of f if f(x) = x,
x ∈ X is a pre-fixed point of f if f(x) ≤ x, and
x ∈ X is a post-fixed point of f if x ≤ f(x).

A function f : X → X is monotone if for all x, y ∈ X, x ≤ y implies f(x) ≤ f(y). The
following result is known as the Knaster-Tarski fixed point theorem [24, 33].

I Theorem 3. Let X be a complete lattice and let f : X → X be a monotone function.
(a) f has a greatest fixed point.
(b) The greatest fixed point of f is the greatest post-fixed point of f .
(c) f has a least fixed point.
(d) The least fixed point of f is the least pre-fixed point of f .

Proof. See, for example, [11, Theorem 2.35] and [11, Theorem 8.20]. J

We denote the greatest and least fixed point of a function f by νf and µf , respectively.
Given a set X, we denote the set of subsets of X by 2X . The correctness of our iterative
algorithm to decide distance one relies on the following theorem.

I Theorem 4. Let X be a finite set and let Φ : 2X → 2X be a monotone function.
(a) µΦ = Φn(∅) for some n ∈ N.
(b) νΦ = Φn(X) for some n ∈ N.
(c) If Y ⊆ µΦ then µΦ = Φn(Y) for some n ∈ N.

Proof. See, for example, [10, Lemma 8]. J

The set [0, 1]S×S also carries the following natural metric.

I Definition 5. The function ‖ · − · ‖ : [0, 1]S×S × [0, 1]S×S → [0, 1] is defined by

‖d− e‖ = sup
s,t∈S

|d(s, t)− e(s, t)|.

I Proposition 6. 〈[0, 1]S×S , ‖ · − · ‖〉 is a nonempty complete metric space.

Proof. See, for example, [3, Section 1.1.2]. J

Let 〈X, d〉 be a metric space and c ∈ (0, 1]. A function f : X → X is c-Lipschitz if for
all x, y ∈ X, d(f(x), f(y)) ≤ c d(x, y). A 1-Lipschitz function is also called nonexpansive. A
function is contractive if it is c-Lipschitz for some c ∈ (0, 1). The following result is known as
Banach’s fixed point theorem [5].

I Theorem 7. Let X be a nonempty complete metric space and f : X → X a contractive
function. Then f has a unique fixed point.

Proof. See, for example, [3, Theorem 1.34]. J

The Hausdorff metric [18] is defined as follows.

I Definition 8. The function H : [0, 1]X×X → [0, 1]2X×2X is defined by

H(d)(M,N) = max
{

max
µ∈M

min
ν∈N

d(µ, ν),max
ν∈N

min
µ∈M

d(µ, ν)
}
.

Q. Tang and F. van Breugel 9:5

Given a nonempty finite set X, we denote the set of probability distributions on X by
Distr(X). For µ ∈ Distr(X), we define its support by support(µ) = {x ∈ X | µ(x)> 0 }.

I Definition 9. Let µ, ν ∈ Distr(X). The set Ω(µ, ν) of couplings of µ and ν is defined by

Ω(µ, ν) =

ω ∈ Distr(X ×X)

∣∣∣∣∣ ∑
x∈X

ω(x, y) = µ(y) and
∑
y∈X

ω(x, y) = ν(x)

 .

In general, the set Ω(µ, ν) is infinite. The set of vertices of the convex polytope Ω(µ, ν)
is denoted by V (Ω(µ, ν)). The latter set is finite (see, for example, [23, page 259]). This fact
will be crucial in the proof of Lemma 20. The Kantorovich metric [22] is defined as follows.

I Definition 10. The function K : [0, 1]X×X → [0, 1]Distr(X)×Distr(X) is defined by

K(d)(µ, ν) = min
ω∈V (Ω(µ,ν))

∑
u,v∈S

ω(u, v) d(u, v).

The Hausdorff metric and the Kantorovich metric are key ingredients of the definition of
the probabilistic bisimilarity distances, as we will see in the next section.

3 Probabilistic Automata

Also in this section, we recall some definitions and results from the literature. In particular,
we introduce the model of interest, probabilistic automata, its best known behavioural
equivalence, probabilistic bisimilarity, and its quantitative generalization. Probabilistic
automata were first studied in the context of concurrency by Segala [27].

I Definition 11. A probabilistic automaton is a tuple 〈S,L,→, `〉 consisting of
a nonempty finite set S of states,
a nonempty finite set L of labels,
a finitely branching transition relation → ⊆ S ×Distr(S), and
a labelling function ` : S → L.

Instead of (s, µ) ∈ →, we write s→ µ. A transition relation is finitely branching if for
all s ∈ S, the set {µ ∈ Distr(S) | s→ µ } is nonempty and finite. For the remainder of this
paper we fix a probabilistic automaton 〈S,L,→, `〉.

In order to define probabilistic bisimilarity, we first show how a relation on states can be
lifted to a relation on distributions over states. This notion of lifting is due to Jonsson and
Larsen [21].

I Definition 12. The lifting of a relation R ⊆ S×S is the relation R↑ ⊆ Distr(S)×Distr(S)
defined by (µ, ν) ∈ R↑ if there exists ω ∈ V (Ω(µ, ν)) such that support(ω) ⊆ R.

Probabilistic bisimilarity, a notion due to Segala and Lynch [28], is introduced next.
States are probabilistic bisimilar if they have the same label and each probabilistic transition
of the one state can be matched by a probabilistic transition of the other state, and vice versa.
Two probabilistic transitions match if they transition with exactly the same probability to
states that behave exactly the same.

I Definition 13. An equivalence relation R ⊆ S × S is a probabilistic bisimulation if for all
s, t ∈ S, if (s, t) ∈ R then

`(s) = `(t),

CONCUR 2018

9:6 Probabilistic Bisimilarity Distance One

for all s→ µ there exists t→ ν such that (µ, ν) ∈ R↑ and
for all t→ ν there exists s→ µ such that (ν, µ) ∈ R↑.

Probabilistic bisimilarity, denoted ∼, is the largest probabilistic bisimulation.

For a proof that a largest probabilistic bisimulation exists, we refer the reader to, for
example, [6, Proposition 4.3]. Relying on exact matching is the cause for a lack of robustness.
To address this shortcoming, we define a quantitative generalization of probabilistic bisimil-
arity, the probabilistic bisimilarity distances, as the least fixed point of the function ∆1. To
prove an alternative characterization of the probabilistic bisimilarity distances in the next
section, we also introduce a family of discounted versions of ∆1, namely ∆c with c ∈ (0, 1).

I Definition 14. Let c ∈ (0, 1]. The function ∆c : [0, 1]S×S → [0, 1]S×S is defined by

∆c(d)(s, t) =
{

1 if `(s) 6= `(t)
c H(K(d))({µ | s→ µ }, { ν | t→ ν }) otherwise.

I Proposition 15. For all c ∈ (0, 1], the function ∆c is monotone.

Proof. See [12, Lemma 2.10]. J

Since 〈[0, 1]S×S ,v〉 is a complete lattice according to Proposition 2 and ∆c is a monotone
function by Proposition 15, we can conclude from Theorem 3(c) that ∆c has a least fixed
point µ∆c. The fact that the probabilistic bisimilarity distances µ∆1 provide a quantitative
generalization of probabilistic bisimilarity is captured by the following theorem due to Deng
et al. [12].

I Theorem 16. For all s, t ∈ S, µ∆1(s, t) = 0 if and only if s ∼ t.

Proof. See [12, Corollary 2.14]. J

4 An Alternative Characterization

In the previous section, we defined the probabilistic bisimilarity distances as a least fixed
point. Next, we present an alternative characterization. This generalizes the characterization
of probabilistic bisimilarity distances for labelled Markov chains due to Chen et al. [9,
Theorem 8]. First, we partition the set of state pairs as follows.

S2
0 = { (s, t) ∈ S × S | s ∼ t }
S2

1 = { (s, t) ∈ S × S | `(s) 6= `(t) }
S2

? = (S × S) \ (S2
0 ∪ S2

1)

Note that, due to Theorem 16 the state pairs in S2
0 have distance zero. From Definition 14

we can infer that the state pairs in S2
1 have distance one. The state pairs in S2

? cannot have
distance zero, again due to Theorem 16, but can have any distance in the interval (0, 1],
including distance one.

The characterization can be viewed as a two player game, a max player and a min player,
similar to the one presented in [8]. The game can be considered a quantitative generalization
of the game that characterizes bisimilarity (see [30]). In this turn based game, starting in
a pair of states (s, t), the max player chooses a probabilistic transition from either s or t.
Subsequently, the min player chooses a probabilistic transition from the other state and also
chooses a coupling. For example, if the max player picks s → µ and the min player picks
t → ν, then the min player also has to choose ω ∈ V (Ω(µ, ν)). This will be formalized in

Q. Tang and F. van Breugel 9:7

Definition 17. Recall that such a coupling ω is a probability distribution on S × S. From a
coupling ω the game moves to state pair (u, v) with probability ω(u, v).

Consider, for example, the following probabilistic automaton.

s t

u vv

1 1

1
2

1
2

1 1

Note that the states s and u are probabilistic bisimilar. The corresponding game graph can
be depicted as follows.

s, t

s, u s, v

1
2

1
2

1

Since the game will be used to characterize the probabilistic bisimilarity distances, the state
pairs for which we can easily determine their distance have no outgoing edges in the game
graph. In particular, state pairs with different labels, which have distance one, and state
pairs that are probabilistic bisimilar, which have distance zero, have no outgoing edges.

The objective of the max player is to maximize the expectation of reaching a state pair
with different labels. The min player tries to minimize this expectation. In the above example,
the max player tries to reach the state pair (s, v), whereas the min player tries to avoid that
from happening. The policies, also known as strategies, for the max and min player are
introduced next.

I Definition 17. The set A of max policies is defined by

A =

 A ∈ (S2
? → (S ×Distr(S)))

∀(s, t) ∈ S2
? :

(∃ν ∈ Distr(S) : A(s, t) = (s, ν) ∧ t→ ν)∨
(∃µ ∈ Distr(S) : A(s, t) = (t, µ) ∧ s→ µ)

 .

The set I of min policies is defined by

I =
{

I ∈ ((S ×Distr(S))→ Distr(S × S)) ∀(s, ν) ∈ S ×Distr(S) : ∃µ ∈ Distr(S) :
I(s, ν) ∈ V (Ω(µ, ν)) ∧ s→ µ

}
.

Given a policy A for the max player and a policy I for the min player, we define the value
function as the least fixed point of the function ΓA,I1 . This least fixed point captures the
expectation of reaching a state pair with different labels if both players use the given policies.
We also introduce a family of discounted versions of ΓA,I1 , namely ΓA,Ic with c ∈ (0, 1), that
we will use later in this section.

CONCUR 2018

9:8 Probabilistic Bisimilarity Distance One

I Definition 18. Let A ∈ A, I ∈ I and c ∈ (0, 1]. The function ΓA,Ic : [0, 1]S×S → [0, 1]S×S
is defined by

ΓA,Ic (d)(s, t) =


0 if (s, t) ∈ S2

0
1 if (s, t) ∈ S2

1
c
∑
u,v∈S

I(A(s, t))(u, v) d(u, v) otherwise.

I Proposition 19. For all A ∈ A, I ∈ I and c ∈ (0, 1], the function ΓA,Ic is monotone and
c-Lipschitz.

From Theorem 3(c) we can conclude that ΓA,Ic has a least fixed point, which we denote
by µΓA,Ic . In the remainder of this section we will show that there exist an optimal max
policy A∗ and an optimal min policy I∗ such that the corresponding value function captures
the probabilistic bisimilarity distances. In the above game graph, the red edge represents
the optimal max policy and the blue edges represent the optimal min policy. The proof of
µ∆1 = µΓA

∗,I∗

1 consists of two parts. First, we prove that there exists an optimal min policy.

I Lemma 20. ∃I ∈ I : ∀A ∈ A : µΓA,I1 v µ∆1.

Proof. Towards the construction of I∗ ∈ I, let s ∈ S and ν ∈ Distr(S). Since we restrict
our attention to finitely branching probabilistic automata,

µs,ν = argmin
s→µ

K(µ∆1)(µ, ν) (1)

exists. Because the set V (Ω(µs,ν , ν)) is nonempty and finite, we can define

I∗(s, ν) = argmin
ω∈V (Ω(µs,ν ,ν))

∑
u,v∈S

ω(u, v) µ∆1(u, v). (2)

By construction I∗ ∈ I.
Let A ∈ A. Since µΓA,I

∗

1 is the least pre-fixed point of ΓA,I
∗

1 according to Theorem 3(d),
to conclude that µΓA,I

∗

1 v µ∆1 it suffices to show that µ∆1 is a pre-fixed point of ΓA,I
∗

1 ,
that is, ΓA,I

∗

1 (µ∆1) v µ∆1. Let s, t ∈ S. We distinguish three cases.
If (s, t) ∈ S2

0 , then

ΓA,I
∗

1 (µ∆1)(s, t) = 0
= µ∆1(s, t) [Theorem 16]

If (s, t) ∈ S2
1 , then

ΓA,I
∗

1 (µ∆1)(s, t) = 1
= ∆1(µ∆1)(s, t)
= µ∆1(s, t).

Otherwise, (s, t) ∈ S2
? . Without any loss of generality, we assume that A(s, t) = (s, ν)

Q. Tang and F. van Breugel 9:9

with t→ ν. Then

ΓA,I
∗

1 (µ∆1)(s, t) =
∑
u,v∈S

I∗(A(s, t))(u, v) µ∆1(u, v)

=
∑
u,v∈S

I∗(s, ν)(u, v) µ∆1(u, v) [A(s, t) = (s, ν)]

= min
ω∈V (Ω(µs,ν ,ν))

∑
u,v∈S

ω(u, v) µ∆1(u, v) [(2)]

= K(µ∆1)(µs,ν , ν)
= min

s→µ
K(µ∆1)(µ, ν) [(1)]

≤ max
t→ν

min
s→µ

K(µ∆1)(µ, ν)

≤ H(K(µ∆1))({µ | s→ µ }, { ν | t→ ν })
= ∆1(µ∆1)(s, t)
= µ∆1(s, t). J

In the remainder of this paper, we denote the optimal min policy constructed in the
above proof by I∗. It remains to prove that there exists an optimal max policy. The proof of
this second part turns out to be more involved than the proof of the first part contained in
above lemma. The proof has the following three major components.

For all A ∈ A and I ∈ I, the value function µΓA,I1 is the limit of the discounted value
functions µΓA,Ic . This result is inspired by [14, Theorem 4.4.1].
Similarly, the probabilistic bisimilarity distances captured by µ∆1 are the limit of their
discounted counterparts represented by µ∆c.
There exists an optimal max policy in the discounted setting.

Combining the above three components, we arrive at an optimal max policy. The first two
components are formalized next.

I Proposition 21. For all A ∈ A and I ∈ I, limc↑1 µΓA,Ic = µΓA,I1 and limc↑1 µ∆c = µ∆1.

The major component of the proof consists of showing that there exists an optimal max
policy in the discounted setting.

I Proposition 22. For all c ∈ (0, 1), ∃A ∈ A : ∀I ∈ I : µ∆c v µΓA,Ic .

Proof. Let c ∈ (0, 1). Let s, t ∈ S. If

max
s→µ

min
t→ν

K(µ∆c)(µ, ν) ≥ max
t→ν

min
s→µ

K(µ∆c)(µ, ν) (3)

then we define A∗c(s, t) by

A∗c(s, t) =
(
t, argmax

s→µ
min
t→ν

K(µ∆c)(µ, ν)
)
.

Because the probabilistic automaton is finitely branching, the above exists. Otherwise, we
define A∗c(s, t) by

A∗c(s, t) =
(
s, argmax

t→ν
min
s→µ

K(µ∆c)(µ, ν)
)
.

By construction, A∗c ∈ A.

CONCUR 2018

9:10 Probabilistic Bisimilarity Distance One

Let I ∈ I. Since 〈[0, 1]S×S , ‖ · − · ‖〉 is a nonempty complete metric space according
to Proposition 6 and the function ΓA

∗
c ,I

c is contractive by Proposition 19, we can conclude
from Theorem 7 that ΓA

∗
c ,I

c has a unique fixed point. Therefore, µΓA
∗
c ,I

c is not only the least
fixed point but also the greatest fixed point of ΓA

∗
c ,I

c . According to Theorem 3(b), µΓA
∗
c ,I

c is
the greatest post-fixed point of ΓA

∗
c ,I

c . Hence, to conclude that µ∆c v µΓA
∗
c ,I

c it suffices to
show that µ∆c is a post-fixed point of ΓA

∗
c ,I

c , that is, µ∆c v ΓA
∗
c ,I

c (µ∆c). Let s, t ∈ S. We
distinguish three cases.

If (s, t) ∈ S2
0 , then

µ∆c(s, t) ≤ µ∆1(s, t)
= 0 [Theorem 16]

= ΓA
∗
c ,I

c (µ∆c)(s, t).

If (s, t) ∈ S2
1 , then

µ∆c(s, t) = ∆c(µ∆c)(s, t)
= 1

= ΓA
∗
c ,I

c (µ∆c)(s, t).

Otherwise, (s, t) ∈ S2
? . Without loss of any generality, assume that A∗c(s, t) = (t, µ). This

assumption implies that (3) and

∆1(µ∆c)(s, t) = min
t→ν

K(µ∆c)(µ, ν). (4)

Hence,

µ∆c(s, t) = ∆c(µ∆c)(s, t)
= c∆1(µ∆c)(s, t)
= c min

t→ν
K(µ∆c)(µ, ν) [(4)]

≤ c
∑
u,v∈S

I(A∗c(s, t))(u, v) µ∆c(u, v)

= cΓA
∗
c ,I

1 (µ∆c)(s, t)

= ΓA
∗
c ,I

c (µ∆c)(s, t). J

Combining the above three components, we obtain the second part of the proof.

I Lemma 23. ∃A ∈ A : ∀I ∈ I : µ∆1 v µΓA,I1 .

Proof. According to Proposition 22,

∀n ∈ N : ∃An ∈ A : ∀I ∈ I : µ∆ n
n+1
v µΓAn,In

n+1
. (5)

Since the set A is finite, the sequence (An)n∈N has a subsequence (Aσ(n))n∈N that is constant,
that is, there exists A∗ ∈ A such that for all n ∈ N, Aσ(n) = A∗. From Proposition 21 we
can conclude that

lim
n∈N

µ∆ σ(n)
σ(n)+1

= µ∆1 and lim
n∈N

µΓA,Iσ(n)
σ(n)+1

= µΓA,I1 .

From (5) we can deduce that ∀I ∈ I : µ∆1 v µΓA
∗,I

1 . J

Q. Tang and F. van Breugel 9:11

In the remainder of this paper, we denote the optimal max policy that satisfies Lemma 23
by A∗. Combining Lemma 20 and 23, we arrive at the following alternative characterization
of the probabilistic bisimilarity distances.

I Theorem 24. µ∆1 = µΓA
∗,I∗

1 .

5 Deciding Distance One

In this section, we present an algorithm to compute the set D1 of state pairs that have
distance one, that is

D1 = { (s, t) ∈ S × S | µ∆1(s, t) = 1 }.

The key ingredient of our algorithm is the following function.

I Definition 25. The function Λ : 2S×S × 2S×S → 2S×S is defined by

Λ(X,Y) = S2
1 ∪

(s, t) ∈ S2
?

∣∣∣∣∣∣∣∣
∃s→ µ : ∀t→ ν : ∀ω ∈ V (Ω(µ, ν)) :

support(ω) ⊆ X ∧ support(ω) ∩ Y 6= ∅∨
∃t→ ν : ∀s→ µ : ∀ω ∈ V (Ω(µ, ν)) :

support(ω) ⊆ X ∧ support(ω) ∩ Y 6= ∅

 .

The set Λ(X,Y) contains all state pairs with different labels and those state pairs for
which there exists a move by the max player so that every subsequent move of the min
player always ends up in X and with some positive probability in Y . The function Λ has the
following monotonicity properties.

I Proposition 26. For all X, Y , Z ⊆ S × S with X ⊆ Y ,
(a) Λ(Z,X) ⊆ Λ(Z, Y).
(b) µZ.Λ(X,Z) ⊆ µZ.Λ(Y,Z).

Since 〈2S×S ,⊆〉 is a complete lattice and for each X ⊆ S × S the function λY.Λ(X,Y)
is monotone, the least fixed point µY.Λ(X,Y) exists according to Theorem 3(c). The set
µY.Λ(X,Y) contains all state pairs (s, t) for which there exists a max policy such that for
all min policies, (s, t) can reach a state pair with different labels and all state pairs reachable
from (s, t) are element of X.

Since the function λX.µY.Λ(X,Y) is monotone as well, we can conclude from The-
orem 3(a) that the greatest fixed point νX.µY.Λ(X,Y) exists. The set νX.µY.Λ(X,Y)
contains all state pairs (s, t) for which there exists a max policy such that for all min policies,
all state pairs reachable from (s, t) can reach a state pair with different labels. In the next
section, we will prove that νX.µY.Λ(X,Y) captures the set D1. According to Theorem 4(a)
and (b), these greatest and least fixed points can be obtained iteratively as follows.

1 Xc = S × S
2 do
3 Yc = ∅
4 do
5 Yp = Yc

6 Yc = Λ(Xc, Yp)
7 while Yp 6= Yc

8 Xp = Xc

9 Xc = Yc

10 while Xp 6= Xc

CONCUR 2018

9:12 Probabilistic Bisimilarity Distance One

The inner loop (line 3–7) computes the least fixed point µY.Λ(Xc, Y). The outer loop
(line 1–10) computes the greatest fixed point νX.µY.Λ(X,Y), which equals D1 as we will
prove in the next section. Due to the monotonicity of Λ we can conclude that both the
inner and outer loop terminate after at most |S|2 iterations. To conclude that the above
algorithm is polynomial time, it remains to show that Λ(Xc, Yp) in line 6 can be computed
in polynomial time.

I Proposition 27. For all µ, ν ∈ Distr(S) and X ⊆ S × S,

∀ω ∈ V (Ω(µ, ν)) : support(ω) ⊆ X if and only if K(d)(µ, ν) = 1

and

∀ω ∈ V (Ω(µ, ν)) : support(ω) ∩ X 6= ∅ if and only if K(d)(µ, ν)> 0

where

d(s, t) =
{

1 if (s, t) ∈ X
0 otherwise.

Computing K(d)(µ, ν) boils down to solving a minimum cost network flow problem,
where d captures the cost. This problem can be solved in polynomial time using, for example,
Orlin’s network simplex algorithm [26]. Hence, Λ(Xc, Yp) can be computed in polynomial
time.

6 Correctness Proof

To conclude that the algorithm presented in the previous section is correct, it remains to
show that νX.µY.Λ(X,Y) equals D1. We start by providing an iterative characterization of
νX.µY.Λ(X,Y).

I Definition 28. For each i ∈ N, the set Xi ⊆ S × S is defined by

Xi =
{
S × S if i = 0
µY.Λ(Xi−1, Y) otherwise.

For each i, j ∈ N, the set Y ji ⊆ S × S is defined by

Y ji =
{
D1 if j = 0
Λ(Xi, Y

j−1
i) otherwise.

The above definition differs from the iterative algorithm presented in the previous section
in that Y 0

i = D1 whereas the algorithm starts its iteration towards the least fixed point
from ∅.

I Proposition 29.
(a) Xm = νX.µY.Λ(X,Y) for some m ∈ N.
(b) Y nm = µY.Λ(Xm, Y) for some n ∈ N.
(c) Xm = Y nm.

Proof sketch. Part (a) follows from Theorem 4(b) and Proposition 26(b). Part (b) can be
proved as follows. First, we observe that

D1 ⊆ µY.Λ(Xm, Y) = Xm (6)

by part (a). The desired result follows from the latter fact and Theorem 4(c) and Proposi-
tion 26(a). Part (c) follows from part (a) and (b). J

Q. Tang and F. van Breugel 9:13

From part (a) of the above proposition and (6) we can conclude that it suffices to prove
Xm ⊆ D1.

I Definition 30. For each 0 ≤ i < n, the set Zi ⊆ S × S is defined by

Zi = Y i+1
m \ Y im.

Zn−1

Z0

Z1

...

Xm
D1

S2
1S2

0

I Proposition 31.
(a) For all 0 ≤ i < n, Zi ⊆ S2

? .
(b) For all 0 ≤ i < j < n, Zi ∩ Zj = ∅.
(c)

⋃
0≤i<n Zi = Xm \D1.

(d) For all 0 ≤ i ≤ n, Y im = D1 ∪
⋃

0≤j<i Zj .

According to Proposition 31(b) and (c), the sets Z0, . . . , Zn−1 form a partition of Xm\D1.

I Proposition 32. For all 0 ≤ i < n and (s, t) ∈ Zi,

∃s→ µ : ∀t→ ν : ∀ω ∈ V (Ω(µ, ν)) : support(ω) ⊆ Xm ∧ support(ω) ∩ Y im 6= ∅∨ (7)
∃t→ ν : ∀s→ µ : ∀ω ∈ V (Ω(ν, µ)) : support(ω) ⊆ Xm ∧ support(ω) ∩ Y im 6= ∅ (8)

Based on the above proposition, we construct a max policy A′.

I Definition 33. The function A′ : S2
? → (S ×Distr(S)) is defined by

A′(s, t) =


(t, µ) if (s, t) ∈ Zi and (7)
(s, ν) if (s, t) ∈ Zi and (8)
A∗(s, t) if (s, t) ∈ S2

? \ (Xm \D1).

Given the max policy A′ and an arbitrary min policy I, from Proposition 31(d) and 32
we can conclude that each state pair in Zi can reach a state pair in D1 or Zj with j < i.
Consequently, each state pair in Zi can reach a state pair in D1. Given the max policy A′
and the optimal min policy I∗, we define the function Ψ as follows.

I Definition 34. The function Ψ : [0, 1]S×S → [0, 1]S×S is defined by

Ψ(d)(s, t) =
{

ΓA
′,I∗

1 (d)(s, t) if (s, t) ∈ Xm

0 otherwise

I Proposition 35. The function Ψ is monotone.

Since 〈[0, 1]S×S ,v〉 is a complete lattice and Ψ is monotone, Ψ has a greatest fixed
point νΨ and a least fixed point µΨ by Theorem 3(a) and (c). Next, we will show that Ψ
has a unique fixed point.

CONCUR 2018

9:14 Probabilistic Bisimilarity Distance One

I Proposition 36. Ψ has a unique fixed point.

Proof sketch. It is sufficient to prove that µΨ = νΨ. Let

m = max{νΨ(s, t)− µΨ(s, t) | (s, t) ∈ S × S }
M ={ (s, t) ∈ S × S | νΨ(s, t)− µΨ(s, t) = m }

We can show that m = 0 and, hence, we can conclude that µΨ = νΨ. J

From the fact that Ψ has a unique fixed point and the alternative characterization of the
probabilistic bisimilarity distances presented in the previous section, we can infer the main
result of this section.

I Theorem 37. D1 = νX.µY.Λ(X,Y).

Proof sketch. We can show that the function d ∈ S × S → [0, 1] defined by

d(s, t) =
{

1 if (s, t) ∈ Xm

0 otherwise

is a fixed point of Ψ. Let (s, t) ∈ Xm. Then

µ∆1(s, t) ≥ µΓA
′,I∗

1 (s, t) [Lemma 20]
= µΨ(s, t) [(s, t) ∈ Xm]
= d(s, t) [d is a fixed point of Ψ and Proposition 36]
= 1 [(s, t) ∈ Xm]

Hence, (s, t) ∈ D1. Therefore, Xm ⊆ D1. According to (6), D1 ⊆ Xm. Thus, Xm = D1.
Proposition 29(a) completes the proof. J

7 Conclusion

Chen et al. [9] have provided an alternative characterization of the probabilistic bisimilarity
distances for labelled Markov chains. This characterization forms the basis for the algorithm
to compute the probabilistic bisimilarity distances for labelled Markov chains by Bacci et al.
[1]. Their algorithm is similar to Howard’s policy iteration algorithm [20]. In this paper we
have presented an alternative characterization of the probabilistic bisimilarity distances for
probabilistic automata. In future work, we plan to use this characterization as the foundation
for an algorithm to compute the probabilistic bisimilarity distances for probabilistic automata
based on the policy iteration algorithm due to Hoffman and Karp [19].

As shown by Baier [2], probabilistic bisimilarity distance zero for probabilistic automata
can be decided in polynomial time. In this paper we have shown that distance one can also
be decided in polynomial time. As a consequence, we can determine in polynomial time
how many, if any, distances are non-trivial, that is, greater than zero and smaller than one.
As we have already shown in [32] in the context of labelled Markov chains, being able to
decide distance zero and distance one in polynomial time has significant impact on computing
probabilistic bisimilarity distances for labelled Markov chains. The algorithm by Bacci et
al. [1], that does not decide distance one before computing the non-trivial distances using
policy iteration, can compute distances for labelled Markov chains up to 150 states. For one
such labelled Markov chain, their algorithm takes more than 49 hours. Our algorithm that
we present in [32] decides distance zero and distance one before using policy iteration to

Q. Tang and F. van Breugel 9:15

compute the non-trivial distances. Our algorithm takes 13 milliseconds instead of 49 hours.
Furthermore, our algorithm can compute distances for labelled Markov chains with more
than 10,000 states in less than 50 minutes.

Consider the following probabilistic automaton.

s1 · · · sn t1 · · · tn

s t

1
n

1
n

1
n

1
n

1 1 1 1

This probabilistic automaton induces the following game graph.

s, t

· · ·

n! vertices

If µ and ν are both the uniform distribution on n elements, then the vertices of Ω(µ, ν) can
be viewed as permutations (see, for example, [29, Theorem 8.4]). As a result, from the state
pair (s, t) after one move by the max player and one move by the min player, n! vertices
can be reached. Hence, we may encounter an exponential blow-up when we transform a
probabilistic automaton into a game. As a consequence, it is not immediately obvious which
results from game theory can be transferred to our setting. We leave this for future research.

To prove Lemma 23, which provides the second part of the proof of the alternative
characterization of the probabilistic bisimilarity distances, we rely on the discounted functions
∆c and ΓA

∗
c ,I

c for c ∈ (0, 1). In particular, in the proof of Proposition 22 we use the fact
that ΓA

∗
c ,I

c has a unique fixed point. If we were able to prove that ΓA
∗,I

1 has a unique fixed
point, then we would be able to give a proof of Lemma 23 that does not rely on discounted
functions. We also leave that for future research.

References
1 Giorgio Bacci, Giovanni Bacci, Kim Larsen, and Radu Mardare. On-the-fly exact computa-

tion of bisimilarity distances. In Nir Piterman and Scott Smolka, editors, Proceedings of the
19th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, volume 7795 of Lecture Notes in Computer Science, pages 1–15, Rome, Italy,
2013. Springer-Verlag.

2 Christel Baier. Polynomial time algorithms for testing probabilistic bisimulation and simula-
tion. In Rajeev Alur and Thomas Henzinger, editors, Proceedings of the 8th International
Conference on Computer Aided Verification, volume 1102 of Lecture Notes in Computer
Science, pages 50–61, New Brunswick, NJ, USA, 1996. Springer-Verlag.

3 Jaco de Bakker and Erik de Vink. Control flow semantics. MIT Press, Cambridge, MA,
USA, 1996.

CONCUR 2018

9:16 Probabilistic Bisimilarity Distance One

4 Jaco de Bakker and Jeffery Zucker. Denotational semantics of concurrency. In Proceed-
ings of the 14th Annual ACM Symposium on Theory of Computing, pages 153–158, San
Francisco, 1982. ACM.

5 Stefan Banach. Sur les opérations dans les ensembles abstraits et leurs applications aux
equations intégrales. Fundamenta Mathematicae, 3:133–181, 1922.

6 Franck van Breugel. Probabilistic bisimilarity distances. SIGLOG News, 4(4):33–51, 2017.
7 Franck van Breugel and James Worrell. Towards quantitative verification of probabilistic

systems. In Fernando Orejas, Paul Spirakis, and Jan van Leeuwen, editors, Proceedings of
28th International Colloquium on Automata, Languages and Programming, volume 2076 of
Lecture Notes in Computer Science, pages 421–432, Crete, 2001. Springer-Verlag.

8 Franck van Breugel and James Worrell. The complexity of computing a bisimilarity pseudo-
metric on probabilistic automata. In Franck van Breugel, Elham Kashefi, Catuscia Palam-
idessi, and Jan Rutten, editors, Horizons of the Mind – A Tribute to Prakash Panangaden,
volume 8464 of Lecture Notes in Computer Science, pages 191–213. Springer-Verlag, 2014.

9 Di Chen, Franck van Breugel, and James Worrell. On the complexity of computing probabil-
istic bisimilarity. In Lars Birkedal, editor, Proceedings of the 15th International Conference
on Foundations of Software Science and Computational Structures, volume 7213 of Lecture
Notes in Computer Science, pages 437–451, Tallinn, Estonia, 2012. Springer-Verlag.

10 Edmund Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT Press, Cambridge,
MA, USA, 1999.

11 Brian Davey and Hilary Priestley. Introduction to lattices and order. Cambridge University
Press, Cambridge, United Kingdom, 2002.

12 Yuxin Deng, Tom Chothia, Catuscia Palamidessi, and Jun Pang. Metrics for action-labelled
quantitative transition systems. In Antonio Cerone and Herbert Wiklicky, editors, Pro-
ceedings of the 3rd Workshop on Quantitative Aspects of Programming Languages, volume
153(2) of Electronic Notes in Theoretical Computer Science, pages 79–96, Edinburgh, Scot-
land, 2005. Elsevier.

13 Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. The metric
analogue of weak bisimulation for probabilistic processes. In Proceedings of the 17th Annual
IEEE Symposium on Logic in Computer Science, pages 413–422, Copenhagen, Denmark,
2002. IEEE.

14 Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer-Verlag, New
York, NY, USA, 1997.

15 Hongfei Fu. Computing game metrics on Markov decision processes. In Artur Czumaj, Kurt
Mehlhorn, Andrew Pitts, and Roger Wattenhofer, editors, Proceedings of the 39th Inter-
national Colloquium on Automata, Languages, and Programming, volume 7392 of Lecture
Notes in Computer Science, pages 227–238, Warwick, UK, 2012. Springer-Verlag.

16 Hongfei Fu. Personal communication, 2013.
17 Alessandro Giacalone, Chi-Chang Jou, and Scott Smolka. Algebraic reasoning for probab-

ilistic concurrent systems. In Proceedings of the IFIP WG 2.2/2.3 Working Conference on
Programming Concepts and Methods, pages 443–458, Sea of Gallilee, Israel, 1990. North-
Holland.

18 Felix Hausdorff. Grundzüge der Mengenlehre. Von Veit & Comp., Leipzig, 1914.
19 Alan Hoffman and Richard Karp. On nonterminating stochastic games. Management

Science, 12(5):359–370, 1966.
20 Ronald Howard. Dynamic Programming and Markov Processes. The MIT Press, Cambridge,

MA, USA, 1960.
21 Bengt Jonsson and Kim Larsen. Specification and refinement of probabilistic processes. In

Proceedings of the 6th Annual Symposium on Logic in Computer Science, pages 266–277,
Amsterdam, The Netherlands, 1991. IEEE.

Q. Tang and F. van Breugel 9:17

22 Leonid Kantorovich. On the transfer of masses (in Russian). Doklady Akademii Nauk,
5(1):1–4, 1942. Translated in Management Science, 5(1):1–4, 1958.

23 Viktor Klee and Christoph Witzgall. Facets and vertices of transportation polytopes. In
George Dantzig and Arthur Veinott, editors, Proceedings of 5th Summer Seminar on the
Mathematis of the Decision Sciences, volume 11 of Lectures in Applied Mathematics, pages
257–282, Stanford, CA, USA, 1967. AMS.

24 Bronisław Knaster. Un théorème sur les fonctions d’ensembles. Annales de la Société
Polonaise de Mathématique, 6:133–134, 1928.

25 Kim Larsen and Arne Skou. Bisimulation through probabilistic testing. In Proceedings of
the 16th Annual ACM Symposium on Principles of Programming Languages, pages 344–352,
Austin, TX, USA, 1989. ACM.

26 James Orlin. A polynomial time primal network simplex algorithm for minimum cost flows.
Mathematical Programming, 78(2):109–129, 1997.

27 Roberto Segala. Modeling and verification of randomized distributed real-time systems. PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1995.

28 Roberto Segala and Nancy Lynch. Probabilistic simulations for probabilistic processes. In
Bengt Jonsson and Joachim Parrow, editors, Proceedings of the 5th International Confer-
ence on Concurrency Theory, volume 836 of Lecture Notes in Computer Science, pages
481–496, Uppsala, Sweden, 1994. Springer-Verlag.

29 Denis Serre. Matrices: theory and applications. Springer-Verlag, New York, NY, USA,
2010.

30 Colin Stirling. Bisimulation, modal logic and model checking games. Logic Journal of the
IGPL, 7(1):103–124, 1999.

31 Qiyi Tang and Franck van Breugel. Computing probabilistic bisimilarity distances via
policy iteration. In Josée Desharnais and Radha Jagadeesan, editors, Proceedings of the
27th International Conference on Concurrency Theory, volume 59 of Leibniz International
Proceedings in Informatics, pages 22:1–22:15, Quebec City, QC, Canada, 2016. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik.

32 Qiyi Tang and Franck van Breugel. Deciding probabilistic bisimilarity distance one for
labelled Markov chains. In Hana Chockler and Georg Weissenbacher, editors, Proceedings
of the 30th International Conference on Computer Aided Verification, volume 10981 of
Lecture Notes in Computer Science, pages 681–699, Oxford, UK, 2018. Springer-Verlag.

33 Alfred Tarski. A lattice-theoretic fixed point theorem and its applications. Pacific Journal
of Mathematics, 5(2):285–309, 1955.

34 Mathieu Tracol, Josée Desharnais, and Abir Zhioua. Computing distances between probab-
ilistic automata. In Mieke Massink and Gethin Norman, editors, Proceedings 9th Workshop
on Quantitative Aspects of Programming Languages, volume 57 of Electronic Proceedings
in Theoretical Computer Science, pages 148–162, Saarbrücken, Germany, 2011. Elsevier.

CONCUR 2018

Non-deterministic Weighted Automata on
Random Words
Jakub Michaliszyn
University of Wrocław

Jan Otop
University of Wrocław

Abstract
We present the first study of non-deterministic weighted automata under probabilistic semantics.
In this semantics words are random events, generated by a Markov chain, and functions computed
by weighted automata are random variables. We consider the probabilistic questions of computing
the expected value and the cumulative distribution for such random variables.

The exact answers to the probabilistic questions for non-deterministic automata can be irra-
tional and are uncomputable in general. To overcome this limitation, we propose an approxima-
tion algorithm for the probabilistic questions, which works in exponential time in the automaton
and polynomial time in the Markov chain. We apply this result to show that non-deterministic
automata can be effectively determinised with respect to the standard deviation metric.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects,
Theory of computation → Quantitative automata, Mathematics of computing → Markov net-
works

Keywords and phrases quantitative verification, weighted automata, expected value

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.10

Acknowledgements This work was supported by the National Science Centre (NCN), Poland
under grant 2014/15/D/ST6/04543. We would like to thank anonymous reviewers for their
valuable comments on this paper. Our special thanks go to Günter Rote who pointed out a
blooper in an earlier version of our running example.

1 Introduction

Weighted automata are finite automata in which transitions carry weights [13]. We study
here weighted automata (on finite and infinite words) whose semantics is given by value
functions (such as sum or average) [8]. In such a weighted automaton transitions are labeled
with rational numbers and hence every run yields a sequence of rationals, which the value
function aggregates into a single (real) number. This number is the value of the run, and the
value of a word is the infimum over values of all accepting runs on that word.

The value function approach has been introduced to express quantitative system proper-
ties (performance, energy consumption, etc.) and it serves as a foundation for quantitative
verification [8, 18]. Basic decision questions for weighted automata are quantitative counter-
parts of the emptiness and universality questions obtained by imposing a threshold on the
values of words.

Probabilistic semantics. The emptiness and the universality problems correspond to the
best-case and the worst-case analysis. For the average-case analysis, weighted automata are
considered under probabilistic semantics, in which words are random events generated by a

© Jakub Michaliszyn and Jan Otop;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 10; pp. 10:1–10:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 Non-deterministic Weighted Automata on Random Words

Markov chain [7, 9]. In this setting, functions from words to reals computed by deterministic
weighted automata are measurable and hence can be considered as random variables. The
fundamental probabilistic questions are to compute the expected value and the cumulative
distribution for a given automaton and a Markov chain.

The deterministic case. Weighted automata under probabilistic semantics have been
studied only in the deterministic case. In [7], a close relationship between weighted automata
under probabilistic semantics and weighted Markov chains has been established. For a
weighted automaton A and a Markov chainM representing the distribution over words, the
probabilistic problems for A andM coincide with the probabilistic problem of the weighted
Markov chain A×M. Weighted Markov chains have been intensively studied with single
and multiple quantitative objectives [3, 15, 24, 10]. The above reduction does not extend to
non-deterministic weighted automata [9, Example 30].

Significance of nondeterminism. Non-deterministic weighted automata are provably more
expressive than their deterministic counterpart [8]. Many important system properties can
be expressed with weighted automata only in the nondeterministic setting. This includes
minimal response time, minimal number of errors and the edit distance problem [18], which
serves as the foundation for the specification repair framework from [5].

Non-determinism can also arise as a result of abstraction. The exact systems are
often too large and complex to operate on and hence they are approximated with smaller
non-deterministic models [11]. The abstraction is especially important for multi-threaded
programs, where the explicit model grows exponentially with the number of threads [17].

Our contributions

We study non-deterministic weighted automata under probabilistic semantics. We work with
weighted automata as defined in [8], where a value function f is used to aggregate weights
along a run, and the value of the word is the infimum over values of all runs. (The infimum
can be changed to supremum as both definitions are dual). We primarily focus on the two
most interesting value functions: the sum of weights over finite runs, and the limit average
over infinite runs. The main results presented in this paper are as follows.

We show that the answers to the probabilistic questions for weighted automata with
the sum and limit-average value functions can be irrational (Theorem 5) and cannot be
computed by any effective representation (Theorem 6).
We establish approximation algorithms for the probabilistic questions for weighted
automata with the sum and limit-average value functions. The approximation is #P-
complete for (total) weighted automata with the sum value function (Theorem 10), and
it is PSpace-hard and solvable in exponential time for weighted automata with the
limit-average value function (Theorem 16).
We show that weighted automata with the limit-average value function can be approxim-
ately determinised (Theorem 18). Given an automaton A and ε > 0, we show how to
compute a deterministic automaton AD such that the expected difference between the
values returned by both automata is at most ε.

Applications

We briefly discuss applications of our contributions in quantitative verification.

J. Michaliszyn and J. Otop 10:3

The expected-value question corresponds to the average-case analysis in quantitative
verification [7, 9]. Using results from this paper, we can perform the average-case analysis
with respect to quantitative specifications given by non-deterministic weighted automata.
The universality problem for non-deterministic automata, which asks whether all words
have the value below a given threshold, forms a basis for some quantitative-model-
checking frameworks [8]. Unfortunately, the universality problem is undecidable for
weighted automata with the sum or the limit average values functions. The distribution
question can be considered as a computationally-attractive variant of universality, i.e., we
ask whether almost-all words have value below some given threshold. We show that if the
threshold can be approximated, the distribution question can be computed effectively.
Weighted automata have been used to formally study online algorithms [2]. Online
algorithms have been modeled by deterministic weighted automata, which make choices
based solely on the past, while offline algorithms have been modeled by non-deterministic
weighted automata. Relating deterministic and non-deterministic models allowed for
formal verification of the worst-case competitiveness ratio of online algorithms. Using
the result from our paper, we can extend the analysis from [2] to the average-case
competitiveness.

Related work

Probabilistic verification of qualitative properties. Probabilistic verification asks for the
probability of the sets of traces satisfying a given property. For non-weighted automata, it
has been extensively studied [26, 12, 3] and implemented [22, 19]. The prevalent approach in
this area is to work with deterministic automata, and apply determinisation as needed. To
obtain better complexity bounds, the probabilistic verification problem has been directly
studied for unambiguous Büchi automata in [4]; the authors explain there the potential
pitfalls in the probabilistic analysis of non-deterministic automata.

Weighted automata under probabilistic semantics. Probabilistic verification of weighted
automata and their extensions has been studied in [9]. All automata considered there are
deterministic.

Markov Decision Processes (MDPs). MDPs are a classical extension of Markov chains,
which allow to model control in a stochastic environment [3, 15]. In MDPs probabilistic and
non-deterministic transitions are interleaved. Intuitively, the non-determinism in MDPs is
resolved based on the past, i.e., already generated events. In our setting, non-deterministic
weighted automata work over completely generated words and hence non-determinism may
be resolved based on following letters, considered as future events.

Approximation determinisation. As weighted automata are not determinisable, Boker and
Henzinger [6] studied approximate determinisation defined as follows. The distance dsup
between weighted automata A1,A2 is defined as dsup(A1,A2) = supw |A1(w)−A2(w)|. A
nondeterministic weighted automaton A can be approximately determinised if for every
ε > 0 there exists a deterministic automaton AD such that dsup(A,AD) ≤ ε. Unfortunately,
weighted automata with the limit average value function cannot be approximately determ-
inised [6]. In this work we show that the approximate determinisation is possible for the
standard deviation metric dstd defined as dstd(A1,A2) = E(|A1(w)−A2(w)|).

CONCUR 2018

10:4 Non-deterministic Weighted Automata on Random Words

2 Preliminaries

Given a finite alphabet Σ of letters, a word w is a finite or infinite sequence of letters. We
denote the set of all finite words over Σ by Σ∗, and the set of all infinite words over Σ by
Σω. For a word w, we define w[i] as the i-th letter of w, and we define w[i, j] as the subword
w[i]w[i+ 1] . . . w[j] of w. We use the same notation for other sequences defined later on. By
|w| we denote the length of w.

A (non-deterministic) finite automaton (NFA) is a tuple (Σ, Q,Q0, F, δ) consisting of an
input alphabet Σ , a finite set of states Q, a set of initial states Q0 ⊆ Q, a set of final states
F , and a finite transition relation δ ⊆ Q× Σ×Q.

We denote by δ(q, a) the set of states {q′ | δ(q, a, q′)} and by δ(S, a) the set of states⋃
q∈S δ(q, a). We extend this to δ̂ : 2Q × Σ∗ → 2Q in the following way: δ̂(S, ε) = S (where ε

is the empty word) and δ̂(S, aw) = δ̂(δ(S, a), w), i.e., δ̂(S,w) is the set of states reachable
from S via δ over the word w.

Weighted automata. A weighted automaton is a finite automaton whose transitions are
labeled by rational numbers called weights. Formally, a weighted automaton is a tuple
(Σ, Q,Q0, F, δ, C), where the first five elements are as in the finite automata, and C : δ → Q
is a function that defines weights of transitions. An example of a weighted automaton is
depicted in Figure 1.

The size of a weighted automaton A, denoted by |A|, is |Q|+ |δ|+
∑
q,q′,a len(C(q, a, q′)),

where len is the sum of the lengths of the binary representations of the numerator and the
denominator of a given rational number.

A run π of an automaton A on a word w is a sequence of states π[0]π[1] . . . such that π[0]
is an initial state and for each i we have (π[i− 1], w[i], π[i]) ∈ δ. A finite run π of length k is
accepting if and only if the last state π[k] belongs to the set of accepting states F . As in [8],
we do not consider ω-accepting conditions and assume that all infinite runs are accepting.
Every run π of an automaton A on a (finite or infinite) word w defines a sequence of weights
of successive transitions of A as follows. Let (C(π))[i] be the weight of the i-th transition,
i.e., C(π[i− 1], w[i], π[i]). Then, C(π) = (C(π)[i])1≤i≤|w|. A value functions f is a function
that assigns real numbers to sequences of rational numbers. The value f(π) of the run π is
defined as f(C(π)).

The value of a (non-empty) word w assigned by the automaton A, denoted by LA(w), is
the infimum of the set of values of all accepting runs on w. The value of a word that has
no (accepting) runs is infinite. To indicate a particular value function f that defines the
semantics, we will call a weighted automaton A an f -automaton.

Value functions. We consider the following value functions. For finite runs, functions Min
and Max are defined in the usual manner, and the function Sum is defined as

Sum(π) =
∑|C(π)|

i=1
(C(π))[i]

For infinite runs we consider the supremum Sup and infimum Inf functions (defined like
Max and Min but on infinite runs) and the limit average function LimAvg defined as

LimAvg(π) = lim sup
k→∞

Avg(π[0, k])

where for finite runs π we have Avg(π) = Sum(π)/|C(π)|.

J. Michaliszyn and J. Otop 10:5

2.1 Probabilistic semantics
A (finite-state discrete-time) Markov chain is a tuple 〈Σ, S, s0, E〉, where Σ is the alphabet
of letters, S is a finite set of states, s0 is an initial state, E : S × Σ× S 7→ [0, 1] is an edge
probability function, which for every s ∈ S satisfies that

∑
a∈Σ,s′∈S E(s, a, s′) = 1. By

|M| = |S| + |E| +
∑
q,q′,a len(E(q, a, q′)) we denote the size of the Markov chain M. An

example of a single-state Markov chain is depicted in Figure 1.
The probability of a finite word u w.r.t. a Markov chain M, denoted PM(u), is the

sum of probabilities of paths from s0 labeled by u, where the probability of a path is the
product of probabilities of its edges. For basic open sets u · Σω = {uw | w ∈ Σω}, we have
PM(u · Σω) = PM(u), and then the probability measure over infinite words defined byM
is the unique extension of the above measure (by Carathéodory’s extension theorem [14]).
We will denote the unique probability measure defined by M as PM, and the associated
expectation measure as EM. For example, for the Markov chainM presented in Figure 1, we
have that PM(ab) = 1

4 , and so PM({w ∈ {a, b}ω | w[0, 1] = ab}) = 1
4 , whereas PM(X) = 0

for any finite set of infinite words X.
A terminating Markov chain MT is a tuple 〈Σ, S, s0, E, T 〉, where Σ, S and s0 are as

usual, E : S × (Σ ∪ {ε})× S 7→ [0, 1] is the edge probability function, such that if E(s, a, t),
then a = ε if and only if t ∈ T , and for every s ∈ S we have

∑
a∈Σ∪{ε},s′∈S E(s, a, s′) = 1,

and T is a set of terminating states such that the probability of reaching a terminating state
from any state s is positive. Notice that the only ε-transitions in a terminating Markov chain
are those that lead to a terminating state.

The probability of a finite word u w.r.t. M, denoted PMT (u), is the sum of probabilities
of paths from s0 labeled by u such that the only terminating state on this path is the last one.
Notice that PMT is a probability distribution on finite words whereas PM is not (because
the sum of probabilities may exceed 1).

Automata as random variables. A weighted automaton defines the function LA(w) : Σω 7→
R that assigns values to words. This function is measurable for all the automata types we
consider in this paper (see Remark 2 below). Thus, this function can be interpreted as
random variables w.r.t. the probabilistic space we consider. Hence, for a given automaton A
and a Markov chainM, we consider the following quantities:
EM(A) – the expected value of the random variable defined by A w.r.t. the probability
measure defined byM.
DM,A(λ) = PM({w | LA(w) ≤ λ}) – the (cumulative) distribution function of the random
variable defined by A w.r.t. the probability measure defined byM.
In the finite words case, the expected value EMT and the distribution DMT ,A are defined

in the same manner.

I Remark 1 (Bounds on the expected value and the distribution). Both quantities can be
easily bounded: the value of the distribution function is always between 0 and 1. For a
LimAvg-automaton A, we have EM(A) ∈ [minA,maxA] ∪ {∞}, where minA and maxA
denote the minimal and the maximal weight of A. For a Sum-automaton A, we have
EM(A) ∈ [LM · minA, LM · maxA] ∪ {∞}, where LM is the expected length of a word
generated by M (it can be computed in a standard way [16, Section 11.2]). In both cases,
EM(A) =∞ if and only if the probability of the set of words with no accepting runs in A is
positive. Note that we consider no ω-accepting conditions, and hence all infinite runs of Sum-
automata are accepting. Still there can be infinite words, on which a given Sum-automaton
has no infinite runs. We show in Section 3.2 that the distribution and expected value may
be irrational, even for integer weights and uniform distributions.

CONCUR 2018

10:6 Non-deterministic Weighted Automata on Random Words

qb qx qa s0
a : 0a : 1

b : 1b : 0
a : 0, b : 1a : 1, b : 0

a : 0.5, b : 0.5

Figure 1 The automaton A = {{a, b}, {qx, qa, qb}, {qa, qb}, ∅, δ, C}, where δ =
{(qa, a, qa), (qa, b, qa), (qa, b, qx), (qx, a, qa), (qx, a, qb), (qb, a, qx), (qb, a, qb), (qb, b, qb)} and C such that
C(qa, b, qa) = C(qb, a, qb) = C(qa, b, qx) = C(qx, a, qb) = 1 and for all other inputs the value of C is
0 (left) and the Markov chain M = {{a, b}, {s0}, {s0}, E} where E always returns 0.5 (right).

I Remark 2 (Measurability of functions represented by automata). For automata on finite
words, Inf-automata and Sup-automata, measurability of LA is straightforward. To show
that LA(w) : Σω 7→ R is measurable for any non-deterministic LimAvg-automaton A, it
suffices to show that for every x ∈ R, the preimage L−1

A (−∞, x] is measurable. Let Q be the
set of states of A. Consider the set Σω × Qω. We can define a subset Ax ⊆ Σω × Qω of
the pairs, the word and the run on it, where the value of the run is less than or equal to x.
The set Ax can be presented as a countable intersection of open sets, and hence it is Borel.
Observe that L−1

A (−∞, x] is the projection of Ax on the first component Σω. The projection
of a Borel set is analytic, which is measurable [20]. Thus, LA defined by a non-deterministic
LimAvg-automaton is measurable.

The above proof of measurability requires some knowledge of descriptive set theory. We
will give a direct proof of measurability of LA in the paper (Theorem 16).

2.2 Computational questions
We consider the following basic computational questions:

The expected value question: Given an f -automaton A and a (terminating) Markov chain
M, compute EM(A).
The distribution question: Given an f -automaton A, a (terminating) Markov chainM
and a threshold λ, compute DM,A(λ).

Each of the above questions have its decision variant (useful for lower bounds), where
instead of computing the value we ask whether the value is less than a given threshold t.

The above questions have their approximate variants:

The approximate expected value question: Given an f -automaton A, a (terminating)
Markov chainM, ε > 0, compute a number η such that |η − EM(A)| ≤ ε.
The approximate distribution question: Given an f -automaton A, a (terminating) Markov
chainM, a threshold λ and ε > 0 compute a number η ∈ [DM,A(λ− ε),DM,A(λ+ ε)].

In the later case, we use the Skorokhod’s notion. One could expect there “η ∈ [DM,A(λ)−
ε,DM,A(λ) + ε]” instead. However, this would lead to undecidable approximation in the
LimAvg case (cf. Theorem 6).

3 Basic properties

Consider an f -automaton A, a Markov chain M and a set of words X. We denote by
EM(A | X) the expected value of A w.r.t. M restricted only to words in the set X (see [14]).

The following says that we can disregard a set of words with probability 0 (e.g. containing
only some of the letters under uniform distribution) while computing the expected value.

J. Michaliszyn and J. Otop 10:7

I Fact 3. If P(X) = 1 then EM(A) = EM(A | X).

The proof is rather straightforward; the only interesting case is when there are some
words not in X with infinite values. But for all the functions we consider, one can show that
in this case there is a set of words with infinite value that has a non-zero probability, and
therefore EM(A) = EM(A | X) =∞.

One important corollary of Fact 3 is that ifM is, for example, uniform, then because the
set Y of ultimately-periodic words (i.e., words of the form vwω) has probability 0, we have
EM(A) = EM(A | Σω \ Y). This suggests a possibility that the expected value may not be
realised by any ultimately periodic word. We exemplify this in Remark 13.

3.1 Example of computing expected value by hand
Consider a LimAvg-automaton A and a Markov chainM depicted in Figure 1. We encourage
the reader to take a moment to study this automaton and try to figure out its expected
value.

The idea behind A is as follows. Assume that A is in a state ql for some l ∈ {a, b}. Then,
it reads a word up to the first occurrence a subword ba, where it has a possibility to go to qx
and then to non-deterministically choose qa or qb as the next state. Since going to qx and
back to ql costs the same as staying in ql, we will assume that the automaton always goes to
qx in such a case. When an automaton is in the state qx and has to read a word w = ajbk,
then average cost of a run on w is j

j+k if the run goes to qb and k
j+k otherwise. So the run

with the lowest value is the one that goes to qa if j > k and qb otherwise.
To compute the expected value of the automaton, we focus on the set X of words w

such that for each positive n ∈ N there are only finitely many prefixes of w of the form
w′ajbk such that j+k

|w′|+j+k ≥
1
n . Notice that this means that w contains infinitely many a

and infinitely many b. It can be proved in a standard manner that PM(X) = 1.
Let w ∈ X be a random event, which is a word generated by M. Since w contains

infinitely many letters a and b, it can be partitioned in the following way. Let w = w1w2w3 . . .

be a partition of w such that each wi for i > 0 is of the form ajbk for j ≥ 0, k > 0, and for
i > 1 we also have j > 0. For example, the partition of w = baaabbbaabbbaba . . . is such that
w1 = b, w2 = aaabbb, w3 = aabbb, w4 = ab, Let si = |w1w2 . . . wi|.

We now define a run πw on w as follows:

qw1 . . . q
w
1 qxq

w
2 . . . q

w
2 qxq

w
3 . . . q

w
3 qxq

w
4 . . .

where the length of each block of qi is |wi| − 1, qw0 = qa and qwi = qa if wi = ajbk for some
j > k and qwi =qb otherwise. It can be shown by a careful consideration of all possible runs
that this run’s value is the infimum of values of all the runs on this word.

I Lemma 4. LA(w) = LimAvg(πw).

By Fact 3 and Lemma 4, it remains to compute the expected value of LimAvg({πw | w ∈
X}). As the expected value of the sum is the sum of expected values, we can state that

EM(LimAvg({πw | w ∈ X})) = lim sup
s→∞

1
s
·
s∑
i=1

EM ({(C(πw))[i] | w ∈ X})

It remains to compute EM((C(πw)[i]). If i is large enough (and since the expected value
does not depend on a finite number of values, we assume that it is), the letter πw[i] is in
some block ws = ajbk. There are j + k possible letters in this block, and the probability that

CONCUR 2018

10:8 Non-deterministic Weighted Automata on Random Words

the letter πw[i] is an ith letter in such a block is 2−(j+k+2) (”+2”, because the block has to
be maximal, so we need to include the letters before the block and after the block). So the
probability that a letter is in a block ajbk is j+k

2j+k+2 . The average cost of a such a letter is
min(j,k)
j+k , as there are j + k letters in this block and the block contributes min(j, k) to the

sum.
It can be analytically checked that

∞∑
j=1

∞∑
k=1

j + k

2j+k+2 ·
min(j, k)
j + k

=
∞∑
j=1

∞∑
k=1

min(j, k)
2j+k+2 = 1

3

We can conclude that EM(LimAvg(πw)) = 1
3 and, by Lemma 4, EM(A) = 1

3 .
The bottom line is that even for such a simple automaton with only one strongly connected

component consisting of three states (and two of them being symmetrical), the analysis is
complicated. On the other hand, we conducted a simple Monte Carlo experiment in which we
computed the value of this automaton on 10000 random words of length 222 generated byM,
and observed that the obtained values are in the interval [0.3283, 0.3382], with the average of
0.33336, which is a good approximation of the expected value 0.(3). This foreshadows our
results for LimAvg-automata: we show that computing the expected value is, in general,
impossible, but it is possible to approximate it with arbitrary precision. Furthermore,
the small variation of the results is not accidental – we show that for strongly-connected
LimAvg-automata, almost all words have the same value (which is equal to the expected
value).

3.2 Irrationality of the distribution and the expected value

We argue that the exact values of EM(A) and DM,A(λ) for Sum-automata and LimAvg-
automata may be irrational.

For the rest of this section we assume that the distribution of words is uniform. In the
infinite case, this means that the Markov chain contains a single state where it loops over
any letter with probability 1

|Σ| , where Σ is the alphabet. In the finite case, this amounts to a
terminating Markov chain with one regular state and one terminating state; it loops over
any letter in the non-terminating state with probability 1

|Σ|+1 or go to the terminating state
over ε with probability 1

|Σ|+1 . Below we omit the Markov chain as it is fixed (for a given
alphabet).

We define a Sum-automaton A (Figure 2) over the alphabet Σ = {a,#} such that
A(w) = 0 if w = a#a2# . . .#a2n and A(w) ≤ −1 otherwise. Such an automaton basically
picks a block with an inconsistency and verifies it. For example, if w contains a block
#ai#aj#, the automaton A first assigns −2 to each letter a and upon # it switches to the
mode in which it assigns 1 to each letter a. Then, A returns the value j − 2 · i. Similarly, we
can encode the run that returns the value 2 · i− j. Therefore, all the runs return 0 if and
only if each block of a’s is twice as long as the previous block. Finally, A checks whether the
first block of a’s has length 1 and returns −1 otherwise.

A word of the form a#a2# . . .#a2n has length 2n+1 + n − 1 and its probability is
3−(2n+1+n) (as the probability of any given word with n letters over a two-letters alphabet is
3−(n+1)). Therefore, the probability γ that a word is of the form a#a2# . . .#a2n is equal
to

∑∞
n=0 3−(2n+1+n). Observe that γ written in base 3 has arbitrary long sequences of 0’s

and hence its representation is acyclic. Thus, γ is irrational. Observe that γ = 1− DA(−1).
Therefore, DA(−1) is irrational.

J. Michaliszyn and J. Otop 10:9

qI

q′I

q

a : 0

: −1

a : −1
a,# : 0

a,# : 0

: 0

a : 0

a : −2

a : −2

: 0

a : +1

: 0

#, a : 0
a : +2

a : +2

: 0

a : −1

: 0

Figure 2 The automaton A from Section 3.2. States qI and q′
I are initial and states but q are

accepting. Any word that starts with # or aa has the value at most −1 because of a run that starts
in qI . For all other words, the runs starting in qI have value −1. The accepting runs starting in q′

I

have negative value only if the input word contains a (maximal) subword ai#aj such that j 6= 2i.

For the expected value, we construct A′ such that for every word w we have LA′(w) =
min(LA(w),−1). This can be done by adding to A an additional initial state q0, which
starts an automaton that assigns to all words value −1. Observe that A and A′ differ only
on words w of the form a#a2# . . .#a2n , where A(w) = 0 and A′(w) = −1. On all other
words, both automata return the same values. Therefore, E(A)− E(A′) = γ. It follows that
at least one of the values E(A), E(A′) is irrational.

The same construction works for LimAvg. We take A (resp., A′) and we convert it
to a LimAvg-automaton A∞ (resp., A′∞) over Σ′ = Σ ∪ {$}. The new letter $ resets the
automaton, i.e., A∞ (resp., A′∞) has transitions from the final states of A (resp., A′) to its
initial states labeled with $. We can show that 1− DA∞(−1) and E(A∞)− E(A′∞) over the
uniform distribution are equal to γ and hence DA∞(−1) is irrational and one of the values
E(A∞), E(A′∞) is irrational.

I Theorem 5. There exist a Sum-automaton and a LimAvg-automaton whose distributions
and expected values w.r.t. the uniform distribution are irrational.

4 The exact value problems

In this section we consider the probabilistic questions for non-deterministic Sum-automata
and LimAvg-automata, i.e., the problems of computing the exact values of the expected
value EM(A) and the distribution DM,A(λ) w.r.t. a Markov chainM and an f -automaton
A. We showed that these values may be irrational. But one can perhaps argue that there
might be some representation of irrational numbers that can be employed to avoid this
problem. We prove that this is not the case by showing that computing the exact value to
any representation with decidable equality of two numbers is not possible. The proof is by a
(Turing) reduction from the quantitative universality problem for Sum-automata:

The quantitative universality problem for Sum-automata: Given a Sum-automaton with
weights −1, 0 and 1, decide whether for all words w we have LA(w) ≤ 0.

The quantitative universality problem for Sum-automata is undecidable [21, 1].

CONCUR 2018

10:10 Non-deterministic Weighted Automata on Random Words

We first discuss reductions to the probabilistic problems for Sum-automata. Consider an
instance of the quantitative universality problem, which is a Sum-automaton A. If there is a
word w with the value greater than 0, then P(w) > 0, and thus DA(0) < 1. Otherwise, clearly
DA(0) = 1. Therefore, solving the universality problem amounts to computing whether the
DA(0) = 1, and thus the latter problem is undecidable. For the expected value, we construct
a Sum-automaton A′ such that for every word w we have LA′(w) = min(LA(w), 0). Observe
that E(A) = E(A′) if and only if for every word w we have LA(w) ≤ 0, i.e., the answer
to the universality problem is YES. Therefore, there is no Turing machine, which given a
Sum-automaton A computes E(A).

For LimAvg case, we construct a LimAvg-automaton A∞ from the Sum-automaton A,
by connecting all accepting states (of A) with all initial states by transitions of weight 0
labeled by an auxiliary letter #. For the expected value we construct A′∞ from A′ in the
same way. Again, the distribution DA∞(0) = 1 if and only if for all words we have LA(w) ≤ 0.
Then, observe that E(A∞) = E(A′∞) if and only if for every word w we have LA(w) ≤ 0.
Therefore, there is no Turing machine computing the expected value or the distribution of a
given LimAvg-automaton.

I Theorem 6. The expected value and the distribution of (non-deterministic) Sum-automata
(resp., LimAvg-automata) are uncomputable even for the uniform distribution.

4.1 Extrema automata
We discuss the distribution problem for Min-, Max-, Inf- and Sup-automata, where Min
and Max return the minimal and the maximal (resp.) element of a finite sequence, and
Inf and Sup return the minimal and the maximal (resp.) element of an infinite sequence.
The expected value of an automaton can be easily computed based on the distribution as
there are only finitely many possible values of a run (each possible value is a label of some
transition).

I Theorem 7. For Min-, Max-, Inf- and Sup-automata A and a Markov chain M, the
distribution problem can be solved in exponential time in |A| and polynomial time in |M|.

Proof. We discuss the case of f = Inf as the other cases are similar. Consider an Inf-
automaton A. For each weight x of A, we can construct a (non-deterministic) ω-automaton
Ax that accepts only words of value greater than x – we take A, remove the transitions of
weight at most x, and drop all the weights. Therefore, the set of words with the value greater
than x is regular, and hence it is measurable. We can compute its probability px w.r.t. M
in exponential time in |A| and polynomial in |M| [3]. Note that px = 1− DM,A(x). J

5 The approximation problems

We start the discussion on the approximation problems by showing a hardness result that
holds for a wide range of value functions. We say that a function is 0-preserving if its value
is 0 whenever the input consists only of 0s. Notice that functions such as Sum, LimAvg,
Min, Max, Inf, Sup and virtually all the functions from the literature [8] are 0-preserving.
The hardness results follow from the fact that accepted words have finite values, which we
can force to be 0, while words without accepting runs have infinite values.

The answers in the approximation problems are numbers and to study the lower bounds,
we consider their decision variants, called the separation problems. In these variants, the
input is enriched with numbers a, b such that b − a > 2ε and the instance is such that

J. Michaliszyn and J. Otop 10:11

EM(A) 6∈ [a, b] (resp. DM(A) 6∈ [a, b]), and the question is whether EM(A) < a (resp.
DM(A) < a). Note that having an algorithm computing one of the approximate problems
(for the distribution or the expected value), we can use it to decide the separation question.
Conversely, using the separation problem as an oracle, we can perform binary search on the
domain to compute solve the corresponding approximation problem in polynomial time.

I Theorem 8. For a 0-preserving function f , the separation problems for non-deterministic
f -automata are PSpace-hard.

Total automata. Theorem 8 gives us a general hardness result, which is due to accepting
conditions rather than values returned by weighted automata. In the following, we focus
on weights and we assume that weighted automata are total, i.e., they accept all the words
(resp., almost all the words in the infinite-word case). For Sum-automata under the totality
assumption, the approximate probabilistic questions become #P-complete.

I Theorem 9. The approximate expected value and the approximate distribution questions
for non-deterministic total Sum-automata are #P-complete.

The lower bound can be obtained by a reduction from the problem of counting the number
of satisfying assignment of a given propositional formula ϕ in Conjunctive Normal Form
(CNF) [25, 23], which is #P-complete. We construct an automaton that, for a formula with
n variables, accepts only words of length n that encode valuations that make the formula
satisfied. It follows that the expected value of the automaton equals 3−(n+1) · C, where
3−(n+1) is the probability of generating a word of length n under uniform distribution and C
is the number of variable assignments satisfying ϕ.

The upper bound follows the idea that the probability thatMT emits a word of length
greater than n decreases exponentially with n. This means that there is N of polynomial
size such that the distribution (resp., the expected value) of A and the distribution (resp.,
the expected value) of A over words up to length N differ by less than ε. Based on this, we
can build a Turing machine that imitates the distribution ofMT over words up to length N
with its non-deterministic computations.

We show that the approximation problem for LimAvg-automata is PSpace-hard over
the class of total automata.

I Theorem 10. The separation problems for non-deterministic total LimAvg-automata are
PSpace-hard.

Proof. Given a non-deterministic finite-word automaton A, we construct an infinite-word
LimAvg-automaton A∞ from A in the following way. We introduce an auxiliary symbol #
and we add transitions labeled by # between any final state of A and any initial state of A.
Then, we label all transitions of A∞ with 0. Finally, we connect all non-accepting states of
A with an auxiliary state qsink, which is a sink state with all transitions of weight 1. The
automaton A∞ is total.

Observe that if A is universal, then A∞ has a run of value 0 on every word. Otherwise,
if A rejects a word w, then upon reading a subword #w#, the automaton A∞ reaches qsink,
i.e., the value of the whole word is 1. Almost all words contain an infix #w# and hence
almost all words have value 1. J

CONCUR 2018

10:12 Non-deterministic Weighted Automata on Random Words

6 Approximating LimAvg-automata in exponential time

The case of LimAvg is significantly more complex than the other cases. First, we restrict our
attention to recurrent LimAvg-automata and the uniform distribution over infinite words.
Then, we comment on the extension to all distributions given by Markov chains. Finally, we
show the proof for all LimAvg-automata over probability measures given by Markov chains.

6.1 Recurrent automata
A non-deterministic LimAvg-automaton A = (Σ, Q,Q0, δ) is recurrent if and only if for every
set S ⊆ Q such that |S| = 1 or δ̂(Q0, w) = S for some word w, there is a finite word u such
that δ̂(S, u) = Q0.

For every A, which is strongly connected as a graph, there exists a set of initial states T
with which it becomes recurrent. Moreover, the probability of words accepted by A is either
0 or 1. Indeed, consider A as an unweighted ω-automaton and construct a deterministic
ω-automaton AD through the power-set construction applied to A. Note that AD has a
single bottom strongly-connected component (BSCC) and Q0 belongs to that component.
Conversely, for any strongly connected automaton A, if Q0 belongs to the BSCC of AD,
then A is recurrent. Moreover, since AD has a single BSCC, for almost all words, all runs
end up in that BSCC and hence the probability of the set of words having any infinite run in
A is either 0 or 1.

6.2 Nearly-deterministic approximations
While words are generated by a Markov chain letter by letter, the run on that word can be
defined only when the complete word is generated. This precludes application of standard
techniques for probabilistic verification, which relies on the fact that the word and the run
on it are generated simultaneously [26, 12, 3].

Key ideas. Our main idea is to change the non-determinism to bounded look-ahead. This
must be inaccurate, as the expected value of a deterministic automaton with bounded
look-ahead is always rational, whereas Theorem 5 shows that the values of non-deterministic
automata may be irrational. Nevertheless, we show that bounded look-ahead is sufficient to
approximate the probabilistic questions for recurrent automata (Lemma 11). Furthermore, the
approximation can be done effectively (Lemma 14), which in turn gives us an exponential-time
approximation algorithm for recurrent automata (Lemma 15).

Jumping runs. Let k > 0. A k-jumping run ξ of A on a word w is an infinite sequence
of states such that for every i there is a run π of A on w such that ξ[ki, k(i + 1) − 1] =
π[ki, k(i+ 1)− 1].

A block of a k-jumping run is a sequence ξ[ki, k(i+ 1)− 1] for some i; positions k, 2k, . . .
are jumps, where the sequence ξ need not obey the transition relation of A.

The cost C of a transition of a k-jumping run ξ within a block is defined as usual, while
the cost of a jump is defined as the minimal weight of A. The value of a k-jumping run ξ is
defined as the limit average computed for such costs.

Optimal and block-deterministic jumping runs. We say that a k-jumping run ξ on a word
w is optimal if its value is the infimum over values of all k-jumping runs on w. We show that
optimal k-jumping runs can be constructed nearly deterministically, i.e., only looking ahead
to see the whole current block.

J. Michaliszyn and J. Otop 10:13

For every S ⊆ Q and u ∈ Σk we fix a run ξS,u on u starting in one of states of S, which
has the minimal average weight. Then, given a word w ∈ Σω, we define a k-jumping run ξ
as follows. We divide w into k-letter blocks u1, u2, . . . and we put ξ = ξS0,u1ξS1,u2 . . ., where
S0 = {q0} and for i > 0, Si is the set of states reachable from q0 on the word u1 . . . ui. The
run ξo is a k-jumping run and it is indeed optimal. We call such runs block-deterministic
– they can be constructed based on finite memory – the set of reachable states Si and the
current block of the input word.

Since all runs of A are in particular k-jumping runs, the value of (any) optimal k-jumping
run on w is less or equal to A(w). We show that for recurrent LimAvg-automata, the values
of k-jumping runs on w converge to A(w) as k tends to infinity. To achieve this, we construct
a run of A which tries to “follow” a given jumping run, i.e., after most all of the jumps it is
able to synchronize with the jumping run quickly.

I Lemma 11. Let A be a recurrent LimAvg-automaton. For every ε > 0, there exists k
such that for almost all words w, the value A(w) and the value an optimal k-jumping run on
w differ by at most ε. The value k is doubly-exponential in |A| and polynomial in 1

ε .

6.3 Random variables
Given a recurrent LimAvg-automaton A and k > 0, we define a function g[k] : Σω → R
such that g[k](w) is the value of some optimal k-jumping run ξo on w. We can pick ξo to
be block-deterministic and hence g[k] corresponds to a Markov chain M [k]. More precisely,
we define M [k] labeled by Σk such that for every word w, the limit average of the path in
M [k] labeled by blocks of w (i.e., blocks w[1, k]w[k+ 1, 2k] . . .) equals g[k](w). Moreover, the
distribution of blocks Σk is uniform and hence M [k] corresponds to g[k] over the uniform
distribution over Σ. The Markov chain M [k] is a labeled weighted Markov chain [15], such
that its states are all subsets of Q, the set of states of A. For each state S ⊆ Q and u ∈ Σk,
the Markov chain M has an edge (S, δ̂(S, u)) of probability 1

|Σ|k . The weight of an edge
(S, S′) labeled by u is the minimal average of weights of any run from some state of S to
some state of S′ over the word w.

We have the following:

I Lemma 12. Let A be a recurrent LimAvg-automaton and k > 0. (1) The functions g[k]
and LA are random variables. (2) For almost all words w we have g[k](w) = E(g[k]) and
LA(w) = E(LA).

Proof. Since A is recurrent, M [k] has a single BSCC and hence M [k] and g[k] return the
same value for almost all words [15]. This implies that the preimage through g[k] of each set
has measure 0 or 1, and hence g[k] is measurable [14]. Lemma 11 implies that (measurable
functions) g[k] converge to LA with probability 1, and hence LA is measurable [14]. As the
limit of g[k], LA also has the same value for almost all words. J

I Remark 13. The automaton A from the proof of Theorem 5 is recurrent (it resets after
each $), so the value of A on almost all words is irrational. Yet, for every ultimately periodic
word vwω, the value of A is rational. This means that while the expected value is realised by
almost all words, it is not realised by any ultimately periodic word.

6.4 Approximation algorithms
We show that the expected value of g[k] can be efficiently approximated. The approximation
is exponential in the size of A, but only logarithmic in k (which is doubly-exponential due to
Lemma 11).

CONCUR 2018

10:14 Non-deterministic Weighted Automata on Random Words

I Lemma 14. Given a recurrent LimAvg-automaton A, k = 2l and ε > 0, the expected
value E(g[k]) can be approximated up to ε in exponential time in |A|, logarithmic time in k
and polynomial time in 1

ε .

Lemma 11 and Lemma 14 imply the following:

I Lemma 15. Given a recurrent LimAvg-automaton A, Markov chainM, ε > 0 and λ ∈ Q,
we can compute ε-approximations of the distribution DM,A(λ) and the expected value EM(A)
in exponential time in |A| and polynomial time in |M| and 1

ε .

Proof. For uniform distributions, by Lemma 11, for every ε > 0, there exists k such that
|E(A)− E(g[k])| ≤ ε

2 . The value k is doubly-exponential in |A| and polynomial in 1
ε . Then,

Lemma 14, we can compute γ such that |γ − E(g[k])| ≤ ε
2 in exponential time in |A| and

polynomial in 1
ε . Thus, γ differs from E(A) by at most ε. Since almost all words have the

same value, we can approximate DA(λ) by comparing λ with γ, i.e., 1 is an ε-approximation
of DA(λ) if λ ≤ γ, and otherwise 0 is an ε-approximation of DA(λ).

The case of the nonuniform distributions can be solved similarly, by encoding the Markov
chain in the automaton. J

We lift Lemma 15 from recurrent to all LimAvg-automata and formally show that
LA : Σω → R is measurable. To do so, we take the product of a given automaton and Markov
chain and observe that its BSCC correspond to recurrent automata. A careful analysis allows
to compute the values for the whole automata based on the values for the BSCC.

I Theorem 16. (1) For a non-deterministic LimAvg-automaton A the function LA : Σω →
R is measurable. (2) Given a non-deterministic LimAvg-automaton A, Markov chainM,
ε > 0, and λ ∈ Q, we can ε-approximate the distribution DM,A(λ) and the expected value
E(A) in exponential time in |A| and polynomial time in |M| and 1

ε .

7 Determinising and approximating LimAvg-automata

For technical simplicity, we assume that the distribution of words is uniform. However, the
results presented here extend to all distributions given by Markov chains.

Recall that for the LimAvg automata, the value of almost all words, whose optimal runs
end up in the same SSC, is the same. This means that there is a finite set of values (not
greater than the number of SSCs of the automaton) such that almost all the words have
their values in this set.

LimAvg-automata are not determinisable [8]. We say that a non-deterministic LimAvg-
automaton A is weakly determinisable if there is a deterministic LimAvg-automaton B

such that A and B have the same value over almost all the words. From [9] we know
that deterministic automata return rational values for almost all the words, so not all
LimAvg-automata are weakly determinisable. However, we can show the following.

I Theorem 17. A LimAvg-automaton A is weakly determinisable if and only if it returns
rational values for almost all words.

Proof sketch. Assume an automaton A with SSCs C1, . . . , Cm. For each i let vi be defined
as the expected value of A when its set of initial states is Ci and the run is bounded to stay
in Ci. If A has no such runs for some Ci, then vi =∞.

We now construct a deterministic automaton B with rational weights using the standard
power-set construction. We define the cost function such that the cost of any transition from

J. Michaliszyn and J. Otop 10:15

a state Y is the minimal value vi such that vi is rational and Y contains a state from Ci. If
there are no such vi, then we set the cost to the maximal cost of A. Roughly speaking, B
tracks in which SSCs A can be and the weight corresponds to the SSC with the lowest value.

To see that B weakly determinises A observe that for almost all words w, a run with the
lowest value over w ends in some SSC and its value then equals the expected value of this
component, which is rational as the value of this word is rational. J

A straightforward corollary is that every non-deterministic LimAvg-automaton can be
weakly determinised by an LimAvg-automaton with real weights.

Theorem 17 does not provide an implementable algorithm for weakly-determinisation,
because of the hardness of computing the values vi. It is possible, however, to approximate
this automaton. We say that a deterministic LimAvg-automaton B ε-approximates A if for
almost every word w we have that LB(w) ∈ [LA(w)− ε,LA(w) + ε].

I Theorem 18. For every ε > 0 and a non-deterministic LimAvg-automaton A, one can
compute in exponential time a deterministic LimAvg-automaton that ε-approximates A.

The proof of this theorem is similar to the proof of Theorem 17, except now it is enough
to approximate the values vi, which can be done in exponential time.

References
1 Shaull Almagor, Udi Boker, and Orna Kupferman. What’s decidable about weighted auto-

mata? In ATVA, pages 482–491. LNCS 6996, Springer, 2011.
2 Benjamin Aminof, Orna Kupferman, and Robby Lampert. Reasoning about online al-

gorithms with weighted automata. ACM Transactions on Algorithms (TALG), 6(2):28,
2010.

3 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
4 Christel Baier, Stefan Kiefer, Joachim Klein, Sascha Klüppelholz, David Müller, and James

Worrell. Markov chains and unambiguous büchi automata. In CAV 2016, pages 23–42.
Springer, 2016.

5 Michael Benedikt, Gabriele Puppis, and Cristian Riveros. Regular repair of specifications.
In LICS 2011, pages 335–344, 2011.

6 Udi Boker and Thomas A. Henzinger. Approximate determinization of quantitative auto-
mata. In FSTTCS 2012, pages 362–373. Schloss Dagstuhl - Leibniz-Zentrum fuer Inform-
atik, 2012.

7 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. A survey of stochastic
games with limsup and liminf objectives. In ICALP 2009, pages 1–15, 2009.

8 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages.
ACM TOCL, 11(4):23, 2010.

9 Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Quantitative automata under
probabilistic semantics. In LICS 2016, pages 76–85. ACM, 2016.

10 Krishnendu Chatterjee, Mickael Randour, and Jean-François Raskin. Strategy synthesis
for multi-dimensional quantitative objectives. In CONCUR 2012, pages 115–131, 2012.

11 Edmund Clarke, Thomas Henzinger, Helmut Veith, and Roderick. Bloem. Handbook of
Model Checking. Springer International Publishing, 2016.

12 Costas Courcoubetis and Mihalis Yannakakis. The complexity of probabilistic verification.
J. ACM, 42(4):857–907, 1995.

13 Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted Automata.
Springer, 1st edition, 2009.

14 William Feller. An introduction to probability theory and its applications. Wiley, 1971.

CONCUR 2018

10:16 Non-deterministic Weighted Automata on Random Words

15 Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer, 1996.
16 Charles Miller Grinstead and James Laurie Snell. Introduction to probability. American

Mathematical Soc., 2012.
17 Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. Predicate abstraction and

refinement for verifying multi-threaded programs. In POPL 2011, pages 331–344, 2011.
18 Thomas A. Henzinger and Jan Otop. Model measuring for discrete and hybrid systems.

Nonlinear Analysis: Hybrid Systems, 23:166–190, 2017.
19 Andrew Hinton, Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM: A

tool for automatic verification of probabilistic systems. In TACAS 2006, pages 441–444,
2006.

20 Alexander Kechris. Classical descriptive set theory, volume 156. Springer Science & Busi-
ness Media, 2012.

21 Daniel Krob. The equality problem for rational series with multiplicities in the trop-
ical semiring is undecidable. Int. J. Algebr. Comput., 4(3):405–426, 1994. doi:10.1142/
S0218196794000063.

22 Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Quantitative analysis with the
probabilistic model checker PRISM. Electr. Notes Theor. Comput. Sci., 153(2):5–31, 2006.

23 Christos H Papadimitriou. Computational complexity. Wiley, 2003.
24 Mickael Randour, Jean-François Raskin, and Ocan Sankur. Percentile queries in multi-

dimensional markov decision processes. In CAV 2015, pages 123–139, 2015.
25 Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci.,

8(2):189–201, 1979.
26 Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs.

In FOCS 1985, pages 327–338. IEEE Computer Society, 1985.

http://dx.doi.org/10.1142/S0218196794000063
http://dx.doi.org/10.1142/S0218196794000063

Ergodic Mean-Payoff Games for the Analysis of
Attacks in Crypto-Currencies

Krishnendu Chatterjee
IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
krishnendu.chatterjee@ist.ac.at

Amir Kafshdar Goharshady
IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
amir.goharshady@ist.ac.at

Rasmus Ibsen-Jensen
IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
ribsen@ist.ac.at

Yaron Velner
Hebrew University of Jerusalem, Jerusalem, Israel
yaron.welner@mail.huji.ac.il

Abstract
Crypto-currencies are digital assets designed to work as a medium of exchange, e.g., Bitcoin,
but they are susceptible to attacks (dishonest behavior of participants). A framework for the
analysis of attacks in crypto-currencies requires (a) modeling of game-theoretic aspects to analyze
incentives for deviation from honest behavior; (b) concurrent interactions between participants;
and (c) analysis of long-term monetary gains. Traditional game-theoretic approaches for the
analysis of security protocols consider either qualitative temporal properties such as safety and
termination, or the very special class of one-shot (stateless) games. However, to analyze general
attacks on protocols for crypto-currencies, both stateful analysis and quantitative objectives
are necessary. In this work our main contributions are as follows: (a) we show how a class
of concurrent mean-payoff games, namely ergodic games, can model various attacks that arise
naturally in crypto-currencies; (b) we present the first practical implementation of algorithms for
ergodic games that scales to model realistic problems for crypto-currencies; and (c) we present
experimental results showing that our framework can handle games with thousands of states and
millions of transitions.

2012 ACM Subject Classification Software and its engineering → Formal software verification

Keywords and phrases Crypto-currency, Quantitative Verification, Mean-payoff Games

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.11

Related Version A full version of the paper is available at [10], https://arxiv.org/abs/1806.
03108.

Acknowledgements The research was partially supported by Vienna Science and Technology
Fund (WWTF) Project ICT15-003, Austrian Science Fund (FWF) NFN Grant No S11407-N23
(RiSE/SHiNE), ERC Starting Grant (279307: Graph Games), and an IBM PhD Fellowship.

© Krishnendu Chatterjee, Amir K. Goharshady, Rasmus Ibsen-Jensen, and Yaron Velner;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 11; pp. 11:1–11:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:krishnendu.chatterjee@ist.ac.at
mailto:amir.goharshady@ist.ac.at
mailto:ribsen@ist.ac.at
mailto:yaron.welner@mail.huji.ac.il
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.11
https://arxiv.org/abs/1806.03108
https://arxiv.org/abs/1806.03108
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Ergodic Mean-Payoff Games for the Analysis of Attacks in Crypto-Currencies

1 Introduction

Economic effects of security violations. Traditionally, automated security analysis of
protocols using game-theoretic frameworks focused on qualitative properties, such as safety
or liveness [26, 16, 1], to ensure absolute security. In many cases absolute security is too
expensive, and security violations are inevitable. In such scenarios rather than security,
the economic implications of violations should be accounted for. In general, economic
consequences of security violations are hard to measure. However, there is a new application
area of crypto-currencies, in which the economic impact of an attack can be measured in
terms of the number of coins that are lost. These currencies have considerable market value,
in the order of hundreds of billions of dollars [18], thus developing a framework to formally
analyze the security violations and their economic consequences for crypto-currencies is an
interesting problem.

Crypto-currencies. There are many active crypto-currencies today, some with considerable
market values. Currently, the main crypto-currency is Bitcoin with a value of over 150 billion
dollars at the time of writing [18]. Virtually all of these currencies are free from outside
governance and authority and are not controlled by any central bank. Instead, they work
based on the decentralized blockchain protocol. This protocol, which was first developed for
monetary transactions in Bitcoin [31], sets down the rules for creating new units of currency
and valid transactions. However, it only defines the outcomes of actions taken by involved
parties and cannot dictate the actions themselves. So, the whole ecosystem operates in a
game-theoretic manner. The lack of an authority also leads to irreversibility of transactions,
so if an amount of currency is transferred unintentionally or due to a bug, it cannot be
reclaimed. This, together with the huge market values, makes it imperative to develop formal
methods for quantifying the economic consequences before deploying the protocols.

Dishonest interaction. The fact that protocols define only the outcomes of actions and do
not force the actions themselves, means that in some scenarios they might give one of the
parties unfair or unintended advantage over others and an incentive to act dishonestly, i.e. to
take an unintended action. Such behavior is called an attack. We succinctly describe some
attacks.

The most fundamental attack in every crypto-currency is double-spending, where one party
could in some circumstances use the same coin twice in two different purchases. While this
vulnerability is inherent in every blockchain protocol, people still use crypto-currencies as
the probability (and the economic consequences) of such an attack can be bounded over
time.
Another line of attacks follow from dishonest behavior of the blockchain miners who are
responsible for the underlying security of the blockchain protocol and are rewarded for
their operations. It was shown that undesirable behavior, such as block withholding [19]
or selfish mining [20], could increase the dishonest miner’s reward, at the expense of other
(honest) miners. We explain the block withholding attack in more detail in Section 5.1.

Research Questions. Analyzing attacks on crypto-currencies requires a formal framework
to handle: (a) game-theoretic aspects and incentives for dishonest behavior; (b) simul-
taneous interaction of the participants; and (c) quantitative properties corresponding to
long-term monetary gains and losses. These properties cannot be obtained from standard
temporal or qualitative properties which have been the focus of previous game-theoretic

K. Chatterjee, A. K. Goharshady, R. Ibsen-Jensen, and Y. Velner 11:3

frameworks [26, 16]. On the other hand, game-theoretic incentives are also analyzed in
the security community (e.g., see [8]), but their methods are normally considering the very
special case of one-shot (stateless) or short-term games. One-shot games cannot model the
different states of the ecosystem or the history of actions taken.

Concurrent mean-payoff games. These games were introduced in the seminal work of
Shapley [37], and later extended by Gillette [22]. A concurrent mean-payoff game is played
by two players over a finite state space, where at each state both players simultaneously
choose actions. The transition to the next state is determined by their joint actions, and each
transition is assigned a reward. The goal of one player is to maximize the long-run average of
the rewards, and the other player tries to minimize it. These games provide a very natural and
general framework to study stateful games with simultaneous interactions and quantitative
objectives. They lead to a very elegant and mathematically rich framework, and the theoretical
complexity of such games has been studied for six decades [37, 22, 5, 24, 30, 14, 23]. However,
the analysis of concurrent mean-payoff games is computationally intractable and no practical
(such as strategy-iteration) algorithms exist to solve these games. Existing algorithmic
approaches either require the theory of reals and quantifier elimination [14] or have doubly-
exponential time complexity in the number of states [23].

Our contributions. Our main contributions are as follows:
1. Modeling. We propose to model long-term (infinite-horizon) economic aspects of security

violations as concurrent mean-payoff games, between the attacker and the defender. The
guaranteed payoff in the game corresponds to the maximal loss of the defender. In
particular, for blockchain protocols, where the utility of every transition is naturally
measurable, we show how to model various interesting scenarios as a sub-class of concurrent
mean-payoff games, namely, concurrent ergodic games. In these games all states are
visited infinitely often with probability 1.

2. Practical implementation. Second, while for concurrent ergodic games a theoretical
algorithm (strategy-iteration algorithm) exists that does not use theory of reals and
quantifier elimination, no previous implementation exists. Moreover, the implementation
of the theoretical algorithm poses practical challenges: (a) the algorithm guarantees
convergence only in the limit; and (b) the algorithm requires high numerical precision and
the straightforward implementation of the algorithm does not converge in practice. We
present (i) a simple stopping criterion for approximation, and (ii) resolve the numerical
precision problem; and to our knowledge present the first practical implementation of a
solver for concurrent ergodic games.

3. Experimental results. Finally, we present experimental results and show that the
solver for ergodic games scales to thousands of states and nearly a million transitions
to model realistic analysis problems from crypto-currencies. Note that in comparison,
approaches for general concurrent mean-payoff games cannot handle even ten transitions
(see the Remark in Section 3). Thus we present orders of magnitude of improvement.

2 Crypto-Currencies

Monetary system. A crypto-currency is a monetary system that allows secure transactions
of currency units and dictates how new units are formed. Each transaction has a unique id
and the following components: (i) a set of inputs; and (ii) a set of outputs and (iii) locking
scripts. Each input has a pointer to an output of a previous transaction, and each output

CONCUR 2018

11:4 Ergodic Mean-Payoff Games for the Analysis of Attacks in Crypto-Currencies

Figure 1 The longest chain dictates that the transaction tx belongs to Bob.

has an assigned monetary value. A locking script on an output defines a condition for using
the funds stored in that output, e.g. the need for a digital signature. An input can only use
funds of an output by passing its locking script.

Validity. A transaction is valid if these conditions hold: (a) the total value brought by the
outputs is greater than or equal to the total value of the inputs; (b) the inputs have not been
spent before; (c) the inputs satisfy locking scripts.

A transaction-based system is not secure if transactions are sent directly between users to
transfer units. While validity conditions are enough to make sure that only valid recipients
could redirect units they once truly held, there is nothing in the transactions themselves to
limit the user from spending the same output twice (in two different transactions). For this
purpose a public ledger of all valid transactions, called a blockchain, is maintained.

Blockchain. A ledger is a distributed database that maintains a growing ordered list of valid
transactions. Its main novelty is that it enforces consensus among untrusted and possibly
adversarial parties [31]. In Bitcoin (and most other major crypto-currencies) the public
ledger is implemented as a series of blocks of transactions, each containing a reference to its
previous block, and is hence called a blockchain. A consensus on the chain is obtained by a
decentralized pseudonymous protocol. Any party tries to collect new transactions, form a
block and add it to the chain (this process is called block mining). However, in order to do
so, they must solve a challenging computational puzzle (which depends on the last block of
the chain). The process of choosing the next block is as follows:
1. The first announced valid block that solves the puzzle is added to the chain.
2. If two valid blocks are found approximately at the same time (depending on network

latency), then there is a temporary fork in the chain.
Every party is free to choose either fork, and try to extend it. Hence, the underlying
structure of the blockchain is a tree. At any given time, the longest path in the tree, aka the
longest chain, is the consensus blockchain (see Figure 1). Due to the random nature of the
computational puzzle one branch will eventually become strictly longer than the other, and
all parties will adopt it.

Mining process. The puzzle asks for a block consisting of valid transactions, hash of the
previous block and an arbitrary integer nonce, whose hash is less than a target value. The
random nature of the hash function dictates a simple strategy for mining: try random nonces
until a solution is found. So the chance of a miner to find the next block is proportional to
their computational power.

Incentives for mining. There are two incentives for miners: (i) Every transaction can
donate to the miner who finds a new block that contains it, (ii) Each block creates a certain
number of new coins which are then given to the miner.

K. Chatterjee, A. K. Goharshady, R. Ibsen-Jensen, and Y. Velner 11:5

Pool mining. To lower the variance of their revenue, miners often collaborate in pools [35, 8].
The pools have a manager who collects the rewards from valid blocks found by the members
and allocates funds to them in proportion to the amount of work they did. Members prove
their work by sending partial solution blocks, which are blocks with valid transactions but
lower difficulty level, i.e., the hash of the block is not smaller than the network threshold,
but it is lower than some threshold that was defined by the manager. As a result, pool
members obtain lower variance in rewards, but have a small drop in expected revenue to
cover the manager’s fee. Members will get the same reward for a partial and full solution,
but the member cannot claim the full block reward for themselves. More precisely, a block
also dictates where the block reward goes to. Hence, even if a member broadcasts the new
block, the reward will still go to the manager.

Proof of stake mining. An emerging criticism over the huge amount of energy that is
wasted in the mining process led to development of proof of stake protocols. In proof of stake
mining the miner is elected with probability that is proportional to their stake in the network
(i.e., number of coin units he holds), rather than their computation power. Current proof of
stake protocols assume a synchronous setting [32, 40, 28] where a miner is chosen in every
time slot t0. However, they differ in the way they reach consensus. We study a simplified
version of [28].
1. At time t0 a miner is randomly elected. She broadcasts the next block.
2. Until time t0 + t other miners who receive the block, verify it and if it were valid, sign it

and broadcast the signature.
3. The block is added to the chain only if a majority of the network sign it.
To encourage honest behavior, the elected miner and signers get rewards when the suggested
block is accepted.

3 Concurrent and Ergodic Games

Probability distributions. For a finite set A, a probability distribution on A is a function
δ : A→ [0, 1] such that

∑
a∈A δ(a) = 1. We denote the set of probability distributions on A

by D(A). Given a distribution δ ∈ D(A), we denote by Supp(δ) = {x ∈ A | δ(x) > 0} the
support of the distribution.

Concurrent game structures. A concurrent stochastic game structure G = (S,A,Γ1,Γ2, δ)
has the following components:

A finite state space S and a finite set A of actions (or moves).
Two move assignments Γ1,Γ2 : S → 2A \ ∅. For i ∈ {1, 2}, assignment Γi associates with
each state s ∈ S the non-empty set Γi(s) ⊆ A of moves available to Player i at state s.
A probabilistic transition function δ : S×A×A→ D(S), which associates with every state
s ∈ S and moves a1 ∈ Γ1(s) and a2 ∈ Γ2(s), a probability distribution δ(s, a1, a2) ∈ D(S)
for the successor state.

We denote by n the number of states (i.e., n = |S|), and by m the maximal number of actions
available for a player at a state (i.e., m = maxs∈S max{|Γ1(s)|, |Γ2(s)|}). The size of the
transition relation of a game structure is defined as
|δ| =

∑
s∈S

∑
a1∈Γ1(s)

∑
a2∈Γ2(s) |Supp(δ(s, a1, a2))| ≤ n2 ·m2.

Plays. At every state s ∈ S, Player 1 chooses a move a1 ∈ Γ1(s), and simultaneously and
independently Player 2 chooses a move a2 ∈ Γ2(s). The game then proceeds to the successor
state t with probability δ(s, a1, a2)(t), for all t ∈ S. A path or a play of G is an infinite

CONCUR 2018

11:6 Ergodic Mean-Payoff Games for the Analysis of Attacks in Crypto-Currencies

Figure 2 A repetitive rock-paper-scissors game.

sequence π =
(
(s0, a

0
1, a

0
2), (s1, a

1
1, a

1
2), (s2, a

2
1, a

2
2) . . .

)
of states and action pairs such that for

all k ≥ 0 we have (i) aki ∈ Γi(sk); and (ii) sk+1 ∈ Supp(δ(sk, ak1 , ak2)). We denote by Π the
set of all paths.

I Example 1. Consider a repetitive game of rock-paper-scissors, consisting of an infinite
number of laps, in which each lap is made of a number of rounds as illustrated in Figure
2. When a lap begins, the two players play rock-paper-scissors repetitively until one of
them wins 3 rounds more than her opponent, in which case she wins the current lap of the
game and a new lap begins. In each round, the winner is determined by the usual rules of
rock-paper-scissors, i.e. rock beats scissors, scissors beat paper and paper beats rock. In case
of a tie, each player wins the round with probability 1

2 .
Here we have S = {−2,−1, 0, 1, 2} and Γ1 = Γ2 ≡ {R,P,S}. The game starts at state 0

and state s corresponds to the situation where Player 1 has won s rounds more than Player 2
in the ongoing lap. Edges in the figure correspond to possible transitions in the game. Each
edge is labeled with three values a1, a2, p to denote that the game will transition from the
state at the beginning of the edge to the state at its end with probability p if the two players
decide on actions a1 and a2, respectively. For example, there is an edge from state 2 to state
0 labeled R, S, 1, which corresponds to δ(2,R, S)(0) = 1. In the figure, we use X,X in place
of a1, a2 to denote that they are equal. Hence every play in this game corresponds to an
infinite walk on the graph in Figure 2.

Strategies. A strategy is a recipe to extend prefixes of a play. Formally, a strategy for
Player i is a mapping σi : (S×A×A)∗×S → D(A) that associates with every finite sequence
x ∈ (S ×A×A)∗ of state and action pairs, representing the past history of the game, and
the current state s in S, a probability distribution σi(x · s) used to select the next move. The
strategy σi can only prescribe moves that are available to Player i; that is, for all sequences
x ∈ (S × A × A)∗ and states s ∈ S, we require Supp(σi(x · s)) ⊆ Γi(s). We denote by Σi

the set of all strategies for Player i. Once the starting state s and the strategies σ1 and
σ2 for the two players have been chosen, then the probabilities of measurable events are
uniquely defined [39]. For an event A ⊆ Π, we denote by Prσ1,σ2

s (A) the probability that a
path belongs to A when the game starts from s and the players use the strategies σ1 and σ2.
We call a pair of strategies (σ1, σ2) ∈ Σ1 × Σ2 a strategy profile.

Stationary (memoryless) and positional strategies. In general, strategies use randomiza-
tion, and can use finite or even infinite memory to remember the history. Simpler strategies,
that either do not use memory, or randomization, or both, are significant, as they are simple
to implement and interpret. A strategy σi is stationary (or memoryless) if it is independent
of the history but only depends on the current state, i.e., for all x, x′ ∈ (S ×A×A)∗ and all
s ∈ S, we have σi(x · s) = σi(x′ · s), and thus can be expressed as a function σi : S → D(A).

K. Chatterjee, A. K. Goharshady, R. Ibsen-Jensen, and Y. Velner 11:7

A strategy is pure if it does not use randomization, i.e., for any history there is a unique
action a that is played with probability 1. A pure stationary strategy σi is called positional,
and denoted as a function σi : S → A.

Mean-payoff objectives. We consider maximizing limit-average (or mean-payoff) objectives
for Player 1, and the objective of Player 2 is the opposite (i.e., the games are zero-sum).
We consider concurrent games with a reward function R : S × A × A → R that assigns
a reward value R(s, a1, a2) for all s ∈ S, a1 ∈ Γ1(s), and a2 ∈ Γ2(s). For a path π =(
(s0, a

0
1, a

0
2), (s1, a

1
1, a

1
2), . . .

)
, the average for T steps is AvgT (π) = 1

T ·
∑T−1
i=0 R(si, ai1, ai2), and

the limit-inferior average (resp. limit-superior average) is defined as follows: LimInfAvg(π) =
lim infT→∞ AvgT (π) (resp. LimSupAvg(π) = lim supT→∞ AvgT (π)). We denote concurrent
mean-payoff games as CMPGs.

I Example 2. Consider the game in Figure 2. In this game, Player 1 wins a lap whenever
a red edge is crossed. Therefore, in order to capture the number of laps won by Player 1,
rewards can be assigned as: R(2, R, S) = R(2, P,R) = R(2, S, P) = 1; R(2, X,X) = 1

2 and 0
in all other cases.

Values and ε-optimal strategies. Given a CMPG G and a reward function R, the lower
value vs (resp. the upper value vs) at a state s is defined as follows:
vs = supσ1∈Σ1 infσ2∈Σ2 Eσ1,σ2

s [LimInfAvg]; vs = infσ2∈Σ2 supσ1∈Σ1 E
σ1,σ2
s [LimSupAvg].

The determinacy result of [30] shows that the upper and lower values coincide and give
the value of the game denoted as vs. For ε ≥ 0, a strategy σ1 for Player 1 is ε-optimal if we
have vs − ε ≤ infσ2∈Σ2 Eσ1,σ2

s [LimInfAvg].

Ergodic Games. A CMPG G is ergodic if for all states s, t ∈ S, for all strategy profiles
(σ1, σ2), if we start at s, then t is visited infinitely often with probability 1 in the random
walk πσ1,σ2

s . The game in Figure 2 is not ergodic. If Player 1 keeps playing rock and Player 2
scissors, then the states −1 and −2 are visited at most once. However, a more realistic
version of this game is also ergodic.

I Example 3. Consider two players playing the repetitive game of rock-paper-scissors over
a network, e.g. the Internet. The game is loaded on a central server that asks the players for
their moves and provides them with rewards and information about changes in the state of
the game. Given that the network is not perfect, there is always a small probability that one
of the players is unable to announce his move in time to the server. In such cases, the player
will lose the current round. Assume that this scenario happens with probability ε > 0. Then
all probabilities in Figure 2 have to be multiplied by (1− ε) and new transitions, which are
not under players’ control and are a result of uncertainty in the network connection, should
be added to the game. These new transitions are illustrated in Figure 3. Here a star can be
replaced by any permissible action of the players. It is easy to check that this variant of the
game is ergodic, given that starting from any state, there is a positive probability of visiting
any other state within 3 steps using the new transitions only.

Results about general CMPGs. The main results for CMPGs are as follows:
1. The celebrated result of existence of values was established in [30].
2. For CMPGs, stationary or finite-memory strategies are not sufficient for optimality,

and even in CMPGs with three states (the well-known Big Match game), very complex
infinite-memory strategies are required for ε-optimality [5].

CONCUR 2018

11:8 Ergodic Mean-Payoff Games for the Analysis of Attacks in Crypto-Currencies

Figure 3 Transitions due to network connectivity issues in the repetitive RPS.

3. The value problem, that given a CMPG, a state s, and a threshold λ, asks whether
the value at state s is at least λ, can be decided in PSPACE [14]; and also in m2O(n)

time, which is doubly exponential in the worst case, but polynomial-time in m, for n
constant [23]. Both the above algorithms use the theory of reals and quantifier elimination
for analysis.

I Remark (Inefficiency). The quantifier elimination approach for general CMPGs considers
formulas in the theory of reals with alternation, where the variables represent the trans-
itions [14]. With as few as ten transitions, quantifier elimination produces formulas with
hundreds of variables over the existential theory of reals. In turn, the existential theory of
reals has exponential-time complexity, is notoriously hard to solve, and its existing solvers
cannot handle hundreds of variables. Hence, CMPGs with as few as ten transitions are not
tractable.

Results about ergodic CMPGs. The main results for ergodic CMPGs are as follows:
1. Stationary optimal strategies exist[24], but positional strategies are not sufficient for

optimality. For precise strategy complexity see [13].
2. Even in ergodic games, values and probabilities of optimal strategies can be irrational [13],

and hence the relevant question is the approximation problem of values which is solvable
in non-deterministic polynomial-time [13].

3. The most well-known algorithm for ergodic mean-payoff games is the Hoffman-Karp
strategy-iteration algorithm [24]. See [10] for a more detailed treatment of this algorithm.

Note that since in ergodic games, every state is reached from every other state with probabil-
ity 1, the value at all states is the same.

4 Modeling Framework

In this section we present an abstract framework to model economical consequences of attacks
with mean-payoff games. In particular we show how broad classes of attacks can be modeled
as ergodic games. In the next section we present concrete examples that arise from blockchain
protocols.

4.1 Mean-payoff games modeling
We describe two aspects of mean-payoff games modeling.
1. Game graph modeling. Graph games are a standard model for reactive systems as well as

protocols. The states and transitions of the graph represent states and transitions of the
reactive system, and paths in the graphs represent traces of the system [33, 34]. Similarly,
in modeling of protocols with different variables for the agents, the states of the game
represent various scenarios of the protocols along with the valuation of the variables. The
transitions represent a change of the scenario along with change in the valuation of the
variables (for example see [16] for game graph modeling of protocols for digital-contract
signing).

K. Chatterjee, A. K. Goharshady, R. Ibsen-Jensen, and Y. Velner 11:9

2. Mean-payoff objective modeling. In mean-payoff objectives, the costs (or rewards) of
every transition can represent, for example, delays, execution times, cost of context
switches, cost of concurrency, or monetary gains and losses. The mean-payoff objective
represents the long-term average of the rewards or the costs. The mean-payoff objective
has been used for synthesis of better reactive systems [7], synthesis of synchronization
primitives for concurrent data-structures to minimize average context-switch costs [9],
model resource-usage in container analysis and frequency of function calls [15], as well as
analysis of energy-related objectives [3, 2, 21].

4.2 Crypto-currency Protocols as Mean-payoff Games
We describe how to apply the general framework of CMPGs to crypto-currencies:

General setting. We propose to analyze protocols as a game between a defender and an
attacker. The defender and the attacker have complete freedom to decide on their moves.
The decisions of the other parties in the ecosystem can be modeled as stochastic choices
that are not adversarial to either of the players.
Reward function. The reward function will reflect the monetary gain or loss of the
defender. The attacker gain is not modeled as we consider the worst-case scenario in
which the attacker’s objective is to minimize the defender’s utility.
States. States of the game can represent the information that is relevant for the analysis
of the protocol, such as the abstract state of the blockchain.
Stochastic transitions. Probabilities over the transitions can model true stochastic
processes e.g., mining, or abstract complicated situations where the exact behavior cannot
be directly computed (see Section 5.2) or in order to simulate the social behavior of a
group (see Section 5.1).
Concurrent interactions. Concurrent games are used when both players decide on their
action simultaneously or when a single action models a behavior that continues over a
time period and the players can only reason about their opponent’s behavior after a while
(Sections 5.1 and 5.2).
Result of the game. In this work we want to reason on defender’s security in a protocol
wrt a malicious attacker who aims to decrease defender’s gain at any cost. The result of
the mean-payoff game will describe the inevitable expected loss that the defender will
have in the presence of an attacker and defender’s strategy describes the best way to
defend himself against such an attacker.

4.3 Modeling with Ergodic Games
In this section we describe two classes of attacks, which can be naturally modeled with
ergodic games. Our description here is high-level and informal, and concrete instances are
considered in the next section. The attacks we describe are in a more general setting than
crypto-currencies; however, for crypto-currencies the economic consequences are more natural
to model.

First class of attacks. In the first class of attacks the setting consists of two companies and
the revenues of the companies depend on the number of users each has. Thus states represent
the number of users. Each company can decide to attack its competing company. Performing
an attack entails some economic costs, however it could increase the number of users of the
attacking company at the expense of the attacked one. For example, consider two competing
social networks, Alice and Bob. Alice can decide to launch a distributed-denial-of-service

CONCUR 2018

11:10 Ergodic Mean-Payoff Games for the Analysis of Attacks in Crypto-Currencies

(DDOS) attack on Bob, and vice-versa. Such attacks entail a cost, but provide incentives for
Bob users to switch to Alice. The rewards depend on the network revenues (i.e., number
of users) and on the amount of funds the company decides to spend for the attack. The
migration of users is a stochastic process that is biased towards the stronger network, but
with smaller probability some users migrate to the other network. Thus the game is ergodic.
This class represents pool attacks in the context of crypto-currencies (Sections 5.1 and 5.3).

Second class of attacks. Consider the scenario where the state of the game represents
aspects of the dynamic network topology. The network evolves over the course of the time,
and the actions of the participants also affect the network topology. However, the effect of
the actions only makes local changes. The combination of the global changes and the local
effects still ensure that different network states can be reached, and the game is ergodic.
Attacks in such a scenario where the network topology determines the outcome of attack
can be modeled as ergodic games. This class of attacks represent the zero-confirmation
double-spending attack in the context of crypto-currencies (see Section 5.2).

5 Formal Modeling of Real Attacks

In this section we show how to model several real-world examples. These examples were
described in the literature but were never analyzed as stateful games.

5.1 Block Withholding Pool Attack
Pools are susceptible to the classic block withholding attack [35], where a miner sends only
partial solutions to the pool manager and discards full solutions. In this section we analyze
block withholding attacks among two pools, pool A and pool B. We describe how pool
A can attack pool B, and the converse direction is symmetric. To employ the pool block
withholding attack, pool A registers at pool B as a regular miner. It receives tasks from
pool B and transfers them to some of its own miners. Following the notions in [19], we
call these infiltrating miners, and their mining power is called infiltration rate. When pool
A’s infiltrating miners deliver partial solutions, pool A’s manager submits them to pool B’s
manager and proves the portion of work they did. When the infiltrating miners deliver a full
solution, the attacking pool manager discards it.

At first, the total revenue of the victim pool does not change (as its effective mining rate
was not changed), but the same sum is now divided among more miners. Thus, since the
pool manager fees are nominal (fixed percentage of the total revenue [4]), in the short term,
the manager of the victim pool will not lose. The attacker’s mining power is reduced, since
some of its miners are used for block withholding, but it earns additional revenue through
its infiltration of the other pool. Finally, the total effective mining power in the system is
reduced, causing the blockchain protocol to reduce the difficulty. Hence, in some scenarios,
the attacker can gain, even in the short run, from performing the attack [19].

In the long run, if miners see a decrease in their profits (since they have to split the same
revenue among more participants), it is likely that they consider to migrate to other pools.
As a result, the victim pool’s total revenue will decrease.

Our modeling. We aim to capture the long term consequences of pool attacks. We have
two pools A and B, where B is the victim pool and A is the malicious pool who wishes to
decrease B’s profits. There is also a group of miners C who are honest and represent the
rest of the network. In return, pool B can defend itself by attacking back. To simulate the

K. Chatterjee, A. K. Goharshady, R. Ibsen-Jensen, and Y. Velner 11:11

long term effect, in every round pool members from A and B may migrate from one pool to
another or to and from C. The migration is a stochastic process that favors the pool with
maximum profitability for miners. We note that given sufficient amount of time (say a week),
a pool manager can evaluate with very high probability the fraction of infiltrating miners in
his pool. This can be done by looking at the ratio between full and partial solutions. Hence,
in retrospect of a week, the pools are aware of each other’s decisions, but within this week
there is uncertainty. Therefore, we use concurrent games to analyze the worst case scenario
for pool B.

I Theorem 4. Consider a pair of pools A and B capable of attacking each other. Let C be
the pool of remaining miners. If the miners in each pool migrate stochastically according to
the attractiveness levels (as detailed below), then B can ensure a revenue of at least v on
average per round, against any behavior of A, where v is the value of the concurrent ergodic
game described below.

5.1.1 Details of Modeling
We provide details of our modeling on some of the attacks to demonstrate how they can be
thought of in terms of ergodic games. Details of all other attacks can be found in [10].

Game states. We consider two pools, A and B and assume that any miner outside these
two is mining independently for himself. Each state is defined by two values, i.e. the
fractions of total computation power that belongs to A and B. We use a discretized version
of this idea to model the game in a finite number of states and let S = {1, 2, . . . , n}2
and define ε = 1

2n+1 , where a state (i1, i2) ∈ S corresponds to the case where pool A
owns a fraction αi1 = i1ε = i1

2n+1 of the total hash power and pool B controls a fraction
βi2 = i2ε = i2

2n+1 of it. In this case the miners who work independently own a fraction
γi1,i2 = 1− αi1 − βi2 of the total hash power.
Actions at each state. Each pool can choose how much of its hash power it devotes
to attacking the other pool. More formally, at each state s = (i1, i2), pool A has i1
choices of actions and Γ1(s) = {a0

1, a
1
1, a

2
1, . . . , a

i1−1
1 } where aj1 corresponds to attacking

pool B with a fraction jε of the total computing power of the network. Similarly
Γ2(s) = {a0

2, a
1
2, a

2
2, . . . , a

i2−1
2 }.

Rewards. We want the rewards to model the revenue (profit) of pool A, denoted by
rA, so we let R(s, ai1, a

j
2) = rA(s, ai1, a

j
2), for a1 ∈ Γ1(s), a2 ∈ Γ2(s). We write rA

instead of rA(s, ai1, a
j
2) when there is no risk of confusion. We define rB and rC similarly

and normalize the revenues: rA + rB + rC = 1. To compute these values, we define
“attractiveness”. The attractiveness of a pool is its revenue divided by the total computing
power of its miners. If pool A chooses the action ai1 and pool B chooses the action aj2,
then pool A is using a fraction α′ = iε of the total network computing power to attack
B and is receiving a corresponding fraction of B’s revenue while not contributing to it.
Therefore the attractiveness of pool B will be equal to: attrB = rB

β+α′ . Similarly we have
attrA = rA

α+β′ , where β′ = jε.
Now consider the sources for pool A’s revenue. It either comes from A’s own mining
process or from collecting shares of B’s revenue, therefore:

rA = (α− α′) + α′ × attrB ,

and similarly rB = (β − β′) + β′ × attrA. The previous four equations provide us with a
system of linear equations which we can solve to obtain the values of rA, rB , attrA and
attrB. Since a fraction α′ + β′ of total computation power is used on attacking other
pools, we have: attrC = 1

1−α′−β′ .

CONCUR 2018

11:12 Ergodic Mean-Payoff Games for the Analysis of Attacks in Crypto-Currencies

Game transitions (δ). Miners migrate between pools and a pool gains or loses mining
power based on its attractiveness. If a pool is the most attractive option among the
two, it gains ε new mining power with probability 2

3 , retains its current power with
probability 1

6 and loses ε power with probability 1
6 . On the other hand a pool that is not

the most attractive option loses ε power with probability 2
3 , retains its current power

with probability 1
6 and attracts ε new mining power with probability 1

6 . These values
were chosen for the purpose of demonstration of our algorithm and our implementation
results. In practice, one can obtain realistic probabilities experimentally.
Ergodicity. The game is ergodic because for each two states s = (s1, s2) and s′ = (s′1, s′2)
where |s1 − s′1| ≤ 1 and |s2 − s′2| ≤ 1, there is at least 1

36 probability of going from s to s′
no matter what choices the players make.

Proof of Theorem 4. Ergodicity was established in the final part above. The rest follows
from the modeling and the determinacy result.

5.2 Zero-confirmation Double-spending
Nowadays, Bitcoin is increasingly used in “fast payments” such as online services, ATM
withdrawals and vending machines [17], where the payment is followed by fast delivery of
goods. While the blockchain consensus is appropriate for slow payments, it requires tens
of minutes to confirm a transaction and is therefore inappropriate for fast payments. We
consider a transaction confirmed when it is added to the blockchain and several blocks are
added after it. This mechanism is essential for the detection of double-spending attacks in
which an adversary attempts to use some of her coins for two or more payments. However,
even in the absence of a confirmation, it is far from trivial to perform a double-spending
attack. In a double spending attack, the attacker publishes two transactions that consume
the same input. The attack is successful only if the victim node received one transaction
and provided the goods before he became aware of the other, but eventually the latter was
added to the blockchain. In an ideal world the attacker can increase his odds by broadcasting
one transaction directly to the victim and the other at a far apart location, while on the
other hand the victim can defend itself by deploying several nodes in the network in strategic
locations. In the real world, however, the full topology of the network is never known to
either of the parties. Nevertheless, based on history and network statistics one can estimate
the odds of a successful attack given the current state of the network [6].

The victim has to decide on a policy for accepting zero-confirmation transactions. In
particular he has to decide on the probability of whether to wait for a confirmation or not.
If he waits for confirmation, then the payment is guaranteed, but customer satisfaction is
damaged, and as a result the utility is smaller than the actual payment. If he does not wait
for a confirmation, then the payment might be double spent. In the long term, the victim
could decide to change the topology of the network. As it does not have full control over the
topology, the outcome of the change is stochastic. Moreover, even when the victim does not
initiate a change, the network topology is dynamic and keeps changing all the time. Hence,
the odds of a successful attack are constantly changing in small stochastic steps.

Our modeling. We aim to analyze the worst case long run loss of the victim. In our model
we abstract the network topology state and consider only the odds of successful double
spending. We consider a scenario where the victim’s honest customers typically purchase
goods worth 10 units per round. In every round, the victim decides on a policy for accepting
fast payment, and the attacker, concurrently, unaware of the victim’s policy, has to decide the

K. Chatterjee, A. K. Goharshady, R. Ibsen-Jensen, and Y. Velner 11:13

size of the attack. After every round, the victim decides if he wants to do a thorough change
in the network topology. If he decides on a change, then the next state is chosen uniformly
from all possible states (this represents the fact that neither players has full knowledge on
the topology). If he decides to make no change, then the network state might still change,
due to the dynamic nature of the network. In this case the next state is with high probability
either the current state, or a state which is slightly better or slightly worse for the victim,
but with low probability the state changes completely to an arbitrary state in the network
(as sometimes small changes in the topology have big impact). The rewards stem from the
outcome of each round in the following way: The payment is the sum of the honest customer
purchases and the payment of the attacker (if it gets into the blockchain). The reward is the
payment minus some penalty in case the victim has decided to wait for a confirmation. The
fact that the network state is constantly changing makes our model ergodic.

I Theorem 5 (Proof in [10]). Consider a seller and an attacker in the zero-confirmation
double spending problem. The seller can ensure profit of at least v on average per round,
where v is the value of the corresponding CMPG.

5.3 Proof of Stake Pool Attack
Proof of stake protocols let miners centralize their stakes in a pool. In such pools the
withholding attack is not relevant as mining does not require physical resources. However,
pool A might attack an opponent pool B by not signing or broadcasting its blocks. A
successful attack would prevent the block from getting signed by a majority of the network
and result in a loss of mining fees for B and can encourage miners to migrate from B. An
unsuccessful attack decreases A’s signing revenue.

Our modeling. We assume a setting similar to that of Section 5.1, where there are two
opponent pools A and B, and the rest of the network consists of honest pools who sign every
block that arrives on time. The states of the game are the stakes of each pool, namely α for
pool A and β for pool B. In every round, with probability 1− (α+ β) neither of the pools is
elected to mine a block, and no decisions are made. Otherwise, with probability α

α+β pool A
is elected and otherwise pool B is elected. When a pool is elected, the other pool decides
whether to sign and broadcast the resulting block or not. In addition the network state and
connectivity induce a distribution over the fraction of honest miners that receive the block.
If the block is accepted, then its creator is rewarded with mining fees, and the other pool
will get its signing fees only if it signed the block.

I Theorem 6 (Proof in [10]). Consider two pools A and B in a proof of stake mining system
that can choose to attack each other by not signing blocks mined by the other pool. Consider
that the rest of the network consists of independent miners who observe published blocks
according to a predefined probability distribution and sign every valid block they observe. If
the miners migrate according to the attractiveness levels (as described in Section 5.1), then
B can ensure an average revenue of v against any behavior of A, where v is the value of the
corresponding CMPG.

6 Implementation and Experimental Results

Implementation. We have implemented the strategy-iteration algorithm for ergodic games
(see [10] for pseudo-code and more details). The implementation is available at http://ist.
ac.at/~akafshda/concur2018. To the best of our knowledge, this is the first implementation

CONCUR 2018

http://ist.ac.at/~akafshda/concur2018
http://ist.ac.at/~akafshda/concur2018

11:14 Ergodic Mean-Payoff Games for the Analysis of Attacks in Crypto-Currencies

Table 1 Experimental results for block-withholding pool attack (left), zero-confirmation double-
spending (center) and proof of stake pool attack (right).

#T States #SI Time(s)

17050 100 4 69
56252 196 2 291
135252 289 2 389
236000 400 2 1059
331816 484 2 3880
508032 576 2 6273
720954 676 2 17014
966281 784 2 53103
1269450 900 2 100435

#T States #SI Time(s)

19940 100 2 426
40040 200 2 800
60140 300 2 1141
80240 400 2 1586
100340 500 2 2069
120440 600 2 1253
140540 700 2 2999
160640 800 2 3496
180740 900 2 3917

#T States #SI Time(s)

6076 99 18 471
20956 275 8 1338
31744 396 9 2520
44764 539 4 1073
77500 891 16 22125
119164 1331 27 32636
169756 1859 10 31597
262384 2816 12 89599

of this algorithm. The straightforward implementation of the strategy-iteration algorithm
for ergodic games has two practical problems, which we describe below.
1. No stopping criteria. First, the strategy-iteration algorithm only guarantees convergence

of values in the limit, and since values and probabilities in strategies can be irrational,
convergence cannot be guaranteed in a finite number of steps. Hence we need a stopping
criterion for approximation.

2. Numerical precision issues. Second, the stationary strategies in each iteration are obtained
by solving LPs, which has numerical errors, and the probabilities sum to less than 1.
If these errors remain, they cascade over iterations, and do not ensure convergence in
practice for large examples. Hence we need to ensure numerical precision on top of the
strategy-iteration algorithm.

Our solution for the above two problems are as follows:
1. Stopping criteria. We first observe that the value sequence which is obtained converges

from below to the value of the game. In other words, the value sequence provide a lower
bound to the lower value of the game. Hence we consider a symmetric version which is the
strategy-iteration algorithm for player 2, and run each iteration of the two algorithms in
sequence. The version for player 2 provides a lower bound on the lower value for player 2,
and thus from that we can obtain an upper bound on the upper value of player 1. Since
the upper and lower values coincide, we thus have both an upper and lower bound on the
values, and once the difference is smaller than ε > 0, then the algorithm has correctly
approximated the value within ε and can stop and return the value and the strategy
obtained as approximation.

2. Numerical precision. For numerical precision, instead of obtaining the results from the
linear program, we obtain the set of tight and slack constraints, where the tight constraints
represent the constraints where equality is obtained, and the other constraints are slack
ones. From the tight constraints, which are equalities, we obtain the result using Gaussian
elimination, which provides more precise values to the solution. We also tried other
heuristics, such as adding the remaining probability to the greatest probability action,
which led to similar results on convergence.

Experimental Results. Our experimental results are reported in Table 1. We show number
of transitions in the game (#T), number of states in the game, the running time and number
of strategy iterations (#SI). It is noteworthy that in all cases the number of iterations
required is quite small. We also note that since the number of iterations is small, the crucial
computational step is every iteration, where many LPs are solved. The outputs provided the
following results (more details in [10]):

K. Chatterjee, A. K. Goharshady, R. Ibsen-Jensen, and Y. Velner 11:15

For the block withholding pool attack game, the algorithm could guarantee a mean-payoff
of 0.49 for the victim pool. In absence of an attacker the mean-payoff will be 1.

For the zero-confirmation double-spending game, the algorithm verified that the seller
is guaranteed to maintain at least half of her revenue, i.e., in presence of a malicious
attacker, the value for the seller converges to 5 as the number of states increase, while it
is 10 in absence of it.

For the proof of stake pool attack game, by increasing the number of states, i.e., by
refining the discretization, the guaranteed value (game value) decreases and tends to zero.
In absence of an attacker, a pool A can achieve an expected payoff of 11sA at a turn
where sA is the stake it holds.

7 Related Work

Pools attack. The danger of a block withholding attack is as old as Bitcoin pools. The
attack was described by Rosenfeld [35], as pools were becoming a dominant player in
Bitcoin. While it was obvious that a pool is vulnerable to a malicious attacker, Eyal [19]
showed that in some circumstances a pool can benefit by attacking another pool, and
thus pool mining is vulnerable also in the presence of rational attackers. However, the
analysis only considered the short term, i.e., the profit that the pool can get only in the
short period after the attack. Laszka et al. [29] studied the long term impact of pools
attack. In their framework miners are allowed to migrate from one pool to another. They
analyzed the steady equilibrium in which the size of the pools become stable (although
there is no guarantee that the game will converge to such a scenario). Our framework is
the first to allow analysis of long term impacts without convergence assumptions.

Zero-confirmation double-spending. Zero-confirmation double-spending was experiment-
ally analyzed by Karame et al. [25] who gave numerical figures for the odds of successful
double spending for different network states. However, their analysis did not consider
that the victim may change his connectivity state. Our work is the first analysis of the
long term impact of this attack.

Stateful analysis. A stateful analysis of blockchain attacks was done by Sapirshtein et
al. [36] and by Sompolinsky and Zohar [38]. In their analysis the different states of the
blockchain were taken into account during the attack. The analysis was done using MDPs
in which only the attacker decides on his actions and the victim follows a predefined
protocol. A recent work [11] also considers abstraction-refinement for finite-horizon
games based on smart contracts. However, it neither considers long-term behavior, nor
mean-payoff objectives, nor can it model attacks such as double-spending and interactions
between pools.

Quantitative verification with mean-payoff games. The mean-payoff games problem has
been studied extensively as a theoretical problem [33, 34]. It has also been studied in
the context of verification and synthesis for performance related issues [7, 9, 15, 3, 2, 21].
However, all these works focus on turn-based games, and none of them consider concurrent
games. To the best of our knowledge concurrent mean-payoff games have not been studied
in the setting of security that we consider, where the quantitative objective is as crucial
as safety critical issues. Practical implementation of algorithms for ergodic CMPGs do
not exist in the literature.

CONCUR 2018

11:16 Ergodic Mean-Payoff Games for the Analysis of Attacks in Crypto-Currencies

8 Conclusion and Future Work

In this work we considered concurrent mean-payoff games, and in particular the subclass
of ergodic games, to analyze attacks on crypto-currencies. There are several interesting
directions to pursue: First, various notions of rationality are relevant to analyze games where
the attacker is rational, rather than malicious, and aims to maximize his own utility instead
of minimizing the defender’s utility (e.g., secure-equilibria [12] or other related notions).
Second, we consider two-player games, and the extension to multi-player games to model
crypto-currency attacks is another interesting problem. Third, the modeling assumptions
should be empirically validated and the parameters used to generate the games, e.g. the rates
of migration, should be empirically obtained. Fourth, we consider the rest of the network to
be neutral and stochastic. An interesting extension would be to consider a rational network,
possibly consisting of coalitions of cooperating miners, as defined e.g. in [27].

References
1 M. Abadi and P. Rogaway. Reconciling two views of cryptography. In Proceedings of

the IFIP International Conference on Theoretical Computer Science, pages 3–22. Springer,
2000.

2 C. Baier, C. Dubslaff, J. Klein, S. Klüppelholz, and S Wunderlich. Probabilistic model
checking for energy-utility analysis. In Horizons of the Mind. A Tribute to Prakash
Panangaden - Essays Dedicated to Prakash Panangaden on the Occasion of His 60th Birth-
day, pages 96–123, 2014.

3 C. Baier, S. Klüppelholz, H. de Meer, F. Niedermeier, and S. Wunderlich. Greener bits:
Formal analysis of demand response. In ATVA, pages 323–339, 2016.

4 Bitcoin Wiki. Comparison of mining pools, 2017. URL: http://en.bitcoin.it/
Comparison_of_mining_pools.

5 D. Blackwell and T. Ferguson. The big match. The Annals of Mathematical Statistics,
39(1):159–163, 1968.

6 blockcypher.com. Confidence factor, 2017. URL: http://dev.blockcypher.com/
#confidence-factor.

7 R. Bloem, K. Chatterjee, T.A. Henzinger, and B. Jobstmann. Better quality in synthesis
through quantitative objectives. In CAV, pages 140–156, 2009.

8 J. Bonneau, A. Miller, J. Clark, A. Narayanan, J.A. Kroll, and E.W. Felten. Sok: Re-
search perspectives and challenges for bitcoin and cryptocurrencies. In IEEE Symposium
on Security and Privacy, pages 104–121. IEEE, 2015.

9 P. Cerný, K. Chatterjee, T.A. Henzinger, A. Radhakrishna, and R. Singh. Quantitative
synthesis for concurrent programs. In CAV, pages 243–259, 2011.

10 K. Chatterjee, A.K. Goharshady, R. Ibsen-Jensen, and Y. Velner. Ergodic mean-payoff
games for the analysis of attacks in crypto-currencies. arXiv, 2018. arXiv:1806.03108.

11 K. Chatterjee, A.K. Goharshady, and Y. Velner. Quantitative analysis of smart contracts.
In ESOP, pages 739–767, 2018.

12 K. Chatterjee, T.A. Henzinger, and M. Jurdzinski. Games with secure equilibria. In LICS,
pages 160–169, 2004.

13 K. Chatterjee and R. Ibsen-Jensen. The complexity of ergodic mean-payoff games. In
ICALP II, pages 122–133, 2014.

14 K. Chatterjee, R. Majumdar, and T. A. Henzinger. Stochastic limit-average games are in
EXPTIME. Int. J. Game Theory, 37(2):219–234, 2008.

15 K. Chatterjee, A. Pavlogiannis, and Y. Velner. Quantitative interprocedural analysis. In
POPL, pages 539–551, 2015.

http://en.bitcoin.it/Comparison_of_mining_pools
http://en.bitcoin.it/Comparison_of_mining_pools
http://dev.blockcypher.com/#confidence-factor
http://dev.blockcypher.com/#confidence-factor
http://arxiv.org/abs/1806.03108

K. Chatterjee, A. K. Goharshady, R. Ibsen-Jensen, and Y. Velner 11:17

16 K. Chatterjee and V. Raman. Assume-guarantee synthesis for digital contract signing.
Formal Asp. Comput., 26(4):825–859, 2014.

17 CNN Money. Bitcoin’s uncertain future as currency, 2011. URL: http://money.cnn.com/
video/technology/2011/07/18/t_bitcoin_currency.cnnmoney/.

18 coinmarketcap.com. Crypto-currency market capitalizations, 2017. URL: http://
coinmarketcap.com/.

19 I. Eyal. The miner’s dilemma. In IEEE Symposium on Security and Privacy, pages 89–103.
IEEE, 2015.

20 I. Eyal and E.G. Sirer. Majority is not enough: Bitcoin mining is vulnerable. In Financial
Cryptography and Data Security, 2014.

21 V. Forejt, M. Z. Kwiatkowska, and D. Parker. Pareto curves for probabilistic model check-
ing. In ATVA, pages 317–332, 2012.

22 D. Gillette. Stochastic games with zero stop probabilitites. In CTG, pages 179–188. Prin-
ceton University Press, 1957.

23 K. A. Hansen, M. Koucký, N. Lauritzen, P. B. Miltersen, and E. P. Tsigaridas. Exact
algorithms for solving stochastic games: extended abstract. In STOC, pages 205–214,
2011.

24 A.J. Hoffman and R.M. Karp. On nonterminating stochastic games. Management Sciences,
12(5):359–370, 1966.

25 G. Karame, E. Androulaki, and S. Capkun. Two bitcoins at the price of one? double-
spending attacks on fast payments in bitcoin. IACR Cryptology ePrint Archive, 2012:248,
2012.

26 S. Kremer and J.F. Raskin. A game-based verification of non-repudiation and fair exchange
protocols. Journal of Computer Security, 2003.

27 Marta Z. Kwiatkowska, David Parker, and Aistis Simaitis. Strategic analysis of trust models
for user-centric networks. In SR, pages 53–59, 2013.

28 J. Kwon. Tendermint: Consensus without mining, 2015. URL: https://blog.ethereum.
org/2015/08/01/introducing-casper-friendly-ghost/.

29 A. Laszka, B. Johnson, and J. Grossklags. When bitcoin mining pools run dry. In Inter-
national Conference on Financial Cryptography and Data Security, pages 63–77. Springer,
2015.

30 J.F. Mertens and A. Neyman. Stochastic games. IJGT, 10:53–66, 1981.
31 S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
32 NxtCommunity. Nxt whitepaper, 2014. URL: http://bravenewcoin.com/assets/

Whitepapers/NxtWhitepaper-v122-rev4.pdf.
33 A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL, pages 179–190.

ACM Press, 1989.
34 P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems. IEEE Trans-

actions on Control Theory, 77:81–98, 1989.
35 Meni Rosenfeld. Analysis of bitcoin pooled mining reward systems. arXiv preprint

arXiv:1112.4980, 2011.
36 A. Sapirshtein, Y. Sompolinsky, and A. Zohar. Optimal selfish mining strategies in bitcoin.

arXiv preprint arXiv:1507.06183, 2015.
37 L.S. Shapley. Stochastic games. PNAS, 39:1095–1100, 1953.
38 Y. Sompolinsky and A. Zohar. Bitcoin’s security model revisited. CoRR, abs/1605.09193,

2016.
39 M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state systems. In

FOCS, pages 327–338. IEEE, 1985.
40 V. Zamfir. Introducing casper, the friendly ghost, 2015. URL: https://blog.ethereum.

org/2015/08/01/introducing-casper-friendly-ghost/.

CONCUR 2018

http://money.cnn.com/video/technology/2011/07/18/t_bitcoin_currency.cnnmoney/
http://money.cnn.com/video/technology/2011/07/18/t_bitcoin_currency.cnnmoney/
http://coinmarketcap.com/
http://coinmarketcap.com/
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
http://bravenewcoin.com/assets/Whitepapers/NxtWhitepaper-v122-rev4.pdf
http://bravenewcoin.com/assets/Whitepapers/NxtWhitepaper-v122-rev4.pdf
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/

Bounded Context Switching for Valence Systems
Roland Meyer
TU Braunschweig, Germany
roland.meyer@tu-braunschweig.de

https://orcid.org/0000-0001-8495-671X

Sebastian Muskalla
TU Braunschweig, Germany
s.muskalla@tu-braunschweig.de

https://orcid.org/0000-0001-9195-7323

Georg Zetzsche1

IRIF (Université Paris-Diderot, CNRS), France
zetzsche@irif.fr

https://orcid.org/0000-0002-6421-4388

Abstract
We study valence systems, finite-control programs over infinite-state memories modeled in terms
of graph monoids. Our contribution is a notion of bounded context switching (BCS). Valence
systems generalize pushdowns, concurrent pushdowns, and Petri nets. In these settings, our
definition conservatively generalizes existing notions. The main finding is that reachability within
a bounded number of context switches is in NP, independent of the memory (the graph monoid).
Our proof is genuinely algebraic, and therefore contributes a new way to think about BCS. In
addition, we exhibit a class of storage mechanisms for which BCS reachability belongs to P.

2012 ACM Subject Classification Theory of computation→ Parallel computing models, Theory
of computation → Formal languages and automata theory, Theory of computation → Logic and
verification

Keywords and phrases valence systems, graph monoids, bounded context switching

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.12

Related Version The full version is available on arXiv [47], https://arxiv.org/abs/1803.
09703.

1 Introduction

Bounded context switching (BCS) is an under-approximate verification technique typically
applied to safety properties. It was introduced for concurrent and recursive programs [50].
There, a context switch happens if one thread leaves the processor for another thread to be
scheduled. The analysis explores the subset of computations where the number of context
switches is bounded by a given constant. Empirically, it was found that safety violations
occur within few context switches [48, 45]. Algorithmically, the complexity of the analysis
drops from undecidable to NP [50, 26]. The idea received considerable interest from both
practice and theory, a detailed discussion of related work can be found below.

1 Supported by a fellowship of the Fondation Sciences Mathématiques de Paris and partially funded by
the DeLTA project (ANR-16-CE40-0007).

© Roland Meyer, Sebastian Muskalla, and Georg Zetzsche;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 12; pp. 12:1–12:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:roland.meyer@tu-braunschweig.de
https://orcid.org/0000-0001-8495-671X
mailto:s.muskalla@tu-braunschweig.de
https://orcid.org/0000-0001-9195-7323
mailto:zetzsche@irif.fr
https://orcid.org/0000-0002-6421-4388
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.12
https://arxiv.org/abs/1803.09703
https://arxiv.org/abs/1803.09703
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Bounded Context Switching for Valence Systems

Our contribution is a generalization of bounded context switching to programs operating
over arbitrary memories. To be precise, we consider valence systems, finite-control programs
equipped with a potentially infinite-state memory modeled as a monoid [23, 56, 57]. In valence
systems, both the data domain and the operations are represented by monoid elements, and
an operation o will change the current memory value m to the product m · o. Of course, the
monoid has to be given in some representation.

We consider so-called graph monoids that capture the memories commonly found in
programs, like stacks, counters, and tapes, but also combinations thereof. A graph monoid is
represented by a graph. Each vertex is interpreted as a symbol (say c) on which the operations
push (c+) and pop (c−) are defined. A computation is a sequence of such operations. The
edges of the graph define an independence relation among the symbols that is used to
commute the corresponding operations in a computation. To give an example, if c and d are
independent, the computation d+.c+.d− acts on two counters c and d and yields the values
1 and 0, respectively. Pushdowns are represented by valence systems over graphs without
edges and concurrent pushdowns by complete m-partite graphs (for m stacks). Petri nets
yield complete graphs, blind counter systems complete graphs with self-loops on all vertices.

Our definition of context switches concentrates on the memory and does not reference the
control flow. This frees us from having to assume a notion of thread, and makes the analysis
applicable to sequential programs as well. We define a context switch as two consecutive
operations in a computation that act on different and independent (in the above sense)
symbols. This conservatively generalizes existing notions and yields intuitive behavior where
a notion of context switch is not defined. When modeling concurrent pushdowns, a context
switch indeed corresponds to switching the stack. For Petri nets and blind counter systems,
it means switching the counter. Note, however, that the restriction can be applied to all
memories expressible in terms of graph monoids.

Our main result shows that reachability within a bounded number of context switches
is in NP, for all graph monoids. The result requires a uniform representation for the
computations over very different memories. We prove that a computation can always be split
into quadratically-many blocks (in the number of context switches) – independent of the
monoid. These blocks behave like single operations in that they commute or form inverses
(in the given monoid). With this decomposition result, we develop an automata-theoretic
approach to checking reachability. A more elaborate explanation of the proof approach can
be found in Section 3, where we have the required terminology at hand.

In addition, we investigate the precise complexity of the problem for individual graph
monoids. While there are graph monoids for which our problem is NP-complete (such as
those corresponding to the setting of concurrent pushdowns), we show that for an important
subclass, those induced by transitive forests, the problem can be solved in polynomial time.
Moreover, we describe those graph monoids for which the problem is NL-complete.

Taking a step back, our approach provides the first algebraic view to context-bounded
computation, and hence enriches the tool box so far containing graph-theoretic interpretations
and logical encodings of computations. We elaborate on the related work.

Related Work. There are two lines of work on BCS that are closely related to ours in that
they apply to various memory structures. Aiswarya [6] and Madhusudan and Parlato [46]
define a graph-theoretic interpretation of computations that manipulate a potentially infinite
memory. They restrict the analysis to computations where graph-based measures like
the split-width or the tree-width are bounded, and obtain general decidability results by
reductions to problems on tree automata. The graph interpretation has been applied to multi

R. Meyer, S. Muskalla, and G. Zetzsche 12:3

pushdowns [7], timed systems [9, 10], and has been generalized to controller synthesis [8].
It also gives a clean formulation of existing restrictions and uniformizes the corresponding
analysis algorithms, in particular for [50, 36, 37, 40, 31]. Different from under-approximations
based on split- or tree-width, we are able to handle counters, even nested within stacks. We
cannot handle, however, the queues to which those technique apply. Indeed, our main result is
NP-completeness whereas graph-based analyses may have a higher complexity. Our approach
thus applies to an incomparable class of models. Moreover, it contributes an algebraic view
to bounded computations that complements the graph-theoretic interpretation.

The second line of related work are reductions of reachability under BCS to satisfiability
in existential Presburger arithmetic [26, 30]. Hague and Lin propose an expressive model,
concurrent pushdowns communicating via reversal-bounded counters. Their main result is
NP-completeness, like in our setting. The model does not admit the free combination of stacks
and counters that we support. The way it is presented, we in turn do not handle reversal
boundedness, where the counters may change as long as the mode (increasing/decreasing)
does not switch too often. Our approach should be generalizable to reversal boundedness by
replacing the emptiness test in the free automata reduction of Section 5 by a satisfiability
check, using [53]. The details remain to be worked out. Besides providing an incomparable
class of models, our approach complements the logical view to computations.

Reductions to existential Presburger arithmetic often restrict the set of computations by
an intersection with a bounded language [29], like in [26, 5]. The importance of bounded
languages for under-approximation has been observed by Ganty et al. [28, 25].

Besides the above unifying approaches, there has been a body of work on generalizations
of BCS, towards exploring a larger set of computations [36, 41, 24, 12, 52, 2] and handling
more expressive programming models [37, 14, 31, 16]. An unconventional instantance of
the former direction are restrictions to the network topology [15]. As particularly relevant
instantiations of the latter, the BCS under-approximation has been applied to programs
operating on relaxed memories [13, 4] and programs manipulating data bases [3].

The practical work on BCS concentrated on implementing fast context-bounded analyses.
Sequentialization techniques [51] were successful in bridging the gap between the parallel
program at hand and the available tooling, which is often limited to sequential programs. The
idea is to translate the BCS instance into a sequential safety verification problem. The first
sequentialization for BCS has been proposed in [42], [38] gave a lazy formulation, and [17] a
systematic study of when sequentialization can be achieved. The approach now applies to full
C-programs [33] and has won the concurrency track in the softare verification competition.
Current work is on parallelizing the analysis by further restricting the interleavings and in
this way obtaining instances that are easier to solve [49].

Also with the goal of parallelization, recent works study the multi-variate complexity of
context-bounded analyses. While [26, 27] focus on P and NP, [20] studies fixed-parameter
tractability, and [21] the fine-grained complexity. The goal of the latter work is to achieve
an analysis of comlexity 2kpoly(n), with k a parameter and n the input size. Ideally, this
analysis could be performed by 2k independent threads, each solving a poly-time problem.

Our results contribute to a line of work on valence systems over graph monoids [57].
They have previously been studied with respect to elimination of silent transitions [55], semi-
linearity of Parikh images [19], decidability of unrestricted reachability [58], and decidability
of first-order logic with reachability [23]. See [56] for a general overview.

CONCUR 2018

12:4 Bounded Context Switching for Valence Systems

2 Valence Systems over Graph Monoids

We introduce the basics on graph monoids and valence systems following [57].

Graph Monoids. Let G = (V, I) be an undirected graph, without parallel edges, but possibly
with self-loops. This means I ⊆ V × V , which we refer to as the independence relation,
is symmetric but neither necessarily reflexive nor necessarily anti-reflexive. We use infix
notation and write o1 I o2 for (o1, o2) ∈ I.

To understand how the graph induces a monoid (a memory), think of the nodes o ∈ V
as stack symbols or counters. To each symbol o, we associate two operations, a positive
operation o+ that can be understood as push o or increment o and a negative operation o−,
pop o or decrement o. We call + and − the polarity of the operation. By o± we denote an
arbitrary element from {o+, o−}. Let O = {o+, o− | o ∈ V } denote the set of all operations.
We refer to sequences of operations from O∗ as computations. We lift the independence
relation to operations by setting o1

± I o2
± if o1 I o2. We also write v1 I v2 for v1, v2 ∈ O∗

if the operations in the computations are pairwise independent, and similar for subsets of
operations O1 I O2 with O1,O2 ⊆ O.

We obtain the monoid by factorizing the set of all computations. The congruence
will identify computations that order independent operations differently. Moreover, it will
implement that o+ followed by o− should have no effect, like a push followed by a pop.
Formally, we define ∼= as the smallest congruence (with respect to concatenation) on O∗
containing o1

±.o2
± ∼= o2

±.o1
± for all o1 I o2 and o+.o− ∼= ε for all o.

The graph monoid for graph G is MG = O∗/∼=. For a word w ∈ O∗, we use [w]M ∈MG

to denote its equivalence class. Multiplication is [u]M · [v]M = [u.v]M, which is well-defined as
∼= is a congruence. The neutral element of MG is the equivalence class of ε, 1M = [ε]M.

Recall that an element x of a monoid M is called right-invertible if there is y ∈M such
that x · y = 1M . We lift this notation to O∗ by saying that w ∈ O∗ is right-invertible if its
equivalence class [w]M ∈MG is.

Valence Systems. Given a graph G, a valence system over the graph monoid MG is a pair
A = (Q,→), where Q is a finite set of control states and →⊆ Q × (O ∪· {ε}) × Q is a set
of transitions. A transition q1

x−→ q2 is labeled by an operation on the memory. We write
q1 → q2 if the label is ε, indicating that no operation is executed. The size of A is |A| = |→|.
We use O(A) to access the set of operations that label transitions in A.

A configuration of A is a tuple (q, w) ∈ Q×O∗ consisting of a control state and the sequence
of storage operations that has been executed. We will restrict ourselves to configurations
where w is right-invertible. More precisely, in (q, w) a transition q1

x−→ q2 is enabled if q = q1
and w.x is right-invertible. In this case, the transition leads to the configuration (q2, w.x),
and we write (q, w)→ (q2, w.x). A run is a sequence of consecutive transitions.

This restriction to right-invertible configurations is justified by the definition of the
reachability problem for valence systems. It asks, given a valence system with two states
qinit , qfin, whether we can reach qfin with neutral memory from qinit with neutral memory,
i.e. whether there is a run from (qinit , ε) to (qfin, w) with [w]M = 1M. To be able to reach
such a configuration (qfin, w) from some configuration (q, w′), w′ has to be right-invertible.

Examples. Figure 1 depicts various graphs. The graph monoid of each of these graph
models a commonly used storage mechanism, i.e. it represents the behavior of the storage.
(a) Valence systems for this graph are pushdown systems over the stack alphabet {a, b, c}.

R. Meyer, S. Muskalla, and G. Zetzsche 12:5

•
a

•
b

•
c

(a)

•0`

•1`

•0r

•1r

(b)

•p1

•p2

•p3

•p4

(c)

•
c1

•c2

•
c3

(d)

Figure 1 Various examples of graphs representing commonly used storage mechanism.

(b) Valence systems for this graph can be seen as concurrent pushdown systems with two
stacks, each over a binary alphabet.

(c) Petri nets resp. vector addition systems with four counters/places p1, p2, p3, p4 can be
modeled as valence systems for this graph. Since the valence system labels transitions
by single increments or decrements, the transition multiplicities are encoded in unary.

(d) Integer vector addition systems resp. blind counter automata with counters c1, c2, c3
(that may assume negative values) can be seen as valence systems for this graph.

What about Queues? Let us quickly comment on why it is hard to fit queues into this
framework. An appealing aspect of valence automata over graph monoids is that by using the
monoid identity as the target for reachability problems (resp. as an acceptance condition [19,
55, 57, 58]), we can realize a range of storage mechanisms by only varying the underlying
monoid. This is because in the mechanisms that we can realize, the actions (or compositions
of actions) that transform the empty storage into the empty storage are precisely those that
equal the identity transformation.

In order to keep this aspect, we would need to construct a monoid whose generators can
be interpreted as queue actions so that a sequence of generators transforms the empty queue
into the empty queue if and only if this sequence evaluates to the identity of the monoid.
This, however, is not possible: Suppose that a and b represent enqueue operations and that
ā and b̄ are the corresponding dequeue operations. Each of the action sequences a.ā and
b.b̄ transforms the empty queue into the empty queue, but a.b.b̄.ā does not (it is undefined
on the empty queue). Hence, in the monoid, we would want to have aā = 1, bb̄ = 1, but
abb̄ā 6= 1, which violates associativity. Hence, although it is possible to model queue behavior
in a monoid [32, 34, 35], one would need a different target element (or set).

3 Bounded Context Switching

We introduce a notion of bounded context switching that applies to all valence systems, over
arbitrary graph monoids. The idea is to let a new context start with an operation that is
independent of the current computation, and hence intuitively belongs to a different thread.
We elaborate on the notion of dependence.

We call a set of symbols V ′ ⊆ V dependent, if it does not contain o1, o2 ∈ V , o1 6= o2
with o1 I o2. A set of operations O′ ⊆ O is dependent if its underlying set of symbols
{o | o+ ∈ O′ or o− ∈ O′} is. A computation is dependent if it is over a dependent set of
operations. A valence system is said to be dependent if the operations labeling the transitions
form a dependent set.

I Definition 3.1. Given w ∈ O+, its context decomposition is defined inductively: If w is
dependent, w is a single context and does not decompose. Else, the first context w1 of w is
the (non-empty) maximal dependent prefix of w. Then, the context decomposition of w is

CONCUR 2018

12:6 Bounded Context Switching for Valence Systems

w = w1, . . . , wk, where w2, . . . , wk is the context decomposition of the rest of the word. The
number of context switches in w, cs(w), is the number of contexts minus one. For technical
reasons, it will be convenient to define cs(ε) = −1.

We study reachability under a restricted number of context switches.

Reachability under bounded context switching (BCSREACH)
Given: Valence system A, initial state qinit , final state qfin, bound k in unary.
Decide: Is there a run from (qinit , ε) to (qfin, w) so that [w]M = 1M and cs(w) 6 k?

In all abovementioned graph monoids, the restriction has an intuitive meaning that generalizes
existing results. Using the finite states, our notion of BCS also permits a finite shared memory
among the threads. In addition, our definition applies to all storage structures expressible in
terms of graph monoids, including combinations like stacks of counters.

I Lemma 3.2. (BCSREACH) yields the following restriction:
(1) On pushdowns, the notion does not incur a restriction.
(2) On concurrent pushdowns, the notion corresponds to changing the stack k-times and

hence yields the original definition [50].
(3) On Petri nets and blind counters, the notion corresponds to changing the counter k-times.

Our main result is this.

I Theorem 3.3. (BCSREACH) is in NP, independent of the storage graph.

Note that the NP upper bound matches the lower bound in the case of concurrent push-
downs [39]. We consider the proof technique the main contribution of the paper. Different
from existing approaches, which are based on graph interpretations of computations or
encodings into Presburger, ours is of algebraic nature. With an algebraic analysis, given in
Section 4, we simplify the problem of checking whether a given computation reduces to one,
[w]M = 1M. We show that such a reduction exists if and only if the computation admits
a decomposition into so-called blocks that reduce to one in a strong sense. There are two
surprising aspects about the block decomposition. First, the strong reduction is defined
by either commuting two blocks or canceling them if they are inverses. This means the
blocks behave like operations, despite being full subcomputations. Second, the decomposition
yields only quadratically-many blocks in the number of context switches (important for
NP-membership). The block decomposition is the main technical result of the paper.

The second step, presented in Section 5, is a symbolic check for whether a computation
exists whose block decomposition admits a strong reduction. We rely on automata-theoretic
techniques to implement the operations of a strong reduction. Key is a saturation based on
which we give a complete check of whether two automata accept blocks that are inverses.

4 Block Decomposition

In this section, we show how to decompose a computation that reduces to the neutral element
into polynomially-many blocks such that the decomposition admits a syntactic reduction to ε.
The size of the decomposition will only depend on the number of contexts of the computation
and not on its length. This result will later provide the basis for our algorithm.

To be precise, we restrict ourselves to computations with so-called irreducible contexts.
In the next section, we will prove that the restriction to this setting is sufficient.

R. Meyer, S. Muskalla, and G. Zetzsche 12:7

I Definition 4.1. We call a computation w ∈ O∗ irreducible if it cannot be written as
w = w′.a.wI .b.w

′′ such that a = o+, b = o− and o commutes with every symbol in wI , or
a = o−, b = o+, o I o and o commutes with every symbol in wI .

In other words, a computation is irreducible if we cannot eliminate a pair o+.o− after using
commutativity. This is in fact the standard definition of irreducibility in the so-called trace
monoid, which we do not introduce here.

Our goal is to decompose irreducible contexts such that the decomposition of all contexts
in the computation admits a syntactic reduction defined as follows.

I Definition 4.2 ([44]). Let w1, w2, . . . , wn be a sequence of computations in O∗. A free
reduction is a finite sequence of applications of the following rewriting rules to consecutive
entries of the sequence that transforms w1, . . . , wn into the empty sequence.
(FR1) wi, wj 7→free ε , applicable if [wi.wj]M = 1M.
(FR2) wi, wj 7→free wj , wi , applicable if wi I wj
We call w1, w2, . . . , wn freely reducible if it admits a free reduction.

Being freely reducible is a strictly stronger property than [w1.w2.wn]M = 1M: It means
that the sequence can be reduced to 1M by block-wise canceling, Rule (FR1), and swapping
whole blocks, Rule (FR2). Indeed, consider o1

+.o2
+, o2

−, o1
− where no two symbols commute.

We have [o1
+.o2

+.o2
−.o1

−]M = 1M, but the sequence is not freely reducible.
The decomposition of a computation w with [w]M = 1M into its single operations is always

freely reducible. The main result of this section is that for a computation with irreducible
contexts, we can always find a freely-reducible decomposition whose length is independent of
the length of the computation.

I Theorem 4.3. Let w be a computation with [w]M = 1M and let w = w1 . . . wk be its decom-
position into irreducible contexts. There is a decomposition of each wi = wi,1.wi,2 . . . wi,mi

such that mi 6 k − 1 and the sequence

w1,1, w1,2, . . . , w1,m1 , w2,1, w2,2, . . . , w2,m2 , . . . , wk,1, wk,2, . . . , wk,mk

is freely reducible.

Note that the number of words occurring in the decomposition is bounded by k2. Theorem 4.3
can be seen as a strengthened version of Lemma 3.10 from [44]: We use the bound on the
number of contexts to obtain a polynomial-size decomposition instead of an exponential one.
However, the proofs of the two results are vastly different.

Constructing a Freely-Reducible Decomposition. The rest of this section will be dedicated
to the proof of Theorem 4.3. Let w ∈ O∗ be the computation of interest with [w]M = 1M.
We assume that it has length n and w = w1 . . . wk is its decomposition into contexts. For
the first part of the proof, we do not require that each wi is irreducible. As [w]M = 1M, w
can be transformed into ε by finitely often swapping letters and canceling out operations.
We formalize this by defining transition rules, similar to the definition of a free reduction.

For the technical development, it will be important to keep track of the original position
of each operation in the computation. To this end, we see w as a word over O × {1, . . . , n},
i.e. we identify the xth operation a of w with the tuple (a, x). For ease of notation, we
write w[x] for the xth operation of w. The annotation of letters by their original position
will be preserved under the transition rules.

CONCUR 2018

12:8 Bounded Context Switching for Valence Systems

I Definition 4.4. A reduction of w is a finite sequence of applications of the following
rewriting rules that transforms w into into ε.
(R1) w′.w[x].w[y].w′′ 7→red w

′.w′′ , applicable if w[x] = o+, w[y] = o− for some o.
(R2) w′.w[x].w[y].w′′ 7→red w

′.w′′ , applicable if w[x] = o−, w[y] = o+ for o I o.
(R3) w′.w[x].w[y].w′′ 7→red w

′.w[y].w[x].w′′, applicable if w[x] ∈ o1
±, w[y] ∈ o2

± for o1 I o2,
o1 6= o2.

If a word u can be transformed into v using these rules, we write u 7→∗red v. Note that a
reduction of w to ε can be seen as a free reduction of the sequence we obtain by decomposing
w into single operations.

I Lemma 4.5. For a word w, we have [w]M = 1M iff w admits a reduction.

Consequently, we may fix a reduction π = w 7→∗red ε that transforms w into ε. The following
definitions will depend on this fixed π.

I Definition 4.6. We define a relation Rπ that relates positions of w that cancel in π, i.e.

w[x] Rπ w[y] if w′.w[x].w[y].w′′ 7→red w
′.w′′ or w′.w[y].w[x].w′′ 7→red w

′.w′′ is used in π .

We lift it to infixes of w by defining inductively

t1s1 Rπ s2t2 if there are contexts wi = wi1.t1.s1.wi2 and wj = wj1.s2.t2.wj2

of w such that s1 Rπ s2 and t1 Rπ t2 .

An infix u of a context wi is called a cluster if there is an infix u′ of a context wj such that
u Rπ u

′. Moreover, if u is a maximal cluster in wi, then it is called a block.

Note that Rπ is symmetric by definition. In the following, when we write s1 Rπ s2, we will
assume that s1 appears before s2 in w, i.e. w = w′.s1.w

′′.s2.w
′′′. We now show that each

context has a unique decomposition into blocks. Afterwards, we will see that the resulting
block decomposition is the decomposition required by Theorem 4.3.

I Lemma 4.7. Every context has a unique factorization into blocks.

To prove the lemma, we show that each position belongs to at least one block and to at most
one block. We call the unique factorization of a context wi into blocks the block decomposition
of wi (induced by π) and denote it by

wi = wi,1, . . . , wi,mi
.

The block decomposition of w (induced by π) is the concatenation of the block decompositions
of its contexts,

w = w1,1, . . . , w1,m1 , . . . , wk,1, . . . , wk,mk
.

Note that if u is a block and u Rπ v, then v is a block as well. Therefore, Rπ is a one-to-one
correspondence of blocks. It remains to prove that the block decomposition of w admits a
free reduction. We will show that we can inductively cancel out blocks pairwise, starting
with an innermost pair. Being innermost is formalized by the following relation.

I Definition 4.8. We define relation 6w on Rπ-related pairs of blocks by (s1 Rπ s2) 6w
(t1 Rπ t2) if w = w(1).t1.w

(2).s1.w
(3).s2.w

(4).t2.w
(5) for appropriately chosen w(1), . . . , w(5).

A pair s1 Rπ s2 minimal wrt. this order is called minimal nesting in w.

R. Meyer, S. Muskalla, and G. Zetzsche 12:9

Note that we still assume that all letters are annotated by their position. This means if
w(1), . . . , w(5) exist, they are uniquely determined.

I Lemma 4.9. 6w has a minimal nesting.

The next lemma states that s1 Rπ s2 implies that s2 is (a representative of) a right inverse
of s1. While we already know that the operations in s1 cancel with those in s2, it could
ostensibly be the case that [s2]M is a left-inverse to [s1]M.

I Lemma 4.10. If s1 Rπ s2, then [s1.s2]M = 1M.

I Proposition 4.11. Let π : w →∗red ε be a reduction of w. The block decomposition of w
induced by π is freely reducible.

Proof. If w = ε, then there is nothing to do. Otherwise, w decomposes into at least two
blocks. We proceed by induction on the number of blocks. In the base case, let us assume
that w = u, v is the block decomposition, where u Rπ v has to hold. Using Lemma 4.10,
u, v 7 (FR1)−−−−→free ε is the desired free reduction.

In the inductive step, we pick a minimal nesting s1 Rπ s2 in w. As argued in Lemma 4.9,
this is always possible. We may write

w = w1 . . . wi1s1wi2︸ ︷︷ ︸
context wi

. . . wj1s2wj2︸ ︷︷ ︸
context wj

. . . wk .

Since s1 Rπ s2, we know that by definition of Rπ, π has to move each letter from s1 next to
the corresponding letter of s2 or vice versa.

Let us consider the effect of π on the infix wi2 . . . wj1 . Without further arguments, the
reduction π could cancel some letters inside this infix, and it can swap the remaining letters
with the letters in s1 or s2. In fact, there can be no canceling within wi2 . . . wj1 , as s1 Rπ s2
was chosen to be a minimal nesting: Assume that wi2 . . . wj1 contains some letters a, b
with a Rπ b. Pick the unique blocks u, v to which they belong, and note that we have
(u Rπ v) <w (s1 Rπ s2), i.e. (u Rπ v) 6w (s1 Rπ s2) and (u, v) 6= (s1, s2), a contradiction to
the minimality of s1 Rπ s2.

Hence, the reductions needs to swap all letters in wi2 . . . wj1 with s1 or s2 and we have
s1 I wi2 . . . wj1 I s2. We construct a free reduction as follows:

w1 . . . wi1s1wi2wi+1 . . . wj−1wj1s2wj2 . . . wk

7 (FR2)−−−−→
∗

free w1 . . . wi1wi2wi+1 . . . wj−1wj1s1s2wj2 . . . wk

7 (FR1)−−−−→free w1 . . . wi1wi+1 . . . wj−1wj2 . . . wk =: w′ .

The applications of Rule (FR2) are valid as s1 I wi2 . . . wj1 I s2 holds. The application of
Rule (FR1) to s1, s2 is valid by Lemma 4.10.

Let us denote by w′ the result of these reduction steps. We consider the reduction π′ that
is obtained by restricting π to transitions that work on letters still present in w′. Indeed, π′
reduces w′ to ε. In particular, for each operation in w′, the operation it cancels with is the
same in π and π′. Consequently, the relation Rπ′ is the restriction of Rπ to the operation still
occurring in w′, and the block decomposition of w′ induced by π′ is the block decomposition
of π minus the blocks s1, s2 that have been removed.

We may apply induction to obtain that w′ admits a free reduction. We prepend the
above reduction steps to this free reduction to obtain the desired reduction for w.

CONCUR 2018

12:10 Bounded Context Switching for Valence Systems

We emphasize the fact that we have not used in the proof that the wi are contexts. This
is important, as the context decompositions of w and w′ can differ substantially. Potentially,
we have that w consists of four contexts, w = w1, s1, w2, s2, but after canceling s1 with s2,
w1 and w2 merge to a single context, w′ = w1.w2. As we have preserved Rπ and its induced
block decomposition, this does not hurt the validity of the proof. J

A Bound on the Number of Blocks. It remains to prove the desired bound on the number
of blocks. To this end, we will exploit that each context wi is irreducible.

I Proposition 4.12. Let w be a computation with irreducible contexts and π : w →∗red ε a
reduction. In the block decomposition of w induced by π, mi 6 k − 1 holds for all i.

We prove the proposition in the form of two lemmas.

I Lemma 4.13. The relation Rπ never relates blocks from the same context.

The following lemma allows us to bound the number of blocks in a context by the total
number k of contexts.

I Lemma 4.14. For any two contexts wi and wj, there is at most one block in wi that is
Rπ-related to a block in wj.

Proof. Towards a contradiction, assume that some context contains two blocks that are
Rπ-related to a block from the same context. Let us consider the minimal i such that wi
contains such blocks. Let wj be the context to which the two blocks are related. By the
choice of i, wi occurs in w before wj does.

We pick s1, t1 as a pair of blocks in wi canceling with blocks from wj with minimal
distance, i.e. wi = wi1s1wi2t1wi3 where wi2 contains no block that is canceled by some block
in wj . Let s2, t2 be the blocks in wj such that s1 Rπ s2, t1 Rπ t2. We have to distinguish
two cases, depending on the order of occurrence of s2 and t2 in wj . In the first case, we have
wj = wj1t2wj2s2wj3 and thus

w = w1 . . . wi−1 wi1s1wi2t1wi3︸ ︷︷ ︸
context wi

wi+1 . . . wj−1 wj1t2wj2s2wj3︸ ︷︷ ︸
context wj

wj+1 . . . wk .

Our goal is to show that wi2 and wj2 have to be empty. We then obtain s1t1 Rπ t2s2, a
contradiction to the definition of blocks as maximal Rπ-related infixes in each context.

We start by assuming that wi2 contains some operation b. As π reduces w to ε, w contains
some operation c that b cancels with. We first note that c cannot be contained in wj , as we
have chosen s1, t1 such that wi2 contains no block that cancels with a block of wj . Assume
that c is contained in the prefix w1 . . . wi−1wi1 . Reduction π either needs to swap b or c
with s1, or it needs to swap s2 with b (to cancel s1). In any case, by definition of 7→red,
this means s1 contains an operation that commutes with b and is distinct from b. However,
this is impossible, as s1 and b are contained in the same context wi, and contexts do not
contain distinct independent symbols. For the same reason, c cannot be contained in the
suffix wj3wj+1 . . . wk.

If c is contained in the infix wi+1 . . . wj−1, π needs to swap b with t1, or c with t1, or
t2 with c. In any case, this means t1 contains an operation that commutes with b and is
distinct from b. However, this is impossible, as t1 and b are contained in the same context
wi, and contexts do not contain distinct independent symbols.

Consequently wi2 needs to be empty. Let us assume that wj2 contains an operation
b, and let c denote the operation it cancels with. As for wi2 , we can show that c can

R. Meyer, S. Muskalla, and G. Zetzsche 12:11

neither be contained in the prefix w1 . . . wi−1wi1 , nor in the suffix wj3wj+1 . . . wk, nor in the
infix wi+1 . . . wj−1. We conclude that wj2 is also empty and obtain a contradiction to the
maximality of the blocks as explained above.

It remains to consider the second case, i.e. wj = wj1s2wj2t2wj3 and

w = w1 . . . wi−1 wi1s1wi2t1wi3︸ ︷︷ ︸
context wi

wi+1 . . . wj−1 wj1s2wj2t2wj3︸ ︷︷ ︸
context wj

wj+1 . . . wk .

Reduction π either needs to swap s1 with t1 or equivalently s2 with t1. Again by definition
of 7→red, this means there is an operation a in s1 and an operation b in t1 such that a I b
and a, b have distinct symbols. Since s1, t1 and s2, t2 belong to the same context, this is
impossible. J

Lemma 4.13 and Lemma 4.14 together prove Proposition 4.12, finishing the proof of Theo-
rem 4.3.

5 Decision Procedure

Given a valence system A with states qinit and qfin , and a bound k, we give an algorithm that
checks whether there is a run from (qinit , ε) to (qfin, w) such that [w]M = 1M and cs(w) 6 k.

Implementing Irreducibility. The theory we have developed above applies to irreducible
contexts. To determine the irreducible versions of contexts in A, we define a saturation
operation on valence systems. The algebraic idea behind the saturation is the following.

I Lemma 5.1. Let w be a dependent computation. Then w can be turned into an irreducible
computation by applying the following rules: o+.o− 7→ ε and, provided o I o, o−.o+ 7→ ε.

To see the lemma, note that in a dependent computation, reducible operations o+ and o−
cannot be separated by an operation on a different symbol. Hence, o+ and o− are placed
side by side (potentially after further reductions). If o I o does not hold, the first rule is
sufficient for the reduction. If o I o does holds, we may find o−.o+ and need both rules.

The saturation operation implements these two rules. Since Lemma 5.1 assumes a
dependent computation, we consider a dependent valence system B = (P,). The saturation
is the valence system sat(B) = (P, sat) with the same set of control states. The transitions
are defined by requiring ⊆ sat and exhaustively applying the following rules:

(1) If p1
o+

 sat p
∗
sat p

′ o
−

 sat p2, add an ε-transition p1 sat p2.

(2) If p1
o−

 sat p
∗
sat p

′ o
+

 sat p2 and o I o, add an ε-transition p1 sat p2.
Here, p ∗sat p

′ denotes that p′ is reachable from p by a sequence of ε-transitions.

I Remark. In the worst case, we add |P |2 many transitions.

I Lemma 5.2. There is a computation (q1, ε) → (q2, u) in B if and only if there is a
computation (q1, ε)→ (q2, v) with v irreducible and u ∼= v in sat(B).

The valence system A = (Q,→) of interest may not be dependent. We will determine
dependent versions of it (one for each context) by restricting to a dependent set of operations
O′ ⊆ O. The restriction is defined by A[O′] = (Q,→ ∩ (Q× (O′ ∪ {ε})×Q)).

CONCUR 2018

12:12 Bounded Context Switching for Valence Systems

Representing Block Decompositions. Theorem 4.3 considers a computation decomposed
into irreducible contexts w1 to wk. It shows that each context wi can be further decomposed
into at most k blocks such that the overall sequence of blocks w1,1, . . . , wk,mk

freely reduces
to 1M. Our goal is to represent the block decompositions of all candidate computations in a
finite way. To this end, we analyze the result more closely.

The decomposition into contexts means there are dependent sets O1, . . . ,Ok ⊆ O such
that each context wi only uses operations from the set Oi. The decomposition into blocks
means there are n = k2 computations v1 to vn and states q1 to qn−1 such that vi leads from
qi−1 to qi with q0 = qinit and qn = qfin. The last thing to note is that a block itself does
not have to be right-invertible. This means we should represent block decompositions by
(non-deterministic finite) automata rather than valence systems.

We define, for each pair of states qi, qf ∈ Q, each dependent set of operations Ocon ⊆ O,
and each subset Obl ⊆ Ocon the automaton

N(qi, qf ,Ocon,Obl) = 2nfa(qi, qf , sat(A[Ocon])[Obl]) .

Function 2nfa understands the given valence system sat(A[Ocon])[Obl] as an automaton, with
the first parameter as the initial and the second as the final state. The set Ocon will be the
operations used in the context of interest. As these operations are dependent, sat(A[Ocon])
will include the irreducible versions of all computations in A[Ocon], Lemma 5.2. The second
restriction to Obl identifies the operations of one block in the context.

With this construction at hand, we define our representation of block decompositions.

I Definition 5.3. A test for the given (BCSREACH)-instance is a sequence N1, . . . , Nn of
n = k2 automata Ni = N(qi−1, qi,Oj ,Oj,i) with j = d ik e, q0 = qinit , and qn = qfin.

The following lemma links Theorem 4.3 and the notion of tests. With Theorem 4.3, we have
to check whether there is a computation w from qinit to qfin with cs(w) 6 k whose block
decomposition admits a free reduction. With the analysis above, such a computation exists
iff there is a test N1 to Nn whose automata accept the blocks in the decomposition.

I Lemma 5.4. We have (qinit , ε)→ (qfin, w) with cs(w) 6 k and [w]M = 1 in A iff there is
a test N1, . . . , Nn and computations v1 ∈ L(N1) to vn ∈ L(Nn) that freely reduce to 1M.

Determining Free Reducibility. Given a test N1, . . . , Nn, we have to check whether the
automata accept computations that freely reduce to 1M. To get rid of the reference to single
computations, we now define a notion of free reduction directly on sequences of automata.
This means we have to lift the following operations from computations to automata. On
computations u and v, a free reduction may check commutativity, u I v, and whether the
computations are inverses, [u]M · [v]M = 1M. Consider Nu and Nv from N1, . . . , Nn.

Rather than checking whether Nu and Nv accept computations that commute, the free
reduction on automata will check whether the alphabets are independent, O(Nu) I O(Nv).
To see that this yields a complete procedure, note that Lemma 5.4 existentially quantifies over
all tests, and hence all sets of operations to construct Nu and Nv. If there are computations
u and v that commute in the free reduction, we can construct the automata Nu and Nv by
restricting to the letters in these words. This will still guarantee u ∈ L(Nu) and v ∈ L(Nv).

To check whether Nu and Nv accept computations that multiply up to 1M, we rely on
the syntactic inverse. Consider a computation u that contains negative operations o− only
for symbols with o I o. In this case, the syntactic inverse sinv(u) is defined by reversing the
letters and inverting the polarity of operations. The operation is not defined otherwise. The
following lemma is immediate.

R. Meyer, S. Muskalla, and G. Zetzsche 12:13

I Lemma 5.5. If u, v ∈ O∗ are irreducible, dependent with [u]M · [v]M = 1M, then v = sinv(u).

The idea is to admit v as the inverse of u if v = sinv(u) holds. The equality will of course
entail that v is the inverse of u, for any pair of computations. Lemma 5.5 moreover shows
that for irreducible, dependent computations the check is complete. Since Nu and Nv are
dependent and saturated, it will be complete (Lemma 5.2) to use the syntactic inverse also
on the level of automata.

The definition swaps initial and final state, turns around the transitions, removes the
negative operations on non-commutative symbols, and inverts the polarity of the others.
Formally, the syntactic inverse yields sinv(Nu) = (Q, qu,fin, remswap(→−1

u), qu,init). The
reverse relation contains (q2, o

±, q1) ∈ →−1
u iff (q1, o

±q2) ∈ →u. Function remswap removes
transitions with operations o− for which o I o does not hold and inverts the remaining
polarities. The construction guarantees that sinv(L(Nu)) = L(sinv(Nu)). With this, the
check of whether Nu and Nv contain computations u and v with v = sinv(u) amounts to
checking whether Nv and sinv(Nu) have a computation in common.

I Lemma 5.6. There are u ∈ L(Nu), v ∈ L(Nv) with v = sinv(u) iff L(Nv)∩L(sinv(Nu)) 6=
∅.

The analogue of the free reduction defined on automata is the following definition.

I Definition 5.7. A free automata reduction on a test N1 to Nn is a sequence of operations
(FRA1) Ni, Nj 7→free ε, if L(Nj) ∩ L(sinv(Ni)) 6= ∅.
(FRA2) Ni, Nj 7→free Nj , Ni, if O(Ni) I O(Nj).
Since we quantify over all tests, free automata reductions are complete as follows.

I Lemma 5.8. There is a test N1, . . . , Nn and computations u1 ∈ L(N1) to un ∈ L(Nn) that
freely reduce to 1M iff there is a test N1, . . . , Nn that admits a free automata reduction to ε.

Together, Lemma 5.4 and Lemma 5.8 yield a decision procedure for (BCSREACH). We guess
a suitable test and for this test a suitable free automata reduction. The restrictions, the
saturation, the automata conversion, and the independence and disjointness tests require time
polynomial in |A|+ k. Moreover, the free automata reduction contains polynomially-many
(in k) steps. Together, this yields membership in NP and proves Theorem 3.3.

6 Complexity for Fixed Graphs

We have seen that reachability under bounded context switching can always be decided in
NP, even if the graph describing the storage mechanism is part of the input. In this section,
we study how the complexity of the problem depends on the storage mechanism, i.e. the
graph. We fix the graph G and consider the problem BCSREACH(G). We will see that for
some graphs, the complexity is lower than NP: We exhibit a class of graphs G for which
BCSREACH(G) is solvable in polynomial time and we describe those graphs for which the
problem is NL-complete. Of course, for any graph G, the problem BCSREACH(G) is NL-hard,
because reachability in directed graphs is. In some cases, we also have an NL upper bound.

A loop-free graph is a clique if any two distinct vertices are adjacent. By G− we denote
the graph obtained from G by removing all self-loops. If G− is a clique, then valence systems
over G are systems with access to a fixed number of independent counters, some of which
are blind and some of which are partially blind.

I Theorem 6.1. If G− is a clique, then BCSREACH(G) is NL-complete. Otherwise,
BCSREACH(G) is P-hard.

CONCUR 2018

12:14 Bounded Context Switching for Valence Systems

(a) The graph P4. (b) The graph C4.

Figure 2 The graphs P4 and C4.

In some cases, BCSREACH is P-complete. A loop-free graph is a transitive forest if it
is obtained from the empty graph using disjoint union and adding a universal vertex. A
universal vertex is a vertex that is adjacent to all other vertices. Adding one means that we
take a graph G = (V, I) and add a new vertex v /∈ V and make it adjacent to every vertex in
G. Hence, we obtain (V ∪ {v}, I ∪ {{u, v} | u ∈ V }).

I Theorem 6.2. If G− is a transitive forest, then BCSREACH(G) is in P.

In the area of graph monoids, transitive forests are an important subclass. For many decision
problems, they characterize those graphs for which the problem becomes decidable [58, 43]
or tractable [44]. Intuitively, the storage mechanisms represented by graphs G where G− is
a transitive forest are those obtained by building stacks and adding counters, see [58, 57].

If G = (V, I) is a graph, then H is an induced subgraph of G if H is isomorphic to a graph
(V ′, I ′), where V ′ ⊆ V and I ′ = {e ∈ I | e ⊆ V ′}. See Fig. 2 for the graphs C4 and P4.

I Theorem 6.3. If C4 is an induced subgraph of G−, then BCSREACH(G) is NP-complete.

It is an old combinatorial result that a simple graph is a transitive forest if and only if it
does not contain the two graphs P4 and C4 as induced subgraphs [54]. Hence, if one could
also show that BCSREACH(G) is NP-hard when G− = P4, then Theorem 6.2 would cover
all cases with polynomial complexity (unless P = NP). However, we currently do not know
whether BCSREACH(P4) is NP-hard.

Proof Sketches. The rest of this section is devoted to sketching the proofs of Theorems 6.1,
6.2, and 6.3. The first step is a reformulation of the problem BCSREACH(G) if G is obtained
from two disjoint graphs G0 and G1 by drawing edges everywhere between G0 and G1.
Suppose Gi = (Vi, Ii) is a graph for i = 0, 1 such that V0 ∩ V1 = ∅. Then the graph G0 ×G1
is defined as (V, I), where V = V0 ∪ V1 and I = I0 ∪ I1 ∪ {{v0, v1} | v0 ∈ V0, v1 ∈ V1}.

The reformulation also involves valence automata, which can read input. Let G = (V, I)
be a graph and let O = {o+, o− | o ∈ V }. A valence automaton over G is a tuple
A = (Q,Σ, q0, E, qf), where Q is a finite set of states, Σ is an alphabet, q0 ∈ Q is its initial
state, E ⊆ Q × (Σ ∪ {ε}) × (O ∪ {ε}) × Q is its set of transitions, and qf ∈ Q is its final
state. A configuration is a tuple (q, u, v), where q ∈ Q, u ∈ Σ∗, and v ∈ O∗, where v is
right-invertible. Intuitively, a transition (q, s, w, q′) changes the state from q to q′, reads the
input s, and puts w into the storage. We write (q, u, v)→ (q′, u′, v′) if there is a transition
(q, s, w, q′) such that u′ = us and v′ = vw. For any k ∈ N, the language accepted by A with
at most k context switches is denoted Lk(A) and defined as the set of all u ∈ σ∗ such that
from (q0, ε, ε), we can reach (qf , u, w) for some w ∈ O∗ with [w]M = 1M and cs(w) ≤ k. The
following problem will be used to reformulate BCSREACH(G×H).

Intersection under bounded context switching (BCSINT(G,H))
Given: Alphabet Σ, valence automata A,B over graphs G,H, resp.,

with input alphabet Σ, and bounds k, `,m in unary.
Decide: Is the intersection Lk(A) ∩ L`(B) ∩ Σ≤m non-empty?

R. Meyer, S. Muskalla, and G. Zetzsche 12:15

We are now ready to state the reformulation, which is not difficult to prove.

I Proposition 6.4. If G = G0 × G1, then BCSREACH(G) is logspace-interreducible with
BCSINT(G0, G1).

We can use Proposition 6.4 to show that adding a universal vertex does not change the
complexity.

I Proposition 6.5. If G has a universal vertex v, then
BCSREACH(G) reduces to BCSREACH(G \ v) in logspace.

This can be deduced from Proposition 6.4 as follows. If v is a universal vertex, then
G = (G \ v) ×H, where H is a one-vertex graph. In this situation, a valence automaton
over H is equivalent to a one-counter automaton (OCA). It is folklore that an n-state OCA
accepts a word of length m if and only if it does so with counter values at most O((mn)2) [22].
We can thus compute in logspace a finite automaton for the language R = L`(B) ∩ Σ≤m.
This means, our instance of BCSINT(G \ v,H) reduces to emptiness of Lk(A) ∩ R. Using
the automaton for R, this is easily turned into an instance of BCSREACH(G \ v). Note
that Proposition 6.5 yields the upper bound of Theorem 6.1. The P-hardness follows from
P-hardness of reachability in pushdown automata.

The P upper bound in Theorem 6.2 follows from Proposition 6.5 and the following.

I Proposition 6.6. If BCSREACH(Gi) is in P for i = 0, 1, then BCSREACH(G0 ∪· G1) is in
P as well.

Proposition 6.6 is shown using a saturation procedure similar to the one in Section 5. In the
latter, we shortcut paths that read two (complementary) instructions. Here, in contrast, we
find states p, q between which there is an arbitrarily long path that reads instructions w over
one graph Gi for i = 0, 1 such that [w]M = 1M and cs(w) ≤ k. Then, we add an ε-transition
between p and q.

Finally, let us comment on the NP-hardness in Theorem 6.3. If G = C4, this is the
well-known NP-hardness of reachability under bounded context switching. If G contains
self-loops, we employ Proposition 6.4: If G− = C4, then G = G0 × G1 for some graphs
where each Gi contains two non-adjacent vertices. In this case, it is known that that valence
automata over Gi accept the same languages as those over G−i [58, 57]. Therefore, the
formulation in terms of BCSINT(G0, G1) allows us to conclude hardness.

7 Conclusion

We have shown that for every storage represented by a graph monoid, reachability under
bounded context switches (BCSREACH) is decidable in NP. To this end, we show that
after some preprocessing in a saturation procedure, any computation with bounded context
switches decomposes into quadratically many blocks. These blocks then cancel and commute
with each other so as to reduce to the identity element. Thus, one can guess a decomposition
into blocks and verify the cancellation and commutation relations among them.

For the subclass of graph monoids whose underlying simple graph is a transitive forest, we
have provided a polynomial-time algorithm (Theorem 6.2). However, we leave open whether
there are other graph monoids for which the problem is in P.

One has NP-hardness in the case that the underlying simple graph contains C4 as an
induced subgraph, which corresponds to the classical case of bounded context switching in
concurrent recursive programs. Since transitive forests are precisely those simple graphs

CONCUR 2018

12:16 Bounded Context Switching for Valence Systems

that contain neither C4 nor P4 as induced subgraphs [54], showing NP-hardness for P4
would imply that Theorem 6.2 captures all graphs with polynomial-time algorithms (unless
P = NP). Unfortunately, the known hardness techniques for problems involving graph groups
or Mazurkiewicz traces over P4 [1, 43, 44, 58] do not seem to apply.

Moreover, there is a variety of under-approximations for concurrent recursive programs [36,
11, 18, 41, 24, 12, 52]. It appears to be a promising direction for future research to study
generalizations of these under-approximations to valence systems.

References
1 IJ. J. Aalbersberg and H. J. Hoogeboom. Characterizations of the decidability of some

problems for regular trace languages. Mathematical Systems Theory, 22(1):1–19, 1989.
2 P. A. Abdulla, C. Aiswarya, and M. F. Atig. Data multi-pushdown automata. In CONCUR,

volume 85 of LIPIcs, pages 38:1–38:17. Dagstuhl, 2017.
3 P. A. Abdulla, C. Aiswarya, M. F. Atig, M. Montali, and O. Rezine. Recency-bounded

verification of dynamic database-driven systems. In PODS, pages 195–210. ACM, 2016.
4 P. A. Abdulla, M. F. Atig, A. Bouajjani, and T. P. Ngo. Context-bounded analysis for

POWER. In TACAS, volume 10206 of LNCS, pages 56–74. Springer, 2017.
5 P. A. Abdulla, M. F. Atig, R. Meyer, and M. S. Salehi. What’s decidable about availability

languages? In FSTTCS, volume 45 of LIPIcs, pages 192–205. Dagstuhl, 2015.
6 C. Aiswarya. Verification of communicating recursive programs via split-width. PhD thesis,

École normale supérieure de Cachan, France, 2014.
7 C. Aiswarya, P. Gastin, and K. N. Kumar. MSO decidability of multi-pushdown systems

via split-width. In CONCUR, volume 7454 of LNCS, pages 547–561. Springer, 2012.
8 C. Aiswarya, P Gastin, and K. N. Kumar. Controllers for the verification of communicating

multi-pushdown systems. In CONCUR, volume 8704 of LNCS, pages 297–311. Springer,
2014.

9 S. Akshay, P. Gastin, and S. N. Krishna. Analyzing timed systems using tree automata. In
CONCUR, volume 59 of LIPIcs, pages 27:1–27:14. Dagstuhl, 2016.

10 S. Akshay, P. Gastin, S. N. Krishna, and I. Sarkar. Towards an efficient tree automata
based technique for timed systems. In CONCUR, volume 85 of LIPIcs, pages 39:1–39:15.
Dagstuhl, 2017.

11 M. F. Atig, B. Bollig, and P. Habermehl. Emptiness of multi-pushdown automata is 2etime-
complete. In DLT, volume 5257 of LNCS, pages 121–133. Springer, 2008.

12 M. F. Atig, A. Bouajjani, K. N. Kumar, and P. Saivasan. On bounded reachability analysis
of shared memory systems. In FSTTCS, volume 29 of LIPIcs, pages 611–623. Dagstuhl,
2014.

13 M. F. Atig, A. Bouajjani, and G. Parlato. Getting rid of store-buffers in TSO analysis. In
CAV, volume 6806 of LNCS, pages 99–115. Springer, 2011.

14 M. F. Atig, A. Bouajjani, and S. Qadeer. Context-bounded analysis for concurrent pro-
grams with dynamic creation of threads. In TACAS, volume 5505 of LNCS, pages 107–123.
Springer, 2009.

15 M. F. Atig, A. Bouajjani, and T. Touili. On the reachability analysis of acyclic networks
of pushdown systems. In CONCUR, volume 5201 of LNCS, pages 356–371. Springer, 2008.

16 A. Bouajjani and M. Emmi. Bounded phase analysis of message-passing programs. STTT,
16(2):127–146, 2014.

17 A. Bouajjani, M. Emmi, and G. Parlato. On sequentializing concurrent programs. In SAS,
volume 6887 of LNCS, pages 129–145. Springer, 2011.

18 L. Breveglieri, A. Cherubini, C. Citrini, and S. Crespi-Reghizzi. Multi-push-down languages
and grammars. Int. J. Found. Comput. Sci., 7(3):253–292, 1996.

R. Meyer, S. Muskalla, and G. Zetzsche 12:17

19 P. Buckheister and Georg Zetzsche. Semilinearity and context-freeness of languages ac-
cepted by valence automata. In MFCS, volume 8087 of LNCS, pages 231–242. Springer,
2013.

20 P. Chini, J. Kolberg, A. Krebs, R. Meyer, and P. Saivasan. On the complexity of bounded
context switching. In ESA, volume 87 of LIPIcs, pages 27:1–27:15. Dagstuhl, 2017.

21 P. Chini, R. Meyer, and P. Saivasan. Fine-grained complexity of safety verification. In
TACAS, volume 87 of LNCS. Springer, 2018.

22 D. Chistikov, W. Czerwinski, P. Hofman, M. Pilipczuk, and M. Wehar. Shortest paths in
one-counter systems. In FOSSACS, pages 462–478, 2016.

23 E. D’Osualdo, R. Meyer, and G. Zetzsche. First-order logic with reachability for infinite-
state systems. In LICS, pages 457–466. ACM, 2016.

24 M. Emmi, S. Qadeer, and Z. Rakamaric. Delay-bounded scheduling. In POPL, pages
411–422. ACM, 2011.

25 J. Esparza, P. Ganty, and R. Majumdar. A perfect model for bounded verification. In
LICS, pages 285–294. IEEE, 2012.

26 J. Esparza, P. Ganty, and T. Poch. Pattern-based verification for multithreaded programs.
ACM ToPLaS, 36(3):9:1–9:29, 2014.

27 F. Furbach, R. Meyer, K. Schneider, and M. Senftleben. Memory-model-aware testing: A
unified complexity analysis. ACM Trans. Embedded Comput. Syst., 14(4):63:1–63:25, 2015.

28 P. Ganty, R. Majumdar, and B. Monmege. Bounded underapproximations. In CAV, volume
6174 of LNCS, pages 600–614. Springer, 2010.

29 S. Ginsburg and E. Spanier. Bounded ALGOL-like languages. Trans. Amer. Math. Soc.,
113:333––368, 1964.

30 M. Hague and A. W. Lin. Synchronisation- and reversal-bounded analysis of multithreaded
programs with counters. In CAV, volume 7358 of LNCS, pages 260–276. Springer, 2012.

31 A. Heussner, J. Leroux, A. Muscholl, and G. Sutre. Reachability analysis of communicating
pushdown systems. LMCS, 8(3), 2012.

32 Martin Huschenbett, Dietrich Kuske, and Georg Zetzsche. The monoid of queue actions.
Semigroup Forum, 95:475–508, 2017.

33 O. Inverso, T. L. Nguyen, B. Fischer, S. La Torre, and G. Parlato. Lazy-CSeq: A context-
bounded model checking tool for multi-threaded C-programs. In ASE, pages 807–812. IEEE,
2015.

34 C. Köcher. Rational, recognizable, and aperiodic sets in the partially lossy queue monoid.
In STACS, LIPIcs, pages 45:1–45:14. Dagstuhl, 2018.

35 C. Köcher and D. Kuske. The transformation monoid of a partially lossy queue. In CSR,
volume 10304 of Lecture Notes in Computer Science, pages 191–205. Springer, 2017.

36 S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive languages.
In LICS, pages 161–170. IEEE, 2007.

37 S. La Torre, P. Madhusudan, and G. Parlato. Context-bounded analysis of concurrent
queue systems. In TACAS, volume 4963 of LNCS, pages 299–314. Springer, 2008.

38 S. La Torre, P. Madhusudan, and G. Parlato. Reducing context-bounded concurrent reach-
ability to sequential reachability. In CAV, volume 5643 of LNCS, pages 477–492. Springer,
2009.

39 S. La Torre, P. Madhusudan, and G. Parlato. The language theory of bounded context-
switching. In LATIN, pages 96–107. Springer, 2010.

40 S. La Torre, P. Madhusudan, and G. Parlato. Model-checking parameterized concurrent
programs using linear interfaces. In CAV, volume 6174 of LNCS, pages 629–644. Springer,
2010.

CONCUR 2018

12:18 Bounded Context Switching for Valence Systems

41 S. La Torre and M. Napoli. Reachability of multistack pushdown systems with scope-
bounded matching relations. In CONCUR, volume 6901 of LNCS, pages 203–218. Springer,
2011.

42 A. Lal and T. W. Reps. Reducing concurrent analysis under a context bound to sequential
analysis. In CAV, volume 5123 of LNCS, pages 37–51. Springer, 2008.

43 M. Lohrey and B. Steinberg. The submonoid and rational subset membership problems for
graph groups. Journal of Algebra, 320(2):728–755, 2008.

44 M. Lohrey and G. Zetzsche. Knapsack in graph groups. Theory of Computing Systems,
62:192–246, 2018.

45 S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: A comprehensive study on
real world concurrency bug characteristics. In ASPLOS, pages 329–339. ACM, 2008.

46 P. Madhusudan and G. Parlato. The tree width of auxiliary storage. In POPL, pages
283–294. ACM, 2011.

47 R. Meyer, S. Muskalla, and G. Zetzsche. Bounded Context Switching for Valence Systems.
ArXiv e-prints, 2018. arXiv:1803.09703.

48 M. Musuvathi and S. Qadeer. Iterative context bounding for systematic testing of multi-
threaded programs. In PLDI, pages 446–455. ACM, 2007.

49 T. L. Nguyen, P. Schrammel, B. Fischer, S. La Torre, and G. Parlato. Parallel bug-finding
in concurrent programs via reduced interleaving instances. In ASE, pages 753–764. IEEE,
2017.

50 S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In
TACAS, volume 3440 of LNCS, pages 93–107. Springer, 2005.

51 S. Qadeer and D: Wu. KISS: Keep it simple and sequential. In PLDI, pages 14–24. ACM,
2004.

52 E. Tomasco, O. Inverso, B. Fischer, S. La Torre, and G. Parlato. Verifying concurrent pro-
grams by memory unwinding. In TACAS, volume 9035 of LNCS, pages 551–565. Springer,
2015.

53 K. N. Verma, H. Seidl, and T. Schwentick. On the complexity of equational Horn clauses.
In CADE, volume 3632 of LNCS, pages 337–352. Springer, 2005.

54 E. S. Wolk. A note on "the comparability graph of a tree". Proceedings of the American
Mathematical Society, 16(1):17–20, 1965.

55 G. Zetzsche. Silent transitions in automata with storage. In ICALP, volume 7966 of LNCS,
pages 434–445. Springer, 2013.

56 G. Zetzsche. Monoids as storage mechanisms. Bulletin of the EATCS, 120:237–249, 2016.
57 G. Zetzsche. Monoids as Storage Mechanisms. PhD thesis, Technische Universität Kaiser-

slautern, 2016.
58 G. Zetzsche. The emptiness problem for valence automata over graph monoids, 2018. To

appear in Information and Computation.

http://arxiv.org/abs/1803.09703

Alternating Nonzero Automata
Paulin Fournier
LS2N, Université de Nantes, France

Hugo Gimbert
CNRS, LaBRI, Université de Bordeaux, France

Abstract
We introduce a new class of automata on infinite trees called alternating nonzero automata, which
extends the class of non-deterministic nonzero automata. The emptiness problem for this class
is still open, however we identify a subclass, namely limited choice, for which we reduce the
emptiness problem for alternating nonzero automata to the same problem for non-deterministic
ones, which implies decidability. We obtain, as corollaries, algorithms for the satisfiability of a
probabilistic temporal logic extending both CTL* and the qualitative fragment of pCTL*.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic

Keywords and phrases zero-automata, probabilities, temporal logics

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.13

Funding Both authors received support for this work from the French ANR projet “Stoch-MC”.

Acknowledgements The authors wish to thank Mikołaj Bojańczyk, Henryk Michalewski and
Matteo Mio for interesting discussions on tmso+zero as well as zero- and nonzero-automata;
and the referees for their helpful comments.

1 Introduction

The theory of automata on infinite trees is rooted in Rabin’s seminal theorem which estab-
lishes an effective correspondence between the monadic second order logic (MSO) theory
of the infinite binary tree and the non-deterministic automata on this tree [18]. In this
correspondence, the satisfiability of the logic is dual to the emptiness of the algorithm and
both these algorithmic problems are mutually reducible to one another.

This elegant setting has been partially extended to probabilistic logics [13, 6, 14, 15, 2] and
automata with probabilistic winning conditions [18, 17, 1, 7, 2]. In this paper we make another
step in this direction: we show a correspondence between the logic CTL∗[∃,∀,P>0,P=1] and
nonzero alternating automata with limited choice. Moreover we show that the emptiness
problem of the automata is decidable and obtain as a corollary the decidability of the
satisfiability of the logic.

Automata. Alternating nonzero automata are an alternating version of non-deterministic
nonzero automata introduced in [3], which themselves are equivalent to non-deterministic
zero automata introduced in [2].

An alternating nonzero automaton takes as input a binary tree. Some states of the
automaton are controlled by Eve, while other states are controlled by Adam, and the player
controlling the current state chooses the next transition. Some transitions are local transitions,
in which case the automaton stays on the same node of the input tree while other are split

© Paulin Fournier and Hugo Gimbert;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 13; pp. 13:1–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 Alternating Nonzero Automata

transitions in which case the automaton proceeds to the left son or to the right son of the
current node with equal probability 1

2 .
This interaction between Eve and Adam is seen as a game where Eve and Adam play

according to some strategies. Once the strategies are fixed, one obtains a Markov chain whose
trajectories are all possible plays consistent with the strategies. The winner is determined
with respect to winning conditions introduced in [2, 3], using a total order on the set of
states (used to compute the limsup of a play which is the largest state seen infinitely often
during the play) and three subsets of states, respectively called the sure, almost-sure and
positive states. Eve wins if and only if the three acceptance conditions hold:
sure winning: every play has limsup in sure states; and
almost-sure winning: almost-every play has limsup in almost-sure states; and
positive winning: whenever the play enters a positive state there is positive probability that

the play never exits positive states.
The input tree is accepted by the alternating automaton iff Eve has a winning strategy.

Alternating nonzero automata generalize both classical alternating automata with parity
conditions [8, 16] (when all states are almost-sure and positive) as well as non-deterministic
nonzero automata [3] (in case Eve controls all states).

We do not know whether the emptiness problem for these automata is decidable or not,
however we show that the answer is positive for the subclass of alternating nonzero automata
with limited choice for Adam. In these automata, some choices of Adam are canonical, at
most one in every state, and Adam may perform at most a bounded number of non-canonical
choices during a single play.

First, we show that the emptiness problem for alternating nonzero automata with limited
choice for Adam is in nexptime∩ co-nexptime (Theorem 22). The proof is an exptime
reduction to the emptiness problem for non-deterministic automata. This proof relies on the
positional determinacy of the acceptance games for Eve (Lemma 10) and a characterization
of positional winning strategies for Eve (Lemmas 12, 13 and 17).

Second, we show that in the particular case where the sure winning condition is a Büchi
condition, emptiness of non-deterministic nonzero automata is in ptime (Theorem 3). It
follows that, in case of a trivial sure winning condition, emptiness of alternating nonzero
automata with limited choice for Adam is in exptime (Theorem 22).

Logic. The temporal logic CTL∗ introduced by Emerson and Halpern [9] and its fragments
CTL and LTL are prominent tools to specify properties of discrete event systems.

A variant of CTL∗ is the logic pCTL∗ [11] in which the universal and existential path
quantifiers are replaced by probabilistic path quantifiers which set upper or lower bounds on
the probability of a path property in a Markov chain. For example the formula P≥ 1

2
(FGa)

specify that with probability at least 1
2 eventually all the visited states are labelled with a.

To our knowledge, the satisfiability problem for this logic is an open problem.
However, for the qualitative fragment of pCTL∗, where only two probabilistic quantifiers

P>0 and P=1 are available, the satisfiability is decidable [6]. In a variant of pCTL∗ called
pECTL the path subformula are replaced by deterministic Büchi automaton, and the
satisfiability of the qualitative fragment is 2-exptime complete [6], the same complexity as
for CTL∗ [19].

Remark that neither pCTL∗ nor pECTL includes the path operators ∀ and ∃, thus these
two logics are incomparable in expressivity with CTL∗. For example, on the alphabet {a, b},
the CTL∗ formula φ1 = ∀FG¬b, and the pCTL∗ formula φ2 = P=1(FG¬b) specify, that

P. Fournier and H. Gimbert 13:3

every branch, respectively almost-every branch, of the model has finitely many b. Neither φ1
can be expressed in pCTL∗ nor φ2 can be expressed in CTL∗.

In this paper, we consider the logic CTL∗[∃,∀,P>0,P=1] which is an extension of both
CTL∗ and qualitative pCTL∗and establish several properties of this logic.

The satisfiability by an arbitrary Σ-labelled Markov chain reduces to the satisfiability by
(Σ ∪ {◦})-labelled a binary tree with ◦ a fresh letter (Theorem 24).

The satisfiability of CTL∗[∃,∀,P>0,P=1] reduces to the emptiness of alternating nonzero
automata with finite choice for Adam thus it is decidable in 3-nexptime∩co-3-nexptime.
In the variant ECTL[∃,∀,P>0,P=1], where path formula are deterministic Büchi automata,
this reduction gives a 2-nexptime∩ co-2-nexptime complexity and for the fragment
CTL[∃,∀,P>0,P=1] the complexity is nexptime∩ co-nexptime (Theorem 23).

For the fragments CTL∗[P>0,P=1], ECTL[P>0,P=1] and CTL[P>0,P=1] (i.e. qualitative
pCTL∗, pECTL and pCTL respectively), the F∀ acceptance condition of the automaton is a
Büchi condition, and we retrieve the optimal complexity bounds of [6, 5], i.e. 3-exptime,
2-exptime and exptime, respectively.

A motivation for the study of alternating nonzero automata is the recent research on the
logic tmso+zero. The logic tmso+zero is an extension of Monadic second-order logic on
infinite binary trees with a new probabilistic operator [14, 15, 2]. The satisfiability of this
logic is reducible to the emptiness problem for nonzero non-deterministic automata [2] which
is decidable [3]. Since CTL∗[∃,∀,P>0,P=1] is a fragment of tmso+zero, this result implies
that the satisfiability of CTL∗[∃,∀,P>0,P=1] is decidable with non-elementary complexity.
The reduction to the emptiness of alternating nonzero automata given in the present paper
provides a better complexity bound.

2 Alternating nonzero automata

An alternating nonzero automaton on a finite alphabet Σ is a finite-state machine processing
binary trees, equipped with a game semantics: every tree is either accepted or rejected by
the machine depending on who wins the acceptance game on the tree.

Trees. A Σ-labelled binary tree (or Σ-tree for short) is a function t : {0, 1}∗ → Σ. An
element n ∈ {0, 1}∗ is called a node of the tree and has exactly two sons n0 and n1. We
use the usual notions of ancestors and descendants. A node n′ is (strictly) below n if n is a
(strict) prefix of n′. A path in the tree is a finite or infinite sequence of nodes n0, n1, . . . such
that for every k the node nk+1 is a son of the node nk.

A branch b is an element of {0, 1}ω. If a node n is a prefix of b we say that n belongs to b
or that b visits n. The set of branches is equipped with the uniform probability measure,
denoted µ, corresponding to an infinite random walk taking at each step either direction 0 or
1 with equal probability 1

2 .
A set of nodes T ⊆ {0, 1}∗ is a subtree if it contains a node r, called the root of T , such

that every node n ∈ T is a descendant of r, T contains all nodes on the path from r to n. A
subtree is full if T contains all descendants of r.

Automata. An alternating nonzero automaton on alphabet Σ is presented as a tuple
A = (Q, q0, QE , QA,→, F∀, F1, F>0) where:

Q is a finite set of states, equipped with a total order ≤, containing the initial state q0.
(QE , QA) is a partition of Q into Eve and Adam states.

CONCUR 2018

13:4 Alternating Nonzero Automata

→ is the set of transitions, there are two types of transitions: local transitions which are
tuples (q, a, q′) with q, q′ ∈ Q and a ∈ Σ, denoted q →a q

′; and split transitions which
are tuples (q, a, q0, q1) ∈ Q× Σ×Q2, denoted q →a (q0, q1).
F∀, F1 and F>0 are subsets of Q defining the acceptance condition.

The input of such an automaton is an infinite binary tree t : {0, 1}∗ → Σ. The source
(resp. the target) of a local transition q →a q

′ is q (resp q′). The source (resp. the targets) of
a split transition q →a (q0, q1) is q (resp q0 and q1). A state is said to be controlled by Eve
or Adam whether it belongs to QE or QA. The controller of a transition is the controller of
its source state. We always assume that
(HC) the automaton is complete: for every state q and letter a there is at least one

transition with source q on a.
The (HC) condition makes it easier to define the game semantics of the automaton.

Game semantics. The acceptance of an input binary tree by the automaton is defined by
mean of a stochastic game between Eve and Adam called the acceptance game.

The game of acceptance of a binary tree t : {0, 1}∗ → Σ by A is a two-player stochastic
game with perfect information played by two strategic players Eve and Adam. The vertices
of the game are all pairs (n, q) where n ∈ {0, 1}∗ is a node of the infinite binary tree and q is
a state of the automaton. The game starts in the initial vertex (ε, q0).

Each vertex (n, q) is controlled by either Eve or Adam depending on whether q ∈ QE or
q ∈ QA. The controller of the current state chooses any transition with source q and letter
t(n). Intuitively, depending on whether the transition is a local or a split transition, the
automaton stays on the current node n or move with equal probability 1

2 to either node n0
or n1. If the transition is a local transition q →t(n) q

′, the new vertex of the game is (n, q′).
If the transition is a split transition q →t(n) (r0, r1) then the new vertex is chosen randomly
with equal probability 1

2 between vertices (n0, r0) or (n1, r1).
A play is a finite or infinite sequence of vertices π = (n0, q0)(n1, q1) We denote

first(π) = (n0, q0) and last(π) = (nk, qn) (for finite plays).
A strategy for Eve associates with every finite play whose last vertex is controlled by

Eve a transition with source qn and letter t(nk) (such a transition always exists since the
automaton is complete). Strategies for Adam are defined in a symmetric way. Strategies of
Eve are usually denoted σ while strategies for Adam are denoted τ .

Measuring probabilities. Once both players Eve and Adam have chosen some strategies σ
and τ , this defines naturally a non-homogenous Markov chain whose states are the vertices
of the game. According to Tulcea theorem, if we equip the set of plays with the σ-field
generated by cylinders, then there is a unique probability measure Pσ,τ such that after a
play π = (n0, q0) . . . (nk, qk), if δ(π) denotes the transition chosen by Eve or Adam after π
(depending on whether qk ∈ QE or qk ∈ QA), the probability to go to vertex (nk+1, qk+1) is:

1 if δ(π) is the local transition qk →t(nk) qk+1 ,

1
2 if δ(π) is the split transition qk →t(nk) (r0, r1) and

{
nk+1 = nk0 and qk+1 = r0 ; or
nk+1 = nk1 and qk+1 = r1 .

0 otherwise .

This way we obtain a probability measure Pσ,τ on the set of infinite plays.

P. Fournier and H. Gimbert 13:5

Consistency and reachability. If a finite play π is the prefix of another finite or infinite play
π′ we say that π′ is a continuation of π. A finite π play is consistent with a strategy σ or, more
simply, is a σ-play if there exists a strategy τ such that π may occur in the non-homogenous
Markov chain induced by σ and τ . In this case, the number N of split transitions which
occurred in π is exactly the depth of the node of last(π) and Pσ,τ ({ continuations of π }) =
2−N . A vertex w is σ-reachable if there exists a finite σ-play from the initial vertex to w.
An infinite play is consistent with σ if all its prefixes are.

Bounded vs. unbounded plays. There are two kinds of infinite plays: bounded plays are
plays whose sequence of nodes is ultimately constant, or equivalently which ultimately use
only local transitions while unbounded plays use infinitely many split transitions.

Bounded plays consistent with σ and τ are the atoms of Pσ,τ : a play π is bounded and
consistent with σ and τ iff Pσ,τ ({π}) > 0.

In this paper we will focus on subclasses of automata whose structural restrictions forbids
the existence of bounded plays (see the (NLL) hypothesis below).

So in practice, every play π = (n0, q0)(n1, q1) . . . we consider will visit a sequence of
nodes n0, n1, n2, . . . which enumerates all finite prefixes of an infinite branch b ∈ {0, 1}ω of
the binary tree, in a weakly increasing order: for every index i either ni+1 = ni (the player
controlling (ni, qi) played a local transition) or ni+1 = nid for some d ∈ {0, 1} (the player
controlling (ni, qi) played a split transition and the play followed direction d).

Winning strategies and language. Whether Eve wins the game is defined as follows. The
limsup of an infinite play (n0, q0)(n1, q1) . . . is lim supi qi i.e. the largest automaton state
visited infinitely often. An infinite play π′ is a positive continuation of π if all states of π′
visited after π belongs to F>0.

Eve wins with σ against τ if the three following conditions are satisfied.
Sure winning. Every play consistent with σ and τ has limsup in F∀.
Almost-sure winning. Almost-every play consistent with σ and τ has limsup in F1.
Positive winning. For every finite play π consistent with σ and τ whose last state belongs

to F>0, the set of positive continuations of π has nonzero probability.

A Büchi condition is a set of states R ⊆ Q which is upper-closed with respect to ≤ .
Then a play has limsup in R iff it visits R infinitely often.

We say that Eve wins the acceptance game if she has a winning strategy i.e. a strategy
which wins the acceptance game against any strategy of Adam.

I Definition 1 (Acception and language). A binary tree is accepted by the automaton if Eve
has a winning strategy in the acceptance game. The language of the automaton is the set of
its accepted trees.

We are interested in the following decision problem:
Emptiness problem: Given an automaton, decide whether its language is empty or not.

Alternation and the use of game semantics makes the following closure properties trivial.

I Lemma 2 (Closure properties). The class of languages recognized by alternating nonzero
automata is closed under union and intersection.

Normalization. We assume all automata to be normalized in the sense where they satisfy:
(N1) every split transition whose source is in F>0 has at least one successor in F>0; and
(N2) every local transition whose source is in F>0 has its target in F>0 as well.

CONCUR 2018

13:6 Alternating Nonzero Automata

We can normalize an arbitrary automaton by removing all transitions violating (N1)
and (N2). This will not change the language because such transitions are never used by
positively winning strategies of Eve. This normalization could lead to a violation of the
completeness hypothesis, (HC). In this case we can also delete the corresponding states
without modifying the language of the automaton.

If one would drop (HC) then the game graph may have dead-ends and the rules of the
game would have to be extended to handle this case, typically the player controlling the
state in the dead-end loses the game. This extension does not bring any extra expressiveness
to our model of automaton, we can always make an automaton complete by adding local
transitions leading to losing absorbing states.

Moreover, we assume:
(N3) F1 ⊆ F∀ .
This is w.l.o.g. since replacing F1 with F1∩F∀ does not modify the language of the automaton.

Non-deterministic nonzero automata Non-deterministic zero automata were introduced
in [2], followed by a variant of equivalent expressiveness, non-deterministic nonzero au-
tomata [4, Lemma 5]. In those automata, Adam is a dummy player, i.e. QA = ∅ and
moreover all transitions are split-transitions.

I Theorem 3. The emptiness problem for non-deterministic nonzero automata is in np∩conp.
If F∀ is a Büchi condition then emptiness can be decided in ptime.

The first statement is established in [3, Theorem 3]. The second statement is proved in
the appendix. The proof idea is as follows. Assume the alphabet to be a singleton, which
is w.l.o.g. for non-deterministic automata. The existence of a winning strategy for Eve
can be witnessed by a subset W ⊆ Q which contains the initial state and two positional
winning strategies σ1, σ2 : W →W ×W . Strategy σ1 should be almost-surely and positively
winning while strategy σ2 should be surely winning. These two strategies can be combined
into a (non-positional) strategy for Eve which satisfies the three objectives, thus witnesses
non-emptiness of the automaton.

3 An example: the language of PUCE trees

A {a, b}-tree is positively ultimately constant everywhere (PUCE) if for every node n,
i) the set of branches visiting n and with finitely many a-nodes has > 0 probability; and
ii) the set of branches visiting n and with finitely many b-nodes has > 0 probability.

No regular tree is PUCE. There are two cases. If the regular tree has a node n which is
the root of a full subtree labelled with a single letter (either a or b) then clearly the tree is
not PUCE. Otherwise, by a standard pumping argument, every node labelled a (resp. b) has
a descendant labelled b (resp. a) at some depth ≤ |S|, where S is the set of states of the
regular tree. But in this second case from every node n there is probability at least 1

2|S| to
reach a descendant with a different label, thus almost-every branch of the regular tree has
infinitely many a and b, and the tree is not PUCE either.

There exists a PUCE tree. However it is possible to build a non-regular tree t whose every
node satisfies both i) and ii). For that, we combine together two partial non-regular trees.
Let H ⊆ {0, 1}∗ be a subset of nodes such that a) the set of branches which visit no node in

P. Fournier and H. Gimbert 13:7

H has probability 1
2 , b) every node in {0, 1}∗ is either a descendant or an ancestor of a node

in H, but not both (H is a cut).
To obtain t, we combine two partial trees ta and tb whose domain is {0, 1}∗ \ (H{0, 1}+)

and ta is fully labeled with a while tb is fully labelled with b. Since H is a cut, the nodes in
H are exactly the leaves of ta and tb. To obtain t, we plug a copy of tb on every leaf of ta
and a copy of ta on every leaf of tb. Then from every node, according to b) there is non-zero
probability to enter either ta or tb and according to a) there is non-zero probability to stay
in there forever.

An automaton recognizing PUCE trees. We can design one automaton for each of the
two conditions and combine them together with an extra state controlled by Adam (cf proof
of Lemma 2). We provide an alternating nonzero automaton checking condition ii), the
automaton for condition i) is symmetric. The state space is: Q = {s < w < g <]}.

Intuitively, Adam uses states s to search for a node n from which condition ii) does not
hold. Once on node n, Adam switches to state w and challenges Eve to find a path to an
a-node n′ which is the root of an a-labelled subtree Tn of > 0 probability. For that Eve
navigates the tree in state w to node n′, switches to state g on node n′, stays in g as long as
the play stays in Tn and switches definitively to] whenever leaving Tn.

Formally, the only state controlled by Adam is s, i.e. QA = {s}, from which Adam can
choose, independently of the current letter, between two split transitions s → (s,]) and
s → (], s) and a local transition s → w. The state] is absorbing. From state w, Eve can
guess the path to n′ using the split transitions: w → (], w) w → (w,]) .

Once n′ is reached Eve can switch to state g with a local transition w → g and, whenever
the current node is an a-node, she can choose among three split transitions: g →a (g, g) g →a

(g,]) g →a (], g) to identify Tn.
The acceptance conditions are: F∀ = F1 = Q \ {w} and F>0 = {g}, so that from w Eve

is forced to eventually switch to g (otherwise lim sup = w 6∈ F∀) and the a-subtree labelled
by g must have positive probability for Eve to win. Adam may never exit the pathfinding
state s, in which case Eve wins.

4 Deciding emptiness of automata with limited choice for Adam

In this section, we introduce the class of automata with limited choice for Adam, and show
that emptiness of these automata is decidable.

For that we rely on a characterization of positional strategies of Eve which satisfy the
surely and almost-surely winning conditions (Lemma 12, Lemma 13) and the positively
winning condition (Lemma 17). Then we represent the positional strategies of Eve as
labelled trees, called strategic trees (Definition 18). Finally, we show that the language of
strategic trees whose corresponding positional strategy is winning can be recognized by a
non-deterministic nonzero automaton (Theorem 19).

4.1 Automata with limited choice for Adam
In the rest of the paper, we focus on the class of automata with limited choice for Adam. Our
motivation is that these automata capture the logic we are interested in and their acceptance
games have good properties. In particular the existence of positional winning strategies for
Eve is one of the key properties used to decide emptiness.

To define the class of automata with limited choice for Adam, we rely on the transition
graph of the automaton.

CONCUR 2018

13:8 Alternating Nonzero Automata

I Definition 4 (Equivalent and transient states). The transitions of the automaton define
a directed graph called the transition graph and denoted G→. The vertices of G→ are Q
and the edges are labelled with Σ, those are all triplets (q, a, r) such that q →a r is a local
transition or such that q →a (r, q′) or q →a (q′, r) is a split transition for some state q′.

Two states q, r are equivalent, denoted q ≡ r, if they are in the same connected component
of G→. A state is transient if it does not belong to any connected component of G→, or
equivalently if there is no cycle on this state in G→.

I Definition 5. An automaton has limited choice for Adam if for every state q controlled
by Adam, all transitions with source q are local transitions; and for every letter a, at most
one of the (local) transitions q →a q

′ satisfies q ≡ q′. Such a transition is called a canonical
transition.

In a limited choice for Adam automaton, the only freedom of choice of Adam, apart
from playing canonical transitions, is deciding to go to a lower connected component of the
transition graph. This non-canonical decision can be done only finitely many times, hence
the name limited choice.

In the classical (non-probabilistic) theory of alternating automata, similar notions of lim-
ited alternation have already been considered, for example hesitant alternating automata [12].

I Definition 6 (Canonical plays and transient vertices). A canonical play is a play in which
Adam only plays canonical transitions. A vertex (n, q) of an acceptance game is transient if
it has no immediate successor (n′, q′) (by a local or a split transition) such that q ≡ q′.

In the acceptance game of an automaton with limited choice for Adam, every infinite
play visit finitely many transient vertices and has a canonical suffix.

The automaton recognizing PUCE trees described in Section 3 has not limited choice
for Adam, since Adam can play the non-local transitions s→ (s,]) and s→ (], s). However,
it is an easy exercise to turn this automaton into an automaton with limited choice for
Adam recognizing the same language: add a new state e controlled by Eve from which Eve
has a single split transition e→ (s, s). This new state e belongs to both F∀ and F1. From
s Adam can choose between two local transitions: the canonical transition s → e (keep
navigating in the tree) or the transient transition s→ w (start verification).

The no local loop assumption. We assume that every automata with limited choice for
Adam also satisfies:
(NLL) the automaton has no local loop: there is no letter a and sequence of local transitions

q0 →a q1 →a · · · →a qi such that q0 = qi.
Under the hypothesis (NLL), for every infinite play π there is a unique branch of the binary
tree b ∈ {0, 1}ω whose every prefix is visited by π. We say that π projects to b. It is direct
that, under the hypothesis (NLL), the measures on plays and on branches are linked.

I Lemma 7. Under the hypothesis (NLL), given a tree t, two strategies σ and τ in the
acceptance game and X is a measurable set of plays we have that Pσ,τ (X) = µ(X̃) where µ
is the usual uniform measure on the set of branches of t and X̃ is the set of infinite branches
that X projects to.

Moreover, assuming (NLL) does not reduce expressiveness.

I Lemma 8. Given an automaton A with limited choice for Adam and set of states Q
one can effectively construct another automaton A′ with limited choice for Adam satisfying
(NLL) and recognizing the same language.

P. Fournier and H. Gimbert 13:9

The interest of the (NLL) assumption is to make the acceptance game acyclic, which
in turn guarantees positional determinacy for Eve, as shown in the next section. The
transformation performed in the proof of Lemma 8 creates an exponential blowup of the
state space of the automaton, which is bad for complexity. We could do without this blowup
by dropping the (NLL) assumption, in which case Eve might need one extra bit of memory
in order to implement local loops with priority in F∀ \ F1.

However, we prefer sticking to the (NLL) assumption, which makes the alternating
automata and their accepting games simpler and is anyway not restrictive when it comes
to translating temporal logics into alternating automata: the natural translation produces
automata with no local loop.

4.2 Positional determinacy of the acceptance game
A crucial property of automata with limited choice for Adam is that their acceptance games
are positionally determined for Eve.

I Definition 9 (Positional strategies). A strategy σ of Eve in an acceptance game is positional
if for every finite plays π, π′ whose last vertices are controlled by Eve and coincide, i.e.
last(π) = last(π′) ∈ {0, 1}∗ ×QE , then σ(π) = σ(π′).

I Lemma 10 (Positional determinacy for Eve). Every acceptance game of an automaton
with limited choice for Adam is positionally determined for Eve: if Eve wins then she has a
positional winning strategy.

Sketch of proof. Since the (NLL) hypothesis is assumed, the underlying acceptance game
is acyclic. The construction of a positional winning strategy σ′ from a (non-positional)
winning strategy σ relies on the selection of a canonical way of reaching a σ-reachable vertex
w with a σ-play π(w) and setting σ′(w) = σ(π(w)). J

4.3 On winning positional strategies of Eve
In the next section we show how to use use automata-based techniques to decide the existence
of a (positional) winning strategy for Eve. These techniques rely on characterizing whether a
positional strategy of Eve is surely, almost-surely and positively winning.

4.3.1 Surely and almost-surely winning conditions
We characterize (almost-)surely winning strategies.

I Definition 11 (q-branches). Let q ∈ Q and σ a strategy. An infinite branch of the binary
tree is a q-branch in σ if at least one σ-play which projects to this branch has limsup q.

I Lemma 12. Assume the automaton has limited choice for Adam. Let σ be a positional
strategy for Eve. Then σ is surely winning iff for every q ∈ (Q \ F∀) there is no q-branch in
σ. Moreover σ is almost-surely winning iff for every q ∈ (Q \ F1) the set of q-branches in σ
has measure 0.

Whether a branch is a q-branch can be checked by computing a system of σ-indexes.
Intuitively, all σ-reachable vertices receives a finite index, such that along a σ-play the index
does not change except when Adam performs a non-canonical move or when two plays merge
on the same vertex, in which case the smallest index is kept. After a non-canonical move of
Adam, a new play may start in which case it receives a fresh index not used yet in the current
neither in the parent node. For this less than 2|Q| indices are required. The important
properties of σ-indexes are:

CONCUR 2018

13:10 Alternating Nonzero Automata

I Lemma 13 (Characterization of q-branches). Every positional strategy σ of Eve can be
associated with a function σ : {0, 1}∗×Q→ {0, 1, . . . , 2|Q|,∞}Q with the following properties.

First, σ can be computed on-the-fly along a branch. For every node n denote σn the
restriction of σ on {n} × Q. Then σ(ε) only depends on σε. And for every node n and
d ∈ {0, 1}, σ(nd) only depends on σ(n) and σnd.

Second, a vertex (n, q) is reachable from the initial vertex by a σ-play iff σ(n)(q) is finite.
Third, let b ∈ {0, 1}ω be an infinite branch of the binary tree, visiting successively the

nodes n0, n1, n2, Denote R∞(b) the set of pairs (k, q) ∈ {0, . . . , 2|Q|} × Q such that:
k ∈ σ(ni)(Q) for every i ∈ N except finitely many; and k = σ(ni)(q) for infinitely many
i ∈ N.

Finally, for every state q, the branch b is a q-branch if and only if there exists k ∈
{0, 1, . . . , 2|Q|} such that q = max{r ∈ Q | (k, r) ∈ R∞(b)}.

4.3.2 Checking the positively winning condition
In order to check with a non-deterministic automaton whether a positional strategy is
positively winning, we rely on the notion of positive witnesses. The point of positive witnesses
is to turn the verification of up to |Q| positively-winning conditions - depending on the
decisions of Adam, there may be up to |Q| different σ-reachable vertices on a given node -
into a single one. This single condition can then be checked by a non-deterministic nonzero
automaton equipped with a single positively-winning condition.

Everywhere thick subtrees. We need the notion of everywhere thick subtrees. We measure
sets of infinite branches with the uniform probability measure µ on {0, 1}ω.

I Definition 14 (Everywhere thick sets of nodes). For every set T ⊆ {0, 1}∗ of nodes denote
~T the set of branches in {0, 1}ω whose every prefix belongs to T . Then T is everywhere
thick if starting from every node n ∈ T there is nonzero probability to stay in T , i.e. if
µ
(
~T ∩ n{0, 1}ω

)
> 0.

Everywhere thick subtrees are almost everywhere.

I Lemma 15. Let P ⊆ {0, 1}ω be a measurable set of infinite branches. Assume µ(P) > 0.
Then there exists an everywhere thick subtree T , with root ε such that ~T ⊆ P .

The proof relies on the inner-regularity of µ, so that P can be assumed to be a closed set,
i.e. a subtree from which we can prune leaves whose subtree has probability 0.

Positive witnesses. Positive witnesses can be used to check whether a strategy is positively
winning:

I Definition 16 (Positive plays and witnesses). Let t be a Σ-labelled binary tree and σ a
positional strategy of Eve in the acceptance game of t. Let Z be the set of σ-reachable
vertices whose state is in F>0.

A play is positive if all vertices it visits belong to {0, 1}∗ × F>0. A positive witness for σ
is a pair (W,E) where: W ⊆ Z are the active vertices, and E ⊆ {0, 1}∗ × {0, 1} is the set of
positive edges, and they have the following properties.
a) From every vertex z ∈ Z there is a positive and canonical finite σ-play starting in z which

reaches a vertex in W or a transient vertex.

P. Fournier and H. Gimbert 13:11

b) Let z = (n, q) ∈W . Then (n, 0) ∈ E or (n, 1) ∈ E, or both. If z → z′ is a local transition
then z′ ∈W as well whenever (q ∈ QE and z → z′ is consistent with σ) or (q ∈ QA and
z → z′ is canonical). If z is controlled by Eve and σ(z) is a split transition q → (q0, q1)
then ((n, 0) ∈ E =⇒ (n0, q0) ∈W) and ((n, 1) ∈ E =⇒ (n1, q1) ∈W).

c) The set of nodes {nd ∈ {0, 1}∗ | (n, d) ∈ E} is everywhere thick.

I Lemma 17 (Characterization of positively winning strategies). Assume the automaton has
limited choice for Adam. A positional strategy σ for Eve is positively winning iff there exists
a positive witness for σ.

4.4 Deciding emptiness
A Σ-labelled binary tree t and a positional strategy σ in the corresponding acceptance game
generate a tree Tt,σ : {0, 1}∗ → (Q ∪Q×Q)QE .

For every vertex (n, q) controlled by Eve, if σ(n, q) is a local transition q →t(n) q
′ then

Tt,σ(n)(q) = q′ and if σ(n, q) is a split transition q →t(n) (q0, q1) then Tt,σ(n)(q) = (q0, q1).

I Definition 18 (Strategic tree). A tree T : {0, 1}∗ → (Q ∪ Q × Q)QE is strategic if there
exists a tree t : {0, 1}∗ → Σ and a positional strategy σ for Eve such that T = Tt,σ .

We are interested in the strategic trees associated to winning strategies. The rest of the
section is dedicated to the proof of the following theorem.

I Theorem 19. Fix an alternating nonzero automata with limited choice for Adam. The
language of strategic trees Tt,σ such that σ wins the acceptance game of t can be recognized
by a non-deterministic nonzero automaton of size exponential in |Q|. If F∀ = Q in the
alternating automaton, then the sure condition of the non-deterministic automaton is Büchi.

Proof. The characterizations of surely, almost-surely and positively winning strategies given
in lemmas 12, 13 and 17 can be merged as follows.

I Corollary 20. Let σ be a positional strategy σ for Eve. For every branch b denote
M(b) = {max{q | (k, q) ∈ R∞(b)} | k ∈ 0 . . . 2|Q|}.

Then σ is winning if and only if for every branch b, M(b) ⊆ F∀; for almost-every branch
b, M(b) ⊆ F1; and there exists a positive witness for σ.

First of all, the non-deterministic automaton B checks whether the input tree is a strategic
tree, for that it guesses on the fly the input tree t : {0, 1}∗ → Σ by guessing on node n the
value of t(n) and checking that for every q ∈ QE , q →t(n) T (n)(q) is a transition of the
automaton.

On top of that B checks the three conditions of Corollary 20. For the first two conditions,
it computes (asymptotically) along every branch b the value of R∞(b) and thus of M(b). For
that the automaton relies on a Last Appearance Record memory (LAR) [10] whose essential
properties are:

I Lemma 21 (LAR memory [10]). Let C be a finite set of symbols. There exists a deterministic
automaton on C called the LAR memory on C with the following properties. First, the set
of states, denoted Q, has size ≤ |C||C|+1 and is totally ordered. Second, for every u ∈ Cω
denote L∞(u) the set of letters seen infinitely often in u and LAR(u) the largest state seen
infinitely often during the computation on u. Then L∞(u) can be inferred from LAR(u),
precisely there is a mapping φ : Q→ 2C such that: ∀u ∈ Cω, L∞(u) = φ(LAR(u)) .

CONCUR 2018

13:12 Alternating Nonzero Automata

In order to compute R∞(b) along a branch b, the non-deterministic automaton B computes
deterministically on the fly the σ-index of the current node n, as defined in Lemma 13, and
implements a LAR memory on the alphabet C = {0, . . . , 2|Q|} × (Q ∪ {⊥}).

When visiting node n, B injects into the LAR memory all pairs (σ(q), q) such that q ∈ Q
and σ(q) 6=∞ plus all pairs (k,⊥) such that k 6∈ σ(n)(Q). For every branch b, the set R∞(b)
is equal to all pairs (k, q) seen infinitely often such that (k,⊥) is seen only finitely often.
Thus, the LAR memory can be used to check the first two conditions of Corollary 20, more
details are given at the end of the proof.

For now, we describe how the non-deterministic automaton B checks whether there exists
a positive witness (W,E) (Definition 16). Denote by Z the set of σ-reachable vertices whose
state is in F>0. On node n the automaton guesses (resp. computes) the vertices of W (resp.
Z) of the current node and guesses the elements of E by storing three sets of states: Wn =
{q ∈ Q | (n, q) ∈W}; Zn = {q ∈ F>0 | σ(n, q) <∞}; and En = {b ∈ {0, 1} | (n, b) ∈ E}.

Then B checks conditions a), b) and c) in the definition of a positive witness as follows.
B checks condition a) in the definition of a positive witness by guessing on the fly for

every vertex in Z a canonical positive σ-play to a vertex which is either transient or in W ,
in which case we say the canonical positive play terminates.

For that B maintains an ordered list Pn of states. On the root node, Pε is Zε \Wε. When
the automaton performs a transition, it guesses for each state q in Pn and direction bq a
successor sq, such that (nbq, sq) can be reached from (q, n) by a positive canonical σ-play. In
direction b, every state q for which bq 6= b is removed from the list, while every state q for
which bq = b is replaced by the corresponding sq. Then all states in Znb are added at the
end of the list. In case of duplicates copies of the same state in the list, only the first copy is
kept. In case the head of the list is in Wnb or is transient, a Büchi condition is triggered and
the head is moved at the back of the list. Finally, all entries of the list which are in Wnb are
removed.

This way, condition a) holds iff the Büchi condition is triggered infinitely often on every
branch. We discuss below how to integrate this Büchi condition in the sure accepting
condition of the automaton.
B checks condition b) in the definition of a positive witness by entering an absorbing

error state as soon as
1) there is some local transition (n, q) →t(n) (n, q′) such that q ∈ Wn and (q ∈ QE and

z → z′ is consistent with σ) or (q ∈ QA and z → z′ is canonical); or
2) there is some q ∈Wn controlled by Eve and b ∈ En such that σ(n, q) is a split transition

q →t(n) (q0, q1) but qb 6∈Wnb.
The guessed sets Wn are bound to satisfy condition 1) and condition 2) is checked by storing
a subset of Q.
B checks condition c) in the definition of a positive witness by triggering the positive

acceptance condition whenever it moves in direction b on a node n such that b ∈ En.
The sure and almost-sure acceptance condition are defined as follows. The Büchi condition

necessary for checking condition a) in the definition of a positive witness is integrated in
the LAR memory, for that we add to the alphabet C of the LAR memory a new symbol >
which is injected in the LAR memory whenever the Büchi condition is triggered. The order
between states of B is induced by the order of the LAR memory.

This way, according to Lemma 21, the largest state seen infinitely often along a branch b
reveals whether > was seen infinitely often, and reveals the value of R∞(b) (the set of pairs
(k, q) seen infinitely often such that (k,⊥) was seen finitely often) hence of M(b) as well. The
state is surely (resp. almost-surely) accepting iff > was seen infinitely often and M(b) ⊆ F∀

P. Fournier and H. Gimbert 13:13

(resp. M(b) ⊆ F1). In case F∀ = Q in the alternating automaton then the sure condition
boils down to the Büchi condition.

According to Corollary 20, and by construction of B, the computation of B is accepting
iff the input is a strategic tree whose corresponding strategy of Eve is winning. J

I Theorem 22. Emptiness of alternating nonzero automata with limited choice for Adam is
decidable in nexptime∩co-nexptime. If F∀ = Q, emptiness can be decided in exptime.

Proof. Emptiness of an alternating automaton reduces to the emptiness of a non-deterministic
automaton of exponential size. This non-deterministic automaton guesses on-the-fly a tree
{0, 1}∗ → (Q ∪ Q × Q)QE and checks it is a winning strategic tree, using the automaton
given by Theorem 19. In case the alternating automaton is F∀-trivial, the sure condition of
the non-deterministic automaton is Büchi (Theorem 19). We conclude with Theorem 3. J

5 Satisfiability of CTL∗[∃, ∀, P>0, P=1]

Our result on alternating nonzero automata can be applied to decide the satisfiability of the
logic CTL∗[∃,∀,P>0,P=1], a generalization of CTL* which integrates both deterministic and
probabilistic state quantifiers.

Markov chains. The models of CTL∗[∃,∀,P>0,P=1] formulas are Markov chains. A Markov
chain with alphabet Σ is a tuple M = (S, p, t) where S is the (countable) set of states,
p : S → ∆(S) are the transition probabilities and t : S → Σ is the labelling function.

For every state s ∈ S, there is a unique probability measure denoted PM,s on Sω such
that PM,s(sSω) = 1 and for every sequence s0 · · · snsn+1 ∈ S∗, PM,s(s0 · · · snsn+1S

ω) =
p(sn, sn+1) ·PM,s(s0s1 · · · snSω). WhenM is clear from the context this probability measure
is simply denoted Ps. A path inM is a finite or infinite sequence of states s0s1 · · · such that
∀n ∈ N, p(sn, sn+1) > 0 .. We denote PathM(s0) the set of such paths.

A binary tree t : {0, 1}∗ → Σ is seen as a specific type of Markov chain, where from every
node n ∈ {0, 1}∗ there is equal probability 1

2 to perform transitions to n0 or n1.

Syntax. For a fixed alphabet Σ, there are two kinds of formula: state formula (typically
denoted ψ) and path formula (denoted φ), generated by the following grammar:

ψ ::=> | ⊥ | a ∈ Σ | ψ ∧ ψ | ψ ∨ ψ | ¬ψ | ∃φ | ∀φ | P>0(φ) | P=1(φ)
φ ::=ψ | ¬φ | φ ∧ φ | φ ∨ φ | Xφ | φUφ | Gφ .

Semantics. LetM = (S, t, p) a Markov chain. We define simultaneously and inductively
the satisfactionM, s |= ψ of a state formula ψ by a state s ∈ S and the satisfactionM, w |= φ

of a path formula φ by a path w ∈ PathM. WhenM is clear from the context, we simply
write s |= ψ and w |= φ.

If a state formula is produced by one of the rules > | ⊥ | p | ψ ∧ ψ | ψ ∨ ψ | ¬ψ, its
satisfaction is defined as usual. If φ is a path formula and ψ ∈ {∃φ, ∀φ,P>0(φ),P=1(φ)} then

s |= ∃φ if ∃w ∈ PathM(s), w |= φ

s |= ∀φ if ∀w ∈ PathM(s), w |= φ

s |= P∼b(φ) if PM,s(w ∈ PathM(s) | w |= φ) ∼ b .

The satisfaction of a path formula φ by an infinite path w = s0s1 · · · ∈ PathM(s0) is
defined as follows. If φ is produced by one of the rules ¬φ | φ ∧ φ | φ ∨ φ then its satisfaction

CONCUR 2018

13:14 Alternating Nonzero Automata

b
a
c

b
a
c

. . . b
a
c

. . .
1
22

1− 1
22

1
23

1− 1
23

1
2n

1− 1
2n

Figure 1 A model of (∀(G∃(>Ua))) ∧ (P>0(G¬a)).

is defined as usual. If φ is a state formula (rule φ := ψ) then w |= ψ if s0 |= ψ . Otherwise,
φ ∈ {Xφ′, Gφ′, φ1Uφ2} where φ′, φ1 and φ2 are path formulas. For every integer k, we denote
w[k] the path sksk+1 · · · ∈ PathM(sk). Then:

w |= Xφ′ if w[1] |= φ′

w |= Gφ′ if ∀i ∈ N, w[i] |= φ′

w |= φ1Uφ2 if ∃n ∈ N, (∀0 ≤ i < n,w[i] |= φ1 ∧ w[n] |= φ2).

The Markov chain given in Figure 1 satisfies the formula (∀(G∃(>Ua))) ∧ (P>0(G¬a)).

A formula for PUCE trees. The language of PUCE trees introduced in Section 3 can be
described by the following CTL∗[∃,∀,P>0,P=1] formula:

∀G(P>0(>U(G¬a)) ∧ P>0(>U(G¬b))) .

Variants and fragments. A formula of CTL∗[∃,∀,P>0,P=1] belongs to the fragment CTL
if in each of its state subformula ψ of type ∃φ | ∀φ | P>0(φ) | P=1(φ) the path formula φ has
type Xψ′ | ψ′Uψ′′ | Gψ′ where ψ′ and ψ′′ are state subformulas.

In the variant ECTL, every path formula φ is described as the composition of a determin-
istic Büchi automata on some alphabet {0, 1}k with k state subformulas. A path satisfies φ
if the Büchi automaton accepts the sequence of letters obtained by evaluating the k state
subformulas on every state along the path. This variant augments both the expressivity and
the conciseness of the logic at the cost of a less intuitive syntax. For more details see [6].

We are also interested in the fragments where the operators ∃ and ∀ are not used, i.e.
the qualitative fragments of the logics pCTL∗, pECTL and pCTL.

Satisfiability problem. A Markov chainM satisfies a formula ξ at state s, or equivalently
(M, s) is a model of ξ, ifM, s |= ξ. We are interested in the problem:
MC-SAT: given a formula, does it have a model?

This logic is an extension of monadic second-order logic on infinite binary trees with
a new probabilistic operator [14, 15, 2]. The satisfiability of this logic is reducible to the
emptiness problem for nonzero non-deterministic automata [2] which is decidable [3]. Since
CTL∗[∃,∀,P>0,P=1] is a fragment of tmso+zero, this result implies that the satisfiability
of CTL∗[∃,∀,P>0,P=1] is decidable with non-elementary complexity. The reduction to the
emptiness of alternating nonzero automata given in the present paper provides a better
complexity bound.

I Theorem 23. For CTL∗[∃,∀,P>0,P=1] the satisfiability problem is in 3-nexptime ∩
co-3-nexptime. The following table summarizes complexities of the satisfiability problem for
various fragments and variants of CTL∗[∃,∀,P>0,P=1]:

CTL∗ ECTL CTL
[∃,∀,P>0,P=1] 3-nexptime ∩ co-3-nexptime 2-nexptime ∩ co-2-nexptime nexptime ∩ co-nexptime

[P>0,P=1] 3-exptime [6] (qualitative pCTL∗) 2-exptime [6] (qualitative pECTL) exptime [5] (qualitative pCTL)

P. Fournier and H. Gimbert 13:15

According to [5, 6], the complexities for ECTL[P>0,P=1] and CTL[P>0,P=1] are optimal.
The first step in the proof of Theorem 23 is a linear-time reduction from MC-SAT to:

BIN-SAT: given a formula, does it have a model among binary trees?

I Theorem 24. Any formula ξ of CTL∗[∃,∀,P>0,P=1] on alphabet Σ can be effectively
transformed into a formula ξ′ of linear size on alphabet Σ ∪ {◦} such that ξ is MC-SAT
iff ξ′ is BIN-SAT. As a consequence, MC-SAT linearly reduces to BIN-SAT. This
transformation preserves the fragment CTL∗[P>0,P=1].

The second step is a standard translation from logic to alternating automata [12].

I Lemma 25. For every formula ξ of CTL∗[∃,∀,P>0,P=1] (resp. ECTL[∃,∀,P>0,P=1]),
there is an alternating automaton A with limited choice for Adam whose language is the set
of binary trees satisfying the formula at the root. The automaton is effectively computable,
of size O(22|ξ|) (resp. O(2|ξ|)). If ξ is a CTL formula, the size of A is O(|ξ|). In case the
formula does not use the ∃ and ∀ operators, the F∀ condition is trivial i.e. F∀ = Q.

Proof of Theorem 23. All the complexity results are obtained by reduction of MC-SAT to
the emptiness problem for an alternating nonzero automaton with limited choice for Adam,
which is decidable in nexptime∩co-nexptime (Theorem 22). The size of the automaton
varies from doubly-exponential to linear size depending on whether the formula is in CTL∗,
ECTL or CTL (Lemma 25). In case the formula does not use the deterministic operators ∃
and ∀ (i.e. for qualitative pCTL∗, pECTL and pCTL) the F∀ condition of the alternating
automaton is trivial thus its emptiness is decidable in exptime (Theorem 22). J

Conclusion

We have introduced the class of alternating nonzero automata, proved decidability of the
emptiness problem for the subclass of automata with limited choice for Adam and obtained
as a corollary algorithms for the satisfiability of a temporal logic extending both CTL* and
the qualitative fragment of pCTL*.

A natural direction for future work is to find more general classes of alternating nonzero
automata with a decidable emptiness problem, which requires some more insight on the
properties of the acceptance games, in particular the existence of positional strategies in the
acceptance game.

References
1 Christel Baier, Marcus Größer, and Nathalie Bertrand. Probabilistic ω-automata. J. ACM,

59(1):1, 2012.
2 Mikołaj Bojańczyk. Thin MSO with a probabilistic path quantifier. In 43rd International

Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy, pages 96:1–96:13, 2016.

3 Mikołaj Bojańczyk, Hugo Gimbert, and Edon Kelmendi. Emptiness of zero automata is
decidable. CoRR, abs/1702.06858, 2017. URL: http://arxiv.org/abs/1702.06858.

4 Mikołaj Bojańczyk, Hugo Gimbert, and Edon Kelmendi. Emptiness of zero automata is
decidable. In 44th International Colloquium on Automata, Languages, and Programming,
ICALP 2017, July 10-14, 2017, Warsaw, Poland, pages 106:1–106:13, 2017.

5 Tomás; Brázdil, Vojtech Forejt, Jan Kretínský, and Antonín Kucera. The satisfiability
problem for probabilistic CTL. In Proc. of LICS, pages 391–402, 2008.

CONCUR 2018

http://arxiv.org/abs/1702.06858

13:16 Alternating Nonzero Automata

6 Tomáš Brázdil, Vojtěch Forejt, and Antonín Kučera. Controller synthesis and verifica-
tion for markov decision processes with qualitative branching time objectives. Automata,
Languages and Programming, pages 148–159, 2008.

7 Arnaud Carayol, Axel Haddad, and Olivier Serre. Randomization in automata on infinite
trees. ACM Trans. Comput. Log., 15(3):24:1–24:33, 2014.

8 Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. J. ACM,
28(1):114–133, January 1981.

9 E Allen Emerson and Joseph Y Halpern. Sometimes and not never revisited: on branching
versus linear time temporal logic. Journal of the ACM (JACM), 33(1):151–178, 1986.

10 Yuri Gurevich and Leo Harrington. Trees, automata, and games. In Proceedings of
STOC’82, pages 60–65, New York, NY, USA, 1982. ACM.

11 Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability. Formal
aspects of computing, 6(5):512–535, 1994.

12 Orna Kupferman, Moshe Y Vardi, and Pierre Wolper. An automata-theoretic approach to
branching-time model checking. Journal of the ACM (JACM), 47(2):312–360, 2000.

13 Daniel Lehmann and Saharon Shelah. Reasoning with time and chance. Information and
Control, 53(3):165–1983, 1982.

14 Henryk Michalewski and Matteo Mio. Measure quantifier in monadic second order logic.
In Proc. of LFCS 2016, pages 267–282, 2016. doi:10.1007/978-3-319-27683-0_19.

15 Henryk Michalewski, Matteo Mio, and Mikołaj Bojańczyk. On the regular emptiness prob-
lem of subzero automata. In Proc. of ICE 2016, Heraklion, Greece, 8-9 June 2016., pages
1–23, 2016.

16 David E. Muller and Paul E. Schupp. Alternating automata on infinite trees. The-
oretical Computer Science, 54(2):267 – 276, 1987. doi:http://dx.doi.org/10.1016/
0304-3975(87)90133-2.

17 A. Paz. Introduction to probabilistic automata. Academic Press, 1971.
18 M. O. Rabin. Probabilistic automata. Information and Control, 6(3):230–245, 1963.
19 Moshe Y Vardi and Larry Stockmeyer. Improved upper and lower bounds for modal logics

of programs. In Proceedings of the seventeenth annual ACM symposium on Theory of
computing, pages 240–251. ACM, 1985.

http://dx.doi.org/10.1007/978-3-319-27683-0_19
http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(87)90133-2
http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(87)90133-2

Affine Extensions of Integer Vector Addition
Systems with States
Michael Blondin1

Technische Universität München, Germany
blondin@in.tum.de

https://orcid.org/0000-0003-2914-2734

Christoph Haase
University of Oxford, United Kingdom
christoph.haase@cs.ox.ac.uk

https://orcid.org/0000-0002-5452-936X

Filip Mazowiecki2
LaBRI, Université de Bordeaux, France
filip.mazowiecki@u-bordeaux.fr

Abstract
We study the reachability problem for affine Z-VASS, which are integer vector addition systems
with states in which transitions perform affine transformations on the counters. This problem
is easily seen to be undecidable in general, and we therefore restrict ourselves to affine Z-VASS
with the finite-monoid property (afmp-Z-VASS). The latter have the property that the monoid
generated by the matrices appearing in their affine transformations is finite. The class of afmp-Z-
VASS encompasses classical operations of counter machines such as resets, permutations, transfers
and copies. We show that reachability in an afmp-Z-VASS reduces to reachability in a Z-VASS
whose control-states grow polynomially in the size of the matrix monoid. Our construction shows
that reachability relations of afmp-Z-VASS are semilinear, and in particular enables us to show
that reachability in Z-VASS with transfers and Z-VASS with copies is PSPACE-complete.

2012 ACM Subject Classification Theory of computation → Logic and verification, Theory of
computation → Automata over infinite objects, Theory of computation → Complexity classes

Keywords and phrases Vector addition systems, affine transformations, reachability, semilinear
sets, computational complexity

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.14

Acknowledgements We are thankful to James Worrell for insightful discussions on transfer
VASS.

1 Introduction

Vector addition systems with states (VASS) are a fundamental model of computation com-
prising a finite-state controller with a finite number of counters ranging over the natural
numbers. When a transition is taken, a counter can be incremented or decremented provided
that the resulting counter value is greater than or equal to zero. Since the counters of a

1 Supported by the Fonds de recherche du Québec – Nature et technologies (FRQNT).
2 This study has been carried out with financial support from the French State, managed by the French

National Research Agency (ANR) in the frame of the “Investments for the future” Programme IdEx
Bordeaux (ANR-10-IDEX-03-02).

© Michael Blondin, Christoph Haase, and Filip Mazowiecki;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 14; pp. 14:1–14:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:blondin@in.tum.de
https://orcid.org/0000-0003-2914-2734
mailto:christoph.haase@cs.ox.ac.uk
https://orcid.org/0000-0002-5452-936X
mailto:filip.mazowiecki@u-bordeaux.fr
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Affine Extensions of Integer Vector Addition Systems with States

VASS are unbounded, a VASS gives rise to an infinite transition system. One of the biggest
advantages of VASS is that most of the standard decision problems such as configuration
reachability and coverability are decidable [26, 32, 27, 29]. Those properties make VASS and
their extensions a prime choice for reasoning about and modelling concurrent, distributed
and parametrised systems, see e.g. the recent surveys by Abdulla and Delzanno [2, 15].

In order to increase their modelling power, numerous extensions of plain VASS have
been proposed and studied in the literature over the last 25 years. Due to the infinite-state
nature of VASS, even minor extensions often cross the undecidability frontier. For example,
while in the extension of VASS with hierarchical zero-tests on counters both reachability and
coverability remain decidable [37, 10], all important decision problems for VASS with two
counters which can arbitrarily be tested for zero become undecidable [33]. Another example
is the extension of VASS with resets and transfers. In a reset VASS, transitions may set
a counter to zero, whereas transfer VASS generalise reset VASS and allow transitions to
move the contents of a counter onto another. While it was initially widely believed that
any extension of VASS either renders both reachability and coverability undecidable, reset
and transfer VASS have provided an example of an extension which leads to an undecidable
reachability [5] yet decidable coverability problem [16]. Nevertheless, the computational costs
for those extensions are high: while coverability is EXPSPACE-complete for VASS [30, 35],
it becomes Ackermann-complete in the presence of resets and transfers [38, 19]. For practical
purposes, the extension of VASS with transfers is particularly useful since transfer VASS allow
for reasoning about broadcast protocols and multi-threaded non-recursive C programs [17, 25].
It was already observed in [17] that transfer VASS can be viewed as an instance of so-called
affine VASS. An affine VASS is an extended VASS with transitions labelled by pairs (A, b),
where A is a d × d matrix over the integers and b ∈ Zd is an integer vector. A transition
switches the control-state while updating the configuration of the counters v ∈ Nd to A ·v +b,
provided that A ·v+b ≥ 0; otherwise, the transition is blocked. Transfer VASS can be viewed
as affine VASS in which the columns of all matrices are d-dimensional unit vectors [17].

Due to the symbolic state-explosion problem and Ackermann-hardness of coverability,
standard decision procedures for transfer VASS such as the backward algorithm [1] do not
per se scale to real-world instances. In recent years, numerous authors have proposed the use
of over-approximations in order to attenuate the symbolic state-explosion problem for VASS
and some of their extensions (see, e.g., [18, 6, 8]). Most commonly, the basic idea is to relax
the integrality or non-negativity condition on the counters and to allow them to take values
from the integers or non-negative rational numbers. It is easily seen that if a configuration is
not reachable under the relaxed semantics, then the configuration is also not reachable under
the standard semantics. Hence, those over-approximations can, for instance, be used in order
to prune the sets of minimal basis elements in every iteration of the backward algorithm.
In this paper, we investigate reachability in integer over-approximations of affine VASS,
i.e., affine VASS in which a configuration of the counters is a point in Zd, and in which all
transitions are non-blocking. Subsequently, we refer to such VASS as affine Z-VASS.

Main contributions

We focus on affine Z-VASS with the finite-monoid property (afmp-Z-VASS), i.e. where the
matrix monoid generated by all matrices occurring along transitions in the affine Z-VASS is
finite. By a reduction to reachability in Z-VASS, we obtain decidability of reachability for
the whole class of afmp-Z-VASS and semilinearity of their reachability relations.

More precisely, we show that reachability in an afmp-Z-VASS can be reduced to reach-
ability in a Z-VASS whose size is polynomial in the size of the original afmp-Z-VASS and
in the size of the finite monoidM generated by the matrices occurring along transitions,

M. Blondin, C. Haase, and F. Mazowiecki 14:3

denoted by ‖M‖. For all classes of affine transformations considered in the literature, ‖M‖
is bounded exponentially in the dimension of the matrices. This enables us to deduce a
general PSPACE upper bound for extensions of Z-VASS such as transfer Z-VASS and copy
Z-VASS. By a slightly more elaborated analysis of this construction, we are also able to
provide a short proof of the already known NP upper bound for reset Z-VASS [21].

We also show that a PSPACE lower bound of the reachability problem already holds
for the extension of reset Z-VASS with permutations. This gives PSPACE-completeness of
some interesting classes such as transfer Z-VASS and copy Z-VASS. Finally, we show that
an affine Z-VASS that allows for both transfers and copies may not have the finite-monoid
property, and the reachability problem for this class becomes undecidable. All complexity
results obtained in this paper are summarized in Figure 1.

Related work

Our work is primarily related to the work of Finkel and Leroux [20], Iosif and Sangnier [24],
Haase and Halfon [21], and Cadilhac, Finkel and McKenzie [12, 13]. In [20], Finkel and Leroux
consider a model more general than affine Z-VASS in which transitions are additionally
equipped with guards which are Presburger formulas defining admissible sets of vectors in
which a transition does not block. Given a sequence of transitions σ, Finkel and Leroux
show that the reachability set obtained from repeatedly iterating σ, i.e., the acceleration
of σ, is definable in Presburger arithmetic. Note that the model of Finkel and Leroux does
not allow for control-states and the usual tricks of encoding each control-state by a counter
or all control-states into three counters [22] do not work over Z since transitions are non
blocking. Iosif and Sangnier [24] investigated the complexity of model checking problems
for a variant of the model of Finkel and Leroux with guards defined by convex polyhedra
and with control-states over a flat structure. Haase and Halfon [21] studied the complexity
of the reachability, coverability and inclusion problems for Z-VASS and reset Z-VASS, two
submodels of the affine Z-VASS that we study in this paper. In [12, 13], Cadilhac, Finkel
and McKenzie consider an extension of Parikh automata to affine Parikh automata with
the finite-monoid restriction like in our paper. These are automata recognizing boolean
languages, but the finite-monoid restriction was exploited in a similar way to obtain some
decidability results in that context. We finally remark that our models capture variants of
cost register automata that have only one + operation [4, 3].

Structure of the paper

We introduce general notations and affine Z-VASS in Section 2. In Section 3, we give the
reduction from afmp-Z-VASS to Z-VASS. Subsequently, in Section 4 we show that afmp-
Z-VASS have semilinear reachability relations and discuss semilinearity of affine Z-VASS
in general. In Section 5, we show the PSPACE and NP upper bounds of the reachability
problem for some classes of afmp-Z-VASS; and in Section 6 we show PSPACE-hardness and
undecidability results for some classes of affine Z-VASS. Some concluding remarks will be
made in Section 7.

2 Preliminaries

General notation

For every n ∈ N, we write [n] for the set {1, 2, . . . , n}. For every x = (x1, x2, . . . , xd) ∈ Zd and
every i ∈ [d], we write x(i) def= xi. We denote the identity matrix and the zero-vector by I and
0 in every dimension, as there will be no ambiguity. For every x ∈ Zd and A ∈ Zd×d, we define

CONCUR 2018

14:4 Affine Extensions of Integer Vector Addition Systems with States

Z-VASS

Reset Z-VASS Permutation Z-VASS

Reset + permutation Z-VASS

Transfer Z-VASS Copy Z-VASS

Transfer + copy Z-VASS

Affine Z-VASS

NP-complete

PSPACE-complete

F
in
it
e
m
on

oi
ds

In
fin

it
e
m
on

oi
ds

Decidable

Undecidable

Figure 1 Classification of the complexity of reachability in affine Z-VASS in terms of classes
of matrices. The rectangular regions below and above the horizontal dashed line correspond to
classes of matrices with finite and infinite monoids respectively. The green rectangular dotted region
and the red elliptical striped region correspond to the classes where reachability is decidable and
undecidable, respectively. The blue elliptical region and the orange elliptical region correspond to
the classes where reachability is NP-complete and PSPACE-complete respectively. Reachability in
permutation Z-VASS is NP-hard and belongs to PSPACE.

the max-norm of x and A as ‖x‖ def= max{|x(i)| : i ∈ [d]} and ‖A‖ def= max{‖Ai‖ : i ∈ [d]}
where Ai denotes the ith column of A. We assume that numbers are represented in binary,
hence the entries of vectors and matrices can be exponential in the size of their encodings.

Affine Integer VASS

An affine integer vector addition system with states (affine Z-VASS) is a tuple V = (d,Q, T)
where d ∈ N, Q is a finite set and T ⊆ Q×Zd×d×Zd×Q. Let us fix such a V . We call d the
dimension of V and the elements of Q and T respectively control-states and transitions. For
every transition t = (p,A, b, q), let src(t) def= p, tgt(t) def= q, M(t) def= A and ∆(t) def= b, and let
ft : Zd → Zd be the affine transformation defined by ft(x) = A ·x+b. The size of V , denoted
|V|, is defined as |V| def= d+ |Q|+ ‖T‖ where ‖T‖ def=

∑
t∈T d

2 · dlog(‖M(t)‖+ ‖∆(t)‖+ 1)e.
A configuration of V is a pair (q,v) ∈ Q× Zd which we write as q(v). For every t ∈ T

and p(u), q(v) ∈ Q × Zd, we write p(u) t−→ q(v) if p = src(t), q = tgt(t) and v = ft(u).
We naturally extend −→ to sequences of transitions as follows. For every w ∈ T ∗ and

M. Blondin, C. Haase, and F. Mazowiecki 14:5

p q

(
1 0
1 0

)
, 0

(
1 1
0 0

)
, 0

Figure 2 Example of a transfer + copy Z-VASS V which does not have the finite-monoid property.

p(u), q(v) ∈ Q×Zd, we write p(u) w−→ q(v) if either |w| = 0 and p(u) = q(v), or |w| = k > 0
and there exist p0(u0), p1(u1), . . . , pk(uk) ∈ Q× Zd such that

p(u) = p0(u0) w1−−→ p1(u1) w2−−→ · · · wk−−→ pk(uk) = q(v).

We write p(u) ∗−→ q(v) if there exists some w ∈ T ∗ such that p(u) w−→ q(v). The relation ∗−→
is called the reachability relation of V. If p(u) w−→ q(v), then we say that w is a run from
p(u) to q(v), or simply a run if the source and target configurations are irrelevant. We also
say that w is a path from p to q, and if p = q then we say that w is a cycle.

Let M(V) def= {M(t) : t ∈ T} and ∆(V) def= {∆(t) : t ∈ T}. If V is clear from the context,
we sometimes simply write M and ∆. The monoid of V, denotedMV or sometimes simply
M, is the monoid generated by M(V), i.e. it is the smallest set that contains M(V), is
closed under matrix multiplication, and contains the identity matrix. We say that a matrix
A ∈ Zd×d is respectively a (i) reset, (ii) permutation, (iii) transfer, (iv) copyless, or (v) copy
matrix if A ∈ {0, 1}d×d and
(i) A does not contain any 1 outside of its diagonal;
(ii) A has exactly one 1 in each row and each column;
(iii) A has exactly one 1 in each column;
(iv) A has at most one 1 in each column;
(v) A has exactly one 1 in each row.

Similarly, we say that V is respectively a reset, permutation, transfer, copyless, or copy
Z-VASS if all matrices of M(V) are reset, permutation, transfer, copyless, or copy matrices.
The monoids of such affine Z-VASS are finite and respectively of size at most 2d, d!, dd,
(d+ 1)d and dd. Copyless Z-VASS correspond to a model of copyless cost-register automata
studied in [3] (see the remark below). If M(V) only contains the identity matrix, then V
is simply called a Z-VASS. We define ‖MV‖

def= |MV | · d2 ·max{log(‖A‖ + 1) : A ∈ MV}.
Note that ‖MV‖ = |MV | · d2 for any monoid obtained from one of the above matrices types.

A class of matrices C is a union
⋃
d≥1 Cd where Cd is a finitely generated, but possibly

infinite, submonoid of Zd×d for every d ≥ 1. We say that V belongs to a class C of Z-VASS if
MV ⊆ C. If each Cd is finite, then we say that this class of affine Z-VASS has the finite-monoid
property (afmp-Z-VASS). For two classes C and C′ we write C + C′ to denote the smallest
set D =

⋃
d≥1Dd such that Dd is a monoid that contains both Cd and C′d for every d ≥ 1.

Notice that this operation does not preserve finiteness and for example the class of transfer
+ copy matrices is infinite (see Figure 2 and Section 6).

We discuss the Z-VASS V in Figure 2 to give some intuition behind the names transfer
and copy Z-VASS. The transition from p to q is a copy transition and the transition from q to
p is a transfer transition. Notice that for every vector (x, y) ∈ Z2, we have p(x, y) −→ q(x, x),
i.e. the value of the first counter is copied to the second counter. Similarly, for the other

CONCUR 2018

14:6 Affine Extensions of Integer Vector Addition Systems with States

transition we have q(x, y) −→ p(x+ y, 0), that is the value of the second counter is transferred
to the first counter (resetting its own value to 0). Let A and B be the two matrices used in
V . Note that (A ·B)n is the matrix with all entries equal to 2n−1, and henceMV is infinite.
I Remark. The variants of affine Z-VASS that we consider are related to cost register
automata (CRA) with only the + operation [4, 3] and without an output function. These
are deterministic models with states and registers that upon reading an input, update their
registers in the form x← y+ c, where x, y are registers and c is an integer. An affine Z-VASS
does not read any input, but is nondeterministic. Thus, one can identify an affine Z-VASS
with a CRA that reads sequences of transitions as words. In particular, the restrictions
imposed on the studied CRAs correspond to copy Z-VASS [4] and copyless Z-VASS [3].

Decision problems

We consider the reachability and the coverability problems parameterized by classes of
matrices C:

ReachC (reachability problem)
Given: an affine Z-VASS V = (d,Q, T) and configurations p(u), q(v) such thatMV ⊆ C.
Decide: whether p(u) ∗−→ q(v)?

CoverC (coverability problem)
Given: an affine Z-VASS V = (d,Q, T) and configurations p(u), q(v) such thatMV ⊆ C.
Decide: whether there exists v′ ∈ Zd such that p(u) ∗−→ q(v′) and v′ ≥ v ?

For standard VASS (where configurations cannot hold negative values), the coverability
problem is considered much simpler than the reachability problem. However, for affine
Z-VASS, these two problems coincide as observed in [21, Lemma 2]: the two problems are
inter-reducible in logarithmic space at the cost of doubling the number of counters. Therefore
we will only study the reachability problem in this paper.

3 From affine Z-VASS with the finite-monoid property to Z-VASS

The main result of this section is that every affine Z-VASS V with the finite monoid can be
simulated by a Z-VASS with twice the number of counters whose size is polynomial in ‖M‖
and |V|. More formally, we show the following:

I Theorem 1. For every afmp-Z-VASS V = (d,Q, T) there exist a Z-VASS V ′ = (d′, Q′, T ′)
and p′, q′ ∈ Q′ such that

d′ = 2 · d,
|Q′| ≤ 4 · ‖M‖2 · |Q|,
‖T ′‖ ≤ 8d · ‖M‖2 · |Q|+ ‖M‖4 · ‖T‖,
p(u) ∗−→ q(v) in V if and only if p′(u,0) ∗−→ q′(0,v) in V ′.

Moreover, V ′, p′ and q′ are effectively computable from V.

I Corollary 2. The reachability problem for afmp-Z-VASS is decidable.

Proof. By Theorem 1, it suffices to construct, for a given afmp-Z-VASS V, the Z-VASS V ′
and to test for reachability in V ′. It is known that reachability for Z-VASS is in NP [21]. To
effectively compute V ′ it suffices to provide a bound for ‖MV‖. It is known that if |MV | is
finite then it is bounded by a computable function, which is an exponential tower (see [31]),
and hence ‖MV‖ is also computable. J

M. Blondin, C. Haase, and F. Mazowiecki 14:7

For the remainder of this section, let us fix some affine Z-VASS V such that MV is
finite. We proceed as follows to prove Theorem 1. First, we introduce some notations and
intermediary lemmas characterizing reachability in affine Z-VASS. Next, we give a construction
that essentially proves the special case of Theorem 1 where the initial configuration is of the
form p(0). Finally, we prove Theorem 1 by extending this construction to the general case.

It is worth noting that proving the general case is not necessary if one is only interested
in deciding reachability. Indeed, an initial configuration p(v) can be turned into one of the
form p′(0) by adding a transition that adds v. The reason for proving the general case is
that it establishes a stronger relation that allows us to prove semilinearity of afmp-Z-VASS
reachability relations in Section 4.

3.1 A characterization of reachability
For every σ ∈ T ∗, t ∈ T and u ∈ Zd, let

M(ε) def= I, ε(u) def= u,

M(σt) def= M(t) ·M(σ), σt(u) def= M(t) · σ(u) + ∆(t).

Intuitively, for any sequence w ∈ T ∗, w(u) is the effect of w on u, regardless of whether w is an
actual path of the underlying graph. A simple induction yields the following characterization:
I Lemma 3. For every w ∈ T ∗ and p(u), q(v) ∈ Q× Zd, it is the case that p(u) w−→ q(v) if
and only if
(a) w is a path from p to q in the underlying graph of V, and
(b) v = w(u).

Testing for reachability with Lemma 3 requires evaluating w(u). This value can be
evaluated conveniently as follows:
I Lemma 4. For every w ∈ T k and u ∈ Zd, the following holds:

w(u) = M(w) · u +
k∑
i=1

M(wi+1wi+2 · · ·wk) ·∆(wi). (1)

Moreover, w(u) = M(w) · u + w(0).
Proof of Lemma 4. We prove (1) by induction on k. The base case follows from ε(u) =
u = I · u + 0 = M(ε) · u + 0. Assume that k > 0 and that the claim holds for sequences of
length k − 1. For simplicity we denote σ def= w1 . . . wk−1. We have:

w(u) = σwk(u)
= M(wk) · σ(u) + ∆(wk) (2)

= M(wk) ·
(
M(σ) · u +

k−1∑
i=1

M(wi+1wi+2 · · ·wk−1) ·∆(wi)
)

+ ∆(wk) (3)

= M(wk) ·M(σ) · u +
k−1∑
i=1

M(wk) ·M(wi+1wi+2 · · ·wk−1) ·∆(wi) + ∆(wk)

= M(σwk) · u +
k−1∑
i=1

M(wi+1wi+2 · · ·wk) ·∆(wi) + ∆(wk) (4)

= M(w) · u +
k∑
i=1

M(wi+1wi+2 · · ·wk) ·∆(wi)

CONCUR 2018

14:8 Affine Extensions of Integer Vector Addition Systems with States

where (2), (3) and (4) follow respectively by definition of σwk(u), by induction hypothesis
and by definition of M(σwk).

The last part of the lemma follows from applying (1) to w(0) and w(u), and observing
that subtracting them results in w(u)− w(0) = M(w) · u. J

Observe that Lemma 4 is trivial for the particular case of Z-VASS. Indeed, we obtain
w(u) = u +

∑k
i=1 ∆(wi), which is the sum of transition vectors as expected for a Z-VASS.

3.2 Reachability from the origin
We make use of Lemmas 3 and 4 to construct a Z-VASS V ′ = (d,Q′, T ′) for the special case
of Theorem 1 where the initial configuration is of the form p(0). The states and transitions
of V ′ are defined as:

Q′
def= Q×M,

T ′
def= {((src(t),A), I,B ·∆(t), (tgt(t),B)) : A,B ∈M, t ∈ T and B ·M(t) = A}.

The idea behind V ′ is to simulate a path w of V forward while evaluating w(0) backwards.
The latter can be evaluated as the sum identified in Lemma 4 provided that V ′ initially
“knows” M(w). More formally, V ′ and V are related as follows:
I Proposition 5.
(a) For every w ∈ T ∗ if p(0) w−→ q(v) in V, then p′(0) ∗−→ q′(v) in V ′, where p′ = (p,M(w))

and q′ = (q, I).
(b) If p′(0) ∗−→ q′(v) in V ′, where p′ = (p,A) and q′ = (q, I), then there exists w ∈ T ∗ such

that M(w) = A and p(0) w−→ q(v) in V.
Proof. (a) By Lemma 3, V has a path w ∈ T ∗ such that w(0) = v. Let k def= |w|. For every
i ∈ [k + 1], let

Ai
def= M(wiwi+1 · · ·wk)

with the convention that Ak+1 = I. For every i ∈ [k], let

bi
def= Ai+1 ·∆(wi),

w′i
def= ((src(wi),Ai), I, bi, (tgt(wi),Ai+1)).

We claim that w′ def= w′1w
′
2 · · ·w′k is such that (p,A1) w′

−→ (q,Ak+1) in V ′. Note that the
validity of the claim completes the proof since A1 = M(w) and Ak+1 = I.

It follows immediately from the definition of T ′ that w′i ∈ T ′ for every i ∈ [k] and hence
that w′ is a path from (p,A1) to (q,Ak). By Lemma 3, it remains to show that w′(0) = v:

w′(0) =
k∑
i=1

M(w′i+1w
′
i+2 · · ·w′k) ·∆(w′i) (by Lemma 4 applied to w′(0))

=
k∑
i=1

∆(w′i) (by M(w′i) = I for every i ∈ [k])

=
k∑
i=1

Ai+1 ·∆(wi) (by definition of ∆(w′i))

=
k∑
i=1

M(wi+1wi+2 · · ·wk) ·∆(wi) (by definition of Ai+1)

= w(0) (by Lemma 4 applied to w(0)).

M. Blondin, C. Haase, and F. Mazowiecki 14:9

(b) Similarly, by Lemma 3, there exists a path w′ of V ′ such that w′(0) = v, and it
suffices to exhibit a path w ∈ T ∗ from p to q in V such that w(0) = v and M(w) = A.
Let k def= |w′|. For every i ∈ [k], let w′i = ((pi,Ai), I, bi, (qi,Bi)). By definition of T ′, for
every i ∈ [k], there exists a (possibly non unique) transition ti ∈ T such that src(t) = pi,
tgt(t) = qi, bi = Bi ·∆(ti) and Bi ·M(ti) = Ai. We set w def= t1t2 · · · tk. It is readily seen
that w is a path from p to q. To prove w(0) = v and M(w) = A, Lemma 4 can be applied
as in the previous implication. J

3.3 Reachability from an arbitrary configuration

We now construct the Z-VASS V ′′ = (2d,Q′′, T ′′) of Theorem 1 which is obtained mostly
from V ′. The states of V ′′ are defined as

Q′′
def= Qi ∪ (Q×M×M) ∪ (Q×M) ∪Qf

where Qi = {qi : q ∈ Q} and Qf = {qf : q ∈ Q}. To simplify the notation, given two
vectors u,v ∈ Zd we write (u,v) for the vector of Z2d equal to u on the first d components
and equal to v on the last d components. The set T ′′ consists of five disjoint subsets of
transitions Tinit ∪ Tsimul ∪ Tend ∪ Tmult ∪ Tfinal working in five sequential stages. Intuitively,
these transitions allow V ′′ to guess a matrix Aguess, to simulate a path w of V such that
Aguess = M(w), to compute w(0) and finally to compute w(0) + Aguess · u.

The first set of transitions is defined as:

Tinit
def= {(qi, I, (0,0), (q,C,C)) : q ∈ Q,C ∈M}.

Its purpose is to move from Qi to Q×M×M, thereby storing two copies of the guessed
matrix Aguess. The second set is defined as:

Tsimul
def= {((p,A,C), I, (0, b), (q,B,C)) : C ∈M, ((p,A), I, b, (q,B)) ∈ T ′}.

Its purpose is to simulate T ′ in the two first components of Q×M×M and to remember
Aguess in the third component. The third set is defined as:

Tend
def= {((q, I,C), I, (0,0), (q,C)) : (q, I,C) ∈ Q′′},

and its purpose is to move from Q×M×M to Q×M, thus guessing the end of a run in
V ′, i.e. by reaching I. The fourth set is defined as:

Tmult
def= {((q,C), I, (−ei,C · ei), (q,C)) : q ∈ Q,C ∈M, i ∈ [d]} ∪
{((q,C), I, (ei,−C · ei), (q,C)) : q ∈ Q,C ∈M, i ∈ [d]},

where ei is the unit vector such that ei(i) = 1. The purpose of Tmult is to compute Aguess ·u.
Finally, Tfinal is defined as:

Tfinal
def= {((q,C), I, (0,0), qf) : q ∈ Q,C ∈M},

and its purpose is to move from Q×M to Qf , guessing the end of the matrix multiplication
performed with Tmult.

We may now prove Theorem 1:

CONCUR 2018

14:10 Affine Extensions of Integer Vector Addition Systems with States

Proof of Theorem 1. First, note that we obtain

|Q′′| = (2 + ‖M‖+ ‖M‖2) · |Q|
≤ 4 · ‖M‖2 · |Q|,

‖T ′′‖ = 2 · ‖M‖ · |Q|+ ‖M‖ · ‖T ′‖+ |Q′′|+ 2d · ‖M‖ · |Q|
≤ ‖M‖4 · ‖T‖+ 8d · ‖M‖2 · |Q|,

where we use the fact that ‖T ′‖ ≤ ‖M‖2 · ‖T‖ ·max{‖A‖ : A ∈M} ≤ ‖M‖3 · ‖T‖.
It remains to show that p(u) ∗−→ q(v) in V if and only if pi(u,0) ∗−→ qf (0,v) in V ′′.
⇒) By Lemma 3, there exists a path w of V such that w(u) = v. By definition of

Tinit, Tsimul and Tend, and by Proposition 5, it is the case that pi(u,0) ∗−→ r(u, w(0)) where
r = (q,M(w)). The transitions of Tmult allow to transform (u, w(0)) into (0, w(0)+M(w)·u).
Thus, using Tfinal, we can reach the configuration qf (w(0) +M(w) · u). This concludes the
proof since w(u) = w(0) +M(w) · u by Lemma 4.
⇐) The converse implication follows the same steps as the previous one. It suffices to

observe that the first part of a run of V ′′ defines the value w(0), while the second part of the
run defines M(w) · u. J

4 Semilinearity of affine Z-VASS

We say that a subset of Zd is semilinear if it is definable by a Presburger formula [34], i.e.
by a formula of FO(Z,+, <), the first-order logic over Z with addition and order. Semilinear
sets capture precisely finite unions of sets of the form b +N ·p1 +N ·p2 + . . .+N ·pk, and are
closed under basic operations such as finite sums, intersection and complement. Semilinear
sets are important in formal verification, in particular because satisfiability of Presburger
formulas is decidable [34] and in NP for the existential fragment [11].

The results of Section 3 allow us to show that any affine Z-VASS with the finite-monoid
property has a semilinear reachability relation:

I Theorem 6. Given an afmp-Z-VASS V = (d,Q, T) and p, q ∈ Q, it is possible to compute an
existential Presburger formula ϕV,p,q of size at most O(poly(|V|, ‖MV‖)) such that ϕV,p,q(u,v)
holds if and only if p(u) ∗−→ q(v) in V.

Proof. By Theorem 1, there exist an effectively computable Z-VASS V ′ = (d′, Q′, T ′) and
p′, q′ ∈ Q′ such that d′ = 2 · d, |Q′| ≤ 4 · ‖M‖2 · |Q|, ‖T ′‖ ≤ 8d · ‖M‖2 · |Q|+ ‖M‖4 · ‖T‖ and

p(u) ∗−→ q(v) in V if and only if p′(u,0) ∗−→ q′(0,v) in V ′. (5)

By [21, Sect. 3], we can compute an existential Presburger formula ψ of linear size in V ′
such that ψ(x,x′,y,y′) holds if and only if p′(x,x′) ∗−→ q′(y,y′) in V ′. By (5), the formula
ϕV,p,q(x,y) def= ψ(x,0,0,y) satisfies the theorem. J

It was observed in [20, 9] that the reachability relation of a Z-VASS V = (d,Q, T), such
that |Q| = |M(V)| = 1, is semilinear if and only ifMV is finite. Theorem 6 shows that if we
do not bound the number of states and matrices, i.e. drop the assumption |Q| = |M(V)| = 1,
then the left implication remains true. It is natural to ask whether the right implication also
remains true.

Let V1 and V2 be the affine Z-VASS illustrated in Figure 3 from left to right respectively.
Note thatMV1 andMV2 are both infinite due to the matrix made only of 1s. Moreover,
the reachability relations of V1 and V2 are semilinear since the former can reach any target

M. Blondin, C. Haase, and F. Mazowiecki 14:11

p p q

(
1 1
1 1

)
, 0

I,
(

1
0

)

I,
(

0
1

)
I,
(
−1
0

)

I,
(

0
−1

)

(
1 1
1 1

)
, 0

(
0 0
0 0

)
, 0

Figure 3 Examples of affine Z-VASS with infinite monoids and semilinear reachability relations.

configuration from any initial configuration, and since the latter can only generate finitely
many vectors due to the zero matrix. Since V1 has a single control-state, |M(V1)| = |M(V2)| =
2 and ∆(V2) = {0}, any simple natural extension of the characterization of semilinearity in
terms of the number of control-states, matrices and vectors fails.

It is worth noting that an affine Z-VASS with an infinite monoid may have a non semilinear
reachability relation. Indeed, Figure 2 depicts a transfer + copy Z-VASS with an infinite
monoid and such that {v : p(1, 1) ∗−→ q(v)} = {(2n, 2n) : n ∈ N}, which is known to be non
semilinear.

5 Complexity of reachability

In this section, we use the results of Section 3 to show that reachability belongs to PSPACE
for a large class of afmp-Z-VASS encompassing all variants of Section 2. Moreover, we give a
novel proof to the known NP membership of reachability for reset Z-VASS.

I Theorem 7. Let C =
⋃
d≥1 Cd be a class of matrices such that Cd is finite for every d ≥ 1. If

there exists a polynomial poly such ‖Cd‖ ≤ 2poly(d) for every d ≥ 1, then ReachC ∈ PSPACE.

I Corollary 8. The reachability problem of reset, permutation, transfer, copy and copyless
Z-VASS is in PSPACE.

Proof of Theorem 7. Let V = (d,Q, T) be an affine Z-VASS from class C. Let V ′ =
(d,Q′, T ′) be the Z-VASS obtained from V in Theorem 1. Recall that, by Theorem 1,
p(u) ∗−→ q(v) in V if and only if p′(u,0) ∗−→ q′(0,v) in V ′. Therefore, it suffices to check the
latter for determining reachability in V.

We invoke a result of [7] on the flattability of Z-VASS. By [7, Prop. 3], p′(x) ∗−→ q′(y) in
V ′ if and only if there exist k ≤ |T ′|, α0, β1, α1, . . . , βk, αk ∈ (T ′)∗ and e ∈ Nk such that

(i) p′(x)
α0β

e(1)
1 α1···βe(k)

k−−−−−−−−−−−→ q′(y) in V ′,
(ii) βi is a cycle for every i ∈ [k], and
(iii) α0β1α1 · · ·βkαk is a path from p′ to q′ of length at most 2 · |Q′| · |T ′|.

For every w ∈ (T ′)∗, let ∆(w) def=
∑|w|
i=1 ∆(wi). By Lemma 4 (see the remark below

the proof of Lemma 4), we have w(u) = u + ∆(w) for every u ∈ Zd. Thus, by Lemma 3,
checking (i), assuming (iii), amounts to testing whether e is a solution of the following system
of linear Diophantine equations:

x +
k∑
i=0

∆(αi) +
(
∆(β1) ∆(β2) · · · ∆(βk)

)
· e = y. (6)

CONCUR 2018

14:12 Affine Extensions of Integer Vector Addition Systems with States

Let m def= 2 · |Q′| · |T ′|. Since |T ′| ≤ ‖T ′‖ and by Theorem 1, we have m ≤ 128 ·d · |MV |5 · |Q|2 ·
‖T‖, and hence by M(V) ⊆ Cd and by assumption on Cd, m ≤ 128 · d · (2poly(d))5 · |Q|2 · ‖T‖.

We describe a polynomial-space non deterministic Turing machine A for testing whether
p′(x) ∗−→ q′(y) in V ′. The proof follows from NPSPACE = PSPACE. Machine A guesses
k ≤ |T ′|, a path π = α0β1α1 · · ·βkαk of length at most m from p′ to q′, and e ∈ Nk, and
tests whether (6) holds for π. Note that we are not given V ′, but V, so we must be careful
for the machine to work in polynomial space.

Instead of fully constructing V ′ and fully guessing π, we do both on the fly, and also
construct ∆(α0),∆(β1), . . . ,∆(βk),∆(αk) on the fly as partial sums as we guess π. Note
that to ensure that each βi is a cycle, we do not need to fully store βi but only its starting
control-state. Moreover, note that ‖∆(αi)‖, ‖∆(βi)‖ ≤ m ·max{‖∆(t)‖ : t ∈ T} for every i,
and hence each αi and βi has a binary representation of polynomial size in |V|.

By [14, Prop. 4], (6) has a solution if and only if it has a solution e ∈ Nk such that

‖e‖ ≤

(
(k + 1) ·max{‖∆(βi)‖ : i ∈ [k]}+ ‖x‖+ ‖y‖+

k∑
i=0
‖∆(αi)‖+ 1

)d′

.

Since d′ = 2 · d, this means that we can guess a vector e ∈ Nk whose binary representation is
of polynomial size, and that we can thus evaluate (6) in polynomial time. J

I Theorem 9 ([21]). The reachability problem for reset Z-VASS belongs to NP.

Proof. Let V = (d,Q, T) be a reset Z-VASS. The proof does not follow immediately from
Theorem 1 becauseMV can be of size up to 2d. We will analyze the construction used in
the proof of Theorem 1, where reachability in V is effectively reduced to reachability in a
Z-VASS V ′ = (d′, Q′, T ′). Recall that Q′ = Qi ∪ (Q×MV) ∪ (Q×MV ×MV) ∪Qf , and
thus that the size of V ′ depends only on the sizes of Q andMV .

It follows from the proof of Theorem 1 and Proposition 5 that for every run pi(u,0) ∗−→
qf (0,v) in V ′, there is a corresponding run p(u) w−→ q(v) in V for some w ∈ T ∗ of length
k ≥ 0. Moreover, the only states of the form (Q,A,B) or (Q,A) occurring along the run
contain matrices A,B ∈MV of the form Ai = M(wiwi+1 · · ·wk) for i ∈ [k + 1]. Recall that
by definition, for every i ∈ [k], Ai = Ai+1 · B for some B ∈ MV . Since MV consists of
reset matrices, it holds that A1,A2, . . . ,Ak is monotonic, i.e. if Ai has a 1 somewhere on
its diagonal, then Ai+1 also contains 1 in that position. It follows that A1,A2, . . . ,Ak+1 is
made of at most d+ 1 matrices.

To prove the NP upper bound we proceed as follows. We guess at most d+ 1 matrices of
MV that could appear in sequence A1,A2, . . . ,Ak+1. We construct the Z-VASS V ′ as in
Theorem 1, but we discard each control-state of Q′ containing a matrix not drawn from the
guessed matrices. Since the constructed Z-VASS is of polynomial size, reachability can be
verified in NP [21]. J

I Remark. Observe that the proof of Theorem 9 holds for any class of affine Z-VASS with a
finite monoid such that every path of its Cayley graph contains at most polynomially many
different vertices. For a reset Z-VASS of dimension d, the number of vertices on every path
of the Cayley graph is bounded by d+ 1.

M. Blondin, C. Haase, and F. Mazowiecki 14:13

6 Hardness results for reachability

It is known that the reachability problem for Z-VASS is already NP-hard [21], which means
that reachability is NP-hard for all classes of affine Z-VASS. In this section, we show that
PSPACE-hardness holds for some classes, matching the PSPACE upper bound derived in
Section 5. Moreover, we observe that reachability is undecidable for transfer + copy Z-VASS.

I Theorem 10. The reachability problem for permutation + reset Z-VASS is PSPACE-hard.

Proof. We give a reduction from the membership problem of linear bounded automata,
which is known to be PSPACE-complete (see, e.g., [23, Sect. 9.3 and 13]). Let A =
(P,Σ,Γ, δ, qini, qacc, qrej) be a linear bounded automaton, where:

P is the set of states,
Σ ⊆ Γ is the input alphabet,
Γ is the tape alphabet,
δ is the transition function, and
qini, qacc, qrej are the initial, accepting and rejecting states respectively.

The transition function is a mapping δ : P × Γ→ P × Γ×{Left,Right}. The intended
meaning of a transition δ(p, a) = (q, b,D) is that whenever A is in state p and holds letter a
at the current position of its tape, then A overwrites a with b and moves to state q and to
the next tape position in direction D.

Let us fix the word that we will check for membership w ∈ Σn (so |w| = n). We construct
an affine Z-VASS V = (d,Q, T) and configurations r(u) and r′(v) such that A accepts w if
and only if r(u) ∗−→ r′(v).

We set d def= n · |Γ|+ 1 and associate a counter to each position of w and each letter of
the tape alphabet Γ, plus one additional counter. For readability, we denote these counters
respectively as xi,a and y, where i ∈ [n] and a ∈ Γ. The idea is to maintain, for every i ∈ [n],
a single “token” among counters {xi,a : a ∈ Γ} in order to represent the current letter in the
ith tape cell of A. The initial vector is u ∈ {0, 1}d such that u(y) = 0 and u(xi,a) = 1 if and
only if wi = a for every i ∈ [n] and a ∈ Γ.

The control-states of V are defined as:

Q
def= {rp,i : p ∈ P, i ∈ [n]} ∪ {rp,i,a : p ∈ P, i ∈ [n], a ∈ Γ} ∪ {racc}.

The purpose of states of the form rp,i is to store the current state p and tape cell i of A.
States of the form rp,i,a are intermediary control-states and the state racc will be the target
control-state.

We associate transitions to every triple (p, a, i) ∈ P×Γ×[n], which denotes a configuration
of A: the automaton is in state p in position i, where letter a is stored. Let us fix a transition
δ(p, a) = (q, b,D); and let j = i + 1 if D = Right, and j = i − 1 if D = Left. For every
i ∈ [n], if j ∈ [n] then we add to T the transitions

(rp,i,A,0, rp,i,a) and (rp,i,a,B,0, rq,j), (7)

where A is a permutation matrix that swaps the values of xi,a and xi,b; and B resets xi,σ for
every σ ∈ Γ \ {b}. The two transitions are depicted on the left of Figure 4 (for D = Right).
The purpose of the first transition is to simulate the transition of A, upon reading a in tape
cell i and state p, by moving the ith “token” from xi,a to xi,b. Note that this transition
may be faulty, i.e. it can simulate reading letter a even though tape cell i contains another
letter. The purpose of the second transition is to detect such faulty behaviour: if the first

CONCUR 2018

14:14 Affine Extensions of Integer Vector Addition Systems with States

rp,i rp,i,a rq,i+1 racc

swap xi,a
and xi,b

reset xi,σ
for every σ 6= b xi,a ← xi,a − 1

y ← y + 1

Figure 4 Left: transitions of V simulating transition δ(p, a) = (q, b,Right) of A. Right: transitions
to verify whether the accepting state has been reached with no error during the simulation.

p q p q

D1,

(
b1
b2

) 1 0 0
0 1 0
1 0 0

, 0

1 0 1
0 1 0
0 0 0

,
b1

b2
0



Figure 5 Gadget (on the right) made of copy and transfer transitions simulating the doubling
transition on the left.

transition is taken and tape cell i does not contain a, then due to the resets, all counters of
{xi,a : a ∈ Γ} end up in 0, and the ith “token” is lost.

Recall that in the initial vector u ∈ {0, 1}d there were exactly n counters with 1 and∑
i∈[d] u(i) = n. By construction of V, all configurations reachable from rqini,1(u), using

transitions defined in (7), have vectors in {0, 1}d with at most n counters equal to 1. They
have exactly n counters equal to 1 only if all corresponding transitions were valid for the
automaton A. We conclude that A accepts w if and only if there exist i ∈ [n] and u′ ∈ {0, 1}d
such that rqini,1(u) ∗−→ rqacc,i(u′) and

∑
i∈[d] u′(i) = n.

To test whether such index i and vector v exist, we add some transitions to T as illustrated
on the right of Figure 4. For every i ∈ [n], we add to T the transition (rqacc,i, I,0, racc). For
every i ∈ [n] and a ∈ Γ, we add to T the transition (racc, I, b, racc) where b is the vector
whose only non zero components are b(xi,a) = −1 and b(y) = 1. The purpose of these
transitions is to (weakly) transfer the values of all counters to y. Recall that v is the vector
whose only non zero component is v(y) = n. We conclude that the language of A accepts w
if and only if rqini,1(u) ∗−→ racc(v). J

I Corollary 11. The reachability problem is PSPACE-complete for permutation + reset
Z-VASS, transfer Z-VASS and copy Z-VASS.

Proof. The hardness for permutation + reset Z-VASS follows from Theorem 10, and the
upper bound for transfer Z-VASS and copy Z-VASS follows from Theorem 7. It remains to
argue that transfers and copies can both simulate permutations and resets. By definition,
permutation matrices are also transfer and copy matrices. Resetting a counter x can be
simulated by adding an extra counter y. In the case of transfers, it suffices to transfer x to y
and to allow for y to be arbitrarily incremented or decremented. In the case of copies, it
suffices to keep y = 0 at all times and to copy y onto x. J

I Proposition 12 ([36]). The reachability problem for transfer + copy Z-VASS is undecidable,
even when restricted to three counters.

Proof. Reichert [36] gives a reduction from the Post correspondence problem over the
alphabet {0, 1} to reachability in affine Z-VASS with two counters. The trick of the reduction
is to represent two binary sequences as the natural numbers the sequences encode, one in
each counter. If we add an artificial 1 at the beginning of the two binary sequences, then
these sequences are uniquely determined by their numerical values. We only need to be

M. Blondin, C. Haase, and F. Mazowiecki 14:15

able to double the counter values, which corresponds to shifting the sequences. This can be
achieved using the following matrices:

D1
def=
(

2 0
0 1

)
and D2

def=
(

1 0
0 2

)
.

The only matrices used in the construction of Reichert are I, D1 and D2. The two last
matrices can be simulated by a gadget made of copy and transfer matrices and by introducing
a third counter. This gadget is depicted in Figure 5 for the case of matrix D1. The other
gadget is symmetric. Note that if a run enters control-state p of the gadget with vector
(x, y, 0), then it leaves control-state q in vector (2x+ b1, y + b2, 0) as required. J

I Remark. A monoidM is positive if it contains only matrices with non negative entries.
The classes of Section 2 and the matrices used in Proposition 12 have this property. The
coverability problem for affine VASS with positive (and possibly infinite) monoids is known
to be decidable in Ackermann time [19]. Recall that coverability and reachability are inter-
reducible for affine Z-VASS. Thus, Proposition 12 gives an example of a decision problem,
namely coverability, which is more difficult for affine Z-VASS than for affine VASS.

7 Conclusion

We have shown that the reachability problem for afmp-Z-VASS reduces to the reachability
problem for Z-VASS, i.e. every afmp-Z-VASS V can be simulated by a Z-VASS of size
polynomial in |V| and ‖MV‖. In particular, this allowed us to establish that the reachability
relation of any afmp-Z-VASS is semilinear.

For all of the variants we studied – reset, permutation, transfer, copy and copyless Z-VASS
– the size of ‖MV‖ is of exponential size, thus yielding a PSPACE upper bound on their
reachability problems. We do not know whether an exponential bound on ‖MV‖ holds for
any class of afmp-Z-VASS. We are aware that the work of [31] provides an exponential tower
upper bound. Moreover, an exponential upper bound holds when MV is generated by a
single matrix [24]; and whenMV is a group then we have an exponential bound but only on
|MV | (see [28] for an exposition on the group case).

For all the classes of afmp-Z-VASS studied in this paper, we have shown that the
reachability problem is either PSPACE-complete or NP-complete, with the exception of
permutation Z-VASS reachability which lies between NP and PSPACE, and whose precise
complexity remains open.

Another interesting open question is whether reachability is undecidable for every class of
infinite matrix monoids, i.e. is the top rectangular region of Figure 1 equal to the red ellipse?

References
1 Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. General decidab-

ility theorems for infinite-state systems. In Proc. 11th Annual IEEE Symposium on Logic
in Computer Science (LICS), pages 313–321, 1996. doi:10.1109/LICS.1996.561359.

2 Parosh Aziz Abdulla and Giorgio Delzanno. Parameterized verification. International
Journal on Software Tools for Technology Transfer, 18(5):469–473, 2016. doi:10.1007/
s10009-016-0424-3.

3 Rajeev Alur, Adam Freilich, and Mukund Raghothaman. Regular combinators for string
transformations. In Proc. Joint Meeting of the 23rd EACSL Annual Conference on Com-
puter Science Logic (CSL) and the 29th ACM/IEEE Symposium on Logic in Computer
Science (LICS), pages 9:1–9:10, 2014. doi:10.1145/2603088.2603151.

CONCUR 2018

http://dx.doi.org/10.1109/LICS.1996.561359
http://dx.doi.org/10.1007/s10009-016-0424-3
http://dx.doi.org/10.1007/s10009-016-0424-3
http://dx.doi.org/10.1145/2603088.2603151

14:16 Affine Extensions of Integer Vector Addition Systems with States

4 Rajeev Alur and Mukund Raghothaman. Decision problems for additive regular functions.
In Proc. 40th International Colloquium on Automata, Languages, and Programming (IC-
ALP), pages 37–48, 2013. doi:10.1007/978-3-642-39212-2_7.

5 Toshiro Araki and Tadao Kasami. Some decision problems related to the reachability
problem for Petri nets. Theoretical Computer Science, 3(1):85–104, 1976. doi:10.1016/
0304-3975(76)90067-0.

6 Konstantinos Athanasiou, Peizun Liu, and Thomas Wahl. Unbounded-thread program
verification using thread-state equations. In Proc. 8th International Joint Conference on
Automated Reasoning (IJCAR), pages 516–531, 2016. doi:10.1007/978-3-319-40229-1_
35.

7 Michael Blondin, Alain Finkel, Stefan Göller, Christoph Haase, and Pierre McKenzie.
Reachability in two-dimensional vector addition systems with states is PSPACE-complete.
In Proc. 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages
32–43, 2015. doi:10.1109/LICS.2015.14.

8 Michael Blondin and Christoph Haase. Logics for continuous reachability in Petri nets
and vector addition systems with states. In Proc. 32nd Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), pages 1–12, 2017. doi:10.1109/LICS.2017.8005068.

9 Bernard Boigelot. Symbolic Methods for Exploring Infinite State Spaces. PhD thesis, Uni-
versité de Liège, Belgium, 1998.

10 Rémi Bonnet. Theory of Well-Structured Transition Systems and Extended Vector-Addition
Systems. PhD thesis, École normale supérieure de Cachan, France, 2013.

11 I. Borosh and L. B. Treybig. Bounds on positive integral solutions of linear diophantine
equations. Proceedings of the American Mathematical Society, 55(2):299–304, 1976. doi:
10.2307/2041711.

12 Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. Bounded Parikh automata. In-
ternational Journal of Foundations of Computer Science, 23(8):1691–1710, 2012. doi:
10.1142/S0129054112400709.

13 Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. Unambiguous constrained automata.
International Journal of Foundations of Computer Science, 24(7):1099–1116, 2013. doi:
10.1142/S0129054113400339.

14 Dmitry Chistikov and Christoph Haase. The taming of the semi-linear set. In Proc. 43rd In-
ternational Colloquium on Automata, Languages, and Programming (ICALP), pages 128:1–
128:13, 2016. doi:10.4230/LIPIcs.ICALP.2016.128.

15 Giorgio Delzanno. A unified view of parameterized verification of abstract models of broad-
cast communication. International Journal on Software Tools for Technology Transfer,
18(5):475–493, 2016. doi:10.1007/s10009-016-0412-7.

16 Catherine Dufourd, Alain Finkel, and Philippe Schnoebelen. Reset nets between decidab-
ility and undecidability. In Proc. 25th International Colloquium on Automata, Languages
and Programming (ICALP), pages 103–115, 1998. doi:10.1007/BFb0055044.

17 E. Allen Emerson and Kedar S. Namjoshi. On model checking for non-deterministic infinite-
state systems. In Proc. 13th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pages 70–80, 1998. doi:10.1109/LICS.1998.705644.

18 Javier Esparza, Ruslán Ledesma-Garza, Rupak Majumdar, Philipp J. Meyer, and Filip
Niksic. An SMT-based approach to coverability analysis. In Proc. 26th International
Conference on Computer Aided Verification (CAV), pages 603–619, 2014. doi:10.1007/
978-3-319-08867-9_40.

19 Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Schnoebelen. Acker-
mannian and primitive-recursive bounds with Dickson’s lemma. In Proc. 26th Annual
IEEE Symposium on Logic in Computer Science (LICS), pages 269–278, 2011. doi:
10.1109/LICS.2011.39.

http://dx.doi.org/10.1007/978-3-642-39212-2_7
http://dx.doi.org/10.1016/0304-3975(76)90067-0
http://dx.doi.org/10.1016/0304-3975(76)90067-0
http://dx.doi.org/10.1007/978-3-319-40229-1_35
http://dx.doi.org/10.1007/978-3-319-40229-1_35
http://dx.doi.org/10.1109/LICS.2015.14
http://dx.doi.org/10.1109/LICS.2017.8005068
http://dx.doi.org/10.2307/2041711
http://dx.doi.org/10.2307/2041711
http://dx.doi.org/10.1142/S0129054112400709
http://dx.doi.org/10.1142/S0129054112400709
http://dx.doi.org/10.1142/S0129054113400339
http://dx.doi.org/10.1142/S0129054113400339
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.128
http://dx.doi.org/10.1007/s10009-016-0412-7
http://dx.doi.org/10.1007/BFb0055044
http://dx.doi.org/10.1109/LICS.1998.705644
http://dx.doi.org/10.1007/978-3-319-08867-9_40
http://dx.doi.org/10.1007/978-3-319-08867-9_40
http://dx.doi.org/10.1109/LICS.2011.39
http://dx.doi.org/10.1109/LICS.2011.39

M. Blondin, C. Haase, and F. Mazowiecki 14:17

20 Alain Finkel and Jérôme Leroux. How to compose Presburger-accelerations: Applic-
ations to broadcast protocols. In Proc. 22nd Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), pages 145–156, 2002. doi:
10.1007/3-540-36206-1_14.

21 Christoph Haase and Simon Halfon. Integer vector addition systems with states. In Proc.
8th International Workshop on Reachability Problems (RP), pages 112–124, 2014. doi:
10.1007/978-3-319-11439-2_9.

22 John E. Hopcroft and Jean-Jacques Pansiot. On the reachability problem for 5-dimensional
vector addition systems. Theoretical Computer Science, 8:135–159, 1979. doi:10.1016/
0304-3975(79)90041-0.

23 John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.

24 Radu Iosif and Arnaud Sangnier. How hard is it to verify flat affine counter systems
with the finite monoid property? In Proc. 14th International Symposium on Automated
Technology for Verification and Analysis (ATVA), pages 89–105, 2016. doi:10.1007/
978-3-319-46520-3_6.

25 Alexander Kaiser, Daniel Kroening, and Thomas Wahl. A widening approach to multith-
readed program verification. ACM Transactions on Programming Languages and Systems,
36(4):14:1–14:29, 2014. doi:10.1145/2629608.

26 Richard M. Karp and Raymond E. Miller. Parallel program schemata. Journal of Computer
and System Sciences, 3(2):147–195, 1969. doi:10.1016/S0022-0000(69)80011-5.

27 S. Rao Kosaraju. Decidability of reachability in vector addition systems (preliminary ver-
sion). In Proc. 14th Annual ACM Symposium on Theory of Computing (STOC), pages
267–281, 1982. doi:10.1145/800070.802201.

28 James Kuzmanovich and Andrey Pavlichenkov. Finite groups of matrices whose entries
are integers. The American Mathematical Monthly, 109(2):173–186, 2002. doi:10.2307/
2695329.

29 Jérôme Leroux. Vector addition systems reachability problem (a simpler solution). In The
Alan Turing Centenary Conference, pages 214–228, 2012.

30 Richard J. Lipton. The reachability problem requires exponential space. Technical Re-
port 63, Department of Computer Science, Yale University, 1976.

31 Arnaldo Mandel and Imre Simon. On finite semigroups of matrices. Theoretical Computer
Science, 5(2):101–111, 1977. doi:10.1016/0304-3975(77)90001-9.

32 Ernst W. Mayr. An algorithm for the general Petri net reachability problem. SIAM Journal
on Computing, 13(3):441–460, 1984. doi:10.1137/0213029.

33 Marvin Lee Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.
34 Mojżesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer

Zahlen, in welchem die Addition als einzige Operation hervortritt. Comptes Rendus du Ier

Congrès des mathématiciens des pays slaves, pages 192–201, 1929.
35 Charles Rackoff. The covering and boundedness problems for vector addition systems.

Theoretical Computer Science, 6:223–231, 1978. doi:10.1016/0304-3975(78)90036-1.
36 Julien Reichert. Reachability games with counters: decidability and algorithms. PhD thesis,

École normale supérieure de Cachan, France, 2015.
37 Klaus Reinhardt. Reachability in Petri nets with inhibitor arcs. Electronic Notes in The-

oretical Computer Science, 223:239–264, 2008. doi:10.1016/j.entcs.2008.12.042.
38 Philippe Schnoebelen. Revisiting Ackermann-hardness for lossy counter machines and reset

Petri nets. In Proc. 35th International Symposium Mathematical Foundations of Computer
Science (MFCS), pages 616–628, 2010. doi:10.1007/978-3-642-15155-2_54.

CONCUR 2018

http://dx.doi.org/10.1007/3-540-36206-1_14
http://dx.doi.org/10.1007/3-540-36206-1_14
http://dx.doi.org/10.1007/978-3-319-11439-2_9
http://dx.doi.org/10.1007/978-3-319-11439-2_9
http://dx.doi.org/10.1016/0304-3975(79)90041-0
http://dx.doi.org/10.1016/0304-3975(79)90041-0
http://dx.doi.org/10.1007/978-3-319-46520-3_6
http://dx.doi.org/10.1007/978-3-319-46520-3_6
http://dx.doi.org/10.1145/2629608
http://dx.doi.org/10.1016/S0022-0000(69)80011-5
http://dx.doi.org/10.1145/800070.802201
http://dx.doi.org/10.2307/2695329
http://dx.doi.org/10.2307/2695329
http://dx.doi.org/10.1016/0304-3975(77)90001-9
http://dx.doi.org/10.1137/0213029
http://dx.doi.org/10.1016/0304-3975(78)90036-1
http://dx.doi.org/10.1016/j.entcs.2008.12.042
http://dx.doi.org/10.1007/978-3-642-15155-2_54

Verifying Quantitative Temporal Properties of
Procedural Programs
Mohamed Faouzi Atig
Uppsala University, Sweden

Ahmed Bouajjani1

IRIF, Paris Diderot University, France

K. Narayan Kumar2

Chennai Mathematical Institute and UMI RELAX, India

Prakash Saivasan
TU Braunschweig, Germany

Abstract
We address the problem of specifying and verifying quantitative properties of procedural pro-
grams. These properties typically involve constraints on the relative cumulated costs of executing
various tasks (by invoking for instance some particular procedures) within the scope of the execu-
tion of some particular procedure. An example of such properties is “within the execution of each
invocation of procedure P , the time spent in executing invocations of procedure Q is less than
20% of the total execution time”. We introduce specification formalisms, both automata-based
and logic-based, for expressing such properties, and we study the links between these formalisms
and their application in model-checking. On one side, we define Constrained Pushdown Systems
(CPDS), an extension of pushdown systems with constraints, expressed in Presburger arithmetics,
on the numbers of occurrences of each symbol in the alphabet within invocation intervals (sub-
computations between matching pushes and pops), and on the other side, we introduce a higher
level specification language that is a quantitative extension of CaRet (the Call-Return temporal
logic) called QCaRet where nested quantitative constraints over procedure invocation intervals
are expressible using Presburger arithmetics. Then, we investigate (1) the decidability of the
reachability and repeated reachability problems for CPDS, and (2) the effective reduction of the
model-checking problem of procedural programs (modeled as visibly pushdown systems) against
QCaRet formulas to these problems on CPDS.

2012 ACM Subject Classification Theory of computation → Logic and verification, Software
and its engineering → Model checking, Software and its engineering → Software verification

Keywords and phrases Verification, Formal Methods, Pushdown systems, Visibly pushdown,
Quantitative Temporal Properties

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.15

1 Introduction

Reasoning about performances requires checking properties on the cumulated costs of actions
along program computations. Different types of costs can be considered corresponding to
consumption of resources such as time, memory, energy, etc. To be able to reason about the
action costs, amounts to the ability to count numbers of occurrences of different actions in

1 Partially supported by Indo-French project AVeCSo
2 Partially supported by Indo-French project AVeCSo, Infosys Foundation, DST-VR Project P-02/2014

© Mohamed Faouzi Atig, Ahmed Bouajjani, K. Narayan Kumar, and Prakash Saivasan;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 15; pp. 15:1–15:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 Verifying Quantitative Temporal Properties of Procedural Programs

computations (since weights can be associated to actions representing their various costs).
Therefore, it is important to develop formal program models and specification languages (1)
that allow the expression of counting constraints in different computation segments, and
(2) that are useful for algorithmic verification of programs against quantitative properties
involving these counting constraints. The goal of this paper is to propose such formalisms,
both automata and logic based, for reasoning about the behaviors of procedural programs,
i.e., sequential programs with (potentially recursive) procedure calls.

Quantitative properties of procedural programs are typically temporal properties including
cost constraints on execution intervals corresponding to procedure invocations. An example of
such a property is the invariant “within the execution of every terminating call to procedure
P , the cumulated cost of executing all the calls by P to the procedure Q is less that 20% of
the total cost of executing P”. Then, formalisms for expressing such properties must have
mechanisms allowing to express counting constraints in the scope of computation intervals
between procedure calls and returns.

In the framework of automata-based formalisms, it is well know that pushdown systems
(PDS) are natural models for procedural programs. Our first contribution is to introduce
Constrained Pushdown Systems (CPDS), an extension of PDS by counting constraints on
execution intervals between two matching push and pop operations (i.e., the push of an
element to the stack, and the corresponding pop of that element from the stack). The counting
constraints, expressed in Presburger arithmetics, concern the numbers of occurrences of the
input alphabet symbols in the computation segment between these two matching operations.
In order to impose these constraints, we consider an extended stack alphabet, where, in
addition to plain stack symbols, push operations can push to the stack a pair of stack symbol
γ and a counting constraint f . When a pair (γ, f) is popped from the stack, the automaton
checks the satisfaction of the constraint f by the word read since it was pushed to the stack.

In the framework of logic-based formalisms, the temporal logic CaRet [6] has been
introduced as a suitable specification formalisms for procedural programs. The second
contribution is to introduce Quantitative CaRet (QCaRet), and extension of CaRet by
counting constraints over procedure call-return intervals. Counting constraints within a
call-return interval concern the cumulated lengths of the outer-most call-return intervals
of each procedure. So, basically, QCaRet is the extension of CaRet with an operator Wf

parametrized by a Presburger formula f . A QCaRet formula Wf (ϕ) is satisfied at a point of
a computation if that point corresponds to the call of a procedure, say P , and if both f and
the QCaRet subformula ϕ are satisfied in the call-return interval of the procedure P . Notice
that this allows nesting of temporal properties with counting constraints.

Then, we investigate the decision problems for these two formalisms. First, we prove
that the reachability problem of CPDS is undecidable in general. However, we prove that
under the assumption that the number of constraints in the stack is bounded – we call
constraint height-bounded CPDS the class of CPDS corresponding to this assumption, the
reachability problem becomes decidable and the same holds for the repeated reachability
problem. Constraint height-bounded CPDS is a powerful class of automata allowing to
express interesting non context-free languages. Interestingly, this class allows also to prove
that QCaRet is decidable. Indeed, we show that the satisfiability problem of QCaRet can be
reduced to solving repeated reachability in CPDS. The same reduction allows to show that
the model-checking problem of procedural program, modeled as visibly PDS, against QCaRet
formulas is decidable. A crucial point that leads to the decidability of the satisfiability
and model-checking problems for QCaRet is the fact that counting constraints are about
outermost calls of procedures in a call-return interval. This is necessary for the reduction

M. F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 15:3

to constraint height-bounded CPDS decision problems. Another important and nontrivial
contribution is that the complexity is shown to be elementary. Indeed, a more direct way of
doing the reduction would use nested computations of Parikh images that would lead to a
tower of exponentials depending on the size of the formula.

Related work. Extensions of word automata with counting constraints (such as Parikh
automata and CQDDs) have been studied in the literature [21, 20, 12, 13, 19, 11]. These
works cannot be used for reasoning about nested words (except [19] which extends visibly
pushdown automata with reversal bounded counters). There are also works allowing to
reason about unbounded-width trees using counting constraints (e.g., [22, 21, 23]), however,
these constraints concerning the immediate successors of a node in a tree, cannot encode
the type of constraints imposed by CPDS on nested words (that would correspond to global
constraints on a whole subtree). CaRet is the first logic that was tailored to the specification
of procedural programs. Extensions and variants of this logic have been proposed [7, 5], but
none of them allow reasoning about quantitative properties. Extensions of temporal logics
with counting constraints have been studied, e.g., in [21, 22], but again they are interpreted
on words or on trees but without allowing to express (nested) constraints on nested words.

Several extensions of pushdown systems with either data or time have been studied in the
literature (see e.g., [3, 2, 16, 4, 9, 14, 17, 1, 10, 15]). However, all these works are orthogonal
to ours since they do not allow counting constraints on execution intervals between two
matching push and pop operations.

2 Preliminaries

Let Σ be a finite alphabet. We use Σ∗ and Σ+ to denote the set of all finite words and
non-empty finite words respectively over Σ; and use ε to denote the empty word. We also
write Σε for Σ ∪ {ε}. A language is a (possibly infinite) set of words. We let |w| denote the
length of the word w. Let w = a1a2 . . . an. We write w(i) for ai and w[i..j] for w(i) · · ·w(j).
For w ∈ Σ∗, Γ ⊆ Σ, we use w↓Γ∈ Γ∗ for the projection of w on the Γ. We will also consider
infinite words and languages of infinite words over Σ.

The set of linear constraints over a set V (written C(V)) is the set of expressions of
the form c1x1 + c2x2 . . . ckxk # 0, where xi ∈ V , # ∈ {<,>,=} and ci ∈ Z. The size of
such a constraint ϕ, written |ϕ|, is sum of k and the number of bits needed to describe the
sequence c1, c2, ...ck. That is, we assume that the values ci are provided in binary notation.
A valuation v is a map that assigns a value from N to each element of V . We write v |= ϕ to
mean that ϕ is satisfied by the valuation v (and whose meaning is evident). We shall write
BC(V) to denote formulas over C(V) constructed using ∧ and ∨. The satisfaction relation |=
is extended to BC(V) in the obvious manner.

Given a word w over an alphabet Σ, we write π(w) to denote the Parikh map defined
by π(w)(a) is the number of occurrences of a in w for all a ∈ Σ. Let L be a language over
Σ] Σ′ and let σ be a function from Σ′ to languages over Σ. We write σ(L) for the language
{x1y1x2y2 . . . ykxk+1 | ∀i. xi ∈ Σ∗,∃a1, . . . , ak ∈ Σ′. x1a1x2a2 . . . akxk+1 ∈ L,∀i. yi ∈ σ(ai)}.

3 Constrained Pushdown Systems

A constrained pushdown system (CPDS) A is a tuple (Q,Γ,Σ, δ, s) where Q is the set of
states, Γ is the stack alphabet, Σ is the tape alphabet, s ∈ Q is the initial state and δ is the
transition relation. We use ⊥ 6∈ Γ to denote the stack bottom symbol. Let ΓC = Γ× BC(Σ)

CONCUR 2018

15:4 Verifying Quantitative Temporal Properties of Procedural Programs

and Γe = Γ∪ ΓC . The transition set δ is a subset of Q×SO×Σ×Q where SO is the set of
stack operations given by {push(X), pop(X), Y ?, int | X ∈ Γe, Y ∈ Γ∪ {⊥}}. The operation
push(X) pushes X, with X ∈ Γe, on to the stack. The operation pop(X) removes such an
X from the stack. The Y ? operation checks if the current top of stack is either Y or in
{Y } × BC(Σ). Finally, the operation int is an internal action (i.e., independent of the stack).
Thus, CPDS are PDS enriched with the ability to add constraints to stack symbols.

A configuration of the CPDS A is a pair (q, γ) with q ∈ Q and γ ∈ Γ∗e⊥. The initial
configuration is the pair (s,⊥). The transition relation τ−→A, with τ ∈ δ, on the set of config-
urations is defined as follows: (1) if τ = (q, a, int, q′) then (q, γ) τ−→A(q′, γ) (Internal move),
(2) if τ = (q, a, push(X), q′) then (q, γ) τ−→A(q′, Xγ) (Push), (3) if τ = (q, a, pop(X), q′) then
(q,Xγ) τ−→A(q′, γ) (Pop), and (4) if τ = (q, a, Y ?, q′) then (q,Xγ) τ−→A(q′, Xγ) if X = Y or
X ∈ {Y } × BC(Σ) (Test). We often write −→ for −→A when A is clear from the context.

The transition relation extends naturally to sequences of transitions: (q, γ) ε−→(q, γ) and
(q, γ) σ.τ−−−→(q′, γ′) if there is (q′′, γ′′) such that (q, γ) σ−→(q′′, γ′′) and (q′′, γ′′) τ−→(q′, γ′). We
call this an unconstrained run on the sequence of transitions σ. Given two unconstrained
runs ρ1 = (q, γ) σ1−−→(q′, γ′) and ρ2 = (q′, γ′) σ2−−→(q′′, γ′′), the concatenation ρ1ρ2 denotes the
unique run (q, γ) σ1.σ2−−−−→(q′′, γ′′).

Let ρ := (q0, γ0) τ1−−→(q1, γ1) . . . , (qi−1, γi−1) τi−−→(qi, γi) . . . τn−−→(qn, γn) be an uncon-
strained run. We define a binary relation y on positions in ρ as follows: i y j then
the ith transition is a push and the symbol pushed in this transition is popped by the
jth transition. Formally i y j if 0 < i < j ≤ n and further τi = (qi−1, ai, push(X), qi),
τj = (qj−1, aj , pop(X), qj), for each i ≤ k < j, γi = Xγi−1 is a suffix of γk and γj = γi−1.

Clearly, if iy j and i′ y j then i = i′ and if iy j and iy j′ then j = j′. We note that
that if γ0 is a suffix of γk for each 0 ≤ k ≤ n then for any pop transition, say j, there is a
unique i such that iy j. In particular, this is true whenever γ0 = ⊥.

We are now in a position to define the constrained runs (or simply runs) of the CPDS
A. An unconstrained run ρ = (q0, γ0) τ1−−→(q1, γ1) . . . , (qk−1, γk−1) τk−−→(qk, γk) . . . τn−−→(qn, γn)
with τk = (qk−1, ak, opk, qk) is a constrained run if for every transition of the form τj =
(qj−1, aj , pop(Y, ϕ), qj) and iy j, we have π(ai . . . aj) |= ϕ. Pushing a stack symbol of the
form (Y, ϕ) enforces the requirement that the sequence of letters read from this transition
upto the transition that pops this symbol from the stack satisfies the constraint ϕ. However,
observe that constraints that are pushed on to the stack but not popped along the run do
not place any requirements. In what follows, we shall write run to mean constrained run.

We also write (q, γ) a,op−−−→(q′, γ′) if there is a transition τ = (q, a, op, q′) and (q, γ) τ−→(q′, γ′)
as this simplifies notation at many places. We write (q, γ) w−−→(q′, γ′) if either w = ε,
q = q′ and γ = γ′ or w = a1a2 . . . ak, k ≥ 1, with ai ∈ Σε for 1 ≤ i ≤ k, and
further we can find configurations (qi, γi) and operations opi, 0 ≤ i < k, such that
(q, γ) = (q0, γ0) a1,op1−−−−−→(q1, γ1) · · · (qk−1, γk−1) ak,opk−−−−−→(qk, γk) = (q′, γ′) is a run. We write
(q, γ) ∗−→(q′, γ′) to mean that there is some w with (q, γ) w−−→(q′, γ′).

Our aim is to study the reachability problem for CPDS. That is, given a CPDS A and
a state q ∈ Q, determine whether there is a run (s,⊥) ∗−→(q, γ). We will also consider
the repeated reachability problem, where the aim is to determine if there is an infinite run
(s,⊥) ∗−→(q, γ1) ∗−→(q, γ2) . . . that visits the state q infinitely often.

We may equip a CPDS A = (Q,Γ,Σ, δ, s) with a set of accepting states F ⊆ Q to
obtain a constrained pushdown automaton (CPDA) A′ = (Q,Γ,Σ, δ, s, F). The language,
L(A), accepted by A′ is defined naturally as {w ∈ Σ∗ | (s,⊥) w−−→(q, γ), q ∈ F}. Clearly, the
language emptiness problem for CPDAs is equivalent to the reachability problem for CPDS.

M. F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 15:5

The CPDA model is quite expressive as indicated by the following examples.
L1 = {anbmcndm | n,m ≥ 0}. Not a CFL, but recognized by Parikh Automata [20, 12].
L2 = {w#wR | w ∈ {a, b}∗, |π(w)(a) = π(w)(b)}. Not a CFL, not recognized by Parikh
Automata, recognized by Parikh Pushdown Automata [20, 21]
L∗1, L

∗
2. Unlikely to be recognizable by Parikh Pushdown Automata.

L0 = {w ∈ {a0, b0}∗ | π(w)(a0) = π(w)(b0)}
Li+1 = {w ∈ (ai+1L

i + bi+1L
i)∗ | π(w)(ai+1) = π(w)(bi+1)}.

The automaton for Li stores upto i+ 1 constraints at any point in the stack. Automata
for L1, L2, L

∗
1 and L∗2 store at most one.

4 Visibly Pushdown Systems

Visibly Pushdown Systems (VPDS) [7] are natural formal model of procedural programs.
Formally, a VPDS is a PDS whose alphabet Σ = Σ↓ ∪ Σ↑ ∪ ΣL and any transition on

a letter from Σ↓ must push a value on the stack, any transition on Σ↑ must pop a value
from the stack and any transition on a letter from ΣL must be an internal move or a test.
Transitions on ε must also be internal or test moves and hence leave the stack unchanged.
VPDSs have been extensively studied in literature and have several advantages over PDSs
[7]. They enjoy a host of other algorithmic and language theoretic properties: the class of
languages definable in the model is effectively closed under boolean operations, emptiness
and universality are decidable.

We shall work with a specific variety of visible alphabets which makes explicit the set
of procedures involved. Let ∆ be a set of letters and Π be a set of procedures. The visible
alphabet Σ(∆,Π) is given by Σ↓ = ∆×{call(P) : P ∈ Π}, Σ↑ = ∆×{ret(P) : P ∈ Π} and
ΣL = ∆×{int}. The words over such an alphabet that constitute behaviours of VPDSs have
a particular form and we describe that now. A word σ over Σ↓ ∪Σ↑ ∪ΣL is well-nested if (1)
for each prefix σ′ of σ, |σ′ ↓Σ↓| ≥ |σ′ ↓Σ↑|, and (2) if σ(i) = (c, call(P)), σ(j) = (c′, ret(P ′))
with |σ[i..j] ↓Σ↓| = |σ[i..j] ↓Σ↑| then P = P ′. In addition if σ is finite and has the same
number of letters from Σ↓ and Σ↑ then we say it is a complete well-nested word.

We shall overload the symbol y and write iy j for positions i, j in a well-nested word
σ if σ(i) = (c, call(P)), σ(j) = (c′, ret(P)) with |σ[i..j]↓Σ↓| = |σ[i..j]↓Σ↑|. It captures the
call-return relationship. We shall also write i yP j to explicitly indicate the associated
procedure. Clearly if iy j and i′ y j′ then either the intervals [i, j] and [i′, j′] are completely
disjoint or one is contained in the other. If iyP j and [i, j] is not contained in any interval
[i′, j′] with i′ yP j

′ then we say that [i, j] is an outermost call to P in σ.
For any well-nested word σ, we define the map πPr(σ) from Π ∪ {⊥} to N as follows: (1)

πPr(σ)(⊥) = |σ|, (2) πPr(σ)(P) =
∑
{j − i+ 1 | [i, j] is an outermost call of P in σ}. The

function πPr(σ)(P) computes the total length of all the outermost calls to the procedure P
while πPr(σ)(⊥) reports the length of σ. Notice that any word read by a VPDS along a run
will be a well-nested word.

5 A Quantitative Extension of CaReT

We introduce in this section an extension of CaRet [6] which permits us to reason about
quantitative properties of VPDSs using constraint formulas.

Let AP be a set of atomic propositions, and let Π be a finite set of procedure names.
Then, we let Prop = 2AP ∪ {call(P), ret(P) : P ∈ Π}. We use p, p1, p2, . . . to refer to

CONCUR 2018

15:6 Verifying Quantitative Temporal Properties of Procedural Programs

elements of Prop and P, P ′, . . . to refer to procedures in Π. We use f, f1, f2, . . . to refer to
constraint formulas in BC(Π ∪ {⊥}). Formulas of QCaRet are given by the following syntax.

ϕ ::= p | ¬ϕ |ϕ ∨ ϕ | ©g ϕ | ©a ϕ | ©c ϕ |ϕUgϕ |ϕUaϕ |ϕUcϕ |Wf (ϕ)

The logic CaReT is the sub-logic without the Wf operator. As with CaReT, the formulas
are interpreted over well-nested words, both finite and infinite, over a visible alphabet, in
this case Σ(AP,Π) where Σ↓ = 2AP × {call(P) : P ∈ Π}, Σ↑ = 2AP × {ret(P) : P ∈ Π}
and ΣL = 2AP × {int}. For any well-nested word σ and position i, we define three different
notions of successors as follows: (1) sucg(i) is i+ 1 if |σ| > i and ⊥ (to denote undefined)
otherwise. (2) suca(i) = sucg(i) if σ(i) 6∈ Σ↓, suca(i) = j if σ(i) ∈ Σ↓ and i y j, and
suca(i) = ⊥ otherwise. (3) succ(i) = j if j is the largest number less than i for which there
is a k with j y k and i ≤ k. succ(i) = ⊥ if no such j exists. With all this we can define the
semantics of the formulas w.r.t any well-nested word σ and any position i in σ:

(σ, i) |= p iff σ(i) = (c, C), p ∈ c ∪ {C}
(σ, i) |= ¬ϕ iff (σ, i) 6|= ϕ

(σ, i) |= ϕ1 ∨ ϕ2 iff (σ, i) |= ϕ1 or (σ, i) |= ϕ2

(σ, i) |=©xϕ iff sucx(i) 6= ⊥ and (σ, sucx(i)) |= ϕ for x ∈ {a, c, g}
(σ, i) |= ϕ1 Uxϕ2 iff ∃n. ∃i0, i1, · · · , in. i0 = i and

∀k. 0 ≤ k < n implies
(
sucx(ik) = ik+1 and (σ, ik) |= ϕ1

)
and (σ, in) |= ϕ2

(σ, i) |= Wf (ϕ) iff ∃j. iy j and [i, j] is an outermost call in σ and
πPr(σ[i+ 1, j − 1]) |= f and (σ[i+ 1, j − 1], 1) |= ϕ

We say that σ |= ϕ if (σ, 1) |= ϕ. We define the finite and infinite word languages defined by
ϕ: L(ϕ) = {σ | σ |= ϕ, |σ| <∞} and Lω(ϕ) = {σ | σ |= ϕ, |σ| =∞}.

In addition to properties expressible in CaRet, QCaRet allows to express (nested) quantita-
tive constraints. Below are few examples of such QCaRet formulas (here ♦x(Ψ) = True Ux Ψ
and �x(Ψ) = ¬♦x(¬Ψ)):

For every outermost invocation of P , the time spent in executing outermost invocations
to Q is less than 20% of the total execution time.

�g(call(P) ∧WTrue ⇒W(5Q≤⊥)True)

For every outermost procedure execution interval where the cumulated time of executing
Q is lower than half of the total execution time, the execution time of Q is less than the
cumulated execution time of P in that same procedure interval execution, and there must
be one invocation to Q in that interval that takes more that 5 time units

�g
(
W2Q≤⊥True⇒

(
WQ≤P (♦g(call(Q) ∧W⊥>5True))

))
For the logic CaReT obtained by omitting the Wf operator, it is known from [6, 5] that

these languages are languages of Visibly Pushdown Automata (VPA) and Büchi Visibly
Pushdown Automata (BVPA) respectively.

We investigate in the next sections the translation of QCaRet to (a visible version of)
CPDSs. In [5], “qualitative” extensions of CaRet have been defined. We can extend them
to quantitative versions in the same way as we did above by adding the operator Wf . The
approach we will present in the rest of the paper can be applied in the same way to these
extensions, and the results concerning decidability of the satisfiability and model checking
problems and their complexity can be obtained for them in a similar way.

M. F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 15:7

6 Reachability/Emptiness for CPDAs

In this section we shall examine the reachability problem for CPDSs (equivalently, the
language emptiness problem for CPDAs). While the general problem is undecidable, we
identify an interesting decidable under-approximation which provides an important tool in
proving the decidability of QCaReT.

6.1 Undecidability of Reachability
In this section, we show that the reachability problem for CPDSs is undecidable, infact it
is possible to simulate the runs of a 2 Counter Machine (2CM) using a CPDA over the
alphabet Σ = {inc1, inc2, dec1, dec2, z1, z2}. Σ also also serves as its stack alphabet. The
simulation proceeds in two phases. In the first, the CPDA guesses the sequence of transitions
used in an accepting run of the 2CM, in reverse order, and pushes corresponding counter
operations on the stack. While doing so, it also conjoins constraints with the decrements
and test for zeros as follows: to simulating a decrement transition by counter i it pushes
(deci, (inci >= deci)) and to simulate a test for zero on counter i it pushes (zi, (inci = deci))
where i ∈ {1, 2}. This entire phase is executed without reading any input. For the guessed
sequence of transitions (in reverse) to constitute an accepting run, we need to verify that
the counters remained positive throughout the run and that all zero tests were successful.
This is done in the second phase, where it repeatedly pops its stack and reads the same
letter from the input tape till it reaches the empty stack and accepts if it does. The second
phase processes operations of guessed accepting run in the correct order, and it is easy to see
that the constraints inserted into the stack ensure that every zero test was indeed successful
and none of the decrements resulted in a negative value for the counter, thus verifying the
validity of the guessed run. This gives us the following theorem.

I Theorem 1. The language emptiness problem for CPDAs (reachability problem for CPDS)
is undecidable.

6.2 Technical Preliminaries
Before we proceed to the under-approximation we introduce some notations and prove
an useful technical lemma. Let A = (Q,Γ,Σ, δ, s) be an CPDS. We say that a run
(q0, γ0) τ1−−→(q1, γ1) . . . , (qi−1, γi−1) τi−−→(qi, γi) . . . τn−−→(qn, γn) is a weak X-run, X ∈ Γe ∪{⊥},
if there is a γ such that γ0 = Xγ and for each 0 ≤ i ≤ n, γi = γ′iXγ, that is, Xγ is a
suffix of the stack contents of each configuration. In this case, for any γ′, the following
run (q0, Xγ

′) τ1−−→(q1, γ
′
1Xγ

′) . . . , (qi−1, γ
′
i−1Xγ

′) τi−−→(qi, γ′iXγ′) . . .
τn−−→(qn, γ′nXγ′) is also a

weak X-run, where γ′iXγ = γi, 1 ≤ i ≤ n. Thus, we may say there is a weak X run from
(q0, X) to (qn, X) to mean that there is such a run, without being specific about γ. We call
such a run a weak X-run from q0 to qn. Further, if γn = Xγ = γ0 we say call it an X-run.

We let LXq,q′(A), q, q′ ∈ Q, be the set of words w such that there is a weak X-run from q

to q′ on w. A CPDA for LXq,q′(A) can be constructed easily from A. The desired automaton
AXq,q′ is (Q,Σ,Γ, δXq,q′ , q, {q′}) where δXq,q′ = δ \ {(r, c, O, r′) | O = (?⊥)} ∪ {(r, c, (?⊥), r′) |
(r, c, (?X), r′) ∈ δ}. It treats ⊥ as the symbol X for tests, never pops this “X” and never
succeeds on a test for ⊥. The size of the new automaton is linear in the size of A.

Another language of particular interest is the following: Suppose X = (Y, ϕ) and further
that τ = (p, a, push(X), q) and τ ′ = (p′, b, pop(X), q′) are transitions involving the push and
pop of the same symbol. Then, we let LXτ,τ ′(A) be {w = a.y.b | there is an X-run on y from q

to p′}. This identifies the languages of words recognized by runs consisting of τ , followed by

CONCUR 2018

15:8 Verifying Quantitative Temporal Properties of Procedural Programs

an X-run from q to p′, followed by τ ′. Please note that we use X-runs and not weak X-runs
here. Finally, observe that this definition does not require that ϕ is satisfied by π(ayb) (while
the constraints along the run on y are enforced). This language is accepted by the CPDA
AXτ,τ ′ = (Q ∪ {sa, tb},Σ,Γ, δXτ,τ ′ , sa, {tb}) where δXτ,τ ′ = {(sa, a, int, q), (q′, b,⊥?, tb)} ∪ δ \
{(r, c, O, r′) | O = (?⊥)} ∪ {(r, c, (?⊥), r′) | (r, c, (?X), r′) ∈ δ}. The size of this automaton
is linear in the size of A. To summarize,

I Lemma 2. Let A = be a CPDS and let X ∈ Γe. Then for any q, q′ ∈ Q, the language
LXq,q′(A) is recognized by a CPDA AXq,q′ whose size is linear in A. Further, for any X =
(Y, ϕ) ∈ ΓC and τ = (p, a, push(X), q), τ ′ = (p′, b, pop(X), q′) ∈ δ, the language LXτ,τ ′(A) is
recognized by a CPDA AXτ,τ ′ whose size is linear in A.

6.3 Constraint height Bounded CPDAs
The constraint height of a configuration (q, γ) is defined by |γ ↓Γ×C(Σ) | (i.e., the number of
constraint symbols in the stack). The constraint height of a finite run ρ is the maximum
of the constraint heights of the configurations visited along ρ. The constraint height of an
infinite run is defined similarly, with ∞ acting as the upper bound of the set of all integers.

For any CPDS A, we say that a state q is K constraint height reachable (or K-reachable for
the sake of succinctness) if there is a run (s,⊥) ∗−→(q, γ) whose constraint height is bounded
by K. The K-reachability problem is to determine if there is such a run. Similarly, for any
CPDA A, LK(A) is the set of all words accepted by runs with constraint height bounded by
K. Note that all the example languages listed at the end of Section 3 are constraint height
bounded.

When K = 0 we are effectively left with the pushdown system obtained by removing all
the transitions involving constraints. Thus, 0-reachability is clearly decidable. Our main
technical result is that the K-reachability problem for CPDS (or equivalently, the emptiness
of LK(A) for CPDAs) is decidable for any K ≥ 0. Our proof of decidability establishes a
stronger property as stated in the following theorem:

I Theorem 3. Let A be a CPDA and let K ∈ N. Then, π(LK(A)) is effectively semilinear
and a finite-state automaton M with the same Parikh image can be computed in 2-EXPTIME.

The rest of this section is devoted to the proof of this theorem. As a first step, we recall
the Parikh’s Theorem which states that the language of a pushdown automaton A can be
simulated by a Nondeterministic Finite Automaton (NFA) upto Parikh-image equivalence.

I Lemma 4 ([18]). Let A be a pushdown automaton. We can construct an NFA M such that
π(L(M)) = {π(w) | w ∈ L(A)} and the size of M is bounded by 2p(|A|) for a polynomial p.

We now make use of a result from [8] to extend this to CPDAs.

I Lemma 5. Let M be an NFA over Σ and ϕ be a formula in BC(Σ). Then we can
construct an NFA M ′ with size bounded by 2|ϕ|.(|M |.2|ϕ|)|Σ|d.k for some constant d, such
that π(L(M ′)) = π({w | w ∈ L(M) & π(w) |= ϕ}), and where k is the depth of the formula
and hence bounded by |ϕ|.

The next lemma lists a couple of simple results about substitutions and Parikh-images.

I Lemma 6. Let L be a language over Σ] Σ′ and let σ assign a language σ(a) over Σ for
each a ∈ Σ′.
1. If L′ is Parikh-equivalent to L and L′a is Parikh-equivalent to σ(a) for each a ∈ Σ′ then,

σ′(L′), with σ′(a) = L′a, is Parikh equivalent to σ(L).

M. F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 15:9

2. If M is an NFA for L and Ma is an NFA for σ(a), a ∈ Σ′, then we can obtain an NFA
for σ(L) by replacing each transition on any letter a ∈ Σ′ by a copy of Ma. Thus, there
is an NFA for σ(L) whose size is bounded by |M |(Maxa∈Σ′ |Ma|).

We now have the technical ingredients in place to address the proof of Theorem 3. We begin
by observing that, given a CPDA A = (Q,Σ,Γ, δ, s, F) and a number K we can construct
an CPDA A[K] such that LK(A) = LK(A[K]) = L(A[K]). Further, A[K] faithfully records
information regarding the constraint height of the configuration in its control state. This
automaton is defined as follows: A[K] = (Q×{0, 1, . . . ,K},Σ,Γ, δK , (s,K), F×{0, 1, . . . ,K}).
The transition relation δK is defined as follows:

((q, i), a, push((Y, ϕ)), (q′, i−1)) ∈ δK whenever (q, a, push((Y, ϕ)), q′) ∈ δ and 1 ≤ i ≤ K
((q, i), a, pop((Y, ϕ)), (q′, i+ 1)) ∈ δK whenever (q, a, pop((Y, ϕ)), q′) ∈ δ and 0 ≤ i < K

((q, i), a, O, (q′, i)) ∈ δK whenever (q, a,O, q′) ∈ δ and O does not involve constraints.
The transition relation δK faithfully simulates δ, moves from copy i to copy i − 1 while
pushing a constraint and moves from copy i to copy i + 1 on popping a constraint. The
constraint height of any reachable configuration with control state (q, i) is therefore K − i.
A state of the form (q, 0) does not permit pushing any constraint symbol. Also note that, for
any 0 ≤ j ≤ K, δj is just δK restricted to the state space of A[j] (Q× {0, 1, . . . , j}).

Our strategy for the proof of Theorem 3 is the following: We will argue by induction on j,
0 ≤ j ≤ K that for any symbol X = (Y, ϕ) ∈ ΓC and any pair of transitions τ, τ ′ ∈ δj \ δj−1

which push and pop X respectively, we can construct an NFA Parikh-equivalent to LXτ,τ ′(A[j])
whose size is bounded by a function f(j). We shall then derive an expression bounding f(j),
j ≤ K. This will form a key ingredient in the proof of Theorem 3.

We observe that if j = 0 then there no transitions that push (or pop) symbols ΓC and
hence nothing is to be proved. We take f(0) = 1 (since LXτ,τ ′(A[0]) = ∅).

We proceed inductively as follows: We write B for A[j]Xτ,τ ′ to simplify the notation. We
construct a simple pushdown automaton P from B. This automaton simulates B on all tran-
sitions other than those that push/pop elements of ΓC . From any state (p, j − 1), instead of
executing a push transition of the form µ = ((p, j− 1), c, push((Z,ψ)), (p′, j− 2)) it nondeter-
ministically guesses a corresponding pop transition µ′ = ((q, j − 2), d, pop((Z,ψ)), (q′, j − 1))
(which must exist along any accepting run of B = A[j]Xτ,τ ′ – as the run must return to level j
before acceptance) and simply outputs (i.e. reads from the input tape) a symbol (µ, (Z,ψ), µ′)
to indicate this guess and changes state to (q′, j − 1). Thus, this automaton does not need
states of the form (p, i) for p ∈ Q and i < j − 1 and it never leaves “level j-1” (except when
executing the transitions τ andτ ′).

Let ΣC [j] = {(µ, (Z,ψ), µ′) | ∃p, p′, q, q′. µ = ((p, j − 1), c, push((Z,ψ)), (p′, j − 2)) and
µ′ = ((q, j − 2), d, pop((Z,ψ)), (q′, j − 1))}. The alphabet of P is Σ ∪ ΣC [j] and its stack
alphabet Γ. Let sa and tb be the initial and final states of B (recall the definition of
A[j]Xτ,τ ′ from Section 3), with a the letter read by τ and b the letter read by τ ′. Then,
P = ({sa, tb} ∪ (Q× {j}),Σ ∪ ΣC [j],Γ, sa,∆, {tb}) and ∆ is given by

δ[j]Xτ,τ ′ \ {(p, c,O, p′) | ∃(Z,ψ).O = push((Z,ψ)) or O = pop((Z,ψ))}
⋃

{((p, j − 1), (µ, (Z,ψ), µ′), (q′, j − 1)) | µ = ((p, j − 1), c, push((Z,ψ)), (p′, j − 2)),
µ′ = ((q, j − 2), d, pop((Z,ψ)), (q′, j − 1)), µ, µ′ ∈ δ[j]Xτ,τ ′}

Fact 1. With σ((µ, (Z,ψ), µ′)) = L(Z,ψ)
µ,µ′ (A[j − 1]), ∀(µ, (Z,ψ), µ′) ∈ ΣC [j], L(B) =

σ(L(P)).
We now construct an NFA MP Parikh-equivalent to P using Lemma 4. Then using

the inductive hypothesis we construct, for each pair of transitions µ,µ′ that push and pop,

CONCUR 2018

15:10 Verifying Quantitative Temporal Properties of Procedural Programs

respectively, the same symbol (Z,ψ) ∈ ΓC , an NFA M ′µ,µ′ Parikh-equivalent to L
(Z,ψ)
µ,µ′ (A[j −

1]). Then, we apply Lemma 5 to obtain an NFA Mµ,µ′ a language Parikh-equivalent to
{w ∈ L(M ′µ,µ′) | π(w) |= ψ}. We let σ′ be the map assigning L(Mµ,µ′) to (µ, (Z,ψ), µ′).
Then, by Lemma 6, σ(L(P)) is Parikh-equivalent to σ′(L(MP)). Thus, by Fact 1, σ′(L(MP))
is Parikh-equivalent to L(B).

The state size of MP is bounded by 2p(|B|) for some polynomial p. But the state space of
B is linear in the state space of A, its alphabet is polynomial in the size of A and its number
of transitions also polynomial in the size of A. Thus, the size of the state space of MP is
bounded by 2r(|A|) for some polynomial r. The number of transitions is bounded by the
product of the size of the alphabet and the number of pairs of states. The number of new
letters is quadratic in the number of transitions of A (in (µ, (Z,ψ), µ′), the value of (Z,ψ) is
determined by µ and µ′). Thus the number of transitions is also bounded by 2r(|A|) for some
polynomial r. Equivalently it is bounded by 2|A|c for some fixed constant c.

The size of each automaton of the from M ′µ,µ′ , by the induction hypthesis, is bounded by
f(j − 1). Then, by Lemma 5, the size of Mµ,µ′ is bounded by 2|ϕ|.(f(j − 1).2|ϕ|)|Σ|d|ϕ| for
some constant d. Thus, by Lemma 6, we have an NFA Parikh-equilvalent to L(B) whose size
is bounded by 2|A|c .2|ϕ|.(f(j − 1).2|ϕ|)|Σ|d|ϕ| . Simplifing, we get the following recurrences for
f(j): (1) f(0) = 1, and (2) f(j) = 2|A|c .2|ϕ||Σ|d|ϕ|+1.f(j − 1)|Σ|d|ϕ| .

This gives f(j) an upperbound of the form O(2O(|A|c.|Σ|d|ϕ|.j).2O(|ϕ||Σ|d|ϕ|.j). Thus, we
have the following Lemma.

I Lemma 7. There is an NFA Parikh-equivalent to LXτ,τ ′(A[j]), 0 ≤ j ≤ K, whose size is
bounded by O(2O(|A|c.|Σ|d|ϕ|.j).2O(|ϕ||Σ|d|ϕ|.j)).

Next we observe that to compute the Parikh-image of LX(q,j),(q′,j)(A[j]) for any X ∈ Γe,
q ∈ Q and 0 ≤ j ≤ K, we may proceed as follows: Any weak X run from (q, j) to (q′, j) can
be broken up as, a segment involving no pushing or popping of letters from ΓC , followed by
a segment from the push of a symbol from ΓC all the way till corresponding pop, followed
by another segment involving no push or pop of letters from ΓC , followed by one beginning
with a push of a constraint and ending with the corresponding pop, and so on. (Recall that
(q, j) and (q′, j) are at the same level j). In particular, any symbol from ΓC that is pushed
must also be popped along such a run. We can use the same idea as in the proof of Lemma 7
and summarize the segments between push and the corresponding pop of (Z,ψ) ∈ ΓC with a
letter of the form (p, j), (µ, (Z,ψ), µ′), (p′, j)) and construct a simple pushdown system with
no constraints. We then compute the Parikh-image of this system. Finally, we substitute
these letters with the language of the corresponding NFAs computed in Lemma 7, and use
Lemma 6 to obtain the desired NFA. This gives us the following Lemma.

I Lemma 8. For any X ∈ Γe and any pair of states (q, j), (q′, j) in A[j], there is an
NFA Parikh-equivalent to LX(q,j),(q′,j)(A[j]), whose size is bounded by O(2O(|A|c.|Σ|d|ϕ|.j).

2O(|ϕ||Σ|d|ϕ|.j)).

Now, we are in a position to complete the proof of Theorem 3. Suppose an accepting run
of A reaches an accepting configuration (f, γ) where the constraint-height of γ is 0. Then,
the corresponding run in A[K] is a weak ⊥-run from (s,K) to (f,K). Its emptiness can be
checked using Lemma 8 by checking the emptiness of a double exponential sized NFA.

If the constraint-height of γ is j with 1 ≤ j ≤ K then, the corresponding run in A[K] is
a run from the state (s,K) to the state (f,K − j).

M. F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 15:11

We break up this run as follows (we let τ` = ((q`, `), a`, push((Y`, ϕ`)), (p`−1, `− 1))):

((s,K),⊥) w1−−→((qK ,K), γK) τK−−→((pK−1,K−1), (YK , ϕK)γK) w2−−→((qK−1,K−1), γK−1)
τK−1−−−−→ . . . ((qj+1, j + 1), γj+1) τj−−→((pj , j), (Yj+1, ϕj+1)γj+1) wj−−→((fj , j), γj)

Here, we have identified that transitions that transfer a run from a state from at k to a state
at level k−1 for the last time along the run, for eachK ≥ k ≥ j+1. The existence of such a run
is equivalent to firstly the existence of transitions ((qk, k), ak, push((Yk, ϕk)), (pk−1, k−1)) for
K ≥ k > j and secondly, the existence of a weak ⊥-run from (s,K) to (qK ,K), (Yk+1, ϕk+1)-
run from (pk, k) to (qk, k) for K > k > j, and a weak (Yj+1, ϕj+1)-run from (pj , j) to (fj , j).
Once the transition sequence in the first part is fixed (and we cycle through there at most
|A|j such sequences one by one), the existence of each of the weak runs in the second part
can be determined using Lemma 8. Thus, we make at the most |A|j .j calls to the emptiness
of NFAs of double exponential size and this can also be done in double exponential space.
This completes the proof of Theorem 3. The following theorem provides a lower bound.

I Theorem 9. The K-reachability problem for CPDS is PSPACE-hard.

We end the section with the following theorem about decidability of repeated reachability.

I Theorem 10. Let A = (Q,Γ,Σ, δ, s, F) be a CPDA let K ∈ N. The problem of deciding if
A has a K constraint height bounded infinite run that visits F infinitely often is decidable in
2-EXPTIME.

7 Visible CPDS with procedural constraints

In this section, we develop a variant of our CPDS model with a view to establish the
decidability of the logic QCaReT. The model by itself is interesting in its ability to model
visible behaviours of recursive programs equipped with constraints. This model is a natural
extension of the VPA model to our setting.

A procedural CPDS (or PCPDS) A is tuple (Q,∆,Π,Γ, δ, s). Its input tape alphabet is
the visible alphabet Σ(∆,Π). It is very similar to a CPDS over this alphabet, except for
the language of constraints it uses (and their interpretation). The set of symbols that are
pushed/popped is ΓP = Π× (ΓPC ∪ Γ) where ΓPC = Γ× BC(Π ∪ ⊥). In particular, a push
transition on an input letter (c, call(P)) must necessarily push a letter of the form (P,Z) for
some Z ∈ ΓPC ∪ Γ. Similarly for pop transitions. Also note that the constraints only refer
to the procedure in the input (and not to elements of the tape alphabet ∆).

The notions of configurations and unconstrained runs are defined as in the case of a
CPDS. The key difference is in the interpretation of the constraints and thus in the definition
of constrained runs. We note that any word (or prefix of a word) read by a PCPDS is
necessarily well-nested.

An unconstrained run ρ = (q0, γ0) τ1−−→(q1, γ1) . . . , (qi−1, γi−1) τi−−→(qi, γi) . . . τn−−→(qn, γn)
with τk = (qk−1, (ck, Pk), ok, qk), 1 ≤ k ≤ n, is a constrained run if for every transition τj
with oj = pop((P, (Y, ϕ))) and iy j (so that Pi = call(P) and Pj = ret(P) for some P ∈ Π)
we have πPr((ci+1, Ci+1) . . . (cj−1, Cj−1)) |= ϕ. Observe here that the enclosing call and
return points are omitted when checking the constraints, unlike CPDAs.

The reachability problem (as well as the associated language emptiness problem) for this
model are defined as usual. These problems remain undecidable in general. We define the
constraint height of configurations and runs of PCPDS analogous to those for CPDS. A
configuration (or control state) is K constraint height reachable or K-reachable, if it can be

CONCUR 2018

15:12 Verifying Quantitative Temporal Properties of Procedural Programs

reached (from the initial configuration) through a run where the constraint height is bounded
by K. The main result of this section is the following:

I Theorem 11. The K-reachability for PCPDS is decidable and is in 2-EXPTIME.

Proof-outline. Our main idea is the following: reduce the K-reachability in a PCPDS to
K-reachability in a CPDS and use Theorem 3. Let A = (Q,∆,Π,Γ, δ, s) be the given PCPDS.
The main difficulty is that, unlike in a CPDS, a constraint ϕ in a PCPDS is not expressed
in terms of the tape letters read along the run, but instead it is expressed in terms of the
number of transitions executed inside various procedures. We plan to handle this by using a
more elaborate tape alphabet.

Consider a segment of a run of A of the form

ρ = (q0, γ0) τ1−−→(q1, γ1) . . . , (qi−1, γi−1) τi−−→(qi, γi) . . . τn−−→(qn, γn)

where 1 y(P,(Y,ϕ)) n. We shall focus our attention on verifying the constraint ϕ on this run
(and ignore the verification of the other constraints pushed and popped along the run). Let
a1 . . . an, ai ∈ Σ(∆,Π), be the word read on the tape in this run. Suppose, ϕ refers to R ∈ Π.
We need to “determine” the value of πPr(a2a3 . . . an−1)(R). Our idea is to replace each letter
ai by an enriched version bi (from an extended alphabet Σ′) so that we may determine the
value of πPr(a2a3 . . . an−1)(R), for each R, from π(b1b2b3 . . . bn−1bn) and also replace the
formula ϕ over Π with an equivalent formula over Σ′. Once we perform this transformation,
the satisfaction of the constraint depends on the (enriched) letters read along the run and
thus we have a obtained a CPDS instead of a PCPDS.

Observe that the contents of the stack at each configuration along ρ can be written as:
γi = γ′i(P, (Y, ϕ))γ0, for all 1 ≤ i ≤ n− 1 and γ0 = γn. The value of πPr(a2a3 . . . an−1)(R),
for any R, is exactly the number of transitions taken from configurations where γ′k includes
an occurrence of an element of {R} × (Γ ∪ ΓC).

The automaton A′ that we construct will simulate A and maintain additional information
in its state and stack. Using this information, it outputs, in addition to ai, the set Si ⊆ Π of
the set of procedure symbols that appear in γ′i−1. Thus, taking bi = (ai, Si), the value of
πPr(a2a3 . . . an−1)(R) is the same as∑

a∈Σ(∆,Π),R∈S⊆Π

π(b1b2b3 . . . bn−1bn)(a, S)

Using this equivalence we transform ϕ into a formula over the letters of the form (a, S).
This idea can easily be generalized to handle all constraints that are pushed/popped

along a run by using the fact that the run is constraint height bounded. J

Furthermore, we can extend this result to the repeated reachability problem as follows:
The CPDS A′ constructed from the PCPDS A in Theorem-11 simulates A and in doing so
maintains the current state of A as part of its state in each step of the simulation. The
automaton A has a K constraint height bounded run visiting q infinite often if and only if
A′ has a K constraint height bounded run visiting some state in which q appears, infinitely
often. By Theorem 10, this is decidable. Thus we have the following theorem.

I Theorem 12. The K constraint bounded repeated reachability problem for PCPDS is
decidable and is in 2-EXPTIME.

M. F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 15:13

8 Decidability of QCaReT

In the following, we show the decidability of the model-checking of our logic QCaReT. To
that aim, we will need first to recall come algorithmic properties of the logic CaReT.

I Theorem 13 ([6, 5]). For any CaReT formula ϕ there is a VPA Aϕ and a BVPA Bϕ such
that L(ϕ) = L(Aϕ) and Lω(ϕ) = L(Bϕ). Further, Aϕ and Bϕ are only exponentially larger
than ϕ.

VPAs and BVPAs are closed under intersection and have decidable emptiness problem [7].
This immediately gives decision procedures for checking the satisfiability of CaReT formulas
as well as for model-checking VPAs/BVPAs w.r.t. CaReT formulas. Our aim is to lift these
results to QCaReT and PCPDAs. We now utilize the theory of PCPDAs developed in the
previous section to provide algorithms for deciding the satisfiability of QCaReT formulas as
well their model checking w.r.t. PCPDAs (and hence VPAs as well).

For any formula ϕ in QCaReT, we may define its depth, denoting the maximum nesting of
the operator Wf in it, as follows: d(p) = 0, d(¬ϕ) = d(ϕ), d(ϕ1 ∨ϕ2) = max(d(ϕ1),d(ϕ2)),
d(©xϕ) = d(ϕ), d(ϕ1 Uxϕ2) = max(d(ϕ1),d(ϕ2)) and d(Wfϕ) = 1 + d(ϕ).

We shall construct a PCPDS Aϕ with L(ϕ) = L(Aϕ) as well as a Büchi PCPDS Bϕ with
Lω(ϕ) = L(Bϕ). We do so by proceeding inductively on the depth of formula ϕ.

If d(ϕ) = 0, then ϕ is in CaReT and the associated automata are given by Theorem 13.
Otherwise, we first turn ϕ into a CaReT formula as follows: LetW = {Wf1(ψ1), . . . ,Wfk

(ψk)}
be the set of outer-most Wf formulas (that is, not within the scope of another Wf operator)
in ϕ. We obtain ϕ′ by replacing Wfi(ψi) by a new propositional variable p(fi, ψi). Let
AP ′ = {p(fi, ψi) | 1 ≤ i ≤ k}. Clearly, ϕ′ is a CaReT formula over the set of propositions
AP ∪AP ′ and the set of procedures Π.

Let σ⇑, for any well-nested word σ over Σ(AP,Π), be the well-nested word over Σ(AP ∪
AP ′,Π) given by σ⇑ (i) = (P ′, Y) where σ(i) = (P, Y), P ′ = P ∪ {p(f, ψ) ∈ AP ′ | (σ, i) |=
Wf (ψ)}. It extends the labelling, interpreting p(f, ψ) as the formula Wf (ψ). Similarly σ′⇓,
for any well-nested word σ′ over Σ(AP ∪ AP ′,Π), is the well-nested word over Σ(AP,Π)
given by σ′ ⇓ (i) = (P, Y) where σ′(i) = (P ′, Y) with P = P ′ ∩ AP . It restricts the labels
to the propositions in AP . Observe that σ = σ ⇑⇓. The following lemma, whose proof is
omitted, is an easy consequence of our construction:

I Lemma 14. For any well-nested word σ over Σ(AP,Π) σ |= ϕ iff σ⇑|= ϕ′.

Now, with this Lemma in place, we proceed by constructing the VPA Aϕ′ using Theorem
13 and use this in the construction of Aϕ. The automaton Aϕ does the following: It simulates
Aϕ′ by guessing a set of propositions from AP ′ at each step and verifies that its guess at each
step is correct. That is, while reading a well-nested word σ over Σ(AP,Π), (i) it simulates
Aϕ′ on a word σ′ with σ′ ⇓= σ (ii) it verifies that σ′ = σ ⇑. This would then mean, by
Lemma 14, that Aϕ accepts the language L(ϕ). We now describe the details of how to build
an automaton satisfying (i) and (ii).

Clearly, (i) can be achieved by nondeterministically guessing a set of propositions from
AP ′ at each step. The difficulty is in ensuring (ii), that is, for each i, 1 ≤ i ≤ |σ|, if C ′i ⊆ AP ′
is the set of propositions guessed in the ith step verify that σ, i |= Wf (ψ) for each p(f, ψ) ∈ C ′i
and that σ, i 6|= Wf (ψ) for each p(f, ψ) ∈ AP ′ \ C ′i. Let us examine the conditions under
which σ, i |= Wf (ψ). This requires the following properties:
1. σ(i) must be in Σ↓. Say σ(i) = (c, call(P)).
2. This must be an outer-most call to P in σ.

CONCUR 2018

15:14 Verifying Quantitative Temporal Properties of Procedural Programs

3. There is a j with iyP j in σ.
4. σ[i+ 1, j − 1] |= ψ

5. πPr(σ[i+ 1, j − 1]) |= f .

Truth of item 1 is determined from the letter σ(i) and so is easy to check. For item 2, we
shall add a component to the state space of Aϕ′ that keeps track of the list of procedures from
Π that are currently active. To maintain this set correctly, we expand the stack alphabet of
Aϕ′ to tag the bottom-most occurrence of each procedure. With this modification we can
determine, while reading an input letter (c, call(P)) whether it is an outer most call to P or
not. Thus, w.l.o.g. we may assume this information is available with the simulation of Aϕ′
and hence the truth of item 2 can be determined.

This leaves us with items 3,4 and 5. The truth of these items depends not only on the
letter at i (and information about outer most calls stored in the state), but on the existence
of a suitable j (as required by item 3) and the word read between positions i and j (to
determine items 4 and 5). The automaton guesses whether such a j exists (and then ensures
that along any accepting run, the guess is indeed correct).

If it guesses that such a j does not exist (it does so only if it also guessed C ′i = ∅, as
implied by the semantics of the Wf operator) then instead of pushing the symbol, say Z,
pushed by Aϕ′ , it pushes a symbol Z⊥. This new symbol feels like Z (in that we allow a test
for Z⊥ to succeed whenever a test for Z succeeds) but there are no transitions that pop this
symbol. This guarantees that we cannot read a return corresponding to the call at position i
using any transition.

If it guesses that a j does exist (and in this case, it must ensure that a return corresponding
to the call at position i is encountered along any accepting run in which such a guess is
made. We shall return shortly to how this can be arranged.) then, for each p(f, ψ) ∈ C ′i,
we must verify that (a) πPr(σ[i+ 1, j − 1]) |= f and (b) σ[i+ 1, j − 1] |= ϕ. The former is
dealt with the power of PCPDS to impose constraints. We simply push the constraint f
onto the stack and the semantics of PCPDS ensures (a). We may have to push several such
f , corresponding to different formulas in C ′i, but then it suffices to push the conjunction of
these constraints. For (b), the idea is to start a copy of the automaton Aψ to read the word
until the position j where the matching return is encountered. Notice that d(ψ) < d(ϕ)
and by the induction hypothesis the existence of Aψ is guaranteed. Observe that copies
are started only at positions i that correspond to outer most calls and the copies terminate
when the corresponding call returns. Thus, there are at most |Π|.|AP ′| such automata under
simulation at any point.

We are not done yet. If the guess is that such a j exists, we are also obliged to show
that for each p(f, ψ) 6∈ C ′i, either (a’) πPr(σ[i + 1, j − 1]) 6|= f or (b’) σ[i + 1, j − 1] 6|= ψ.
Again the automaton guesses which one to verify. To verify , πPr(σ[i+ 1, j − 1]) 6|= f observe
that this is equivalent to πPr(σ[i+ 1, j − 1]) |= ¬f . Thus, we simply do what we did in the
previous paragraph. It suffices to push ¬f as a constraint and let the semantics of PCPDS
take care of the verification of πPr(σ[i+ 1, j − 1]) |= ¬f . If we guess that σ[i+ 1, j − 1] 6|= ψ

then we start a copy of the automaton for A¬ψ (note that d(ϕ) > d(¬ψ)), and verify that
this automaton is in an accepting state when position j is reached.

Thus, the only thing left to explain is how we validate a guess that a j with iy j exists.
The visibility restriction prevents popping of the stack at the end to verify that there are
no pending returns (also such a technique will not work in the construction of Bϕ to deal
with infinite words). The point is that, the number of constraints on the stack at any point
during the run, due to the construction described here (and not counting those due to the
automata Aψ being simulated) is bounded by Π, one per outer most call that is currently

M. F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 15:15

active. Let us call this height outer constraint height. Thus, we can keep track of the outer
constraint height of the stack as part of the control state. Then, at step i, to ensure that the
call at σ(i) returns, we simply record the outer constraint height as a target in the control
state. Whenever the current level falls to a target level we drop that from the target set. An
accepting state verifies in addition that there are no pending targets to be reached. Actually
it suffices to maintain the lowest target at any point and discharge it when it is visited.

In summary, we construct a PCPDS whose state has several components: a global
component that tracks the state of Aϕ′ , records information to recover outer most calls,
tracks the current outer constraint height and tracks the current target for the outer constraint
height. It has also has one component for each pair P ∈ Π and Wf (ψ) ∈ W . This component
maintains the state of the automaton Aψ if a copy of this automaton has been started at the
currently active outermost call to P , or else its value is ⊥. Such a component gets reset to ⊥
whenever the outer most call of P returns (after verifying that it had reached the accepting
state). Finally, the accepting states verify that the simulation of Aϕ′ is accepting, no target
levels are pending and that all the additional components are in the ⊥ state.

The changes needed to handle the Büchi automata construction in the case of Bϕ are
minor. The simulations still use Aψ (since the calls are obliged to terminate at some j). The
only issue is with tracking visits to accepting states of Aϕ′ while ensuring that target levels
are reached. This can be ensured as follows: we do not indicate visits to accepting states
of Aϕ′ when some target is pending. We simply record it in the local state and whenever
we find that all targets have been attained we flag any visits to the accepting state in the
intervening run. Since the setting and unsetting of target levels happens in a well-nested
manner, we are guaranteed to indicate visits to accepting configurations infinitely often as
long as the run met all its obligations (i.e. contains all the necessary returns) and visits
accepting states infinitely often. This gives us the following theorem.

I Theorem 15. For any QCaReT formula ϕ, we can construct a PCPDS Aϕ and Büchi
PCPDS Bϕ such that L(ϕ) = L(Aϕ) and Lω(ϕ) = L(Bϕ). The resulting automata have
O((2|ϕ| × |Π|2)(|Π|.|ϕ|)O(|ϕ|)) states and they are O((|Π|.|ϕ|)O(|ϕ|)) constraint height bounded.

Closure under intersections and emptiness checking (via reachability/repeated reachability)
of PCPDSs means that we may also model check VPAs (as well as constraint height bounded
PCPDAs) against QCaReT specifications.

9 Conclusion

In this work, we provide a method to specify and verify the quantitative properties of
procedural programs. For this purpose, we introduced an automaton model called the
constrained pushdown system (CPDS). We showed that reachability on such systems in
general is undecidable. We then showed that reachability and repeated reachability are
decidable in 2-EXPTIME when the number of constraints in the stack remains bounded.

We also introduced the high level specification language called the QCaReT and an
extension of visibly pushdown system called the procedural CPDS (PCPDS). Finally we
provided an algorithm for satisfiability and model-checking QCaReT formulas against PCPDS
(and hence a VPA) by a reduction to reachability/ repeated reachability on a CPDS.

One question that is left unanswered is whether the decision procedure for decidability of
reachability in CPDS is optimal. While we provide a 2-EXPTIME procedure, we only have a
PSPACE lower bound. As a future work, the language theoretic properties of the constraint
height bounded CPDS is an interesting topic that can be explored.

CONCUR 2018

15:16 Verifying Quantitative Temporal Properties of Procedural Programs

References
1 P. A. Abdulla, M. F. Atig, and J. Stenman. The minimal cost reachability problem in

priced timed pushdown systems. In LATA, volume 7183 of LNCS, 2012.
2 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Giorgio Delzanno, and Andreas Podelski.

Push-down automata with gap-order constraints. In Fundamentals of Software Engineer-
ing - 5th International Conference, FSEN 2013, Tehran, Iran, April 24-26, 2013, Revised
Selected Papers, volume 8161 of Lecture Notes in Computer Science. Springer, 2013.

3 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Jari Stenman. Dense-timed pushdown
automata. In Proceedings of the 27th Annual IEEE Symposium on Logic in Computer
Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012, pages 35–44. IEEE Computer
Society, 2012.

4 S. Akshay, Paul Gastin, and Shankara Narayanan Krishna. Analyzing Timed Systems Using
Tree Automata. In Josée Desharnais and Radha Jagadeesan, editors, 27th International
Conference on Concurrency Theory (CONCUR 2016), volume 59 of Leibniz International
Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2016.

5 Rajeev Alur, Marcelo Arenas, Pablo Barceló, Kousha Etessami, Neil Immerman, and
Leonid Libkin. First-order and temporal logics for nested words. Logical Methods in Com-
puter Science, 4(4), 2008. doi:10.2168/LMCS-4(4:11)2008.

6 Rajeev Alur, Kousha Etessami, and P. Madhusudan. A temporal logic of nested calls
and returns. In Tools and Algorithms for the Construction and Analysis of Systems, 10th
International Conference, TACAS 2004, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2,
2004, Proceedings, 2004. doi:10.1007/978-3-540-24730-2_35.

7 Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of the 36th
Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004,
2004. doi:10.1145/1007352.1007390.

8 Mohamed Faouzi Atig, Dmitry Chistikov, Piotr Hofman, K. Narayan Kumar, Prakash
Saivasan, and Georg Zetzsche. The complexity of regular abstractions of one-counter lan-
guages. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’16, New York, NY, USA, July 5-8, 2016. doi:10.1145/2933575.2934561.

9 Benedikt Bollig, Aiswarya Cyriac, Paul Gastin, and K. Narayan Kumar. Model checking
languages of data words. In Foundations of Software Science and Computational Struc-
tures - 15th International Conference, FOSSACS 2012, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24
- April 1, 2012. Proceedings, volume 7213 of Lecture Notes in Computer Science. Springer,
2012.

10 A. Bouajjani, R. Echahed, and R. Robbana. On the automatic verification of systems with
continuous variables and unbounded discrete data structures. In Hybrid Systems II, volume
999 of LNCS. Springer, 1994.

11 Ahmed Bouajjani and Peter Habermehl. Symbolic reachability analysis of fifo-channel
systems with nonregular sets of configurations. Theor. Comput. Sci., 221(1-2):211–250,
1999.

12 Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. On the expressiveness of parikh
automata and related models. In Third Workshop on Non-Classical Models for Automata
and Applications - NCMA 2011, Milan, Italy, July 18 - July 19, 2011. Proceedings, 2011.

13 Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. Bounded parikh automata. Int. J.
Found. Comput. Sci., 23(8):1691–1710, 2012.

14 X. Cai and M. Ogawa. Well-structured pushdown systems. In CONCUR 2013, volume
8052 of LNCS. Springer, 2013.

http://dx.doi.org/10.2168/LMCS-4(4:11)2008
http://dx.doi.org/10.1007/978-3-540-24730-2_35
http://dx.doi.org/10.1145/1007352.1007390
http://dx.doi.org/10.1145/2933575.2934561

M. F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 15:17

15 Krishnendu Chatterjee, Andreas Pavlogiannis, and Yaron Velner. Quantitative interproce-
dural analysis. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015.

16 Lorenzo Clemente and Slawomir Lasota. Timed pushdown automata revisited. In 30th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan,
July 6-10, 2015. IEEE Computer Society, 2015.

17 F. S. de Boer, M. M. Bonsangue, and J. Rot. It is pointless to point in bounded heaps. Sci.
Comput. Program., 112, 2015.

18 Javier Esparza, Pierre Ganty, Stefan Kiefer, and Michael Luttenberger. Parikh’s theorem:
A simple and direct automaton construction. Inf. Process. Lett., 111(12), 2011. doi:
10.1016/j.ipl.2011.03.019.

19 Oscar H. Ibarra. Visibly pushdown automata and transducers with counters. Fundam.
Inform., 148(3-4):291–308, 2016.

20 Felix Klaedtke and Harald Rueß. Monadic second-order logics with cardinalities. In JosC.M.
Baeten, JanKarel Lenstra, Joachim Parrow, and GerhardJ. Woeginger, editors, Automata,
Languages and Programming, volume 2719 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2003.

21 Christof Löding and Karianto Wong. On nondeterministic unranked tree automata with
sibling constraints. In IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2009, December 15-17, 2009, IIT Kanpur,
India, 2009. doi:10.4230/LIPIcs.FSTTCS.2009.2328.

22 Helmut Seidl, Thomas Schwentick, and Anca Muscholl. Counting in trees. In Logic and
Automata: History and Perspectives [in Honor of Wolfgang Thomas]., 2008.

23 Helmut Seidl, Thomas Schwentick, Anca Muscholl, and Peter Habermehl. Counting in
trees for free. In Automata, Languages and Programming: 31st International Colloquium,
ICALP 2004, Turku, Finland, July 12-16, 2004. Proceedings, volume 3142 of Lecture Notes
in Computer Science. Springer, 2004.

CONCUR 2018

http://dx.doi.org/10.1016/j.ipl.2011.03.019
http://dx.doi.org/10.1016/j.ipl.2011.03.019
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2009.2328

Narrowing down the Hardness Barrier of
Synthesizing Elementary Net Systems
Ronny Tredup
Universität Rostock, Germany
ronny.tredup@uni-rostock.de

Christian Rosenke
arivis AG, Munich, Germany
christian.rosenke@arivis.com

Abstract
Elementary net system feasibility is the problem to decide for a given automaton A if there is a
certain boolean Petri net with a state graph isomorphic to A. This is equivalent to the conjunction
of the state separation property (SSP) and the event state separation property (ESSP). Since
feasibility, SSP and ESSP are known to be NP-complete in general, there was hope that the
restriction of graph parameters for A can lead to tractable and practically relevant subclasses. In
this paper, we analyze event manifoldness, the amount of occurrences that an event can have in
A, and state degree, the number of allowed successors and predecessors of states in A, as natural
input restrictions. Recently, it has been shown that all three decision problems, feasibility, SSP
and ESSP, remain NP-complete for linear A where every event occurs at most three times. Here,
we show that these problems remain hard even if every event occurs at most twice. Nevertheless,
this has to be paid by relaxing the restriction on state degree, allowing every state to have two
successor and two predecessor states. As we also show that SSP becomes tractable for linear A
where every event occurs at most twice the only open cases left are ESSP and feasibilty for the
same input restriction.

2012 ACM Subject Classification Software and its engineering → Petri nets, Theory of compu-
tation → Problems, reductions and completeness

Keywords and phrases Elementary net systems, Petri net synthesis, NP-completeness, Parame-
terized Complexity

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.16

Related Version A technical report covering all results of the paper is available at [11],
https://arxiv.org/abs/1711.00220.

1 Introduction

In this paper we investigate the complexity of synthesizing elementary net systems (ENS),
which are the most fundamental type of Petri nets [12]. ENSs are a powerful language
for describing processes in digital hardware and provide lots of methods for specification,
verification and synthesis of particularly asynchronous or self-timed circuits [5][15]. Moreover,
equipped with basic concepts like choice and causality, ENSs are the formal foundation of
business process modeling languages, as for instance the Business Process Modeling Notation
(BPMN) [9], Event Driven Process Chains (EPC) [6] or activity diagrams in the UML
standard [7]. Especially because of their simpleness ENSs are useful for the specifications of
workflow management systems like milano [1].

© Ronny Tredup and Christian Rosenke;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 16; pp. 16:1–16:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ronny.tredup@uni-rostock.de
mailto:christian.rosenke@arivis.com
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.16
https://arxiv.org/abs/1711.00220
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 Narrowing down the Hardness Barrier of Synthesizing Elementary Net Systems

ENS synthesis for a given automaton A, called transition system (TS) in this context,
means to find a Petri net N with a state graph isomorphic to A. More precisely, N has to
be a directed graph on place nodes P and transition nodes T linked by flow arcs F such
that, starting from the given initial marking M0 ⊆ P , the net can transform its current
marking M ⊆ P into M ′ ⊆ P by a transition t ∈ T , if (p, t) ∈ F for all deallocated places
p ∈M \M ′ and (t, q) ∈ F for all occupied places q ∈M ′ \M . The reachable markings of
N are required to exactly cover A’s states S while the transitions T embody A’s events E.
Every t-transition from M to M ′ has to correspond to an A-arc s e s′ from the state s of
M to the state s′ of M ′ and labeled by the event e standing for t.

To assess the complexity of ENS synthesis, this paper analysis the corresponding decision
problem, called feasibility. For a given TS A, feasibility asks if there is an ENS N with a
state graph isomorphic to A. As not every TS can be synthesized into an ENS, feasibility is
a problem worth studying. Usually, it is approached by the state separation property (SPP)
and the event state separation property (ESSP) as, according to [3], A is feasible if and only
if it satisfies both properties.

This does not mean that the SSP and the ESSP are not of interest when considered
alone. Synthesizing TSs A having only the ESSP leads to Petri nets implementing all event
sequences of A by their transitions but with less states [3]. Being able to efficiently decide the
SSP, on the other hand, could serve as a quick-fail preprocessing mechanism for synthesis.

Hiraishi [8] shows that both, SSP and ESSP, are NP-complete. Feasibility is NP-complete
[2], too. Nevertheless, considerable efforts have been made to find practically relevant
tractable cases. For example, feasibility becomes tractable for Flip-Flop nets, a superclass of
ENSs [13]. Workflow net models as defined in [1] are a subclass of ENS that allow polynomial
time feasibility, too.

Rather than generalizing or restricting the set of nets, this paper restricts the problem
input to learn about synthesis complexity. We propose the following two natural and
fundamental parameters of TSs that, when controlled, should have a resounding positive
impact on synthesis complexity:
State degree of a TS A is the maximum amount g of incoming and, respectively, outgoing

edges at the states of A. The decision problems where input is restricted to so called
g-grade TSs are referred to as g-grade SSP, g-grade ESSP, and g-grade feasibility. If g = 1
and A is not a cycle we use the term linear.

Event manifoldness of a TS A is the maximum amount k of edges in A that can be labeled
with the same event. Accordingly, we speak about k-fold TSs and the problems k-SSP,
k-ESSP, and k-feasibility.

Benchmarks of the digital hardware design community show that practical TSs often have
limited state-degree [4]. If restricted event manifoldness is practical relevant has not been
evaluated, yet, but it is a straight forward TS parameter.

In [14], we already show that even simultaneous and extreme restrictions of event
manifoldness and state degree do not help reducing complexity. In fact, SSP, ESSP, and
feasibility remain NP-complete for linear 3-fold input TSs. In this paper, we draw a more
precise picture of the problems’ hardness. All three of them remain NP-complete for g-grade
k-fold TSs if g ≥ 2 and k ≥ 2.

On the other hand, 1-SSP, 1-ESSP, and 1-feasibility, that is, when events occur only once,
are trivially tractable for every state degree. As this paper also shows that linear 2-SSP can
be solved in polynomial time the only remaining open questions concern linear 2-ESSP and
linear 2-feasibility. Figure 1 shows an overview of our findings.

This paper is organized as follows: For a start, the following two sections introduce
preliminary notions used throughout the paper. In Section 4, we introduce our main result,
a polynomial time reduction of cubic monotone one-in-three 3-SAT to 2-grade 2-ESSP. Our

R. Tredup and C. Rosenke 16:3

g problem \ k 1 2 3 4 . . .

1

2

...
...

SSP

SSP

ESSP

ESSP

Feasibility

Feasibility P
P
P
P
P
P P

open
open
NPC NPC NPC
NPC NPC NPC
NPC NPC NPC

NPC NPC
NPC NPC
NPC NPC

.

. . .

. . .

. . .

. . .

. . .

. . .

k > 2 shown in [14]

shown in this paper

trivial cases

Figure 1 Overview of our results regarding the complexity of the SSP, the ESSP, and feasibility
depending on the parameters state degree g and event manifoldness k. Considering the parameters
individually, we have already determined the exact borderline between tractable and intractable
cases.

reduction makes sure that the produced TS instances always have the SSP. In this way, ESSP
and feasibility become the same problem with respect to the generated instances and, hence,
we simultaneously show the NP-completeness of g-grade k-ESSP and g-grade k-feasibility for
all g ≥ 2 and k ≥ 2.

That g-grade k-SSP is also hard to solve for g, k ≥ 2 is provided in Section 5. Although
usually perceived differently, we thereby imply that SSP is not easier than ESSP for TSs
with limited state degree and event manifoldness.

Because of space limitations, some technical proofs have been omitted. For a complete
presentation of all technical details, we refer to our technical report [11].

2 Preliminaries

This paper deals with (deterministic) transition systems (TS) A = (S,E, δ, s0) which are
determined by finite disjoint sets S of states and E of events, a partial transition function
δ : S×E → S, and an initial state s0 ∈ S. Usually, we think of A as an edge-labeled directed
graph with node set S where every triple δ(s, e) = s′ is interpreted as an e-labeled edge
s e s′. For readability, we say that an event e occurs at state s if δ(s, e) = s′ for some
state s′ and abbreviate this with s e . Moreover, TSs are required to be simple, that
is, there are no multi-edges s e s′ and s e′ s′, loop-free, which rules out instant state
recurrence like s e s, reachable, where every state can be reached from s0 by a directed
path, and reduced, which means free of unused events in E.

Key concept of this paper are g-grade TSs A where both, the predecessor set {s′ | ∃e ∈
E : δ(s′, e) = s} and the successor set {s′ | ∃e ∈ E : δ(s, e) = s′}, contain at most g elements
for every state s ∈ S. We use linear for 1-grade TSs that are not a cycle. Moreover, A is
called k-fold if the set {(s, s′) | δ(s, e) = s′} of e-connected states contains at most k pairs
for every event e ∈ E.

Fundamental to the following notions are regions of TSs. A set R ⊆ S is called a region of
A if it permits a so-called signature sig : E → {−1, 0, 1}. This means, all edges s e s′ have
to satisfy R(s′) = sig(e) +R(s), where, by a little abuse of notation, R(s) = 1 if s ∈ R and
otherwise R(s) = 0 for all s ∈ S. It is easy to see that every region R has a unique signature
which is therefor called the signature sigR of R. We say that an event e enters region R,
respectively exits or obeys R, if sigR(e) = 1, respectively sigR(e) = −1 or sigR(e) = 0.

CONCUR 2018

16:4 Narrowing down the Hardness Barrier of Synthesizing Elementary Net Systems

Based on the previous definition, two states s, s′ ∈ S are separable in A if R(s) 6= R(s′)
for some region R of A. Moreover, an event e ∈ E is inhibitable at state s ∈ S if there is a
region R of A with either R(s) = 0 and sigR(e) = −1 or R(s) = 1 and sigR(e) = 1. Using
this, a TS A has the state separation property (SSP), if all states of A are pairwise separable
and it has the event state separation property (ESSP) if all events e of A are inhibitable at
all states s where s e is not fulfilled. Then, A is feasible if and only if it has the SSP and
the ESSP.

To study feasibility, ESSP and SSP for restricted TSs we define the g-grade (k-fold)
problem for all naturals g (k) where the input is restricted to g-grade (k-fold) TSs. Notice
that the set of g-grade k-fold TSs is a subclass of g′-grade k′-fold TSs in case k ≤ k′ and
g ≤ g′. Hence, hardness results propagate up the problem hierarchy and efficient algorithms
are legitimate for all lower classes.

As we approach feasibility by SSP and ESSP, which are defined on top of TSs, we omit a
formal definition of ENSs and rather refer to, e.g., [3].

3 Unions, Transition System Containers

For our NP-completeness proofs this section introduces unions, a gadget concept to modularize
our arguments. In a union, individual TSs are grouped together and treated as if being part
of one TS. Moreover, we develop a joining operation to merge union parts and preserve their
(E)SSP and feasibility.

Formally, if A0 = (S0, E0, δ0, s
0
0), . . . , Am = (Sm, Em, δm, sm0) are TSs with pairwise

disjoint states then we say that U(A0, . . . , Am) is their union. By S(U) we denote the
entirety of all states in A0, . . . , Am and E(U) is the aggregation of all events. The joint
transition function ∆U =

⋃m
i=0 δi of U is defined as

∆U (s, e) =
{
δi(s, e), if s ∈ Si and e ∈ Ei,
undefined, else

for all s ∈ S(U) and all e ∈ E(U). If every event in E(U) occurs at most k times in U , not
necessarily as part of the same TS, we say that U is k-fold.

For simplicity, we build unions recursively: Firstly, every TS A is identified with the
union containing only A, that is, A = U(A). Next, if U1 = U(A1

0, . . . , A
1
m1

), . . . , Un =
(An0 , . . . , Anmn

) are unions then U(U1, . . . , Un) is the union U(A1
0, . . . , A

1
m1
, . . . , An0 , . . . , A

n
mn

)
that flattens out the parent unions by cumulating all their TSs.

As we want to combine independent TSs A0, . . . , Am in a union U = U(A1, . . . , Am) and
treat U as one TS, we need to lift regions, the SSP and the ESSP to U : We say that R ⊆ S(U)
is a region of U if it permits a signature sigR : E → {−1, 0, 1}. Hence, for all i ∈ {0, . . . ,m}
the subset Ri = R ∩ Si, coming from the states Si of Ai, has to be a region of Ai with
signature sigRi

(e) = sigR(e) for all e ∈ Ei. Then, U has the SSP if for all states s, s′ ∈ S(U)
coming from the same TS Ai there is a region R of U with R(s) 6= R(s′). Moreover, U has
the ESSP if for all events e ∈ E(U) and all states s ∈ S(U) with ¬(s e) there is a region
R of U such that R(s) = 0 and sigR(e) = −1 or R(s) = 1 and sigR(e) = 1. Naturally, U is
called feasible if it has both, the SSP and the ESSP.

To merge a union U = U(A0, . . . , Am) back into a single TS, we define the joining A(U)
as follows: If s0

0, . . . , s
m
0 are the initial states of U ’s TSs then A(U) = (S(U) ∪ Q,E(U) ∪

Y ∪ Z, δ, q0) is a TS with additional connector states Q = {q0, . . . , qm} and fresh events

R. Tredup and C. Rosenke 16:5

Y = {y0, . . . , ym}, Z = {z0, . . . , zm−1} joining the loose elements of U by

δ(s, e) =


∆U (s, e), if s ∈ S(U) and e ∈ E(U),
si0, if s = qi and e = yi

qi+1, if s = qi and e = zi.

Notice that A(U) preserves k-foldness and, if every initial state si0 has at most one predecessor
in Ai, it preserves g-gradeness for g ≥ 2. The following lemma certifies the validity of joining
(most) unions:

I Lemma 1. Let U = U(A0, . . . , Am) be a union of TSs A0, . . . , Am which fulfill for every
event e that there is at least one state s with ¬(s e). Then U has the (E)SSP, respectively
is feasible, if and only if the joining A(U) has the (E)SSP, respectively is feasible.

Proof. If : Projecting a region separating s and s′, respectively inhibiting e at s, in A(U) to
the component TSs yields a region separating s and s′, respectively inhibiting e at s in U .
Hence, the (E)SSP of A(U) trivially implies the (E)SSP of U .

Only if : A region R of U separating s and s′, respectively inhibiting e at s, can be
completed to become an equivalent region of A(U) by setting

R(qi) = 0, sigR(zj) = 0, and sigR(yi) = R(si0)

for all i, j ∈ {0, . . . ,m}, j < m.
Notice that R, defined as above, also inhibits e at all connector states. Hence, to inhibit

an event e ∈ E(U) at all connector states of A(U), we choose any U -region Re that inhibits
e at any state s ∈ S(U). As we require that every e ∈ E(U) has s ∈ S(U) with ¬(s e),
the ESSP of U implies the existence of Re. Thus, in A(U) every event of U can be inhibited
at all required states.

For the (E)SSP of A(U) it is subsequently sufficient to analyze (event) state separation
concerning the connector states (events). By the uniqueness of the connector events Y ∪ Z,
it is easy to see that each connector state qi on its own defines a region Ri = {qi} of A(U)
that inhibits yi, zi and separates qi in A(U). J

4 The Hardness of the ESSP and Feasibility for 2-grade 2-fold
Transition Systems

This section presents our main result and answers the question if restricting the event
manifoldness to k = 2 helps reducing the complexity of synthesizing ENS:

I Theorem 2. Deciding the ESSP or feasibility is NP-complete on g-grade k-fold transition
systems for all g ≥ 2 and all k ≥ 2.

The rest of this section is devoted to the proof of this theorem.
That the g-grade k-fold versions of the ESSP and feasibility are contained in NP is

clearly not a proof obligation here, as this already follows from the NP-completeness of the
unrestricted problems [2][8].

For the proof of completeness in NP, we basically reduce cubic monotone one-in-three
3-SAT, which is NP-complete [10], to 2-grade 2-ESSP in polynomial time. Therefore, we
start the reduction from a cubic monotone boolean CNF expression ϕ = {C0, . . . , Cm−1}, a
set of negation-free 3-clauses where every variable occurs in exactly three clauses. The result
is a union Uϕ of gadget TSs that has the ESSP if and only if ϕ has a one-in-three model

CONCUR 2018

16:6 Narrowing down the Hardness Barrier of Synthesizing Elementary Net Systems

M , that is, a subset of ϕ’s variables V (ϕ) with |M ∩ Ci| = 1 for all i ∈ {0, . . . ,m− 1}. This
means that M exactly covers all clauses of ϕ. For example, the expression

ϕ0 =
{
{x0, x1, x2}, {x0, x1, x4}, {x0, x2, x3}, {x1, x4, x5}, {x2, x3, x5}, {x3, x4, x5}

}
has six clauses over the variables V (ϕ0) = {x0, . . . , x5} which are satisfied by the one-in-three
model M0 = {x0, x5}. Unfortunately, we cannot use the expression ϕ0 as a running example
since the union Uϕ0 resulting from our construction would already have 1500 states. Thus,
its presentation as a whole would go far beyond the scope of this paper.

The construction of Uϕ makes sure that even in the joining Aϕ = A(Uϕ) every event is
used at most twice and has at most two predecessors and two successors. By design, the
ESSP of Uϕ implies the SSP, too. This makes ESSP and feasibility the same problem, even
for Aϕ as stated in Lemma 1. Consequently, our proof provides the NP-hardness for both
problems on 2-grade 2-fold TSs.

In the following, we start with the details of constructing Uϕ. The union consists of
several functional components. Firstly, it installs a TS H, called the head, which initializes
the connection between the satisfiability problem and the ESSP. It introduces the key event
k that is supposed to be inhibitable at a certain key state if and only if ϕ has a one-in-three
model. In order to achieve this behavior, Uϕ adds a so-called translator Ti for every clause
Ci. For a key region, one that inhibits k at the key state, the purpose of Ti is to implement
one-in-three behavior for Ci. More precisely, Ti applies events to represent the three variables
of Ci and assures that exactly one of them has a positive signature while the other two
have to obey. This means for a key region that every gadget T0, . . . , Tm−1 has exactly one
entering variable event which exactly translates into a one-in-three model for ϕ. Reversely,
every one-in-three model tells us how we can define a key region by choosing exactly one
entering variable in every translator.

The main problem so far is to get along with the restriction of using every event only
twice. We solve this problem by adding more TSs to Uϕ that, for a key region, generate
helper and replacement events with predefined signatures, leaving, entering, or obeying. To
create a better picture of our method, the following introduces the details of all applied
gadget TSs. See Figure 2 to also visualize the technical details of the description.

Head. H is a TS having two responsibilities. Firstly, it introduces the key event k and the
key state h0,8. We add the name affix key to regions Rkey of Uϕ that inhibit k at h0,8, or
more precisely, where sigRkey

(k) = −1 and h0,8 6∈ Rkey. Secondly, H cooperates with the
subsequent duplicator gadgets to prepare sufficient amounts of events with negative signature.
The reason is that our reduction has to get along with applying k just twice. To duplicate the
negative signature of k to other events, the so-called key copies, H works with a production
line of 14m submodules Hj , each cooperating with a duplicator Dj to initialize one key copy.
More precisely, for a key region, Hj prepares three events for Dj , two so-called vice events
v2j , v2j+1, which have a positive signature (that is, vice with respect to the signature of k)
and one obeying wire event w2j . In return, the duplicator provides two key copies k3j , k3j+1
and one obeying accordance event aj . In Hj+1 these three result events are used for the
synchronization of the next vice and wire events. The main result of Dj , however, is k3j+2,
one of the 14m key copies that are free to be applied in the other reduction gadgets.

See Figure 2 (a) for a definition of H together with an illustration of H’s part of a key
region, RH . Observe that there are reachability events r0, . . . , r14m−2 which have the only
purpose to make every state of H reachable from initial h0,0. Moreover, for RH , every module
Hj receives key copies k3j−3, k3j−2 and accordance event aj−1 from Dj−1. Thanks to aj−1,

R. Tredup and C. Rosenke 16:7

the state hj,8 behaves according to the key event h0,8 and is excluded from RH . Because
of exiting k3j−3 the state hj,1 is out of RH , too. This imprints a zero signature on the zero
events z2j , z2j+1. Exiting k3j−2 puts hj,4 into RH and excludes hj,5 which, together with
z2j , z2j+1, makes v2j , v2j+1 entering and w2j , w2j+1 obeying.

Duplicators. Dj are TSs that, for a key region, generate three key copies k3j , k3j+1, k3j+2
and one obeying accordance event aj using the vice events v2j , v2j+1 with positive signature
and the obeying wire event w2j . Figure 2 (b) defines Dj and demonstrates the duplicator
fraction RDj of a key region. The entering vice events force dj,2, dj,4 into RDj and exclude
dj,1, dj,3. The obeying wire event signals the condition of dj,4 to dj,0 putting it into RDj . By
design, k3j , k3j+1, k3j+2 are exiting and aj becomes obeying. As H consumes only k3j , k3j+1
and aj , we keep the remaining duplicate k3j+2 of k. Creating 14m duplicators in total, we
get 14m free key copies.

Barters. Bq are TSs that, for a key region, barter key copies kq1 , kq2 for one obeying
so-called consistency event cq. The indices q1 = 18m + 6q + 1 and q2 = q1 + 3 select two
of the last 4 · 2m items from the list of free key copies. The use of consistency events is
to synchronize three events xαi , x

β
i , x

γ
i for every variable xi. The reason is that we cannot

represent the three occurrences of xi in the expression ϕ by an event that can only be used
twice. Consequently, we require three generated events of consistent signature to represent
xi. Figure 2 (c) introduces Bq and shows a respective key region part RBq . As both key
copies are leaving, bq,0, bq,2 are in RBi and cq is obeying. Altogether, we add 4m barters
that consume 8m key copies to generate 4m consistency events.

Variable manifolders. Xi are TSs synchronizing three events for every variable xi ∈ V (ϕ).
If Cα, Cβ , Cγ are the three clauses containing xi then Xi provides the events xαi , x

β
i , x

γ
i .

For a key region, they are supposed to have the same signature in order to treat them
as manifestations of the same event representing xi. The definition of Xi as well as an
illustration of a possible key region fragment RXi are given in Figure 2 (d). To create the
event equivalence, Xi applies four consistency events, c4i, c4i+1, c4i+2, c4i+3. Their obedience
condemns the two state groups xi,0, xi,1, xi,2 and xi,3, xi,4, xi,5 to a consistent behavior with
respect to RXi , that is, either all states of a group are part of the region or none of them.
This brings xαi , x

β
i , x

γ
i into synchronicity.

Translators. Ti are unions Ti = U(Ti,0, Ti,1, Ti,2) of three TSs, each. For a key region,
Ti implements Ci = {xa, xb, xc} by allowing a positive signature for exactly one variable
representation, either xa, xb or xc. Figure 2 (e-g) define the three TSs and introduces a
possible key region fragment that assigns a positive signature to event xib representing xb.
Apparently, Ti,1 parenthesizes an event for xb and the proxy event pi with two key copies
while Ti,2 does the same for the locum event x̃ib and pi. For a key region, all key copies exit
and the proxy event behaves equally in both TSs. This aligns the signature of xib and x̃ib and
makes it non-negative. Furthermore, Ti,0 is a key copy delimited sequence of events that, for
a key region, prevents a negative signature for xia, xic. As the limiting key copies are exiting
and as none of xia, x̃ib, xic can be exiting, exactly one of the events xia, xib, xic has to enter.

Altogether, this construction results in the union Uϕ = U(Uϕ1 , U
ϕ
2) with

Uϕ1 = U(H,D0, . . . , D14m−1),
Uϕ2 = U(B0, . . . , B4m−1, X0, . . . , Xm−1, T0, . . . , Tm−1).

CONCUR 2018

16:8 Narrowing down the Hardness Barrier of Synthesizing Elementary Net Systems

a)

h0,0 h0,1

h0,2

h0,3

h0,4 h0,5

h0,6

h0,7

h0,8

]
H0

h1,0 h1,1

h1,2

h1,3

h1,4 h1,5

h1,6

h1,7

h1,8

]
H1

...
...

hn,0 hn,1

hn,2

hn,3

hn,4 hn,5

hn,6

hn,7

hn,8

]
Hn

k
z0 v0

z1 v1

k
w0 z0

w1 z1

k0
z2 v2

z3 v3

k1
w2 z2

w3 z3

r0 a0

rn−1 an−1
k3n−3

z2n v2n

z2n+1 v2n+1

k3n−2
w2n z2n

w2n+1 z2n+1

b)

dj,0

dj,1

dj,2dj,3

dj,4

k3j+1

v2j

k3j

v2j+1

w2j

k3j+2

aj c) bq,0

bq,1

bq,2 bq,3

kq1

cq kq2

d) xi,1

xi,0

xi,2

xi,4

xi,3

xi,5

c4i

c4i+1

c4i+2

c4i+3

xαi

xβi

xγi

e) ti,0,0 ti,0,1 ti,0,2 ti,0,3 ti,0,4 ti,0,5
k18i+2 xia x̃ib xic k18i+11

f) ti,1,0 ti,1,1 ti,1,2 ti,1,3 ti,1,4
k18i+5 xib pi k18i+14

g) ti,2,0 ti,2,1 ti,2,2 ti,2,3 ti,2,4
k18i+8 x̃ib pi k18i+17

h)

h′0,0 h′0,1

...
...

h′j,0 h′j,1

...
...

h′n,0 h′n,1

k2

k3j+2

k3n+2

a0

aj−1

aj

an−1

a0

aj−1

aj

an−1

Figure 2 a-g) The gadgets of Uϕ with their respective fractions of a key region. The red marked
states are included in the key region and the unmarked are excluded. a) The head H with submodules
H0, . . . , Hn where n = 14m− 1. b) Dj , one of the 14m duplicators that provide the 14m key copies.
c) Bq, one out of 4m barters trading 8m key copies for 4m consistency events. Here, q1 = 6q+18m+1
and q2 = q1 + 3. d) The variable manifolder Xi using four consistency events to synchronize three
variable events for xi. Together, the m variable manifolders consume all 4m available consistency
events. e-g) The translator Ti consisting of Ti,0 (e), Ti,1 (f), and Ti,2 (g). Using six key copies, Ti

implements the clause Ci. All m translators together consume the remaining 6m key copies. h) The
head H ′ of the union Uϕ

SSP from Section 5. The red marked states describe the key region RH′ and
the gray marked states provide a region of H ′ that separates the states h′

j,0, h′
j,1 from the remaining

states of H ′.

The reason for separating Uϕ into two sub unions Uϕ1 and Uϕ2 is that we want to reuse Uϕ2
in Section 5. Here, our last construction step is to join the TSs of Uϕ in order to obtain
the combined TS Aϕ = A(Uϕ). Check Figure 2 to see that the initial states of the gadgets,
that is, h0,0, dj,0, bq,0, xi,0, ti,0,0, ti,1,0, and ti,2,0, have at most one predecessor state each.

R. Tredup and C. Rosenke 16:9

Hence, the definition of joining guarantees that Aϕ does not exceed the state degree of two.
Moreover, as every event of Uϕ occurs at most twice and Aϕ just introduces additional
unique events, Aϕ is a 2-grade 2-fold TS.

Before we can show that Aϕ has the ESSP if and only if ϕ has a one-in-three model, we
need the next two lemmas to formalize the properties of key regions in Uϕ:

I Lemma 3. If R is a region of Uϕ1 inhibiting k at h0,8, that is, where, without loss of
generality, sigR(k) = −1 and h0,8 6∈ R then
1. for all j ∈ {0, . . . , 14m − 1} the region contains hj,0, hj,4 and excludes hj,1, hj,2, hj,3,

hj,5, hj,6, hj,7, hj,8,
2. for all j ∈ {0, . . . , 14m− 1} the region contains dj,0, dj,2, dj,4 and excludes dj,1, dj,3,
3. all key copies exit, that is, for all j ∈ {0, . . . , 14m− 1) the events k3j, k3j+1, k3j+2 have

negative signature.

Proof. Consider the individual gadget regions RH and RDj demonstrated in Figure 2 (a)
and (b). We show that, combined, they define the only region R of Uϕ1 that inhibits k
at h0,8 with sigR(k) = −1 and h0,8 6∈ R. For this purpose, we use induction over j and
simultaneously show that R fulfills (1-3):

For a start, let j = 0. We show that sigR(k) = −1 and R(h0,8) = 0 force R to
coincide with RH with respect to the part H0 of H and with RD0 . The requirement
sigR(k) = −1 immediately brings R(h0,0) = R(h0,4) = 1 and R(h0,1) = R(h0,5) = 0. Then,
R(h0,1) = 0 implies that sigR(z0), sigR(z1) ∈ {0, 1}. The second premise R(h0,8) = 0 yields
sigR(z0), sigR(z1) ∈ {−1, 0}, which consequently results in sigR(z0) = sigR(z1) = 0. This
implies R(h0,2) = R(h0,3) = 0 and R(h0,6) = R(h0,7) = 0 making v0, v1 entering and w0, w1
obeying. The entering signature of v0, v1 makes R include d0,2, d0,4 and exclude d0,1, d0,3.
As R(d0,4) = 1 and w0 obeys, we get R(d0,0) = 1. By R(dj,0) = R(dj,4) = 1 and R(dj,1) = 0
we obtain that k1, k2 exit. By R(dj,1) = R(dj,3) = 0 and R(dj,2) = 1 we have that k0 exits
and a0 obeys.

Now assume that R coincides with RDi and RH on the parts Hi for all i less than j.
Moreover, suppose that (1-3) hold for all indices less j. As R(hj−1,8) = 0 and sigR(aj−1) = 0,
we have R(hj,8) = 0. Furthermore, we get the exiting k3(j−1), k3(j−1)+1. Hence, we basically
have the same situation as in H0 and D0. Consequently, a similar argumentation as for the
induction start yields that R contains exactly the states hj,0, hj,4 of Hj and dj,0, dj,2, dj,4
of Dj . This makes the vice events v2j , v2j+1 enter and the wire events w2j , w2j+1 obey.
Moreover, Dj lets the key copies k3j , k3j+1, k3j+2 have a negative signature and aj obey. J

I Lemma 4. If R is a region of Uϕ2 having an exiting signature for all key copies, that is,
sigR(k3j+2) = −1 for all j ∈ {0, . . . , 14m− 1}, then
1. for all q ∈ {0, . . . , 4m− 1} the region R contains bq,0, bq,2 and excludes bq,1, bq,3 and has

sigR(cq) = 0,
2. for all i ∈ {0, . . . ,m− 1} variable xi, which occurs in clauses Cα, Cβ, Cγ , is represented

by events xαi , x
β
i , x

γ
i having the same signature

sigR(xαi) = sigR(xβi) = sigR(xγi), and

3. for all i ∈ {0, . . . ,m − 1} clause Ci = {xa, xb, xc} is realized in translator Ti making
exactly one of the events xia, xib, xic enter while the other two obey.

Proof. Statement (1) means that R coincides with RBq for every barter Bq. As the key
copies kq1 and kq2 are assumed to exit for q1 = 18m + 6q + 1 and q2 = q1 + 3, this
statement trivially follows. First and foremost, this implies that all consistency events cq, q ∈

CONCUR 2018

16:10 Narrowing down the Hardness Barrier of Synthesizing Elementary Net Systems

{0, . . . , 4m−1} have an obeying signature. In statement (2), this obedience immediately fixes
the states xi,0, xi,1, xi,2 of variable manifolder Xi to behave consistently, that is, R(xi,0) =
R(xi,1) = R(xi,2). Analogously, we derive R(xi,3) = R(xi,4) = R(xi,5). This implicates
R(xi,3)−R(xi,0) = R(xi,4)−R(xi,1) = R(xi,5)−R(xi,2). Consequently, the variable events
xαi , x

β
i , x

γ
i have the same signature for all i ∈ {0, . . . ,m− 1}.

Finally, statement (3) for the translator Ti can be seen as follows: For any region
R′ of a linear TS it is a simple observation that

∑j2−1
j=j1

sigR(ej) = R(sj2) − R(sj1) for

any subsequence sj1
ej1 . . .

ej2−1 sj2 within the TS. As the TSs of Ti are linear, we
get from R(ti,1,3) − R(ti,1,1) = 1 and R(ti,2,3) − R(ti,2,1) = 1 that sigR(xib) + sigR(pi) =
sigR(x̃ib) + sigR(pi) = 1. That means, sigR(xib) = sigR(x̃ib) = 1− sigR(pi) which implies that
xib has a non-negative signature. As R(ti,0,1) = 0 and R(ti,0,4) = 1, we have non-negative
signature of xia, xic, too. That sigR(xia) + sigR(x̃ib) + sigR(xic) = 1 implies that exactly one of
these events has a positive signature. J

Lemma 3 and Lemma 4 state that the structure of a key region defines a model of ϕ.
That is why we can say that the existence of key region for Uϕ implies the one-in-three
satisfiability of ϕ:

I Lemma 5. If there is a key region of Uϕ then ϕ has a one-in-three model.

Proof. Let Rkey be a key region of Uϕ, that is, sigRkey
(k) = −1 and Rkey(h0,8) = 0. First of

all, Lemma 3 implies that sigRkey
(k3j+2) = −1 for all j ∈ {0, . . . , 14m−1}. As a consequence,

we obtain from Lemma 4 for all variables xi and their three occurrences in clauses Cα, Cβ , Cγ
that

sigRkey
(xαi) = sigRkey

(xβi) = sigRkey
(xγi).

Moreover, Lemma 4 means for every clause Ci = {xa, xb, xc} that exactly one of the events
xia, x

i
b, x

i
c has a positive signature while the other two obey. Hence, if we add a variable xi

to a set M if and only if the corresponding events have positive signature, then we clearly
obtain for all clauses Ci that |M ∩ Ci| = 1. This makes M a one-in-three model. J

The other way around, the required equivalence obliges us to derive a key region from
any one-in-three model. We argue that working our way backwards through the construction
ends up in a region that inhibits k at the key state.

I Lemma 6. If ϕ has a one-in-three model then there is a key region of Uϕ.

Proof. Let M ⊆ V (ϕ) be a one-in-three model of ϕ. We progressively build a region R by
following the requirements of every individual gadget.

Firstly, for every variable xi occurring in Cα, Cβ , Cγ we take care that sigR(xαi) =
sigR(xβi) = sigR(xγi) = M(xi) where M(xi) = 1 if xi ∈ M and M(xi) = 0, otherwise. To
this end, we let xi,3, xi,4, xi,5 ∈ RXi . Moreover, we set xi,0, xi,1, xi,2 ∈ RXi if and only if xi is
not inM . This makes the consistency events c4i, c4i+1, c4i+2, c4i+3 obey. As different variable
manifolders do not share events, the regions RX0 , . . . , RXm−1 are pairwise compatible.

For every clause Ci = {xa, xb, xc} the model M selects exactly one variable. By the
M -conform construction of RXa , RXb , RXc we get that exactly one of the events xia, xib, xic
enters and the others obey. Making the key copies of Ti exit, generates a sub region RTi .
That Ti and Tj share events only for i = j makes RT0 , . . . , RTm−1 pairwise compatible. As
the variable events are selected in compliance with the variable manifolders and as translators
and manifolders do not share further events, their sub regions are also compatible.

R. Tredup and C. Rosenke 16:11

By the obeying consistency events, we can define a sub region RBq for every q ∈
{0, . . . , 4m− 1}. This also makes the used key copies exiting. As different barters have no
event in common, share only consistency events with variable manifolders and no events at
all with translators, the regions are all compatible.

Head and duplicators just share key copies with translators and barters. As all key copies
are exiting and as the provided sub regions meet the conditions of Lemma 3, we can use this
lemma as a construction manual for the sub regions RH , RD0 , . . . , RD14m−1 . Altogether, we
get that the set R formed by

RH ∪RD0 ∪ · · · ∪RD14m−1 ∪RB0 ∪ · · · ∪RB4m−1 ∪RX0 ∪ · · · ∪RXm−1 ∪RT0 ∪ · · · ∪RTm−1

is a region of Uϕ inhibiting k at h0,8. J

At this point, the previous lemmas have established that ϕ has a one-in-three model M
if and only if there is a key region for Uϕ. Although this is basically the foundation of the
proof for Theorem 2, it just delivers the only-if direction for the NP-completeness of 2-grade
2-fold ESSP by now: If Aϕ has the ESSP then Lemma 1 lifts the ESSP to Uϕ. By definition,
there also has to be a region that inhibits k at h0,8, a key region. Then Lemma 5 implies the
existence of the one-in-three model M for ϕ.

Reversely, having M , Lemma 6 only inhibits k at the key state. For the remaining events
e and states s of Uϕ with ¬(s e), we still have to show that e is inhibitable at s:

I Lemma 7. If ϕ has a one-in-three model then e ∈ E(Uϕ) is inhibitable at s ∈ S(Uϕ) for
every event e and state s of Uϕ that fulfill ¬(s e).

Lemma 6 already shows the essential part of Lemma 7. But the proof for the remaining
non-key event state combinations is very technical and does not lead to further insights.
Therefore and for space limitations, we only go into one example here and refer to our
technical report [11] for a full analysis:

I Lemma 8. If ϕ has a one-in-three model then the key event k is inhibitable at all states
s ∈ S(Uϕ) that fulfill ¬(s k).

Proof. Every relevant state s is subsequently provided with a region that inhibits k at s.
For brevity however, we omit to repeat the key-region here, which already inhibits k at many
states. To define the other regions, we just specify the signature of non-obeying events, as
the majority of events are obedient. To this end, we present every required region as one
entry in the following listing:

states exit enter affected TSs
remaining states
of H except h1,0

a0, k, k0, r1 v1, w1, z0 H, D0

h1,0 a1, k, k1, k2, k3,
k8, r0, r2, w4, w5

a2, k4, k5, k6, r1,
v1, w1, z0, z2, z3

H, D0, D1, D2, T0,0, T0,1, T0,2

S(Uϕ) \ S(H) k z0, z1 H

The first column states lists the states s where k is inhibited by the respective region.
The exit and enter columns provide the exiting, respectively entering, events of that region.
To easily find the TSs that contain at least one of these non-obeying events, one can use the
affected TSs column in the listing.

CONCUR 2018

16:12 Narrowing down the Hardness Barrier of Synthesizing Elementary Net Systems

Notice that the first two lines of the listing show that k is inhibitable at all states of H.
The third line presents a region of Uϕ where k exits and all non-obeying events occur in H.
Therefore, this region inhibits k at all remaining states of Uϕ. J

The rest of the proof for Lemma 7 works just the same as demonstrated by Lemma 8.
This leads to the if direction for the NP-completeness of 2-grade 2-fold ESSP: If ϕ has a
one-in-three model M then Lemma 7 tells us that Uϕ has the ESSP. Using Lemma 1, we can
bring the ESSP down to Aϕ, too. Altogether, we may now state that ϕ has a one-in-three
model if and only if Aϕ has the ESSP. As our construction is easily done in polynomial time,
we have shown the NP-completeness of 2-grade 2-fold ESSP and by that, half of Theorem 2.

To complete the theorem’s proof, it remains to establish that ϕ has a one-in-three model
M if and only if Aϕ is feasible. However, this is fairly easy reusing the work we have already
done. In fact, the first direction is already there: If Aϕ is feasible then it also has the ESSP,
which we know implies the existence of M . Reversely, if M exists, then it is sufficient to
show that, beside the already established ESSP, Aϕ has the SSP, too:

I Lemma 9. If ϕ has a one-in-three model then Uϕ has the SSP.

Proof. If s, s′ are two states that do not belong to the same TS of Uϕ then they are separable
by definition. Hence, let s, s′ be two distinct states of one TS A ∈ Uϕ. If there is an event e
that occurs at s, that is, s e , but not s′, that is, ¬(s′ e) then s, s′ are separable. The
reason for this comes from Lemma 7, which states that e is inhibitable at s′ by a region R of
Uϕ. This means, that, without loss of generality, R(s′) = 0 and sigR(e) = −1, which implies
R(s) = 1.

Using this condition, we get the separability for all state pairs s, s′ that are in one of
our TSs except for H as follows: As Figure 2 shows, every event of A 6= H occurs only once
within A and (ii) there is only one state of A without a successor. Hence, without loss of
generality, there is an event e that occurs at s but not at s′.

Figure 2 also demonstrates that all the events {v2j , v2j+1, w2j , w2j+1 | 0 ≤ j < 14m}
and {aj , k3j , k3j+1, rj | 0 ≤ j < 14m − 1} occur only once in H and that h14m−1,8 is the
only state of H without a successor. Consequently, if s, s′ ∈ S(H) and s is neither in
{hj,1, hj,6, hj,7 | 0 ≤ j < 14m} nor in {h0,4, h14m−1,8} then the above condition makes s and
s′ separable, too. Moreover, notice that k is the only event occurring at h0,4 and that no
event occurs at h14m−1,8 at all. Hence, our argument works to separate these two states
from all states in S(H), too.

As seen in Figure 2, z2j and z2j+1 occur only within the part Hj of H. Applying the
above condition again, we get for all 0 ≤ j < 14m that s ∈ {hj,1, hj,6, hj,7 is separable from
s′ ∈ S(H) \ {hj,0, . . . , hj,8}.

It remains to show that the states {hj,1, hj,6, hj,7} are pairwise separable for all j ∈
{0, . . . , 14m− 1}. Notice that z2j occurs at hj,1 and hj,6 but not at hj,7. Hence, using the
region inhibiting z2j at hj,7 coming from the above argumentation, separates both, hj,1 and
hj,6 from hj,7. Similarly, z2j+1 occurs at hj,7 but not at hj,6 which leads to their separability,
too. J

As a last step, we can use Lemma 1 again, to bring the SSP of Uϕ down to Aϕ, too. This
finally proves Theorem 2.

5 The Hardness of SSP for 2-grade 2-fold Transition Systems

This section completes our complexity analysis for the synthesis of TSs having event mani-
foldness less than three:

R. Tredup and C. Rosenke 16:13

I Theorem 10. Deciding the SSP is NP-complete on g-grade k-fold transition systems for
all g ≥ 2 and all k ≥ 2.

Proof. We reuse most of the reduction from Section 4 and create yet another union UϕSSP =
U(H ′, Uϕ2) by simply replacing Uϕ1 with the new head TS H ′ shown in Figure 2 (h). We
prove that ϕ has a one-in-three model if and only if the two key states h′0,0, h′1,0 are separable
by a key region R′key if and only if UϕSSP has the SSP.

If UϕSSP has the SSP then there is a key region R′key where, without loss of generality,
R′key(h′0,0) = 1 and R′key(h′0,1) = 0. This implies sigR′

key
(k2) = −1. Using this as a

start, induction over j infers from R′key(h′j,0) = 1 and R′key(h′j,1) = 0 that aj is obeying
and that R′key(h′j+1,0) = 1, R′key(h′j+1,1) = 0 and that sigR′

key
(k3j+2) = −1. Hence, on

H ′ the key region is just RH′ from Figure 2 (h). By Lemma 4, the exiting key copies
k3j+2, j ∈ {0, . . . , 14m − 1} imply that every variable xi ∈ V (ϕ) is represented by three
synchronized variable events and for every clause Cj = xa, xb, xc exactly one of xja, x

j
b, x

j
c

enters. Hence, taking just the variables of entering events, gets ϕ a one-in-three model.
Reversely, if ϕ has a one-in-three model, Lemma 6 provides a key region Rkey for Uϕ.

As all key copies exit, we can easily transform Rkey into a key region R′key for UϕSSP by
making the accordance event aj obeying and defining R′key(h′j,0) = 1, R′key(h′j,1) = 0 for all
j ∈ {0, . . . , 14m− 1} as well as removing the region’s definition on states of S(Uϕ1). To argue
the SSP of UϕSSP consider for all i ∈ {0, . . . ,m− 1} and all j ∈ {1, 2} the region Ri,j , where
all events obey but sigRi,j

(pi) = −1. This regions separates every state in {ti,j,0, . . . , ti,j,2}
from every state in {ti,j,3, ti,j,4}. Analogously, let Ri be the region where just sigRi

(x̃ib) = −1.
This region separates states of {ti,0,0, . . . , ti,0,2} from states {ti,0,3, . . . , ti,0,5} as well as states
of {ti,2,0, ti,2,1} from {ti,2,2, . . . , ti,2,4}. It is easy to see that the remaining state pairs of
S(Uϕ2) are either separated by the key region or by a region where all events obey except for
one variable event or one consistency event. Finally, as no accordance event of H ′ occurs in
Uϕ2 , taking the key region and for all j ∈ {0, . . . , 14m− 1} the region {h′j,0, h′j,1} solves the
remaining separation problems in H ′.

Using Lemma 1, it is again possible to transfer the SSP from UϕSSP to its joined TS
AϕSSP = A(UϕSSP) and back. As the polynomial time construction of AϕSSP is obvious just as
its state degree and event manifoldness of two, the proof is complete. J

6 The Tractability of SSP for Linear 2-fold Transition Systems

This section shows that 2-fold SSP becomes tractable if we turn to linear TSs:

I Theorem 11. Deciding the SSP can be done in polynomial time on linear 2-fold transition
systems.

To pove this theorem, we provide the following SSP-equivalent property for linear 2-fold TSs:
If A = s0

e1 . . . et st is a linear TS then Aij = si
ei+1 . . .

ej sj is called a subsequence
of A for all 0 ≤ i < j ≤ t and Aij is exactly 2-fold if every contained event occurs exactly
twice within Aij .

I Lemma 12. A linear 2-fold TS A has the SSP if and only if Aij is not an exactly 2-fold
subsequence for any 0 ≤ i < j ≤ t.

Proof. We reuse the simple observation that every region R of a linear TS A fulfills for
all 0 ≤ i < j ≤ t that

∑j
k=i sigR(ek) = R(sj) − R(si) . Hence, if A has an exactly 2-fold

subsequence Aij then every region R makes R(sj)−R(si) even, that is, R(sj) = R(si). This
means, the two states are not separated by any region of A.

CONCUR 2018

16:14 Narrowing down the Hardness Barrier of Synthesizing Elementary Net Systems

Reversely, assume A is free of exactly 2-fold subsequences and let 0 ≤ i < j ≤ t. To see
that si, sj are separable, consider the three sequences A0

i , A
i
j , A

j
t . If Aij contains an event

that is unique in A then si, sj are clearly separable. Otherwise, we select emin from the
events of Aij with first occurrence in A0

i such that the index i′ of si′ emin is minimized.
That is, we select the event emin from Aij with leftmost first occurrence. If there is an event
e in Ai′i that is unique in A or has its first occurrence in A0

i′ or its second occurrence in Ajt
then a region R separating si, sj is defined by sigR(e) = −sigR(emin) = 1 while other events
obey. If e does not exist, every event of Ai′i occurs twice in Ai′j . In that case, we select emax
from the events of Aij with second occurrence in Ajt such that the index j′ of sj′ emax is
maximized. That is, we select the event emax from Aij with rightmost second occurrence. If
there is an event e in Ajj′ that is unique in A or has its first occurrence in A0

i or its second
occurrence in Aj

′

t then a region R separating si, sj is defined by sigR(e) = −sigR(emax) = 1
while other events obey. If e does not exist, every event of Ajj′ occurs twice in Aij′ .

But now, every event in Aij has a second occurrence in Ai′j′ by the choice of emin and
emax. Moreover, we have seen that every event in Ai′i and every event in Ajj′ has its second
occurrence in Ai′j′ . Hence, A has the exactly 2-fold subsequence Ai′j′ , a contradiction. J

For a proof of Theorem 11 it is now sufficient to understand that checking the linear 2-fold
TS A for exactly 2-fold subsequences can be done by a straight forward algorithm in O(t3)
time.

Moreover, the proof of Theorem 11 motivates an algorithm to efficiently compute sep-
arating regions of linear 2-fold TSs A. This algorithm uses a function f(k) that, given an
index k ∈ {0, . . . , t− 1}, returns the index of the second occurrence of event ek+1 that occurs
at sk or −1 if no second occurrence exists. Hence, for two states si and sj we use only
O(t) calls to f to parse the sequence Aij for the indices i′ and j′ and to search the event e
within Ai′i , respectively A

j
j′ . If e is not found, the algorithm denies the separability of si and

sj and otherwise, it returns the separating region given in the proof. The function f can
be preprocessed as an array in at most O(t log t) time (depending on the representation of
events). After the preprocessing, the algorithm runs in linear time O(t).

7 Conclusion

With the present work on the SSP, the ESSP, and feasibility we consolidate the fact that ENS
synthesis is a surprisingly difficult problem. While intractability has been known before when
event manifoldness and state degree are limited to small constants, we show that even a tighter
restriction of event manifoldness to k = 2 has no positive effect on the complexity. Bringing
down intractability that close to trivial inputs, makes most considerations of restricting
the TS graph structure futile and hampers other promising parameters. Consequently, our
results rule out many straight forward approaches from fixed parameter tractability, too.

References

1 Alessandra Agostini and Giorgio De Michelis. Improving flexibility of workflow management
systems. In Wil M. P. van der Aalst, Jörg Desel, and Andreas Oberweis, editors, Business
Process Management, Models, Techniques, and Empirical Studies, volume 1806 of Lecture
Notes in Computer Science, pages 218–234. Springer, 2000. doi:10.1007/3-540-45594-9_
14.

http://dx.doi.org/10.1007/3-540-45594-9_14
http://dx.doi.org/10.1007/3-540-45594-9_14

R. Tredup and C. Rosenke 16:15

2 Eric Badouel, Luca Bernardinello, and Philippe Darondeau. The synthesis problem for
elementary net systems is np-complete. Theor. Comput. Sci., 186(1-2):107–134, 1997. doi:
10.1016/S0304-3975(96)00219-8.

3 Eric Badouel, Luca Bernardinello, and Philippe Darondeau. Petri Net Synthesis. Texts
in Theoretical Computer Science. An EATCS Series. Springer, 2015. doi:10.1007/
978-3-662-47967-4.

4 Jordi Cortadella. Private correspondance, 2017.
5 Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, and Alex

Yakovlev. Complete state encoding based on the theory of regions. In 2nd International
Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC ’96),
March 18-21, 1996, Aizu-Wakamatsu, Fukushima, Japan, pages 36–47. IEEE Computer So-
ciety, 1996. URL: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=
3564, doi:10.1109/ASYNC.1996.494436.

6 August-Wilhelm Scheer. Business Process Engineering. Reference Models for Industrial
Enterprises. Springer, 1994.

7 UML. Unified Modeling Language (UML). Object Management Group, 2018.
8 Kunihiko Hiraishi. Some complexity results on transition systems and elementary net sys-

tems. Theor. Comput. Sci., 135(2):361–376, 1994. doi:10.1016/0304-3975(94)90112-0.
9 OMG. Business Process Model and Notation (BPMN). Object Management Group, 2018.

10 Cristopher Moore and J. M. Robson. Hard tiling problems with simple tiles. Discrete &
Computational Geometry, 26(4):573–590, 2001. doi:10.1007/s00454-001-0047-6.

11 Christian Rosenke and Ronny Tredup. The hardness of synthesizing elementary net systems
from highly restricted inputs. CoRR, abs/1711.00220, 2017. arXiv:1711.00220.

12 Grzegorz Rozenberg and Joost Engelfriet. Elementary net systems. In Wolfgang Reisig
and Grzegorz Rozenberg, editors, Lectures on Petri Nets I: Basic Models, Advances in
Petri Nets, the volumes are based on the Advanced Course on Petri Nets, held in Dagstuhl,
September 1996, volume 1491 of Lecture Notes in Computer Science, pages 12–121. Springer,
1996. doi:10.1007/3-540-65306-6_14.

13 Vincent Schmitt. Flip-flop nets. In Claude Puech and Rüdiger Reischuk, editors, STACS
96, 13th Annual Symposium on Theoretical Aspects of Computer Science, Grenoble, France,
February 22-24, 1996, Proceedings, volume 1046 of Lecture Notes in Computer Science,
pages 517–528. Springer, 1996. doi:10.1007/3-540-60922-9_42.

14 Ronny Tredup, Christian Rosenke, and Karsten Wolf. Elementary net synthesis re-
mains np-complete even for extremely simple inputs. In Victor Khomenko and Olivier H.
Roux, editors, Application and Theory of Petri Nets and Concurrency - 39th Interna-
tional Conference, PETRI NETS 2018, Bratislava, Slovakia, June 24-29, 2018, Proceed-
ings, volume 10877 of Lecture Notes in Computer Science, pages 40–59. Springer, 2018.
doi:10.1007/978-3-319-91268-4_3.

15 Alex Yakovlev and Albert Koelmans. Petri Nets and Digital Hardware Design. In Wolfgang
Reisig and Grzegorz Rozenberg, editors, Lectures on Petri Nets II: Applications, volume
1492 of Lecture Notes in Computer Science, pages 154–236. Springer, 1998. doi:10.1007/
3-540-65307-4.

CONCUR 2018

http://dx.doi.org/10.1016/S0304-3975(96)00219-8
http://dx.doi.org/10.1016/S0304-3975(96)00219-8
http://dx.doi.org/10.1007/978-3-662-47967-4
http://dx.doi.org/10.1007/978-3-662-47967-4
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3564
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3564
http://dx.doi.org/10.1109/ASYNC.1996.494436
http://dx.doi.org/10.1016/0304-3975(94)90112-0
http://dx.doi.org/10.1007/s00454-001-0047-6
http://arxiv.org/abs/1711.00220
http://dx.doi.org/10.1007/3-540-65306-6_14
http://dx.doi.org/10.1007/3-540-60922-9_42
http://dx.doi.org/10.1007/978-3-319-91268-4_3
http://dx.doi.org/10.1007/3-540-65307-4
http://dx.doi.org/10.1007/3-540-65307-4

Up-To Techniques for Behavioural Metrics
via Fibrations
Filippo Bonchi
Universitá di Pisa, Italy
filippo.bonchi@unipi.it

Barbara König
Universität Duisburg-Essen, Germany
barbara_koenig@uni-due.de

Daniela Petrişan
CNRS, IRIF, Université Paris Diderot, France
petrisan@irif.fr

Abstract
Up-to techniques are a well-known method for enhancing coinductive proofs of behavioural equi-
valences. We introduce up-to techniques for behavioural metrics between systems modelled as
coalgebras and we provide abstract results to prove their soundness in a compositional way.

In order to obtain a general framework, we need a systematic way to lift functors: we show
that the Wasserstein lifting of a functor, introduced in a previous work, corresponds to a change of
base in a fibrational sense. This observation enables us to reuse existing results about soundness
of up-to techniques in a fibrational setting. We focus on the fibrations of predicates and relations
valued in a quantale, for which pseudo-metric spaces are an example. To illustrate our approach
we provide an example on distances between regular languages.

2012 ACM Subject Classification Theory of computation → Concurrency, Theory of computa-
tion→ Formal languages and automata theory, Theory of computation→ Logic and verification

Keywords and phrases behavioural metrics, bisimilarity, up-to techniques, coalgebras, fibrations

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.17

Related Version A full version of the paper is available at [8], https://arxiv.org/abs/1806.
11064.

Funding The first author acknowledges financial support from project ANR-16-CE25-0011 RE-
PAS, the second author from DFG project BEMEGA, and the third author from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No.670624).

Acknowledgements The authors are grateful to Shin-ya Katsumata, Henning Kerstan, Damien
Pous and Paolo Baldan for precious suggestions and inspiring discussions.

1 Introduction

Checking whether two systems have an equivalent (or similar) behaviour is a crucial problem
in computer science. In concurrency theory, one standard methodology for establishing
behavioural equivalence of two systems is constructing a bisimulation relation between them.
When the systems display a quantitative behaviour, the notion of behavioural equivalence is
replaced with the more robust notion of behavioural metric [41, 14, 15].

© Filippo Bonchi, Barbara König, and Daniela Petrişan;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 17; pp. 17:1–17:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:filippo.bonchi@unipi.it
mailto:barbara_koenig@uni-due.de
mailto:petrisan@irif.fr
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.17
https://arxiv.org/abs/1806.11064
https://arxiv.org/abs/1806.11064
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 Up-To Techniques for Behavioural Metrics via Fibrations

Due to the sheer complexity of state-based systems, computing their behavioural equi-
valences and metrics can be very costly, therefore optimization techniques – the so called
up-to techniques – have been developed to render these computations more efficient. These
techniques found applications in various domains such as checking algorithms [10, 7], abstract
interpretation [6] and proof assistants [13]. In the qualitative setting and in particular in
concurrency, the theory of up-to techniques for bisimulations and various other coinductive
predicates has been thoroughly studied [29, 33, 20]. On the other hand, in the quantitative
setting, so far, only [12] has studied up-to techniques for behavioural metrics. However, the
notion of up-to techniques therein and the accompanying theory of soundness are specific for
probabilistic automata and are not instances of the standard lattice theoretic framework,
which we will briefly recall next.

Suppose we want to verify whether two states in a system behave in the same way, (e.g.
whether two states of an NFA accept the same language). The starting observation is that the
relation of interest (e.g. behavioural equivalence or language equivalence) can be expressed
as the greatest fixed point νb of a monotone function b : RelQ → RelQ on the complete lattice
RelQ of relations on the state space Q of the system. Hence, in order to prove that two states
x and y are behaviourally equivalent, i.e., (x, y) ∈ νb, it suffices to find a witness relation r
which on one hand is a post-fixpoint of b, that is, r ⊆ b(r) and on the other hand contains
the pair (x, y). This is simply the coinduction proof principle. However, exhibiting such
a witness relation r can be sometimes computationally expensive. In many situations this
computation can be significantly optimized, if instead of computing a post-fixpoint of b one
exhibits a relaxed invariant, that is a relation r such that r ⊆ b(f(r)) for a suitable function
f . The function f is called a sound up-to technique when the proof principle

(x, y) ∈ r r ⊆ b(f(r))
(x, y) ∈ νb

is valid. Establishing the soundness of up-to techniques on a case-by-case basis can be a
tedious and sometimes delicate problem, see e.g. [28]. For this reason, several works [35, 31,
33, 20, 30, 32] have established a lattice-theoretic framework for proving soundness results in
a modular fashion. The key notion is compatibility: for arbitrary monotone maps b and f on
a complete lattice (C,≤), the up-to technique f is b-compatible iff f ◦ b ≤ b ◦ f . Compatible
techniques are sound and, most importantly, can be combined in several useful ways.

In this paper we develop a generic theory of up-to techniques for behavioural metrics
applicable to different kinds of systems and metrics, which reuses established methodology.
To achieve this we exploit the theory developed in [9] by modelling systems as coalgebras
[34, 22] and behavioural metrics as coinductive predicates in a fibration [18]. In order to
provide general soundness results, we need a principled way to lift functors from Set to
metric spaces, a problem that has been studied in [19] and [3]. Our key observation is that
these liftings arise from a change-of-base situation between V-Rel and V-Pred, namely the
fibrations of relations, respectively predicates, valued over a quantale V (see Section 4 and 5).

In Section 6 we provide sufficient conditions ensuring the compatibility of basic quantitative
up-to techniques, as well as proper ways to compose them. Interestingly enough, the conditions
ensuring compatibility of the quantitative analogue of up-to reflexivity and up-to transitivity
are subsumed by those used in [19] to extend monads to a bicategory of many-valued relations
and generalize those in [3] (see the discussion after Theorem 21).

When the state space of a system is equipped with an algebraic structure, e.g. in process
algebras, one can usually exploit this structure by reasoning up-to context. Assuming that
the system forms a bialgebra [39, 26], i.e., that the algebraic structure distributes over the

F. Bonchi, B. König, and D. Petrişan 17:3

x0 x1 x2 xn−1 xn

y0 y1 y2 yn−1 yn

a, b
a

a, b a, b

a, b
b

a, b a, b

Figure 1 Example automaton.

coalgebraic behaviour as in GSOS specifications, we give sufficient conditions ensuring the
compatibility of the quantitative version of contextual closure (Theorem 27).

In the qualitative setting, the sufficient conditions for compatibility are automatically
met when taking as lifting the canonical relational one (see [9]). We show that the situation
is similar in the quantitative setting for a certain notion of quantitative canonical lifting. In
particular, up-to context is compatible for the canonical lifting under very mild assumptions
(Theorem 30). As an immediate corollary we have that, in a bialgebra, syntactic contexts
are non-expansive with respect to the behavioural metric induced by the canonical lifting.
This property and weaker variants of it (such as non-extensiveness or uniform continuity),
considered to be the quantitative analogue of behavioural equivalence being a congruence,
have recently received considerable attention (see e.g. [15, 1, 38]).

To fix intuitions, Section 2 provides a motivating example, formally treated in Section 7.
We conclude with a comparison to related work and a discussion of open problems in Section 8.

All proofs and additional material are provided in the full version of this paper [8].

2 Motivating example: distances between regular languages

Computing various distances (such as the edit-distance or Cantor metric) between strings, and
more generally between regular languages or string distributions, has found various practical
applications in various areas such as speech and handwriting recognition or computational
biology. In this section we focus on a simple distance between regular languages, which we
will call shortest-distinguishing-word-distance and is defined as dsdw(L,K) = c|w| – where w
is the shortest word which belongs to exactly one of the languages L,K and c is a constant
such that 0 < c < 1.

As a running example, which will be formally explained in Section 7, we consider the
non-deterministic finite automaton in Figure 1 and the languages accepted by the states x0,
respectively y0. We can similarly define a distance on the states of an automaton as the
aforementioned distance between the languages accepted by the two states. The inequality

dsdw(x0, y0) ≤ cn (even dsdw(x0, y0) = cn) (1)

holds in this example since no word of length smaller than n is accepted by either state.
Note that computing this distance is PSPACE-hard since the language equivalence problem
for non-deterministic automata can be reduced to it.

One way to show this is to determinize the automaton in Figure 1 and to use the fact
that for deterministic automata the shortest-distinguishing-word-distance can be expressed
as the greatest fixpoint for a monotone function. Indeed, for a finite deterministic automaton
(Q, (δa : Q→ Q)a∈A, F ⊆ Q) over a finite alphabet A, we have that dsdw : Q×Q→ [0, 1] is
the greatest fixpoint of a function b defined on the complete lattice [0, 1]Q×Q of functions
ordered with the reversed pointwise order � and given by

b(d)(q1, q2) =
{

1, if only one of q1, q2 is in F
max
a∈A

c · {d(δa(q1), δa(q2))}, otherwise . (2)

CONCUR 2018

17:4 Up-To Techniques for Behavioural Metrics via Fibrations

Notice that we use the reversed order on [0, 1], for technical reasons (see Section 4).
In order to prove (1) we can define a witness distance d̄ on the states of the determinized

automaton such that d̄({x0}, {y0}) ≤ cn and which is a post-fixpoint for b, i.e., d̄ � b(d̄).
Notice that this would entail d̄ � dsdw and hence dsdw({x0}, {y0}) ≤ d̄({x0}, {y0}) ≤ cn.

This approach is problematic since the determinization of the automaton is of exponential
size, so we have to define d̄ for exponentially many pairs of sets of states. In order to mitigate
the state space explosion we will use an up-to technique, which, just as up-to congruence
in [10], exploits the join-semilattice structure of the state set PQ of the determinization
of an NFA with state set Q. The crucial observation is the fact that given the states
Q1, Q2, Q

′
1, Q

′
2 ∈ PQ in the determinization of an NFA, the following inference rule holds

dsdw(Q1, Q2) ≤ r dsdw(Q′1, Q′2) ≤ r
dsdw(Q1 ∪Q′1, Q2 ∪Q′2) ≤ r

Based on this, we can define a monotone function f on [0, 1]PQ×PQ that closes a function d
according to such proof rules, producing f(d) such that d � f(d) (the formal definition of
f is given in Section 7). The general theory developed in this paper allows us to show in
Section 7 that f is a sound up-to technique, i.e., it is sufficient to prove d̄ � b(f(d̄)) in order
to establish d̄ � dsdw.

Using this technique it suffices to consider a quadratic number of pairs of sets of states in
the example. In particular we define a function d̄ : PQ× PQ→ [0, 1] as follows:

d̄({xi}, {yj}) = cn−max{i,j}

and d̄(X1, X2) = 1 for all other values. Note that this function is not a metric but rather,
what we will call in Section 4, a relation valued in [0, 1].

It holds that d̄({x0}, {y0}) = cn. It remains to show that d̄ � b(f(d̄)). For this, it suffices
to prove that

b(f(d̄))({xi}, {yj}) ≤ d̄({xi}, {yj}) .

For instance, when i = j = 0 we compute the sets of a-successors, which are {x0, x1}, {y0}.
We have that d̄({x0}, {y0}) = cn ≤ cn−1, d̄({x0}, {y1}) = cn−1 and using the up-to proof
rule introduced above we obtain that f(d̄)({x0, x1}, {y0}) ≤ cn−1. The same holds for the
sets of b-successors and since x0 and y0 are both non-final we infer b(f(d̄))({x0}, {y0}) ≤
c · cn−1 = cn = d̄({x0}, {y0}). The remaining cases (when i 6= 0 6= j) are analogous.

Our aim is to introduce such proof techniques for behavioural metrics, to make this
kind of reasoning precise, not only for this specific example, but for coalgebras in general.
Furthermore, we will not limit ourselves to metrics and distances, but we will consider more
general relations valued in arbitrary quantales, of which the interval [0, 1] is an example.

3 Preliminaries

We recall here formal definitions for notions such as coalgebras, bialgebras or fibrations.

I Definition 1. A coalgebra for a functor F : C → C, or an F -coalgebra is a morphism
γ : X → FX for some object X of C, referred to as the carrier of the coalgebra γ. A
morphism between two coalgebras γ : X → FX and ξ : Y → FY is a morphism f : X → Y

such that ξ ◦ f = Ff ◦ γ. Algebras for the functor F , or F -algebras, are defined dually as
morphisms of the form α : FX → X.

F. Bonchi, B. König, and D. Petrişan 17:5

I Definition 2. Consider two functors F, T and a natural transformation ζ : TF ⇒ FT . A
bialgebra for ζ is a tuple (X,α, γ) such that α : TX → X is a T -algebra, γ : X → FX is
TX

α //

Tγ��

X
γ // FX

TFX
ζX // FTX

Fα

OO an F -coalgebra so that the diagram on the left commutes.
We call ζ the distributive law of the bialgebra (X,α, γ), even
when T is not a monad.

I Example 3. The determinization of an NFA can be seen as a bialgebra with X = PQ, the
algebra µQ : PPQ→ PQ given by the multiplication of the powerset monad, a coalgebra for
the functor F (X) = 2×XA, and a distributive law ζ : PF → FP defined for M ⊆ 2×XA

by ζX(M) = (
∨

(b,f)∈M b, [a 7→ {f(a) | (b, f) ∈M}]). See [37, 23] for more details.

We now introduce the notions of fibration and bifibration.

I Definition 4. A functor p : E → B is called a fibration when for every morphism f : X → Y

in B and every R in E with p(R) = Y there exists a map f̃R : f∗(R)→ R such that p(f̃R) = f ,
Q

f∗(R) R

Z

X Y

∃!v

∀u

f̃R

g

fg

f

satisfying the following universal property:
For all maps g : Z → X in B and u : Q → R in E sitting
above fg (i.e., p(u) = fg) there is a unique map v : Q →
f∗(R) such that u = f̃Rv and p(v) = g.
For X in B we denote by EX the fibre above X, i.e., the
subcategory of E with objects mapped by p to X and arrows
sitting above the identity on X.

A map f̃ as above is called a Cartesian lifting of f and is unique up to isomorphism. If
we make a choice of Cartesian liftings, the association R 7→ f∗(R) gives rise to the so-called
reindexing functor f∗ : EY → EX . In what follows we will only consider split fibrations, that
is, the Cartesian liftings are chosen such that we have (fg)∗ = g∗f∗.

A functor p : E → B is called a bifibration if both p : E → B and pop : Eop → Bop are
fibrations. Interestingly, a fibration is a bifibration if and only if each reindexing functor
f∗ : EY → EX has a left adjoint Σf a f∗, see [21, Lemma 9.1.2]. We will call the functors Σf
direct images along f .

Two important examples of bifibrations are those of relations over sets, p : Rel → Set,
and of predicates over sets, p : Pred → Set, which played a crucial role in [9]. We do
not recall their exact definitions here, as they arise as instances of the more general bi-
fibrations of quantale-valued relations and predicates described in detail in the next section.

E E ′

B B′
p

F̂

p′

F

Given fibrations p : E → B and p′ : E ′ → B′ and a functor on the base
categories F : B → B′, we call F̂ : E → E ′ a lifting of F when p′F̂ = Fp.
Notice that a lifting F̂ restricts to a functor between the fibres F̂X : EX →
E ′FX . We omit the subscript X when it is clear from the context.

Consider an arbitrary lifting F̂ of F and a morphism f : X → Y in B. For any R ∈ EY
the maps F̃ f

F̂R
: (Ff)∗(F̂R) → F̂R and F̂ (f̃R) : F̂ (f∗R) → F̂R sit above Ff . Using the

universal property in Definition 4, we obtain a canonical morphism

F̂ ◦ f∗(R)→ (Ff)∗ ◦ F̂ (R) . (3)

A lifting F̂ is called a fibred lifting when the natural transformation in (3) is an isomorphism.

4 Moving towards a quantitative setting

We start by introducing two fibrations which are the foundations for our quantitative
reasoning: predicates and relations valued in a quantale.

CONCUR 2018

17:6 Up-To Techniques for Behavioural Metrics via Fibrations

I Definition 5. A quantale V is a complete lattice equipped with an associative operation
⊗ : V × V → V which is distributive on both sides over arbitrary joins

∨
.

This implies that for every y ∈ V the functor −⊗ y has a right adjoint [y,−]. Similarly,
for every x ∈ V, the functor x⊗− has a right adjoint, denoted by Jx,−K. Thus, for every
x, y, z ∈ V, we have: x⊗ y ≤ z ⇐⇒ x ≤ [y, z] ⇐⇒ y ≤ Jx, zK.

If ⊗ has an identity element or unit 1 for ⊗ the quantale is called unital. If x⊗ y = y⊗ x
for every x, y ∈ V the quantale is called commutative and we have [x,−] = Jx,−K. Hereafter,
we only work with unital, commutative quantales.

I Example 6. The Boolean algebra 2 with ⊗ = ∧ is a unital and commutative quantale:
the unit is 1 and [y, z] = y → z. The complete lattice [0,∞] ordered by the reversed order1
of the reals, i.e., ≤=≥R and with ⊗ = + is a unital commutative quantale: the unit is 0 and
for every y, z ∈ [0,∞] we have [y, z] = z .− y (truncated subtraction). Also [0, 1] is a unital
quantale where r ⊗ s = min(r + s, 1) (truncated addition).

I Definition 7. Given a set X and a quantale V, a V-valued predicate on X is a map
p : X → V. A V-valued relation on X is a map r : X ×X → V.

Given two V-valued predicates p, q : X → V , we say that p ≤ q ⇐⇒ ∀x ∈ X. p(x) ≤ q(x).

I Definition 8. A morphism between V-valued predicates p : X → V and q : Y → V is a
map f : X → Y such that p ≤ q ◦ f . We consider the category V-Pred whose objects are
V-valued predicates and arrows are as above.

I Definition 9. A morphism between V-valued relations r : X ×X → V and q : Y × Y → V
is a map f : X → Y such that p ≤ q ◦ (f × f). We consider the category V-Rel whose objects
are V-valued relations and arrows are as above.

The bifibration of V-valued predicates. The forgetful functor V-Pred → Set mapping a
predicate p : X → V to X is a bifibration. The fibre V-PredX is the lattice of V-valued
predicates on X. For f : X → Y in Set the reindexing and direct image functors on a
predicate p ∈ V-PredY are given by

f∗(p) = p ◦ f and Σf (p)(y) =
∨
{p(x) | x ∈ f−1(y)} .

The bifibration of V-valued relations. Notice that we have the following pullback in
Cat, where ∆X = X × X. This is a change-of-base situation and thus the functor
V-Rel → Set mapping each V-valued relation to its underlying set is also a bifibration.
We denote by V-RelX the fibre above a set X. For each set
X the functor ι restricts to an isomorphism ιX : V-RelX →
V-PredX×X .

V-Rel
��

ι // V-Pred
��

Set
∆

// Set
For f : X → Y in Set the reindexing and direct image on p ∈ V-RelY are given by

f∗(p) = p ◦ (f × f) and Σf (p)(y) =
∨
{p(x, x′) | (x, x′) ∈ (f × f)−1(y, y′)} .

For two relations p, q ∈ V-RelX , we define their composition p · q : X × X → V by
p · q(x, y) =

∨
{p(x, z)⊗ q(z, y) | z ∈ X}. We define the diagonal relation diagX ∈ V-RelX

by diagX(x, y) = 1 if x = y and ⊥ otherwise.

1 To avoid confusion we use ∨,∧ in the quantale and inf, sup in the reals.

F. Bonchi, B. König, and D. Petrişan 17:7

I Definition 10. We say that a V-valued relation r : X ×X → V is
reflexive if for all x ∈ X we have r(x, x) ≥ 1, (i.e., r ≥ diagX);
transitive if r · r ≤ r;
symmetric if r = r ◦ symX , where symX : X ×X → X ×X is the symmetry isomorphism.

We denote by V-Cat the full subcategory of V-Rel consisting of reflexive, transitive relations
and by V-Catsym the full subcategory of V-Rel that are additionally symmetric.

Note that V-Cat is the category of small categories enriched over V in the sense of [25].

I Example 11. For V = 2, V-valued relations are just relations. Reflexivity, transitivity and
symmetry coincide with the standard notions, so V-Cat is the category of preorders, while
V-Catsym is the category of equivalence relations.

For V = [0,∞], V-Cat is the category of generalized metric spaces à la Lawvere [27] (i.e.,
directed pseudo-metrics and non-expansive maps), while V-Catsym is the one of pseudo-metrics.

5 Lifting functors to V-Pred and V-Rel

In the previous section, we have introduced the fibrations of interest for quantitative reasoning.
In order to deal with coinductive predicates in this setting, it is convenient to have a structured
way to lift Set-functors to V-valued predicates and relations, and eventually to V-enriched
categories. Our strategy is to first lift functors to V-Pred and then, by exploiting the change
of base, move these liftings to V-Rel. A comparison with the extensions of Set-monads to the
bicategory of V-matrices [19] is provided in Section 8.

5.1 V-predicate liftings

Liftings of Set-functors to the category Pred (for V = 2) of predicates have been widely
studied in the context of coalgebraic modal logic, as they correspond to modal operators
(see e.g. [36]). For V-Pred, we proceed in a similar way. Let us analyse what it means to
have a fibred lifting F̂ to V-Pred of an endofunctor F on Set. First, recall that the fibre
V-PredX is just the preorder VX . So the restriction F̂X to such a fibre corresponds to a
monotone map VX → VFX . The fact that F̂ is a fibred lifting essentially means that the maps
(VX → VFX)X form a natural transformation between the contravariant functors V− and
VF−. Furthermore, by Yoneda lemma we know that natural transformations V− ⇒ VF− are
in one-to-one correspondence with maps ev : FV → V , which we will call hereafter evaluation
maps. One can characterise the evaluation maps which correspond to the monotone natural
transformations. These are the monotone evaluation maps ev : (FV,�) → (V,≤) with
respect to the usual order ≤ on V and an order � on FV defined by applying the standard
canonical relation lifting of F to ≤.

I Proposition 12. There is a one-to-one correspondence between
fibred liftings F̂ of F to V-Pred,
monotone natural transformations V− ⇒ VF−,
monotone evaluation maps ev : FV → V.

Notice that the correspondence between fibred liftings and monotone evaluation maps is
given in one direction by ev = F̂ (idV), and conversely, by F̂ (p : X → V) = ev ◦ F (p).

CONCUR 2018

17:8 Up-To Techniques for Behavioural Metrics via Fibrations

Evaluation maps as Eilenberg-Moore algebras. Evaluation maps have also been extensively
considered in the coalgebraic approach to modal logics [36]. A special kind of evaluation map
arises when the truth values V have an algebraic structure for a given monad (T, µ, η), that is,
we have V = TΩ for some object Ω and the evaluation map TV → V is an Eilenberg-Moore
algebra for T . This notion of monadic modality has been studied in [17] where the category
of free algebras for T was assumed to be order enriched. Under reasonable assumptions the
evaluation map obtained as the free Eilenberg-Moore algebra on Ω (i.e., ev : TV → V is just
µΩ : T 2Ω→ TΩ) is a monotone evaluation map, and hence gives rise to a fibred lifting of T
(see [8] for more details.)

We provide next several examples of monotone evaluation maps which arise in this fashion.

I Example 13. When T is the powerset monad P and Ω = 1 we obtain V = 2 and µ1 : P2→ 2
corresponds to the ♦ modality, i.e., to an existential predicate transformer, see [17].

I Example 14. When T is the probability distribution functor D on Set and Ω = 2 = {0, 1}
equipped with the order 1 v 0 we obtain V = D{0, 1} ∼= [0, 1] with the reversed order of the
reals, i.e., ≤ = ≥R. In this case evD(f) =

∑
r∈[0,1] r · f(r) for f : [0, 1]→ [0, 1] a probability

distribution (expectation of the identity random variable).

The canonical evaluation map. In the case V = 2, there exists a simple way of lifting a
functor F : Set → Set: given a predicate p : U � X, one defines the canonical predicate
lifting F̂can(U) of F as the epi-mono factorization of Fp : FU → FX. This lifting corresponds
to a canonical evaluation map true : 1 → 2 which maps the unique element of 1 into the
element 1 of the quantale 2. For V-relations, a generalized notion of canonical evaluation
map was introduced in [19]. For r ∈ V consider the subset ↑r = {v ∈ V | v ≥ r} and write
truer : ↑r → V for the inclusion. Given u ∈ FV we write u ∈ F (↑r) when u is in the image
of the injective function F (truer). Following [19], we define evcan : FV → V as follows:

evcan(u) =
∨
{r | u ∈ F (↑r)}.

I Example 15. Assume F is the powerset functor P and let u ∈ P(V). We obtain that

evcan(u) =
∨
{r | u ⊆ ↑r}, or equivalently, evcan(u) =

∧
u .

When V = 2 we obtain evcan : P2 → 2 given by evcan(u) = 1 iff u = ∅ or u = {1}. This
corresponds to the � operator from modal logic. If V = [0,∞] we have evcan(u) = supu.

I Example 16. The canonical evaluation map for the distribution monad D and V = [0, 1]
is evcan(f) = supr∈[0,1] f(r), which is not the monad multiplication.

The canonical evaluation map evcan is monotone whenever the functor F preserves weak
pullbacks (see [8]). For such functors, by Proposition 12, the map evcan induces a fibred
lifting F̂can of F , called the canonical V-Pred-lifting of F and defined by

F̂can(p)(u) =
∨
{r | F (p)(u) ∈ F (↑r)} for p ∈ V-PredX and u ∈ FX .

5.2 From predicates to relations via Wasserstein
We describe next how functor liftings to V-Rel can be systematically obtained using the
change-of-base situation described above. In particular, we see how the Wasserstein metric
between probability distributions (defined in terms of couplings of distributions) can be
naturally modelled in the fibrational setting.

F. Bonchi, B. König, and D. Petrişan 17:9

Consider a V-predicate lifting F̂ of a Set-functor F . A natural way to lift F to V-relations
using F̂ is to regard a V-relation r : X ×X → V as a V-predicate on the product X ×X.
Formally, we will use the isomorphism ιX described in Section 4. We can apply the functor
F̂ to the predicate ιX(r) in order to obtain the predicate F̂ ◦ ιX(r) on the set F (X ×X).
Ideally, we would want to transform this predicate into a relation on FX. So first, we have to
transform it into a predicate on FX × FX. To this end, we use the natural transformation

λF : F ◦∆⇒ ∆ ◦ F defined by λFX = 〈Fπ1, Fπ2〉 : F (X ×X)→ FX × FX . (4)

We drop the superscript and simply write λ when the functor F is clear from the context.
Additionally, the bifibrational structure of V-Rel plays a crucial role, as we can use the direct
image functor ΣλX to transform F̂ ◦ ιX(r) into a predicate on FX × FX. Putting all the
pieces together, we define a lifting of F on the fibre V-RelX as the composite FX given by:

FX : V-RelX V-Pred∆X V-PredF∆X V-Pred∆FX V-RelFX
ιX F̂∆X ΣλX ιFX

−1

(5)

The aim is to define a lifting F of F to V-Rel. The above construction provides the
definition of F on the fibres and, in particular, on the objects of V-Rel. For a morphism
between V-relations p ∈ V-RelX and q ∈ V-RelY , i.e., a map f : X → Y such that p ≤ f∗(q),
we define F (f) as the map Ff : FX → FY . To see that this is well defined it remains to
show that Fp ≤ (Ff)∗(Fq). This is the first part of the next proposition.

I Proposition 17. The functor F defined above is a well defined lifting of F to V-Rel.
Furthermore, when F preserves weak pullbacks and F̂ is a fibred lifting of F to V-Pred, then
F is a fibred lifting of F to V-Rel.

Spelling out the concrete description of the direct image functor and of λX , we obtain for
a relation p ∈ V-RelX and t1, t2 ∈ FX, that

F (p)(t1, t2) =
∨
{F̂ (p)(t) | t ∈ F (X ×X), Fπi(t) = ti} (6)

Unravelling the definition of F̂ (p)(t) = ev ◦ F (p), we obtain for F (p) the same formula as for
the extension of F on V-matrices, as given in [19, Definition 3.4]. This definition in [19] is
obtained by a direct generalisation of the Barr extensions of Set-functors to the bicategory of
relations. In contrast, we obtained (6) by exploiting the fibrational change-of-base situation
and by first considering a V-Pred-lifting.

We call a lifting of the form F the Wasserstein lifting of F corresponding to F̂ . This
terminology is motivated by the next example.

I Example 18. When F = D (the distribution functor), V = [0, 1] and evF is as in
Example 14 then F is the original Wasserstein metric from transportation theory [42], which
– by the Kantorovich-Rubinstein duality – is the same as the Kantorovich metric. Here
we compare two probability distributions t1, t2 ∈ DX and obtain as a result the coupling
t ∈ D(X ×X) with marginal distributions t1, t2, giving us the optimal plan to transport
the “supply” t1 to the “demand” t2. More concretely, given a metric d : X ×X → V, the
(discrete) Wasserstein metric is defined as

dW (t1, t2) = inf{
∑
x,y∈X

d(x, y) · t(x, y) |
∑
y

t(x, y) = t1(x),
∑
x

t(x, y) = t2(y)}.

On the other hand, when evF is the canonical evaluation map of Example 16 the corresponding
V-Rel-lifting F minimizes the longest distance (and hence the required time) rather than the
total cost of transport.

CONCUR 2018

17:10 Up-To Techniques for Behavioural Metrics via Fibrations

I Example 19. Let us spell out the definition when F = P (powerset functor), V = [0, 1]
and evF : P[0, 1]→ [0, 1] corresponds to sup, which is clearly monotone and is the canonical
evaluation map as in Example 15.

Then, given a metric d : X ×X → [0, 1] and X1, X2 ⊆ X, the lifted metric is defined as
follows (remember that the order is reversed on [0, 1]):

F (d)(X1, X2) = inf{sup d[Y] | Y ⊆ X ×X,πi[Y] = Xi}

As explained in [5], this is the same as the Hausdorff metric dH defined by:

dH(X1, X2) = sup{ sup
x1∈X1

inf
x2∈X2

d(x1, x2), sup
x2∈X2

inf
x1∈X1

d(x1, x2)}

The next lemma establishes that this construction is functorial: liftings of natural
transformations to V-Pred can be converted into liftings of natural transformations between
the corresponding Wasserstein liftings on V-Rel.

I Lemma 20. If there exists a lifting ζ̂ : F̂ ⇒ Ĝ of a natural transformation ζ : F ⇒ G, then
there exists a lifting ζ : F ⇒ G between the corresponding Wasserstein liftings. Furthermore,
when F̂ and Ĝ correspond to monotone evaluation maps evF and evG, then the lifting ζ̂
exists and is unique if and only if evF ≤ evG ◦ ζV .

For V = [0,∞], one is also interested in lifting functors to the category of (generalized)
pseudo-metric spaces, not just of [0,∞]-valued relations. This motivates the next question:
when does the lifting F restrict to a functor on V-Cat and V-Catsym? We have the following
characterization theorem, where κX : X → V is the constant function x 7→ 1 and u⊗v : X →
V denotes the pointwise tensor of two predicates u, v : X → V , i.e., (u⊗ v)(x) = u(x)⊗ v(x).

I Theorem 21. Assume F̂ is a lifting of F to V-Pred and F is the corresponding V-Rel
Wasserstein lifting. Then

If F̂ (κX) ≥ κFX then F (diagX) ≥ diagFX , hence F preserves reflexive relations;
If F̂ is a fibred lifting, F preserves weak pullbacks and F̂ (p ⊗ q) ≥ F̂ (p) ⊗ F̂ (q) then
F (p · q) ≥ F (p) · F (q), hence F preserves transitive relations;
F preserves symmetric relations.

Consequently, when all the above hypotheses are satisfied, then the corresponding V-Rel
Wasserstein lifting F restricts to a lifting of F to both V-Cat and V-Catsym.

For V = [0,∞], the first condition of Theorem 21 is a relaxed version of a condition in
[5, Definition 5.14] used to guarantee reflexivity. The second condition (for transitivity) is
equivalent to a non-symmetric variant of a condition in [5] (see [8]).

We can establish generic sufficient conditions on a monotone evaluation map ev so that
the corresponding V-Pred-lifting F̂ satisfies the conditions of Theorem 21. In [8] we show that
F̂ (p⊗q) ≥ F̂ (p)⊗F̂ (q) holds whenever the map ⊗ : V×V → V is the carrier of a lax morphism
in the category of F -algebras between (V, ev)2 → (V, ev), i.e., ⊗◦ (ev × ev) ◦ λV ≤ ev ◦F (⊗).
Furthermore, F̂ (κX) ≥ κX holds whenever the map κ1 : 1 → V is the carrier of a lax
morphism from the one-element F -algebra ! : F1 → 1 to (V, ev), i.e., κ1◦! ≤ ev ◦ Fκ1.
These two requirements correspond to the conditions (Q⊗), respectively (Qk) satisfied by a
topological theory in the sense of [19, Definition 3.1]. Since these two are satisfied by the
canonical evaluation map evcan,2 we immediately obtain

2 The same observation is present in [19, Theorem 3.3(b)] but in a slightly different setting.

F. Bonchi, B. König, and D. Petrişan 17:11

I Proposition 22. Whenever F preserves weak pullbacks the canonical lifting F̂can satisfies
the conditions in Theorem 21:
1. F̂can(p⊗ q) ≥ F̂can(p)⊗ F̂can(q), for all p, q ∈ V-PredX ,
2. F̂can(κX) ≥ κX .
An immediate consequence of Proposition 22 and of Theorem 21 is that the Wasserstein
lifting F can that corresponds to F̂can restricts to a lifting of F to both V-Cat and V-Catsym.

6 Quantitative up-to techniques

The fibrational constructions of the previous section provides a convenient setting to develop
an abstract theory of quantitative up-to techniques. The coinductive object of interest is
the greatest fixpoint of a monotone map b on V-Rel, hereafter denoted by νb. Recall that
an up-to technique, namely a monotone map f on V-Rel, is sound whenever d ≤ b(f(d))
implies d ≤ νb, for all d ∈ V-RelX ; it is compatible if f ◦ b ≤ b ◦ f in the pointwise order. It
is well-known that compatibility entails soundness. Another useful property is:

if f is compatible, then f(νb) ≤ νb . (7)

Following [9], we assume hereafter that b can be seen as the composite

b : V-RelX V-RelFX V-RelX .F ξ∗ (8)

where ξ : X → FX is some coalgebra for F : Set → Set. When F admits a final coalgebra
ω : Ω→ FΩ, the unique morphism ! : X → Ω induces the behavioural closure up-to technique

bhv : V-RelX V-RelΩ V-RelX
Σ! !∗ (9)

where bhv(p)(x, y) =
∨
{p(x′, y′) | !(x) = !(x′) and !(y) = !(y′)}. For V = 2, behavioural clos-

ure corresponds to the usual up-to behavioural equivalence (bisimilarity). Other immediate
generalisations are the up-to reflexivity (ref), up-to transitivity (trn) and up-to symmetry
(sym) techniques. Whenever F is obtained through the Wasserstein construction of some F̂
satisfying the conditions of Theorem 21, these techniques are compatible (see [8] for more
details).

As usual, compatible techniques can be combined either by function composition (◦) or
by arbitrary joins (

∨
). For instance compatibility of up-to metric closure, defined as the

composite mtr = trn ◦ sym ◦ ref follows immediately from compatibility of trn, sym and ref .
In V-Rel there is yet another useful way to combine up-to techniques – called chaining in [12]
– and defined as the composition (·) of relations.

I Proposition 23. Let f1, f2 : V-RelX → V-RelX be compatible with respect to b : V-RelX →
V-RelX . If F (p · q) ≥ F (p) · F (q) for all p, q ∈ V-RelX , then f1 · f2 is b-compatible.

In the reminder of this section, we focus on quantitative generalizations of the up-to
contextual closure technique, which given an algebra α : TX → X, is seen as the composite:

f : V-RelX V-RelTX V-RelX .T Σα (10)

I Example 24. Consider a signature Σ and the algebra of Σ-terms with variables in X

µX : TΣTΣX → TΣX. The contextual closure ctx : V-RelTΣX → V-RelTΣX is defined as in (10)
by taking the canonical lifting of the functor TΣ. For all t1, t2 ∈ TΣX and d ∈ V-RelTΣX

ctx(d)(t1, t2) =
∨
C

{
∧
j

d(s1
j , s

2
j) | ti = C(si0, . . . , sin)}

CONCUR 2018

17:12 Up-To Techniques for Behavioural Metrics via Fibrations

where C ranges over arbitrary contexts and sij over terms. Notice that for V = 2, this boils
down to the usual notion of contextual closure of a relation. Details can be found in [8].

I Example 25. Let V = [0, 1]. In [12], the convex closure of d ∈ V-RelD(X) is defined for
∆,Θ ∈ D(X) as

cvx(d)(∆,Θ) = inf{
∑
i

pi · d(∆i,Θi) | ∆ =
∑
i

pi ·∆i,Θ =
∑
i

pi ·Θi}

where ∆i,Θi ∈ D(X), pi ∈ [0, 1]. This can be obtained as in (10) by taking the lifting of D
from Example 18 and the algebra given by the multiplication µX : DDX → DX. Details can
be found in [8].

We consider next systems modelled as bialgebras (X,α : TX → X, ξ : X → FX) for a
natural transformation ζ : T ◦ F ⇒ F ◦ T . When b and f are as in (8), respectively (10), we
use [9, Theorem 2] to obtain

I Proposition 26. If there exists a lifting ζ : T ◦ F ⇒ F ◦ T of ζ, then f is b-compatible.

The next theorem establishes sufficient conditions for the existence of a lifting of ζ.

I Theorem 27. Assume the natural transformation ζ : T ◦ F ⇒ F ◦ T lifts to a natural
transformation ζ̂ : T̂ ◦ F̂ ⇒ F̂ ◦ T̂ and that we have T̂ ◦ ΣλF

X
≤ ΣTλF

X
◦ T̂ . Then ζ lifts to a

distributive law ζ : T ◦ F ⇒ F ◦ T .

Proof Sketch. Notice that T̂ ◦ F := T̂ ◦ F̂ and F̂ ◦ T := F̂ ◦ T̂ are liftings of the composite
functors T ◦ F , respectively F ◦ T . We will denote by T ◦ F and F ◦ T the corresponding
Wasserstein liftings obtained from T̂ ◦ F , respectively F̂ ◦ T as in Section 5. We split the
proof obligation into three parts:

T ◦ F ⇒
(1)
T ◦ F ζ̃⇒

(2)
F ◦ T ⇒

(3)
F ◦ T .

(1) lifts the identity natural transformation on T ◦ F . Its existence is proved using the
hypothesis T̂ ◦ ΣλF

X
≤ ΣTλF

X
◦ T̂ .

(2) is obtained by applying Lemma 20 to ζ̂. Such liftings have already been studied in [4].
(3) lifts the identity natural transformation on F ◦ T . J

The first requirement of the previous theorem holds for the canonical V-Pred-liftings
under mild assumptions on F and T .

I Proposition 28. Assume that ζ : T ◦ F ⇒ F ◦ T is a natural transformation and that,
furthermore, T preserves weak pullbacks and F preserves intersections. Then ζ lifts to a
natural transformation ζ̂ : T̂can ◦ F̂can ⇒ F̂can ◦ T̂can.

The next proposition establishes sufficient conditions for the second hypothesis of The-
orem 27. We need a property on V that holds for the quantales in Example 6 and was also
assumed in [19]. Given u, v ∈ V we write u≪ v (u is totally below v) if for every W ⊆ V,
v ≤

∨
W implies that there exists w ∈ W with u ≤ w. The quantale V is constructively

completely distributive iff for all v ∈ V it holds that v =
∨
{u ∈ V | u≪ v}. In [8] we prove

a more general statement in which the lifting of T is not assumed to be the canonical one,
that is useful to guarantee the result for interesting liftings, such as the one in Example 18.

I Proposition 29. Assume that T preserves weak pullbacks and that V is constructively
completely distributive. Then T̂can ◦ Σf ≤ ΣTf ◦ T̂can.

F. Bonchi, B. König, and D. Petrişan 17:13

Combining Theorem 27 and Propositions 26, 28 and 29 we conclude:
I Theorem 30. Let (X,α : TX → X, ξ : X → FX) be a bialgebra for a natural transform-
ation ζ : T ◦ F ⇒ F ◦ T . If V is constructively completely distributive, T preserves weak
pullbacks and F preserves intersections, then f = T can ◦ Σα is compatible with respect to
b = F can ◦ ξ∗.

When α is the free algebra for a signature µX : TΣTΣX → TΣX (as in Example 24), the
above theorem guarantees that up-to contextual closure is compatible with respect to b. By
(7), the following holds.
I Corollary 31. For all terms t1, t2 and unary contexts C, νb(t1, t2) ≤ νb(C(t1), C(t2)).
For V = 2, since the canonical quantitative lifting coincides with the canonical relational one,
then νb is exactly the standard coalgebraic notion of behavioural equivalence [18]. Therefore
the above corollary just means that behavioural equivalence is a congruence.

For V = [0,∞] instead, this property boils down to non-expansiveness of contexts with
respect to the behavioural metric. It is worth to mention that this property often fails in
probabilistic process algebras when taking the standard Wasserstein lifting which, as shown
in Example 18, is not the canonical one. We leave as future work to explore the implications
of this insight.

7 Example: distance between regular languages

We will now work out the quantitative version of the up-to congruence technique for non-
deterministic automata. We consider the shortest-distinguishing-word-distance dsdw, proposed
in Section 2. As explained, we will assume an on-the-fly determinization of the non-
deterministic automaton, i.e., formally we will work with a coalgebra that corresponds to a
deterministic automaton on which we have a join-semilattice structure.

We explain next the various ingredients of the example:

Coalgebra and algebra. As outlined in Section 2 and Example 3 the determinization of an
NFA with state space Q is a bialgebra (X,α, ξ) for the distributive law ζX : P(2×XA)→
2× (PX)A, where X = PQ, α : PX → X is given by union and ξ : X → 2×XA specifies
the DFA structure of the determinization. Hence, we instantiate the generic results in the
previous section with TX = PX, FX = 2×XA and ζ as defined in Example 3.

Lifting the functors. We take the quantale V = [0, 1] (Example 6) and consider the
Wasserstein liftings of the endofunctors F and T to V-Rel corresponding to the following
evaluation maps:

evF (b, f) := c ·maxa∈A f(a), where b ∈ {0, 1}, f : A→ [0, 1] and c is the constant used
in dsdw, and,
evT := evPcan = sup, the canonical evaluation map as in Example 15.

These are monotone evaluation maps that satisfy the hypothesis of Theorem 21. Hence the
corresponding Wasserstein liftings restrict to V-Cat. We computed the Wasserstein lifting of
T = P in Example 19: applying the lifted functor T to a map d : X ×X → [0, 1], gives us the
Hausdorff distance, i.e., T (d)(X1, X2) = dH(X1, X2), where X1, X2 ⊆ X and dH denotes the
Hausdorff metric based on d. On the other hand, the Wasserstein lifting of F corresponding
to evF associates to a metric d : X×X → [0, 1] the metric F (d) : FX×FX → [0, 1] given by

((b1, f1), (b2, f2)) 7→
{

1 if b1 6= b2
max
a∈A

c · {d(f1(a), f2(a))} otherwise

CONCUR 2018

17:14 Up-To Techniques for Behavioural Metrics via Fibrations

Fixpoint equation. The map b for the fixpoint equation was defined in Section 6 as the
composite ξ∗ ◦ F . Using the above lifting F , this computation yields exactly the map b

defined in (2), whose largest fixpoint (smallest with respect to the natural order on the
reals) is the shortest-distinguishing-word-distance introduced in Section 2.

Up-to technique. The next step is to determine the map f introduced in Section 6 for the
up-to technique and defined as the composite Σα ◦ T on V-Rel. Combining the definition
of the direct image functors on V-Rel with the lifting T , we obtain for a given a map
d : X ×X → [0, 1] that

f(d)(x1, x2) = inf{dH(X1, X2) | X1, X2 ⊆ X,α(Xi) = xi}

To show that f(d)(Q1, Q2)≤Rr for two sets Q1, Q2 ⊆ Q (i.e., Q1, Q2 ∈ X) and a constant r
we use the following rules:

f(d)(∅, ∅)≤Rr
d(Q1, Q2)≤Rr

f(d)(Q1, Q2)≤Rr

f(d)(Q1, Q2)≤Rr f(d)(Q′
1, Q′

2)≤Rr

f(d)(Q1 ∪Q′
1, Q2 ∪Q′

2)≤Rr

Lifting of distributive law. In order to prove that the distributive law lifts to V-Rel and
hence that the up-to technique is sound by virtue of Proposition 26, we can prove that the
two conditions of Theorem 27 are met by the V-Pred liftings of F and T corresponding to
the evaluation maps evF and evT , see [8].

Everything combined, we obtain a sound up-to technique, which implies that the reasoning
in Section 2 is valid. Furthermore, as the example shows, the up-to technique can significantly
simplify behavioural distance arguments and speed up computations.

8 Related and future work

Up-to techniques for behavioural metrics in a probabilistic setting have been considered
in [12] using a generalization of the Kantorovich lifting [11]. In Section 6, we have shown that
the basic techniques introduced in [12] (e.g., metric closure, convex closure and contextual
closure) as well as the ways to combine them (composition, join and chaining) naturally
fit within our framework. The main difference with our approach – beyond the fact that
we consider arbitrary coalgebras while the results in [12] just cover coalgebras for a fixed
functor – is that the definition of up-to techniques and the criteria to prove their soundness
do not fit within the standard framework of [33]. Nevertheless, as illustrated by a detailed
comparison in [8], the techniques of [12] can be reformulated within the standard theory
and thus proved sound by means of our framework. An important observation brought
to light by compositional methodology inherent to the fibrational approach, is that for
probabilistic automata a bisimulation metric up-to convexity in the sense of [12] is just
a bisimulation metric, see [8]. Nevertheless, the up-to convex closure technique can find
meaningful applications in linear, trace-based behavioural metrics (see [4]).

The Wasserstein (respectively Kantorovich) lifting of the distribution functor involving
couplings was first used for defining behavioural pseudometrics using final coalgebras in [40].
Our work is based instead on liftings for arbitrary functors, a problem that has been considered
in several works (see e.g. [19, 2, 5, 24]), despite with different shades. The closest to our
approach are [19] and [5] that we discuss next.

In [19] Hofmann introduces a generalization of the Barr extension (of Set-functors to Rel),
namely he defines extensions of Set-monads to the bicategory of V-matrices, in which 0-cells
are sets and the V-relations are 1-cells. Some of the definitions and techniques do overlap

F. Bonchi, B. König, and D. Petrişan 17:15

between the developments in [19] and the results we presented in Section 5. However, there
are also some (subtle) differences which would not allow us to use off the shelf his results.

First, in order to reuse the results in [9], we need to recast the theory in a fibrational
setting, rather than the bicategorical setting of [19]. The definition of topological theory [19,
Definition 3.1] comprises what we call an evaluation map, but which additionally has to
satisfy various conditions. An important difference with what we do is that the condition
(Q∨) in the aforementioned definition entails that the predicate lifting one would obtain
from such an evaluation map would be an opfibred lifting, rather than a fibred lifting as in
our setting. Indeed, the condition (Q∨) can be equivalently expressed in terms of a natural
transformation involving the covariant functor PV , as opposed to the contravariant one
V− that we used in Section 5.1. Lastly, in our framework we need to work with arbitrary
functors, not necessarily carrying a monad structure.

In [5] we provided a generic construction for the Wasserstein lifting of a functor to the
category of pseudo-metric spaces, rather than on arbitrary quantale-valued relations. The
realisation that this construction is an instance as a change-of-base situation between V-Rel
and V-Pred allows us to exploit the theory in [9] for up-to techniques and, as a side result,
provides simpler (and cleaner) conditions for the restriction V-Cat (Theorem 21).

We leave for future work several open problems. What is a universal property for the
canonical Wasserstein lifting? Secondly, can the Wasserstein liftings presented here be
captured in the framework of [2] or [24]? We also leave for future work the development
of up-to techniques for other quantales than 2 and [0, 1]. We are particularly interested in
weighted automata [16] over quantales and in conditional transition systems, a variant of
featured transition systems.

References

1 G. Bacci, G. Bacci, K.G. Larsen, and R. Mardare. Computing behavioral distances, com-
positionally. In Proc. of MFCS ’13, pages 74–85. Springer, 2013. LNCS 8087.

2 A. Balan, A. Kurz, and J. Velebil. Extensions of functors from Set to V-cat. In CALCO,
volume 35 of LIPIcs, pages 17–34, 2015.

3 P. Baldan, F. Bonchi, H. Kerstan, and B. König. Behavioral metrics via functor lifting. In
FSTTCS, volume 29 of LIPIcs, 2014.

4 P. Baldan, F. Bonchi, H. Kerstan, and B. König. Towards trace metrics via functor lifting.
In CALCO, volume 35 of LIPIcs, pages 35–49, 2015.

5 P. Baldan, F. Bonchi, H. Kerstan, and B. König. Coalgebraic behavioral metrics. LMCS,
to appear. arXiv:1712.07511.

6 F. Bonchi, P. Ganty, R. Giacobazzi, and D. Pavlovic. Sound up-to techniques and complete
abstract domains. In Proc. of LICS ’18, 2018.

7 F. Bonchi, B. König, and S. Küpper. Up-to techniques for weighted systems. In Proc. of
TACAS ’17, Part I, pages 535–552. Springer, 2017. LNCS 10205.

8 F. Bonchi, B. König, and D. Petrişan. Up-to techniques for behavioural metrics via fibra-
tions, 2018. arXiv:1806.11064. arXiv:1806.11064.

9 F. Bonchi, D. Petrişan, D. Pous, and J. Rot. Coinduction up-to in a fibrational setting. In
CSL-LICS. ACM, 2014. Paper No. 20.

10 F. Bonchi and D. Pous. Checking NFA equivalence with bisimulations up to congruence.
In POPL, pages 457–468. ACM, 2013.

11 K. Chatzikokolakis, D. Gebler, C. Palamidessi, and L. Xu. Generalized bisimulation metrics.
In Proc. of CONCUR ’14. Springer, 2014. LNCS/ARCoSS 8704.

CONCUR 2018

http://arxiv.org/abs/1806.11064

17:16 Up-To Techniques for Behavioural Metrics via Fibrations

12 K. Chatzikokolakis, C. Palamidessi, and V. Vignudelli. Up-to techniques for generalized
bisimulation metrics. In CONCUR, volume 59 of LIPIcs, pages 35:1–35:14, 2016.

13 N.A. Danielsson. Up-to techniques using sized types. Proc. ACM Program. Lang.,
2(POPL):43:1–43:28, 2017.

14 L. de Alfaro, M. Faella, and M. Stoelinga. Linear and branching metrics for quantitative
transition systems. In ICALP, pages 97–109. Springer, 2004. LNCS 3142.

15 J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labelled Markov
processes. Theor. Comput. Sci., 318(3):323–354, 2004.

16 M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata. Monographs in
Theoretical Computer Science. Springer, 2009.

17 I. Hasuo. Generic weakest precondition semantics from monads enriched with order. Theor.
Comput. Sci., 604:2–29, 2015.

18 C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational setting.
Inf. and Comp., 145:107–152, 1998.

19 D. Hofmann. Topological theories and closed objects. Advances in Mathematics, 215(2):789–
824, 2007.

20 C.-K. Hur, G. Neis, D. Dreyer, and V. Vafeiadis. The power of parameterization in coin-
ductive proof. In POPL, pages 193–206. ACM, 2013.

21 B. Jacobs. Categorical Logic and Type Theory. Elsevier, 1999.
22 B. Jacobs. Introduction to coalgebra. Towards mathematics of states and observations.

Cambridge University Press, 2016.
23 B. Jacobs, A. Silva, and A. Sokolova. Trace semantics via determinization. J. Comput.

Syst. Sci., 81(5):859–879, 2015. doi:10.1016/j.jcss.2014.12.005.
24 S. Katsumata and T. Sato. Codensity liftings of monads. In CALCO, volume 35 of LIPIcs,

pages 156–170, 2015.
25 M. Kelly. Basic Concepts of Enriched Category Theory, volume 64 of Lecture Notes in

Mathematics. Cambridge University Press, 1982.
26 B. Klin. Bialgebras for structural operational semantics: An introduction. Theor. Comput.

Sci., 412(38):5043–5069, 2011. doi:10.1016/j.tcs.2011.03.023.
27 F.W. Lawvere. Metric spaces, generalized logic, and closed categories. Reprints in Theory

and Applications of Categories, pages 1–37, 2002.
28 R. Milner. Communication and Concurrency. Prentice Hall, 1989.
29 R. Milner and D. Sangiorgi. Techniques of weak bisimulation up-to. In CONCUR. Springer-

Verlag, 1992. LNCS 630.
30 J. Parrow and T. Weber. The largest respectful function, 2016. arXiv:1605.04136.
31 D. Pous. Complete lattices and up-to techniques. In APLAS, volume 4807 of LNCS, pages

351–366. Springer, 2007.
32 D. Pous. Coinduction all the way up. In Proc. of LICS ’16, pages 307–316. ACM, 2016.

doi:10.1145/2933575.2934564.
33 D. Pous and D. Sangiorgi. Enhancements of the coinductive proof method. In Davide San-

giorgi and Jan Rutten, editors, Advanced Topics in Bisimulation and Coinduction. Cam-
bridge University Press, 2011.

34 J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical computer science,
249(1):3–80, 2000.

35 D. Sangiorgi. On the bisimulation proof method. Mathematical Structures in Computer
Science, 8(5):447–479, 1998.

36 L. Schröder. Expressivity of coalgebraic modal logic: The limits and beyond. Theor. Comp.
Sci., 390:230–247, 2008.

http://dx.doi.org/10.1016/j.jcss.2014.12.005
http://dx.doi.org/10.1016/j.tcs.2011.03.023
http://dx.doi.org/10.1145/2933575.2934564

F. Bonchi, B. König, and D. Petrişan 17:17

37 A. Silva, F. Bonchi, M. M. Bonsangue, and J.J.M.M. Rutten. Generalizing determinization
from automata to coalgebras. Logical Methods in Computer Science, 9(1), 2013. doi:
10.2168/LMCS-9(1:9)2013.

38 S. Tini, K.G. Larsen, and D. Gebler. Compositional bisimulation metric reasoning with
probabilistic process calculi. Logical Methods in Computer Science, 12, 2017.

39 D. Turi and G. Plotkin. Towards a mathematical operational semantics. In Proc. of
LICS ’97, pages 280–291. IEEE, 1997.

40 F. van Breugel and J. Worrell. Towards quantitative verification of probabilistic transition
systems. In ICALP, volume 2076 of LNCS, pages 421–432. Springer, 2001.

41 F. van Breugel and J. Worrell. A behavioural pseudometric for probabilistic transition
systems. Theor. Comp. Sci., 331:115–142, 2005.

42 C. Villani. Optimal Transport – Old and New, volume 338 of A Series of Comprehensive
Studies in Mathematics. Springer, 2009.

CONCUR 2018

http://dx.doi.org/10.2168/LMCS-9(1:9)2013
http://dx.doi.org/10.2168/LMCS-9(1:9)2013

Completeness for Identity-free Kleene Lattices
Amina Doumane
Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, Lyon, France
amina.doumane@ens-lyon.fr

Damien Pous
Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, Lyon, France
damien.pous@ens-lyon.fr

Abstract
We provide a finite set of axioms for identity-free Kleene lattices, which we prove sound and
complete for the equational theory of their relational models. Our proof builds on the complete-
ness theorem for Kleene algebra, and on a novel automata construction that makes it possible to
extract axiomatic proofs using a Kleene-like algorithm.

2012 ACM Subject Classification Theory of computation → Regular languages

Keywords and phrases Kleene algebra, Graph languages, Petri Automata, Kleene theorem

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.18

Related Version Long version at [13], https://hal.archives-ouvertes.fr/hal-01780845.

Funding This work has been funded by the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 programme (CoVeCe, grant agreement No 678157). This work was
supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the
program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Re-
search Agency (ANR).

1 Introduction

Relation algebra is an efficient tool to reason about imperative programs. In this approach,
the bigstep semantics of a program P is a binary relation [P] between memory states [20,
21, 6, 16, 1]. This relation is built from the elementary relations corresponding to the
atomic instructions of P , which are combined using standard operations on relations, for
instance composition and transitive closure, that respectively encode sequential composition
of programs, and iteration (while loops). Abstracting over the concrete behaviour of atomic
instructions, one can compare two programs P,Q by checking whether the expressions [P]
and [Q] are equivalent in the model of binary relations, which we write as Rel |= [P] = [Q].

To enable such an approach, one should obtain two properties: decidability of the
predicate Rel |= e = f , given two expressions e and f as input, and axiomatisability of
this relation. Decidability makes it possible to automate the verification process, thus
alleviating the burden for the end-user [17, 14, 9, 25, 28]. Axiomatisation offers a better way
of understanding the equational theory of relations and provides a certificate for programs
verification. Indeed, an axiomatic proof of e = f can be seen as a certificate, which can
be exchanged, proofread, and combined in a modular way. Axiomatisations also make it
possible to solve hard instances manually, when the existing decision procedures have high
complexity and/or when considered instances are large [22, 17, 7].

© Amina Doumane and Damien Pous;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 18; pp. 18:1–18:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amina.doumane@ens-lyon.fr
mailto:damien.pous@ens-lyon.fr
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.18
https://hal.archives-ouvertes.fr/hal-01780845
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 Completeness for Identity-free Kleene Lattices

Depending on the class of programs under consideration, several sets of operations
on relations can be considered. In this paper we focus on the following set of operations:
composition (·), transitive closure (_+), union (+), intersection (∩) and the empty relation (0).
The expressions generated by this signature are called KL−-expressions. An example of an
inequality in the corresponding theory is Rel |= (a ∩ c) · (b ∩ d) ≤ (a · b)+ ∩ (c · d): when
a, b, c, d are interpreted as arbitrary binary relations, we have (a∩ c) · (b∩d) ⊆ (a · b)+∩ (c ·d).
The operations of composition, union and transitive closure arise naturally when defining the
bigstep semantics of sequential programs. In contrast, intersection, which is the operation of
interest in the present paper, is not a standard operation on programs. This operation is
however useful when it comes to specifications: it allows one to express local conjunctions
of specifications. For instance, a specification of the shape (a ∩ b)+ expresses the fact that
execution traces must consist of sequences of smaller traces satisfying both a and b.

The operations of KL− contain those of identity-free regular expressions, whose equational
theory inherits the good properties of Kleene algebra (KA).We summarise them below.

First recall that each regular expression e can be associated with a set of words L(e) called
its language. Valid inequations between regular expressions inequalities can be characterised
by language inclusions [29]:

Rel |= e ≤ f iff L(e) ⊆ L(f) (1)

Second, we have the celebrated equivalence between regular expressions and non-deterministic
finite automata (NFA) via a Kleene theorem: for every regular expression e, there is an NFA
such that L(e) is the language of A, and conversely. Decidability follows (in fact, PSpace-
completeness). Lastly, although every purely equational axiomatisation of this theory must
be infinite [30], Kozen has proved that Conway’s finite quasi-equational axiomatisation [12]
is sound and complete [19]. (There is also an independent proof of this result by Boffa [8],
based on the extensive work of Krob [26].)

Those three results nicely restrict to identity-free Kleene algebra (KA−), which form a
proper fragment of Kleene algebra [23]. It suffices to consider languages of non-empty words:
Equation (1) remains, Kleene’s theorem still holds, and we have the following characterisation,
where we write KA− ` e ≤ f when e ≤ f is derivable from the axioms of KA−:

L(e) ⊆ L(f) iff KA− ` e ≤ f (2)

There are counterparts to the first two points for KL−-expressions. Each KL−-expression
e can be associated with a set of graphs G(e) called its graph language, and valid inequations
of KL−-expressions can be characterised through these languages of graphs. A subtlety here
is that we have to consider graphs modulo homomorphisms; writing CG for the closure of a
set of graphs G under graph homomorphisms, we have [10]:

Rel |= e ≤ f iff CG(e) ⊆ CG(f) (3)

KL−-expressions are equivalent to a model of automata over graphs called Petri automata [10].
As for KA−-expressions, a Kleene-like theorem holds [11]: for every KL−-expression e, there is
a Petri automaton whose language is G(e), and conversely. Decidability (in fact, ExpSpace-
completeness) of the equational theory follows [10, 11].

What is missing to this picture is an axiomatisation of the corresponding equational theory.
In the present paper, we provide such an axiomatisation, which we call KL−, and which
comprises the axioms for identity-free Kleene algebra (KA−) and the axioms of distributive
lattices for {+,∩}. Completeness of this axiomatisation is the difficult result we prove here:

CG (e) ⊆ CG (f) entails KL− ` e ≤ f (4)

A. Doumane and D. Pous 18:3

We proceed in two main steps. First we show that G (e) ⊆ G (f) entails KL− ` e ≤ f ,
using a technique inspired from [24], this is what we call completeness for strict language
inclusion.The second step is much more involved. There we exploit the Kleene theorem for
Petri automata [11]: starting from expressions e, f such that CG (e) ⊆ CG (f), we build two
Petri automata A ,B respectively recognising G (e) and G (f). Then we design a product
construction to synchronise A and B, and a Kleene-like algorithm to extract from this
construction two expressions e′, f ′ such that G (e) = G (e′), KL− ` e′ ≤ f ′, and G (f ′) ⊆ G (f).
This synchronised Kleene theorem suffices to conclude using the first step.

To our knowledge, this is the first completeness result for a theory involving Kleene
iteration and intersection. Identity-free Kleene lattices were studied in depth by Andréka,
Mikulás and Németi [2]; they have in particular shown that over this syntax, the equational
theories generated by binary relations and formal languages coincide. But axiomatisability
remained opened. The restriction to the identity-free fragment is important for several
reasons. First of all, it makes it possible to rely on the technique used in [10] to compare
Petri automata, which does not scale in the presence of identity. Second, this is the fragment
for which the Kleene theorem for Petri automata is proved the most naturally [11]. Third,
‘strange’ laws appear in the presence of 1 [3], e.g., 1 ∩ (b · a) ≤ a · (1 ∩ (b · a)) · b, and
axiomatisability is still open even in the finitary case where Kleene iteration is absent – see
the erratum about [3].

Proofs of completeness for other extensions of Kleene algebra include Kleene algebra with
tests (KAT) [20], nominal Kleene algebra [24], and Concurrent Kleene algebra [27, 18]. The
latter extension is the closest to our work since the parallel operator of concurrent Kleene
algebra shares some properties of the intersection operation considered in the present work
(e.g., it is commutative and it satisfies a weak interchange law with sequential composition).

The paper is organised as follows. In Sect. 2, we recall KL−-expressions, their graph
language and the corresponding model of Petri automata. In Sect. 3 we give our axiomatisation
and state the completeness result. Then we show it following the proof scheme presented
earlier: in Sect. 4 we show completeness for strict language inclusions, we recall in Sect. 5
the Kleene theorem of KL− expressions, on which we build to show our synchronised Kleene
theorem in Sect. 6.

2 Expressions, graph languages and Petri automata

2.1 Expressions and their relational semantics

We let a, b . . . range over the letters of a fixed alphabet X. We consider the following syntax
of KL−-expressions, which we simply call expressions if there is no ambiguity:

e, f ::= e · f | e+ f | e ∩ f | e+ | 0 | a (a ∈ X)

We denote their set by ExpX and we often write ef for e · f . When we remove intersection
(∩) from the syntax of KL−-expressions we get KA−-expressions, which are the identity-free
regular expressions.

If σ : X → P(S × S) is an interpretation of the letters into some space of relations, we
write σ̂ for the unique homomorphism extending σ into a function from ExpX to P(S × S).
An inequation between two expressions e and f is valid, written Rel |= e ≤ f , if for every
such interpretation σ we have σ̂(e) ⊆ σ̂(f).

CONCUR 2018

18:4 Completeness for Identity-free Kleene Lattices

G ∩H ,
G

H

G ·H , G H

G (a) , a

Figure 1 Operations on graphs.

G ((a · (b ∩ c)) ∩ d) ,
a

d

b

c

G ((a · b) ∩ (a · c)) ,
a

a

b

c

Figure 2 Graphs associated with some terms.

2.2 Terms, graphs, and homomorphisms
We let u, v . . . range over expressions built using only letters, ∩ and ·, which we call terms.
(Terms thus form a subset of expressions: they are those expressions not using 0, + and _+.)
We will use 2-pointed labelled directed graphs, simply called graphs in the sequel. Those are
tuples 〈V,E, s, t, l, ι, o〉 with V (resp. E) a finite set of vertices (resp. edges), s, t : E → V the
source and target functions, l : E → X the labelling function, and ι, o ∈ V two distinguished
vertices, respectively called input and output.

As depicted in Fig. 1, graphs can be composed in series or in parallel, and a letter can be
seen as a graph with a single edge labelled by that letter. One can thus recursively associate
to every term u a graph G (u) called the graph of u. Two examples are given in Fig. 2; graphs
of terms are series-parallel [31].

I Definition 1 (Graph homomorphism). A homomorphism from G = 〈V,E, s, t, l, ι, o〉 to
G′ = 〈V ′, E′, s′, t′, l′, ι′, o′〉 is a pair h = 〈f, g〉 of functions f : V → V ′ and g : E → E′ that
respect the various components: s′ ◦ g = f ◦ s, t′ ◦ g = f ◦ t, l = l′ ◦ g, ι′ = f(ι), and o′ = f(o).

We write G′ CG if there exists a graph homomorphism from G to G′.

Such a homomorphism is depicted in Fig. 3. A pleasant way to think about graph ho-
momorphisms is the following: we have G C H if G is obtained from H by merging (or
identifying) some nodes, and by adding some extra nodes and edges. For instance, the graph
G in Fig. 3 is obtained from H by merging the nodes 1, 2 and by adding an edge between
the input and the output labelled by d.

The starting point of the present work is the following characterisation:

I Theorem 2 ([5, Thm. 1], [15, p. 208]). For all terms u, v, Rel |= u ≤ v iff G (u) C G (v).

2.3 Graph language of an expression
To generalise the previous characterisation to KL−-expressions, one interprets expressions by
sets (languages) of graphs: graphs play the role of words for KA-expressions.

I Definition 3 (Term and graph languages of expressions). The term language of an expression
e, written JeK, is the set of terms defined recursively as follows:

Je · fK , {u · v | u ∈ JeK and v ∈ JfK} J0K , ∅
Je ∩ fK , {u ∩ v | u ∈ JeK and v ∈ JfK} JaK , {a}
Je+ fK , JeK ∪ JfK

q
e+y

,
⋃
n>0 {u1 · · · · · un | ∀i, ui ∈ JeK}

The graph language of e is the set of graphs G(e) , {G(u) | u ∈ JeK}.

A. Doumane and D. Pous 18:5

G :

`

4
5

6
a

d

b

c

H : 0
1

2
3

a

a

b

c

Figure 3 A graph homomorphism.

A

B

C
D

E0 12

3

b

c

d

a

b

c

Figure 4 A Petri automaton.

A
B

C
D

B

C
D

E

D

0 2 1

3

b

c

d

b

c

a

Figure 5 Run of a Petri automaton.

0 2 1

3

b

c

d

b

c a

Figure 6 Graph of a run.

Note that for every term u, JuK = {u}, so that the graph language of u thus contains just the
graph of u. This justifies the overloaded notation G (u). Given a set S of graphs, we write
CS for its downward closure w.r.t. C: CS , {G | GCG′, G′ ∈ S}. We obtain:

I Theorem 4 ([10, Thm. 6]). For all expressions e, f , Rel |= e ≤ f iff CG (e) ⊆ CG (f).

2.4 Petri automata
We recall the notion of Petri automata [10, 11], an automata model that recognises precisely
the graph languages of our expressions.

I Definition 5 (Petri Automaton). A Petri automaton (PA) over the alphabet X is a tuple
A = 〈P, T , ι〉 where:

P is a finite set of places,
T ⊆ P (P)× P (X × P) is a set of transitions,
ι ∈ P is the initial place of the automaton.

For each transition t = 〈◃t, t▹〉 ∈ T , ◃t is assumed to be non-empty; ◃t ⊆ P is the input of t;
and t▹ ⊆ X × P is the output of t. We write π2 (t▹) , {p | ∃a, 〈a, p〉 ∈ t▹} for the set of the
output places of t. Transitions with empty outputs are called final.

A PA is depicted in Fig. 4: places are represented by circles and transitions by squares.
Let us now recall the operational semantics of PA. Fix a PA A = 〈P, T , ι〉 for the

remainder of this section. A state of this automaton is a set of places. In a given state S ⊆ P ,
a transition t = 〈◃t, t▹〉 is enabled if ◃t ⊆ S. In that case, we may fire t, leading to a new
state S′ = (S \ ◃t) ∪ π2 (t▹). We write S t→A S′ in this case.

I Definition 6 (Run of a PA). A run is a sequence 〈S1, t1, S2, . . . , tn−1, Sn〉, where Si are
states, ti are transitions such that Si

ti→A Si+1 for every i ∈ [1, n− 1], S1 = {ι} and Sn = ∅.

A run of the PA from Fig. 4 is depicted in Fig. 5; this run gives rise to a graph, depicted in
Fig. 6; see [11, Def. 3] for a formal definition in the general case.

I Definition 7 (Graph language of a PA). The graph language of a PA A , written G (A),
consists of the graphs of its runs.

CONCUR 2018

18:6 Completeness for Identity-free Kleene Lattices

e ∩ (f ∩ g) = (e ∩ f) ∩ g e ∩ f = f ∩ e e ∩ e = e

e ∩ (f + g) = (e ∩ f) + (e ∩ g) e ∩ (e+ f) = e e+ (e ∩ f) = e

e+ (f + g) = (e+ f) + g e+ f = f + e e+ e = e

e·(f ·g) = (e·f)·g e·(f+g) = e·f+e·g (e+f)·g = e·g+f ·g e+0 = e e·0 = 0 = 0·e

e+ e·e+ = e+ = e+ e+·e e·f + f = f ⇒ e+·f + f = f f ·e+ f = f ⇒ f ·e+ + f = f

Figure 7 KL−: the first three lines correspond to distributive lattices, the last three to KA−.

PA are assumed to be safe (in standard Petri net terminology, places contain at most one
token at any time – whence the definition of states as sets rather than multisets) and to
accept only series-parallel graphs. These two conditions are decidable [11]. Here we moreover
assume that all PA have the same set of places P .

PA and KL−-expressions denote the same class of graph languages:

I Theorem 8 (Kleene theorem [11, Thm. 18]).
(i) For every expression e, there is a Petri automaton A such that G (e) = G (A).
(ii) Conversely, for every Petri automaton A , there is an expression e such that G (e) =
G (A).

3 Axiomatisation and structure of completeness proof

Let us introduce now our axiomatisation.

I Definition 9. The axioms of KL− are the union of
the axioms of identity-free Kleene algebra (KA−) [23], and
the axioms of a distributive lattice for {+,∩}.

It is easy to check that those axioms are valid for binary relations, whence soundness of KL−:

I Theorem 10 (Soundness). If KL− ` e ≤ f then Rel |= e ≤ f .

The rest the paper is devoted the converse implication, which thanks to Thm. 4 amounts to:

I Theorem 11 (Completeness). If CG(e) ⊆ CG(f) then KL− ` e ≤ f .

The following very weak form of Thm. 11 is easy to obtain from the results in the literature:

I Proposition 1. For all terms u, v, G (u) C G (v) entails KL− ` u ≤ v.

Proof. Follows from Thm. 4, completeness of semilattice-ordered semigroups [4] for relational
models, and the fact the the axioms of KL− entail those of semilattice-ordered semigroups. J

As explained in the introduction, our first step consists in proving KL− completeness w.r.t.
strict graph language inclusions, i.e., not modulo homomorphisms:

I Theorem 12 (Completeness for strict language inclusions). If G(e) ⊆ G(f) then KL− ` e ≤ f .

The proof is given in Sect. 4. Our second step is to get the following theorem (Sect. 6):

A. Doumane and D. Pous 18:7

I Theorem 13 (Synchronised Kleene Theorem). If A ,B are PA such that CG(A) ⊆ CG(B),
then there are expressions e, f such that:

G (A) = G (e) , KL− ` e ≤ f , and G (f) ⊆ G (B) .

The key observation for the proof is that the state-removal procedure used to transform a
PA into a KL− expression is highly non-deterministic. When considering two PA at a time,
one can use this flexibility in order to synchronise the computation of the two expressions, so
that they become easier to compare axiomatically. The concrete proof is quite technical and
requires us to first recall many concepts from the proof [11] of Thm. 8(ii) (Sect. 5); it heavily
relies on both Thm. 12 and Prop. 1.

Completeness of KL− follows using Thm. 8(i) and Thm. 12 as explained in the introduction.

4 Completeness for strict language inclusion

Recall that the graph language of an expression e, G(e), is defined as the set of graphs of the
term language of e, JeK. We first prove that KL− is complete for term language inclusions:

I Proposition 2. If JeK ⊆ JfK then KL− ` e ≤ f .

Proof. We follow a technique similar to the one recently used in [24]. We consider the
maximal KA−-subexpressions, and we compute the atoms of the Boolean algebra of word
languages generated by those expressions. By KA− completeness [19, 23], we get KA− (and
thus KL−) proofs that those are equal to appropriate sums of atoms. We distribute the
surrounding intersections over those sums and replace the resulting intersections of atoms by
fresh letters. This allows us to proceed recursively (on the intersection-depth of the terms),
using substitutivity to recover a KL− proof of the starting inequality. J

The difference between the term language and the graph language is that intersection
is interpreted as an associative and commutative operation in the latter. We bury this
difference by defining a ‘saturation’ function s on KL−-expressions such that for all e,

(†) KL− ` s(e) = e, and (‡) Js(e)K = {u | G(u) ∈ G(e)} .

Intuitively, this function uses distributivity and idempotency of sum to replace all intersections
appearing in the expression by the sum of all their equivalent presentations modulo associativ-
ity and commutativity. For instance, s(a∩ (b∩c)) is a sum of twelve terms (six choices for the
ordering times two choices for the parenthesing). Technically, one should be careful to expand
the expression first by maximally distributing sums, in order to make all potential n-ary
intersections apparent. For instance, ((a∩ b) + d)∩ c expands to ((a∩ b)∩ c) + (d∩ c) so that
its saturation is a sum of twelve plus two terms. For the same reason, all iterations should be
unfolded once: we unfold and expand (a ∩ b)+ ∩ c into ((a ∩ b) ∩ c) + ((a ∩ b) · (a ∩ b)+ ∩ c)
before saturating it. We finally obtain Thm. 12 using (‡), Prop. 2, and (†):

G(e) ⊆ G(f) ⇒ Js(e)K ⊆ Js(f)K ⇒ KL− ` s(e) ≤ s(f) ⇒ KL− ` e ≤ f

5 Kleene theorem for Petri automata

To prove the synchronised Kleene theorem (Thm. 13), we cannot use the Kleene theorem for
PA (Thm. 8) as a black box: we use in a fine way the algorithm underlying the proof of the
second item. We thus explain how it works [11] in details.

CONCUR 2018

18:8 Completeness for Identity-free Kleene Lattices

σ τ

B

ρ
A C

σ ρ
A ·B∗ · C7→ σ ρ

A

B

σ ρ
A ∪B7→

Figure 8 Rewriting rules for state-removal procedure.

Recall that to transform an NFA A to a regular expression e, one rewrites it using the
rules of Fig. 8 until one reaches an automaton where there is a unique transition from the
initial state to the final one, labelled by an expression e. While doing so, one goes through
generalised NFA, whose transitions are labelled by regular expressions instead of letters.

We use the same technique for PA: we start by converting the PA into a NFA over a
richer alphabet, which we call a Template Automaton (TA), then we reduce this automaton
using the rules of Fig. 8 until we get a single transition labelled by the desired expression.

To get some intuitions about the way we convert a PA into an NFA, consider the run in
Fig. 5 and its graph in Fig. 6. One can decompose the run and the graph as follows:

{A} {B,C,D} {B,C,D} {E,D} ∅

b

c

d

A

B

C

D

b

c

D D

B

C

B

C

a

D D

B

C
EE

D

The graph can thus be seen as a word over an alphabet of ‘boxes’, and the run as a path in an
NFA whose states are sets of places of the PA. The letters of the alphabet, the above boxes,
can be seen as ‘slices of graphs’; they arise naturally from the transitions of the starting PA
(Fig. 4 in this example).

5.1 Template automata
In order to make everything work, we need to refine both this notion of states and this notion
of boxes to define template automata:

states (sets of places) are refined into types. We let σ, τ range over types. A type is a
tree whose leaves are labelled by places. When we forget the tree structure of a type τ ,
we get a a state τ . See [11, Def. 10] for a formal definition of types, which is not needed
here. We call singleton types those types whose associated state is a singleton.
letters will be templates: finite sets of boxes like depicted above but with edges labelled
with arbitrary KL−-expressions; we define those formally below.

Given a directed acyclic graph (DAG) G, we write minG (resp. maxG) for the set of its
sources (resp. sinks). A DAG is non-trivial when it contains at least one edge.

I Definition 14 (Boxes). Let σ, τ be types. A box from σ to τ is a triple
〈−→
p , G,←−p

〉
where

G is a non-trivial DAG with edges labelled in ExpX , −→p is a map from σ, the input ports, to
the vertices of G, and ←−p is a bijective map from τ , the output ports, to maxG, and where
an additional condition relative to types holds [11, Def. 11]. (This condition can be kept
abstract here.) A basic box is a box labelled with letters rather than arbitrary expressions.
A 1-1 box is a box between singleton types.

We let α, β range over boxes and we write β : σ → τ when β is a box from σ to τ .

A. Doumane and D. Pous 18:9

a+ b

c

a ∩ c

a

A

C

D

E

F

G

H H
b

a

b
E

F

G

A

C

D

H H

a+ b

c

a ∩ c

a b

a

b
A

C

D

A

C

D

H H

Figure 9 Two boxes and their composition.

a

b

c

b

b
a

A

B

C

D

E

A

B

C

D

E

Figure 10 An atomic box.

We represent boxes graphically as in Fig. 9. Inside the rectangle is the DAG, with the
input ports on the left-hand side and the output ports on the right-hand side. The maps −→p
and ←−p are represented by the arrows going from the ports to vertices inside the rectangle.
Note that unlike ←−p , the map −→p may reach inner nodes of the DAG. 1-1 boxes are those with
exactly one input port and one output port.

Boxes compose like in a category: if α : σ → τ and β : τ → ρ then we get a box
α · β : σ → ρ by putting the graph of α to the left of the graph of β, and for every port
p ∈ τ , we identify the node ←−p1 (p) with the node −→p2 (p). For instance the third box in Fig. 9
is obtained by composing the first two.

The key property enforced by the condition on types (kept abstract here) is the following:

I Lemma 15. A 1-1 box is just a series-parallel 2-pointed graph labelled in ExpX .

Accordingly, one can extract a KL−-expression from any 1-1 box β, which we write e (β) and
call its expression.

I Definition 16 (Templates). A template Γ : σ → τ is a finite set of boxes from σ to τ . A
1-1 template is a template of 1-1 boxes. The expression of a 1-1 template, written e (Γ), is
the sum of the expressions of its boxes.

Templates can be composed like boxes, by computing all pairwise box compositions.

I Definition 17 (Box language of a template). A basic box is generated by a box β if it can
be obtained by replacing each edge x e−−→ y of its DAG by a graph G′ ∈ G (e) with input
vertex x and output vertex y. The box language of a template Γ, written B(Γ), is the set of
basic boxes generated by its boxes.

As expected, the box language of a template Γ : σ → τ only contains boxes from σ to τ .
Thanks to Lem. 15, when Γ is a 1-1 template, its box language can actually be seen as a set
of graphs, and we have:

I Proposition 3. For every 1-1 template Γ, we have B(Γ) = G (e (Γ)).

We can finally define template automata:

I Definition 18 (Template automaton (TA)). A template automaton is an NFA whose states
are types, whose alphabet is the set of templates, whose transitions are of the form 〈σ,Γ, τ〉
where Γ : σ → τ , and with a single initial state and a single accepting state which are
singleton types. A basic TA is a TA whose all transitions are labelled by basic boxes.

By definition, a word accepted by a TA is a sequence of templates that can be composed
into a single 1-1 template Γ, and thus gives rise to a set of graphs B(Γ). The graph language
of a TA E , written G (E), is the union of all those sets of graphs.

An important result of [11] is that we can translate every PA into a TA:

CONCUR 2018

18:10 Completeness for Identity-free Kleene Lattices

I Proposition 4. For every PA A , there exists a basic TA E such that G (A) = G (E).

TA were defined so that they can be reduced using the state-removal procedure from Fig. 8.
Templates can be composed sequentially and are closed under unions, so that now we only
miss an operation _∗ on templates to implement the first rule. Since we work in an identity-
free (and thus star-free) setting, it suffices to define a strict iteration operation _+; and to
rely on the following shorthands ∆ · Γ∗ = ∆ ∪∆ · Γ+ and Γ∗ ·∆ = ∆ ∪ Γ+ ·∆.

Such an operation is provided in [11]:

I Proposition 5. There exists a function _+ on templates such that if the TA obtained from
a PA A through Prop. 4 reduces to a TA E by the rules in Fig. 8, then G (A) = G (E). 1

One finally obtains the Kleene theorem for PA by reducing the TA until it consists of a single
transition labelled by a 1-1 template Γ: at this point, e (Γ) is the desired KL−-expression.

5.2 Computing the iteration of a template
We need to know how the above template iteration can be defined to obtain our synchronised
Kleene theorem, so that we explain it in this section. This section is required only to
understand how we define a synchronised iteration operation in Sect. 6.

First notice that templates on which we need to compute _+ are of type σ → σ. We first
define this operation for a restricted class of templates, which we call atomic.

I Definition 19 (Atomic boxes and templates, Support). A box β =
〈−→
p , G,←−p

〉
: σ → σ is

atomic if its graph has a single non-trivial connected component C, and if for every vertex v
outside C, there is a unique port p ∈ σ such that −→p (p) =←−p (p) = v. An atomic template is
a template composed of atomic boxes.

The support of a box β : σ → σ is the set supp (β) ,
{
p
∣∣ −→p (p) 6=←−p (p)

}
. The support

of a template is the union of the supports of its boxes.

The following property of atomic boxes, makes it possible to compute their iteration:

I Lemma 20 ([11, Lem. 7.18]). The non-trivial connected component of an atomic box
β : σ → σ always contains a vertex c, s.t. for every port p mapped inside that component, all
paths from −→p (p) to a maximal vertex visit c. We call such a vertex a bowtie for β.

Notice that the bowtie of a box is not unique. For instance, the atomic box in Fig. 10
contains two bowties: the blue and the red nodes.
We compute the iteration of an atomic box as follows. First choose a bowtie for this box,
then split it at the level of this node into the product α = β · γ. The box γ · β is 1-1, we can
thus extract from it a term e (γ · β). We set α+ to be the template consisting of α and the
box obtained from α by replacing the bowtie by an edge labelled e (γ · β)+. For the sake of
conciseness, we denote this two-box template as on the right below, with an edge labelled
with a starred expression.

α = β γ α+ = β γ
e (γ · β)∗

1 This statement is not simpler because, unfortunately, there is no function _+ on templates such that
B(Γ+) = B(Γ)+).

A. Doumane and D. Pous 18:11

Data: Atomic template Γ
Result: A template Γ+ s.t.

B(Γ+) = B(Γ)+

if Γ = ∅ then
Return ∅

else
Write Γ = ∆ ∪ {α} ∪ Σ such that
supp (∆) ⊆ supp (α) and
supp (Σ) ∩ supp (α) = ∅;
Choose a bowtie for α;
Split α into β · γ at the level of this
bowtie;
Return
(∆+·Σ∗)∪(∆∗·Σ+)∪(∆∗·δ·∆∗·Σ∗),
where δ is the two-box template
depicted on the right.

end

β γ
e (γ ·∆∗ · β)∗

Figure 11 Iteration of an atomic template.

It is not difficult to see that B(α+) = B(α)+. Depending on the bowtie we have chosen, the
box α+ will be different. This is why we will write α+

./ to say that the bowtie ./ has been
selected for the computation of the iteration.

Now we need to generalise this construction to compute the iteration of an atomic
template. For this, we need the following property, saying that the supports of atomic boxes
of the same type are either disjoint or comparable:

I Lemma 21. For all atomic boxes β, γ : σ → σ, we have either 1) supp (β) ⊆ supp (γ), or
2) supp (γ) ⊆ supp (β), or 3) supp (β) ∩ supp (γ) = ∅.

We can compute the iteration of an atomic template by the algorithm in Fig. 11; intuitively,
atomic boxes with disjoint support can be iterated in any order: they cannot interfere; in
contrast, atomic boxes with small support must be computed before atomic boxes with
strictly larger support: the iteration of the latter depends on that of the former. (Also
note that since supp (∆) ⊆ supp (α) we have also supp (∆+) ⊆ supp (α) thus the template
γ ·∆∗ · β is 1-1 and it gives rise to an expression e (γ ·∆∗ · β).)

We finally compute the iteration of an arbitrary template Γ : σ → σ as follows: from each
connected component of the graph of each box in Γ stems an atomic box; let At(Γ) be the
set of all these atomic boxes; we set Γ+ = At(Γ)+.

The overall algorithm contains two sources of non-determinism. First, one can partially
choose in which order to process the atomic boxes. This is reflected by the choice of the box α,
which we will call the pivot. For instance if Γ = {α1, α2, β} such that supp (α1) = supp (α2)
and supp (β) ∩ supp (α1) = ∅, then we can choose either α1 or α2 as the pivot, and the
computation will respectively start with the computation of α+

2 or that of α+
1 , yielding two

distinct expressions. (In contrast, choices about boxes with disjoint support do not change
the final result.) Second, every box of the template is eventually processed, and one must
thus choose a bowtie for all of them. We write Γ+

./,≤ to make explicit the choice of the
bowties and the computation order.

CONCUR 2018

18:12 Completeness for Identity-free Kleene Lattices

6 Synchronised Kleene theorem for PA

We can now prove Thm. 13. To synchronise the computation of two expressions e, f for two
PA A ,B respectively, we construct a synchronised product automaton E ×F between a TA
E for A and a TA F for B.

The states of this automaton are triples 〈σ, η, τ〉 where σ and τ are types, i.e., states
from the TA E and F , and η : τ → σ is a function used to enforce coherence conditions.
Its transitions have the form 〈〈σ, η, τ〉 , 〈Γ,∆〉 , 〈σ′, η′, τ ′〉〉 where 〈σ,Γ, σ′〉 is a transition of
E , 〈τ,∆, τ ′〉 is a transition of F , and Γ and ∆ satisfy a certain condition which we call
refinement, written Γ ≤ ∆.

The overall strategy is as follows. We reduce E ×F using the rules of Fig. 8, where the
operations · and ∪ are computed pairwise. The operation _∗ is also computed pairwise,
but in a careful way, exploiting the non-determinism of this operation to ensure that we
maintain the refinement relation. We eventually get a single transition labelled by a pair of
1-1 templates Γ and ∆ such that B(Γ) = G (A), B(∆) = G (B), and Γ ≤ ∆. To conclude, it
suffices to deduce KL− ` e (Γ) ≤ e (∆) from the latter property. To sum-up, what we need
to do now is:

Refinement: define the refinement relation ≤ on templates;
Initialisation: define E ×F so that refinement holds;
Stability: show that the refinement relation is maintained during the rewriting process;
Finalisation: show that refinement between 1-1 templates entails KL− provability.

6.1 Refinement relation
We first generalise graph homomorphisms to templates; this involves dealing with multiple
ports, with finite sets, and with edge labels which are now arbitrary KL−-expressions. For
the latter, we do not require strict equality but KL−-derivable inequalities.

I Definition 22 (Box and template homomorphisms). Let σ, τ, σ′, τ ′ be four types with two
functions η : σ → τ and η′ : σ′ → τ ′. Let β =

〈−→
p β , 〈Vβ , Eβ , sβ , tβ , lβ〉 ,←−p β

〉
be a box

of type τ → τ ′ and let α =
〈−→
p α, 〈Vα, Eα, sα, tα, lα〉 ,←−p α

〉
be a box of type σ → σ′. A

homomorphism from α to β is a pair 〈f, g〉 of functions f : Vα → Vβ and g : Eα → Eβ s.t.:
sβ ◦ g = f ◦ sα, tβ ◦ g = f ◦ tα,
∀e ∈ Eα, KL− ` lβ ◦ g(e) ≤ lα(e),
If {v} ⊆ Vα is a trivial connected component, so is f(v).
−→
p β ◦ η = f ◦ −→p α and ←−p β ◦ η′ = f ◦←−p α. (We call this condition (η, η′)-compatibility.)

We write β Cη,η′ α when there exists such a homomorphism. For two templates Γ : τ → τ ′

and ∆ : σ → σ′, we write Γ Cη,η′ ∆ if for all β ∈ Γ, there exists α ∈ ∆ such that β Cη,η′ α.

We abbreviate Γ Cη,η′ ∆ as Γ C ∆ when Γ,∆ are 1-1 templates, or when σ = τ , σ′ = τ ′ and
η, η′ are the identity function id. A box homomorphism is depicted in Fig. 12.

The above relation on templates is not enough for our needs; we have to extend it so that
it is preserved during the rewriting process. We first write Γ v ∆ when B(Γ) ⊆ B(∆), for
two templates Γ,∆ of the same type. Refinement is defined as follows:

I Definition 23 (Refinement). We call refinement the relation on templates defined by
≤η,η′ , Cη,η′ · (Cid,id ∪ v)∗, where _∗ is reflexive transitive closure.

The following proposition shows that refinement implies provability of the expressions
extracted from 1-1 templates. This gives us the finalisation step.

A. Doumane and D. Pous 18:13

β :

`

a+

d

b

c

p p

q r

α :

p p

q r

(a ∪ b)+

(a ∪ c)+

c+

b

Figure 12 A box homomorphism.

α1 α2α =

f

β+
./′ =

β1 β2
e∗

α1 α2α+
./ =

f∗

β = β1 β2

Figure 13 Bowtie compatible boxes.

α =

f

β =

γ =

Figure 14 Case of bowtie incompatible boxes.

I Proposition 6. If ∆,Γ are 1-1 templates such that ∆ ≤ Γ, then KL− ` e (∆) ≤ e (Γ).

Proof. When ∆ ⊆ Γ, it follows from Prop. 3 and Thm. 12; when ∆ C Γ, it follows from
Prop. 1. We conclude by transitivity. J

6.2 Synchronised product automaton (initialisation)
I Definition 24 (2-Template automata (2-TA)). A 2-template automaton is an NFA whose
states are tuples of the form 〈τ, η, σ〉 where τ, σ are types and η : σ → τ , whose alphabet is
the set of pairs of templates, whose transitions are of the form 〈〈σ, η, τ〉 , 〈Γ,∆〉 , 〈σ′, η′, τ ′〉〉
where Γ : σ → σ′, ∆ : τ → τ ′, and Γ ≤η,η′ ∆, and with a single initial state and a single
accepting state which consist of singleton types.

If T is a 2-TA, we denote by π1(T) (resp. π2(T)) the automaton obtained by projecting the
alphabet, the states and the transitions of T on the first (resp. last) component. Note that
π1(T) and π2(T) are TA.

I Definition 25 (Synchronised product of TA). Let E ,F be two TA. The synchronised product
of E and F , written E ×F is the 2-TA where 〈〈τ, η, σ〉 , 〈Γ,∆〉 , 〈τ ′, η′, σ′〉〉 is a transition of
E ×F iff 〈τ,Γ, τ ′〉 is a transition of E , 〈σ,∆, σ′〉 is a transition of F and Γ ≤η,η′ ∆. (And
with initial and accepting states defined from those of of E and F .)

Note that we enforce refinement in the definition of this product, so that π1(E ×F) is
a sub-automaton of E and π2(E ×F) is a sub-automaton of F . Thus G (π1(E ×F)) ⊆
G (E) and G (π2(E ×F)) ⊆ G (F). When E ,F are TA coming from PA A ,B such that
CG (A) ⊆ CG (B), we can use the results from [11] about simulations to strengthen the first
inclusion into an equality:

I Theorem 26. Let A ,B be two PA, E ,F be basic TA such that G (A) = L(E) and
G (B) = L(F) (given by Prop. 4). If CG (A1) ⊆ CG (A2) then:
G (π1(E ×F)) = G (A);

CONCUR 2018

18:14 Completeness for Identity-free Kleene Lattices

G (π2(E ×F)) ⊆ G (B).

Proof. The second point follows from the observation above. The first one comes from the sim-
ulation result ([11, Prop. 9.10]) for PA. Indeed, if CG (A) ⊆ CG (B), then there is a simulation
([11, Def. 9.2]) between A and B. This implies that for every run 〈τ1,Γ1, τ2, . . . ,Γn−1, τn〉 of
E , there is a run 〈σ1,∆1, σ2, . . . ,∆n−1, σn〉 of F and a set of mapping ηi : σi → τi, i ∈ [1, n]
such that Γi Cηi,ηi+1 ∆i for every i ∈ [1, n− 1]. J

6.3 Maintaining refinement during reductions
Let us finally show that refinement is stable by composition, union, and iteration.

I Theorem 27 (Stability of refinement by · and ∪).
If Γ1 ≤η,η′ Γ2 and ∆1 ≤η′,η” ∆2 then Γ1 ·∆1 ≤η,η” Γ2 ·∆2.
If Γ1 ≤η,η′ Γ2 and ∆1 ≤η,η′ ∆2 then Γ1 ∪∆1 ≤η,η′ Γ2 ∪∆2.

Proof. To show the first property it suffices to show the following results:

If Γ1 Cη,η′ Γ2 and ∆1 Cη′,η′′ Γ2 then Γ1 ·∆1 Cη′,η′′ Γ2 ·∆2. (L1)

If Γ1 v Γ2 and ∆1 v ∆2 then Γ1 ·∆1 v Γ2 ·∆2. (L2)

If Γ1 C Γ2 and ∆1 v ∆2 then Γ1 ·∆1 (C· v)∗ Γ2 ∪∆2. (L3)

To show (L1), consider a box α1 ∈ Γ1 and β1 ∈ ∆1. By hypothesis, there is a box α2 ∈ Γ2
and an (η, η′)-compatible homomorphism h = 〈f, g〉 from α2 to α1 and a box β2 ∈ ∆2 and
an (η′, η′′)-compatible homomorphism h′ = 〈f ′, g′〉 from β2 to β1. Let h′′ = 〈f ′′, g′′〉, where
f ′′ equals f in dom (f) and f ′ in dom (f ′), and g′′ equals g in dom (g) and g′ in dom (g′).
Using (η, η′)-compatibility of h and (η′, η′′)-compatibility of h′, it is easy to show that h′′ is
an (η, η′′)-compatible homomorphism from α2 · β2 to α1 · β1, which concludes the proof of
(L1). (L2) follows easily from the definition of v. For (L3), note that ∆1 C ∆1 (we choose
the identity homomorphism), thus by (L1), we have that Γ1 ·∆1 C Γ2 ·∆1. By (L2), we have
that Γ2 ·∆1 v Γ2 ·∆2, which concludes the proof.

To show the first property, we proceed by induction on the length of the sequences
justifying that Γ1 ≤η,η′ Γ2 and ∆1 ≤η′,η” ∆2, using (L1), (L2) and (L3) for the base cases.

To show the second property, we follow the same proof schema, showing results similar
to (L1)− (L3) where · is replaced by ∪. J

I Remark. Thm. 27 justifies our definition of ≤η,η′ . Indeed, a more permissive definition
would seem natural, but the first property of Thm 27 would fail. For instance, if Γ1 v Γ2
and ∆1 Cη,η′ ∆2, we do not have in general that Γ1 ·∆1 ≤η,η′ Γ2 ·∆2.

The main theorem of this section is Thm 28, stating that the refinement relation is stable
under iteration. As its proof is very technical, we give only a proof sketch here, and leave
the technical details to [13, App. B].

I Theorem 28 (Stability of refinement by _+). If Γ ≤η,η ∆ then there are bowtie choices
./, ./′ and computation orders �,�′, for Γ and ∆ respectively, such that: Γ+

./,� ≤η,η ∆+
./′,�′ .

Proof sketch. To prove Thm. 28, it is enough to show the following properties.
If Γ v ∆ then, for every bowtie choices ./, ./′, and every computation orders �,�′ for Γ
and ∆ respectively, we have that Γ+

./,� v ∆+
./′,�′ .

If Γ Cη,η ∆ then there are two bowtie choices ./, ./′ and two computation orders �,�′,
for Γ and ∆ respectively, such that Γ+

./,� ≤η,η ∆+
./′,�′ .

A. Doumane and D. Pous 18:15

The first property follows from B(Γ+
./,�) = B(Γ)+ for every bowtie choice ./ and order �.

For the sake of clarity, we give here the proof of the second proposition in the case where
Γ and ∆ are singletons of atomic boxes {α} and {β} respectively. The general case is treated
in [13, App. B]. Let ./, ./′ be bowtie choices for α and β respectively, and let h = 〈f, g〉 be a
homomorphism from β to α.

Let us first treat the case where f−1(./) = {./′} (we say that α, β are bowtie compatible).
This is illustrated by the boxes α, β of Fig. 13, where the bowties are the red nodes. If we
decompose α and β at the level of their bowties, we get α = α1 · α2 and β = β1 · β2, where
α2 · α1 and β2 · β1 are 1-1 boxes. We write e = e (α2 · α1) and f = e (β2 · β1). The boxes α+

./

and β+
./′ are depicted in Fig. 13. Let us show that there is a homomorphism from β+

./′ to α+
./.

The homomorphism h induces a homomorphism h1 from β1 to α1 and a homomorphism h2
from β2 to α2 ([13, App. B, Lem. 42]). Combining h1 and h1, we get almost a homomorphism
from β+

./′ to α+
./ (See Fig. 13), we need only to show that KL− ` e ≤ f . But this follows from

Prop. 6: indeed, we can combine h1 and h2 to get a homomorphism from β2 · β1 to α2 · α1.
We have thus that α+

./ Cη,η β
+
./′ ((η, η)-compatibility is easy).

Let us now treat the case where N := f−1(./) is not necessarily {./′} (N is illustrated
by the red node of β in Fig. 14). Let γ be the box obtained from β by merging the nodes
N (see Fig. 14). There are two bowtie choices for γ: a bowtie ./b inherited from β (blue in
Fig. 14) and a bowtie ./r coming from the nodes of N (red in Fig. 14).

Let h′ be the homomorphism from β to γ that maps each node (and each edge) to itself,
except for the nodes of N which are mapped to ./r. If we consider the bowtie ./b for γ, then
β and γ are bowtie compatible w.r.t. to h′, thus γ+

./b
C β+

./′ using the previous case.
Let h′′ be the homomorphism from γ to α, which is exactly h except that it maps the

node ./r to the bowtie ./ of α. If we consider the bowtie ./r for γ, then γ and α are bowtie
compatible w.r.t. h′′, thus α+

./ Cη,η γ
+
./r

using the previous case again.
Notice finally that γ+

./r
v γ+

./b
. To sum up, we have: α+

./ Cη,η γ
+
./r
v γ+

./b
C β+

./′ . J

The last case in this proof explains the need to work with refinement (≤) rather than just
homomorphisms (C): when starting from templates that are related by homomorphism and
iterating them, the templates we obtain are not necessarily related by a single homomorphism,
only by a sequence of homomorphisms and inclusions.

7 Future work

We have proven that KL− axioms are sound and complete w.r.t. the relational models of
identity-free Kleene lattices, and thus also w.r.t. their language theoretic models, by the
results from [2].

Whether one can obtain a finite axiomatisation in presence of identity remains open.
This question is important since handling the identity relation is the very first step towards
handling tests, which are crucial in order to model the control flow of sequential programs
precisely (e.g., as in Kleene algebra with tests [20]).

An intermediate problem, which is still open to the best of our knowledge, consists in
finding an axiomatisation for the fragment with composition, intersection and identity (not
including transitive closure) [3, see errata available online].

CONCUR 2018

18:16 Completeness for Identity-free Kleene Lattices

References
1 C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger, and D. Walker.

Netkat: semantic foundations for networks. In POPL, pages 113–126. ACM, 2014. doi:
10.1145/2535838.2535862.

2 H. Andréka, S. Mikulás, and I. Németi. The equational theory of Kleene lattices. Theoretical
Computer Science, 412(52):7099–7108, 2011. doi:10.1016/j.tcs.2011.09.024.

3 H. Andréka and Sz. Mikulás. Axiomatizability of positive algebras of binary relations.
Algebra Universalis, 66(1):7–34, 2011. doi:10.1007/s00012-011-0142-3.

4 H. Andréka. Representation of distributive lattice-ordered semigroups with binary relations.
Algebra Universalis, 28:12–25, 1991.

5 H. Andréka and D.A. Bredikhin. The equational theory of union-free algebras of relations.
Algebra Universalis, 33(4):516–532, 1995. doi:10.1007/BF01225472.

6 A. Angus and D. Kozen. Kleene algebra with tests and program schematology. Technical
Report TR2001-1844, CS Dpt., Cornell University, July 2001. URL: http://hdl.handle.
net/1813/5831.

7 A. Armstrong, G. Struth, and T. Weber. Programming and automating mathematics in
the Tarski-Kleene hierarchy. Journal of Logical and Algebraic Methods in Programming,
83(2):87–102, 2014. doi:10.1016/j.jlap.2014.02.001.

8 Maurice Boffa. Une condition impliquant toutes les identités rationnelles. Informatique
Théorique et Applications, 29(6):515–518, 1995. URL: http://archive.numdam.org/.../
ITA_1995__29_6_515_0.pdf.

9 Thomas Braibant and Damien Pous. Deciding Kleene algebras in Coq. Logical Methods in
Computer Science, 8(1):1–16, 2012. doi:10.2168/LMCS-8(1:16)2012.

10 Paul Brunet and Damien Pous. Petri automata for Kleene allegories. In LICS, pages 68–79.
ACM, 2015. doi:10.1109/LICS.2015.17.

11 Paul Brunet and Damien Pous. Petri automata. Logical Methods in Computer Science,
Volume 13, Issue 3, 2017. doi:10.23638/LMCS-13(3:33)2017.

12 J. H. Conway. Regular algebra and finite machines. Chapman and Hall, 1971.
13 Amina Doumane and Damien Pous. Completeness for identity-free kleene lattices. Full

version of this extended abstract, available at https://hal.archives-ouvertes.fr/
hal-01780845, 2018. URL: https://hal.archives-ouvertes.fr/hal-01780845.

14 S. Foster, G. Struth, and T. Weber. Automated engineering of relational and algebraic
methods in Isabelle/HOL - (invited tutorial). In RAMiCS, volume 6663 of LNCS, pages
52–67. Springer, 2011. doi:10.1007/978-3-642-21070-9_5.

15 P.J. Freyd and A. Scedrov. Categories, Allegories. North Holland. Elsevier, 1990.
16 C. A. R. Hoare, B. Möller, G. Struth, and I. Wehrman. Concurrent Kleene algebra.

In CONCUR, volume 5710 of LNCS, pages 399–414. Springer, 2009. doi:10.1007/
978-3-642-04081-8_27.

17 P. Höfner and G. Struth. On automating the calculus of relations. In IJCAR, volume 5195
of LNCS, pages 50–66. Springer, 2008. doi:10.1007/978-3-540-71070-7_5.

18 Tobias Kappé, Paul Brunet, Alexandra Silva, and Fabio Zanasi. Concurrent kleene algebra:
Free model and completeness. In ESOP, volume 10801 of LNCS, pages 856–882. Springer,
2018. doi:10.1007/978-3-319-89884-1_30.

19 D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular events.
Information and Computation, 110(2):366–390, 1994. doi:10.1006/inco.1994.1037.

20 D. Kozen. Kleene algebra with tests. Transactions on Programming Languages and Systems,
19(3):427–443, May 1997. doi:10.1145/256167.256195.

21 D. Kozen. On Hoare logic and Kleene algebra with tests. ACM Trans. Comput. Log.,
1(1):60–76, 2000. doi:10.1145/343369.343378.

http://dx.doi.org/10.1145/2535838.2535862
http://dx.doi.org/10.1145/2535838.2535862
http://dx.doi.org/10.1016/j.tcs.2011.09.024
http://dx.doi.org/10.1007/s00012-011-0142-3
http://dx.doi.org/10.1007/BF01225472
http://hdl.handle.net/1813/5831
http://hdl.handle.net/1813/5831
http://dx.doi.org/10.1016/j.jlap.2014.02.001
http://archive.numdam.org/.../ITA_1995__29_6_515_0.pdf
http://archive.numdam.org/.../ITA_1995__29_6_515_0.pdf
http://dx.doi.org/10.2168/LMCS-8(1:16)2012
http://dx.doi.org/10.1109/LICS.2015.17
http://dx.doi.org/10.23638/LMCS-13(3:33)2017
https://hal.archives-ouvertes.fr/hal-01780845
https://hal.archives-ouvertes.fr/hal-01780845
https://hal.archives-ouvertes.fr/hal-01780845
http://dx.doi.org/10.1007/978-3-642-21070-9_5
http://dx.doi.org/10.1007/978-3-642-04081-8_27
http://dx.doi.org/10.1007/978-3-642-04081-8_27
http://dx.doi.org/10.1007/978-3-540-71070-7_5
http://dx.doi.org/10.1007/978-3-319-89884-1_30
http://dx.doi.org/10.1006/inco.1994.1037
http://dx.doi.org/10.1145/256167.256195
http://dx.doi.org/10.1145/343369.343378

A. Doumane and D. Pous 18:17

22 D. Kozen and M.-C. Patron. Certification of compiler optimizations using Kleene algebra
with tests. In CL2000, volume 1861 of Lecture Notes in Artificial Intelligence, pages 568–
582. Springer, 2000. doi:10.1007/3-540-44957-4_38.

23 Dexter Kozen. Typed Kleene algebra. Technical Report TR98-1669, CS Dpt., Cornell
University, 1998. URL: http://www.cs.cornell.edu/~kozen/papers/typed.pdf.

24 Dexter Kozen, Konstantinos Mamouras, and Alexandra Silva. Completeness and incom-
pleteness in nominal kleene algebra. J. Log. Algebr. Meth. Program., 91:17–32, 2017.
doi:10.1016/j.jlamp.2017.06.002.

25 A. Krauss and T. Nipkow. Proof pearl: Regular expression equivalence and relation algebra.
Journal of Algebraic Reasoning, 49(1):95–106, 2012. doi:10.1007/s10817-011-9223-4.

26 D. Krob. Complete systems of B-rational identities. Theoretical Computer Science,
89(2):207–343, 1991. doi:10.1016/0304-3975(91)90395-I.

27 Michael R. Laurence and Georg Struth. Completeness theorems for pomset languages and
concurrent kleene algebras. CoRR, abs/1705.05896, 2017. arXiv:1705.05896.

28 Damien Pous. Kleene Algebra with Tests and Coq tools for while programs. In ITP, volume
7998 of LNCS, pages 180–196. Springer, 2013. doi:10.1007/978-3-642-39634-2_15.

29 V. R. Pratt. Dynamic algebras and the nature of induction. In STOC, pages 22–28. ACM,
1980. doi:10.1145/800141.804649.

30 Volodimir Nikiforovych Redko. On defining relations for the algebra of regular events.
Ukrainskii Matematicheskii Zhurnal, 16:120–126, 1964.

31 Jacobo Valdes, Robert E. Tarjan, and Eugene L. Lawler. The recognition of series parallel
digraphs. In STOC, pages 1–12. ACM, 1979. doi:10.1145/800135.804393.

CONCUR 2018

http://dx.doi.org/10.1007/3-540-44957-4_38
http://www.cs.cornell.edu/~kozen/papers/typed.pdf
http://dx.doi.org/10.1016/j.jlamp.2017.06.002
http://dx.doi.org/10.1007/s10817-011-9223-4
http://dx.doi.org/10.1016/0304-3975(91)90395-I
http://arxiv.org/abs/1705.05896
http://dx.doi.org/10.1007/978-3-642-39634-2_15
http://dx.doi.org/10.1145/800141.804649
http://dx.doi.org/10.1145/800135.804393

Reachability in Parameterized Systems:
All Flavors of Threshold Automata
Jure Kukovec
TU Wien, Favoritenstraße 9–11, 1040 Vienna, Austria
jkukovec@forsyte.at

Igor Konnov
University of Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
igor.konnov@inria.fr

https://orcid.org/0000-0001-6629-3377

Josef Widder
TU Wien, Favoritenstraße 9–11, 1040 Vienna, Austria
widder@forsyte.at

https://orcid.org/0000-0003-2795-611X

Abstract
Threshold automata, and the counter systems they define, were introduced as a framework for
parameterized model checking of fault-tolerant distributed algorithms. This application domain
suggested natural constraints on the automata structure, and a specific form of acceleration,
called single-rule acceleration: consecutive occurrences of the same automaton rule are executed
as a single transition in the counter system. These accelerated systems have bounded diameter,
and can be verified in a complete manner with bounded model checking.

We go beyond the original domain, and investigate extensions of threshold automata: non-
linear guards, increments and decrements of shared variables, increments of shared variables
within loops, etc., and show that the bounded diameter property holds for several extensions.
Finally, we put single-rule acceleration in the scope of flat counter automata: although increments
in loops may break the bounded diameter property, the corresponding counter automaton is
flattable, and reachability can be verified using more permissive forms of acceleration.

2012 ACM Subject Classification Software and its engineering→ Software verification, Theory
of computation→ Logic and verification, Software and its engineering→ Software fault tolerance

Keywords and phrases threshold & counter automata, parameterized verification, reachability

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.19

Funding Supported by the Austrian Science Fund (FWF) via the National Research Network
RiSE (S11403, S11405), project PRAVDA (P27722), and Doctoral College LogiCS (W1255-N23);
and by the Vienna Science and Technology Fund (WWTF) via project APALACHE (ICT15-103).

Acknowledgements We thank the anonymous reviewers for spotting a few technical omissions
in the preliminary version of this paper.

1 Introduction

Threshold automata were introduced as a framework for modeling and verification [23, 25, 24,
22] and recently for synthesis [29] of fault-tolerant distributed algorithms. These algorithms
typically wait for a quorum of messages, e.g., in replication services, the primary replica may
block until it received acknowledgments from a majority of the back-up replicas [28, 33, 14, 34].

© Jure Kukovec, Igor Konnov, and Josef Widder;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 19; pp. 19:1–19:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jkukovec@forsyte.at
mailto:igor.konnov@inria.fr
https://orcid.org/0000-0001-6629-3377
mailto:widder@forsyte.at
https://orcid.org/0000-0003-2795-611X
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 All Flavors of Threshold Automata

`1

`3

`2 `4 `5

r1 : n− f
≤ x

r3 : true

r2 : y++ r4 : x++ r5 : t ≤ y
r6 : true

Figure 1 A threshold automaton.

Moreover, these algorithms are parameterized by design, i.e., the number of processes n is
a parameter, and consequently, the primary in our example contains a guard that waits
for more than n/2 messages, a so-called threshold guard. As a result, the local transition
relation is parameterized, and therefore these systems are out of reach of classic work in
parameterized model checking [15, 7].

We recall the necessary notions of threshold automata by the example in Figure 1. It
operates on parameters n, t, and f , and shared variables x and y. The vertices are called
locations, and the edges are called rules, which can be guarded, and can increase a shared
variable. For instance, the threshold guard in rule r1 compares the value of variable x to a
linear expression over parameters n− f . The semantics of threshold automata is defined via
counter systems, where a configuration contains the values of shared variables, and a counter
value κi for each location `i. The transition relation then is defined by operations on the
counters and shared variables. For instance, for some c, if κ2 ≥ c, then there is a transition
defined by rule r4 that increases κ4 by c, decreases κ2 by c and increases x by c.

By allowing arbitrary values of factor c, one obtains a transition relation with a specific
form of acceleration (single-rule acceleration), built-in by construction. Then, the transition
system is a graph with vertices being configurations, and edges being transitions. By
defining paths in this graph, and distances between vertices, one can define the diameter
of a transition system. If the diameter d is bounded, then every state is reachable in d

steps, and bounded model checking of executions of lengths up to d is a complete verification
method for reachability [6]. It was shown [25] that the diameter of transition systems defined
by threshold automata is bounded, and in particular, it does not depend on the values of
the parameters such as n, t, and f . However, several restrictions on threshold automata
were used in [25] to bound the diameter. While these restrictions are well-justified for the
original domain of fault-tolerant algorithms, two questions remain open: (i) which of these
restrictions were actually necessary to prove the results under single-rule acceleration, and
(ii) which restrictions could be avoided by allowing a more permissive form of acceleration?

The purpose of this paper is to explore various extensions of threshold automata, and
understand which of them maintain a bounded diameter. We study extensions of the following
properties of threshold automata as defined in [25]:
Increments in loops. Canonical threshold automata defined in [25] do not allow updates of

shared variables within loops.
Guards. In [25], threshold guards compare shared variables to a threshold, that is, a linear

combination of parameters. Since parameter values are fixed in a run, thresholds are
effectively constant. As shared variables can only increase in [25], the guards are monotonic;
for instance, once the shared variable is greater than the threshold it stays greater, and
the evaluation of the guards stays unchanged after that. We consider more general guards:
we replace the shared variables (e.g., x) by a function over shared variables, and consider
the special case of a difference (x− y), as well as piecewise monotone functions.

J. Kukovec, I. Konnov, and J. Widder 19:3

Table 1 Summary of results. “p.m. f(x)” means a piecewise monotone function of x.

Level Reversals Canonical Bounded diameter? Flattable?
Decidable

reachability?
Class name

x 0 3 [25, Thm. 8] 3 3 3 TA
p.m. f(x) 0 3 Cor. 18 3 3 3 PMTA

x ≤ k 3 [27, Thm. 4] 3 3 3 rbTA
x 0 7 Thm. 9 7 Thm. 24 3 3 NCTA

x− y 0 3 7 7 Thm. 11 7 BDTA
x ∞ 3 7 7 Thm. 10 7 rTA

Reversibility. In [25], only increments on shared variables are considered because increments
are sufficient to model sending a message. As a result, threshold guards were monotone.
In this paper, we also consider decrements, which produce schedules that have alternating
periods of increasing a variable and decreasing it.

For these extensions, we show that under certain conditions these automata entail bounded
diameter results as well. Thus, the diameter result of [25] can be seen as a special case of
the results of this paper.

Finally, we consider threshold automata in the scope of counter automata, a modeling
framework for infinite-state systems [10, 30, 4]. We consider the concepts of (i) a flat counter
automaton, whose control graph does not contain nested loops, and (ii) a flattable counter
automaton, for which a flat counter automaton with the same reachability relation exists.
For these automata, there are procedures and tools (FAST) for reachability analysis [30, 4].
We will discuss that the results of [25, 21] imply that canonical threshold automata (no
increments in loops) entail flattable counter automata – which explains why FAST verified
some benchmarks in the experiments of [25]. Moreover, we show that we can get rid of the
canonicity restriction and still prove that the resulting counter automaton is flattable. That
is, while non-canonical threshold automata do not fall into the fragment that can be verified
with the methods from [25, 21], one can still analyze these automata with more permissive
forms of acceleration as implemented in FAST.

An overview of our results is in Table 1, where the simpler classes are at the top; these
classes are defined in Section 2.3. The bounded diameter property implies flattability, as
we show in Proposition 21, which can be seen in the first three lines. For completeness, in
line 3, we mention results on reversal-bounded threshold automata rbTA, which consider the
structure of runs rather than threshold automata [27]. Note that flattability of a counter
automaton implies that reachability for this automaton is decidable [30].

2 System model

This section generalizes the definitions of [25]. We use the following sets: integers Z and
their extension Z∞ = Z∪ {−∞,+∞}, non-negative integers N0, reals R. We denote a vector
of integers by ~x. When the vector dimension is clear, we write ~1k to denote the unit vector
that has 1 at position k and 0 everywhere else, and ~0 is the vector filled with zeroes.

2.1 Unrestricted threshold automata
An unrestricted threshold automaton (UTA) is a tuple (L, I,Γ,Π,R) where L is a finite set of
local states (locations), I ⊆ L is a set of initial local states, Γ is a finite set of shared variables,
Π is a finite set of parameter variables, and R is a finite set of rules, which are defined below.

CONCUR 2018

19:4 All Flavors of Threshold Automata

`1

`2 `3

`4

n ≤ x
2 + ln y, y++

x++

true, z++
x--, z--

et > 2z 3− xyz

y--

y++,
z++,
x--t+ 1 ≤ min{x2 + y2 + z2, x− z}, y++

Figure 2 An unrestricted threshold automaton.

Guards. A nonlinear guard of a UTA is a formula: thd(~p) ./ lvl(~x), where ~p = [p1, . . . , p|Π|],
~x = [x1, . . . , x|Γ|], lvl : Z|Γ| → R is the level function, thd : Z|Π| → R is the threshold function,
and ./ is one of {<,≤, >,≥}. When ./ is either < or ≤, the guard is called a lower guard,
otherwise it is an upper guard. For x ∈ Γ and a0, a1, . . . , a|Π| ∈ Z, a guard of the following
form is called affine: a0 +

∑|Π|
i=1 aipi ./ x. (Affine guards have only one shared variable.)

Rules. A rule is a tuple (from, to, Φ, ~u) where to, from ∈ L are two local states, Φ is a set
of nonlinear guards and ~u ∈ Z|Γ| is an update vector.

I Example 1. Consider the automaton in Figure 2, demonstrating the nonlinear guards and
rules that are not considered in [25]. /

2.2 Semantics of UTA: counter systems
Configurations. For a UTA A = (L, I,Γ,Π,R), a triple of vectors (~κ,~g, ~p) ∈ N|L|0 × Z|Γ| ×
N|Π|0 is called a configuration. The vectors have the following meaning: vector ~κ ∈ N|L|0 stores
the values of the location counters, vector ~g ∈ Z|Γ| stores the values of the shared variables,
and vector N|Π|0 stores the parameters.

Transitions. Given a UTA A = (L, I,Γ,Π,R), a transition is a pair (rule, factor) where
rule ∈ R and factor ∈ N0. Note that the single-rule acceleration is built into to the definition
of a transition, by allowing factor > 1. We use the notation t.rule and t.factor to refer to
the tuple elements of the same name. Additionally, for any tuple field e of t.rule we shorten
t.rule.e to t.e for brevity (e.g., t.rule.from becomes t.from).

Given a configuration σ and a formula ϕ over the shared variables Γ and parameters Π,
we will use the notation (σ.~g, σ.~p) |= ϕ, or just σ |= ϕ, to mean that the formula ϕ holds true
when the shared variables and the parameters are substituted with their respective values
from σ.~g and σ.~p.

We say that a rule r is unlocked in a configuration σ if (σ.~g, σ.~p) |=
∧
ϕ∈r.Φ ϕ. Further,

a transition t = (r, a) is unlocked in a configuration σ if r remains unlocked after at
least a − 1 updates imposed by r.~u, that is, for each k ∈ {0, 1, . . . , a − 1}, it holds that
(σ.~g + k · r.~u, σ.~p) |=

∧
ϕ∈r.Φ ϕ.

I Definition 2. A transition t = (r, a) is applicable to a configuration σ if t is unlocked in σ
and σ.~κ[r.from] ≥ a. When t is applicable to σ, we call σ′ the result of applying t to σ –
denoted as t(σ) – if the requirements 1–3 are met:
1. the location counters are changed by a, that is, σ′.~κ = σ.~κ+ a · (~1r.to −~1r.from),
2. the update vector is added a times to the shared variables: σ′.~g = σ.~g + a · r.~u,
3. the parameters do not change: σ′.~p = σ.~p.

Definition 2 explicitly allows successive applications of the same rule to be compressed
into a single transition. This kind of acceleration was introduced in [25], and we call it
single-rule acceleration.

J. Kukovec, I. Konnov, and J. Widder 19:5

I Example 3. Consider the automaton in Figure 1. The following table shows a configura-
tion σ0, and configurations σ1 and σ2 after applying one and two transitions, respectively, to
the configuration σ0:

configuration counters ~κ shared variables ~g parameters ~p

σ0 (4, 0, 0, 0, 0) (0, 0) (4, 1, 1)
σ1 (2,2, 0, 0, 0) (0, 0) (4, 1, 1)
σ2 (2,1, 0,1, 0) (1, 0) (4, 1, 1)

First, the parameters are initialized to n = 4, t = f = 1, and the counter of location `1
equals to n (configuration σ0). Then, transition (r3, 2) is applied to σ0, resulting in the
counter of `2 increasing by 2 and the counter of `1 decreasing by 2 in configuration σ1.
Finally, rule r4 is executed once, incrementing x to obtain σ2. /

Number of instances. As in [25], we assume that a threshold automaton is equipped with
a function N : N|Π|0 → N0. Intuitively, every configuration σ captures a state of N(σ.~p)
instances of the threshold automaton. The authors of [25] did not restrict function N , as
they were concerned only with the length of the shortest sequences of transitions connecting
any two configurations. In this paper, we assume that the relation {(~p,N(~p)) : ~p ∈ N|Π|0 } can
be defined with a formula in Presburger arithmetic. In Example 3, we define N with the
following formula over the parameters n, t, and f as well as the outcome of the function N :
(n > 3t→ N = n− f ∧ f ≥ 0 ∧ t ≥ 0) ∧ (n ≤ 3t→ N = 0).

In our example, the number N is positive only if n > 3t, and equals to zero otherwise.
This allows us to prune “irrelevant” parameter values. (In distributed computing, this is
achieved by writing a so-called resilience condition.)

Counter systems. Having defined the configurations and transitions, we define a counter
system of a threshold automaton:

I Definition 4. Given a UTA A = (L, I,Γ,Π, R), we define its counter system CS(A) as a
transition system (Σ, I, R), where:

Σ is the set of all possible configurations.
I ⊆ Σ is the set of initial configurations; their counter values in the initial locations sum
up to N(~p). Formally, a configuration σ0 ∈ Σ belongs to I if and only if the following
conditions hold: σ0.~κ[`] = 0 for ` ∈ L\I and N(σ0.~p) =

∑
`∈I σ0.~κ[`], as well as, σ0.~g = ~0.

R ⊆ Σ× Σ is the transition relation. A pair of configurations (σ, σ′) belongs to R if and
only if there is a transition t that is applicable to σ, and σ′ = t(σ).

A schedule is a finite sequence of transitions. A schedule τ = t1, . . . , tm is applicable to a
configuration σ0 if there exists a sequence of configurations σ1, . . . , σm where σi = ti(σi−1)
for all 0 < i ≤ m. We define τ(σ0) to be σm. We denote the concatenation of schedules τ
and τ ′ by τ · τ ′ and the length of a schedule τ = t1, . . . , tm as |τ | = m. By ε, we refer to the
empty schedule, which has length 0 and satisfies ε(σ) = σ for all σ in Σ.

For a schedule τ = t1, . . . , tn and two indices i, j ∈ Z, we define the subschedule τ[i,j] as
follows (τ[i,j), τ(i,j], and τ(i,j) are obtained by choosing the intervals accordingly):

τ[i,j] =
{
tmax(1,i), . . . , tmin(n,j), when i ≤ j,
ε, when i > j

We say that a configuration σ′ is reachable from a configuration σ, if there is a schedule τ
with the following properties: (1) τ is applicable to σ, and (2) τ(σ) = σ′.

CONCUR 2018

19:6 All Flavors of Threshold Automata

Bounded diameters. The central result of [25] is that for counter systems of threshold
automata one can check, whether one configuration is reachable from another. It is sufficient
to inspect the schedules of length within a precomputed bound on the diameter:

I Definition 5. Given a UTA A and its counter system CS(A) = (Σ, I, R), a number d ∈
N0 ∪ {∞} is the diameter of CS(A) if d is the smallest number with the following property:

For every pair of configurations σ, σ′ ∈ Σ, if σ′ is reachable from σ, then there is a
schedule τ such that: (a) τ is applicable to σ, (b) τ ′(σ) = σ′, and (c) |τ ′| ≤ d.

One of our contributions is in finding fragments of unrestricted threshold automata whose
counter systems have a bounded diameter. In Section 4, we give examples of UTA whose
counter systems have unbounded diameters. Moreover, we show that there are classes of UTA,
for which the following problem– which generalizes the problem from [21] – is undecidable:

Parameterized reachability. Given a UTA A = (L, I,Γ,Π, R), a state property B is a
Boolean combination of formulas that have the form ~κ[`] = 0, for some ` ∈ L. The
parameterized reachability problem is to decide whether there are parameter values ~p ∈ N|Π|0 ,
an initial configuration σ0 ∈ I, with σ0.~p = ~p, and a schedule τ , such that τ is applicable
to σ0, and property B holds in the final state: τ(σ0) |= B.

2.3 Fragments of unrestricted threshold automata
In order to prove the bounded diameter property, we consider various restrictions on the
guards, updates, the transition relation, and other aspects of UTA. The first restriction
prohibits modifications of shared variables in loops [25]:

I Definition 6. A rule r lies on a cycle, if there is a sequence of rules r0, . . . , rk, where
r = r0 and ri.to = rj .from for 0 ≤ i ≤ k and j = i+ 1 mod (k + 1).
A UTA is canonical if r.~u = ~0 for every rule r ∈ R that lies on a cycle.

Canonical Threshold Automata (TA). This class contains UTAs with the following prop-
erties: (1) they are canonical, (2) all guards are affine, and (3) the update vectors in all rules
are non-negative. This is the class of automata considered in [25, 24], which is known to
have a bounded diameter:

I Theorem 7 ([25]). For every TA A, there exists a constant C, such that the diameter of the
associated counter system is less than or equal to d(CS(A)) = (C + 1) · |R|+ C (independently
of the parameters).

Piecewise Monotone Threshold Automata (PMTA). This class contains UTAs with the
following properties: (1) they are canonical, (2) all level functions in the guards are piecewise
monotone1, and (3) the update vectors in all rules are non-negative.

Bounded Difference Threshold Automata (BDTA). This class contains UTAs with the
following properties: (1) they are canonical, (2) all level functions in the guards are of the
form xi or xi−xj for some xi, xj ∈ Γ, and (3) the update vectors in all rules are non-negative.

1 The domain of a piecewise monotone function can be decomposed into finitely many intervals where the
function is monotone.

J. Kukovec, I. Konnov, and J. Widder 19:7

`1 `2

r2 : n ≤ x
r1 : x++

Figure 3 A simple NCTA.

`1 `2r2 : 1 ≤ x− y, y++

r1 : 1 > x− y, x++

Figure 4 A BDTA with unbounded diameter.

Non-canonical generalizations of TA, PMTA, and BDTA. For the mentioned classes, we
omit the requirement of the automaton being canonical, and denote these classes as: NCTA,
NCPMTA, and NCBDTA.

Reversible of TA, PMTA, and BDTA. For the mentioned classes, we allow shared variables
to be both increased and decreased, and denote these classes as: rTA, rPMTA, and rBDTA.

Reversal-bounded extensions of TA, PMTA, and BDTA. To introduce reversal-bounded
automata, we need the following definition.

I Definition 8. A schedule t1 · τ · t2 is an x-reversal if: (a) one of the transitions t1 or t2
increases x and the other decreases x, that is, t1.~u[x] · t2.~u[x] < 0, and (b) every transition t
in τ does not update x, that is, t.~u[x] = 0. If for every shared variable x, the number of
x-reversals in a schedule is at most N , the schedule is called N -reversible.

Similar to reversal-bounded counter machines [20], we define the classes rbTA, rbPMTA,
and rbBDTA by restricting the counter systems of the respective reversible automata to
N -reversible schedules (where N is fixed).

3 Negative results: unbounded diameters and undecidability

We give examples of NCTA and BDTA whose counter systems have unbounded diameters.
Then, we show that reachability is undecidable for counter systems of BDTA and rTA.

3.1 Unbounded diameters of non-canonical threshold automata
When we permit shared variables to be updated within loops, the diameter of the counter
system becomes unbounded:

I Theorem 9. There is an NCTA whose counter system has unbounded diameter.

Proof. Figure 3 shows such an NCTA, where x is the only shared variable, and n the only
parameter. To prove the theorem, take the configuration σ with σ.~κ = (1, 0), σ.~g = (0),
and σ.~p = (n) for n > 0. We show that the following configuration σ′ can be reached from σ

in no less than n+ 1 transitions: σ′.~κ = (0, 1), σ′.~g = (n), and σ′.~p = (n). In σ, rule r2 is
locked, and rule r1 is not, so r1 must be used at least n times to unlock r2. Since the sum
of the values of location counters initially is 1 and is invariant, we can only use transitions
with a factor of at most 1. Thus, to reach σ′ from σ, we have to execute n copies of the
transition (r1, 1) and then the transition (r2, 1). Hence, the diameter must be at least n+ 1,
and thus grows with the unbounded parameter n. J

The automaton in Figure 3 encodes the simple loop “while (n <= x) x++;” One can
argue that this automaton can be accelerated by compressing self-loops into one transition;
which requires another form of acceleration. Figure 5 shows an example that cannot be easily
fixed by this. This example can be treated with more general acceleration techniques, as
demonstrated in Section 6.

CONCUR 2018

19:8 All Flavors of Threshold Automata

`1 `2 `3`4
r5 : 42n ≤ x

r1 : 1 > x, x++

r3 : true

r2 : x++

r4 : 42n ≤ x

Figure 5 A non-canonical automaton with unbounded diameter.

3.2 Undecidability for reversible and bounded-difference automata
We show even stronger results for rTA and BDTA: reachability is undecidable and thus
counter systems of such automata cannot be analyzed with any form of acceleration.

I Theorem 10. Parameterized reachability for counter systems of loop-free rTA is undecidable.

Proof. We use rTA to encode two-counter machines 2CM, for which the halting problem is
undecidable [32]. A command of a 2CM is a triple (from, cmd, to) where from and to are
labels from the set {1, . . . ,m} for some m, and cmd is one of the operations: inc x, dec x,
inc y, dec y, zero? x, zero? y. The label m designates the halting command. For the two
counters we use two shared variables x and y. For each label i we also add a shared variable
ati, that we use as a Boolean flag to indicate whether the 2CM currently is at label i. There
is also a shared variable init, which is used for initialization.

It remains to encode the control structure of a 2CM (which may contain loops) in a
threshold automaton without loops. Our rTA has three locations `0, `1, `2, where `0 is the
initial one. First, we introduce a special initialization rule from `0 to `1 that is guarded
with init < 1 and increments init. Second, for each command we introduce a rule from `0
to `1. For command (i, cmd, j), the rule is guarded with ati > 0 ∧ init ≥ 1 ∧ init < 2, and
e.g., 0 ≥ x ∧ 0 ≤ x, if the test for zero is needed. The update of the rule contains ati-- and
atj++ (goto label j from label i), and the required increment/decrement of a counter as e.g.,
x++ or y--. Third, the last rule detects that the 2CM halted: it goes from `0 to `2 and is
guarded with atm ≥ 1.

The number of instances is N(n) = n + 2 for the only parameter n. Thus, n steps of
the 2CM are modeled by n+ 1 transitions of the constructed counter system; the (n+ 2)th
transition may move at least one automaton to the location `2. Hence, the counter system
simulates arbitrarily many steps of the 2CM. We ask the parameterized reachability question
of whether the counter system reaches a configuration σ with σ.~κ[`2] 6= 0 (for some value
of n). A positive answer is given if and only if the 2CM halts; undecidability follows. J

Now we consider BDTA. Figure 4 shows an example of a BDTA whose counter system has
unbounded diameter: Every schedule allowed by this threshold automaton is an alternating
sequence of the transitions (r1, 1) and (r2, 1). Thus to increase the counter κ2 to n, we
require a schedule of length n, which is an unbounded parameter. This shows that sinlge-rule
acceleration does not help us to analyze BDTA. In fact, no form of acceleration helps:

I Theorem 11. Parameterized reachability for counter systems of loop-free BDTA is unde-
cidable.

The proof goes along the same lines as the proof of Theorem 10. The only complication
is to encode a decrement of a shared variable by using increments and bounded differences.
To this end, for each variable x, we introduce two shared variables x1 and x2. The difference
x1 − x2 simulates a counter x. Whenever x has to be decremented, we increment x2, and
when x has to be incremented, we increment x1. A test x = 0 is simulated as a conjunction
0 ≥ x1 − x2 ∧ 0 ≤ x1 − x2.

J. Kukovec, I. Konnov, and J. Widder 19:9

4 Positive results: bounding the diameter

We extend the framework and the proofs of [25] to prove the bounded diameter property
for certain fragments of UTAs. A key observation in [25] is that if shared variables are only
increased, then the evaluation of every (affine) threshold guard changes at most once in a
schedule. This argument obviously applies even if increments occur in loops:

I Proposition 12 (Monotonicity of affine guards). For an NCTA configuration σ, if a transi-
tion t is applicable to σ, then the following holds:
1. For a lower affine guard ϕ:

(a) If σ |= ϕ, then t(σ) |= ϕ, and (b) if t(σ) 6|= ϕ, then σ 6|= ϕ.
2. For an upper affine guard ϕ:

(c) If σ 6|= ϕ then t(σ) 6|= ϕ, and (d) if t(σ) |= ϕ, then σ |= ϕ.

4.1 A sufficient condition for diameter boundedness
Proposition 12 does not apply to unrestricted threshold automata for two reasons: First,
NCTA only allow shared variables to be incremented, whereas UTA allow both increments
and decrements. Obviously, an affine threshold guard such as n ≤ x can change its evaluation
arbitrary many times, if increments and decrements of x are alternated (as parameter n is
constant in a schedule). Second, even if we restrict updates of shared variables to non-negative
vectors, guards such as 0 ≤ x− y can change their evaluations arbitrarily often in a single
schedule (cf. Theorem 11).

Proposition 12 implies that for every (affine) guard ϕ, when a schedule τ is applied to a
configuration σ, schedule τ can be split into two intervals: τ[1,k) and τ[k,|τ |] with the following
property: τ[1,i)(σ) |= ϕ iff σ |= ϕ for 1 ≤ i ≤ k, and τ[1,j](σ) 6|= ϕ iff τ(σ) 6|= ϕ for k ≤ j ≤ |τ |.
In other words, the evaluation of ϕ may only change in the transition from τ[1,k−1](σ) to
τ[1,k](σ). We extend this idea to non-linear guards by requiring the guards to preserve their
evaluations in a bounded number of intervals. In face of Theorem 11, we thus impose two
restrictions on UTA: (1) we allow only non-negative updates of shared variables, and (2) we
allow level functions to change evaluation of the guards a bounded number of times.

Consider a guard ϕ, a configuration σ, and a schedule τ applicable to σ. We say that τ
is steady with respect to (ϕ, σ), if it has the following property: τ[1,i](σ) |= ϕ if and only if
σ |= ϕ for 1 ≤ i ≤ |τ |.

I Definition 13 (Bounded steadiness). We say that a guard ϕ of a UTA A is bounded-steady
w.r.t A, if there exists a number N ≥ 0, called the flip bound of ϕ, with the following
property:

For every configuration σ of the counter system of A and every schedule τ = t1, . . . , tn
applicable to σ, there is a sequence of indices 0 = i0 ≤ i1 ≤ · · · ≤ iN ≤ iN+1 = n+ 1 such
that τ(ij ,ij+1) is steady with respect to ϕ and τ[1,ij](σ) for 0 ≤ j ≤ N .

Bounded-steadiness is central in proving the bounded diameter property:

I Theorem 14 (Bounded diameter criterion). Every canonical UTA A with non-negative
updates of shared variables satisfies the following:

If every guard is bounded-steady w.r.t. A, then the diameter of the counter system CS(A)
is bounded by a constant.

In the context of TA, constructions are introduced in [25] to remove cycles and reorder
transitions (to apply acceleration), in order to shorten subschedules in which evaluations of
guards do not change, i.e., steady subschedules. The results of [25] can be summarized in
the following lemma.

CONCUR 2018

19:10 All Flavors of Threshold Automata

I Lemma 15. There exists an total order of rules ≺ such that for every schedule τ , there
exists a unique schedule, short(τ), with the following properties:
1. If transition (r, a) appears in short(τ), then τ contains a transition (r, a′) for some a′.
2. If transition (r, a) appears before (r′, a′) in short(τ), then r ≺ r′.
3. If for a configuration σ, an applicable schedule τ is steady with respect to all guards and σ,

then short(τ) is applicable to σ and τ(σ) = short(τ)(σ).

One can prove the above lemma independently of the shape of the guards. For the proof
one only uses that in a steady schedule the evaluation of guards does not change. As a
result, one can directly apply the proofs from [25] to generalize Lemma 15 to UTA. This
allows us to replace a steady schedule τ by short(τ), which reaches the same state and whose
length is bounded by Lemma 15(2), because threshold automata have a fixed number of rules
and ≺ is a total order. What remains to be proven for Theorem 14 is that every schedule
of a threshold automaton with bounded-steady guards can be decomposed into a bounded
number of steady subschedules.

Proof of Theorem 14. Let ϕ1, . . . , ϕm be the bounded-steady guards. Let σ be a configura-
tion and τ = t1, . . . , tn a schedule applicable to it. Since each ϕj is bounded-steady it has
a flip bound Nj , for which there exist ij1, . . . , i

j
Nj

with the property that τ(ij
k
,ij

k+1) is steady
with respect to ϕj and τ[1,ij

k
](σ) for 0 ≤ k ≤ Nj . We denote by Sij the set of critical indices

{ij1, . . . , i
j
Nj
}.

We denote by S the set
⋃m
j=1 Sj , and by i1, . . . , il its elements. Additionally, denote

i0 = 0 and il+1 = n+ 1. The set S partitions τ into finer subschedules than each Sj , that is,
for every 0 ≤ k ≤ l and for every 1 ≤ j ≤ m there is an index ijp ∈ Sj such that the schedule
τ(ik,ik+1) is a subschedule of the steady schedule τ(ijp,ijp+1). Because a subschedule of a steady
schedule is also steady by definition (w.r.t. its initial configuration and the same guard),
we can conclude that the schedules τ(ik,ik+1) are steady with respect to all guards ϕj and
τ[1,ik](σ).

We can therefore apply Lemma 15 to each τ(ik,ik+1) and replace it with a shortened
schedule. By property (2) of Lemma 15 and because ≺ is a total order, the length of the
shortened schedules is at most |R|. After replacing every τ(ik,ik+1) with short(τ(ik,ik+1)),
we obtain a schedule τ ′, which is applicable to σ, has the property that τ ′(σ) = τ(σ) and
|τ ′| ≤ (|S|+1)·|R|+|S|. By the definition of S, it holds that |S| ≤

∑m
j=1 |Sj | ≤

∑m
j=1Nj . J

4.2 Two fragments with bounded-steady guards
Theorem 14 gives us a sufficient condition for a function to be used in a guard so that
the resulting counter system has a bounded diameter. The condition applies to threshold
automata with non-negative updates to shared variables. Thus, we can characterize bounded-
steady guards by the shape of their level functions.

I Proposition 16. Every canonical UTA A with non-negative updates of shared variables has
the following property: If a threshold guard ϕ has the shape thd(~p) ./ F (y) for a shared variable
y ∈ Γ, a comparison ./ ∈ {<,≤, >,≥}, and a piecewise-monotone function F : Z→ R, then
the guard ϕ is bounded-steady w.r.t. A.

I Example 17. Consider piecewise-monotone functions f1(x), f2(x) and reals an, . . . a0, b ∈ R
with b > 0. Then, an · xn + · · ·+ a1 · x+ a0, bx, ln x, and min{f1(x), f2(x)} are piecewise-
monotone functions of x ∈ Z. Each of them can be used as F (x) in Proposition 16, and thus
they produce bounded-steady guards. /

J. Kukovec, I. Konnov, and J. Widder 19:11

As a corollary of Proposition 16 and Theorem 14, the threshold automata with piecewise-
monotone functions in the guards have the bounded diameter property:

I Corollary 18. For every PMTA, the diameter of its counter system is bounded.

Note that the affine threshold guards of [25] have the shape required in Proposition 16,
and thus are just a special case.

We generalize Proposition 16 to guards over multiple shared variables. Recall that an m-
dimensional integer box is a product of m intervals, that is, B = Zm ∩ [a1, b1]×· · ·× [am, bm]
for some boundaries a1, b1, . . . , am, bm ∈ Z∞.

I Proposition 19. Consider a UTA with non-negative updates of shared variables. A non-
linear guard thd(~p) ./ lvl(~x), for ./ ∈ {<,≤, >,≥}, is bounded-steady, if:
For every level C ∈ R, the function domain Z|Γ| of the level function can be partitioned
into a finite set of disjoint |Γ|-dimensional boxes B1, . . . , Bk that satisfy {~x ∈ Bi | C ./

lvl(~x)} is equal to either Bi or ∅ for 1 ≤ i ≤ k.

As a result, the following two-variable functions give us bounded-steady guards:

x+ y, x · y, min(f1(x), f2(y)) or max(f1(x), f2(y)) for piecewise-monotone f1 and f2

5 Relation to flattable counter automata

Counter automata model infinite-state systems and have acceleration procedures and tools
for reachability analysis [10, 30, 4]. Threshold automata give rise to accelerated counter
systems. In this section, we establish a link between these two frameworks. In particular,
from a threshold automaton A, we construct two kinds of counter automata: CA0(A) is
a counter automaton that executes a single UTA rule without any built-in acceleration,
and CA1(A) is a counter automaton that executes one UTA rule several times in one step.
The automaton CA1(A) corresponds to our counter system CS(A) in Section 2.2. In our
analysis, single-rule acceleration plays a central role in finding diameter bounds, whereas the
procedures for counter automata employ more general forms of acceleration. In fact, CA0(A)
and CA1(A) have the same reachability relation, and any of them can in principle be used as
the input to the techniques for counter automata.

We recall the definitions of counter automata from [30], operating on m counters.

I Definition 20. An m-dimensional counter automaton CA is defined as a tuple
(Q,T, src, tgt, {Gt}t∈T) with the following properties:

Q and T are finite, non-empty sets of CA-locations and CA-transitions respectively,
src : T → Q and tgt : T → Q are the source and target mappings respectively, and
{Gt}t∈T is a finite family of binary relations on Nm called flow guards.

The semantics of the counter automaton CA is defined as a transition system (CCA,→CA)
with the following properties:
1. The set CCA = Q× Nm0 captures CA-configurations, and
2. the relation →CA⊆ CCA × CCA captures CA-steps. CA makes a step from a configuration

(q, ~x) ∈ CCA to a configuration (q′, ~x′) ∈ CCA via a transition t ∈ T – formally written as
(q, ~x)→CA (q′, ~x′) – if the following holds:

q = src(t) and q′ = tgt(t) and (~x, ~x′) ∈ Gt

CONCUR 2018

19:12 All Flavors of Threshold Automata

q0
n− f ≤ x,
`′

3 = `3 + 1, `′
1 = `1 − 1

y′ = y + 1,
`′

2 = `2 + 1, `′
3 = `3 − 1

`′
2 = `2 + 1,
`′

1 = `1 − 1

x′ = x+ 1,
`′

4 = `4 + 1, `′
2 = `2 − 1

t ≥ y,
`′

5 = `5 + 1, `′
4 = `4 − 1

Figure 6 A counter automaton for the threshold automaton in Figure 1.

A sequence (q1, ~x1), . . . , (qk, ~xk) of CA-configurations is called a CA-path, if (qi, ~xi)→CA
(qi+1, ~xi+1) for 1 ≤ i < k. Then, the reachability relation →∗CA⊆ N|m|0 × N|m|0 contains all the
pairs of vectors that are connected with a path for some control locations, that is, ~x→∗CA ~x

′

if and only if there is a CA-path (q1, ~x1), . . . , (qk, ~xk) with ~x = ~x1 and ~x′ = ~xk.

A counter automaton without acceleration. Fix an unrestricted threshold automaton
A = (L, I,Γ,Π,R), and let P be the set of variables L∪Γ∪Π. To represent the configurations
of the UTA counter system, we use vectors ~x = (x1, . . . , x|P |) ∈ N|P |0 , where each element xi
stores the value of a variable from the set P (there is a bijection). For a vector ~x ∈ N|P |0 and
a set U ⊆ P , with x|U , we denote the projection of ~x on the variables from U .

A |P |-dimensional counter automaton CA0(A) = (Q,T, src, tgt, {Gt}t∈T) is constructed
as follows:

The automaton has only one CA-location, that is, Q = {q0} for some q0,
The CA-transitions are identical to the UTA rules, that is, T = R,
Every transition t ∈ T originates from the location q0 and ends in q0; formally, src(t) =
tgt(t) = q0,
For every rule r ∈ R, the flow relation Gr ⊆ N|P |0 ×N|P |0 is the intersection of two relations
Guardr and Updater that are defined as:

(~x, ~x′) ∈ Guardr if and only if (~x|Γ, ~x|Π) |=
∧

ϕ∈r.Φ
ϕ

(~x, ~x′) ∈ Updater if and only if ~x′|Π = ~x|Π, (1)
~x′|Γ = ~x|Γ + r.~u, and ~x′|L = ~x|L +~1r.to −~1r.from (2)

Given the threshold automaton in Figure 1, we construct the respective counter automaton
in Figure 6. Apart from the shared variables and parameters, the counter automaton explicitly
maintains a counter for each location of UTA, whereas in threshold automata these counters
are implicit.

A counter automaton with single-rule acceleration. Given a UTA A, we define its counter
automaton with single-rule acceleration CA1(A). This automaton is structurally the same as
CA0(A), except that the flow relation Gr for r ∈ R accounts for a non-negative acceleration
factor a:

(~x, ~x′) ∈ Gr if and only if ∃a ≥ 0. ∀k : 0 ≤ k < a. (~x+ k · r.~u, ~x′) ∈ Guardr,
~x′|Π = ~x|Π, ~x′|Γ = ~x|Γ + a · r.~u, and ~x′|L = ~x|L + a · (~1r.to − ~1r.from)

J. Kukovec, I. Konnov, and J. Widder 19:13

Discussions. If we ignore the location q0, the counter automaton CA1(A) has the same
transition relation as the counter system of A; as defined in Section 2.2 or in [25], that
is, with built-in single-rule acceleration. General acceleration procedures for reachability
analysis were developed for counter automata [30, 4]. These techniques terminate on flat
and flattable counter automata. A counter automaton is flat, if its control graph – built of
locations and transitions – does not contain nested loops [10]. A counter automaton A is
flattable, if there is a flat counter automaton F with the same reachability relation, that is,
→∗F = →∗A. The counter automata CA0(A) and CA1(A) are obviously not flat, as can be
seen from Figure 6, the question is whether they are flattable.

As can be seen from the definition of CA1(A), single-rule acceleration has a special
form: it merges successive occurrences of a rule of CA0(A) into one transition, provided
that the counter values are sufficiently large. The motivation behind this acceleration is to
perform transitions of many processes in a distributed system in parallel [25], in contrast to
compressing sequential steps.

The bounded diameter property for a threshold automaton A implies flattability of the
counter automaton CA0(A). It is sufficient to unroll CA0(A) up to the diameter bound and
add self-loops to model single-rule acceleration:

I Proposition 21. For every unrestricted threshold automaton A, if the diameter of the
counter system CS(A) is bounded, then the counter automaton CA0(A) is flattable.

6 Flattability for non-canonical threshold automata

It is easy to see that the counter systems of non-canonical threshold automata do not have
bounded diameter, when applying single-rule acceleration. Interestingly, we show that the
respective counter automata for NCTA are flattable. Hence, they can be thus analyzed with
general acceleration tools such as FAST [4].

Additional definitions. To prove flattability, we adapt a few definitions from [24]. Let G =⋃
r∈R r.Φ. Then, ΦR = {g ∈ G | g is an upper guard} and ΦF = {g ∈ G | g is a lower guard}.

A context is a pair (ΩR,ΩF), where ΩR ⊆ ΦR and ΩF ⊆ ΦF. The set ΩR keeps track of
unlocked guards from ΦR, and the set ΩF keeps track of locked guards from ΦF. We usually
denote a context with Ω, and refer to its first and second component by writing ΩR and ΩF

respectively. For contexts Ω1 and Ω2, we say that Ω1 v Ω2 if and only if ΩR
1 ∪ ΩF

1 ⊆ ΩR
2 ∪ ΩF

2 .
Finally, for a context Ω, we define a formula form(Ω) that summarizes the constraints

of the guards that are locked/unlocked in the context:
∧
ψ∈Ψ+ ψ ∧

∧
ψ∈Ψ− ¬ψ for Ψ+ =

ΩR ∪ (ΦF \ΩF) and Ψ− = (ΦR \ΩR) ∪ ΩF. We write Jform(Ω)K to denote the set of vectors
that satisfy form(Ω), that is, ~x ∈ Jform(Ω)K if and only if (~x|Γ, ~x|Π) |= form(Ω) holds true.

I Definition 22. For a NCTA A = (L, I,Γ,Π,R) and a context Ω, we define the slice of A
with context Ω as a threshold automaton A|Ω = (L, I,Γ,Π,R|Ω), where a rule r ∈ R belongs
to R|Ω if and only if form(Ω)→

∧
ϕ∈r.Φ ϕ.

Overview of the proof. We start with an NCTA. The relation @ is a partial order on the
contexts. We construct a flat counter automaton as a composition of flat counter automata,
one per context, that are then connected according to the partial order @. Figure 7 sketches
the construction. In more detail, for each context Ω of A we construct the slice. We show
that when one removes the threshold guards from the slice, its counter automaton becomes
structurally a BPP-net [16, 18], which are known to be flattable [30]. Thus, there is a

CONCUR 2018

19:14 All Flavors of Threshold Automata

r3 r4

r2

r3

r4

r1

r2

r5r3

r4

r2

r5

r3

r4

r1

r2r2 , r3 , r4

r2, r3, r4

r2, r3, r4, r5

r1, r2, r3, r4

r2, r3, r4

Figure 7 An example of the flattened threshold automaton from Figure 1. The edges connecting
the gray blocks connect all the states inside the blocks.

flattened counter automaton F (Ω) for Ω. However, as F (Ω) does not have threshold guards,
it allows transitions to leave the context Ω earlier than in the original counter system. Thus,
we add additional constraints to F (Ω) to keep the transitions in the context, and form a “flat
slice”. Then, we combine flat slices for each context according to the partial order between
the contexts, and obtain a flat counter automaton whose reachability relation is the same as
of CA0(A).

I Proposition 23. For every non-canonical threshold automaton A and context Ω, there is
a flat counter automaton Flat(A|Ω) that has the same reachability relation when restricted
to the CA-configurations that match the context, that is, →∗Flat(A|Ω) ∩ Jform(Ω)K2 equals to
→∗CA0(A) ∩ Jform(Ω)K2.

Assembling the flat counter automata for the slices. Fix a non-canonical threshold
automaton A = (L, I,Γ,Π,R). Proposition 23 allows us to flatten a single slice. To
flatten CA0(A), we flatten slices and connect them with context changing transitions.

As a first step, we enumerate all contexts Ω1, . . . ,ΩK , where K = |ΦR × ΦF|. For each
context i ∈ {1, . . . ,K}, we apply Proposition 23, to construct a flat counter automaton
Flat(i) = (Qi, Ti, srci, tgti, {Gi

t}t∈Ti). We assume that the sets Q1, . . . , QK and T1, . . . , TK
are all disjoint. We use Flat(1), . . . ,Flat(K) to construct two sets of counter automata:
1. An automaton FlatSlice(i) produces paths of CA0(A) in the context Ωi. Formally,

FlatSlice(i) = (Qi, Ti, srci, tgti, {Gi
t ∩ Jform(Ω)K2}t∈Ti

).
2. An automaton Branch(i, j), for 1 ≤ i, j ≤ K such that Ωi v Ωj and i 6= j, produces the

context-changing transitions from FlatSlice(i) to FlatSlice(j). Formally,

Branch(i, j) = (Qi ∪Qj , Ti,j , srci,j , tgti,j , {G
i,j
t }t∈Ti,j

),

where the components of Branch(i, j) are defined as follows for t ∈ Ti:
There is a transition for each ith slice transition and jth slice state: Ti,j = Ti ×Qj ,
The mappings are srci,j((t, q)) = srci(t) and tgti,j((t, q)) = q for q ∈ Qj , and
We restrict the guards to the two contexts: Gi,j

t = Gi
t ∩ (Jform(Ωi)K× Jform(Ωj)K).

A flat version of CA0(A) is the union of all flat slices and branches:

Flattened(A) =
⋃

1≤i≤K
FlatSlice(i)∪

⋃
(i,j)∈E

Branch(i, j) for E = {(i, j) | Ωi v Ωj , i 6= j} (3)

J. Kukovec, I. Konnov, and J. Widder 19:15

`1 `2 `3

r1 : min(x, y) ≤ n
2 r2 : max(x, y) ≤ n

2

`4 `5 `6

r3 : x ≤ n
2

r4 : y ≤ n
2

r5 : x ≤ n
2 ∧ y ≤

n
2

Figure 8 An unrestricted TA (left) and an equivalent threshold automaton (right).

We define the union A ∪B as usual: The states, transitions, and flows of A ∪B are the
unions of the A’s and B’s states, transitions, and flows respectively. The source and target
mappings are identical to the A’s and B’s mappings on their domains.

I Theorem 24. For every non-canonical threshold automaton A, its flattened version has
the same reachability relation: →∗Flattened(A) = →∗CA0(A).

7 Conclusions

Verification of infinite-state systems and parameterized concurrent systems is a lively research
area, e.g., see some recent results [19, 13, 1, 11, 17, 12, 31, 8, 2]. There are many different
modeling frameworks, and it is not easy to understand relations between them. However,
this understanding is of paramount importance for reusing existing tools. In this paper, on
the one hand, we give reachability results for new classes of systems, and on the other hand,
establish the relation of the model in [25, 21] to counter automata [10, 30]. We clarify the
relation between the single rule acceleration introduced in [25] to acceleration in (flattable)
counter automata [4, 30]. The single-rule acceleration in [25] is very simple compared to
the general acceleration techniques [30, 4]. Still, it was demonstrated to be effective in
parameterized verification of fault-tolerant distributed algorithms [22, 21].

The benefits of our extended framework are two-fold. On one hand, we can use our
results to optimize threshold automata. Figure 8 shows an unrestricted threshold automaton
that uses minimum and maximum. This UTA can be expressed as an equivalent threshold
automaton by introducing more rules and guards (see Figure 8), which makes it harder to
reason about. On the other hand, our framework permits some new guards, which have no
corresponding encoding in threshold automata. For instance, a threshold x <

√
n/ logn in [3]

gives us such an example (though they are using the synchronous model of computation).
Some open questions still remain. Regarding application to distributed algorithms, we

observe that in the pseudo code of several distributed consensus algorithms, processes pick
the “most often received value” from a set of received values [5, 9]. A shared variable
encoding – such as the one in [26] – maintains the number of messages with value 0 in a
shared variable x0, and the number of messages with value 1 in a shared variable x1. The
pseudo code statement about the “most often received value” needs a bounded difference
guard “x1− x0 > 0”, which leads to undecidability as we show. This calls for further insights
on modeling of such algorithms.

While we focused on reachability in this paper, as future work, we plan to lift the results
of this paper to safety and liveness, following the ideas of [22].

CONCUR 2018

19:16 All Flavors of Threshold Automata

References

1 Parosh Aziz Abdulla, Frédéric Haziza, and Lukás Holík. Parameterized verification through
view abstraction. STTT, 18(5):495–516, 2016.

2 Benjamin Aminof, Sasha Rubin, Ilina Stoilkovska, Josef Widder, and Florian Zuleger. Pa-
rameterized model checking of synchronous distributed algorithms by abstraction. In VM-
CAI, volume 10747 of LNCS, pages 1–24, 2018.

3 Ziv Bar-Joseph and Michael Ben-Or. A tight lower bound for randomized synchronous
consensus. In Proceedings of the seventeenth annual ACM symposium on Principles of
distributed computing, pages 193–199. ACM, 1998.

4 Sébastien Bardin, Alain Finkel, Jérôme Leroux, and Laure Petrucci. Fast: acceleration
from theory to practice. STTT, 10(5):401–424, 2008.

5 Martin Biely, Bernadette Charron-Bost, Antoine Gaillard, Martin Hutle, André Schiper,
and Josef Widder. Tolerating corrupted communication. In PODC, pages 244–253, 2007.

6 Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic model
checking without BDDs. In TACAS, volume 1579 of LNCS, pages 193–207, 1999.

7 Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut Veith,
and Josef Widder. Decidability of Parameterized Verification. Synthesis Lectures on Dis-
tributed Computing Theory. Morgan & Claypool Publishers, 2015.

8 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza. On reducing lineariz-
ability to state reachability. In ICALP, pages 95–107, 2015.

9 Bernadette Charron-Bost and André Schiper. The heard-of model: computing in dis-
tributed systems with benign faults. Distributed Computing, 22(1):49–71, 2009.

10 Hubert Comon and Yan Jurski. Multiple counters automata, safety analysis and Presburger
arithmetic. In CAV, pages 268–279. Springer, 1998.

11 Giorgio Delzanno. A unified view of parameterized verification of abstract models of broad-
cast communication. STTT, 18(5):475–493, 2016.

12 Cezara Drăgoi, Thomas A. Henzinger, Helmut Veith, Josef Widder, and Damien Zufferey.
A logic-based framework for verifying consensus algorithms. In VMCAI, volume 8318 of
LNCS, pages 161–181, 2014.

13 Antoine Durand-Gasselin, Javier Esparza, Pierre Ganty, and Rupak Majumdar. Model
checking parameterized asynchronous shared-memory systems. Formal Methods in System
Design, 50(2-3):140–167, 2017.

14 Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, 1988.

15 E.A. Emerson and K.S. Namjoshi. Reasoning about rings. In POPL, pages 85–94, 1995.
16 Javier Esparza. Petri nets, commutative context-free grammars, and basic parallel processes.

Fundam. Inform., 31(1):13–25, 1997.
17 Azadeh Farzan, Zachary Kincaid, and Andreas Podelski. Proving liveness of parameterized

programs. In LICS, pages 185–196, 2016.
18 Laurent Fribourg and Hans Olsén. A decompositional approach for computing least fixed-

points of datalog programs with z-counters. Constraints, 2(3/4):305–335, 1997.
19 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng. Counting dynamically synchro-

nizing processes. STTT, 18(5):517–534, 2016.
20 Oscar H. Ibarra. Reversal-bounded multicounter machines and their decision problems. J.

ACM, 25(1):116–133, 1978.
21 Igor Konnov, Marijana Lazić, Helmut Veith, and Josef Widder. Para2: Parameterized

path reduction, acceleration, and SMT for reachability in threshold-guarded distributed
algorithms. Formal Methods in System Design, 2017.

J. Kukovec, I. Konnov, and J. Widder 19:17

22 Igor Konnov, Marijana Lazić, Helmut Veith, and Josef Widder. A short counterexample
property for safety and liveness verification of fault-tolerant distributed algorithms. In
POPL, pages 719–734, 2017.

23 Igor Konnov, Helmut Veith, and Josef Widder. On the completeness of bounded model
checking for threshold-based distributed algorithms: Reachability. In CONCUR, volume
8704, pages 125–140. Elsevier, 2014.

24 Igor Konnov, Helmut Veith, and Josef Widder. SMT and POR beat counter abstraction:
Parameterized model checking of threshold-based distributed algorithms. In CAV (Part I),
volume 9206 of LNCS, pages 85–102, 2015.

25 Igor Konnov, Helmut Veith, and Josef Widder. On the completeness of bounded model
checking for threshold-based distributed algorithms: Reachability. Information and Com-
putation, 252:95–109, 2017.

26 Igor Konnov, Josef Widder, Francesco Spegni, and Luca Spalazzi. Accuracy of message
counting abstraction in fault-tolerant distributed algorithms. In VMCAI, pages 347–366,
2017.

27 Jure Kukovec. Generalizing threshold automata for reachability in parameterized systems.
Master’s thesis, University of Ljubljana, 2016. URL: http://forsyte.at/wp-content/
uploads/Kukovec-27142109-2016.pdf.

28 Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169,
1998.

29 Marijana Lazić, Igor Konnov, Josef Widder, and Roderick Bloem. Synthesis of distributed
algorithms with parameterized threshold guards. In OPODIS, volume 95 of LIPIcs, pages
32:1–32:20, 2017. doi:10.4230/LIPIcs.OPODIS.2017.32.

30 Jérôme Leroux and Grégoire Sutre. Flat counter automata almost everywhere! In ATVA,
volume 5, pages 489–503. Springer, 2005.

31 Ognjen Maric, Christoph Sprenger, and David A. Basin. Cutoff bounds for consensus
algorithms. In CAV, Part II, pages 217–237, 2017.

32 Marvin L Minsky. Computation: finite and infinite machines. Prentice-Hall, Inc., 1967.
33 Iulian Moraru, David G. Andersen, and Michael Kaminsky. There is more consensus in

egalitarian parliaments. In SOSP, pages 358–372, 2013.
34 Brian M. Oki and Barbara Liskov. Viewstamped replication: A general primary copy. In

PODC, pages 8–17, 1988.

CONCUR 2018

http://forsyte.at/wp-content/uploads/Kukovec-27142109-2016.pdf
http://forsyte.at/wp-content/uploads/Kukovec-27142109-2016.pdf
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.32

Selective Monitoring
Radu Grigore1

University of Kent, UK
https://orcid.org/0000-0003-1128-0311

Stefan Kiefer2

University of Oxford, UK

Abstract
We study selective monitors for labelled Markov chains. Monitors observe the outputs that are
generated by a Markov chain during its run, with the goal of identifying runs as correct or faulty.
A monitor is selective if it skips observations in order to reduce monitoring overhead. We are
interested in monitors that minimize the expected number of observations. We establish an
undecidability result for selectively monitoring general Markov chains. On the other hand, we
show for non-hidden Markov chains (where any output identifies the state the Markov chain is
in) that simple optimal monitors exist and can be computed efficiently, based on DFA language
equivalence. These monitors do not depend on the precise transition probabilities in the Markov
chain. We report on experiments where we compute these monitors for several open-source
Java projects.

2012 ACM Subject Classification Theory of computation → Randomness, geometry and dis-
crete structures

Keywords and phrases runtime monitoring, probabilistic systems, Markov chains, automata,
language equivalence

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.20

Related Version A full version of the paper is available at https://arxiv.org/abs/1806.
06143.

1 Introduction

Consider an MC (Markov chain) whose transitions are labelled with letters, and a finite
automaton that accepts languages of infinite words. Computing the probability that the
random word emitted by the MC is accepted by the automaton is a classical problem at the
heart of probabilistic verification. A finite prefix may already determine whether the random
infinite word is accepted, and computing the probability that such a deciding finite prefix is
produced is a nontrivial diagnosability problem. The theoretical problem we study in this
paper is how to catch deciding prefixes without observing the whole prefix; i.e., we want to
minimize the expected number of observations and still catch all deciding prefixes.

Motivation. In runtime verification a program sends messages to a monitor, which decides
if the program run is faulty. Usually, runtime verification is turned off in production code
because monitoring overhead is prohibitive. QVM (quality virtual machine) and ARV
(adaptive runtime verification) are existing pragmatic solutions to the overhead problem,

1 Work supported by EPSRC grant EP/R012261/1.
2 Work supported by a Royal Society University Research Fellowship.

© Radu Grigore and Stefan Kiefer;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 20; pp. 20:1–20:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1128-0311
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.20
https://arxiv.org/abs/1806.06143
https://arxiv.org/abs/1806.06143
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 Selective Monitoring

which perform best-effort monitoring within a specified overhead budget [1, 3]. ARV relies
on RVSE (runtime verification with state estimation) to also compute a probability that
the program run is faulty [21, 15]. We take the opposite approach: we ask for the smallest
overhead achievable without compromising precision at all.

Previous Work. Before worrying about the performance of a monitor, one might want to
check if faults in a given system can be diagnosed at all. This problem has been studied
under the term diagnosability, first for non-stochastic finite discrete event systems [19],
which are labelled transition systems. It was shown in [14] that diagnosability can be
checked in polynomial time, although the associated monitors may have exponential size.
Later the notion of diagnosability was extended to stochastic discrete-event systems, which
are labelled Markov chains [22]. Several notions of diagnosability in stochastic systems
exist, and some of them have several names, see, e.g., [20, 4] and the references therein.
Bertrand et al. [4] also compare the notions. For instance, they show that for one variant
of the problem (referred to as A-diagnosability or SS-diagnosability or IF-diagnosability) a
previously proposed polynomial-time algorithm is incorrect, and prove that this notion of
diagnosability is PSPACE-complete. Indeed, most variants of diagnosability for stochastic
systems are PSPACE-complete [4], with the notable exception of AA-diagnosability (where
the monitor is allowed to diagnose wrongly with arbitrarily small probability), which can be
solved in polynomial time [5].

Selective Monitoring. In this paper, we seem to make the problem harder: since obser-
vations by a monitor come with a performance overhead, we allow the monitor to skip
observations. In order to decide how many observations to skip, the monitor employs an
observation policy. Skipping observations might decrease the probability of deciding (whether
the current run of the system is faulty or correct). We do not study this tradeoff: we
require policies to be feasible, i.e., the probability of deciding must be as high as under the
policy that observes everything. We do not require the system to be diagnosable; i.e., the
probability of deciding may be less than 1. Checking whether the system is diagnosable is
PSPACE-complete ([4], Theorem 8).

The Cost of Decision in General Markov Chains. The cost (of decision) is the number
of observations that the policy makes during a run of the system. We are interested in
minimizing the expected cost among all feasible policies. We show that if the system is
diagnosable then there exists a policy with finite expected cost, i.e., the policy may stop
observing after finite expected time. (The converse is not true.) Whether the infimum cost
(among feasible policies) is finite is also PSPACE-complete (Theorem 14). Whether there
is a feasible policy whose expected cost is smaller than a given threshold is undecidable
(Theorem 15), even for diagnosable systems.

Non-Hidden Markov Chains. We identify a class of MCs, namely non-hidden MCs, where
the picture is much brighter. An MC is called non-hidden when each label identifies the state.
Non-hidden MCs are always diagnosable. Moreover, we show that maximally procrastinating
policies are (almost) optimal (Theorem 27). A policy is called maximally procrastinating
when it skips observations up to the point where one further skip would put a decision
on the current run in question. We also show that one can construct an (almost) optimal
maximally procrastinating policy in polynomial time. This policy does not depend on the
exact probabilities in the MC, although the expected cost under that policy does. That is, we
efficiently construct a policy that is (almost) optimal regardless of the transition probabilities

R. Grigore and S. Kiefer 20:3

on the MC transitions. We also show that the infimum cost (among all feasible policies) can
be computed in polynomial time (Theorem 28). Underlying these results is a theory based
on automata, in particular, checking language equivalence of DFAs.

Experiments. We evaluated the algorithms presented in this paper by implementing them
in Facebook Infer, and trying them on 11 of the most forked Java projects on GitHub. We
found that, on average, selective monitoring can reduce the number of observations to a half.

2 Preliminaries

Let S be a finite set. We view elements of RS as vectors, more specifically as row vectors.
We write 1 for the all-1 vector, i.e., the element of {1}S . For a vector µ ∈ RS , we denote by
µT its transpose, a column vector. A vector µ ∈ [0, 1]S is a distribution over S if µ1T = 1.
For s ∈ S we write es for the (Dirac) distribution over S with es(s) = 1 and es(t) = 0
for t ∈ S \ {s}. We view elements of RS×S as matrices. A matrix M ∈ [0, 1]S×S is called
stochastic if each row sums up to one, i.e., M1T = 1T.

For a finite alphabet Σ, we write Σ∗ and Σω for the finite and infinite words over Σ,
respectively. We write ε for the empty word. We represent languages L ⊆ Σω using
deterministic finite automata, and we represent probability measures Pr over Σω using
Markov chains.

A (discrete-time, finite-state, labelled) Markov chain (MC) is a quadruple (S,Σ,M, s0)
where S is a finite set of states, Σ a finite alphabet, s0 an initial state, and M : Σ→ [0, 1]S×S
specifies the transitions, such that

∑
a∈ΣM(a) is a stochastic matrix. Intuitively, if the

MC is in state s, then with probability M(a)(s, s′) it emits a and moves to state s′. For
the complexity results in this paper, we assume that all numbers in the matrices M(a) for
a ∈ Σ are rationals given as fractions of integers represented in binary. We extend M to
the mapping M : Σ∗ → [0, 1]S×S with M(a1 · · · ak) = M(a1) · · ·M(ak) for a1, . . . , ak ∈ Σ.
Intuitively, if the MC is in state s then with probability M(u)(s, s′) it emits the word u ∈ Σ∗
and moves (in |u| steps) to state s′. An MC is called non-hidden if for each a ∈ Σ all non-zero
entries of M(a) are in the same column. Intuitively, in a non-hidden MC, the emitted letter
identifies the next state. An MC (S,Σ,M, s0) defines the standard probability measure Pr
over Σω, uniquely defined by assigning probabilities to cylinder sets {u}Σω, with u ∈ Σ∗, as
follows:

Pr({u}Σω) := es0M(u)1T

A deterministic finite automaton (DFA) is a quintuple (Q,Σ, δ, q0, F) where Q is a finite
set of states, Σ a finite alphabet, δ : Q×Σ→ Q a transition function, q0 an initial state, and
F ⊆ Q a set of accepting states. We extend δ to δ : Q× Σ∗ → Q as usual. A DFA defines a
language L ⊆ Σω as follows:

L := {w ∈ Σω | δ(q0, u) ∈ F for some prefix u of w }

Note that we do not require accepting states to be visited infinitely often: just once suffices.
Therefore we can and will assume without loss of generality that there is f with F = {f}
and δ(f, a) = f for all a ∈ Σ.

For the rest of the paper we fix an MCM = (S,Σ,M, s0) and a DFA A = (Q,Σ, δ, q0, F).
We define their composition as the MCM×A := (S×Q,Σ,M ′, (s0, q0)) where M ′(a)((s, q),
(s′, q′)) equals M(a)(s, s′) if q′ = δ(q, a) and 0 otherwise. Thus,M andM×A induce the
same probability measure Pr.

CONCUR 2018

20:4 Selective Monitoring

An observation o ∈ Σ⊥ is either a letter or the special symbol ⊥ 6∈ Σ, which stands for
“not seen”. An observation policy ρ : Σ∗⊥ → {0, 1} is a (not necessarily computable) function
that, given the observations made so far, says whether we should observe the next letter. An
observation policy ρ determines a projection πρ : Σω → Σω⊥: we have πρ(a1a2 . . .) = o1o2 . . .

when

on+1 =
{
an+1 if ρ(o1 . . . on) = 1
⊥ if ρ(o1 . . . on) = 0

for all n ≥ 0

We denote the see-all policy by •; thus, π•(w) = w.
In the rest of the paper we reserve a for letters, o for observations, u for finite words,

w for infinite words, υ for finite observation prefixes, s for states from an MC, and q for
states from a DFA. We write o1 ∼ o2 when o1 and o2 are the same or at least one of them
is ⊥. We lift this relation to (finite and infinite) sequences of observations (of the same
length). We write w & υ when u ∼ υ holds for the length-|υ| prefix u of w.

We say that υ is negatively deciding when Pr({w & υ | w ∈ L}) = 0. Intuitively, υ is
negatively deciding when υ is incompatible (up to a null set) with L. Similarly, we say that
υ is positively deciding when Pr({w & υ | w 6∈ L}) = 0. An observation prefix υ is deciding
when it is positively or negatively deciding. An observation policy ρ decides w when πρ(w)
has a deciding prefix. A monitor is an interactive algorithm that implements an observation
policy: it processes a stream of letters and, after each letter, it replies with one of “yes”,
“no”, or “skip n letters”, where n ∈ N ∪ {∞}.

I Lemma 1. For any w, if some policy decides w then • decides w.

Proof. Let ρ decide w. Then there is a deciding prefix υ of πρ(w). Suppose υ is positively
deciding, i.e., Pr({w′ & υ | w′ 6∈ L}) = 0. Let u be the length-|υ| prefix of w. Then
Pr({w & u | w′ 6∈ L}) = 0, since υ can be obtained from u by possibly replacing some letters
with ⊥. Hence u is also positively deciding. Since u is a prefix of w = π•(w), we have that •
decides w. The case where υ is negatively deciding is similar. J

It follows that maxρ Pr({w | ρ decides w}) = Pr({w | • decides w}). We say that a policy ρ
is feasible when it also attains the maximum, i.e., when

Pr({w | ρ decides w}) = Pr({w | • decides w}) .

Equivalently, ρ is feasible when Pr({w | • decides w implies ρ decides w}) = 1, i.e., almost
all words that are decided by the see-all policy are also decided by ρ. If υ = o1o2 . . . is the
shortest prefix of πρ(w) that is deciding, then the cost of decision Cρ(w) is

∑|υ|−1
k=0 ρ(o1 . . . ok).

This paper is about finding feasible observation policies ρ that minimize Ex(Cρ), the expect-
ation of the cost of decision with respect to Pr.

3 Qualitative Analysis of Observation Policies

In this section we study properties of observation policies that are qualitative, i.e., not
directly related to the cost of decision. We focus on properties of observation prefixes that a
policy may produce.

Observation Prefixes

We have already defined deciding observation prefixes. We now define several other types of
prefixes: enabled, confused, very confused, and finitary. A prefix υ is enabled if it occurs with
positive probability, Pr({w & υ}) > 0. Intuitively, the other types of prefixes υ are defined

R. Grigore and S. Kiefer 20:5

in terms of what would happen if we were to observe all from now on: if it is not almost
sure that eventually a deciding prefix is reached, then we say υ is confused; if it is almost
sure that a deciding prefix will not be reached, then we say υ is very confused; if it is almost
sure that eventually a deciding or very confused prefix is reached, then we say υ is finitary.
To say this formally, let us make a few notational conventions: for an observation prefix υ,
we write Pr(υ) as a shorthand for Pr({uw | u ∼ υ }); for a set Υ of observation prefixes, we
write Pr(Υ) as a shorthand for Pr

(⋃
υ∈Υ{uw | u ∼ υ }

)
. With these conventions, we define:

1. υ is confused when Pr({ υu | υu deciding }) < Pr(υ)
2. υ is very confused when Pr({ υu | υu deciding }) = 0
3. υ is finitary when Pr({ υu | υu deciding or very confused }) = Pr(υ)
Observe that (a) confused implies enabled, (b) deciding implies not confused, and (c) enabled
and very confused implies confused. The following are alternative equivalent definitions:
1. υ is confused when Pr({uw | u ∼ υ, no prefix of υw is deciding }) > 0
2. υ is very confused when υu′ is non-deciding for all enabled υu′
3. υ is finitary when Pr({uw | u ∼ υ, no prefix of υw is deciding or very confused}) = 0

I Example 2. Consider the MC and the DFA depicted here:

s0s1 s2

1
2a

1
2a

1a 1
2a

1
2b

q0 f

a a b

b

All observation prefixes that do not start with b are enabled. The observation prefixes ab
and ⊥b and, in fact, all observation prefixes that contain b, are positively deciding. For all
n ∈ N we have Pr({w & an | w ∈ L}) > 0 and Pr({w & an | w 6∈ L}) > 0, so an is not
deciding. If the MC takes the right transition first then almost surely it emits b at some
point. Thus Pr({aaa · · · }) = 1

2 . Hence ε is confused. In this example only non-enabled
observation prefixes are very confused. It follows that ε is not finitary.

Beliefs

For any s we write Prs for the probability measure of the MC Ms obtained from M by
making s the initial state. For any q we write Lq ⊆ Σω for the language of the DFA Aq
obtained from A by making q the initial state. We call a pair (s, q) negatively deciding when
Prs(Lq) = 0; similarly, we call (s, q) positively deciding when Prs(Lq) = 1. A subset of S×Q
is called belief. We call a belief negatively (positively, respectively) deciding when all its
elements are. We fix the notation B0 := {(s0, q0)} (for the initial belief) for the remainder of
the paper. Define the belief NFA as the NFA B = (S ×Q,Σ⊥,∆, B0, ∅) with:

∆((s, q), a) = {(s′, q′) | M(a)(s, s′) > 0, δ(q, a) = q′} for a ∈ Σ

∆((s, q),⊥) =
⋃
a∈Σ

∆((s, q), a)

We extend the transition function ∆ : (S ×Q)× Σ⊥ → 2S×Q to ∆ : 2S×Q × Σ∗⊥ → 2S×Q in
the way that is usual for NFAs. Intuitively, if belief B is the set of states where the product
M×A could be now, then ∆(B, υ) is the belief adjusted by additionally observing υ. To
reason about observation prefixes υ algorithmically, it will be convenient to reason about the
belief ∆(B0, υ).

CONCUR 2018

20:6 Selective Monitoring

We define confused, very confused, and finitary beliefs as follows:
1. B is confused when Prs({uw | ∆(B, u) deciding }) < 1 for some (s, q) ∈ B
2. B is very confused when ∆(B, u) is empty or not deciding for all u
3. B is finitary when Prs({uw | ∆(B, u) deciding or very confused }) = 1 for all (s, q) ∈ B

I Example 3. In Example 2 we have B0 = {(s0, q0)}, and ∆(B0, a
n) = {(s1, q0), (s2, q0)} for

all n ≥ 1, and ∆(B0, b) = ∅, and ∆(B0, a⊥) = {(s1, q0), (s2, q0), (s2, f)}, and ∆(B0,⊥υ) =
{(s2, f)} for all υ that contain b. The latter belief {(s2, f)} is positively deciding. We have
Prs1({uw | ∆({(s1, q0)}, u) is deciding}) = 0, so any belief that contains (s1, q0) is confused.
Also, B0 is confused as Prs0({uw | ∆({(s0, q0)}, u) is deciding}) = 1

2 .

Relation Between Observation Prefixes and Beliefs

By the following lemma, the corresponding properties of observation prefixes and beliefs are
closely related.

I Lemma 4. Let υ be an observation prefix.
1. υ is enabled if and only if ∆(B0, υ) 6= ∅.
2. υ is negatively deciding if and only if ∆(B0, υ) is negatively deciding.
3. υ is positively deciding if and only if ∆(B0, υ) is positively deciding.
4. υ is confused if and only if ∆(B0, υ) is confused.
5. υ is very confused if and only if ∆(B0, υ) is very confused.
6. υ is finitary if and only if ∆(B0, υ) is finitary.
The following lemma gives complexity bounds for computing these properties.

I Lemma 5. Let υ be an observation prefix, and B a belief.
1. Whether υ is enabled can be decided in P.
2. Whether υ (or B) is negatively deciding can be decided in P.
3. Whether υ (or B) is positively deciding can be decided in P.
4. Whether υ (or B) is confused can be decided in PSPACE.
5. Whether υ (or B) is very confused can be decided in PSPACE.
6. Whether υ (or B) is finitary can be decided in PSPACE.

Proof sketch. The belief NFA B and the MCM×A can be computed in polynomial time
(even in deterministic logspace). For items 1–3, there are efficient graph algorithms that
search these product structures. For instance, to show that a given pair (s1, q1) is not
negatively deciding, it suffices to show that B has a path from (s1, q1) to a state (s2, f) for
some s2. This can be checked in polynomial time (even in NL).

For items 4–6, one searches the (exponential-sized) product ofM and the determinization
of B. This can be done in PSPACE. For instance, to show that a given belief B is confused, it
suffices to show that there are (s1, q1) ∈ B and u1 and s2 such thatM has a u1-labelled path
from s1 to s2 such that there do not exist u2 and s3 such thatM has a u2-labelled path from
s2 to s3 such that ∆(B, u1u2) is deciding. This can be checked in NPSPACE = PSPACE by
nondeterministically guessing paths in the product ofM and the determinization of B. J

Diagnosability

We call a policy a diagnoser when it decides almost surely.

R. Grigore and S. Kiefer 20:7

I Example 6. In Example 2 a diagnoser does not exist. Indeed, the policy • does not decide
when the MC takes the left transition, and decides (positively) almost surely when the MC
takes the right transition in the first step. Hence Pr({w | • decides w}) = Pr(Σ∗{b}Σω) = 1

2 .
So • is not a diagnoser. By Lemma 1, it follows that there is no diagnoser.

Diagnosability can be characterized by the notion of confusion:

I Proposition 7. There exists a diagnoser if and only if ε is not confused.

The following proposition shows that diagnosability is hard to check.

I Theorem 8 (cf. [4, Theorem 6]). Given an MCM and a DFA A, it is PSPACE-complete
to check if there exists a diagnoser.

Theorem 8 essentially follows from a result by Bertrand et al. [4]. They study several different
notions of diagnosability; one of them (FA-diagnosability) is very similar to our notion of
diagnosability. There are several small differences; e.g., their systems are not necessarily
products of an MC and a DFA. Therefore we give a self-contained proof of Theorem 8.

Proof sketch. By Proposition 7 it suffices to show PSPACE-completeness of checking whether
ε is confused. Membership in PSPACE follows from Lemma 5.4. For hardness we reduce
from the following problem: given an NFA U over Σ = {a, b} where all states are initial
and accepting, does U accept all (finite) words? This problem is PSPACE-complete [16,
Lemma 6]. J

Allowing Confusion

We say an observation policy allows confusion when, with positive probability, it produces
an observation prefix υ⊥ such that υ⊥ is confused but υ is not.

I Proposition 9. A feasible observation policy does not allow confusion.

Hence, in order to be feasible, a policy must observe when it would get confused otherwise.
In § 5 we show that in the non-hidden case there is almost a converse of Proposition 9; i.e.,
in order to be feasible, a policy need not do much more than not allow confusion.

4 Analyzing the Cost of Decision

In this section we study the computational complexity of finding feasible policies that
minimize the expected cost of decision. We focus on the decision version of the problem: Is
there a feasible policy whose expected cost is smaller than a given threshold? Define:

cinf := inf
feasible ρ

Ex(Cρ)

Since the see-all policy • never stops observing, we have Pr(C• =∞) = 1, so Ex(C•) =∞.
However, once an observation prefix υ is deciding or very confused, there is no point in
continuing observation. Hence, we define a light see-all policy ◦, which observes until the
observation prefix u is deciding or very confused; formally, ◦(υ) = 0 if and only if υ is deciding
or very confused. It follows from the definition of very confused that the policy ◦ is feasible.
Concerning the cost C◦ we have for all w

C◦(w) =
∞∑
n=0

(
1−Dn(w)

)
, (1)

CONCUR 2018

20:8 Selective Monitoring

where Dn(w) = 1 if the length-n prefix of w is deciding or very confused, and Dn(w) = 0
otherwise. The following results are proved in the full version of the paper, on arXiv:

I Lemma 10. If ε is finitary then Ex(C◦) is finite.

I Lemma 11. Let ρ be a feasible observation policy. If Pr(Cρ <∞) = 1 then ε is finitary.

I Proposition 12. cinf is finite if and only if ε is finitary.

I Proposition 13. If a diagnoser exists then cinf is finite.

I Theorem 14. It is PSPACE-complete to check if cinf <∞.

Lemma 10 holds because, in M×A, a bottom strongly connected component is reached
in expected finite time. Lemma 11 says that a kind of converse holds for feasible policies.
Proposition 12 follows from Lemmas 10 and 11. Proposition 13 follows from Propositions 7
and 12. To show Theorem 14, we use Proposition 12 and adapt the proof of Theorem 8.

The main negative result of the paper is that one cannot compute cinf :

I Theorem 15. It is undecidable to check if cinf < 3, even when a diagnoser exists.

Proof sketch. By a reduction from the undecidable problem whether a given probabilistic
automaton accepts some word with probability > 1

2 . The proof is somewhat complicated.
In fact, in the full version of the paper (arXiv) we give two versions of the proof: a short
incorrect one (with the correct main idea) and a long correct one. J

5 The Non-Hidden Case

Now we turn to positive results. In the rest of the paper we assume that the MC M is
non-hidden, i.e., there exists a function −→· : Σ→ S such that M(a)(s, s′) > 0 implies s′ = −→a .
We extend −→· to finite words so that −→ua = −→a . We write s u−→ to indicate that there is s′
with M(u)(s, s′) > 0.

I Example 16. Consider the following non-hidden MC and DFA:

−→a−→
b

−→c
1
2b

1
2c

1b

1a
q0 fa, b

c
Σ

B0 := {(−→a , q0)} B2 := ∆(B0,⊥2) = {(
−→
b , q0), (−→a , f)}

B1 := ∆(B0,⊥) = {(
−→
b , q0), (−→c , f)} B3 := ∆(B0,⊥2b) = {(

−→
b , q0), (

−→
b , f)}

B0 is the initial belief. The beliefs B0 and B1 are not confused: indeed, ∆(B1, b) = {(
−→
b , q0)}

is negatively deciding, and ∆(B1, a) = {(−→a , f)} is positively deciding. The belief B2 is
confused, as there is no i ∈ N for which ∆(B2, b

i) is deciding. Finally, B3 is very confused.

We will show that in the non-hidden case there always exists a diagnoser (Lemma 23). It
follows that feasible policies need to decide almost surely and, by Proposition 13, that cinf is
finite. We have seen in Proposition 9 that feasible policies do not allow confusion. In this
section we construct policies that procrastinate so much that they avoid confusion just barely.
We will see that such policies have an expected cost that comes arbitrarily close to cinf .

https://arxiv.org/abs/1806.06143
https://arxiv.org/abs/1806.06143

R. Grigore and S. Kiefer 20:9

Language Equivalence

We characterize confusion by language equivalence in a certain DFA. Consider the belief
NFA B. In the non-hidden case, if we disallow ⊥-transitions then B becomes a DFA B′.
For B′ we define a set of accepting states by FB′ := {(s, q) | Prs(Lq) = 1}.

I Example 17. For the previous example, a part of the DFA B′ looks as follows:

(−→a , q0)(
−→
b , q0) (−→c , f) (−→a , f) (

−→
b , f)

b c
b a

c
b

b

States that are unreachable from (−→a , q0) are not drawn here.

We associate with each (s, q) the language Ls,q ⊆ Σ∗ that B′ accepts starting from initial
state (s, q). We call (s, q), (s′, q′) language equivalent, denoted by (s, q) ≈ (s′, q′), when
Ls,q = Ls′,q′ .

I Lemma 18. One can compute the relation ≈ in polynomial time.

Proof. For any (s, q) one can use standard MC algorithms to check in polynomial time if
Prs(Lq) = 1 (using a graph search in the compositionM×A, as in the proof of Lemma 5.3).
Language equivalence in the DFA B′ can be computed in polynomial time by minimization. J

We call a belief B ⊆ S ×Q settled when all (s, q) ∈ B are language equivalent.

I Lemma 19. A belief B ⊆ S ×Q is confused if and only if there is a ∈ Σ such that ∆(B, a)
is not settled.

It follows that one can check in polynomial time whether a given belief is confused. We
generalize this fact in Lemma 22 below.

I Example 20. In Example 16 the belief B3 is not settled. Indeed, from the DFA in
Example 17 we see that L−→

b ,q0
= ∅ 6= {b}∗ = L−→

b ,f
. Since B3 = ∆(B2, b), by Lemma 19, the

belief B2 is confused.

Procrastination

For a belief B ⊆ S×Q and k ∈ N, if ∆(B,⊥k) is confused then so is ∆(B,⊥k+1). We define:

cras(B) := sup{ k ∈ N | ∆(B,⊥k) is not confused } ∈ N ∪ {−1,∞}

We set cras(B) := −1 if B is confused. We may write cras(s, q) for cras({(s, q)}).

I Example 21. In Example 16 we have cras(B0) = cras(−→a , q0) = 1 and cras(B1) = 0 and
cras(B2) = cras(B3) = −1 and cras(

−→
b , q0) = cras(−→a , f) =∞.

I Lemma 22. Given a belief B, one can compute cras(B) in polynomial time. Further, if
cras(B) is finite then cras(B) < |S|2 · |Q|2.

Proof. Let k ∈ N. By Lemma 19, ∆(B,⊥k) is confused if and only if:

∃ a.∃ (s, q), (t, r) ∈ ∆(B,⊥k) : s a−→, t a−→, (−→a , δ(q, a)) 6≈ (−→a , δ(r, a))

This holds if and only if there is B2 ⊆ B with |B2| ≤ 2 such that:

∃ a.∃ (s, q), (t, r) ∈ ∆(B2,⊥k) : s a−→, t a−→, (−→a , δ(q, a)) 6≈ (−→a , δ(r, a))

CONCUR 2018

20:10 Selective Monitoring

Let G be the directed graph with nodes in S ×Q× S ×Q and edges

((s, q, t, r), (s′, q′, t′, r′)) ⇐⇒ ∆({(s, q), (t, r)},⊥) ⊇ {(s′, q′), (t′, r′)} .

Also define the following set of nodes:

U := {(s, q, t, r) | ∃ a : s a−→, t a−→, (−→a , δ(q, a)) 6≈ (−→a , δ(r, a))}

By Lemma 18 one can compute U in polynomial time. It follows from the argument above
that ∆(B,⊥k) is confused if and only if there are (s, q), (t, r) ∈ B such that there is a length-k
path in G from (s, q, t, r) to a node in U . Let k ≤ |S × Q × S × Q| be the length of the
shortest such path, and set k := ∞ if no such path exists. Then k can be computed in
polynomial time by a search of the graph G, and we have cras(B) = k − 1. J

The Procrastination Policy

For any belief B and any observation prefix υ, the language equivalence classes represented
in ∆(B, υ) depend only on υ and the language equivalence classes in B. Therefore, when
tracking beliefs along observations, we may restrict B to a single representative of each
equivalence class. We denote this operation by B↓. A belief B is settled if and only if
|B↓| ≤ 1.

A procrastination policy ρpro(K) is parameterized with (a large) K ∈ N. Define (and
precompute) k(s, q) := min{K, cras(s, q)} for all (s, q). We define ρpro(K) by the following
monitor that implements it:
1. i := 0
2. while (si, qi) is not deciding:

a. skip k(si, qi) observations, then observe a letter ai
b. {(si+1, qi+1)} := ∆((si, qi),⊥k(si,qi)ai)↓;
c. i := i+ 1;

3. output yes/no decision

It follows from the definition of cras and Lemma 19 that ∆((si, qi), υi)↓ is indeed a singleton
for all i. We have:

I Lemma 23. For all K ∈ N the procrastination policy ρpro(K) is a diagnoser.

Proof. For a non-hidden MC M and a DFA A, there is at most one successor for (s, q)
on letter a in the belief NFA B, for all s, q, a. Then, by Lemma 19, singleton beliefs are
not confused, and in particular the initial belief B0 is not confused. By Lemma 4.4, ε is
not confused, which means that Pr({u | u deciding }) = Pr(ε) = 1. Since almost surely a
deciding word u is produced and since ∆(B0, u) ⊆ ∆(B0, υ) whenever u ∼ υ, it follows that
eventually an observation prefix υ is produced such that ∆(B0, υ) contains a deciding pair
(s, q). But, as remarked above, ∆(B0, υ) is settled, so it is deciding. J

The Procrastination MC Mpro(K)

The policy ρpro(K) produces a (random, almost surely finite) word a1a2 · · · an with n =
Cρpro(K). Indeed, the observations that ρpro(K) makes can be described by an MC. Recall
that we have previously defined a composition MCM×A = (S ×Q,Σ,M ′, (s0, q0)). Now
define an MCMpro(K) := (S ×Q,Σ ∪ {$},Mpro(K), (s0, q0)) where $ 6∈ Σ is a fresh letter

R. Grigore and S. Kiefer 20:11

and the transitions are as follows: when (s, q) is deciding then Mpro(K)($)
(
(s, q), (s, q)

)
:= 1,

and when (s, q) is not deciding then

Mpro(K)(a)
(
(s, q), (−→a , q′)

)
:=

(
M ′(⊥)k(s,q)M ′(a)

) (
(s, q), (−→a , q′)

)
,

where the matrix M ′(⊥) :=
∑
aM

′(a) is powered by k(s, q). The MC Mpro(K) may not
be non-hidden, but could be made non-hidden by (i) collapsing all language equivalent
(s, q1), (s, q2) in the natural way, and (ii) redirecting all $-labelled transition to a new
state

−→
$ that has a self-loop. In the understanding that $$$ · · · indicates ‘decision made’,

the probability distribution defined by the MC Mpro(K) coincides with the probability
distribution on sequences of non-⊥ observations made by ρpro(K).

I Example 24. For Example 16 the MCMpro(K) for K ≥ 1 is as follows:

(−→a , q0)
1

(
−→
b , q0)
∞

(−→a , f)
∞

1
2b

1
2a

1$ 1$

Here the lower number in a state indicate the cras number. The left state is negatively
deciding, and the right state is positively deciding. The policy ρpro(K) skips the first
observation and then observes either b or a, each with probability 1

2 , each leading to a
deciding belief.

Maximal Procrastination is Optimal

The following lemma states, loosely speaking, that when a belief {(s, q)} with cras(s, q) =∞
is reached and K is large, then a single further observation is expected to suffice for a decision.

I Lemma 25. Let c(K, s, q) denote the expected cost of decision under ρpro(K) starting in
(s, q). For each ε > 0 there exists K ∈ N such that for all (s, q) with cras(s, q) =∞ we have
c(K, s, q) ≤ 1 + ε.

Proof sketch. The proof is a quantitative version of the proof of Lemma 23. The singleton
belief {(s, q)} is not confused. Thus, if K is large then with high probability the belief
B := ∆({(s, q)},⊥Ka) (for the observed next letter a) contains a deciding pair (s′, q′). But
if cras(s, q) =∞ then, by Lemma 19, B is settled, so if B contains a deciding pair then B is
deciding. J

I Example 26. Consider the following variant of the previous example:

−→a−→
b

−→c
1
3b

1
3c

1
3a1b 1c

q0 f

a b

c

Σ

The MCMpro(K) for K ≥ 0 is as follows:

CONCUR 2018

20:12 Selective Monitoring

(−→a , q0)
∞

(
−→
b , q0)
∞

(−→c , f)
∞

1−(1
3)K+1

2 b
1−(1

3)K+1

2 c

1$ 1$

(1
3)K+1a

The left state is negatively deciding, and the right state is positively deciding. We have
c(K,

−→
b , q0) = c(K,−→c , f) = 0 and c(K,−→a , q0) = 1/(1− (1

3)K+1).

Now we can prove the main positive result of the paper:

I Theorem 27. For any feasible policy ρ there is K ∈ N such that:

Ex(Cρpro(K)) ≤ Ex(Cρ)

Proof sketch. Let ρ be a feasible policy. We choose K > |S|2 · |Q|2, so, by Lemma 22,
ρpro(K) coincides with ρpro(∞) until time, say, n∞ when ρpro(K) encounters a pair (s, q)
with cras(s, q) = ∞. (The time n∞ may, with positive probability, never come.) Let us
compare ρpro(K) with ρ up to time n∞. For n ∈ {0, . . . , n∞}, define υpro(n) and υρ(n) as
the observation prefixes obtained by ρpro and ρ, respectively, after n steps. Write `pro(n) and
`ρ(n) for the number of non-⊥ observations in υpro(n) and υρ(n), respectively. For beliefs
B,B′ we write B � B′ when for all (s, q) ∈ B there is (s′, q′) ∈ B′ with (s, q) ≈ (s′, q′). One
can show by induction that we have for all n ∈ {0, . . . , n∞}:

`pro(n) ≤ `ρ(n) and
(
∆(B0, υpro(n)) � ∆(B0, υρ(n)) or `pro(n) < `ρ(n)

)
If time n∞ does not come then the inequality `pro(n) ≤ `ρ(n) from above suffices. Similarly, if
at time n∞ the pair (s, q) is deciding, we are also done. If after time n∞ the procrastination
policy ρpro(K) observes at least one more letter then ρ also observes at least one more
letter. By Lemma 25, one can choose K large so that for ρpro(K) one additional observation
probably suffices. If it is the case that ρ almost surely observes only one letter after n∞,
then ρpro(K) also needs only one more observation, since it has observed at time n∞. J

It follows that, in order to compute cinf , it suffices to analyze Ex(Cρpro(K)) for large K.
This leads to the following theorem:

I Theorem 28. Given a non-hidden MC M and a DFA A, one can compute cinf in
polynomial time.

Proof. For each (s, q) define c(K, s, q) as in Lemma 25, and define c(s, q) :=
limK→∞ c(K, s, q). By Lemma 25, for each non-deciding (s, q) with cras(s, q) = ∞ we
have c(s, q) = 1. Hence the c(s, q) satisfy the following system of linear equations where
some coefficients come from the procrastination MCMpro(∞):

c(s, q) =


0 if (s, q) is deciding
1 if (s, q) is not deciding and cras(s, q) =∞
1 + c′(s, q) otherwise

c′(s, q) =
∑
a

∑
q′

Mpro(∞)
(
(s, q), (−→a , q′)

)
· c(−→a , q′) if cras(s, q) <∞

R. Grigore and S. Kiefer 20:13

By solving the system one can compute c(s0, q0) in polynomial time. We have:

cinf = inf
feasible ρ

Ex(Cρ)
Thm27= lim

K→∞
Ex(Cρpro(K)) = c(s0, q0)

Hence one can compute cinf in polynomial time. J

6 Empirical Evaluation of the Expected Optimal Cost

We have shown that maximal procrastination is optimal in the non-hidden case (Theorem 27).
However, we have not shown how much better the optimal policy is than the see-all baseline.
It appears difficult to answer this question analytically, so we address it empirically. We
implemented our algorithms in a fork of the Facebook Infer static analyzer [8], and applied
them to 11 open-source projects, totaling 80 thousand Java methods. We found that in
> 90% of cases the maximally procrastinating monitor is trivial and thus the optimal cost
is 0, because Infer decides statically if the property is violated. In the remaining cases, we
found that the optimal cost is roughly half of the see-all cost, but the variance is high.

Design. Our setting requires a DFA and an MC representing, respectively, a program
property and a program. For this empirical estimation of the expected optimal cost, the DFA
is fixed, the MC shape is the symbolic flowgraph of a real program, and the MC probabilities
are sampled from Dirichlet distributions.

The DFA represents the following property: ‘there are no two calls to next without an
intervening call to hasNext’. To understand how the MC shape is extracted from programs,
some background is needed. Infer [8, 9] is a static analyzer that, for each method, infers several
preconditions and, attached to each precondition, a symbolic path. For a simple example,
consider a method whose body is ‘if (b)x.next(); if (!b)x.next()’. Infer would generate two
preconditions for it, b and ¬b. In each of the two attached symbolic paths, we can see that
next is not called twice, which we would not notice with a control flowgraph. The symbolic
paths are inter-procedural. If a method f calls a method g, then the path of f will link to
a path of g and, moreover, it will pick one of the paths of g that corresponds to what is
currently known at the call site. For example, if g(b) is called from a state in which ¬b holds,
then Infer will select a path of g compatible with the condition ¬b.

The symbolic paths are finite because abstraction is applied, including across mutually
recursive calls. But, still, multiple vertices of the symbolic path correspond to the same
vertex of the control flowgraph. For example, Infer may go around a for-loop five times before
noticing the invariant. By coalescing those vertices of the symbolic path that correspond to
the same vertex of the control flowgraph we obtain an SFG (symbolic flowgraph). We use such
SFGs as the skeleton of MCs. Intuitively, one can think of SFGs as inter-procedural control
flowgraphs restricted based on semantic information. Vertices correspond to locations in the
program text, and transitions correspond to method calls or returns. Transition probabilities
should then be interpreted as a form of static branch prediction. One could learn these
probabilities by observing many runs of the program on typical input data, for example by
using the Baum–Welch algorithm [17]. Instead, we opt to show that the improvement in
expected observation cost is robust over a wide range of possible transition probabilities,
which we do by drawing several samples from Dirichlet distributions. Besides, recall that the
(optimal) procrastination policy does not depend on transition probabilities.

Once we have a DFA and an MC we compute their product. In some cases, it is clear
that the product is empty or universal. These are the cases in which we can give the verdict
right away, because no observation is necessary. We then focus on the non-trivial cases.

CONCUR 2018

20:14 Selective Monitoring

Table 1 Reduction in expected observation cost, on real-world data. Each SFG (symbolic
flowgraph) corresponds to one inferred precondition of a method. The size of monitors is measured
in number of language equivalence classes. (LOC = lines of code; GAvg = geometric average.)

Project Size Monitors cinf /Ex(C◦)

Name Methods SFGs LOC Count Avg-Size Max-Size Med GAvg

tomcat 26K 52K 946K 343 69 304 0.53 0.50
okhttp 3K 6K 49K 110 263 842 0.46 0.42
dubbo 8K 16K 176K 91 111 385 0.53 0.51
jadx 4K 9K 48K 204 96 615 0.58 0.50
RxJava 12K 45K 192K 83 41 285 0.52 0.53
guava 22K 43K 1218K 1126 134 926 0.41 0.41
clojure 5K 19K 66K 219 120 767 0.44 0.44
AndroidUtilCode 3K 7K 436K 39 89 288 0.66 0.58
leakcanary 1K 1K 11K 12 79 268 0.66 0.59
deeplearning4j 21K 40K 408K 262 51 341 0.58 0.58
fastjson 2K 7K 47K 204 63 597 0.59 0.53

For non-trivial MC×DFA products, we compute the expected cost of the light see-all
policy Ex(C◦), which observes all letters until a decision is made and then stops. We can do
so by using standard algorithms [2, Chapter 10.5]. Then, we computeMpro, which we use to
compute the expected observation cost cinf of the procrastination policy (Theorem 28). Recall
that in order to computeMpro, one needs to compute the cras function, and also to find
language equivalence classes. Thus, computingMpro entails computing all the information
necessary for implementing a procrastinating monitor.

Methodology. We selected 11 Java projects among those that are most forked on GitHub.
We ran Infer on each of these projects. From the inferred specifications, we built SFGs
and monitors that employ light see-all policies and maximal procrastination policies. From
these monitors, we computed the respective expected costs, solving the linear systems using
Gurobi [12]. Our implementation is in a fork of Infer, on GitHub.

Results. The results are given in Table 1. We first note that the number of monitors is
much smaller than the number of methods, by a factor of 10 or 100. This is because in
most cases we are able to determine the answer statically, by analyzing the symbolic paths
produced by Infer. The large factor should not be too surprising: we are considering a fixed
property about iterators, not all Java methods use iterators, and, when they do, it is usually
easy to tell that they do so correctly. Still, each project has a few hundred monitors, which
handle the cases that are not so obvious.

We note that cinf
Ex(C◦) ≈ 0.5. The table supports this by presenting the median and the

geometric average, which are close to each-other; the arithmetic average is also close. There
is, however, quite a bit of variation from monitor to monitor, as shown in Figure 1. We
conclude that selective monitoring has the potential to significantly reduce the overhead of
runtime monitoring.

7 Future Work

In this paper we required policies to be feasible, which means that our selective monitors
are as precise as non-selective monitors. One may relax this and study the tradeoff between
efficiency (skipping even more observations) and precision (probability of making a decision).

R. Grigore and S. Kiefer 20:15

Figure 1 Empirical distribution of cinf /Ex(C◦), across all projects.

Further, one could replace the diagnosability notion of this paper by other notions from the
literature; one could investigate how to compute cinf for other classes of MCs, such as acyclic
MCs; one could study the sensitivity of cinf to changes in transition probabilities; and one
could identify classes of MCs for which selective monitoring helps and classes of MCs for
which selective monitoring does not help.

A nontrivial extension to the formal model would be to include some notion of data, which
is pervasive in practical specification languages used in runtime verification [13]. This would
entail replacing the DFA with a more expressive device, such as a nominal automaton [7], a
symbolic automaton [10], or a logic with data (e.g., [11]). Alternatively, one could side-step
the problem by using the slicing idea [18], which separates the concern of handling data at
the expense of a mild loss of expressive power. Finally, the monitors we computed could be
used in a runtime verifier, or even in session type monitoring where the setting is similar [6].

References
1 Matthew Arnold, Martin T. Vechev, and Eran Yahav. QVM: an efficient runtime for

detecting defects in deployed systems. In OOPSLA, 2008.
2 C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.
3 Ezio Bartocci, Radu Grosu, Atul Karmarkar, Scott A. Smolka, Scott D. Stoller, Erez Zadok,

and Justin Seyster. Adaptive runtime verification. In RV, 2012.
4 N. Bertrand, S. Haddad, and E. Lefaucheux. Foundation of diagnosis and predictability

in probabilistic systems. In Proceedings of FSTTCS, volume 29 of LIPIcs, pages 417–429,
2014.

5 N. Bertrand, S. Haddad, and E. Lefaucheux. Accurate approximate diagnosability of
stochastic systems. In Proceedings of LATA, pages 549–561. Springer, 2016.

6 Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko Yoshida.
Monitoring networks through multiparty session types. TCS, 2017.

7 Mikołaj Bojánczyk, Bartek Klin, and Sławomir Lasota. Automata theory in nominal sets.
LMCS, 2014.

8 C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca, P. O’Hearn,
I. Papakonstantinou, J. Purbrick, and D. Rodriguez. Moving fast with software verification.
In NASA Formal Methods Symposium, 2015.

9 C. Calcagno, D. Distefano, P.W. O’Hearn, and H. Yang. Compositional shape analysis by
means of bi-abduction. JACM, 2011.

CONCUR 2018

20:16 Selective Monitoring

10 Loris D’Antoni and Margus Veanes. The power of symbolic automata and transducers. In
CAV, 2017.

11 Stéphane Demri and Ranko Lazić. LTL with the freeze quantifier and register automata.
TOCL, 2009.

12 Gurobi Optimization, Inc. Gurobi optimizer reference manual. http://www.gurobi.com,
2017.

13 Klaus Havelund, Martin Leucker, Giles Reger, and Volker Stolz. A Shared Challenge
in Behavioural Specification (Dagstuhl Seminar 17462). Dagstuhl Reports, 2018. doi:
10.4230/DagRep.7.11.59.

14 S. Jiang, Z. Huang, V. Chandra, and R. Kumar. A polynomial algorithm for testing dia-
gnosability of discrete-event systems. IEEE Transactions on Automatic Control, 46(8):1318–
1321, 2001.

15 K. Kalajdzic, E. Bartocci, S.A. Smolka, S.D. Stoller, and R. Grosu. Runtime verification
with particle filtering. In RV, 2013.

16 J.-Y. Kao, N. Rampersad, and J. Shallit. On NFAs where all states are final, initial, or
both. Theoretical Computer Science, 410(47):5010–5021, 2009.

17 Brian G. Leroux. Maximum-likelihood estimation for hidden markov models. Stochastic
Processes and Their Applications, 1992.

18 Grigore Ros,u and Feng Chen. Semantics and algorithms for parametric monitoring. LMCS,
2012.

19 M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Diagnosab-
ility of discrete-event systems. IEEE Transactions on Automatic Control, 40(9):1555–1575,
1995.

20 A. Prasad Sistla, Miloš Žefran, and Yao Feng. Monitorability of stochastic dynamical
systems. In Proceedings of CAV, pages 720–736. Springer, 2011.

21 S.D. Stoller, E. Bartocci, J. Seyster, R. Grosu, K. Havelund, S.A. Smolka, and E. Zadok.
Runtime verification with state estimation. In RV, 2011.

22 D. Thorsley and D. Teneketzis. Diagnosability of stochastic discrete-event systems. IEEE
Transactions on Automatic Control, 50(4):476–492, 2005.

http://www.gurobi.com
http://dx.doi.org/10.4230/DagRep.7.11.59
http://dx.doi.org/10.4230/DagRep.7.11.59

Synchronizing the Asynchronous
Bernhard Kragl
IST Austria

https://orcid.org/0000-0001-7745-9117

Shaz Qadeer
Microsoft

Thomas A. Henzinger
IST Austria

Abstract
Synchronous programs are easy to specify because the side effects of an operation are finished
by the time the invocation of the operation returns to the caller. Asynchronous programs, on
the other hand, are difficult to specify because there are side effects due to pending computation
scheduled as a result of the invocation of an operation. They are also difficult to verify because
of the large number of possible interleavings of concurrent computation threads. We present
synchronization, a new proof rule that simplifies the verification of asynchronous programs by
introducing the fiction, for proof purposes, that asynchronous operations complete synchronously.
Synchronization summarizes an asynchronous computation as immediate atomic effect. Modular
verification is enabled via pending asynchronous calls in atomic summaries, and a complementary
proof rule that eliminates pending asynchronous calls when components and their specifications
are composed. We evaluate synchronization in the context of a multi-layer refinement verification
methodology on a collection of benchmark programs.

2012 ACM Subject Classification Software and its engineering → Formal software verification

Keywords and phrases concurrent programs, asynchronous programs, deductive verification,
refinement, synchronization, mover types, atomic action, commutativity, Lipton reduction

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.21

Funding This research was supported in part by the Austrian Science Fund (FWF) under grants
S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award).

1 Introduction

This paper focuses on the deductive verification of asynchronous concurrent programs, an
important class that includes distributed fault-tolerant protocols, message-passing programs,
client-server applications, event-driven mobile applications, workflows, device drivers, and
many embedded and cyber-physical systems. A key aspect of such programs is that (long-
running) operations complete asynchronously. A process that invokes an operation does not
block for the operation to finish. Instead, the result from the completion of the operation
is communicated later, e.g., via a callback message. Asynchronous completion not only
introduces concurrency and nondeterminism into the program semantics, but also makes the
task of specifying the correct behavior of operations difficult. The behavior of a synchronous
operation can be specified with a precondition and a postcondition because there is no
ambiguity about the state just before and just after the operation executes. The behavior of
an asynchronous operation is harder to specify because multiple operations can be in flight
at the same time and partial results from other operations may have already affected the
state before the operation finishes.

© Bernhard Kragl, Shaz Qadeer, and Thomas A. Henzinger;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 21; pp. 21:1–21:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7745-9117
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Synchronizing the Asynchronous

In this paper, we propose that reasoning about asynchronous computation can be
simplified via synchronization, a program transformation that generalizes reduction [15, 6].
While reduction allows the creation of a coarse-grained atomic action from a sequence
of fine-grained atomic actions performed by a single thread, synchronization allows the
creation of a coarse-grained atomic action from an asynchronous computation executed by a
potentially unbounded number of concurrent threads. Synchronization reduces the number
of interleavings; it allows us to pretend, for the purposes of proof, that asynchronous calls
complete synchronously and atomically, which leads to significantly simpler invariants.

Synchronization, similar to reduction, relies on commutativity properties of low-level
atomic actions. Establishing commutativity may be difficult if these atomic actions access
shared state that is also accessed by other, interfering concurrent computations. To enable
synchronization in the presence of interference, we leverage the observation that commutativity
properties among a set of atomic actions can be established by abstracting these actions [5].
In particular, we incorporate synchronization as a program transformation in the verification
methodology of program layers [12], which allows the programmer to chain together a
sequence of increasingly abstract concurrent programs containing atomic actions that are
increasingly coarse-grained. Since program layers allow history variables to be introduced,
history variables are sufficient for converting an arbitrary safety property into assertions, and
the synchronization transformation preserves all assertion failures, our technique is applicable
to the proof of arbitrary safety properties of asynchronous programs.

Synchronization, if used naively, leads to summaries that are not modular and hence not
reusable. Consider a scenario where a client invokes an operation S of a service, upon whose
completion a callback function C is invoked asynchronously. If the code of C is synchronized
into S, the summary of S will be cluttered by the effects of C, making reuse across a different
client impossible. To solve this problem, we generalize atomic summaries to support pending
asynchronous calls (pending asyncs in short). Using pending asyncs, we can synchronize
asynchrony internal to the service, while leaving the asynchronous callback to C as pending
in the summary of S, thus enabling the reuse across different clients. Once the summary of S
has been absorbed into the client, we need a mechanism to replace the pending async with
the effect of the concrete implementation of C. For that we provide a second proof rule to
eliminate pending asyncs from specifications.

We integrated our proof rules in the CIVL verifier [9] which provided a baseline framework
of program layers. We report on our experience verifying a collection of benchmark pro-
grams, showing that our technique enables elegant specifications and proofs of asynchronous
programs.

2 Overview

We start with an overview of our new verification technique based on the two concepts
synchronization and pending asyncs. In our examples we follow the convention of writing
procedure names capitalized (e.g., Acquire), and atomic action names in all caps (e.g.,
ACQUIRE). We use the notation [...] to denote unnamed atomic actions, i.e., the statements
inside square brackets are considered to execute indivisibly.

2.1 Asynchronous Increments and Decrements
Consider the program in Figure 1 (a). The program comprises a single procedure Main
that uses a global variable x and a local variable i. Every iteration of the while loop in
Main creates two new threads, one executing an atomic increment [x := x + 1], and one

B. Kragl, S. Qadeer, and T. A. Henzinger 21:3

(a)
global var x

proc Main(n):
i := 0
while i < n:
async [x := x + 1]
async [x := x - 1]
i := i + 1

(b)

proc Main:
async Foo
assert false

proc Foo:
call Foo

(c)
global var x

proc Main(n):
i := 0
while i < n:

async [x := x + 1]
async [x := x - 1]
if *: i := i + 1

Figure 1 Asynchronous increments and decrements.

executing an atomic decrement [x := x - 1]. Due to asynchronous thread creation, the
execution of individual increments and decrements can be interleaved arbitrarily. However,
once all threads finish, the value in variable x is equal to its initial value. Thus, Main refines
the atomic action [skip], which does nothing.

A standard noninterference-based proof of this program requires an invariant that states
that “x is equal to its original value, plus the number of finished increment threads, minus
the number of finished decrement threads”. Stating this invariant requires ghost code that
tracks the progress of each thread. In contrast, our synchronization proof rule (Section 4)
allows us to consider both asynchronous calls in Main as regular synchronous calls. Then
sequential reasoning suffices to prove that the procedure leaves the variable x unchanged.
Synchronization is justified by the commutativity of atomic actions on shared state. Specifi-
cally, both increment and decrement are left movers in the context of our program. Thus
the asynchronous computation steps in an interleaved execution can be rearranged to obtain
a corresponding synchronous execution that preserves final states.

However, commutativity alone is not sufficient! We also need to ensure that synchro-
nization preserves failing behaviors. Consider the program in Figure 1 (b) where Main
asynchronously calls a procedure Foo (which calls itself recursively) followed by a failing
assertion. The program has failing executions; the assertion can be scheduled any time
between steps of Foo. If we synchronize the call to Foo, however, the nontermination of Foo
makes the assertion unreachable and thus synchronization must not be allowed. We could
require termination of the synchronized program, but this would be unnecessarily restrictive.
We propose a weaker condition called cooperation, which only requires the possibility to
terminate. In other words, it must be impossible for the synchronized program to reach a
state where nontermination is inevitable. To illustrate cooperation, consider Figure 1 (c), a
modification of (a) which nondeterministically increments the loop counter i. The program
does not terminate because it may loop forever, but it cooperates because it can always
increment i. By synchronization we can show analogously to (a) that (c) also refines [skip].

2.2 Lock Service
Figure 2 (a) shows a simple lock service implementation. A client requests the lock by
asynchronously invoking Acquire, which is implemented as spinlock using the atomic
compare-and-swap (CAS) operation on the global variable l. Once successful, the client of
the lock service is notified via an asynchronous callback. Summarizing Acquire as atomic
action via synchronization of the callback is not desirable, because it would drag in the effect
of the client into the specification of Acquire. Instead, we propose the modular, reusable,
and client-independent atomic action specifications ACQUIRE and RELEASE shown in (b).
Notice how we represent guarded atomic transitions as program code. But more importantly,
observe that the atomic action specification ACQUIRE contains a pending async to Callback.
That is, we allow the effect of asynchronous thread creation as part of atomic actions. Now, to

CONCUR 2018

21:4 Synchronizing the Asynchronous

(a)
global var l

proc Acquire (tid):
b := false
while !b:
call b := CAS(l, nil, tid)

async Callback(tid)

proc Release (tid):
call [l := nil]

(b)
global var l

action ACQUIRE (tid):
assert tid != nil
assume l == nil
l := tid
async Callback(tid)

action RELEASE (tid):
assert tid != nil && l == tid
l := nil

(c)
global var x

proc Callback(tid):
call [t := x]
call [x := t + 1]
async Release(tid)

(d)
global var x, l

action CALLBACK(tid):
assert tid != nil
assert l == tid
x := x + 1
l := nil

(e)
global var x, l

action ACQUIRE’ (tid):
assert tid != nil
assume l == nil
l := tid
x := x + 1
l := nil

(f)
global var x

action ACQUIRE’’ (tid):
x := x + 1

Figure 2 Lock service.

make use of such specifications, our technique is complemented with a proof rule to eliminate
pending asyncs (Section 6), once an atomic action specification for the target is available.
For example, consider the callback implementation in (c) that reads and writes a shared
variable x, and then releases the lock. Since the callback is only supposed to be invoked
with the lock held, we strengthen [t := x] and [x := t + 1] with the gate assert tid
!= nil && l == tid, which makes the operations commutative. Together with RELEASE
being a left mover, we use synchronization to show that Callback refines the atomic action
CALLBACK in (d). Now that we have an atomic action specification for Callback, we use it
to eliminate the pending async in ACQUIRE and obtain the atomic action ACQUIRE’ in (e).
Notice how the gates of CALLBACK are discharged by the code preceding the pending async
in ACQUIRE. Finally, we can abstract away the lock acquire and release, such that the client
of the lock service only sees the atomic action ACQUIRE” in (f).

2.3 Layered Refinement Proofs
Our proof rules connect a lower-level, more fine-grained program with a higher-level, more
coarse-grained program (both a bottom-up and top-down interpretation is possible), and
repeated applications lead to a hierarchy of connected programs. However, due to the
structure-preserving nature of our rules, in practice (Section 7) the programmer only writes
a single program with layer annotations [12] that encode the program on multiple layers of
abstraction. Our verifier automatically extracts the hierarchy of programs and generates the
necessary verification conditions to justify their connection.

3 An Asynchronous Programming Language

In this section we define a core asynchronous programming language on which we formalize
our verification technique, and recall the notion of mover types and reduction.

Variables and stores. Let V be a set of variables partitioned into global variables VG and
local variables VL, and VR ⊆ VL is a set of return variables. A store is a mapping σ : V → D
that assigns a value from a domain D to every variable. Similarly, g : VG → D is a global store
and ` : VL → D is a local store. Let g·` denote the combination of g and ` into a store. To
model return values from a procedure with local store `1 to a caller procedure with local store
`2, we define the resulting store at the caller as `1 B `2 = λv. if v ∈ VR then `1(v) else `2(v).

B. Kragl, S. Qadeer, and T. A. Henzinger 21:5

(g,TC [`][skip; s]] T)⇒ (g,TC [`][s]] T) Seq

P.A = (ρ, α) g·` ∈ ρ (g·`, g′·`′,Ω) ∈ α T ′ = {(`′′, call P) | (`′′, P) ∈ Ω}
(g,TC [`][call A]] T)⇒ (g′,TC [`′][skip]] T ′] T) ActionStep

P.A = (ρ, α) g·` 6∈ ρ
(g,TC [`][call A]] T)⇒

ActionFail
s′ = if (` ∈ le) then s1 else s2

(g,TC [`][if le then s1 else s2]] T)⇒ (g,TC [`][s′]] T) If

(g,TC [`][call P]] T)⇒ (g, (`,P.P)·TC [`][skip]] T) Call

(g, (`1, skip)·TC [`2][s]] T)⇒ (g,TC [`1 B `2][s]] T) Return

(g,TC [`][async P]] T)⇒ (g,TC [`][skip]] (`, call P)] T) Async (g, (`, skip)] T)⇒ (g, T) End

Figure 3 Small-step operational semantics.

Atomic actions. We generalize gated actions introduced in [5] with the idea of pending
asyncs. An atomic action is a pair (ρ, α), where the gate ρ is a set of stores and the update
α is a set of transitions (σ, σ′,Ω) where σ,σ′ are stores and Ω is a finite multiset of pending
asyncs (`, P) consisting of a local store and a procedure name. If an atomic action is executed
in a store σ with σ 6∈ ρ, the program “fails”; otherwise, if σ ∈ ρ, a transition (σ, σ′,Ω) ∈ α
atomically updates the store to σ′ and creates new threads according to Ω.

command gate update
x := x+ y true x′ = x+ y ∧ y′ = y
havoc x true y′ = y
assert x < y x < y x′ = x ∧ y′ = y
assume x < y true x < y ∧ x′ = x ∧ y′ = y

Atomic actions subsume many standard
programming language statements. In particu-
lar, (nondeterministic) assignments, assertions,
and assumptions. The table on the right shows
some examples ranging over variables x and y.

Syntax. A program P is a finite mapping from atomic action names A to atomic actions,
and procedure names P to statements s of the form

s ::= skip | s; s | if le then s else s | call A | call P | async P.

A program contains a dedicated procedure Main that serves as an entry point for executions,
and every atomic action name respectively procedure name appearing in a call statement
must be properly mapped to an atomic action respectively statement. We will write P.A
and P.P for P(A) and P(P), and A,P ∈ P for A,P ∈ dom(P). We identify the conditional
expression le with the set of local stores that satisfy it.

Semantics. A frame f is a pair (`, s) of local store ` and statement s. A thread t is a
sequence of frames ~f , denoting a call stack. A state (g, T) is a pair of global store g and a
finite multiset of threads T . By slight abuse of notation we will identify a thread t with the
singleton multiset {t}, and thus write T] t for adding t to T . Let statement contexts SC ,
frame contexts FC , and thread contexts TC be defined as follows:

SC ::= •Stmt | SC ; s FC ::= (•LStore,SC) TC ::= FC · ~f

TC [`][s] denotes the thread obtained by filling the two unique holes •Stmt and •LStore in TC
with statement s and local store `, respectively. Thus, TC [`][s] executes s from ` as next
step. The operational semantics is formalized in Figure 3 as a transition relation ⇒ between
states. An execution π is a sequence of states x0 ⇒ x1 ⇒ . . . , and we write π : x0 ⇒∗ xn to
denote that π is an execution that starts in x0 and ends in xn.

CONCUR 2018

21:6 Synchronizing the Asynchronous

Refinement. Given a program P, we are interested in executions that start with a single
thread executing Main from some initial store σ = g ·`, i.e., executions that start in a
state (g, (`, call Main)). In particular, we are interested in executions that either fail or
terminate. We define Bad(P) to be the set of initial stores associated with failing executions,
and Good(P) to be the relation between initial and final stores associated with terminating
executions:

Bad(P) =
{

g·̀ |
(
g, (`, call Main)

)
⇒∗

}
; Good(P) =

{
(g·̀ , g′) |

(
g, (`, call Main)

)
⇒∗ (g′,∅)

}
.

A program P1 refines a program P2, denoted P1 4 P2, if (1) Bad(P1) ⊆ Bad(P2) and
(2) Bad(P2) ◦Good(P1) ⊆ Good(P2); · is set complement, ◦ is relation composition. The
first condition states that P2 has to preserve failing executions of P1. The second condition
states that P2 has to preserve terminating executions of P1 for initial states that cannot fail.
That is, P2 can fail more often than P1.

Reduction. Let M be a mapping from atomic action names to mover types [6]: B (both
mover), L (left mover), R (right mover), N (non-mover). Intuitively, an atomic action
is a right mover, if it commutes to the right (i.e., later in time) with respect to all other
atomic actions in P. A left mover is symmetric, and an atomic action can be both a left
and right mover. Reduction has traditionally been applied to multithreaded programs to
convert a sequence of atomic actions performed by a single thread into an atomic block.

A

RM LM
B,R,L,N

B,R B,L
The sequence of mover types of the atomic actions in this block
must be a valid run of the nondeterministic atomicity automaton
A on the right. In this paper, we exploit and extend this work to
synchronize asynchronous computation spanning multiple threads.

We define the predicate MoverValid(P,M) which holds when-
ever the atomic actions in P satisfy the mover types indicated by M . Formally,
MoverValid(P,M) holds if for all A1, A2 ∈ P with P.A1 = (ρ1, α1) and P.A2 = (ρ2, α2), the
following conditions hold (generalizing [10] to support pending asyncs).

Commutativity: If M(A1) ∈ {R,B} or M(A2) ∈ {L,B}, then the effect of executing
A1 followed by A2 in two different threads can also be achieved by A2 followed by A1.

∀g, ḡ, g′, `1, `′1,
`2, `

′
2,Ω1,Ω2

∃ĝ,Ω′1,Ω′2
:

 ∧
∧
∧

g·`1 ∈ ρ1

g·`2 ∈ ρ2

(g·`1, ḡ·`′1,Ω1) ∈ α1

(ḡ·`2, g′·`′2,Ω2) ∈ α2

 =⇒

 ∧
∧

(g·`2, ĝ·`′2,Ω′2) ∈ α2

(ĝ·`1, g′·`′1,Ω′1) ∈ α1

Ω1] Ω2 = Ω′1] Ω′2


Forward preservation: If M(A1) ∈ {R,B} or M(A2) ∈ {L,B}, then the failure of
A2 after the execution of A1 implies that A2 must also fail before the execution of A1.
∀g, g′, `1, `′1, `2,Ω1 : (g·`1 ∈ ρ1 ∧ g·`2 ∈ ρ2 ∧ (g·`1, g′·`′1,Ω1) ∈ α1) =⇒ g′·`2 ∈ ρ2

Backward preservation: IfM(A2) ∈ {L,B}, then the failure of A1 before the execution
of A2 implies that A1 must also fail after the execution of A2. ∀g, g′, `1, `2, `′2,Ω2 :

(g·`2 ∈ ρ2 ∧ (g·`2, g′·`′2,Ω2) ∈ α2 ∧ g′·`1 ∈ ρ1) =⇒ g·`1 ∈ ρ1

Nonblocking: If M(A2) ∈ {L,B}, then A2 must be nonblocking. ∀σ ∈ ρ2 ∃σ′,Ω :

(σ, σ′,Ω) ∈ α2

Async freedom: If M(A1) ∈ {R,B}, then A1 cannot have pending asynchronous calls.
∀σ, σ′,Ω : σ ∈ ρ1 ∧ (σ, σ′,Ω) ∈ α1 =⇒ Ω = ∅

B. Kragl, S. Qadeer, and T. A. Henzinger 21:7

¬

­

®

¯

t1

t0

t2

t3

R

L L

L

L

L

t1

t0

t2

t3

t1

t0

t3

t1

t0

t3
callA

t1

t0

t2

t3

R

L L

t1

t0

t2

t3

t1

t0

t3
callA

E

E

E

L

L L

...

¶

·

¸

¶

Figure 4 Synchronizing asynchronous executions.

4 Synchronizing Asynchrony

In this section, we formalize the synchronization proof rule which allows us to transform a
procedure into an atomic action that summarizes asynchronous effects, either directly or
via pending asyncs. Synchronization requires two technical innovations. First, we extend
the commutativity conditions required for reduction to account for asynchronous thread
creation. Second, we impose a new cooperation condition necessary for the soundness of our
transformation.

Given a procedure Q, a mover typing M , and a set of procedures Σ to synchronize in Q
(asynchronous calls to procedures not in Σ are treated as pending asyncs), the Synchronize
rule transforms procedure Q into an atomic action (ρ, α) with fresh name A:

Synchronize
MoverValid(P,M) Sync(P,M,Q,Σ) Refinement(P, Q,Σ, ρ, α)

P P[Q 7→ call A] ∪ [A 7→ (ρ, α)]
Q ∈ P
A 6∈ P

We already defined MoverValid in the previous section. Now we informally discuss the sound-
ness of Synchronize, and formally defined the other two premises Sync and Refinement.
In the next section we show how all premises can be efficiently checked in practice.

I Theorem 1. If P1 P2 using the Synchronize rule, then P1 4 P2.

Intuition. The core idea of Theorem 1 is the rewriting of a P1-execution π1 into an equivalent
P2-execution π2. Concretely, (1) if π1 fails then π2 must fail, and (2) if π1 terminates then
π2 must either terminate with the same final state or fail. We illustrate this transformation
in Figure 4. On the left, ¬ shows part of an asynchronous execution, initially comprising
two threads t0 and t1. Thread t1 executes the transformed procedure Q (the call and
return are indicated with black bars), which makes an asynchronous call to spawn t2, and
t2 asynchronously spawns t3. Notice that t2 terminates after three steps. We consider the
procedure of t2 to be in Σ (i.e., to be synchronized), while the procedure of t3 is not in Σ
(i.e., to be treated as pending async). Our goal is to transform execution ¬ into execution
­, which has the following properties: (1) Q executes without interruption from t0, (2) t2
terminates without interruption before t1 continues, and (3) t3 only starts after Q returns. To
permit this transformation, Sync requires that Q, including asynchronous calls to procedures
in Σ, executes a sequence of right movers, followed by at most one non-mover, followed by a
sequence of left movers. Furthermore, the asynchronous calls to procedures in Σ must only
execute left movers. The steps of t1 and t2 in ¬ are labeled with mover types that satisfy

CONCUR 2018

21:8 Synchronizing the Asynchronous

this conditions. When moving the right mover to the right and the left movers to the left to
obtain ­, the commutativity, forward preservation, and backward preservation properties of
MoverValid guarantee that the executions stay equivalent. Now, as shown in ®, the steps of
t2 can be considered to execute synchronously in its parent t1. Finally, Refinement ensures
that the synchronized behavior of Q is summarized by the atomic action A in ¯, which
captures the creation of t3 as pending async.

On the right of Figure 4, ¶ shows an execution where Q started, but then t0 failed. Notice
that, if all steps of Q before the failure are right movers, these steps can be removed from
the execution (by moving them to the right, “past” the failure), and the failure occurs before
Q even starts. In ¶, however, Q already executed a left mover. Even if we move the steps
of Q together, the partial execution of Q is not summarized by A. However, we know that
only left movers can follow in t1 and t2. Since left movers are non-blocking and backward
preserving, they can be inserted at the end of the execution, right before the failure. The
cooperation condition (part of Sync) ensures that this can be done so that Q is completed,
as shown in ·. Then we can again arrive at an execution where Q is replaced by A (see ¸).

Concurrent tracking semantics. The execution in ¬ is labeled with mover types that
allowed us to rearrange the steps of Q to obtain the execution in ­. To characterize the
executions for which such a rearrangement is possible in general, we define the concurrent
tracking semantics M,Q,Σ====⇒ (Figure 5) that is similar to⇒, except that we additionally track a

A∗

RM LM
L,N

B,R B,L

>

*

⊥

*

N,R

mover phase m in frames, which is one of the states
of the tracking automaton A∗ on the right: > (no
tracking), RM (right-mover phase), LM (left-mover
phase), ⊥ (violation). Call transitions from > to
RM on a top-level call to Q, or otherwise propagates the mover phase of the caller to the
callee. Conversely, Return transitions back to > when returning from a top-level call to Q,
or otherwise propagates the mover phase of the callee to the caller. ActionStep follows a
transition in A∗ according to the mover type of the invoked atomic action. In particular, if
we are tracking (m 6= >), we stay in RM until a non-right mover (L or N) causes a transition
to LM. In LM only left movers should follow, and thus the occurrence of a non-left mover (N
or R) causes a transition to the violation state ⊥. Notice that the async freedom condition of
MoverValid forces a thread that executes an atomic action with pending asyncs to LM. This
is important to ensure that only left movers can follow, which can be moved before the steps
of any pending async. Similarly, Async transitions the parent thread of an asynchronous
call to LM. The child thread is set to LM if we want to synchronize the call, otherwise
it is not tracked. In both ActionStep and Async, if an untracked child thread executes
call Q, the subsequent application of Call will start to track the child tread separately.

Sequential synchronized semantics. In ® we are concerned with the sequential execution
of Q, with asynchronous calls to procedures in Σ being synchronized. We formally define the
sequential synchronized semantics Σ−→ (Figure 5) that executes a single thread and stores a
multiset of pending asyncs. In ActionStep, the pending asyncs of an atomic action are
added to the already existing pending asyncs. For an asynchronous call to P , Async records
a pending thread creation if P 6∈ Σ, and synchronizes the call if P ∈ Σ. The synchronized
stack frame is marked with] such that it is popped in AsyncReturn without writing
return variables to the caller. This technicality is necessary in our formalization. In practice,
asynchronously called procedures simply cannot have return parameters.

B. Kragl, S. Qadeer, and T. A. Henzinger 21:9

M,Q,Σ====⇒
(g,TC [`][skip; s][m]] T) M,Q,Σ=====⇒ (g,TC [`][s][m]] T) Seq

P.A = (ρ, α) g·` ∈ ρ (g·`, g′ ·`′,Ω) ∈ α m′ = A∗(m,M(A)) T ′ = {(`′′, call P,>) | (`′′, P) ∈ Ω}

(g,TC [`][call A][m]] T) M,Q,Σ=====⇒ (g′,TC [`′][skip][m′]] T ′] T)
ActionStep

P.A = (ρ, α) g·` 6∈ ρ

(g,TC [`][call A][m]] T) M,Q,Σ=====⇒
ActionFail

s′ = if (` ∈ le) then s1 else s2

(g,TC [`][if le then s1 else s2][m]] T) M,Q,Σ=====⇒ (g,TC [`][s′][m]] T)
If

m′ = if (m = > ∧ P = Q) then RM else m

(g,TC [`][call P][m]] T) M,Q,Σ=====⇒ (g, (`,P.P,m′)·TC [`][skip][m]] T)
Call

m′ = if (m2 = >) then > else m1

(g, (`1, skip,m1)·TC [`2][s][m2]] T) M,Q,Σ=====⇒ (g,TC [`1 B `2][s][m′]] T)
Return

m′ = if (m 6= >) then LM else > m′′ = if (m 6= > ∧ P ∈ Σ) then LM else >

(g,TC [`][async P][m]] T) M,Q,Σ=====⇒ (g,TC [`][skip][m′]] (`, call P,m′′)] T)
Async

(g, (`, skip,m)] T) M,Q,Σ=====⇒ (g, T) End

Σ−→
(g,TC [`][skip; s],Ω) Σ−→ (g,TC [`][s],Ω) Seq

P.A = (ρ, α) g·` ∈ ρ (g·`, g′ ·`′,Ω) ∈ α

(g,TC [`][call A],Ω′) Σ−→ (g′,TC [`′][skip],Ω] Ω′)
ActionStep

P.A = (ρ, α) g·` 6∈ ρ

(g,TC [`][call A],Ω) Σ−→
ActionFail

s′ = if (` ∈ le) then s1 else s2

(g,TC [`][if le then s1 else s2],Ω) Σ−→ (g,TC [`][s′],Ω)
If

(g,TC [`][call P],Ω) Σ−→ (g, (`,P.P)·TC [`][skip],Ω) Call

(g, (`1, skip)·TC [`2][s],Ω) Σ−→ (g,TC [`1 B `2][s],Ω) Return

(g,TC [`][async P],Ω) Σ−→

{
(g,TC [`][skip], (`, P)] Ω) if P 6∈ Σ
(g, (`, call P)] ·TC [`][skip],Ω) if P ∈ Σ

Async

(g, (`, skip)] · ~f,Ω) Σ−→ (g, ~f,Ω) AsyncReturn

Figure 5 Concurrent tracking semantics M,Q,Σ====⇒ and sequential synchronized semantics Σ−→.

With the concurrent tracking semantics and the sequential synchronized semantics we
can now formally define Sync and Refinement.

Sync. Sync(P,M,Q,Σ) comprises the following two conditions:
S1 (g, (`, call Main,>)) M,Q,Σ====⇒∗ (g′,TC [`′][s][m]] T) implies m 6= ⊥;
S2 (g, (`, call Main,>)) M,Q,Σ====⇒∗ (g′,TC [`′][call P][LM]] T) implies

(g′, (`′, call P),∅) Σ−→∗ (g′′, (`′′, skip),Ω′′).

S1 states that executions respect the required mover sequences, i.e., no violation is reachable
in the tracking semantics. S2 (the cooperation condition) states that every procedure call in
the left-mover phase can be completed. The repeated application of S1 allows us to complete
partial executions of Q. Note that S2 also captures asynchronous calls to procedures P with
P ∈ Σ, since the operational semantics rewrites async P into call P .

CONCUR 2018

21:10 Synchronizing the Asynchronous

Refinement. Refinement(P, Q,Σ, ρ, α) comprises the following two conditions:
R1 ρ ∩ {g·` | (g, (`,P.Q),∅) Σ−→∗ } = ∅;
R2 ρ ◦ {(g·`, g′·`′,Ω) | (g, (`,P.Q),∅) Σ−→∗ (g′, (`′, skip),Ω)} ⊆ α.

R1 states that the gate of A is strong enough to filter out all failures of Q, and R2 states
that the transition relation of A captures all non-failing executions of Q.

5 Verifying Synchronization

In this section we show how the premises of the Synchronize rule can be efficiently checked
in practice. The MoverValid and Refinement premises both lead to standard verification
conditions. In particular, the constraints of MoverValid state the commutativity of individual
atomic actions, and the constraints of Refinement state that a sequential procedure is
summarized by a transition relation, which can be readily handed off to logical reasoning
engines. Thus we focus on Sync which we decompose as follows:

StaticSync(P,M,Q,Σ,Pre) Safe(P,Pre) Terminates(P,Σ,Pre, Red)
Sync(P,M,Q,Σ)

We establish Sync in three steps. First, StaticSync is a static control-flow analysis that
over-approximates the tracking semantics. It uses the domain of a precondition mapping
Pre, a partial mapping from procedure names to sets of stores. If StaticSync succeeds, it
guarantees S1 (i.e., that ⊥ cannot be reached) and that all procedures P called with mover
phase LM in S2 are in dom(Pre). Second, we over-approximate the possible stores g′ ·`′
at these calls. For that, Safe requires that Pre denotes valid preconditions, i.e., if call P
is reachable with store g′ ·`′, then g′ ·`′ ∈ Pre(P) for all P ∈ dom(Pre). Then finally, to
establish S2, it remains to show that there is some terminating sequential execution from
(g′, (`′, call P),∅) for every P ∈ dom(Pre) and g′ ·`′ ∈ Pre(P). Terminates reduces these
cooperation checks to standard termination checks on a restricted program. In particular,
the restriction function Red limits the nondeterministic behavior of some atomic actions.
Then showing that all executions in the restricted program terminate implies that there is
some terminating execution in the original program (given that Red is not allowed to make
atomic actions blocking).

StaticSync. Let E be the function that maps a mover type to the corresponding set of
edges in A, e.g., E(R) = {RM → RM,RM → LM}. We define an interprocedural control
flow analysis that lifts E to a mapping Ê on statements, corresponding to the paths a
statement may take in the tracking semantics. We write StaticSync(P,M,Q,Σ,Pre) if there
is a solution Ê(P.Q) 6= ∅ to the following equations w.r.t. M , Σ and Pre:

Ê(skip) = E(B)

Ê(call A) = E(M(A))

Ê(s1; s2) = Ê(s1) ◦ Ê(s2)

Ê(if le then s1 else s2) = Ê(s1) ∩ Ê(s2)

Ê(call P) =

{
Ê(P.P) if P ∈ dom(Pre)
Ê(P.P) ∩ {RM}2 if P 6∈ dom(Pre)

Ê(async P) =

{
{LM}2 if P 6∈ Σ
{LM}2 ∩ Ê(P.P) if P ∈ Σ ∩ dom(Pre)
∅ if P ∈ Σ \ dom(Pre)

The equations on the left capture regular control-flow propagation. The equation for call P
has two cases. If P ∈ dom(Pre), we do not restrict the call since P is cooperative. However,
if P 6∈ dom(Pre) we must restrict the call to stay in the right-mover phase, because we
cannot rely on the cooperation condition to complete partial executions of Q. The equation
for async P has three cases. If P 6∈ Σ, we do not synchronize P and thus only require the

B. Kragl, S. Qadeer, and T. A. Henzinger 21:11

caller to be followed by only left movers. If P ∈ Σ ∩ dom(Pre), we additionally require the
invoked procedure P to be only left movers. For synchronized procedures we always have to
establish cooperation, thus the case P ∈ Σ \ dom(Pre) is not allowed.

If StaticSync(P,M,Q,Σ,Pre), then S1 holds and for every call P reachable with LM in
S2 we have P ∈ dom(Pre). Hence, we must check cooperation for all procedures in dom(Pre).

Safe. Now that we know the procedures that need to be checked for cooperation, we
want to know the stores from which to check cooperation. For that, Pre must denote valid
preconditions. We write Safe(P,Pre), if (g, (`, call Main)) ⇒∗ (g′,TC [`′][call P]] T)
implies g′·`′ ∈ Pre(P) for all P ∈ dom(Pre).

Terminates. Finally, we establish S2 by showing that all procedures P in dom(Pre) co-
operate from states in Pre(P). Suppose that cooperation holds, but termination (which is
stronger) does not. Such a difference between termination and cooperation must be due to
nondeterminism. Thus, if we suitably restrict the nondeterminism to eliminate nonterminat-
ing behaviors, proving termination for the restricted program implies cooperation for the
original program. Formally, a restriction function Red is a partial mapping from atomic
action names to atomic actions, such that for all A ∈ dom(Red) with P.A = (ρ, α) it holds
that Red(A) = (ρ, α′) with α′ ⊆ α and Red(A) is nonblocking. Let PRed be the program
equal to P, except that PRed.A = Red(A) for A ∈ dom(Red).

We write Terminates(P,Σ,Pre, Red), if for all P ∈ dom(Pre) and g·` ∈ Pre(P), there is
no infinite sequential synchronized PRed-execution (g, (`, call P),∅) Σ−→ · · · . Notice that
these termination checks can now be solved by a standard termination checker for sequential
programs. While it is possible for the programmer to explicitly provide restricted atomic
actions, in practice we did not found this necessary for any of our examples. Instead, a
fixed policy to resolve nondeterministic branching (e.g., always take the then branch) was
enough. For example, recall the program in Figure 1 (c). Always taking the then branch
(i.e., resolving the nondeterministic choice to true) allows us to prove termination and thus
implies cooperation of the original program.

I Theorem 2. If we have StaticSync(P,M,Q,Σ,Pre), Safe(P,Pre), and
Terminates(P,Σ,Pre, Red), then Sync(P,M,Q,Σ) holds.

6 Eliminating Pending Asynchrony

In the previous two sections we showed how the Synchronize rule allows to summarize
procedures to atomic actions, by either directly synchronizing asynchronous calls or keeping
them as pending asyncs. In this section we present the complementary PendingAsyncElim
rule to eliminate pending asyncs from atomic actions.

Let A be an atomic action with pending asyncs to a procedure P . Eliminating those
pending asyncs requires that (1) P is summarized to an atomic action, say B, and (2) B
must be a left mover, since we will directly compose its effect with A. Now we show the
construction of the new gate and update for A. The new gate is obtained by filtering out all
states from the gate of A that can cause B to fail. In other words, we strengthen A’s gate
such that it cannot make a transition to a state where B fails:

Gt(ρA, αA, ρB , P) =
{
σ ∈ ρA | ∀

g′, `′,
`P ,Ω

: (σ, g′·`′, (`P , P)] Ω) ∈ αA

=⇒ g′·`P ∈ ρB

}

CONCUR 2018

21:12 Synchronizing the Asynchronous

The new update consists of two parts. First, we take all transitions without pending asyncs
to P :

Upd1 (αA, P) = {(σ, σ′,Ω) ∈ αA | ¬∃`P : (`P , P) ∈ Ω}

Second, we compose all transitions with a pending async to P with the transitions of B:

Upd2 (αA, αB , P) =
{

(σ, g′′·`′,Ω] Ω′) | ∃ g′, `P ,

Ω, `′′ : ∧ (σ, g′·`′, (`P , P)] Ω) ∈ αA

(g′·`P , g′′·`′′,Ω′) ∈ αB

}
Notice that the transitions of B can have pending asyncs that are absorbed into the resulting
transition. Combining all pieces, we obtain the following rule for eliminating pending asyncs:

PendingAsyncElim
P.P = call B P.B = (ρB , αB) M(B) ∈ {L,B}

ρ′A = Gt(ρA, αA, ρB , P) α′A = Upd1 (αA, P) ∪Upd2 (αA, αB , P)
P] [A 7→ (ρA, αA)] P] [A 7→ (ρ′A, α′A)]

I Example 3. Recall our motivating lock service example from Section 2.2. Eliminating
the pending async in ACQUIRE is a formal application of PendingAsyncElim with P =
Callback, A = ACQUIRE, and B = CALLBACK. The resulting action (the new A) is ACQUIRE’.

I Theorem 4. If P1 P2 using the PendingAsyncElim rule, then P1 4 P2.

PendingAsyncElim eliminates a single pending async to P in A. Iterative application of
the rule allows us to eliminate finitely many pending asyncs. In theory, PendingAsyncElim
can be generalized with an induction schema to eliminate unboundedly many pending asyncs,
but we did not find this necessary in practice.

7 Evaluation

We implemented our verification method in CIVL [9], a verification system for concurrent
programs based on automated and modular refinement reasoning. In CIVL, a program is
specified and verified across multiple layers of refinement. At each layer, procedures can be de-
clared to refine atomic actions and henceforth appear atomic to higher layers. This means that
an input program with layer annotations implicitly describes the program at multiple levels of
abstraction, and CIVL automatically checks refinement between programs on adjacent layers.

We implemented and verified a collection of nine benchmarks, of which five expand
on our motivating example from Section 2.1, one is a ping-pong agreement protocol that
exercises the notion of cooperation, and the remaining three examples are discussed in
the remainder of this section to illustrate (1) the interaction with CIVL and modular
verification via pending asyncs, (2) the applicability to challenging concurrency, and (3) one-
shot synchronization of nested asynchronous calls. Overall, our benchmarks capture realistic
patterns of asynchronous computation. All benchmarks are verified by our tool in less than
three seconds. The implementation and benchmarks are available at https://github.com/
boogie-org/boogie.

The proof rules introduced in this paper are crucial to preserving the layered verification
approach in CIVL and exploiting it to construct compact and highly-automated proofs
with simple invariants [12]. Without our new rules, CIVL proofs of our benchmarks would
amount to single-layer proofs with monolithic invariants in a style similar to classical proofs
of distributed systems in modeling frameworks such as TLA+ [13].

https://github.com/boogie-org/boogie
https://github.com/boogie-org/boogie

B. Kragl, S. Qadeer, and T. A. Henzinger 21:13

action {:atomic}{:layer 1,1}
CAS_l (oldval:Tid, newval:Tid) returns (b:bool) {
if (l == oldval) { l := newval; b := true; }
else { b := false; }

}

procedure {:layer 1}{:refines ACQUIRE}
Acquire (tid:Tid) {
var b:bool;
b := false;
while (!b) call b := CAS_l(nil, tid);
async call Callback(tid);

}

action {:atomic}{:layer 2,3} ACQUIRE (tid:Tid) {
assert tid != nil;
assume l == nil;
l := tid;
async call Callback(tid);

}

procedure {:layer 2}{:refines CALLBACK}
Callback (tid:Tid) { /* not shown */ }

action {:left}{:layer 3} CALLBACK (tid:Tid) {
assert tid != nil && l == tid;
x := x + 1;
l := nil;

}

Figure 6 Lock service in CIVL (excerpt).

7.1 Lock Service

In this section we illustrate how synchronization and pending async elimination are offered
to a programmer in CIVL by revisiting the lock service example from Section 2.2.

Figure 6 shows a fragment of our CIVL implementation. First, let us understand the layer
annotations in more detail. A procedure has a single layer number x that denotes the layer
at which the procedure is shown to refine an atomic action. At all layers up to x calls to the
procedure behave according to its implementation, and at layers higher than x calls to the
procedure behave according to its refined atomic action. Atomic actions have an associated
layer range [x, y], which denotes at which layers the action is “available”. For each layer, the
set of available atomic actions is subject to pairwise commutativity checks. In Figure 6, the
procedure Acquire is declared to refine the atomic action ACQUIRE at layer 1, which causes
CIVL to apply synchronization. The implementation makes two calls, a synchronous call to
a compare-and-swap operation which is already atomic at layer 1, and an asynchronous call
to Callback. Since Callback is refined at the higher layer 2, the asynchronous call results
in a pending async in the atomic action ACQUIRE. Thus, at layer 2, ACQUIRE is exactly the
client-independent specification of Acquire we presented in Figure 2 (b).

Now Callback (whose implementation is not shown) is declared to refine CALLBACK
at layer 2. This causes CIVL to apply pending async elimination in ACQUIRE at layer 3;
the pending async to Callback is replaced with the effect of CALLBACK. Thus, at layer 3,
ACQUIRE corresponds to ACQUIRE’ in Figure 2 (e).

This example illustrates two important aspects of our proof method and its integration
into CIVL. First, on the conceptual side, our method enables independent and modular
reasoning about the lock service implementation and its client. The atomic action ACQUIRE
can be (1) proved for a different implementation of the lock without the need to re-verify the
client, and (2) used to reason about a different client by letting CIVL apply pending async
elimination for a different client (i.e., Callback implementation). Second, on the practical
side, the application of synchronization and pending async elimination in CIVL is driven
by layer annotations. The programmer does not have to explicitly write the program under
consideration at every layer of abstraction and specify the transformation that connects them.
Instead, CIVL automatically constructs per-layer versions of procedures and atomic actions.

7.2 Two-phase Commit

In this section we show that our method applies to realistic programs with intricate concur-
rency by verifying full functional correctness of the two-phase commit (2PC) protocol. The
protocol employs a coordinator process to consistently replicate transactions among a set of

CONCUR 2018

21:14 Synchronizing the Asynchronous

C_TransReq

C_VoteYes

C_VoteNo

P_VoteReq

P_Commit

P_Abort

synchronizesynchronizesynchronize

Figure 7 2PC call hierarchy (from left to right) and proof outline (right to left).

participant processes. In the first phase, the coordinator broadcasts incoming request to all
participants, which respond either with a “yes” vote to commit, or a “no” vote to abort. In
the second phase, the coordinator processes incoming votes as follows: (1) If all participants
voted “yes” it broadcasts a “commit” message, or (2) as soon as a single participant votes “no”
it broadcasts an “abort” message. Due to asynchrony and message reordering, the protocol
implementation must be robust against unexpected situations. For example, a participant
can receive an abort message before it receives the corresponding vote request.

Figure 7 shows the message handlers of the protocol we implemented in CIVL, together
with the asynchronous communication structure. For example, P_VoteReq is a participants
handler for vote requests, which asynchronously invokes either the coordinators C_VoteYes or
C_VoteNo handler. To reason about the protocol, we use a variable state such that for every
transaction xid and process pid, state[xid][pid] is one of INIT, COMMIT, or ABORT. We
prove a top-level atomic action specification for C_TransReq that states that for a fresh xid,
state[xid] is consistently updated, i.e., there are no two processes such that one is COMMIT
and the other one ABORT. Figure 7 also shows the proof outline, making repeated use of
synchronization. Here we focus on the first synchronization of P_Commit and P_Abort, which
requires them to be left movers. A priori these operations do not commute, because they
write the conflicting values COMMIT and ABORT to state[xid][pid], respectively. However,
by making it explicit that the coordinator has to decide on a transaction first, the following
abstractions are commutative:

action P_Commit (pid,xid):
assert state[xid][C] == COMMIT
state[xid][pid] := COMMIT

action P_Abort (pid,xid):
assert state[xid][C] == ABORT
state[xid][pid] := ABORT

Our proof of 2PC confirms that the benefit of reduced invariant complexity in structured
multi-layer refinement proofs [9] carries over to the asynchronous setting. In particular, we
could state the central correctness invariant in terms of the protocol mechanism (i.e., voting
and phases) after hiding low-level implementation details (i.e., counting).

7.3 Task Distribution Service
Finally, we verified a task distribution service inspired by a set of benchmarks from [1].
This example captures a whole class of similar benchmarks, where a set of independent
tasks is processed by passing through a sequence of stages. The result of every stage is
asynchronously communicated to the next stage, and different tasks can run through different
stages. However, concurrent tasks do not interfere with each other. With this key difference
to examples like 2PC, we can avoid the overhead of stepwise synchronization over several
layers. Instead, synchronization can be applied to eliminate long (and even unbounded)
chains of asynchronous calls in a single layer.

To summarize, synchronization is applicable to tightly interfering programs using program
layers, and less interference leads to even simpler proofs.

B. Kragl, S. Qadeer, and T. A. Henzinger 21:15

8 Related Work

The idea of taming concurrency through synchrony is also at the heart of other works.
Brisk [1] computes canonical sequentializations of message-passing programs by matching
sends with corresponding receives. Our work differs in the programming model (dynamic
thread creation vs. parametric processes with blocking receives) and the verification goal
(deductive functional correctness vs. automatic deadlock-freedom). The work in [2] proposes
the notion of robustness against concurrency as correctness condition for a class of event-
driven programs. That is, the sequential behavior of a program is the underlying specification,
and asynchronous executions are checked to conform to sequential executions. In contrast,
we use synchronization to simplify the verification of safety properties.

There are several recent papers on mechanized verification of distributed systems. Iron-
Fleet [8] embeds TLA-style state-machine modeling [13] into the Dafny verifier [14] to refine
high-level distributed systems specifications into low-level executable implementations. They
use a fixed 3-layer design and one-shot reductions to atomic actions, while our program
layers are more flexible. Ivy [18] organizes the search for an inductive invariant as a col-
laborative process between automatic verification attempts and user guided generalizations
of counterexamples to induction in a graphical model. They use a restricted modeling and
specification language that makes their verification conditions decidable. We rely on small
partitioned verification conditions that can be discharged by an SMT solver [3]. PSync [4]
uses a synchronous round-based model of communication for the purpose of program design
and verification, shifting the complexity of efficient asynchronous execution to a runtime
system. We allow explicit control over low-level details at the potential cost of increased
verification effort. Verdi [21] lets the programmer provide a specification, implementation,
and proof of a distributed system under an idealized network model. Then the application
is automatically transformed into one that handles faults via verified system transformers.
The rely-guarantee rule of [7] and the ALS types of [11] target a weaker form of asynchrony,
where a single task queue atomically executes one task at a time.

Concurrent separation logic (CSL) [16] was devised for modular reasoning about multi-
threaded shared-memory programs, focusing on the verification of fine-grained concurrent data
structures. CSL adequately addresses the problem of reasoning about low-level concurrency
related to dynamic memory allocation, but still suffers from the complications of a monolithic
approach to invariant discovery for protocol-level concurrency. Recently, CSL has been
applied to message-passing programs. The approach in [17] uses CSL to link implementation
steps to atomic actions, and then relies on a model checker to explore the interleavings of
those atomic actions. The work in [19] addresses the composition of verified protocols using
ideas from separation logic. The actor services of [20] focus on compositional verification of
response properties of message-passing programs.

9 Conclusion

The contribution of this paper are proof rules to simplify the reasoning about asynchronous
concurrent programs. The impact of our work must be understood in the context of our two-
pronged strategy for aiding interactive and automated verification of asynchronous programs.
First, our proof rules enable asynchronous computation to be summarized analogous to the
summarization of synchronous computation by pre- and post-conditions. This capability
enables the construction of syntax-driven and structured proofs of asynchronous programs.
Second, the program simplification enabled by our proof rules attacks the nemesis of complex
invariants induced by a large number of interleaved executions. Instead of writing a large

CONCUR 2018

21:16 Synchronizing the Asynchronous

and complex invariant justifying the overall correctness of the program, the programmer may
now write a sequence of simpler invariants, each justifying a program simplification.

Our proof method decomposes the task of proving the correctness of a large asynchronous
program into formulating and automatically discharging smaller independent proof obligations.
These proof obligations show that an atomic action commutes with other atomic actions;
that an atomic action summarizes the effect of a statement in a given context; and that an
assertion is an inductive invariant for a simpler program, where asynchronous procedure calls
are replaced by synchronous (immediate) atomic actions. Using our method, the automatable
part of a concurrent verification problem – i.e., the safety proof given an inductive invariant –
remains automatable, and the creative part – i.e., the discovery of an appropriate invariant –
is greatly simplified by structuring it into smaller proof obligations, each of which can still
be discharged automatically.

References
1 Alexander Bakst, Klaus von Gleissenthall, Rami Gökhan Kici, and Ranjit Jhala. Verifying

distributed programs via canonical sequentialization. In OOPSLA, 2017. doi:10.1145/
3133934.

2 Ahmed Bouajjani, Michael Emmi, Constantin Enea, Burcu Kulahcioglu Ozkan, and Serdar
Tasiran. Verifying robustness of event-driven asynchronous programs against concurrency.
In ESOP, 2017. doi:10.1007/978-3-662-54434-1_7.

3 Leonardo de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In TACAS, 2008.
doi:10.1007/978-3-540-78800-3_24.

4 Cezara Dragoi, Thomas A. Henzinger, and Damien Zufferey. PSync: a partially syn-
chronous language for fault-tolerant distributed algorithms. In POPL, 2016. doi:10.1145/
2837614.2837650.

5 Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. A calculus of atomic actions. In POPL,
2009. doi:10.1145/1480881.1480885.

6 Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. In PLDI, 2003.
doi:10.1145/781131.781169.

7 Ivan Gavran, Filip Niksic, Aditya Kanade, Rupak Majumdar, and Viktor Vafeiadis. Re-
ly/guarantee reasoning for asynchronous programs. In CONCUR, 2015. doi:10.4230/
LIPIcs.CONCUR.2015.483.

8 Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L.
Roberts, Srinath T. V. Setty, and Brian Zill. IronFleet: proving practical distributed
systems correct. In SOSP, 2015. doi:10.1145/2815400.2815428.

9 Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serdar Tasiran. Automated and modular
refinement reasoning for concurrent programs. In CAV, 2015. doi:10.1007/978-3-319-
21668-3_26.

10 Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serdar Tasiran. Automated and modular
refinement reasoning for concurrent programs. Technical Report MSR-TR-2015-8, Mi-
crosoft Research, February 2015. URL: https://www.microsoft.com/en-us/research/
publication/automated-and-modular-refinement-reasoning-for-concurrent-
programs/.

11 Johannes Kloos, Rupak Majumdar, and Viktor Vafeiadis. Asynchronous liquid separation
types. In ECOOP, 2015. doi:10.4230/LIPIcs.ECOOP.2015.396.

12 Bernhard Kragl and Shaz Qadeer. Layered concurrent programs. In CAV, 2018. doi:
10.1007/978-3-319-96145-3_5.

13 Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley, 2002.

http://dx.doi.org/10.1145/3133934
http://dx.doi.org/10.1145/3133934
http://dx.doi.org/10.1007/978-3-662-54434-1_7
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1145/2837614.2837650
http://dx.doi.org/10.1145/2837614.2837650
http://dx.doi.org/10.1145/1480881.1480885
http://dx.doi.org/10.1145/781131.781169
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.483
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.483
http://dx.doi.org/10.1145/2815400.2815428
http://dx.doi.org/10.1007/978-3-319-21668-3_26
http://dx.doi.org/10.1007/978-3-319-21668-3_26
https://www.microsoft.com/en-us/research/publication/automated-and-modular-refinement-reasoning-for-concurrent-programs/
https://www.microsoft.com/en-us/research/publication/automated-and-modular-refinement-reasoning-for-concurrent-programs/
https://www.microsoft.com/en-us/research/publication/automated-and-modular-refinement-reasoning-for-concurrent-programs/
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.396
http://dx.doi.org/10.1007/978-3-319-96145-3_5
http://dx.doi.org/10.1007/978-3-319-96145-3_5

B. Kragl, S. Qadeer, and T. A. Henzinger 21:17

14 K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In
LPAR, 2010. doi:10.1007/978-3-642-17511-4_20.

15 Richard J. Lipton. Reduction: A method of proving properties of parallel programs. Com-
mun. ACM, 18(12):717–721, 1975. doi:10.1145/361227.361234.

16 Peter W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci.,
375(1-3):271–307, 2007. doi:10.1016/j.tcs.2006.12.035.

17 Wytse Oortwijn, Stefan Blom, and Marieke Huisman. Future-based static analysis of mes-
sage passing programs. In PLACES, 2016. doi:10.4204/EPTCS.211.7.

18 Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. Ivy:
safety verification by interactive generalization. In PLDI, 2016. doi:10.1145/2908080.
2908118.

19 Ilya Sergey, James R. Wilcox, and Zachary Tatlock. Programming and proving with dis-
tributed protocols. In POPL, 2018. doi:10.1145/3158116.

20 Alexander J. Summers and Peter Müller. Actor services - modular verification of message
passing programs. In ESOP, 2016. doi:10.1007/978-3-662-49498-1_27.

21 James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D.
Ernst, and Thomas E. Anderson. Verdi: a framework for implementing and formally
verifying distributed systems. In PLDI, 2015. doi:10.1145/2737924.2737958.

CONCUR 2018

http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.1145/361227.361234
http://dx.doi.org/10.1016/j.tcs.2006.12.035
http://dx.doi.org/10.4204/EPTCS.211.7
http://dx.doi.org/10.1145/2908080.2908118
http://dx.doi.org/10.1145/2908080.2908118
http://dx.doi.org/10.1145/3158116
http://dx.doi.org/10.1007/978-3-662-49498-1_27
http://dx.doi.org/10.1145/2737924.2737958

A Semantics for Hybrid Iteration
Sergey Goncharov1

Lehrstuhl für Theoretische Informatik, Friedrich-Alexander Universität Erlangen-Nürnberg,
Germany
sergey.goncharov@fau.de

Julian Jakob
Lehrstuhl für Theoretische Informatik, Friedrich-Alexander Universität Erlangen-Nürnberg,
Germany
julian.jakob@fau.de

Renato Neves2

INESC TEC (HASLab) & University of Minho, Portugal
nevrenato@di.uminho.pt

Abstract
The recently introduced notions of guarded traced (monoidal) category and guarded (pre-)iterative
monad aim at unifying different instances of partial iteration whilst keeping in touch with the
established theory of total iteration and preserving its merits. In this paper we use these notions
and the corresponding stock of results to examine different types of iteration for hybrid computa-
tions. As a starting point we use an available notion of hybrid monad restricted to the category
of sets, and modify it in order to obtain a suitable notion of guarded iteration with guardedness
interpreted as progressiveness in time – we motivate this modification by our intention to capture
Zeno behaviour in an arguably general and feasible way. We illustrate our results with a simple
programming language for hybrid computations and interpret it over the developed semantic
foundations.

2012 ACM Subject Classification Theory of computation Ñ Timed and hybrid models

Keywords and phrases Elgot iteration, guarded iteration, hybrid monad, Zeno behaviour

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.22

Related Version A full version of the paper is available at [13], https://arxiv.org/abs/1807.
01053.

1 Introduction

Iteration is a basic concept of computer science that takes different forms across numerous
strands, from formal languages, to process algebras and denotational semantics. From a
categorical point of view, using the definite perspective of Elgot [10], iteration is an operator

f : X Ñ Y `X

f : : X Ñ Y
(1)

1 Research supported by Deutsche Forschungsgemeinschaft (DFG) under project GO 2161/1-2.
2 Research supported by ERDF – European Regional Development Fund through the Operational

Programme for Competitiveness and Internationalisation – COMPETE 2020 Programme and by
National Funds through the Portuguese funding agency, FCT – Fundação para a Ciência e a Tecnologia
within projects POCI-01-0145-FEDER-016692 and 02/SAICT/2017.

© Sergey Goncharov, Julian Jakob, and Renato Neves;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 22; pp. 22:1–22:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sergey.goncharov@fau.de
mailto:julian.jakob@fau.de
mailto:nevrenato@di.uminho.pt
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.22
https://arxiv.org/abs/1807.01053
https://arxiv.org/abs/1807.01053
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 A Semantics for Hybrid Iteration

1 2 3 4

0.5

1

Figure 1 Bouncing ball’s movement.

that runs the function f and terminates if the result is in Y , otherwise it proceeds with the
result repetitively. One significant difficulty in the unification of various forms of iteration is
that the latter need not be total, but can be defined only for a certain class of morphisms
whose definition depends on the nature of the specific example at hand. In process algebra,
for example, one typically considers recursive solutions of guarded process definitions, in
complete metric spaces only fixpoints of contractive maps (which can then be found uniquely
thanks to Banach’s fixpoint theorem), and in domain theory only least fixpoints over pointed
predomains (i.e. domains). These examples have recently been shown as instances of the
unifying notion of guarded traced category [16, 15].

In this work we aim to extend the stock of examples of this notion by including iteration on
hybrid computations, which are encoded in the recently introduced hybrid monad [26, 25]. We
argue that in the hybrid context guardedness corresponds to progressiveness – the property of
trajectories to progressively extend over time during the iteration process (possibly converging
to a finite trajectory in the limit) – we illustrate and examine the corresponding iteration
operator and use it to develop while-loops for hybrid denotational semantics.

Hybrid computations are inherent to systems that combine discrete and continuous, phys-
ical behaviour [31, 28, 1]. Traditionally qualified as hybrid and born in the context of control
theory [32], they range from computational devices interacting with their physical, external
environment to chemical/biological reactions and physical processes that are subjected to
discrete changes, such as combustions and impacts. Typical examples include pacemakers,
cellular division processes, cruise control systems, and electric/water grids. Let us consider,
for example, the following hybrid program, written in an algebraic programming style, and
with pẋ “ t & rq denoting “let variable x evolve according to t during r milliseconds”.

pv̇ “ 1 & 1q `vď120 pv̇ “ ´1 & 1q

It represents a (simplistic) cruise controller that either accelerates pv̇ “ 1 & 1q or brakes
pv̇ “ ´1 & 1q during one millisecond depending if the car’s velocity v is lower or greater than
120km/h. This program naturally fits in a slightly more sophisticated scenario obtained by
wrapping a non-terminating while-loop around it:

while true {pv̇ “ 1 & 1q `vď120 pv̇ “ ´1 & 1q} (2)

Now the resulting program runs ad infinitum, measuring the car’s velocity every millisecond
and changing it as specified by the if-then-else condition. How should we systematically
interpret such while-loops?

Iteration on hybrid computations is notoriously difficult to handle due to the so called
Zeno behaviour [18, 2, 33], a phenomenon of unfolding an iteration loop infinitely often in
finite time, akin to the scenarios famously described by the greek philosopher Zeno, further

S. Goncharov, J. Jakob, and R. Neves 22:3

analyzed by Aristotle [3, Physics, 231a–241b], and since then by many others. To illustrate
this, consider a bouncing ball dropped at a positive height and with no initial velocity. Due
to the gravitational acceleration g, it falls into the ground and bounces back up, losing a
portion of its kinetic energy. In order to model this system, one can start by writing the
program,

pṗ “ v, v̇ “ g & p ď 0^ v ď 0q; pv :“ v ˆ´0.5q (3)

to specify the (continuous) change of height p, and also the (discrete) change of velocity v
when the ball touches the ground; the expression p ď 0 ^ v ď 0 provides the termination
condition: the ball stops when both its height and velocity do not exceed zero. Then,
abbreviating program (3) to b, one writes,

pp :“ 1, v :“ 0q; b; . . . ; b︸ ︷︷ ︸
n times

as the act of dropping the ball and letting it bounce exactly n times. One may also wish
to drop the ball and let it bounce until it stops (see Fig. 1), using some form of infinite
iteration on b and thus giving rise to Zeno behaviour. Only a few existing approaches
aim to systematically work with Zeno behaviour, e.g. in [18, 19] this is done by relying on
non-determinism, although the results seem to introduce undesirable behaviour in some
occasions (see details in the following subsection). Here, we do regard Zeno behaviour as an
important phenomenon to be covered and as such helping to design and classify notions of
iteration for hybrid semantics in a systematic and compelling way.

1.1 Related Work, Contributions, Roadmap, and Notation
There exist two well-established program semantics for hybrid systems: Höfner’s “Algebraic
calculi for hybrid systems” [18] where programs are interpreted as sets of trajectories, and
Platzer’s Kleene algebra [28] interpreting programs as maps X Ñ PX for the powerset
functor P . Both approaches are inherently non-deterministic and the corresponding iteration
operators crucially rely on non-determinism. In [28], the iteration operator is modelled by
the Kleene star p´q˚, i.e. essentially by the non-deterministic choice between all possible
finite iterates of a given program p; more formally, p˚ is the least fixpoint of

x ÞÑ p;x` skip

Semantics based on Kleene star deviates from the (arguably more natural) intuition given
above for the non-terminating while-loop (2). It is also possible to extend the non-
deterministic perspective summarized above to a more abstract setting via a monad that
combines hybrid computations and nondeterminism [9], but in the present work we restrict
ourselves to a purely hybrid setting, in order to study genuinely hybrid computations in
isolation, without being interfered with other computational effects such as non-determinism.

One peculiarity of the Kleene star in [28] is that it is rather difficult to use for modelling
programs with Zeno behaviour, the problem the authors are confronted with in [18, 19]. The
authors of op. cit. extend the Kleene star setting with an infinite iteration operator p´qω
that for a given program p it returns the largest fixpoint of the function on programs,

x ÞÑ p;x

As argued in [18, 19], this operator still does not adequately capture the semantics of hybrid
iteration, as it yields “too much behaviour”, e.g. if p “ skip, pω is the program containing

CONCUR 2018

22:4 A Semantics for Hybrid Iteration

all trajectories while we are expecting it to be skip. This is fixed by combining various
techniques for obtaining a desirable set of behaviours, but unexpected behaviour could still
appear at the smallest instant of time that is not reached by finite iterations [18, 19]. For the
bouncing ball, this entails that at the instant in which it is supposed to stop, it can appear
below ground or shoot up to the sky.

Other types of formalisms for hybrid systems were proposed in the last decades, including
e.g. the definite case of hybrid automata [17], whose distinguishing feature is the ability
of state variables to evolve continuously, and Hybrid CSP [8], an extension of CSP by
expressions with time derivatives. More recently, an elegant specification language handling
continuous behaviour of hybrid systems via non-standard analysis was introduced in [30].

Contributions. We propose semantic foundations for (Elgot) iteration in a hybrid setting:
we identify two new monads for hybrid computations, one of which supports a partial guarded
iteration operator, characterized as a least solution of the corresponding fixpoint equation,
and another one extending the first and carrying a total iteration operator, although not
generally being characterized in an analogous way. We show that both operators do satisfy
the standard equational principles of iteration theories [5, 10] together with uniformity [29].
Moreover, we develop a language for hybrid computations with full-fledged while-loops as a
prominent feature and interpret it using the underlying monad-based semantics. We discuss
various use case scenarios and demonstrate various aspects of the iterative behaviour.

Plan of the paper. We proceed by defining a simple programming language for hybrid
computations in Section 2, in order to present and discuss challenges related to defining a
desirable semantics for it. In Section 3 we provide a summary of guarded (Elgot) iteration
theory. In Sections 4 and 5 we present our main technical developments, including two new
monads H` and H for hybrid computations and the corresponding iteration operators. In
Section 6 we provide a semantics for the while-loops of our programming language and then
conclude in Section 7.

All omitted proofs can be found in an extended version of the paper [13] (available on
arXiv).

Notation. We assume basic familiarity with the language of category theory [21], monads
[21, 4], and topology [11]. Some conventions regarding notation are in order. By |C|
we denote the class of objects of a category C and by HomCpA,Bq (HompA,Bq, if no
confusion arises) the set of morphisms f : A Ñ B from A P |C| to B P |C|. We denote
the set of Kleisli endomorphisms HomCpX,TXq by EndTpXq. We agree to omit indices at
natural transformations. We identify monads with the corresponding Kleisli triples, and use
blackboard characters to refer to a monad and the corresponding roman letter to the monad’s
functorial part, e.g. T “ pT, η, p--q‹q denotes a monad over a functor T with η : Id Ñ T being
the unit and p--q‹ : HompX,TY q Ñ HompTX, TY q being the corresponding Kleisli lifting.
Most of the time we work in the category Set of sets and functions. We write R` and R` for
the sets of non-negative reals, and non-negative reals extended with infinity 8 respectively.
Given e : R` Ñ X and t P R`, we denote by et the application eptq. Given x P X, x : Y Ñ X

is the function constantly equal to x. We use if-then-else constructs of the form pC bB q

returning p if b evaluates to true and q otherwise.

S. Goncharov, J. Jakob, and R. Neves 22:5

2 A Simple Hybrid Programming Language

Let us build a simple hybrid programming language to illustrate some of our challenges
and results. Intuitively, this language adds differential equation constructs to the standard
imperative features, namely assignments, sequencing, and conditional branching. It was first
presented in [25, Chapter 3] and we will use this paper’s results to extend it with a notion of
iteration. We start by recalling the definition of the hybrid monad [26] here denoted by H0,
as a candidate semantic domain for this language. In the following sections, we will extend
H0 in order to obtain additional facilities for interpreting progressive and hybrid iteration.

I Definition 1 ([26]). The monad H0 on Set is defined in the following manner.
The set H0X has as elements the pairs pd, eq with d P R` and e : R` Ñ X a function
satisfying the flattening condition: for every x ě d, epxq “ epdq. We call the elements
of pd, eq duration and evolution, respectively, and use the subscripts d and e to access
the corresponding fields, i.e. given f “ pd, eq P H0X, we mean fd and fe to denote
d and e respectively. This convention extends to Kleisli morphisms as follows: given
f : X Ñ H0Y , fdpxq “ pfpxqqd, fepxq “ pfpxqqe.
The unit is defined by ηpxq “ p0, xq, where x denotes the constant trajectory on x;
For every Kleisli morphism f : X Ñ H0Y and every value pd, eq P H0X,

pf‹pd, eqqd “ d` fdpe
dqC d P R` B8 pf‹pd, eqqte “ f0

e pe
tqC t ă dB f t´de pedq

(recall that, according to our conventions, pfeq
0 refers to fep0q; here we additionally

simplify pfeq
0 to f0

e for the sake of readability).
We now fix a finite set of real-valued variables X “ {x1, . . . , xn} and denote by AtpXq the
set of atomic programs given by the grammar,

ϕ Q px1 :“ t, . . . , xn :“ tq | pẋ1 “ t, . . . , ẋn “ t& rq | pẋ1 “ t, . . . , ẋn “ t& ψq,

t Q r | r ¨ x | t` t, ψ Q t ď t | t ě t | ψ ^ ψ | ψ _ ψ

where x P X and r P R`. The next step is to construct an interpretation map,

J´ K : AtpXq Ñ EndH0pRnq (4)

that sends atomic programs a to endomorphisms JaK : Rn Ñ H0pRnq in the Kleisli category
of H0. This map extends to terms and predicates as JtKpv1, . . . , vnq P Rn and JψK Ď Rn in the
standard way by structural induction. We interpret each assignment px1 :“ t, . . . , xn :“ tq

as the map,

pv1, . . . , vnq ÞÑ ηRn (Jt1Kpv1, . . . , vnq, . . . , JtnKpv1, . . . , vnq)

Recall that linear systems of ordinary differential equations ẋ1 “ t, . . . , ẋn “ t always
have unique solutions φ : Rn Ñ pRnqR` [27]. We use this property to interpret each
program pẋ1 “ t, . . . , ẋn “ t& rq as the respective solution Rn Ñ pRnqR` but restricted to
Rn Ñ pRnqr0,rs. In order to interpret programs of the type pẋ1 “ t, . . . , ẋn “ t& ψq we can
call on the following result.

I Theorem 2 ([9]). Consider a program pẋ1 “ t, . . . , ẋn “ t&ψq, the solution φ : RnˆR` Ñ

Rn of the system ẋ1 “ t, . . . , ẋn “ t, and a valuation pv1, . . . , vnq P Rn. If there exists a time
instant r P R` such that φpv1, . . . , vn, rq P JψK then there exists a smallest time instant that
also satisfies this condition.

CONCUR 2018

22:6 A Semantics for Hybrid Iteration

Using this theorem, we interpret each program pẋ1 “ t, . . . , ẋn “ t & ψq as the function
defined by,

pv1, . . . , vnq ÞÑ pd, φpv1, . . . , vn,´qq

where d is the smallest time instant that intersects JψK if pImgpφpv1, . . . , vn,´qqqXJψK ‰ ∅ and
8 otherwise. This final step provides the desired interpretation map of atomic programs (4).
We can now systematically build the hybrid programming language using standard algebraic
results, as observed in [9, 25]. The set EndH0pRnq of endomorphisms Rn Ñ H0pRnq together
with Kleisli composition ‚ and the unit η : Id Ñ H0 form a monoid pEndH0pRnq, ‚, ηq.
Therefore, the free monoidal extension of J´ K : AtpXq Ñ pEndH0pRnq, ‚, ηq is well-defined
and induces a semantics for program terms,

p “ a P AtpXq | skip | p ; p

I Example 3. Let us consider some programs written in this language.
1. We can have classic, discrete assignments, such as x :“ x ` 1 or x :“ 2 ¨ x, and their

sequential composition.
2. We can also write a waitprq call, frequently used in the context of embedded systems

for making the system halt its execution during r time units. This is achieved with the
program pẋ1 “ 0, . . . , ẋn “ 0 & rq.

3. It is also possible to consider oscillators using histeresis [12], in particular via the sequential
composition pẋ “ 1 & 1q ; pẋ “ ´1 & 1q.

4. The bouncing ball system that was examined in the introduction is another program of
this language.

We next extend our language with if-then-else clauses. This can be achieved in the following
manner. Denote by B the free Boolean algebra generated by the expressions t “ t and t ă t.
Each b P B induces an obvious predicate map JbK : Rn Ñ 2.

Any b induces a binary function `b : EndH0pRnq ˆ EndH0pRnq Ñ EndH0pRnq defined as
follows: pf `b gqpxq “ fpxqC bpxqB gpxq. This allows us to freely extend the interpretation
map,

J´ K : AtpXq Ñ pEndH0pRnq, ‚, η, p`qbPBq

into a hybrid programming language with if-then-else clauses p`bPB p.

I Example 4. Let us consider some programs of this language with control decision features.
1. Aside from while-loops, our language carries the basic features of classic programs with

discrete assignments, sequential composition, and if-then-else constructs.
2. The (simplistic) cruise controller, pv̇ “ 1 & 1q `vď120 pv̇ “ ´1 & 1q discussed in the

introduction is also a program of this language.
To be able to address more complex behaviours we need some means for forming iterative
computations, such as while-loops

while b {p} (5)

This poses the main challenge of our present work, which is to give a semantics of such
constructs w.r.t. to a suitably designed hybrid monad. As a starting point, we refer to [26, 25]
where H0 and an iteration operator p--q# : HompX,H0Xq Ñ HompX,H0Xq, which we call
basic iteration, were introduced. One limitation of this approach can already be read from the
type profile: p--q# can only interpret non-terminating loops of the form while true {p}. The
semantics of p--q# in H0 is given by virtue of metric spaces and Cauchy sequences, making

S. Goncharov, J. Jakob, and R. Neves 22:7

(trv) f : X Ñ TY

pT in1q f : X Ñin2 T pY ` Zq
(sum) f : X Ñσ TZ g : Y Ñσ TZ

rf, gs : X ` Y Ñσ TZ

(cmp) f : X Ñin2 T pY ` Zq g : Y Ñσ TV h : Z Ñ TV

rg, hs‹ f : X Ñσ TV

Figure 2 Axioms of abstract guardedness.

difficult to identify the corresponding domain of definiteness. Here we take a different avenue
of introducing an Elgot iteration (1), for which, as we shall see, the monad H0 must be
modified. We then show (in Section 5) that basic iteration can be recovered, albeit with a
semantics subtly different from the one via H0.

3 Guarded Monads and Elgot Iteration

We proceed to give the necessary definitions related to guardedness for monads [16]. A
monad T (on Set) is (abstractly) guarded if it is equipped with a notion of guardedness,
which is a relation between Kleisli morphisms f : X Ñ TY and injections σ : Y 1 ↪Ñ Y closed
under the rules in Fig. 2 where f : X Ñσ Y denotes the fact that f and σ are in the relation
in question. In the sequel, we also write f : X Ñi TY for f : X Ñini

TY . More generally,
we use the notation f : X Ñp,q,... TY to indicate guardedness in the union of injections
inp, inq, . . . where p, q, . . . are sequences over {1, 2} identifying the corresponding coproduct
summand in Y . For example, we write f : X Ñ12,2 T ppY ` Zq ` Zq to mean that f is
rin1 in2, in2s-guarded.

I Definition 5 (Guarded Elgot monads). A monad T is a guarded Elgot monad if it is equipped
with a guarded iteration operator,

pf : X Ñ2 T pY `Xqq ÞÑ pf : : X Ñ TY q

satisfying the following laws:
fixpoint law: f : “ rη, f :s‹ f ;
naturality: g‹f : “ prpT inlq g, η inrs‹ fq: for f : X Ñ2 T pY `Xq, g : Y Ñ TZ;
codiagonal: pT rid, inrs fq: “ f :: for f : X Ñ12,2 T ppY `Xq `Xq;
uniformity: f h “ T pid`hq g implies f : h “ g: for f : X Ñ2 T pY `Xq, g : Z Ñ2 T pY `Zq

and h : Z Ñ X.
We drop the adjective “guarded” for guarded Elgot monads for which guardedness is total,
i.e. f : X Ñσ TY for any f : X Ñ TY and σ.

The notion of guarded monad is a common generalization of various cases occurring in practice.
Every monad can be equipped with a least notion of guardedness, called vacuous guardedness
and defined as follows: f : X Ñ2 T pY ` Zq iff f factors through T inl : TY Ñ T pY ` Zq.
Every vacuously guarded monad is guarded iterative, for every fixpoint f : unfolds precisely
once. On the other hand, the greatest notion of guardedness is total guardedness and is
defined as follows: f : X Ñ2 T pY ` Zq for every f : X Ñ T pY ` Zq. This addresses
total iteration operators on T (e.g. for T being Elgot), whose existence depends on special
properties of T, such as being enriched over complete partial orders. Motivating examples,
however, are those properly between these two extreme situations, e.g. completely iterative
monads [22] for which the notion of guardedness is defined via monad modules and the
iteration operator is partial, but uniquely satisfies the fixpoint law.

CONCUR 2018

22:8 A Semantics for Hybrid Iteration

Fixpoint:

f
X

X

Y

= f f
X

X
X

Y
Y

Naturality:

f gX

X

Y Z

= f gX

X

Y Z

Codiagonal:

g
X

Y

X
X

= g
X

Y

XX

Uniformity:

h f
Z X

Y

X

“ g h
Z

Z

Y

X

⇓

h f
Z X

Y

X

“ g
Z

Z

Y

Figure 3 Axioms of guarded iteration.

I Example 6. We illustrate the above concepts with the following simplistic examples.
1. The powerset monad P is Elgot, with the iteration operator sending f : X Ñ PpY `Xq

to f : : X Ñ PY calculated as the least solution of the fixpoint law f : “ rη, f :s‹f .
2. An example of partial guarded iteration can be obtained from the previous clause by

replacing P with the non-empty powerset monad P`. The total iteration operator from the
previous clause does not restrict to a total iteration operator on this monad, because empty
sets can arise from solving systems not involving empty sets, e.g. η inr : 1 Ñ P`p1` 1q
would not have a solution in this sense. However, it is easy to see that the iteration
operator from the previous clause restricts to a guarded one for P with the notion of
guardedness defined as follows: f : X Ñ2 P`pY `Xq iff for every element x P X, fpxq
contains at least one element from Y .

The axioms of guarded Elgot monads are given in Fig. 3 in an intuitive pictorial form. The
shaded boxes indicate the scopes of the corresponding iteration loops and bullets attached
to output wires express the corresponding guardedness predicates. As shown in [16], other
standard principles such as dinaturality and the Bekić law follow from this axiomatization.

4 A Fistful of Hybrid Monads

According to Moggi [23], Kleisli morphisms can be viewed as generalized functions carrying
a computational effect, e.g. non-determinism, process algebra actions, or their combination.
In this context, hybrid computations can be seen as computations extended in time.

S. Goncharov, J. Jakob, and R. Neves 22:9

H0M

H` H

υ

ρ

ι

ρι

Figure 4 Connecting H0M, H` and H.

By definition, the pairs pd, eq P H0X fall into two classes: closed trajectories with d ‰ 8
and open trajectories with d “ 8. Due to the flattening condition (see Definition 1), closed
trajectories are completely characterized by their restrictions to r0, ds. We proceed by
extending H0 to a larger monad that brings open trajectories over arbitrary intervals r0, dq
with d ą 0 into play, and call the resulting monad H`. It is instrumental in our study to cope
with open trajectories, as in the presence of Zeno behaviour iteration might produce open
trajectories r0, dq Ñ X which we cannot sensibly extend into r0, ds Ñ X without assuming
some structure on X [18, 19, 24]. Furthermore, we introduce a variant of H`, which we
call H and that extends the facilities of H` even further by including the empty trajectory
r0, 0q Ñ X which will be used to accommodate divergent computations (see Remark 11).
The notation for H and H` is selected to be suggestive, and is a reminiscent of P and P` for
the powerset and the non-empty powerset monads as in Example 6. Indeed, the analogy goes
further, as in the next section we show that H` supports guarded (progressive) iteration, H
supports total iteration, and the former is a restriction of the latter.

In order to develop H`, we first introduce a partial version of H0 that will greatly facilitate
obtaining some of our results. Essentially, this partial version amounts to the combination of
H0 with the maybe monad M. Recall that MX “ X ` 1, that the unit of M is given by the
left coproduct injection inl : X Ñ X ` 1, and that the Kleisli lifting sends f : X Ñ Y ` 1
to rf, inrs : X ` 1 Ñ Y ` 1. We conventionally see Kleisli morphisms X Ñ MY as partial
functions from X to Y and thus write fpxq Ñ to indicate that fpxq is defined on x, i.e.
fpxq ‰ inr ‹. Let dompfq “ {x P X | fpxq

Ñ} Ď X and denote by K both inr ‹ P X`1 and the
totally undefined function x ÞÑ K. Finally, write fpxq Ñ as a shorthand notation to fpxq “ K.
We will also need the following result.

I Proposition 1. Every monad T “ pT, η, p--q‹q induces a monad TM whose functor is
defined by X ÞÑ TMX, the unit by η inl : X Ñ TMY , and the Kleisli lifting by rf, η inrs‹ :
TMX Ñ TMY for every f : X Ñ TMY .

Proof. This is a consequence of the standard fact that every monad distributes over the
maybe monad [20]. J

I Definition 7. Let H0M be the monad identified in Proposition 1 with T “ H0. Then let
H` be the subfunctor of H0M that is defined by,

pd, eq P H`X iff e ‰ K and et
Ñ for all t P r0, dq. (6)

This yields a monad H`, by restricting the monad structure of H0M. Explicitly, ηpxq “ p0, xq
and for every f : X Ñ H`Y and every pd, eq P H`X,

pf‹pd, eqqd “ d pf‹pd, eqqte “ f0
e pe

tqC t ă dBK (if ed Ñ)
pf‹pd, eqqd “ d` fdpe

dq pf‹pd, eqqte “ f0
e pe

tqC t ă dB f t´de pedq (if ed
Ñ)

Note that the set H`X consists precisely of elements pd, eq for which either dompeq “ r0, ds or
dompeq “ r0, dq and d ą 0. Of course, we need to verify that Definition 7 correctly introduces
a monad.

CONCUR 2018

22:10 A Semantics for Hybrid Iteration

Proof. It is easy to see that the monad structure of H0M restricts as above. So we only
need to show that for every f : X Ñ H`Y , pd, eq P H`X implies that f‹pd, eq P H`Y . Let
t P r0, pf‹pd, eqqdq and proceed by case distinction:

ed Ñ . Then pf‹pd, eqqd “ d, hence t ă d, and pf‹pd, eqqte
Ñ iff f0

e pe
tq
Ñ, which is true

unless fdpe
tq “ 0 and fepe

tq is the totally undefined function, however, the latter would
contradict Definition 7.
ed
Ñ. Then pf‹pd, eqqte

Ñ iff either t ď d and f0
e pe

tq
Ñ or t ą d and f t´de pedq

Ñ. In the former
case we are done in the same way as in the previous clause. In the latter case, note that
t´ d ă pf‹pd, eqqd ´ d “ fdpe

dq, which by assumption implies that f t´de pedq
Ñ. J

The condition e ‰ K in (6) is essential for the construction above, for otherwise we cannot
ensure that computations with totally undefined trajectories are compatible with Kleisli
liftings, as detailed in Remark 9 below. Such computations can be thought of as representing
unproductive divergence, and are required for the semantics of programs like

while true {x :“ x` 1}

We therefore need to extend H` to a larger monad H in which such divergent computations
exist. Technically, this will amount to quotienting the monad H0M in a suitable manner.

I Definition 8. Let H0M be the monad identified in Proposition 1 with T “ H0 and let H
be the subfunctor of H0M formed as follows:

pd, eq P HX iff et
Ñ for all t P r0, dq. (7)

Let υ be the inclusion of H into H0M and let ρ : H0M Ñ H be the natural transformation
whose components are defined by,

pρXpd, eqqd “ d‹, pρXpd, eqq
t
e “ etC t ă d‹B pe

dC d‹ “ dBKq

where d‹ “ sup{t ă d | r0, tq Ď dompeq}.
We extend H to a monad by defining x ÞÑ ρpηpxqq to be the unit and the Kleisli lifting

the one that sends f : X Ñ HY to ρpυfq‹υ. Explicitly, the monad structure of H is as
follows: ηpxq “ p0, xq and for every f : X Ñ HY , and every pd, eq P HX,

pf‹pd, eqqd “ sup{t ă d | f0
e pe

tq
Ñ}

pf‹pd, eqqte “ f0
e pe

tqC t ă sup{t ă d | f0
e pe

tq
Ñ}BK

(if Dt ă d. f0
e pe

tq Ñ or ed Ñ)

pf‹pd, eqqd “ d` fdpe
dq

pf‹pd, eqqte “ f0
e pe

tqC t ă dB f t´de pedq
(if @t ă d. f0

e pe
tq
Ñ and ed

Ñ)

Like in the case of H`, we need to verify that H is a monad; this is shown in the paper’s
extended version [13].

I Remark 9. As indicated above, H is a quotient of H0M and not a submonad, specifically υ
is not a monad morphism. Indeed, given p0,Kq : R` Ñ HR` and p1, idq P HR`, by definition,
p0,Kq‹p1, idq “ p0,Kq, but in H0M, p0,Kq‹p1, idq “ p1,Kq.

In summary, the monads H0M, H`, H are connected as depicted in Fig. 4. Here, ι and ρ are
monad morphisms, and the induced composite morphism ρι : H` Ñ H is pointwise injective,
which is a straightforward consequence of the fact that condition (6) entails condition (7).

S. Goncharov, J. Jakob, and R. Neves 22:11

5 Progressive Iteration and Hybrid Iteration

We start off by equipping the monad H` from the previous section with a suitable notion of
guardedness.

I Definition 10 (Progressiveness). A Kleisli morphism pd, eq : X Ñ H`pY `Zq is progressive
in Z (in Y) if e0 : X Ñ Y ` Z factors through inl (respectively, inr).

Given pd, eq : X Ñ H`pY `Xq, progressiveness in X means precisely that e0 “ inlu : X Ñ

Y `X for a suitable u : X Ñ Y , which is intuitively the candidate for pd, eq:e at 0. In other
words, progressiveness rules out the situations in which the iteration operator needs to handle
compositions of zero-length trajectories.
I Remark 11. A simple example of a morphism pd, eq : X Ñ H`pY `Xq not progressive in
X is obtained by taking X “ {0, 1}, Y “ ∅, d “ 0 and e0 “ inr swap where swap interchanges
the elements of {0, 1}. In attempts of defining pd, eq: we would witness oscillation between 0
and 1 happening at time 0, i.e. not progressing over time, which is precisely the reason why
there is no candidate semantic for pd, eq: in this case.

I Lemma 12. H` is a guarded monad with f : X Ñ2 H`pY ` Zq iff f is progressive in Z.

Instead of directly equipping H` with progressive iteration, we take the following route: we
enrich the monad H0M over complete partial orders and devise a total iteration operator
for it using the standard least-fixpoint argument. Then we restrict iteration from H0M
to H` via ι and to H via υ (see Fig. 4). The latter part is tricky, because υ is not a
monad morphism (Remark 9), and thus we will call on the machinery of iteration-congruent
retractions, developed in [16], to derive a (total) Elgot iteration on H.

Consider the following order on H0MX. Given pd, eq, pd‹, e‹q P H0MX, let pd, eq v
pd‹, e‹q if d ď d‹ and e is smaller or equal e‹ as partial maps, i.e. dompeq Ď dompe‹q and
et “ et‹ for all t P dompeq. This order extends to the hom-sets HompX,H0MY q pointwise.

I Theorem 13. The following properties hold.
1. Every set H0MX is an ω-complete partial order under v with p0,Kq as the bottom

element;
2. Kleisli composition is monotone and continuous w.r.t. v on both sides;
3. Kleisli composition is right-strict, i.e. for every f : X Ñ H0MY , f‹p0,Kq “ p0,Kq.
Note that Kleisli composition is not left strict (c.f. Remark 9). Using the previous result
and [14, Theorem 5.8], we immediately obtain

I Corollary 14. H0M possesses a total iteration operator p--q; obtained as a least solution of
equation f ; “ rη, f ;s‹f . This makes H0MX into an Elgot monad.

We readily obtain a progressive iteration on H` by restriction via ι (see Fig. 4).

I Corollary 15. H` possesses a guarded iteration operator p--q obtained by restriction from
H0M with guardedness being progressiveness and f being the least solution of equation
f “ rη, f s‹f .

Explicitly, f is calculated via the Kleene fixpoint theorem as follows. Consider f : X Ñ2
H`pY `Xq, let f 〈0〉 “ p0,Kq and f 〈i`1〉 “ rη, f 〈i〉s‹f . This yields an ω-chain

p0,Kq v f 〈1〉 v f 〈2〉 v ¨ ¨ ¨

and f “
⊔
i f

〈i〉. We proceed to obtain an iteration operator for H. Remarkably, we cannot
use the same technique of restricting the iteration operator from H0M to H, even though H
embeds into H0M : the following example illustrates the problem.

CONCUR 2018

22:12 A Semantics for Hybrid Iteration

0.2 0.4 0.6 0.8 1

0.5

1

0.2 0.4 0.6 0.8 1

´1

´0.5

0.5

1

Figure 5 Examples of (un-)definiteness of basic iteration.

I Example 16. Let f “ p1, eq : R` Ñ H0MpR` ` R`q with epxq “ inr 1 for every x P R`.
The result of calculating f : is the trajectory p8,Kq, which is not present in H.

Note that every HX inherits the ω-complete partial order from H0MX.

I Theorem 17. Let ρ : H0M Ñ H and υ : H Ñ H0M be the pair of natural transformations
from Definition 8. Then for every f : X Ñ H0MpY `Xq, ρf ; “ ρpυρfq;.

In the terminology of [16], Theorem 17 states that the pair pρ, υq is an iteration-congruent
retraction. Therefore, per [16, Theorem 21], H inherits a total Elgot iteration from H0M.

I Corollary 18. H is an Elgot monad with the iteration operator p--q: defined as follows: for
every f : X Ñ HpY `Xq, f : “ ρpυfq; assuming that p--q; is the iteration operator on H0M.

I Corollary 19. The progressive iteration operator p--q of H` is the restriction of the total
iteration operator p--q: of H along ρι : H` Ñ H (as in Fig. 4), i.e. for every f : X Ñ2
H`pY `Xq, ρ ιf “ pρ ιfq:.

Proof. Let p--q; be the iteration operator of H0M. Then, by definition,

pρ ιfq: “ ρpυρ ιfq; “ ρpιfq; “ ρ ιf . J

Using the fact that the iteration operator for H satisfies the codiagonal law (see Definition 5),
we factor the former through progressive iteration as follows.

I Theorem 20 (Decomposition Theorem). Given f : X Ñ HpY ` Xq, let f̂ : X Ñ12
HppY `Xq `Xq be defined as follows:

f̂dpxq “ fdpxq f̂0
e pxq “ pid` inlqpf0

e pxqq f̂ te pxq “ pid` inrqpf te pxqq px P X, t ą 0q

Then f : “ pf̂ :q .

Proof. Note that f “ Hrid, inrsf̂ . Hence, by the codiagonal law: f : “ pHrid, inrsf̂q: “ pf̂ :q:,
and the latter is pf :q per Corollary 19, as f : happens to be progressive in the second
argument. J

Theorem 20 presents the iteration of H as a nested combination of progressive iteration and
what can be called singular iteration, as it is precisely the restriction of p--q: responsible for
iterating computations of zero duration. Finally, we recover basic iteration, discussed in
Section 2, on H` (and hence on H) by turning a morphism X Ñ H`X into a progressive
one X Ñ H`pX `Xq.

S. Goncharov, J. Jakob, and R. Neves 22:13

I Definition 21 (Basic Iteration). We define basic iteration pd, eq# : X Ñ H`X to be(
pd, λx. λt. inl e0pxqC t “ 0B inr etpxqq : X Ñ2 H`pX `Xq

)
: X Ñ H`X.

I Example 22. We illustrate our design decisions behind H` (and H) with the following two
examples of Zeno behaviour, computing f# “ pd#, e#q for specific morphisms f : X Ñ H`X.
1. Let f “ pd, eq : r0, 1s Ñ H`r0, 1s be defined as follows: for every x P r0, 1s, dpxq “ p1´xq{2

and etpxq “ x` t for t P r0, p1´ xq{2s. It is easy to see that d#p0q “ 1{2` 1{4` . . . “ 1,
however, by definition, pe#p0qq1 Ñ . This is indeed a prototypical example of Zeno behaviour
(specifically, this is precisely Zeno’s “Dichotomy” paradox analyzed by Aristotle [3, Physics,
231a–241b]): Given a distance of total length 1 to be covered, suppose some portion x ă 1
of it has been covered already. Then the remaining distance has the length 1 ´ x. As
originally argued by Zeno, in order to cover this distance, one has to pass the middle,
i.e. walk the initial interval of length p1´ xq{2 and our function f precisely captures the
dynamics of this motion. The resulting evolution e#p0q together with the corresponding
approximations are depicted on the left of Fig. 5. In this formalization, the traveler can
not reach the end of the track, but only because we designed p--q# to be so. We could also
justifiably define pe#p0qq1 to be 1, for this is what pe#p0qqt tends to as t tends to 1. This
is indeed the case of the approach from [26, 25] developed for the original monad H0.

2. It is easy to obtain an example of an open trajectory produced by Zeno iteration that
cannot be continuously extended to a closed one by adapting a standard example of
essentially discontinuous function from analysis: let e.g. ut : r0, 1q Ñ r0, 1q be as follows:

utpxq “ pt` xq cos
(

πt

p1´ xqp1´ x´ tq

)
pt P r0, 1´ xqq

utpxq “ 1 pt P r1´ x, 1qq

The graph of up0q is depicted on the right of Fig. 5 where one can clearly see the
discontinuity at t “ 1. It is easy to verify that p1, uq P Hr0, 1s is obtained by applying
basic iteration to f “ pd, eq : r0, 1q Ñ H`r0, 1q given as follows:

dpxq “
2p1´ xq2

3´ 2x etpxq “ pt` xq cos
(

πt

p1´ xqp1´ x´ tq

)
pt P r0, dpxqqq

etpxq “ dpxq ` x pt P rdpxq, 1qq

Even though we carried our developments in the category of sets, we designed H` and H
keeping in touch with a topological intuition. The following instructive example shows that
the iteration operators developed in the previous section cannot be readily transferred to the
category of topological spaces and continuous maps, for reasons of instability: small changes
in the definition of a given system may cause drastic changes in its behaviour. In particular,
even if a morphism pd, eq : X Ñ H0X is continuous (for the topology described in [26]) the
duration component d# : X Ñ r0,8s of pd#, e#q “ pd, eq# need not be continuous.

I Example 23 (Hilbert Cube). Let X “ r0, 1sω be the Hilbert cube, i.e. the topological
product of ω copies of r0, 1s and let hd : X Ñ r0, 1s and tl : X Ñ X be the obvious
projections realizing the isomorphism r0, 1sω – r0, 1s ˆ r0, 1sω. Let f “ phd, eq : X Ñ H`X

with e : X Ñ XR` be defined as follows:
etpxq “ x if hdpxq “ 0, t P R`;
etpxq “

(
phdpxq ´ tq ¨ x` t ¨ tlpxq

)
{ hdpxq if 0 ă hdpxq and t ă hdpxq;

etpxq “ tlpxq if hdpxq ą 0 and t ě hdpxq.

CONCUR 2018

22:14 A Semantics for Hybrid Iteration

In the second clause we use a convex combination of x and tlpxq as vectors of X seen as a
vector space (indeed, even a Hilbert space) over the reals. It can now be checked that the
cumulative duration d# in pd#, e#q “ pd, eq# is not continuous. To see why, note that d#pxq
is the (possibly infinite) sum of the components of x from left to right up to the first zero
element, and therefore each U “ pd#q-1pr0, aqq contains all such vectors x P r0, 1sω for which
this sum is properly smaller than a. Then recall that a basic open set of r0, 1sω must be a
finite intersection of sets of the form π´1

i pV q, V Ď r0, 1s open, i P N. Therefore, if U was
open the definition of the product topology on r0, 1s would imply that for every vector x
in U there exists a position such that by altering the components of x arbitrarily after this
position, the result would still belong to U . This is obviously not true for U , because by
replacing the elements of any infinite vector from r0, 1sω after any position with 1, would
give a vector summing to infinity.

6 Bringing While-loops Into The Scene

In Section 2, we started building a simple hybrid programming language. We sketched a
monad-based semantics for the expected programs constructs, except the while-loops. Here
we extend it by taking H, which is a supermonad of H0, as the underlying monad and
interpret while-loops (5) via the iteration operator of H.

Recall that b is an element of the free Boolean algebra generated by the expressions t “ t

and t ă t, and that there exists a predicate map b : Rn Ñ 2. Now for each b : Rn Ñ 2 and
f : Rn Ñ HpRnq denote the function,(

Rn dist 〈id,b〉
ÝÝÝÝÝÝÝÑ Rn ` Rn rη inl, pH inrq fs

ÝÝÝÝÝÝÝÝÝÝÑ HpRn ` Rnq m
ÝÝÑ HpRn ` Rnq

):
by wpb, fq where dist : X ˆ 2 Ñ X ` X is the obvious distributivity transformation,
and mpd, eq “ pd, e1q with e1ptq “ inlpxqCpinrpxq “ eptq and t ă dqB eptq. Intuitively, the
function m makes the last point of the trajectory be the only one that is evaluated by the
test condition of the while-loop. Then, we define Jwhile b {p}K “ wpb, JpKq and this gives a
hybrid programming language,

p “ a P AtpXq | skip | p ; p | p`b p | while b {p}

with while-loops.

I Example 24. Let us consider some programs written in this language.
1. We start again with a classic program, in this case while true {x :“ x ` 1}. It yields the

empty trajectory K.
2. Another example of a classic program is,

while x ď 10 {x :“ x ` 1 ; waitp1q}

If for example the initial value is 0 the program takes eleven time units to terminate.
3. Let us consider now the program while x ě 1 { pẋ “ ´1 & 1q }. If the initial value is 0 the

program outputs the trajectory with duration 0 and constant on 0, since it never enters
in the loop. If we start e.g. with 3 as initial value then the program inside the while-loop
will be executed precisely three times, continuously decreasing x over time.

4. In contrast to classic programming languages, here infinite while-loops need not be
undefined. The cruise controller discussed in the introduction,

while true {pv̇ “ 1 & 1q `vď120 pv̇ “ ´1 & 1q}

is a prime example of this.

S. Goncharov, J. Jakob, and R. Neves 22:15

5. Finally, the bouncing ball, pp :“ 1, v :“ 0q; pwhile true {b}q which has Zeno behaviour,
outputs a trajectory describing the ball’s movement over the time interval r0, dq where d
is the instant of time at which the ball stops.

7 Conclusions and Further Work

We developed a semantics for hybrid iteration by bringing together two abstraction devices
introduced recently: guarded Elgot iteration [16] and the hybrid monad [26, 25]. Our analysis
reveals that, on the one hand, the abstract notion of guardedness can be interpreted as a
suitable form of progressiveness of hybrid trajectories, and on the other hand, the original
hybrid monad from [26, 25] needs to be completed for the sake of a smooth treatment
of iteration, specifically, iteration producing Zeno behaviour. In our study we rely on
Zeno behaviour examples as important test cases helping to design the requisite feasible
abstractions. As another kind of guidance, we rely on Elgot’s notion of iteration [10] and
the corresponding laws of iteration theories [5]. In addition to the new hybrid monad H`

equipped with (partial) progressive iteration, we introduced a larger monad H with total
hybrid iteration extending the progressive one. In showing the iteration laws we heavily relied
on the previously developed machinery for unifying guarded and unguarded iteration [14, 16].
We illustrated the developed semantic foundations by introducing a simple language for
hybrid iteration with while-loops interpreted over the Kleisli category of H.

We regard our present work as a stepping stone for further developments in various
directions. After formalizing hybrid computations via (guarded) Elgot monads, one obtains
access to further results involving (guarded) Elgot monads, e.g. it might be interesting to
explore the results of applying the generalized coalgebraic resumption monad transformer [14]
to H and thus obtain in a principled way a semantic domain for hybrid processes in the style
of CCS. As shown by Theorem 20, the iteration of H is a combination of progressive iteration
and “singular iteration”. An interesting question for further work is if this combination can
be framed as a universal construction. We also would like to place H in a category more
suitable than Set, but as Example 23 suggests, this is expected to be a very difficult problem.

Every monad on Set determines a corresponding Lawvere theory, whose presentation in
terms of operations and equations is important for reasoning about the corresponding – in
our case hybrid – programs. We set as a goal for further research the task of identifying
the underlying Lawvere theories of hybrid monads and integrating them into generic dia-
grammatic reasoning in the style of Fig. 3. This should prospectively connect our work to
the line of research by Bonchi, Sobociński, and Zanasi (see e.g. [6, 7]), who studied various
axiomatizations of PROPs (i.e. monoidal generalizations of Lawvere theories) and their
diagrammatic languages. For a proper treatment of guarded iteration (i.e. a specific instance
of guarded monoidal trace in the sense of [15]), one would presumably need to develop the
corresponding notions of guarded Lawvere theory and guarded PROP.

References
1 Rajeev Alur. Principles of Cyber-Physical Systems. MIT Press, 2015.
2 Aaron Ames, Alessandro Abate, and Shankar Sastry. Sufficient conditions for the existence

of zeno behavior. In CDC-ECC’05: Decision and Control and European Control Conference,
44th IEEE Conference, Seville, Spain, December, 2005, pages 696–701. IEEE, 2005.

3 Aristotle. Physics. Oxford University Press, 2008.
4 Steve Awodey. Category Theory. Oxford University Press, Inc., New York, NY, USA, 2nd

edition, 2010.

CONCUR 2018

22:16 A Semantics for Hybrid Iteration

5 Stephen Bloom and Zoltán Ésik. Iteration theories: the equational logic of iterative pro-
cesses. Springer, 1993.

6 Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. A categorical semantics of signal
flow graphs. In Paolo Baldan and Daniele Gorla, editors, CONCUR 2014 – Concurrency
Theory, pages 435–450, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

7 Filippo Bonchi, Pawel Sobocinski, and Fabio Zanasi. The calculus of signal flow diagrams I:
linear relations on streams. Inf. Comput., 252:2–29, 2017.

8 Zhou Chaochen, Wang Ji, and Anders P. Ravn. A formal description of hybrid systems.
In Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag, editors, Hybrid Systems
III, volume 1066 of Lecture Notes in Computer Science, pages 511–530. Springer Berlin
Heidelberg, 1996.

9 Fredrik Dahlqvist and Renato Neves. Compositional semantics for new paradigms: prob-
abilistic, hybrid and beyond. arXiv preprint arXiv:1804.04145, 2018.

10 Calvin Elgot. Monadic computation and iterative algebraic theories. In H.E. Rose and
J.C. Shepherdson, editors, Logic Colloquium 1973, volume 80 of Studies in Logic and the
Foundations of Mathematics, pages 175–230. Elsevier, 1975.

11 Ryszard Engelking. General topology, volume 6 of Sigma Series in Pure Mathematics.
Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author.

12 R. Goebel, J.P. Hespanha, A.R. Teel, C. Cai, and R. G. Sanfelice. Hybrid systems: gener-
alized solutions and robust stability. In Proc. 6th IFAC Symposium in Nonlinear Control
Systems, page 1–12, 2004.

13 Sergey Goncharov, Julian Jakob, and Renato Neves. A semantics for hybrid iteration.
arXiv, 2018. arXiv:1807.01053.

14 Sergey Goncharov, Christoph Rauch, and Lutz Schröder. Unguarded recursion on coin-
ductive resumptions. In Mathematical Foundations of Programming Semantics, MFPS
2015, volume 319 of ENTCS, pages 183–198. Elsevier, 2015.

15 Sergey Goncharov and Lutz Schröder. Guarded traced categories. In Christel Baier and
Ugo Dal Lago, editors, Proc. 21th International Conference on Foundations of Software
Science and Computation Structures (FoSSaCS 2018), LNCS. Springer, 2018.

16 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg. Unifying guarded
and unguarded iteration. In Javier Esparza and Andrzej Murawski, editors, Foundations
of Software Science and Computation Structures, FoSSaCS 2017, volume 10203 of LNCS,
pages 517–533. Springer, 2017.

17 Thomas A. Henzinger. The theory of hybrid automata. In LICS96’: Logic in Computer
Science, 11th Annual Symposium, New Jersey, USA, July 27-30, 1996, pages 278–292.
IEEE, 1996.

18 Peter Höfner. Algebraic calculi for hybrid systems. PhD thesis, University of Augsburg,
2009. URL: http://opus.bibliothek.uni-augsburg.de/volltexte/2010/1481/.

19 Peter Höfner and Bernhard Möller. Fixing Zeno gaps. Theoretical Computer Science,
412(28):3303–3322, 2011. Festschrift in Honour of Jan Bergstra.

20 Christoph Lüth and Neil Ghani. Composing monads using coproducts. In M. Wand and
S. L. Peyton Jones, editors, ICFP’02: Functional Programming, 7th ACM SIGPLAN In-
ternational Conference, pages 133–144. ACM, 2002.

21 Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1971.
22 Stefan Milius. Completely iterative algebras and completely iterative monads. Inf. Comput.,

196(1):1–41, 2005.
23 Eugenio Moggi. A modular approach to denotational semantics. In Category Theory and

Computer Science, CTCS 1991, volume 530 of LNCS, pages 138–139. Springer, 1991.

http://arxiv.org/abs/1807.01053
http://opus.bibliothek.uni-augsburg.de/volltexte/2010/1481/

S. Goncharov, J. Jakob, and R. Neves 22:17

24 Katsunori Nakamura and Akira Fusaoka. On transfinite hybrid automata. In Manfred
Morari and Lothar Thiele, editors, Hybrid Systems: Computation and Control, pages 495–
510, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

25 Renato Neves. Hybrid programs. PhD thesis, Minho University, 2018.
26 Renato Neves, Luis S. Barbosa, Dirk Hofmann, and Manuel A. Martins. Continuity as

a computational effect. Journal of Logical and Algebraic Methods in Programming, 85(5,
Part 2):1057–1085, 2016. Articles dedicated to Prof. J. N. Oliveira on the occasion of his
60th birthday.

27 Lawrence Perko. Differential equations and dynamical systems, volume 7. Springer Science
& Business Media, 2013.

28 André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dy-
namics. Springer, Heidelberg, 2010.

29 Alex Simpson and Gordon Plotkin. Complete axioms for categorical fixed-point operators.
In Logic in Computer Science, LICS 2000, pages 30–41, 2000.

30 Kohei Suenaga and Ichiro Hasuo. Programming with infinitesimals: A while-language
for hybrid system modeling. In International Colloquium on Automata, Languages, and
Programming, pages 392–403. Springer, 2011.

31 Paulo Tabuada. Verification and Control of Hybrid Systems - A Symbolic Approach.
Springer, 2009.

32 Hans Witsenhausen. A class of hybrid-state continuous-time dynamic systems. IEEE
Transactions on Automatic Control, 11(2):161–167, 1966.

33 Jun Zhang, Karl Henrik Johansson, John Lygeros, and Shankar Sastry. Zeno hybrid sys-
tems. International Journal of Robust and Nonlinear Control, 11(5):435–451, 2001.

CONCUR 2018

GPU Schedulers: How Fair Is Fair Enough?
Tyler Sorensen
Imperial College London, UK
t.sorensen15@imperial.ac.uk

Hugues Evrard
Imperial College London, UK
h.evrard@imperial.ac.uk

Alastair F. Donaldson
Imperial College London, UK
alastair.donaldson@imperial.ac.uk

Abstract
Blocking synchronisation idioms, e.g. mutexes and barriers, play an important role in concurrent
programming. However, systems with semi-fair schedulers, e.g. graphics processing units (GPUs),
are becoming increasingly common. Such schedulers provide varying degrees of fairness, guar-
anteeing enough to allow some, but not all, blocking idioms. While a number of applications
that use blocking idioms do run on today’s GPUs, reasoning about liveness properties of such
applications is difficult as documentation is scarce and scattered.

In this work, we aim to clarify fairness properties of semi-fair schedulers. To do this, we
define a general temporal logic formula, based on weak fairness, parameterised by a predicate that
enables fairness per-thread at certain points of an execution. We then define fairness properties
for three GPU schedulers: HSA, OpenCL, and occupancy-bound execution. We examine existing
GPU applications and show that none of the above schedulers are strong enough to provide the
fairness properties required by these applications. It hence appears that existing GPU scheduler
descriptions do not entirely capture the fairness properties that are provided on current GPUs.
Thus, we present two new schedulers that aim to support existing GPU applications. We analyse
the behaviour of common blocking idioms under each scheduler and show that one of our new
schedulers allows a more natural implementation of a GPU protocol.

2012 ACM Subject Classification Software and its engineering → Semantics, Software and its
engineering → Scheduling, Computing methodologies → Graphics processors

Keywords and phrases GPU scheduling, Blocking synchronisation, GPU semantics

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.23

Acknowledgements We are grateful to Jeroen Ketema, John Wickerson, and Qiyi Tang for
feedback and insightful discussions around this work. We are grateful to Joseph Greathouse
for pointing out additional applications that require HSA progress guarantees. We thank the
CONCUR reviewers for their thorough evaluations and feedback. This work was supported by
the EPSRC, through an Early Career Fellowship (EP/N026314/1), the IRIS Programme Grant
(EP/R006865/1) and a gift from Intel Corporation.

1 Introduction

The scheduler of a concurrent system is responsible for the placement of virtual threads
onto hardware resources. There are often insufficient resources for all threads to execute in
parallel, and it is the job of the scheduler to dictate resource sharing, potentially influencing
the temporal semantics of concurrent programs. For example, consider a two threaded

© Tyler Sorensen, Hugues Evrard, and Alastair F. Donaldson;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 23; pp. 23:1–23:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:t.sorensen15@imperial.ac.uk
mailto:h.evrard@imperial.ac.uk
mailto:alastair.donaldson@imperial.ac.uk
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 GPU Schedulers: How Fair Is Fair Enough?

program where thread 0 waits for thread 1 to set a flag. If the scheduler never allows thread
1 to execute then the program will hang due to starvation. Thus, to reason about liveness
properties, developers must understand the fairness guarantees provided by the scheduler.

GPUs are highly parallel co-processors found in many devices, from mobile phones to
super computers. While these devices initially accelerated graphics computations, the last
ten years have seen a strong push towards supporting general purpose computation on GPUs.
Today, through programming models such as OpenCL [11], CUDA [15], and HSA [8] we have
mature frameworks to execute C-like programs on GPUs.

Current GPU programming models offer a compelling case study for schedulers for three
reasons: (1) some blocking idioms, e.g. barriers, are known to hang due to starvation on
current GPUs [20]; (2) other blocking idioms, e.g. mutexes, run without starvation on current
GPUs; yet (3) documentation for some GPU programming models explicitly states that no
guarantees are provided, while others state only minimal guarantees that are insufficient
to ensure starvation-freedom even for mutexes. Because GPU schedulers are embedded in
closed proprietary frameworks, we do not look at concrete scheduling logic, but instead aim
to derive formal fairness guarantees from prose documentation and observed behaviours.

GPUs have a hierarchical programming model: in OpenCL threads are partitioned into
workgroups. Threads in the same workgroup can synchronise via intrinsic instructions (e.g.
the OpenCL barrier instruction [10, p. 99]). Yet, despite practical use cases (see Section 4),
there are no such intrinsics for inter-workgroup synchronisation. Instead, inter-workgroup
synchronisation is achieved by building constructs, e.g. mutexes, using finer-grained prim-
itives, e.g. atomic read-modify-write instructions (RMWs). However, reasoning about such
constructs is difficult as inter-workgroup thread interactions are relatively unstudied, espe-
cially in relation to fairness. Given this, we focus only on inter-workgroup interactions and
threads will be assumed to be in disjoint workgroups. Under this constraint, it is cumber-
some to use the word workgroup. Because we can think of a workgroup as being a “composite
thread”, we henceforth use the word thread to mean workgroup.

The unfair OpenCL scheduler and non-blocking programs. OpenCL is a programming
model for parallel systems with wide support for GPUs. Due to scheduling concerns,
OpenCL disallows all blocking synchronisation, stating [11, p. 29]: “A conforming imple-
mentation may choose to serialize the [threads] so a correct algorithm cannot assume that
[threads] will execute in parallel. There is no safe and portable way to synchronize across the
independent execution of [threads]” Such weak guarantees are acceptable for many GPU
programs, e.g. matrix multiplication, as they are non-blocking. That is, these programs will
terminate under an unfair scheduler, i.e. a scheduler that provides no fairness guarantees.

Blocking idioms and fair schedulers. On the other hand, there are many useful block-
ing synchronisation idioms, which require fairness properties from the scheduler to ensure
starvation-freedom. Three common examples of blocking idioms considered throughout this
work, barrier, mutex and producer-consumer (PC), are described in Table 1. Intuitively, a
fair scheduler provides the guarantee that any thread that is able to execute will eventually
execute. Fair schedulers are able to guarantee starvation-freedom for the idioms of Table 1.

1.1 Semi-fair schedulers: HSA and occupancy-bound execution
We have described two schedulers: fair and unfair, under which starvation-freedom for
blocking idioms is either always or never guaranteed. However, some GPU programming
models have semi-fair schedulers, under which starvation-freedom is guaranteed for only

T. Sorensen, H. Evrard, and A. F. Donaldson 23:3

Table 1 Blocking synchronisation constructs considered in this work.

Barrier Mutex Producer-consumer (PC)

Aligns the execution of all
participating threads: a
thread waits at the barrier
until all threads have reached
the barrier. Blocking, as a
thread waiting at the barrier
relies on the other threads
to make enough progress to
also reach the barrier.

Provides mutual exclusion for a
critical section. A thread acquires
the mutex before executing the
critical section, ensuring exclusive
access. Upon leaving, the mutex
is released. Blocking, as a thread
waiting to acquire relies on the
the thread in the critical section
to eventually release the mutex.

Provides a handshake between
threads. A producer thread pre-
pares some data and then sets a
flag. A consumer thread waits
until the flag value is observed
and then reads the data. Block-
ing, as the consumer thread re-
lies on the the producer thread
to eventually set the flag.

Table 2 Blocking synchronisation idioms guaranteed starvation-freedom under various sched-
ulers.

fair HSA OBE unfair (e.g. OpenCL)

barrier yes no occupancy-limited no
mutex yes no yes no
PC yes one-way occupancy-limited no

some blocking idioms. We describe two such schedulers and informally analyse the idioms of
Table 1 under these schedulers (summarised in Table 2). If starvation-freedom is guaranteed
for all threads executing idiom i under scheduler s then we say that i is allowed under s.

Similar to OpenCL, Heterogeneous System Architecture (HSA) is a parallel programming
model designed to efficiently target GPUs [8]. Unlike OpenCL however, the HSA scheduler
conditionally allows blocking between threads based on thread ids, a unique contiguous
natural number assigned to each thread. Namely, thread B can block thread A, if: “[thread]
A comes after B in [thread] flattened id order” [8, p. 46]. Under this scheduler: a barrier
is not allowed, as all threads wait on all other threads regardless of id; a mutex is not
allowed, as the ids of threads are not considered when acquiring or releasing the mutex; PC
is conditionally allowed if the producer has a lower id than the consumer.

Occupancy-bound execution (OBE) is a pragmatic GPU execution model that aims to
capture the guarantees that current GPUs have been shown experimentally to provide [20].
While OBE is not officially supported, many GPU programs (discussed in Section 4) depend
on its guarantees. OBE guarantees fairness among the threads that are currently occupant
(i.e., are actively executing) on the hardware resources. The fairness properties are de-
scribed as [20, p. 5]: “A [thread that has executed at least one instruction] is guaranteed to
eventually be scheduled for further execution on the GPU.” Under this scheduler: a barrier
is not allowed, as all threads wait on all other threads regardless of whether they have been
scheduled previously; a mutex is allowed, as a thread that has previously acquired a mutex
will be fairly scheduled such that it eventually releases the mutex; PC is not allowed, as
there is no guarantee that the producer will be scheduled relative to the consumer.

While general barrier and PC idioms are not allowed under OBE, constrained variants
have been shown to be allowed by using an occupancy discovery protocol [20] (described in
Section 5.1). The protocol works by identifying a subset of threads that have been observed

CONCUR 2018

23:4 GPU Schedulers: How Fair Is Fair Enough?

to take an execution step, i.e. it discovers a set of co-occupant threads1. Barrier and PC
idioms are then able to synchronise threads that have been discovered; thus we say OBE
allows occupancy-limited variants of these idioms.

It is worth noticing that the two variants of PC shown in Table 2 (occupancy-limited
and one-way) are incomparable. That is, one-way is not occupancy-limited, as the OBE
scheduler makes no guarantees about threads with lower ids being scheduled before threads
with higher ids. Similarly, occupancy-limited is not one-way, as the OBE scheduler allows
bi-directional PC synchronisation if both threads have been observed to be co-occupant.

I Remark (CUDA). Like OpenCL, CUDA gives no scheduling guarantees, stating [15, p.
11]: “[Threads] are required to execute independently: It must be possible to execute them
in any order, in parallel or in series.” Still, some CUDA programs rely on OBE or HSA
guarantees (see Section 4). The recent version 9 of CUDA introduces cooperative groups [15,
app. C], which provide primitive barriers between programmer specified threads. Because
only barriers are provided, we do not consider cooperative groups. Indeed, we aim to reason
about fine-grained fairness guarantees, as required by general blocking synchronisation.

1.2 Contributions and outline

The results of Table 2 raise the following points, which we aim to address:
1. The temporal correctness of common blocking idioms varies under different GPU sched-

ulers; however, we are unaware of any formal scheduler descriptions that are able to
validate these observations.

2. Two GPU models, HSA and OBE, have schedulers that are incomparable. However, for
each scheduler, there are real programs that rely on its scheduling guarantees. Thus,
neither of these schedulers captures all of the guarantees observed on today’s GPUs.

To address (1), we develop a formalisation, based on weak fairness, for describing the fairness
guarantees of semi-fair schedulers. This formula is parameterised by a thread fairness cri-
terion (TFC), a predicate over a thread and the program state, that can be tuned to provide
a desired degree of fairness. We illustrate our ideas by defining thread fairness criteria for
HSA and OBE (Section 3).

To address (2), we first substantiate the claim by examining blocking GPU programs that
run on current GPUs. We show that there are real programs that rely on HSA guarantees,
as well as programs that rely on OBE guarantees (Section 4). That is, neither the HSA nor
the OBE schedulers entirely capture guarantees on which existing GPUs applications rely.

Thus, we define fairness properties for two new schedulers: HSA+OBE, a combination
of HSA and OBE, and LOBE (linear OBE), an intuitive strengthening of OBE based on
contiguous thread ids. Both provide the guarantees required by current programs (Section 5),
however we argue that LOBE corresponds to a more intuitive scheduler. We then present
an optimisation to the occupancy discovery protocol [20] that exploits exclusive LOBE
guarantees (Section 5.1). The schedulers we discuss are summarised in Figure 1.

To summarise, our contributions are as follows:
We formalise the notion of semi-fair schedulers using a temporal logic formula and use
this definition to describe the HSA and OBE GPU schedulers (Section 3).

1 Some prior work uses co-occupant to describe the over-subscription of threads (workgroups) on a phys-
ical GPU core. In this work, we use co-occupant to mean threads (workgroups) that are logically
executed in parallel on the GPU, potentially spanning many physical cores.

T. Sorensen, H. Evrard, and A. F. Donaldson 23:5

W. Fairness
True
general barrier
(Example 6)

LOBE
∃t′ ∈ T : ex(t′)∧t′ ≥ t

LOBE disc. barrier
(Example. 6)

HSA+OBE
TFCHSA∨TFCOBE
1-way PC+mutex
(Section 5)

HSA
¬∃t′ ∈ T : (t′ < t)∧en(t′)
1-way PC (Example 4)

OBE
ex(t)

mutex and disc. barrier
(Examples 3 and 6)

Unfair
False
CUDA reduction
(Section 4)

stronger weaker
fairness guarantees

Figure 1 The semi-fair schedulers we define in this work from strongest to weakest. The first line
in the box shows the scheduler’s TFC (over a thread t), followed by the idiom(s) allowed under the
scheduler and where the idiom is analysed. For any scheduler: any idiom to the right of a scheduler
is allowed by the scheduler and any idiom to the left is disallowed. HSA and OBE are vertically
aligned as they are not comparable.

We examine blocking GPU applications and show that no existing GPU scheduler defini-
tion is strong enough to describe the guarantees required by all such programs (Section 4).
We present two new semi-fair schedulers that meet the requirements of current blocking
GPU programs: HSA+OBE and LOBE (Section 5). LOBE is shown to provide a more
natural implementation of a GPU protocol (Section 5.1).

We have discussed related work on programming models and GPU schedules above, while
applications that depend on specific schedulers are surveyed in Section 4.

2 Background

2.1 GPU programming
GPU programming models provide a hierarchical thread organisation. A GPU program, or
a kernel, is executed by a set of workgroups, which we refer to as threads for convenience.
Threads have access to a thread id, which can be used to partition inputs of data-parallel
programs. We assume these constraints, which are common to GPU applications:
1. Termination: Programs are expected to terminate under a fair scheduler. GPU programs

generally terminate, and in fact, they get killed by the OS if they execute for too long [19].
2. Static thread count: while dynamic thread creation has recently become available, e.g.

nested parallelism [11, p. 30], we believe static parallelism should be studied first.
3. Deterministic threads: we assume that the scheduler is the only source of nondetermin-

ism; the computation performed by a thread depends only on the program input and the
order in which threads interleave. This is the case for all GPU programs examined.

4. Enabled threads: we assume all threads are enabled, i.e. able to be executed, at the be-
ginning of the program and do not cease to be enabled until they terminate. While some
systems contain scheduler-aware intrinsics, e.g. condition variables [3], GPU program-
ming models do not. As a result, the idioms of Table 1 are implemented using atomic
operations and busy-waiting, which do not change whether a thread is enabled or not.

5. Sequential consistency: while GPUs have relaxed memory models (e.g. see [18]), we
believe scheduling under the interleaving model should be understood first.

2.2 Formal program reasoning
A sequential program is a sequence of instructions and its behaviour can be reasoned about
by step-wise execution of instructions. We do not provide instruction-level semantics, but
examples can be found in the literature (e.g. for GPUs, see [4]). A concurrent program is the

CONCUR 2018

23:6 GPU Schedulers: How Fair Is Fair Enough?

1 void thread0(mutex m) {
2 // acquire
3 while(!CAS(m,0,1));
4 // release
5 store(m,0);
6 }
7 void thread1(mutex m) {
8 // acquire
9 while(!CAS(m,0,1));

10 // release
11 store(m,0);
12 }

(a)

0

1

2

3

4

5

6

7

0 CAS: T

1 CAS: T

0 store

1 CAS: F

0 CAS: F

1 CAS: T

1 store

1 store 0 CAS: T

0 store

(b)

Figure 2 Two threaded mutex idiom (a) program code and (b) corresponding LTS.

parallel composition of n sequential programs, for some n > 1. The set T = {0, 1, . . . , n−1}
provides a unique id for each thread, often called the tid. The behaviour of a concurrent pro-
gram is defined by all possible interleavings of atomic (i.e. indivisible) instructions executed
by the threads. Let A be the set of available atomic instructions.

For example, Figure 2a shows two sequential programs, thread0 (with tid of 0) and
thread1 (with tid of 1), which both have access to a shared mutex object (initially 0). The
set A of atomic instructions is {CAS(m,old,new), store(m,v)}, whose semantics are as
follows:

CAS(m,old,new) – atomically checks whether the value of m is equal to old. If so,
updates the value to new and returns true (T). Otherwise returns false (F).
store(m,v) – atomically stores the value of v to m.

Using these two instructions, Figure 2a implements a simple mutex idiom, in which each
thread loops trying to acquire a mutex (via the CAS instruction), and then immediately
releases the mutex (via the store instruction). While other mutex implementations exist,
e.g. see [7, ch. 7.2], the blocking behaviour shown in Figure 2a is idiomatic to mutexes.

Labelled transition systems. To reason about concurrent programs, we can use use a
labelled transition system (LTS). Formally, an LTS L is a 4-tuple (S, I, L,→) where

S is a finite set of states, with I ⊆ S the set of initial states. A state contains values for
all program variables and a program counter for each thread.
L ⊆ T × A is a set of labels. A label is a pair (t, a) consisting of a thread id t ∈ T and
an atomic instruction a ∈ A.
→ ⊆ S×L×S is a transition relation. For convenience, given (p, (t, a), q) ∈ →, we write
p

t−→ q. This is not ambiguous as we consider only per-thread deterministic programs.
We use dot notation to refer to members of the tuple; e.g., given α ∈ →, we write α.t to
refer to the thread id component of α.

Given a concurrent program, the LTS can be constructed iteratively. A start state s
is created with program initial values (0 unless stated otherwise). For each thread t ∈ T ,
the next instruction a ∈ A is executed to create state s′ to explore. L is updated to
include (t, a) and (s, (t, a), s′) is added to →. This process iterates until there are no more
states to explore. We show the LTS for the program of Figure 2a in Figure 2b. For ease
of presentation, we omit state program values; labels show the thread id followed by the
atomic action. If the action has a return value (e.g. CAS), it is shown following the action.

T. Sorensen, H. Evrard, and A. F. Donaldson 23:7

For a thread id t ∈ T and state p ∈ S, we say that t is enabled in p, and write en(p, t), if
there exists a state q ∈ S such that p t−→ q. We call p a terminal state, and write terminal(p),
if no thread is enabled in p; that is, ¬en(p, t) holds for all t ∈ T . Intuitively, en(p, t) states
that it is possible for a thread t to take a step at state p and terminal(p) states that all
threads have completed execution at state p. The program constraints of Section 2.1 ensure
that all threads are enabled until their termination.

Program executions and temporal logic. The executions E of a concurrent program are
all possible paths through its LTS. Formally, a path z ∈ E is a (possibly infinite) sequence
of transitions: α0α1 . . ., with each αi ∈ →, such that: the path starts in an initial state,
i.e. α0.p ∈ I; adjacent transitions are connected, i.e. αi.q = αi+1.p; and if the path is finite,
with n transitions, then it leads to a terminal state, i.e. terminal(αn−1.q).
I Remark (Infinite paths). Because we assume programs terminate under fair scheduling
(Section 2.1), infinite paths are discarded by the fair scheduler, but not necessarily by semi-
fair schedulers. Indeed, these infinite paths allow us to distinguish semi-fair schedulers.

Given a path z and a transition αi in z, pre(αi, z) is used to denote the transitions up
to, and including, i of z, that is, α0α1 . . . αi. Similarly, post(αi, z) is used to denote the
(potentially infinite) transitions of z from αi, that is, αiαi+1 For convenience, we use
en(α, t) to denote en(α.p, t) and terminal(α) to denote terminal(α.q). Finally, we define a
new predicate ex(α, t) which holds if and only if t = α.t. Intuitively, ex(α, t) indicates that
thread t executes the transition α.

The notion of executions E over an LTS allows reasoning about liveness properties of
programs. However, the full LTS may yield paths that realistic schedulers would exclude,
illustrated in Example 1. Thus, fairness properties, provided by the scheduler, are modelled
as a filter over the paths in E.

I Example 1 (Mutex without fairness). The two-threaded mutex LTS given in Figure 2b
shows that it is possible for a thread to loop indefinitely waiting to acquire the mutex if the
other thread is in the critical section, as seen in states 1 and 2. Developers with experience
writing concurrent programs for traditional CPUs know that on most systems, these non-
terminating paths do not occur in practice!

Fairness filters and liveness properties can be expressed using temporal logic. For a path
z and a transition α in z, temporal logic allows reasoning over post(α, z) and pre(α, z), i.e.
reasoning about future and past behaviours. Following the classic definitions of fairness,
linear time temporal logic (LTL), is used in this work (see, e.g. [2, ch. 5] for an in-depth
treatment of LTL). For ease of presentation, a less common operator, , from past-time
temporal logic (which has the same expressiveness as LTL [12]) is used. Temporal operators
are evaluated with respect to z (a path) and α (a transition) in z. They take a formula φ,
which is either another temporal formula or a transition predicate, ranging over α.p, α.t, or
α.q (e.g. terminal). The three temporal operators used in this work are:

The global operator �, which states that φ must hold for all α′ ∈ post(α, z).
The future operator ♦, which states that φ must hold for at least one α′ ∈ post(α, z).
The past operator , which states that φ must hold for at least at one α′ ∈ pre(α, z).

To show that a liveness property f holds for a program with executions E, it is sufficient
to show that f holds for all pairs (z, α) such that z ∈ E and α is the first transition in z. For
example, one important liveness property is eventual termination: ♦terminal. Applying this

CONCUR 2018

23:8 GPU Schedulers: How Fair Is Fair Enough?

formula to the LTS of Figure 2b, a counter-example (i.e. a path that does not terminate)
is easily found: 0 1−→ 2, (2 0−→ 2)ω. In this path, thread 0 loops indefinitely trying to acquire
the mutex. Infinite paths are expressed using ω-regular expressions [2, ch. 4.3].

However, many systems reliably execute mutex programs similar to Figure 2a. Such
systems have fair schedulers, which do not allow the infinite paths described above. A
fairness guarantee is expressed as a temporal predicate on paths and is used to filter out
problematic paths before a liveness property, e.g. eventual termination, is considered.

In this work, weak fairness [2, p. 258] is considered, which is typically expressed as:

∀t ∈ T : ♦�en(t) =⇒ �♦ex(t) (1)

Recall that en and ex are both evaluated over a transition α and a tid t. In this case,
both predicates are partially evaluated with respected to a t. Intuitively, weak fairness states
that if a thread is able to execute, then it will eventually execute.

I Example 2 (Mutex with weak fairness). We now return to the task of proving termination
for the LTS of Figure 2b. If the scheduler provides weak fairness, then we can discard all
paths that do not satisfy the weak fairness definition. Namely, the two problematic paths
are: 0 1−→ 2, (2 0−→ 2)ω and 0 0−→ 1, (1 1−→ 1)ω. Neither path satisfies weak fairness: in both
cases the thread that can break the cycle is always enabled, yet it is not eventually executed
once the infinite cycle begins. Thus, if executed on system which provides weak fairness,
the program of Figure 2a is guaranteed to eventually terminate.

3 Formalising semi-fairness

We now detail our formalism for reasoning about fairness properties for semi-fair schedulers.
Semi-fairness is parameterised by a thread predicate called the thread fairness criterion, or
TFC. Intuitively, the TFC states a condition which, if satisfied by a thread t, guarantees
fair execution for t.

Formally an execution is semi-fair with respect to a TFC if the following holds:

∀t ∈ T : ♦�(en(t) ∧ TFC (t)) =⇒ �♦ex(t) (2)

The formula is similar to weak fairness (Eq. 1), but in order for a thread t to be guaran-
teed eventual execution, not only must t be enabled, but the TFC for t must also hold.
Semi-fairness for different schedulers, e.g. HSA and OBE, can be instantiated by using dif-
ferent TFCs, which in turn will yield different liveness properties for programs under these
schedulers, e.g. as shown in Table 2.

The weaker the TFC is, the stronger the fairness condition is. Semi-fairness with the
the weakest TFC, i.e. true, yields classic weak fairness. Conversely, semi-fairness with the
strongest TFC, i.e. false, yields no fairness.

Formalising a specific notion of semi-fairness now simply requires a TFC. We illustrate
this by defining TFCs to describe the semi-fair guarantees provided by the OBE and HSA
GPU schedulers, introduced informally in Section 1.

Formalising OBE semi-fairness. The prose definition for the OBE scheduler fits this form-
alism nicely, as it describes the per-thread condition for fair scheduling: once a thread has
been scheduled (i.e. executed an instruction), it will continue to be fairly scheduled. This is

T. Sorensen, H. Evrard, and A. F. Donaldson 23:9

straightforward to encode in a TFC using the temporal logic operator (see Section 2.2),
which holds for a given predicate if that predicate has held at least once in the past. Thus
the TFC for the OBE scheduler can be stated formally as follows:

TFC OBE(t) = ex(t) (3)

Formalising HSA semi-fairness. A TFC for the HSA scheduler is less straightforward
because the prose documentation is given in terms of relative allowed blocking behaviours,
rather than in terms of thread-level fairness. Recall the definition from Section 1: thread B
can block thread A if: “[thread] A comes after B in [thread] flattened id order” [8, p. 46].
Searching the documentation further, another snippet phrased closer to a TFC is found,
stating [8, p. 28]: “[Thread] i + j might start after [thread] i finishes, so it is not valid for
a [thread] to wait on an instruction performed by a later [thread].” We assume here that j
refers to any positive integer. Because these prose documentation snippets do not discuss
fairness explicitly, it is difficult to directly extract a TFC. We make a best-effort attempt
following this reasoning: (1) if thread i is fairly scheduled, no thread with id greater than
i is guaranteed to be fairly scheduled; and (2) threads that are not enabled (i.e. they have
terminated) have no need to be fairly scheduled. Using these two points, we can derive a
TFC for HSA: a thread is guaranteed to be fairly scheduled if there does not exist another
thread that has a lower id and is enabled. Formally:

TFC HSA(t) = ¬∃t′ ∈ T : (t′ < t) ∧ en(t′) (4)

Although this TFC is somewhat removed from the prose snippets in the HSA document-
ation, this formal definition has value in enabling precise discussions about fairness. For
example, we can increase confidence in our definition by showing that the idioms informally
analysed in Section 1 behave as expected; see Examples 3, 4 and 6. Our formalism for HSA
provides few progress guarantees, and as we discuss in Section 4, current GPUs appear to
offer stronger guarantees than HSA. The HSA programming model may offer such weak
guarantees to allow for a variety of devices to be targeted by this programming model and
also to allow flexibility in future framework implementations.

I Example 3 (Mutex with semi-fairness). Here we analyse the mutex LTS of Figure 2b
under OBE and HSA semi-fairness guarantees. Recall the two problematic paths (causing
starvation) are: 0 0−→ 1, (1 1−→ 1)ω. and 0 1−→ 2, (2 0−→ 2)ω

OBE: In both problematic paths, one thread t acquires the mutex, and the other thread t′
spins indefinitely. However, thread t has executed an instruction (acquiring the mutex)
and is thus guaranteed eventual execution under OBE; the problematic paths violate
this guarantee as thread t never executes after it acquires. Therefore both paths are
discarded, guaranteeing starvation-freedom for mutexes under OBE.
HSA: The second problematic path: 0 1−→ 2, (2 0−→ 2)ω, cannot be discarded as thread
0 waits for thread 1 to release. Thread 1 does not have the lowest id of the enabled
threads, thus there is no guarantee of eventual execution. Therefore starvation-freedom
for mutexes cannot be guaranteed under HSA.

I Example 4 (Producer-consumer with semi-fairness). Figure 3 illustrates a two-threaded
producer-consumer program. We use a new atomic instruction, load, which simply reads a
value from memory (the return value is given on the LTS edges). Thread 0 produces a value
via x0 and then spins, waiting to consume a value via x1. Thread 1 is similar, but with

CONCUR 2018

23:10 GPU Schedulers: How Fair Is Fair Enough?

1 void thread0(int x0, int x1) {
2 // produce to tid 1
3 store(x0,1);
4 // consume from tid 1
5 while(load(x1) != 1);
6 }
7 void thread1(int x0, int x1) {
8 // produce to tid 0
9 store(x1,1);

10 // consume from tid 0
11 while(load(x0) != 1);
12 }

(a)

0

1

2

3

4

5

6

0 store

1 store

1 store

0 load: 0

0 store

1 load: 0

0 load: 1

1 load: 1

1 load: 1

0 load: 1

(b)

Figure 3 Two threaded PC idiom (a) code and (b) LTS. Omitting in (a) lines in gray and in (b)
states and transitions in gray and dashed lines yields the one-way variant of this idiom.

the variables swapped. A subset of this program, omitting lines 4, 5, 8, and 9, shows the
one-way producer-consumer idiom, where threads only consume from threads with lower
ids, i.e., only thread 1 consumes from thread 0. The LTS for the one-way variant omits
states 0, 1, 5, and 6 and the start state changes to state 2.

There are two problematic paths for the general test, in which one of the threads spins
indefinitely waiting for the other thread to produce a value: 0 0−→ 1, (1 0−→ 1)ω, and 0 1−→
2, (2 1−→ 2)ω. For the one-way variant, there is one problematic path: (2 1−→ 2)ω. We now
analyse this program under OBE and HSA semi-fairness.

OBE: Consider the problematic path 0 1−→ 2, (2 1−→ 2)ω. Because thread 0 has not
executed an instruction, OBE does not guarantee eventual execution for thread 0 and
thus this path cannot be discarded. Similar reasoning shows that the problematic path
for the one-way variant cannot be discarded either. Thus, neither general nor one-way
producer consumer idioms are allowed under OBE.
HSA: Consider the problematic path 0 0−→ 1, (1 0−→ 1)ω. Because thread 1 does not have
the lowest id of the enabled threads, HSA does not guarantee eventual execution for
thread 1 and this path cannot be discarded. On the other hand, consider the problematic
path for the one-way variant: (2 1−→ 2)ω. Because thread 0 has the lowest id of the enabled
threads, HSA guarantees thread 0 will eventually execute, thus causing this path to be
invalid. Therefore, general producer-consumer is not allowed under HSA, but one-way
producer-consumer, following increasing order of thread ids, is allowed.

4 Inter-workgroup synchronisation in the wild

We now examine existing GPU applications to determine what scheduling guarantees they
assume. This provides a basis for understanding (1) what scheduling guarantees are actually
provided by existing GPUs, as these applications run without issues on current devices,
and (2) the utility of schedulers, i.e. whether their fairness guarantees are exploited in
current applications. We limit our exploration to GPU applications that use inter-workgroup
synchronisation, and we perform a best-effort search through popular works in this domain.
We manually examined the programs, searching for the idioms in Table 1, and relate them
to the corresponding scheduler under which they are guaranteed to not starve.

OBE programs. We begin by looking at applications that assume guarantees from the
OBE scheduler. The most prevalent example seems to be the occupancy-limited barrier
(see Section 1). That is, developers use a priori knowledge about how many threads can be

T. Sorensen, H. Evrard, and A. F. Donaldson 23:11

simultaneously occupant on a given GPU, and only run the program with at most that many
threads. The first work on such barriers is a 2010 paper by Xiao and Feng [22]. This work
has many citations, many of which describe applications that use the barrier. Additionally, a
barrier implementation following this work appears in the popular CUDA library CUB [14].
Thus, the OBE scheduler guarantees appear to be well-tested and useful on current GPUs.

In 2012, Kupta et al. present the persistent thread model [6], which more clearly char-
acterises the scheduling guarantees required by the Xiao and Feng Barrier and proposes
work-stealing as a potential use case under this model. This work again, has many cita-
tions describing use cases. One such work-stealing application that requires OBE scheduling
guarantees was published in a 2011 GPU programming cookbook GPU Computing Gems [9,
ch. 35]. Recent interest in barriers appears in graph analytic applications (e.g. BFS, SSSP),
where the 2016 IRGL application benchmark suite is reported to have competitive perform-
ance in this domain and uses both barriers and mutexes [17].

HSA programs. We found only four applications that use the one-way PC idiom: two
scan implementations, a sparse triangular solve (SpTRSV) application, and a sparse matrix
vector multiplication (SpMV) application. While there are few applications in this category,
we argue that they are important, as they appear in vendor-endorsed libraries.

The two scan applications, one found in the popular Nvidia CUB GPU library [14] and
the second presented in [23], use a straightforward one-way PC idiom. Both scans work by
computing workgroup-local scans on independent chunks of a large array. Threads compute
chunks according to their thread id, e.g. thread 0 processes the first chunk. A thread t then
passes its local sum to its immediate neighbour, thread t+1, who spins while waiting for this
value. The neighbour factors in this sum and then passes an updated value to its neighbour,
and so forth.

The SpMV application, presented in [5], has several workgroups cooperate to calculate
the result for a single row. Before any cooperation, the result must first be initialised, which
is performed by the workgroup with the lowest id out of the cooperating workgroups. The
other workgroups spin, waiting for the initialisation. This algorithm is implemented in the
clSPARSE library [1], a joint project between AMD and Vratis.

The SpTRSV application, presented in [13], allows multiple producers to accumulate
data to send to a consumer. However, in the triangular solver system, all producers will
have lower ids than the relative consumers. Thus the PC idiom remains one-way.

OpenCL programs. We also searched for applications that contain non-trivial inter-work-
group synchronisation and are non-blocking, and thus guaranteed starvation-freedom under
any scheduler. By non-trivial synchronisation, we mean inter-workgroup interactions that
cannot be achieved by a single atomic read-modify-write (RMW) instruction. While we
found examples of non-blocking data-structures (e.g. in the work-stealing example of [9, ch.
35]), the top level loop was blocking as threads without work waited on other threads to com-
plete work. Interestingly, we found only one application that appeared to be globally non-
blocking: a reduction application in the CUDA SDK [16], called threadFenceReduction,
in which the final workgroup to finish local computations also does a final reduction over all
other local computations.

CONCUR 2018

23:12 GPU Schedulers: How Fair Is Fair Enough?

5 Unified GPU semi-fairness.

The exploration of applications in Section 4 shows that there are current applications that
rely on either HSA or OBE guarantees, and that these applications run without starvation
on current GPUs. Hence, it appears that current GPUs provide stronger fairness guarantees
than either HSA or OBE describe. In this section, we propose new semi-fairness guarantees
that unify HSA and OBE guarantees, and as such, potentially provide a more accurate
description of current GPUs scheduling guarantees.

HSA+OBE semi-fairness. A straightforward approach to create a unified fairness property
from two existing semi-fair properties is to create a new TFC defined as the disjunction of
the two existing TFCs. Thus, threads guaranteed fairness under either existing scheduler
are guaranteed fairness under the unified scheduler. We can do this with the HSA and OBE
semi-fair schedulers to create a new unified semi-fairness condition, called HSA+OBE, i.e.,

TFC HSA+OBE(t) = TFC HSA(t) ∨ TFC OBE(t) (5)

Thinking about the set of programs for which a scheduler guarantees starvation-freedom,
let PHSA be the set of programs allowed under HSA, with POBE and PHSA+OBE defined
similarly. We note that PHSA∪POBE ⊂ PHSA+OBE ; that is, there are programs in PHSA+OBE
that are neither in PHSA nor POBE . For example, consider a program that uses one-way
producer-consumer synchronisation and also a mutex. This program is not allowed under
the OBE or HSA scheduler in isolation, but is allowed under the semi-fair scheduler defined
as their disjunction. However, this idiom combination seems contrived as the applications
discussed in Section 4 that exploit the one-way PC idiom do not require mutexes.

LOBE semi-fairness. The HSA+OBE fairness guarantees are useful for reasoning about
existing applications, but these guarantees do not seem like they would naturally be provided
by a system scheduler implementation. Namely, HSA+OBE guarantees fairness to (1) the
thread with the lowest id that has not terminated (thanks to HSA) and (2) threads that
have taken an execution step (thanks to OBE). For example, it might allow relative fair
scheduling only between threads 0, 23, 29, and 42, if they were scheduled at least once in
the past. Thus, HSA+OBE allows for “gaps”, where threads with relative fairness do not
have contiguous ids. We believe a more intuitive scheduler would guarantee that threads
with relative fairness have contiguous ids.

Given these intuitions, we describe a new semi-fair guarantee, which we call LOBE
(linear occupancy-bound execution). Similar to OBE, LOBE guarantees fair scheduling to
any thread that has taken a step. Additionally, LOBE guarantees fair scheduling to any
thread t if another thread t′ (1) has taken a step, and (2) has an id greater than or equal to
t (hence the word linear). Formally, the LOBE TFC can be written:

TFC LOBE(t) = ∃t′ ∈ T : ex(t′) ∧ t′ ≥ t (6)

We will now show that LOBE is a unified scheduler, i.e. any program allowed under HSA
or OBE is allowed under LOBE. It is sufficient to show that TFC OBE =⇒ TFC LOBE and
TFC HSA =⇒ TFC LOBE . First, we consider TFC OBE =⇒ TFC LOBE : this is trivial as
the comparison check in TFCLOBE includes equality, thus any thread that has taken a step
is guaranteed to be fairly scheduled.

Considering now TFCHSA =⇒ TFCLOBE : we first recall a property of executions
from Section 2.2, namely that an execution either ends in a state where all threads have
terminated, or it is infinite. Thus, at an arbitrary non-terminal point in an execution, some

T. Sorensen, H. Evrard, and A. F. Donaldson 23:13

thread t must take a step. If t has the lowest id of the enabled threads, then both LOBE
and HSA guarantee that t will be fairly executed. If t does not have the lowest id of the
enabled threads, then LOBE guarantees that all threads with lower ids than t will be fairly
executed, including the thread with the lowest id of the enabled threads, thus satisfying the
fairness constraint of HSA.

5.1 LOBE discovery protocol
Because the TFC HSA+OBE is defined as the disjunction of TFC HSA and TFC OBE , the
reasoning in Section 5 is sufficient to show that LOBE fairness guarantees are at least as
strong as HSA+OBE. A practical GPU program is now discussed for which correctness relies
on the stronger guarantees provided by LOBE compared to HSA+OBE. This example shows
that (1) LOBE guarantees are strictly stronger than HSA+OBE, and (2) fairness guarantees
exclusive to LOBE can be useful in GPU applications.

Our example is a modified version of the discovery protocol from [20], which dynamically
discovers threads that are guaranteed to be co-occupant, and are thus guaranteed relative
fairness by OBE. The protocol works using a virtual poll, in which threads have a short time
window to indicate, using shared memory, that they are co-occupant. The protocol acts as
a filter: discovered co-occupant threads execute a program, and undiscovered threads exit
without performing any meaningful computation. Because only co-occupant threads execute
the program, OBE guarantees that blocking idioms such as barriers can be used reliably.

GPU programs are often data-parallel, and threads use their ids to efficiently partition
arrays; thus having contiguous ids is vital. Because OBE fairness does not consider thread
ids, in order to provide contiguous ids, the discovery protocol dynamically assigns new ids
to discovered threads. While functionally this approach is sound, there are two immediate
drawbacks: (1) programs must be written using new thread ids, which can require intrusive
changes, and (2) the native thread id assignment on GPUs may be optimised by the driver for
memory accesses in data-parallel programs; using new ids would forgo these optimisations.
Exploiting the scheduling guarantees of LOBE, we modify the discovery protocol to preserve
native thread ids and also ensuring contiguous ids.

I Example 5 (thread ids and data locality). It is possible that the protocol discovers four
threads (with tids 2-5) and creates the following mapping for their new dynamic ids: {(5 −→
0), (2 −→ 1), (3 −→ 3), (4 −→ 4)}. The GPU runtime might have natively assigned threads
2 and 3 to one processor (often called a compute unit on GPUs) and threads 4 and 5 to
another. Because these compute units often have caches, data-locality between threads on
the same compute unit could offer performance benefits [21]. In data-parallel programs,
there is often data-locality between threads with consecutive ids. Thus, in our example
mapping, the (native) threads, 2 and 5 could not exploit data locality, as their new ids are
consecutive, but their native ids are not.

While it may seem straightforward to remap the ids of discovered threads to facilitate
data locality, as is done in [21], we note that this depends on the ability to query the physical
core id of a thread. Nvidia provides this functionality in CUDA, which is exploited in [21],
but OpenCL offers no support for such a feature. Thus, the relation between thread ids
and data locality is hidden by the OpenCL framework. We assume the natively assigned ids
take data locality into account and that dynamically assigned ids might not be as efficient.

We show the algorithm for the discovery protocol in Algorithm 1. The changes we
make to exploit LOBE guarantees are indicated by dashed boxes for removed code and
solid boxes for added code. We first describe the original protocol. The algorithm has two
phases, both protected by the mutex m. The first phase is the polling phase (lines 2-10),
where threads are able to indicate that they are currently occupant (i.e. executing). The

CONCUR 2018

23:14 GPU Schedulers: How Fair Is Fair Enough?

Algorithm 1 Occupancy discovery protocol. Applying LOBE optimisation removes the
code in dashed boxes and adds the code in solid boxes .

1: function Discovery_protocol(open, count, id_map, m)
2: Lock(m)
3: if open ∨(tid < count) then
4: id_map[tid]← count

5: count← count + 1
6: count← max(count, tid + 1)
7: Unlock(m)
8: else
9: Unlock(m)
10: return F alse

11: Lock(m)
12: if open then
13: open ← F alse

14: Unlock(m)
15: return T rue

discovery
protocol 0 1 2 3

all threads
can leave
barrier

0, 2 wait0 wait

0 arrive 2 arrive 1 arrive

Figure 4 Sub-LTS of a barrier, with an optional discovery protocol preamble.

open shared variable is initialised to true to indicate that the poll is open. A thread first
checks whether the poll is open (line 3). If so, then the thread marks itself as discovered;
this involves obtaining a new id (line 4) and incrementing the number of discovered threads,
via the shared variable count (line 5). The thread can then continue to the closing phase
(starting line 11). If the poll was not open, the thread indicates that it was not discovered
by returning false (lines 8-10). In the closing phase, a thread checks to see if the poll is open;
if so, the thread closes the poll and no other threads can be discovered at this point (lines
12-13). All threads who enter the closing phase have been discovered to be co-occupant,
thus they return true (line 15). The number of discovered threads will be stored in count.

We can optimise this protocol by exploiting fairness guarantees of LOBE. In particular,
because LOBE guarantees that threads are fairly scheduled in contiguous id order, the
protocol can allow a thread with a higher id to discover all threads with lower ids. As a
result, threads are able to keep their native ids, although the number of discovered threads is
still dynamic. The optimisation to the discovery protocol is simple: first the id_map, which
originally mapped threads to their new dynamic ids is not needed (lines 1 and 4). Next,
the number of discovered threads is no longer based on how many threads were observed
to poll, but rather on the highest id of the discovered threads (line 6). Finally, even if
the poll is closed, a thread entering the poll may have been discovered by a thread with
a higher id; this is now reflected by each thread comparing its id with count (line 3). In
Example 6, we show that a barrier prefaced by the LOBE optimised protocol is not allowed
under HSA+OBE guarantees, and thus illustrate that LOBE fairness guarantees are strictly
stronger than HSA+OBE.

I Example 6 (Barriers under semi-fairness). We now analyse the behaviour of barriers, with
optional discovery protocols, under our semi-fair schedulers. Figure 4 shows a subset of
an LTS for a barrier idiom that synchronises three threads with tids 0, 1, and 2. For the
sake of clarity, instead of using atomic actions that correspond to concrete GPU atomic
instructions, we use abstract instructions arrive and wait, which correspond to a thread
marking its arrival at the barrier and a thread waiting at the barrier, respectively.

T. Sorensen, H. Evrard, and A. F. Donaldson 23:15

The sub-LTS shows one possible interleaving of threads arriving at the barrier, in the
order 0, 1, 2. The final thread to arrive (thread 1) allows all threads to leave. The sub-LTS
shows the various spin-waiting scenarios that can occur in a barrier at states 1 and 2. A
discovery protocol can optionally be used before the barrier synchronisation.

We analyse the sub-LTS using the LOBE optimised discovery protocol (Section 5.1)
here. A similar analysis for the general barrier and original discovery protocol is done in
Appendix A. Recall that the LOBE discovery protocol discovers a thread if it has seen a step
from a thread with an equal or greater id. In our example with three threads, the fewest
behaviours the protocol is guaranteed to have seen is a step by thread 2, denoted: DP 2−→ 0.

HSA+OBE: consider the starvation path: DP 2−→ 0, 0 0−→ 1, 1 0−→ 2, (2 0−→ 2, 2 2−→ 2)ω.
This path cannot be disallowed by HSA+OBE as at state 2, HSA+OBE guarantees fair
scheduling for the thread with the lowest id (thread 0) and any threads that have taken
a step (threads 0 and 2). This path requires fair execution from thread 1 to break the
starvation loop. Thus, barrier synchronisation using the LOBE discovery protocol is not
allowed under HSA+OBE.
LOBE: The above starvation path is disallowed by LOBE, as LOBE guarantees fair
execution for any thread t that has executed and any thread with a lower id than t.
Thus, at state 0, the LOBE discovery protocol has observed a step from thread 2, we are
guaranteed fair scheduling for threads 2, 1, and 0. Thus barriers with LOBE discovery
protocol are allowed under LOBE.

6 Conclusion

While general purpose usage of GPUs is on the rise, current GPU programming models
provide loose scheduling fairness guarantees in English prose. In practice, GPUs feature
semi-fair schedulers. Our goal is to clarify the fairness guarantees that GPU programmers
can rely on, or at least the ones they assume. To this aim, we have introduced a formalism
that combines the classic weak fairness with a thread fairness criterion (TFC), enabling
fairness to be specified at a per-thread level. We have illustrated this formalism by defining
the TFC for HSA (from its specification) and OBE (from its description based on empirical
evidence) and by reasoning with such TFCs on three classic concurrent programming idioms:
barrier, mutex and producer-consumer.

We notice that while some popular existing GPU programs rely on either HSA or OBE
guarantees, these two models are not comparable, hence current GPUs must support stronger
guarantees that neither HSA nor OBE entirely capture. Our formalism lets easily combine
the TFCs of HSA and OBE to define the HSA+OBE scheduler; and we additionally craft
the LOBE scheduler which offers slightly stronger fairness guarantees than HSA+OBE. We
illustrate that LOBE guarantees can be useful by showing a GPU protocol optimisation for
which other GPU semi-fair schedulers do not guarantee starvation-freedom, but LOBE does.

References

1 clSPARSE. Retrieved June 2018 from https://github.com/clMathLibraries/clSPARSE.
2 Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press,

2008.
3 Blaise Barney. POSIX threads programming: Condition variables. (visited January 2018).

URL: https://computing.llnl.gov/tutorials/pthreads/#ConditionVariables.

CONCUR 2018

https://github.com/clMathLibraries/clSPARSE
https://computing.llnl.gov/tutorials/pthreads/#ConditionVariables

23:16 GPU Schedulers: How Fair Is Fair Enough?

4 Adam Betts, Nathan Chong, Alastair F. Donaldson, Jeroen Ketema, Shaz Qadeer, Paul
Thomson, and John Wickerson. The design and implementation of a verification technique
for gpu kernels. TOPLAS, 37(3):10:1–10:49, 2015.

5 M. Daga and J. L. Greathouse. Structural agnostic SpMV: Adapting CSR-adaptive for
irregular matrices. In HiPC, pages 64–74. IEEE, 2015.

6 Kshitij Gupta, Jeff Stuart, and John D. Owens. A study of persistent threads style GPU
programming for GPGPU workloads. In InPar, pages 1–14, 2012.

7 Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann Publishers Inc., 2008.

8 HSA Foundation. HSA programmer’s reference manual: HSAIL virtual ISA and program-
ming model, compiler writer, and object format (BRIG). (rev 1.1.1), March 2017. URL:
http://www.hsafoundation.com/standards/.

9 Wen-mei W. Hwu. GPU Computing Gems Jade Edition. Morgan Kaufmann, 2011.

10 Khronos Group. The OpenCL C specification version 2.0 (rev. 33), May 2017. URL:
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-openclc.pdf.

11 Khronos Group. The OpenCL specification version: 2.2 (rev. 2.2-7), May 2018. URL:
https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf.

12 Orna Lichtenstein, Amir Pnueli, and Lenore Zuck. The glory of the past. In Logics of
Programs, pages 196–218. Springer Berlin Heidelberg, 1985.

13 Weifeng Liu, Ang Li, Jonathan Hogg, Iain S. Duff, and Brian Vinter. A synchronization-
free algorithm for parallel sparse triangular solves. In Euro-Par, pages 617–630. Springer,
2016.

14 Nvidia. CUB. (visited January 2018). URL: http://nvlabs.github.io/cub/.

15 Nvidia. CUDA C programming guide, version 9.1, January 2018. URL: http://docs.
nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf.

16 Nvidia. CUDA Code Samples, 2018. URL: https://developer.nvidia.com/
cuda-code-samples.

17 Sreepathi Pai and Keshav Pingali. A compiler for throughput optimization of graph al-
gorithms on GPUs. In OOPSLA, pages 1–19, 2016.

18 Tyler Sorensen and Alastair F. Donaldson. Exposing errors related to weak memory in
GPU applications. In PLDI, pages 100–113. ACM, 2016.

19 Tyler Sorensen and Alastair F. Donaldson. The hitchhiker’s guide to cross-platform
OpenCL application development. In IWOCL, pages 2:1–2:12, 2016.

20 Tyler Sorensen, Alastair F. Donaldson, Mark Batty, Ganesh Gopalakrishnan, and Zvonimir
Rakamaric. Portable inter-workgroup barrier synchronisation for GPUs. InOOPSLA, pages
39–58, 2016.

21 Bo Wu, Guoyang Chen, Dong Li, Xipeng Shen, and Jeffrey Vetter. Enabling and exploiting
flexible task assignment on GPU through SM-centric program transformations. In ICS,
pages 119–130. ACM, 2015.

22 Shucai Xiao and Wu-chun Feng. Inter-block GPU communication via fast barrier synchron-
ization. In IPDPS, pages 1–12, 2010.

23 Shengen Yan, Guoping Long, and Yunquan Zhang. Streamscan: Fast scan algorithms for
GPUs without global barrier synchronization. In PPoPP, pages 229–238. ACM, 2013.

http://www.hsafoundation.com/standards/
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-openclc.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf
http://nvlabs.github.io/cub/
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://developer.nvidia.com/cuda-code-samples
https://developer.nvidia.com/cuda-code-samples

T. Sorensen, H. Evrard, and A. F. Donaldson 23:17

A Barrier example cont.

We continue the analysis of the barrier sub-LTS of Figure 4 that was started in Example 6.
That is, we analyse the general barrier (i.e. with no discovery protocol) and the the barrier
using the original discovery protocol (as described in Section 5.1).

general barrier:
LOBE - The starvation path 0 0−→ 1, (1 0−→ 1)ω is not disallowed by LOBE, as LOBE
cannot guarantee fair execution for any thread other than thread 0 at state 1 where the
infinite starvation path begins. Thus, general barriers are not allowed under LOBE.
Because LOBE is stronger than HSA+OBE, HSA and OBE, we know that the general
barrier is not allowed under these schedulers either.

original discovery protocol: This discovery protocol ensures that all three threads,
i.e. threads 0, 1, and 2, have taken a step before state 0. We denote this transition as
DP 0,1,2−−−→ 0.

HSA - The starvation path DP 0,1,2−−−→ 0, 0 0−→ 1, (1 0−→ 1)ω is not disallowed by HSA, as
HSA only guarantees fair execution to the lowest enabled thread (i.e. thread 0). To
break this starvation loop in the sub LTS, thread 2 would need fairness guarantees.
Thus barriers using the original discovery protocol are not allowed under HSA.
OBE - Because the original discovery protocol guarantees all threads have taken a
step before the barrier execution (i.e. state 0), OBE guarantees all three threads fair
scheduling. Thus all starvation loops in the sub LTS are guaranteed to be broken,
and the barrier using the original discovery protocol is allowed under OBE. Because
HSA+OBE and LOBE are stronger than OBE, this synchronisation idiom is also
allowed under those schedulers.

CONCUR 2018

Linear Equations with Ordered Data
Piotr Hofman1

University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland
piotrek.hofman@gmail.com

https://orcid.org/0000-0001-9866-3723

Sławomir Lasota2

University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland
sl@mimuw.edu.pl

https://orcid.org/0000-0001-8674-4470

Abstract
Following a recently considered generalization of linear equations to unordered data vectors, we
perform a further generalization to ordered data vectors. These generalized equations naturally
appear in the analysis of vector addition systems (or Petri nets) extended with ordered data. We
show that nonnegative-integer solvability of linear equations is computationally equivalent (up
to an exponential blowup) to the reachability problem for (plain) vector addition systems. This
high complexity is surprising, and contrasts with NP-completeness for unordered data vectors.
This also contrasts with our second result, namely polynomial time complexity of the solvability
problem when the nonnegative-integer restriction on solutions is relaxed.

2012 ACM Subject Classification Theory of computation→ Parallel computing models, Theory
of computation → Timed and hybrid models, Theory of computation → Automata over infinite
objects

Keywords and phrases Linear equations, Petri nets, Petri nets with data, vector addition sys-
tems, sets with atoms, orbit-finite sets

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.24

Related Version All the missing proofs are to be found in the full version of this paper, at [10],
https://arxiv.org/abs/1802.06660.

Acknowledgements We thank anonymous reviewers for their detailed comments.

1 Introduction

Systems of linear equations are useful for approximate analysis of vector addition systems
(VAS), or Petri nets. For instance, the relaxation of semantics of Petri nets, where the
configurations along a run are not required to be nonnegative, yields the so called state
equation, a system of linear equations with nonnegative-integer restriction on solutions.
This is equivalent to integer linear programming, a well-known NP-complete problem [13].
When the nonnegative-integer restriction is further relaxed to nonnegative-rational one (or
nonnegative-real one), we get a weaker but more tractable approximation, equivalent to linear

1 Partially supported by Polish NCN grant 2016/21/D/ST6/01368.
2 Partially supported by Polish NCN grant 2016/21/B/ST6/01505.

© Piotr Hofman and Sławomir Lasota;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 24; pp. 24:1–24:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:piotrek.hofman@gmail.com
https://orcid.org/0000-0001-9866-3723
mailto:sl@mimuw.edu.pl
https://orcid.org/0000-0001-8674-4470
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.24
https://arxiv.org/abs/1802.06660
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Linear Equations with Ordered Data

programming and solvable in PTime. We refer to [24] for an exhaustive overview of linear-
algebraic and integer-linear-programming techniques in analysis of Petri nets; usefulness
of these techniques is confirmed by multiple applications including, for instance, recently
proposed efficient tools for the coverability problem of Petri nets [9, 1].

Motivations. Our starting point is an extension of Petri nets, or VAS, with data [17, 11]. The
extension significantly enhances expressibility of the model but also increases the complexity
of analysis. In case of unordered data (a countable set of data values that can be tested for
equality only), the coverability problem is decidable (in non-elementary complexity) [17] but
the decidability status of the reachability problem remains open. In case of ordered data (a
countable dense total order), the coverability problem is still decidable [17] while reachability
is not [23]. (Petri nets with ordered data are equivalent to a timed extension of Petri nets,
as shown in [5].) One can also consider other data domains, and the coverability problem
remains decidable as long as the data domain is homogeneous [16] (not to be confused with
homogeneous systems of linear equations), but always in non-elementary complexity. In view
of these high complexities, a natural need arises for efficient over-approximations.

A configuration of a Petri net with data domain D is a nonnegative integer data vector,
i.e., a function D → Nd that maps only finitely many data values to a non-zero vector in
Nd. In a search for efficient over-approximations of Petri nets with data, a natural question
appears: May linear algebra techniques be generalised so that the role of vectors is played
by data vectors? In case of unordered data, this question was addressed in [12], where first
promising results have been shown: the nonnegative-integer solvability of linear equations
over unordered data domain is NP-complete. Thus, for unordered data, the problem remains
within the same complexity class as its plain (data-less) counterpart. The same question for
the second most natural data domain, i.e. ordered data, seems to be even more important;
ordered data enables modelling features like fresh names creation [23] or time dependencies [5].

Contributions. In this paper we do a further step and investigate linear equations with
ordered data, for which we fully characterise the complexity of the solvability problem.
Firstly, we show that nonnegative-integer solvability of linear equations is computationally
equivalent (up to an exponential blowup in one direction) with the reachability problem
for plain Petri nets (or VAS). In consequence, decidability and ExpSpace-hardness of our
problem follows. This high complexity is surprising, and contrasts NP-completeness for
unordered data vectors.

Secondly, we prove that the complexity of the solvability problem drops to PTime, when
the nonnegative-integer restriction on solutions is relaxed to rational, nonnegative-rational,
or integer. The two latter problems may be thus used as two tractable but incomparable
over-approximations of the reachability relation for VAS-es with ordered data. Thirdly, as a
conceptual contribution we notice that systems of linear equations with (un)ordered data are
a special case of systems of linear equations that are infinite but finite up to an automorphism
of data domain. This can be formalized in the framework of sets with atoms [3, 4, 14], where
finiteness is relaxed to orbit-finiteness.

Outline. In Section 2 we introduce the setting we work in, and formulate our results. Then
the rest of the paper is devoted to proofs. First, in Section 3 we provide a lower bound
for the nonnegative-integer solvability problem, by a reduction from the VAS reachability
problem. Then, in Section 4 we suitably reformulate our problem in terms multihistograms,
which are matrices satisfying certain combinatorial property. This reformulation is used in

P. Hofman and S. Lasota 24:3

the next Section 5 to provide a reduction from the nonnegative-integer solvability problem
to the VAS reachability problem, thus proving decidability of our problem. In Section 6 we
investigate the relaxations of the nonnegative-integer restriction on solutions and work out
a PTime decision procedure in each case. In the concluding Section 7 we sketch upon a
generalised setting of orbit-finite systems of linear equations.

2 Vector addition systems and linear equations

In this section we introduce the setting of linear equations with data, and formulate our
results. For a gentle introduction of the setting, we start by recalling classical linear equations.

Let Q denote the set of rationals, and Q+,Z, and N denote the subsets of nonnegative
rationals, integers, and nonnegative integers. Classical linear equations are of the form

a1x1 + . . .+ amxm = a,

where x1 . . . xm are variables (unknowns), and a1 . . . am ∈ Z are integer coefficients (equi-
valently, rational coefficients could be allowed). For a finite system U of such equations
over the same variables x1, . . . , xm, a solution of U is a vector (n1, . . . , nm) ∈ Qm such
that the valuation x1 7→ n1, . . ., xm 7→ nm satisfies all equations in U . In the sequel we
are most often interested in nonnegative integer solutions (n1, . . . , nm) ∈ Nm, but one may
consider also other solution domains than N. It is well known that the nonnegative-integer
solvability problem (N-solvability problem) of linear equations, i.e. the question whether U
has a nonnegative-integer solution, is NP-complete (for hardness see [13]; NP-membership is
a consequence of [21]). The complexity remains the same for other natural variants of this
problem, for instance for inequalities instead of equations (a.k.a. integer linear programming).
On the other hand, for any X ∈ {Z,Q,Q+}, the X-solvability problem, i.e., the question
whether U has a solution (n1, . . . , nm) ∈ Xm, is decidable in PTime.

The X-solvability problem is equivalently formulated as follows: for a given finite set of
coefficient vectors A = {a1, . . . ,am} ⊆fin Zd and a target vector a ∈ Zd (we use bold fonts to
distinguish vectors from other elements), check whether a is an X-sum of A, i.e., a sum of
the following form a = n1 · a1 + . . . + nm · am for some n1, . . . , nm ∈ X. The dimension d
corresponds to the number of equations in U .

Linear equations may serve as an over-approximation of the reachability set of a Petri net,
or equivalently, of a vector addition system – we prefer to work with the latter model. A vector
addition system (VAS) A = (A, i, f) is defined by a finite set of integer vectors A ⊆fin Zd
together with two nonnegative integer vectors i, f ∈ Nd, the initial one and the final one.
The set A determines a transition relation −→ between configurations, that are nonnegative
integer vectors c ∈ Nd: there is a transition c −→ c′ if c′ = c + a for some a ∈ A. The
VAS reachability problems asks whether the final configuration is reachable from the initial
one by a sequence of transitions (called a run), i.e., i −→∗ f . We stress that intermediate
configurations are required to be nonnegative. The problem is ExpSpace-hard [19] and
decidable [20, 15], but nothing is known about its complexity except for the cubic Ackermann
upper bound of [18]. For a given VAS, a necessary condition for i −→∗ f is N-solvability
of the system of linear equations defined by the set A and the target vector a = f − i,
called (in case of Petri nets) the state equation. For further details we refer the reader to
an exhaustive overview of linear-algebraic approximations for Petri nets [24], where both N-
and Q+-solvability problems are considered.

CONCUR 2018

24:4 Linear Equations with Ordered Data

2.1 Vector addition systems and linear equations, with ordered data
The model of VAS, and linear equations, can be naturally extended with data. In this paper
we assume that the data domain D is a countable set, ordered by a dense total order ≤ with
no minimal nor maximal element. Thus, up to isomorphism, (D,≤) is the set of rational
numbers with the natural ordering. We call elements of D data values. In the following we
use order preserving permutations (called data permutations in short) of D, i.e. bijections
ρ : D→ D such that x ≤ y implies ρ(x) ≤ ρ(y).

A data vector is a function v : D → Qd such that the support, i.e. the set supp(v) def=
{α ∈ D | v(α) 6= 0}, is finite (again, we use bold fonts to distinguish data vectors from other
elements). The vector addition is lifted to data vectors pointwise: (v + w)(α) def= v(α) +w(α).
A data vector v is nonnegative if v : D→ (Q+)d, and v is integer if v : D→ Zd. Writing ◦
for function composition, we see that v ◦ ρ is a data vector for any data vector v and any
order preserving data permutation ρ : D→ D. For a set V of data vectors we define

Orbit(V) = {v ◦ ρ | v ∈ V , ρ a data permutation}.

A data vector x is said to be a permutation sum of a finite set of data vectors V if, for some
v1, . . . ,vm ∈ Orbit(V), not necessarily pairwise different, x =

∑m
i=1 vi. We investigate the

following decision problem:

Permutation sum problem.
Input: a finite set V of integer data vectors and an integer data vector x.
Output: is x a permutation sum of V ?

In the special case when the supports of x and all vectors in V are all singletons, the
Permutation sum problem is just N-solvability of linear equations and thus it is trivially
NP-hard.

I Proviso 1. For complexity estimations we assume binary encoding of numbers appearing
in the input to all decision problems discussed in this paper.

As the first main result, we prove the following inter-reducibility:

I Theorem 1. There is a polynomial-time reduction from the VAS reachability problem to the
Permutation sum problem, and an exponential-time reduction in the opposite direction.

As a direct consequence, the Permutation sum problem is decidable and ExpSpace-hard.
Our setting generalises the setting of unordered data, where the data domain D is not ordered,
and hence data permutations are all bijections D→ D. In the case of unordered data the
Permutation sum problem is NP-complete, as shown in [12]. The increase of complexity
caused by the order in data is thus remarkable.

Similarly as the state equation in the data-less setting, Permutation sum problem
may be used as an overapproximation of the reachability in vector addition systems with
ordered data, which are defined exactly as ordinary VAS but in terms of data vectors instead
of ordinary vectors. A VAS with ordered data V = (V , i, f) consists of V ⊆fin D → Zd a
finite set of integer data vectors, and the initial and final nonnegative integer data vectors
i, f ∈ D → Nd. The configurations are nonnegative integer data vectors, and the set V
induces a transition relation between configurations as follows: c −→ c′ if c′ = c + v for
some v ∈ Orbit(V). Similarly as for plain VAS, the reachability problem asks whether the
final configuration is reachable from the initial one by a sequence of transitions (called a
run), i.e., i −→∗ f ; but contrarily to plain VAS, the problem is undecidable for VAS with

P. Hofman and S. Lasota 24:5

ordered data [17]. (The decidability status of the problem for VAS with unordered data is
unknown.) As long as reachability is concerned, VAS with (un)ordered data are equivalent
to Petri nets with (un)ordered data [11].

The Permutation sum problem is easily generalised to other domains X ⊆ Q of
solutions. To this end we introduce scalar multiplication: for c ∈ Q and a data vector v we
put (c · v)(α) def= cv(α). A data vector x is said to be a X-permutation sum of a finite set of
data vectors V if for some v1, . . . ,vm ∈ Orbit(V) and coefficients n1, . . . , nm ∈ X,

x = n1 · v1 + . . .+ nm · vm.

This leads to the following version of the problem, parametrized by the choice of solution
domain X (the Permutation sum problem is a particular case, for X = N):

X-Permutation sum problem.
Input: a finite set V of integer data vectors and an integer data vector x.
Output: is x an X-permutation sum of V ?

Our second main result is the following:

I Theorem 2. For any X ∈ {Z,Q,Q+}, the X-Permutation sum problem is in PTime.

For X ∈ {Z,Q}, the above theorem is a direct consequence of a more general fact, where Q
or Z is replaced by any commutative ring R, under a proviso that data vectors are defined in
a more general way, as finitely supported functions D→ Rd. With this more general notion,
we prove that the R-Permutation sum problem reduces polynomially to the R-solvability
of linear equations with coefficients from R (cf. Theorem 17 in Section 6.2).

The case X = Q+ in Theorem 2 is more involved but of particular interest, as it recalls
continuous Petri nets [22, 8] where fractional firings of transitions are allowed. Moreover,
faced with the high complexity of Theorem 1, it is expected that Theorem 2 may become a
cornerstone of linear-algebraic techniques for VAS with ordered data.

3 Lower bound for the Permutation Sum Problem

In this section we assume all data vectors to be integer data vectors. We are going to show a
polynomial-time reduction from the VAS reachability problem to the Permutation sum
problem. Fix a VAS A = (A, i, f). We are going to define a set of data vectors V and a
target data vector x such that the following conditions are equivalent:
C1: f is reachable from i in A;
C2: x is a permutation sum of V .

The set V , to be defined below, will contain only data vectors v satisfying the following
conditions (such data vectors we call increasing):

v is supported by two data values: supp(v) = {α, β} for some data values α < β;
v(α) ∈ (−N)d is nonpositive;
v(β) ∈ Nd is nonnegative.

The choice of data values α, β is irrelevant, as we only need to define V up to data permutation.
Up to data permutation, the vectors a = v(α) and b = v(β) determine the increasing vector
as above uniquely. We thus write [a,b] to denote the increasing data vector determined by
a and b (and some arbitrary but fixed data values α < β).

CONCUR 2018

24:6 Linear Equations with Ordered Data

Every integer vector a ∈ Zd is uniquely presented as a sum a = a−+ a+ of a nonnegative
vector a+ ∈ Nd and a nonpositive one a− ∈ (−N)d, defined as follows:

a+(i) =
{

a(i), if a(i) ≥ 0
0, if a(i) < 0

a−(i) =
{

a(i), if a(i) ≤ 0
0, if a|(i) > 0.

The idea of the reduction is to simulate every vector a = a−+ a+ ∈ A by the increasing data
vector [a−,a+], which we call data realization of a. In addition, we will need the increasing
data vectors of the form [−1i,1i], where 1i ∈ Nd has 1 on coordinate i and 0 on all other
coordinates. We call data vectors [−1i,1i] unit increases. We thus define V as:

V = {[a−,a+] | a ∈ A} ∪ {[−1i,1i] | i = 1, . . . , d}.

As the target data vector we take x = [−i, f]. It remains to show the equivalence of conditions
C1 and C2.

For the proof it will be useful to consider a VAS with ordered data V = (V , ī, f̄) (recall
the definition in Section 2.1) with the same set of data vectors V , the initial configuration ī
a data vector supported by one data value, which maps this data value to i, and similarly
the final configuration f̄ , with the proviso that the singleton support of f̄ is greater than the
singleton support of ī. Clearly, the permutation sum problem overapproximates reachability
in V : existence of a run ī −→∗ f̄ in V implies that x = [−i, f] = f̄ − ī is a permutation sum of
V . Furthermore, A also overapproximates V: every run in V can be transformed into a run
in A, by simply getting rid of data in data realizations and dropping all the unit increases.

Condition C1 implies condition C2. Indeed, every run i −→∗ f in A can be transformed
into a run ī −→∗ f̄ in V : replace every vector a ∈ A appearing in the former run with its data
realization [a−,a+] ◦ θ (for a suitably chosen data permutation θ), preceded, if necessary, by
a number of unit increases of the form [−1i,1i] ◦ θ (again, for suitably chosen θ), in order to
gather, intuitively speaking, the whole vector a− at the same data value. Then C2 follows
by the overapproximation of reachability in V by the permutation sum problem.

For the converse implication suppose C2 holds, i.e., x =
∑n
i=1 wi, where wi = vi ◦ θi and

vi ∈ V . By construction of V , for every i ≤ n the data vector vi is either a data realization
of some a ∈ A, or a unit increase. Let vi1 , . . . ,vil denote the subsequence of v1, . . . ,vn
containing the former ones. We claim that the corresponding vectors a1 . . .al, of which
vi1 , . . . ,vil are data realizations, can be arranged into a sequence being a correct run of the
VAS A from i to f . For this purpose we define a binary relation of succession on data vectors
wi: we say that wj succeeds wi if max(supp(wi)) ≤ min(supp(wj)). We observe that the
succession relation is a partial order – indeed, antisymmetry follows due to the fact that all
data vectors wi are increasing. Let ≺ denote an arbitrary extension of the partial order to a
total order, and assume w.l.o.g. that w1 ≺ w2 ≺ . . . ≺ wn. We argue that the corresponding
sequence a1,a2, . . . ,al of vectors from A is a correct run of the VAS A from i to f . As
A overapproximates V, it is enough to demonstrate that the sequence w1,w2, . . . ,wn is a
correct run in V from ī to f̄ . We thus need to prove that the data vector ui = ī +

∑j
i=1 wi is

nonnegative for every j ∈ {0, . . . , n}. To this aim fix α ∈ D and l ∈ {1, . . . , d}, and consider
the sequence of numbers

u0(α, l), u1(α, l), . . . un(α, l) (1)

appearing as the value of the consecutive data vectors u0, u1, . . ., un at data value α and
coordinate l. We know that the first element of the sequence u0(α, l) = ī(α, l) ≥ 0 and the
last element of the sequence un(α, l) = f̄(α, l) ≥ 0. Furthermore, by the definition of the
ordering � we know that the sequence (1) is first non-decreasing, and then non-increasing.
These conditions imply nonnegativeness of all numbers in the sequence.

P. Hofman and S. Lasota 24:7

4 Histograms

The purpose of this section is to transform the Permutation sum problem to a more
manageable form. As the first step, we eliminate data by rephrasing the problem in
terms of matrices (in Lemma 4). Then, we distinguish matrices with certain combinatorial
property, called histograms. Finally, in Lemma 12 we provide a final characterisation of the
problem, using multihistograms. The characterisation will be crucial for effectively solving
the Permutation sum problem in Section 5.

I Proviso 2. In this section, all matrices are integer ones, and all data vectors are integer
ones.

Eliminating data. Matrices with r rows and c columns we call r×c-matrices, and r (resp. c)
we call row (resp. column) dimension of an r×c-matrix. We are going to represent a data vector
v ∈ D→ Zd as a d×|supp(v)|-matrix Mv as follows: if supp(v) = {α1 < α2 < . . . < αn}, we
put Mv(i, j) def= v(i)(αj). A 0-extension of an r×c-matrix M is any r×c′-matrix M ′, c′ ≥ c,
obtained from M by inserting into M arbitrarily c′ − c additional zero columns 0 ∈ Zr.
Thus row dimension is preserved by 0-extension, and column dimension may grow arbitrarily.
We denote by 0-ext(M) the (infinite) set of all 0-extensions of a matrix M . In particular,
M ∈ 0-ext(M). For a setM of matrices we denote by 0-ext(M) the set of all 0-extensions
of all matrices inM.

I Example 3. For a data vector v with supp(v) = {α1 < α2}, v(α1) = (1, 3, 0) ∈ Z3 and
v(α2) = (2, 0, 2) ∈ Z3, here is the corresponding matrix and two of possible 0-extension:

Mv =

1 2
3 0
0 2

 0 1 2
0 3 0
0 0 2

 ,
1 0 0 2

3 0 0 0
0 0 0 2

 ∈ 0-ext(Mv).

Below, whenever we add matrices we silently assume that they have the same row and column
dimensions. For a finite setM of matrices, we say that a matrix N is a sum of 0-extensions
ofM if

N = M1 + . . .+Mm (2)

for some matrices M1, . . . ,Mm ∈ 0-ext(M), necessarily all of the same row and column
dimension. We claim that the Permutation sum problem is equivalent to the question
whether some 0-extension of a given matrix X is a sum of 0-extensions ofM.

Up to 0-extension sum problem.
Input: a finite setM of matrices, and a matrix X, all of the same row dimension d.
Output: is some 0-extension of X a sum of 0-extensions ofM?

I Lemma 4. The Permutation sum problem is polynomially time equivalent to the Up
to 0-extension sum problem.

Histograms. From now on we concentrate on solving the Up to 0-extension sum prob-
lem. For a matrix H, we write

∑
H(i, 1 . . . j) instead of

∑
1≤l≤j H(i, l). In particular,∑

H(i, 1 . . . 0) = 0 by convention. We call an integer matrix nonnegative if it only contains
nonnegative integers. Histograms, to be defined now, are an adaptation (a strengthening) of
histograms of [12] to ordered data.

CONCUR 2018

24:8 Linear Equations with Ordered Data

I Definition 5. A nonnegative integer r×c-matrix H we call a histogram if the following
conditions are satisfied:

for some s ≥ 0, called the degree of H, for every 1 ≤ i ≤ r we have
∑
H(i, 1 . . . c) = s;

for every 1 ≤ i < r and 0 ≤ j < c, we have
∑
H(i, 1 . . . j) ≥

∑
H(i+ 1, 1 . . . j + 1).

Note that the zero matrix is a histogram, for s = 0. If s > 0, the definition enforces r ≤ c.
Histograms of degree 1 are called simple. The following combinatorial property of histograms
will be crucial in the sequel:

I Lemma 6. H is a histogram of degree s > 0 if and only if H is a sum of s simple
histograms.

I Example 7. A histogram of degree 2 may be decomposed as a sum of two simple histograms:1 1 0 0 0
0 0 2 0 0
0 0 0 1 1

 =

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0

 +

0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

 .
Below, whenever we multiply matrices we assume that the column dimension of the first
one is the same as the row dimension of the second one. Simple histograms are useful for
characterising 0-extensions:

I Lemma 8. For matrices N and M , N ∈ 0-ext(M) if and only if N = M · S, for a simple
histogram S.

I Example 9. Recall the matrix M = Mv from Example 3. One of the matrices from
0-ext(M) is presented as the multiplication of M and a simple histogram as follows:1 0 2 0

3 0 0 0
0 0 2 0

 =

1 2
3 0
0 2

 · [1 0 0 0
0 0 1 0

]
.

We use Lemmas 6 and 8 to characterise the Up to 0-extension sum problem:

I Lemma 10. For a matrix N and a finite set of matricesM, the following conditions are
equivalent:
1. N is a sum of 0-extensions ofM;
2. N =

∑
M∈MM ·HM , for some histograms {HM | M ∈M}.

Multihistograms. Using Lemma 10 we are now going to work out our final characterisation
of the Up to 0-extension sum problem, as formulated in Lemma 12 below. The
characterisation will use the notion of multihistogram, which is an indexed family H =
{H1, . . . ,Hk} of histograms satisfying Definition 11 below.

We write H(i,_) and H(_, j) for the i-th row and the j-th column of a matrix H,
respectively. For an indexed family {H1, . . . ,Hk} of matrices, its j-th column is defined as
the indexed family of j-th columns of respective matrices {H1(_, j), . . . ,Hk(_, j)}.

Fix an input of the Up to 0-extension sum problem: a matrix X and a finite set
M = {M1, . . . ,Mk} of matrices, all of the same row dimension d. Let cl stand for the column
dimension of Ml. Relying on Lemma 10, suppose that some N ∈ 0-ext(X) and some indexed
family H = {H1, . . . ,Hk} of histograms satisfies

N = M1 ·H1 + . . . + Mk ·Hk.

P. Hofman and S. Lasota 24:9

(The row dimension of every Hl is necessarily cl.) Boiling down the equation to entries of a
single column N(_, j) ∈ Zd of N we get the system of d linear equations:

N(_, j) = M1 ·H1(_, j) + . . . + Mk ·Hk(_, j) =
[
M1 | . . . |Mk

]
·

H1(_, j)
. . .

Hk(_, j)

 .
Therefore, the j-th column of H, treated as a single column vector of length s = c1 + . . .+ ck,
is a nonnegative-integer solution of a system of d linear equations UM,N(_,j) with s unknowns
x1 . . . xs of the form:

N(_, j) =
[
M1 | . . . |Mk

]
·

x1
. . .

xs

 .
Observe that the system UM,N(_,j) depends onM and N(_, j) but not on j. For succinctness,
for a ∈ Zd we put Ca := N-sol(UM,a) to denote the set of all nonnegative integer solutions
of UM,a. Thus every j-th column of H belongs to CN(_,j).

Now recall that N ∈ 0-ext(X). Treating H as a sequence of its column vectors in Ns we
arrive at the following condition:

I Definition 11. Let the word of an indexed family H = {H1, . . . ,Hk} of histograms be the
sequence of its consecutive column vectors. We say that H is an (X,M)-multihistogram if
its word belongs to the following language (where n is the column dimension of X):

(C0)∗ CX(_,1) (C0)∗ CX(_,2) . . . (C0)∗ CX(_,n) (C0)∗. (3)

We have just shown existence of an (X,M)-multihistogram whenever some 0-extension N of
X is a sum of 0-extensions ofM. As the reasoning above is reversible, we obtain:

I Lemma 12. The Up to 0-extension sum problem is equivalent to the following one:

Multihistogram problem.
Input: a finite setM of matrices and a matrix X, all of the same row dimension d.
Output: does there exist an (X,M)-multihistogram?

5 Upper bound for the Permutation Sum Problem

We reduce in this section the Multihistogram problem (and hence also the Permutation
sum problem, due to Lemmas 4 and 12) to the VAS reachability problem (with single
exponential blowup), thus obtaining decidability. Fix in this section an input to the Multi-
histogram problem: an integer matrix X (of column dimension n) and a finite set
M = {M1, . . . ,Mk} of integer matrices, all of the same row dimension d. We perform
the reduction in two steps: we start by proving an effective exponential bound on vectors
appearing as columns of (X,M)-multihistograms; then we construct a VAS whose runs
correspond to the words of exponentially bounded (X,M)-multihistograms.

Exponentially bounded multihistograms. First, we need to recall a characterisation of
nonnegative-integer solution sets of systems of linear equations as exponentially bounded
hybrid-linear sets, i.e., of the form B+P⊕, for B,P ⊆ Nk, where k is the number of variables
and P⊕ stands for the set of all finite sums of vectors from P (see e.g. [6, 7, 21]). We denote

CONCUR 2018

24:10 Linear Equations with Ordered Data

system of linear equations determined by a matrix M and a column vector a by UM,a and
the corresponding homogeneous systems of linear equations by UM,0. Again, for the size
|UM,a| of UM,a we assume that numbers in M and a are encoded in binary.

I Lemma 13 ([6] Prop. 2). N-sol(UM,a) = B + P⊕, where B,P ⊆ Nk such that all vectors
in B ∪ P are bounded exponentially w.r.t. |UM,a| and P ⊆ N-sol(UM,0).

We will use Lemma 13 together with the following operation on multihistograms. A
j-smear of a histogram H is any nonnegative matrix H ′ obtained by replacing j-th column
H(_, j) of H by two columns that sum up to H(_, j). Here is an example (j = 5):3 0 0 1 0 0 0

0 1 0 0 3 0 0
0 0 0 1 0 1 2

→
3 0 0 1 0 0 0 0

0 1 0 0 2 1 0 0
0 0 0 1 0 0 1 2

 .
Formally, a j-smear of H is any nonnegative matrix H ′ satisfying:

H ′(_, l) = H(_, l) for l < j H ′(_, j) +H ′(_, j + 1) = H(_, j)
H ′(_, l + 1) = H(_, l) for l > j.

One easily verifies that a smear preserves the defining condition of the histogram:

I Claim 5.1. A smear of a histogram is a histogram.

Finally, a j-smear of a family of matrices {H1, . . . ,Hk} is any indexed family of matrices
{H ′1, . . . ,H ′k} obtained by applying a j-smear simultaneously to all matrices Hl. We omit
the index j when it is irrelevant.

So prepared, we claim that every (X,M)-multihistogram H = {H1, . . . ,Hk} can be
transformed by a number of smears into an (X,M)-multihistogram containing only numbers
exponentially bounded with respect to the sizes of X,M. Indeed, recall (3) and suppose
that N = M1 · H1 + . . . + Mk · Hk ∈ 0-ext(X). Take an arbitrary (say j-th) column
w ∈ Ca = N-sol(UM,a) of H, where a = N(_, j), treated as a single column vector w ∈ Ns
(for s the sum of row dimensions of H1, . . . ,Hk), and present it (using Lemma 13) as a sum
w = b + p1 + . . . + pm, for some exponentially bounded b ∈ Ca and p1, . . . ,pm ∈ C0.
Apply smear m times, replacing the j-th column by m+ 1 columns b,p1, . . . ,pm. As b is a
solution of the system UM,a and every pl is a solution of the homogeneous system UM,0,[

M1 | . . . |Mk

]
· b =

[
M1 | . . . |Mk

]
·w

[
M1 | . . . |Mk

]
· pl = 0,

the family H′ = {H ′1, . . . ,H ′k} obtained in the same way still satisfies the condition M1 ·H ′1 +
. . .+Mk ·H ′k ∈ 0-ext(X). Using Claim 5.1 we deduce that H′ is an (X,M)-multihistogram.
Repeating the same operation for every column of H yields the required exponential bound.

Construction of a VAS. Given X andM we now construct a VAS whose runs correspond
to the words of exponentially bounded (X,M)-multihistograms. Think of the VAS as reading
(or nondeterministically guessing) consecutive column vectors (i.e., the word) of a potential
(X,M)-multihistogram H = {H1, . . . ,Hk}. The VAS has to check two conditions:
(A) the word of H belongs to the language (3);
(B) the matrices H1, . . . ,Hk satisfy the histogram condition (cf. Definition 5).

The first condition, under the exponential bound proved above, amounts to the member-
ship in a regular language and can be imposed by a VAS in a standard way. The second

P. Hofman and S. Lasota 24:11

condition is a conjunction of k histogram conditions, and again the conjunction can be
realised in a standard way. We thus focus, from now on, only on showing that a VAS can
check that its input is a histogram.

To this aim it will be profitable to have the following characterisation of histograms. For
an arbitrary r×c-matrix H, define the (r − 1)×c-matrix ∆H :

∆H(i, j + 1) def=
∑

H(i, 1 . . . j)−
∑

H(i+ 1, 1 . . . j + 1).

Intuitively, ∆H represents the excess in the second condition in Definition 5. Moreover,
consider the (r − 1)×c-matrix (H + ∆H), where H is H with the last row truncated.

I Lemma 14. A nonnegative r×c-matrix H is a histogram if and only if ∆H is nonnegative
and (H + ∆H)(_, c) = 0.

Proof. Indeed, nonnegativeness of ∆H is equivalent to saying that∑
H(i, 1 . . . j) ≥

∑
H(i+ 1, 1 . . . j + 1)

for every 1 ≤ i < r and 0 ≤ j < c; moreover, (H + ∆H)(_, c) = 0 is equivalent to saying
that

∑
H(i, 1 . . . c) is the same for every i = 1, . . . , r. J

For the construction of a VAS it is important to note that every two consecutive entries
(H + ∆H)(i, j − 1) and (H + ∆H)(i, j) are related by the following formula:

(H + ∆H)(i, j) = (H + ∆H)(i, j − 1)−H(i+ 1, j) +H(i, j). (4)

Let r be the row dimension of the input matrix, and let C ⊆ Nr denote the exponential set
of all column vectors that can appear in a histogram, as derived above. We define a VAS
of dimension 2(r − 1) that reads consecutive columns of an exponentially bounded matrix
H and accepts if and only if the matrix is a histogram. The VAS transitions will obey the
following invariant: after j steps,

counteri + counterr−1+i = (H + ∆H)(i, j), for i = 1, . . . , r − 1. (5)

The counters are initially set to 0. Informally, in its j-th step, the VAS will subtract H(i+1, j)
from the counter (r−1)+ i and simultaneously add H(i, j) to the counter i, for i = 1 . . . r−1,
in accordance with (4); due to the duplication of counters, by sole nonnegativeness of every
counter (r−1)+i the VAS will thereby check that ∆H(i, j+1) ≥ 0. Formally, for every vector
w = (w1, . . . , wr) ∈ C, the VAS has a ‘reading’ transition that adds (w1, . . . , wr−1) ∈ Nr−1 to
its counters 1, . . . , r − 1, and subtracts (w2, . . . , wr) ∈ Nr−1 from its counters r, . . . , 2(r − 1)
(think of w(i) = H(i, j) in the equation (4)). Furthermore, for every i = 1, . . . , r− 1 the VAS
has a ‘moving’ transition that subtracts 1 from counter i and adds 1 to counter r − 1 + i.
Observe that these transitions preserve the invariant (5).

Relying on Lemma 14 we claim that the VAS defined in this way reaches nontrivially
(i.e., along a nonempty run) the zero configuration (all counters equal 0) iff its input H is a
histogram with all entries belonging to C. In one direction, the nonnegativeness of counters
r . . . 2(r − 1) (as discussed above) assures that ∆H is nonnegative; and the invariant (5)
together with the final zero configuration assures that (H + ∆H)(_, c) = 0. In the opposite
direction, if the VAS inputs a histogram, it has a run ending in the zero configuration. The
VAS is computable in exponential time (as the set C above can be computed in exponential
time).

Thus, given X andM one can effectively (in exponential time) build a VAS that admits
reachability if and only if there exists an (X,M)-multihistogram.

CONCUR 2018

24:12 Linear Equations with Ordered Data

6 PTime decision procedures

In this section we prove Theorem 2, namely we provide polynomial-time decision procedures
for the X-Permutation sum problem, where X ∈ {Z,Q,Q+}. The most interesting case
X = Q+ is treated in Section 6.1. The remaining ones are in fact special cases of a more
general result, shown in Section 6.2, that applies to an arbitrary commutative ring.

6.1 X = Q+

We start by noticing that the whole development of (multi-)histograms in Section 4 is not at
all specific for X = N and works equally well for X = Q+. First, one adapts the Up to 0-ex-
tension sum problem and considers a sum of 0-extensions ofM multiplied by nonnegative
rationals. Accordingly, one relaxes the definition of histogram: instead of a nonnegative
integer matrix, let histogram be now a nonnegative rational matrix satisfying exactly the
same conditions as in Definition 5 in Section 4. In particular, the degree of a histogram
is now a nonnegative rational, and simple histograms are these with exactly one nonzero
entry in every row. The same relaxation as for histograms we apply to multihistograms,
and in the definition of the latter (cf. the language (3) at the end of Section 4) we consider
nonnegative-rational solutions of linear equations instead of nonnegative-integer ones. With
these adaptations, the Q+-Permutation sum problem is equivalent to the following
decision problem (whenever a risk of confusion arises, we specify explicitly which matrices
are integer ones, and which rational ones):

Q+-Multihistogram problem.
Input: a finite setM of integer matrices, and an integer matrix X, all of the same row
dimension d.
Output: does there exist a rational (X,M)-multihistogram?

From now on we concentrate on the polynomial-time decision procedure for this problem. We
proceed in two steps. First, we define homogeneous linear Petri nets, a variant of Petri nets
generalising continuous PN [22], and show how to solve its reachability problem using Q+-
solvability of a slight generalisation of linear equations (linear equations with implications),
following the approach of [8]. Next, using a similar construction as in Section 5, combined with
the above characterisation of reachability, we encode the Q+-Multihistogram problem
by systems of linear equations with implications.

Homogeneous linear Petri nets. A homogeneous linear Petri net (homogeneous linear PN)
of dimension d is a finite set of homogeneous3 systems of linear equations V = {U1, . . . ,Um},
called transition rules, all over the same 2d variables x1, . . . , x2d. The transition rules
determine a transition relation −→ between configurations, which are nonnegative rational
vectors c ∈ (Q+)d, as follows: there is a transition c −→ c′ if, for some i ∈ {1, . . . ,m} and
v ∈ Q+-sol(Ui), the vector c − π1...d(v) is still nonnegative, and

c′ = c− π1...d(v) + πd+1...2d(v).

(The vectors π1...d(v) and πd+1...2d(v) are projections of v on respective coordinates.) The
binary reachability relation c −→∗ c′ holds, if there is a sequence of transitions from c to c′.

3 If non-homogeneous systems were allowed, the model would subsume (ordinary) Petri nets.

P. Hofman and S. Lasota 24:13

A class of continuous PN [22] can be seen as a subclass of homogeneous linear PN, where
every system Ui has 1-dimensional solution set of the form {cv | c ∈ Q+}, for some fixed
v ∈ N2d.

Linear equations with implications. A ⇒-system is a finite set of linear equations, all over
the same variables, plus a finite set of implications of the form x > 0 =⇒ y > 0, where x, y
are variables appearing in the linear equations. The solutions of a ⇒-system are defined
as usually, but additionally they must satisfy all implications. The Q+-solvability problem
asks if there is a nonnegative-rational solution. In [8] (Algorithm 2) and also in [2] (where a
PTime fragment of existential FO(Q, + ,<) has been identified that captures ⇒-system), it
has been shown (within a different notation) how to solve the problem in PTime:

I Lemma 15 ([8, 2]). The Q+-solvability problem for ⇒-systems is decidable in PTime.

Due to [8], the reachability problem for continuous PNs reduces to the Q+-solvability of
⇒-systems. We generalise this result and prove the reachability relation of a homogeneous
linear PN to be effectively described by a ⇒-system:

I Lemma 16. Given a homogeneous linear PN V of dimension d one can compute in PTime
a ⇒-system whose Q+-solution set, projected onto a subset of 2d variables, describes the
binary reachability relation of V.

Polynomial-time decision procedure. Now, we are ready to sketch out a decision procedure
for theQ+-Multihistogram problem, by a polynomial-time reduction to theQ+-solvability
problem of ⇒-systems.

Fix an input to the Q+-Multihistogram problem, i.e., X andM = {M1, . . . ,Mk}.
As in Section 4, for a ∈ Zd we denote the solution set of a system UM,a of linear equations
determined by the matrix

[
M1 | . . . | Mk

]
and the column vector a by Ca; but this time

we care about nonnegative-rational solutions. We thus put Ca := Q+-sol(UM,a) ⊆ (Q+)r.
Recall the language (3). Our aim is to check existence of a rational (X,M)-multihistogram,
i.e., of a family H = {H1, . . . ,Hk} of nonnegative rational matrices, such that the following
conditions are satisfied:
(A) the word of H belongs to the language (3) (interpreted in nonnegative rationals);
(B) the matrices H1, . . . ,Hk satisfy the histogram condition.
We construct in polynomial time a ⇒-system S that is solvable if and only if conditions (A)
and (B) are met. The solvability of S itself is decidable in PTime according to Lemma 15.
The idea is to characterise conditions (A)–(B) by a sequence of runs in a homogeneous linear
PN interleaved by single steps described by non-homogeneous systems of linear equations
(where n is the column dimension of X):

0 C∗
0−→ c1

CX(_,1)−−−−−→ c2
C∗

0−→ c3
CX(_,2)−−−−−→ . . .

C∗
0−→ c2n−2

C∗
0−→ c2n−1

CX(_,n)−−−−−→ c2n
C∗

0−→ 0.

Conceptually, the construction follows the construction of a VAS in Section 5. We define
a homogeneous linear PN V0, recognizing the language (C0)∗ and, using Lemma 16, we
compute in PTime a ⇒-system S0 such that the projection P0 of Q+-sol(S0) to some of its
variables describes the reachability relation of V0. Ignoring some technical details, the final
⇒-system S imposes the following constraints (for all j):
1. there is a run from c2j to c2j+1 in V0, i.e., (c2j , c2j+1) ∈ P0;
2. c2j − c2j−1 ∈ CX(_,j) = Q+-sol(UM,X(_,j)).
Now, S is solvable iff some rational (X,M)-multihistogram exists.

CONCUR 2018

24:14 Linear Equations with Ordered Data

6.2 X ∈ {Z,Q}
In this, and only in this section we generalise slightly our setting and consider a fixed
commutative ring R, instead of just the ring of integers Z or rationals Q. Accordingly, by
a data vector we mean in this section a function D → Rd from data values to d-tuples of
elements of R that maps almost all data values (i.e. all except for a finite number of data
values) to the zero vector 0 ∈ Rd. With this more general notion of data vectors, we define
R-permutation sums and the R-Permutation sum problem analogously as in Section 2.1.
Furthermore, we define analogously R-sums and consider linear equations with coefficients
from R and their R-solvability problem.

I Theorem 17. For any commutative ring R, the R-Permutation sum problem reduces
polynomially to the R-solvability problem of linear equations.

Clearly, Theorem 17 implies the remaining cases of Theorem 2, namely X ∈ {Z,Q}, as in
these cases the X-solvability of linear equations is in PTime. Theorem 17 follows immediately
by Lemma 18 stated below. For a data vector v, we define the vector sum(v) ∈ Rd and a
finite set of vectors vectors(v) ⊆fin Rd:

sum(v) def=
∑

α∈supp(v)

v(α) vectors(v) def= {v(α) | α ∈ supp(v)}.

Clearly both operations commute with data permutations: sum(v) = sum(v ◦ θ) and
vectors(v) = vectors(v ◦ θ), and can be lifted naturally to finite sets of data vectors:

sum(V) def= {sum(v) | v ∈ V } vectors(V) def=
⋃

v∈V
vectors(v).

I Lemma 18. Let x be a data vector and V be a finite set of data vectors V . Then x is an
R-permutation sum of V if and only if
1. sum(x) is an R-sum of sum(V), and
2. every a ∈ vectors(x) is an R-sum of vectors(V).

Proof. The proof is inspired by Theorem 15 in [12]. The only if direction is immediate:
if x = z1 ·w1 + . . . + zn ·wn for z1, . . . , zn ∈ R and w1, . . . ,wn ∈ Orbit(V), then clearly
sum(x) = z1 · sum(w1) + . . .+ zn · sum(wn) and hence sum(x) is a R-sum of sum(V) (using
the fact that sum(_) commutes with data permutations). Also x(α) is necessarily an R-sum
of vectors(V) for every α ∈ supp(x).

Now we focus on the if direction. For a vector a ∈ Rd, we define an a-move as an arbitrary
data vector that maps some data value to a, some other data value to −a, and all other data
values to 0.

I Claim 6.1. Every a-move, for a ∈ vectors(v), is an R-permutation sum of {v}.

Indeed, for a = v(α), consider a data permutation θ that preserves all elements of supp(v)
except that it maps α to a data value α′ related in the same way as α by the order ≤ to all other
data values in supp(v). Then a-moves are exactly data vectors (v−v◦θ)◦ρ = v◦ρ−v◦(θ◦ρ).

For the if direction, suppose point 1. holds: sum(x) is an R-sum of sum(V). Treat the
vector sum(x) and the vectors in sum(V) as data vectors with the same singleton support.
Observe that sum(v) for any v ∈ V is an R-permutation sum of {v}; indeed, by Claim 6.1
we can use a-moves to transfer all nonzero vectors for data in supp(v) into one datum. With
this view in mind we have:

sum(x) is an R-permutation sum of V .

P. Hofman and S. Lasota 24:15

Furthermore, suppose point 2. holds: every a ∈ vectors(x) is an R-sum of vectors(V).
Thus every a-move, for a ∈ vectors(x), is an R-sum of {b-move | b ∈ vectors(V)}. By
Claim 6.1 we know that every element of the latter set is an R-permutation sum of V . Thus
we entail:

every a-move, for a ∈ vectors(x), is an R-permutation sum of V .
We have shown that sum(x), as well as all a-moves (for all a ∈ vectors(x)), are R-permu-
tation sums of V . We use the a-moves to transform sum(x) into x. This proves that x is an
R-permutation sum of V as required. J

7 Concluding remarks

The main result of this paper is determining the computational complexity of solving linear
equations with integer (or rational) coefficients, in the setting of ordered data. We observed
the huge gap: while the N-solvability problem is equivalent (up to an exponential blowup) to
the VAS reachability problem, the Z-, Q-, and Q+-solvability problems are all in PTime.
This has a consequence for possible linear-algebraic overapproximations of the reachability
in VAS with ordered data: instead of N-solvability, one should apply Z- or Q+-solvability, or
even the combination of both.

Except for the last Section 6.2, the coefficients and solutions are assumed to belong to the
ring Q of rationals, but clearly one can consider other commutative rings as well. There is
another possible axis of generalisation, namely orbit-finite systems of linear equations over an
orbit-finite set of variables, which can be introduced as follows. Fix an arbitrary commutative
ring R and an arbitrary data domain D. Consider orbit-finite sets (see, e.g., [3, 4]), i.e., sets
that are finite up to the natural action of data automorphisms of D. For instance, in case
of the ordered data domain D, the natural action of a monotonic bijection θ : D→ D maps
a pair (d, i) ∈ D × {1, . . . , d} to (θ(d), i); and maps a data vector v to v ◦ θ−1. Therefore
D×{1, . . . , d} is orbit-finite (the number of orbits is d) and Orbit(V) is orbit-finite whenever
V is finite (the number of orbits is at most the cardinality of V). For an orbit-finite set
Y, by an Y-vector we mean (think of Y = D× {1, . . . , d}) any function Y → R that maps
almost all elements of Y to 0 ∈ R; let RY be the set of all Y-vectors. A Y-matrix is an
orbit-finite family of (column) Y-vectors,M ⊆orbit-finite RY . Such a Y-matrixM, together
with a (column) Y-vector a, determines a system of linear equations UM,a, whose solutions
are thoseM-vectors that, treated as coefficients of a linear combination of vectors m ∈M,
yield a ∈ Y:

sol(UM,a) = {v ∈ RM |
∑
m∈M

v(m) ·m = a}.

Note that the sum is well defined as v(m) 6= 0 for only finitely many elements m ∈M. The
setting of this paper is nothing but a special case, where R = Q and Y = D× {1, . . . , d} and
M = Orbit(V) for a finite set V of data vectors. Similarly, another special case has been
investigated in [12], where finiteness up to the natural action of automorphisms of the data
domain (D,=) played a similar role. As another example, in [14] the solvability problem has
been investigated (in the framework of CSP) for the same data domain (D,=), in the case
where R is a finite field.

It is an exciting research challenge to fully understand the complexity landscape of
orbit-finite systems of linear equations, as a function of the choice of data domain. The
results of this paper are a step towards this goal, and indicate that development of the
uniform theory will be hard: the case of ordered data, compared to the case of unordered
data investigated in [12], requires significantly new techniques and the complexity of the

CONCUR 2018

24:16 Linear Equations with Ordered Data

nonnegative integer solvability differs significantly too. Even more broadly, investigation of
orbit-finite dimensional linear algebra, together with its possible applications in the analysis
of data-enriched systems, seems to be a tempting continuation of this work.

References
1 Michael Blondin, Alain Finkel, Christoph Haase, and Serge Haddad. Approaching the

coverability problem continuously. In Proc. TACAS 2016, pages 480–496, 2016. doi:
10.1007/978-3-662-49674-9_28.

2 Michael Blondin and Christoph Haase. Logics for continuous reachability in Petri nets
and vector addition systems with states. In Proc. LICS 2017, pages 1–12, 2017. doi:
10.1109/LICS.2017.8005068.

3 Mikołaj Bojańczyk. Slightly infinite sets. A draft of a book available at https://www.
mimuw.edu.pl/~bojan/paper/atom-book. URL: https://www.mimuw.edu.pl/~bojan/
paper/atom-book.

4 Mikołaj Bojańczyk, Bartek Klin, Slawomir Lasota, and Szymon Toruńczyk. Turing ma-
chines with atoms. In Proc. LICS 2013, pages 183–192, 2013. doi:10.1109/LICS.2013.24.

5 Rémi Bonnet, Alain Finkel, Serge Haddad, and Fernando Rosa-Velardo. Comparing Petri
data nets and timed Petri nets. Technical Report LSV-10-23, Laboratoire Spécification et
Vérification, ENS Cachan, France, 2010.

6 Dmitry Chistikov and Christoph Haase. The taming of the semi-linear set. In Proc. IC-
ALP’16, pages 128:1–128:13, 2016.

7 Eric Domenjoud. Solving systems of linear Diophantine equations: An algebraic approach.
In Proc. MFCS 1991, pages 141–150, 1991.

8 Estíbaliz Fraca and Serge Haddad. Complexity analysis of continuous Petri nets. Fundam.
Inform., 137(1):1–28, 2015. doi:10.3233/FI-2015-1168.

9 Thomas Geffroy, Jérôme Leroux, and Grégoire Sutre. Occam’s razor applied to the Petri
net coverability problem. In Proc. Reachability Problems 2016, pages 77–89, 2016. doi:
10.1007/978-3-319-45994-3_6.

10 Piotr Hofman and Sławomir Lasota. Linear equations with ordered data. CoRR,
arXiv:1802.06660, 2018. URL: http://arxiv.org/abs/1802.06660.

11 Piotr Hofman, Slawomir Lasota, Ranko Lazić, Jérôme Leroux, Sylvain Schmitz, and Patrick
Totzke. Coverability Trees for Petri Nets with Unordered Data. In Proc. FoSSaCS, Eind-
hoven, Netherlands, 2016. URL: https://hal.inria.fr/hal-01252674.

12 Piotr Hofman, Jérôme Leroux, and Patrick Totzke. Linear combinations of unordered data
vectors. In Proc. LICS 2017, pages 1–11, 2017.

13 Richard M. Karp. Reducibility among combinatorial problems. In Proc. Complexity of Com-
puter Computations, pages 85–103, 1972. URL: http://www.cs.berkeley.edu/~luca/
cs172/karp.pdf.

14 Bartek Klin, Eryk Kopczyński, Joanna Ochremiak, and Szymon Toruńczyk. Locally finite
constraint satisfaction problems. In Proc. LICS 2015, pages 475–486, 2015. doi:10.1109/
LICS.2015.51.

15 S. Rao Kosaraju. Decidability of reachability in vector addition systems. In STOC’82,
pages 267–281. ACM, 1982. doi:10.1145/800070.802201.

16 Slawomir Lasota. Decidability border for Petri nets with data: WQO dichotomy conjecture.
In Proc. PETRI NETS 2016, pages 20–36, 2016. doi:10.1007/978-3-319-39086-4_3.

17 Ranko Lazic, Thomas Christopher Newcomb, Joël Ouaknine, A. W. Roscoe, and James
Worrell. Nets with tokens which carry data. Fundam. Inform., 88(3):251–274, 2008.

18 Jérôme Leroux and Sylvain Schmitz. Demystifying reachability in vector addition systems.
In Proc. LICS 2015, pages 56–67, 2015. doi:10.1109/LICS.2015.16.

http://dx.doi.org/10.1007/978-3-662-49674-9_28
http://dx.doi.org/10.1007/978-3-662-49674-9_28
http://dx.doi.org/10.1109/LICS.2017.8005068
http://dx.doi.org/10.1109/LICS.2017.8005068
https://www.mimuw.edu.pl/~bojan/paper/atom-book
https://www.mimuw.edu.pl/~bojan/paper/atom-book
https://www.mimuw.edu.pl/~bojan/paper/atom-book
https://www.mimuw.edu.pl/~bojan/paper/atom-book
http://dx.doi.org/10.1109/LICS.2013.24
http://dx.doi.org/10.3233/FI-2015-1168
http://dx.doi.org/10.1007/978-3-319-45994-3_6
http://dx.doi.org/10.1007/978-3-319-45994-3_6
http://arxiv.org/abs/1802.06660
https://hal.inria.fr/hal-01252674
http://www.cs.berkeley.edu/~luca/cs172/karp.pdf
http://www.cs.berkeley.edu/~luca/cs172/karp.pdf
http://dx.doi.org/10.1109/LICS.2015.51
http://dx.doi.org/10.1109/LICS.2015.51
http://dx.doi.org/10.1145/800070.802201
http://dx.doi.org/10.1007/978-3-319-39086-4_3
http://dx.doi.org/10.1109/LICS.2015.16

P. Hofman and S. Lasota 24:17

19 Richard Lipton. The reachability problem requires exponential space. Technical Report 62,
Yale University, 1976.

20 Ernst W. Mayr. An algorithm for the general Petri net reachability problem. In Proc. STOC
1981, pages 238–246. ACM, 1981. doi:10.1145/800076.802477.

21 Loic Pottier. Minimal solutions of linear Diophantine systems: Bounds and algorithms.
In Proc. RTA 1991, pages 162–173, 1991. URL: http://dl.acm.org/citation.cfm?id=
647192.720494.

22 Laura Recalde, Serge Haddad, and Manuel Silva Suárez. Continuous Petri nets: Expressive
power and decidability issues. Int. J. Found. Comput. Sci., 21(2):235–256, 2010. doi:
10.1142/S0129054110007222.

23 Fernando Rosa-Velardo and David de Frutos-Escrig. Decidability and complexity of Petri
nets with unordered data. Theor. Comput. Sci., 412(34):4439–4451, 2011. doi:10.1016/
j.tcs.2011.05.007.

24 Manuel Silva Suárez, Enrique Teruel, and José Manuel Colom. Linear algebraic and linear
programming techniques for the analysis of place or transition net systems. In Lectures on
Petri Nets I: Basic Models, Advances in Petri Nets, pages 309–373, 1996. doi:10.1007/
3-540-65306-6_19.

CONCUR 2018

http://dx.doi.org/10.1145/800076.802477
http://dl.acm.org/citation.cfm?id=647192.720494
http://dl.acm.org/citation.cfm?id=647192.720494
http://dx.doi.org/10.1142/S0129054110007222
http://dx.doi.org/10.1142/S0129054110007222
http://dx.doi.org/10.1016/j.tcs.2011.05.007
http://dx.doi.org/10.1016/j.tcs.2011.05.007
http://dx.doi.org/10.1007/3-540-65306-6_19
http://dx.doi.org/10.1007/3-540-65306-6_19

A Coalgebraic Take on Regular and ω-Regular
Behaviour for Systems with Internal Moves
Tomasz Brengos
Faculty of Mathematics and Information Science, Warsaw University of Technology,
ul. Koszykowa 75, 00-662 Warszawa, Poland
t.brengos@mini.pw.edu.pl

Abstract
We present a general coalgebraic setting in which we define finite and infinite behaviour with
Büchi acceptance condition for systems with internal moves. Since systems with internal moves
are defined here as coalgebras for a monad, in the first part of the paper we present a construction
of a monad suitable for modelling (in)finite behaviour. The second part of the paper focuses on
presenting the concepts of a (coalgebraic) automaton and its (ω-) behaviour. We end the paper
with coalgebraic Kleene-type theorems for (ω-) regular input. We discuss the setting in the
context of non-deterministic (tree) automata and Segala automata.

2012 ACM Subject Classification Theory of computation Models of computation

Keywords and phrases coalgebras, regular languages, omega regular languages, automata, Büchi
automata, silent moves, internal moves, monads, saturation

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.25

Acknowledgements I want to thank Marco Peressotti for his continuous support and feedback.
I am grateful to the anonymous referees for valuable comments and remarks.

1 Introduction

Automata theory is one of the core branches of theoretical computer science and formal
language theory. One of the most fundamental state-based structures considered in the
literature is a non-deterministic automaton and its relation with languages. Non-deterministic
automata with a finite state-space are known to accept regular languages, characterized as
subsets of words over a fixed finite alphabet that can be obtained from the languages consisting
of words of length less than or equal to one via a finite number of applications of three types
of operations: union, concatenation and the Kleene star operation [22]. This result is known

R ::= ∅ | a, a ∈ Σε | R+R | R ·R | R∗

Figure 1 Reg. exp. grammar.

under the name of Kleene theorem for regular lan-
guages and readily generalizes to other types of
finite input (see e.g. [31]).

On the other hand, non-deterministic automata have a natural infinite semantics which is
given in terms of infinite input satisfying the so-called Büchi acceptance condition (or BAC
in short). The condition takes into account the terminal states of the automaton and requires
them to be visited infinitely often. It is a common practise to use the term Büchi automata
in order to refer to automata whenever their infinite semantics is taken into consideration.

input type Kleene theorem where

ω-words
⋃n

i=1 Ri · Lω
i Ri, Li =

regular lang.

ω-trees T0 · [T1 . . . Tn]ω Ti =
regular tree lang.

Figure 2 Kleene thm. for ω-regular input.

Although the standard type of infinite input of a
Büchi automaton is the set of infinite words over
a given alphabet, other types (e.g. trees) are also
commonly studied [31]. The class of languages of
infinite words accepted by Büchi automata can
also be characterized akin to the characterization

© Tomasz Brengos;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 25; pp. 25:1–25:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:t.brengos@mini.pw.edu.pl
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 A Coalgebraic Take on (ω)-Regular Behaviour for Systems with Internal Moves

of regular languages. This result is known under the name of Kleene theorem for ω-regular
languages and its variants hold for many input types (see e.g. [17,31]). Roughly speaking, any
language recognized by a Büchi automaton can be represented in terms of regular languages
and the infinite iteration operator (−)ω. This begs the question of a unifying framework these
systems can be put in and reasoned about on a more abstract level so that the analogues of
Kleene theorems for (ω-)regular input are derived. The recent developments in the theory of
coalgebra [11, 32, 35, 36] show that the coalgebraic framework may turn out to be suitable to
achieve this goal.

A coalgebra X → FX is an abstract (categorical) representation of a single step of
computation of a given process [18, 32]. The coalgebraic setting has already proved itself
useful in modelling finite behaviour via least fixpoints (e.g. [8, 21,35]) and infinite behaviour
via greatest fixpoints of suitable mappings [12, 24]. The infinite behaviour with BAC can be
modelled by a combination of the two [30,36].

Our paper plans to revisit the coalgebraic framework of (in)finite behaviour from the
perspective of systems with internal moves. A unifying theory of systems with internal
steps has been part of the focus of the coalgebraic community in recent years [6–10, 35]
and was mainly motivated by the research in finite behaviour of such systems. Intuitively,
these systems have a special computation branch that is silent. This special branch, usually
denoted by the letter τ or ε, is allowed to take several steps and in some sense remain
neutral to the structure of a process. These systems arise in a natural manner in many
branches of theoretical computer science, among which are process calculi [29] (labelled
transition systems with τ -moves and their weak bisimulation) or automata theory (automata
with ε-moves), to name only two. The approach from [8, 9] suggests that these systems
should be defined as coalgebras whose type is a monad. This treatment allows for an
elegant modelling of weak behavioural equivalences [9,10] among which we find Milner’s weak
bisimulation [29]. Each coalgebra α : X → TX becomes an endomorphism α : X → X in
the Kleisli category for the monad T and Milner’s weak bisimulation on a labelled transition

s0 s1 s2
0

ε

0 + 1

1

1

s0 s1 s2
0

ε

(0 + 1)1∗

11∗

ε 1∗

Figure 3 LTS with ε-moves and its satura-
tion.

system α is defined to be a strong bisimulation
on its saturation α∗ which is the smallest LTS
over the same state space satisfying α ≤ α∗,
id ≤ α∗ and α∗ · α∗ ≤ α∗ (where the compos-
ition and the order are given in the Kleisli
category for the LTS monad) [8]. Hence, in-
tuitively, α∗ is the reflexive and transitive closure of α and is formally defined as the least
fixpoint α∗ = µx.(id ∨ x · α). Since a reflexive and transitive closure is understood as an
accumulation of a finite number of compositions of the structure with itself, the concept
of coalgebraic saturation is intrinsically related to finite behaviour of systems. A similar
treatment of infinite behaviour (and/or their combination) in the context of systems with
internal moves has not been considered so far.

The aim of the paper. We plan to:
1. revisit non-deterministic (Büchi) automata and their behaviour in the coalgebraic context

of systems with internal moves,
2. provide a type monad suitable for modelling (in)finite behaviour of general systems,
3. present a setting for defining (in)finite behaviour for abstract automata with silent moves,
4. state coalgebraic Kleene theorems for (ω-)regular behaviour.
The first point in the list is achieved by describing non-deterministic (Büchi) automata and
their finite and infinite behaviour in terms of different coalgebraic (categorical) fixpoint

T. Brengos 25:3

constructions calculated in the Kleisli category for a suitable monad. Section 3 serves as a
motivation for the framework presented later in Section 4 and Section 5.

Originally [20,35], coalgebras with internal moves were considered as systems X → TFεX

for a monad T and an endofunctor F , where Fε , F + Id. The functor TFε could be
embedded into the monad TF ∗, where F ∗ is the free monad over F [8]. The monad TF ∗ is
enough to model systems with internal moves and their finite behaviour [6, 8, 9]. However, it
will prove itself useless in the context of infinite behaviour. Hence, by revisiting and tweaking
the construction of TF ∗ from [8], Section 4 gives a general description of the monad TF∞,
the type functor TFε embeds into, which is used in the remaining part of the paper to model
the combination of finite and infinite behaviour. Point (3) in the above list is achieved
by using two fixpoint operators: the saturation operator (−)∗ and a new operator (−)ω
calculated in (a full subcategory of) the Kleisli category for a monad which admits infinite
behaviour. The combination of (−)∗ and (−)ω allows us to define infinite behaviour with
BAC. Since we are mainly interested in finite state systems, all our results are presented in
the context of the full subcategory of the Kleisli category whose objects are sets {1, . . . , n}
for n = 0, 1, . . ., a.k.a. the Lawvere theory associated with the given monad. Kleene-type
theorems of (4) are a direct consequence of the definition of finite and infinite behaviour with
BAC using (−)∗ and (−)ω.

2 Basic notions

In this paper we assume the reader is familiar with basic category theory concepts like
functor, (sub)monad, adjunction, Kleisli category, lifting of a functor to Kleisli category
via distributive law, (initial) F -algebra, (final) F -coalgebra. For a thorough introduction
to category theory the reader is referred to [28]. See also e.g. [7–9] for an extensive list of
notions needed here.

Non-deterministic (Büchi) automata and their behaviour. Classically, a nondeterministic
automaton, or simply automaton, is a tuple Q = (Q,Σ, δ, q0,F), where Q is a finite set of
states, Σ finite set called alphabet, δ : Q× Σ → P(Q) a transition function and F ⊆ Q set
of accepting states. We write q1

a→ q2 if q2 ∈ δ(q1, a). There are two standard types of
semantics of automata: finite and infinite. The finite semantics, also known as the language
of finite words of Q, is defined as the set of all finite words a1 . . . an ∈ Σ∗ for which there
is a sequence of transitions q0

a1→ q1
a2→ q2 . . . qn−1

an→ qn which ends in an accepting state
qn ∈ F [22]. The infinite semantics, also known as the ω-language of Q, is the set of infinite
words a1a2 . . . ∈ Σω for which there is a run r = q0

a1→ q1
a2→ q2

a3→ q3 . . . for which the set
of indices {i | qi ∈ F} is infinite, or in other words, the run r visits the set of final states F
infinitely often. Often in the literature, in order to emphasize that the infinite semantics
is taken into consideration the automata are referred to as Büchi automata [31]. In our
work we will consider (Büchi) automata without the initial state specified and define the
(ω-)language in an automaton for any given state.

There are several other variants of input for non-deterministic Büchi automata known
in the literature [17, 31]. Here, we mention non-deterministic (Büchi) tree automaton, i.e.
a tuple (Q,Σ, δ,F), where δ : Q × Σ → P(Q × Q) and the rest is as before. The infinite
semantics of this machine is the set of infinite binary trees with labels in Σ for which there is
a run whose every branch visits F infinitely often [17,31].

CONCUR 2018

25:4 A Coalgebraic Take on (ω)-Regular Behaviour for Systems with Internal Moves

Coalgebras with internal moves and their type monads. As mentioned before coalgebras
with internal moves were first introduced in the context of coalgebraic trace semantics as
coalgebras of the type TFε for a monad T and an endofunctor F on C [20, 35]. If we take
F = Σ× Id then we have TFε = T (Σ× Id+ Id) ∼= T (Σε × Id), where Σε , Σ + {ε}. In [8]
we showed that given some mild assumptions on T and F we may embed the functor TFε
into the monad TF ∗, where F ∗ is the free monad over F . In particular, if we apply this
construction to T = P and F = Σ× Id we obtain the monad P(Σ∗ × Id) from Example 2.1
below. This construction is also revisited in this paper in Section 4. The trick of modelling
the invisible steps via a monadic structure allows us not to specify the internal moves
explicitly. Instead of considering TFε-coalgebras we consider T ′-coalgebras for a monad T ′
on an arbitrary category.

The strategy of finding a suitable monad (for modelling the behaviour taken into con-
sideration) will also be applied in this paper. Unfortunately, from the point of view of the
infinite behaviour of coalgebras, considering systems of the type TF ∗ is not sufficient (see
Section 3 for a discussion). Hence, in Section 4 we show how to obtain monads suitable for
modelling infinite behaviour. Below, we list basic examples of monads considered in this
paper. This list will be extended in sections to come.

I Example 2.1. The powerset endofunctor P : Set → Set carries a monadic structure for
which the category Kl(P) consists of sets as objects and maps f : X → PY and g : Y → PZ
with the composition g · f : X → PZ defined as follows g · f(x) = {z ∈ Z | z ∈

⋃
g(f(x))}.

The identity morphisms id : X → PX are given for any x ∈ X by id(x) = {x}. Now,
for a set Σ the functor P(Σ∗ × Id) carries a monadic structure whose composition in the
Kleisli category is given as follows [8]. For f : X → P(Σ∗ × Y) and g : Y → P(Σ∗ × Z) we
have g · f(x) = {(σ1σ2, z) | x

σ1→f y
σ2→g z for some y ∈ Y }. The identity morphisms in this

category are id : X → P(Σ∗ ×X) given by id(x) = {(ε, x)}. Finally, let Σω be the set of
all infinite sequences of elements from Σ. The functor P(Σ∗ × Id+ Σω) carries a monadic
structure whose Kleisli composition is the following. For f : X → P(Σ∗ × Y + Σω) and
g : Y → P(Σ∗ × Z + Σω) the map g · f : X → P(Σ∗ × Z + Σω) is:

x
σ→g·f z ⇐⇒ ∃y s.t. x σ1→f y and y σ2→g z, where σ = σ1σ2 ∈ Σ∗,

x ↓g·f v ⇐⇒ x ↓f v or x σ→f y, y ↓g v′ and v = σv′ ∈ Σω.

In the above we write x σ→f y whenever (σ, y) ∈ f(x) and x ↓f v if v ∈ f(x) for σ ∈ Σ∗,
v ∈ Σω. The identity morphisms in this category are the same as in the Kleisli category for
the monad P(Σ∗ × Id). The monadic structure of P(Σ∗ × Id+ Σω) arises as a consequence
of a general construction of monads modelling (in)finite behaviour described in detail in
Section 4.

I Example 2.2. The subconvex distributions functor CM used to model Segala systems
[33, 34] is defined as follows [16]. For any set X define MX to be the carrier of the free
module for the semiring [0,∞) over X and put CMX = {U ⊆MX | U = U and U 6= ∅},
where for U ⊆ MX we have U , {

∑n
i=1 ri · ui | ui ∈ U, ri ∈ [0,∞) &

∑
i ri ≤ 1}. For any

map f : X → Y put CM(f) : CMX → CMY ;U 7→ Mf(U). See also [8, 25] for a slightly
different definition of CM and a more thorough discussion of this treatment. The functor
can be equipped with a monadic structure which results in the Kleisli composition defined
by: g · f(x) =

⋃
φ∈f(x)

∑
y∈suppφ{φ(y) · ψ | ψ ∈ g(y)} ∈ CMZ for x ∈ X, f : X → CMY and

g : Y → CMZ [16].

T. Brengos 25:5

Lawvere theories and categorical order enrichment. The primary interest of the theory
of automata and formal languages focuses on automata over a finite state space. Hence,
since we are interested in systems with internal moves (i.e. maps X → TX for a monad
T), without any loss of generality we may focus our attention on coalgebras of the form
[n]→ T [n], where [n] , {1, . . . , n} with n = 0, 1, . . . for a Set-monad T . These morphisms
are endomorphisms in a full subcategory of the Kleisli category for T known under the name
of Lawvere theory. That is why we choose the setting of this paper to be Lawvere theories.
Because we are interested in the coalgebraic essence of a Lawvere theory, we adopt the
definition which is dual to the classical notion [27].

Formally, a Lawvere theory, or simply theory, is a category whose objects are natural
numbers n ≥ 0 such that each n is an n-fold coproduct of 1. For any element i ∈ [n] let
in : 1 → n denote the i-th coproduct injection and [f1, . . . , fk] : n1 + . . . + nk → n the

nk

n1

. . . n

fk

f1
cotuple of the family {fl : nl → n}l depicted in the diagram on the right. The
coprojection ni → n1+. . .+nk into the i-th component of the coproduct will be
denoted by inni

n1+...+nk
. Any morphism k → n of the form [i1n, . . . , ikn] : k → n

for ij ∈ [n] is called base morphism or base map. Finally, let ! : n → 1 be
defined by ! , [11, 11, . . . , 11]. We say that a theory T′ is a subtheory of T if there is a faithful
functor T′ → T which maps any object n onto itself. Any monad T on Set induces a theory
T associated with it by restricting the Kleisli category Kl(T) to objects [n] for any n ≥ 0.
Conversely, for any theory T there is a Set based monad the theory is associated with (see
e.g. [23] for details).

In order to establish the definition of the fixpoint operators (−)∗ and (−)ω we require
the Lawvere theory under consideration to be suitably order enriched. A category is said to
be order enriched, or simply ordered, if each hom-set is a poset with the order preserved by
the composition. It is ∨-ordered if all hom-posets admit arbitrary finite suprema. Note that,

f ∨ g = f ∨ g
given such suprema exist, the composition in C does not
have to distribute over them in general. We call such
category left distributive (or LD in short) if h · (f ∨g) = h ·f ∨h ·g. In this paper we will come
across many left distributive categories that do not necessarily satisfy right distributivity.
Still, however, all the examples taken into consideration satisfy a weaker form of right
distributivity. To be precise, we say that a theory is right distributive w.r.t. base morphisms
(or bRD in short) provided that (f ∨ g) · j = f · j ∨ g · j for any f, g and any base morphism
j. We say that an order enriched category is ω-Cpo-enriched if any ascending ω-chain
f1 ≤ f2 ≤ . . . of morphisms admits a supremum

∨
i fi which is preserved by the morphism

composition. Finally, in an ordered category with finite coproducts we say that cotupling
preserves order if [f1, f2] ≤ [g1, g2] ⇐⇒ f1 ≤ g1 and f2 ≤ g2 for any fi, gi with suitable
domains and codomains.

I Example 2.3. The primary interest of the next section of this paper lies in the theories
LTS and LTSω which are defined to be the theories that arise from the Kleisli categories of the
monads P(Σ∗ × Id) and P(Σ∗ × Id + Σω) respectively. Both theories are order-enriched
with the hom-set ordering given by f ≤ g ⇐⇒ f(i) ⊆ g(i) for any i ∈ [n]. It is easy to see
that the hom-posets of LTS and LTSω are complete lattices, both theories are ω-Cpo-enriched
and satisfy LD and bRD. Moreover, cotupling [−,−] in LTS and LTSω preserves order.

3 Non-deterministic (Büchi) automata, coalgebraically

The purpose of this section is to give motivations for the development of the abstract theory
done in the remainder of the paper. Here, we will focus on finite non-deterministic (Büchi)
automata and their (in)finite behaviour from the perspective of the theories LTS and LTSω.

CONCUR 2018

25:6 A Coalgebraic Take on (ω)-Regular Behaviour for Systems with Internal Moves

Without any loss of generality we may only consider automata over the state space [n]
for some natural number n. Any non-deterministic automaton with ε-moves ([n],Σε, δ,F)
may be modelled as a P(Σε × Id+ 1)−coalgebra [n]→ P(Σε × [n] + 1) [32]. However, as it
has been already noted in [36], from the point of view of infinite behaviour with BAC it is
more useful to extract the information about the final states of the automaton and do not
encode it into the transition map as above. Instead, we consider the given automaton as a
pair (α,F) where α : [n]→ P(Σε × [n]) is defined by α(i) = {(a, j) | j ∈ δ(a, i)} and consider
the map:

fF : [n]→ P(Σε × [n]); i 7→
{
{(ε, i)} if i ∈ F,

∅ otherwise.

The purpose of fF is to encode the set of accepting states with an endomorphism in the
same Kleisli category in which the transition α is an endomorphism. Now, we have all the
necessary ingredients to revisit finite and infinite behaviour (with BAC) of non-deterministic
automata from the perspective of the theory LTSω.

Finite behaviour. Consider α∗ : n→ n to be an endomorphism in LTS (or LTSω) given by
α∗ = µx.(id ∨ x · α) =

∨
n∈ω α

n, where the order is as in Example 2.3. We have [8]:

α∗(i) = {(σ, j) | i σ=⇒ j},

where σ=⇒ , (ε→)∗◦ a1→ ◦(ε→)∗ ◦ . . . (ε→)∗◦ an→ (ε→)∗ for σ = a1 . . . an, ai ∈ Σ and ε=⇒ , (ε→)∗.
Now, let us recall the definition of ! in any theory T. In particular, when T = LTS, LTSω

the map ! : [n] → P(Σε × [1]) satisfies !(i) = {(ε, 1)}. Finally, consider the morphism
! · fF · α∗ : n→ 1 in LTS (or LTSω)) which is explicitly given by:

! · fF · α∗(i) = {(σ, 1) | σ ∈ Σ∗ such that i σ=⇒ j and j ∈ F}.

Since P(Σ∗ × [1]) ∼= P(Σ∗), the set ! · fF · α∗(i) represents the set of all finite words accepted
by the state i in the automaton ([n],Σε, δ,F).

Infinite behaviour with BAC. Note that both theories LTS and LTSω are complete and,
hence (by Tarski-Knaster theorem), come equipped with an operator which assigns to any
endomorphism β : n → n the morphism βω : n → 0 defined as the greatest fixpoint of
λx.x · β. For α the map αω : [n] → P(Σ∗ × ∅) = {∅} is unique in LTS with αω(i) = ∅.
However, if we compute αω in LTSω the result will be different. Indeed, we have the following.

I Theorem 3.1. Let β : [n]→ P(Σ∗ × [n]) be a transition map with no silent moves. Then
βω : [n]→ P(Σ∗ ×∅ + Σω) = P(Σω) in LTSω is given by:

βω(i) = {σ1σ2 . . . ∈ Σω | i σ1→ i1
σ2→ i2 . . . for some ik ∈ [n] and σk ∈ Σ∗ \ {ε}}.

Hence, if we, for now, assume that α : [n]→ P(Σε × [n]) has no silent transitions then
by the above theorem: αω(i) = {a1a2 . . . ∈ Σω | i a1→ i1

a2→ i2 . . . for some ik ∈ [n]}. We will
use the operation (−)ω in LTSω to extract the information about the ω-language of (α,F).
However, we need one last ingredient. Let us define α+ , α∗ · α and note

α+(i) = {(σ, j) | i a1→ i1 . . .
ak→ ik in α and σ = a1 . . . ak for k ≥ 1}.

Finally, consider the morphism (fF · α+)ω : n → 0 in LTSω. In order to see the explicit
formula for (fF ·α+)ω let us first note that the endomorphism fF ·α+ : [n]→ P(Σ∗× [n]) has

T. Brengos 25:7

s0 s1 s2
0

0 + 1

1

1

s0 s1 s2
0

(0 + 1)1∗

11∗

11∗

s0 s1 s2

(0 + 1)1∗

11∗

11∗

Figure 4 A non-deterministic automaton (α,F) and the maps α+ and fF · α+.

no silent moves and fF ·α+(i) = {(σ, j) | i σ→ j in α+ and j ∈ F}. Therefore, by Theorem 3.1,
the map (fF · α+)ω : [n]→ P(Σω) satisfies:

(fF · α+)ω(i) = the ω-language of i in the Büchi automaton represented by (α,F).

This property suggests a general approach towards modelling (ω-)behaviours of abstract
(coalgebraic) automata that we will develop in the sections to come.
I Remark. Note that throughout this paragraph we assumed the map α to have no ε-
transitions. It may not be instantly clear why. It turns out that ε moves are problematic for
the infinite behaviour operator (−)ω defined as above. Indeed, in order to see this consider
two finite languages A,B ⊆ {a, b}∗ defined by A = {ε, ab} and B = {ab}. These languages
can be viewed as endomorphisms α, β : 1 → 1 in LTSω given by α, β : [1] → P(Σ∗ × [1]),
where α(1) , {(ε, 1), (ab, 1)} and β(1) , {(ab, 1)}. Note that α has a silent loop, β has
no silent transitions and both maps α∗, β∗ : 1 → 1 satisfy α∗(1) = {((ab)n, 1) | n ≥ 0} =
β∗(1). However, αω 6= βω in LTSω. Indeed, by Theorem 3.1, βω(1) = {ababababab . . .}
but αω(1) = P({a, b}ω) is the set of all infinite words over {a, b}. The latter holds, since
id ≤ α in LTSω and the greatest fixpoint of λx.x · α is the greatest morphism > : 1 → 0
in the given theory as > = > · id ≤ > · α ≤ >. The identity αω = P({a, b}ω) seems to be
unintuitive considering the fact that in many classical works on Büchi automata (e.g. [31])
Aω = Bω = {abababab . . .}. These papers use a slightly incompatible definition of the
language operator (−)ω : P(Σ∗) → P(Σω) which explicitly removes ε from the argument
set. Since it would be difficult to devise such an operator on a more abstract categorical
level, we decide to keep with νx.x · β as the definition of βω and bear in mind this minor
incompatibility with the classical work.

Why systems with internal moves? In the light of the above remark the reader may get
the (wrong) impression that putting systems with internal moves into the context of infinite
behaviour with BAC may seem rather ad hoc. To add to this, the need for categorical
modelling of infinite behaviour for systems with silent steps is not sufficiently justified by
the classical literature on the topic, where such systems rarely occur in practice (conf. [31]).
However, as mentioned before, since putting systems with internal steps into the context
is, in fact, extending the given setting to the setting of coalgebras X → TX whose type
T is a monad, the main profit from this approach is the access to a simple and powerful
language of the Kleisli category for the monad T . It allows us to abstract away from several
“unnecessary” details and focus on the core properties. Hopefully, this paper demonstrates
that the access to the language justifies the extension of the setting, as it makes it possible
to formulate new results and provide their simple proofs which, in our opinion, would be
tedious without such extension.

Büchi automata with non-standard input and beyond. As mentioned in Section 2, there
are variants of non-deterministic (Büchi) automata that accept other types of input (e.g.
binary trees). In general, given a functor F : Set→ Set we define a non-deterministic (Büchi)

CONCUR 2018

25:8 A Coalgebraic Take on (ω)-Regular Behaviour for Systems with Internal Moves

F -automaton as a pair (α,F), where α : [n]→ PF [n] (or α : [n]→ PFε[n]- to model systems
with internal moves) and F ⊆ [n]. A natural question that arises is the following: are we
able to build a setting in which we can reason about the (in)finite behaviour of systems for
arbitrary non-deterministic Büchi F -automata (or even more generally, for systems of the
type TF (or TFε) for a monad T)? If so, then is it possible to generalize the Kleene theorem
for (ω−)regular languages stated in the introduction to a coalgebraic level? We will answer
these questions positively in the next sections.

4 Monads for (in)finite behaviour

Let C be a category which admits binary coproducts. We denote the coproduct operator by
+ and the coprojection into the first and the second component of a coproduct by inl and inr
respectively. Moreover, let F : C→ C be a functor.

The purpose of this section is to present a monad the functor TFε embeds into that will
prove itself sufficient to model the combination of finite and infinite behaviour (akin to the
monad P(Σ∗ × Id+ Σω) for the functor P(Σε × Id)). At first we list basic facts needed in
the remainder of this section. In Subsection 4.2 we revisit the construction of the monad
TF ∗ from [8]. Here, however, we show how it can be obtained by composing a different pair
of adjunctions. Finally, we give a description of the definition of TF∞ suitable for modelling
(in)finite behaviour. In what follows, in this section we assume:

(T, µ, η) is a monad on C and F : C→ C lifts to Kl(T) via a dist. law λ : FT =⇒ TF ,
there is an initial F (−) + X-algebra for any object X and a terminal F -coalgebra
ζ : Fω → FFω.

4.1 Preliminaries
Existence of the initial F (−) + X-algebra iX : FF ∗X + X → F ∗X (i.e. iX ◦ inl is the
free F -algebra over X) for any object X yields an adjoint situation C � Alg(F), where
the left adjoint is the free algebra functor which assigns to any object X the free algebra
iX ◦ inl : FF ∗X → F ∗X over it. The right adjoint is the forgetful functor which assigns
to any F -algebra its carrier and is the identity on morphisms. This adjunction yields the
monad F ∗ : C→ C which assigns to any object X the carrier of the free F -algebra over X.

I Example 4.1. For any set Σ and X the initial Σ×Id+X-algebra is given by the morphism
iX : Σ× Σ∗ ×X +X → Σ∗ ×X, where iX(a, (σ, x)) = (aσ, x) and iX(x) = (ε, x).

Now we recall basic definitions and properties of Bloom F -algebras [1] which will be used to
introduce monads for infinite behaviour in the next subsection. A pair (a : FA→ A, (−)†) is
called Bloom F -algebra provided that for any F -coalgebra e : X → FX the map e† : X → A

satisfies:
X A

FX FA

e a

e†

F e†

and
X Y

FX FY

e f

h

F h

implies
X Y

A

e† f†

h

By a homomorphism between Bloom algebras (a : FA→ A, (−)†) and (b : FB → B, (−)‡)
we mean a map h : A → B which is an F -algebra homomorphism from a to b and which
additionally preserves the solution, i.e. e† ◦ h = e‡. The category of Bloom algebras and
homomorphisms between them is denoted by AlgB(F). We assume that Alg(F) has binary
coproducts which are denoted by ⊕. We have the following theorem.

T. Brengos 25:9

I Theorem 4.2. [1] The pair (ζ−1 : FFω → Fω, [[−]]), where [[−]] assigns to e : X → FX

the unique coalgebra homomorphism [[e]] : X → Fω between e and ζ, is an initial object in
AlgB(F). Moreover, iX ◦ inl⊕ ζ−1 is the free Bloom algebra over X.

I Remark. Let F∞ : C → C be defined as the composition of the left and right adjoints
C� AlgB(F) respectively, where the left adjoint is the free Bloom algebra functor and the
right adjoint is the forgetful functor. The functor F∞ carries a monadic structure which
extends F ∗. Indeed, by Th. 4.2, the monad F ∗ is a submonad of F∞ (via the transformation
induced by the coprojection into the first component of iX ◦ inl ⊕ ζ−1 in Alg(F)). The
construction of the free Bloom algebra from the above theorem indicates that F∞ is a natural
extension of F ∗ encompassing infinite behaviours of the final F -coalgebra. By abusing
the notation slightly, we can write F∞ = F ∗ ⊕ Fω. The functor Fε is a subfunctor of
F ∗ [8, Lemma 4.12] and hence, by the above, also of F∞. In the following sections this will
let us turn any coalgebra X → TFX or X → TFεX into a system X → TF∞X and, by
doing so, allow us to model their (in)finite behaviour.

I Example 4.3. The terminal Σ×Id-coalgebra is ζ : Σω → Σ×Σω; a1a2 . . . 7→ (a1, a2a3 . . .).
The coproduct of a : Σ × A → A and b : Σ × B → B in Alg(F) is a ⊕ b : Σ × (A + B) →
A+B; (σ, x) 7→ if x ∈ A then a(σ, x) else b(σ, x). Hence, the free Bloom algebra over X is:
Σ× (Σ∗×X + Σω)→ Σ∗×X + Σω, where (a, (σ, x)) 7→ (aσ, x) and (a, a1a2 . . .) 7→ aa1a2

Let (a : FA → A, (−)†) be a Bloom algebra, b : FB → B an F -algebra and h : A → B

a homomorphism between F -algebras a and b. Then there is a unigue assignment (−)‡ which
turns (b : FB → B, (−)‡) into a Bloom algebra and h into a Bloom algebra homomorphism
and it is defined as follows [1]: for e : X → FX the map e‡ : X → B is e‡ , h ◦ e†.

4.2 Lifting monads to algebras

X A

FX FA

B

FB

e‡

e ae†

Fe†
h

b
Fh

Fe‡

Take an F -algebra a : FA→ A and define T̄ (a) , FTA
λA→ TFA

Ta→
TA. If h : A→ B is a homomorphism of algebras a and b : FB → B

we put T̄ (h) = T (h). T̄ : Alg(F) → Alg(F) is a functor for which
the morphism ηA : A → TA is an F -algebra homomorphism from
a : FA → A to T̄ (a) : FTA → TA. Moreover, µA : T 2A → TA is a homomorphism from
T̄ 2(a) to T̄ (a) (see [4] for details). A direct consequence of this construction is the following.

I Theorem 4.4. [4] The triple (T̄ , µ̄, η̄), where for a : FA→ A we put µ̄a : T̄ 2(a)→ T̄ (a);
µ̄a = µA and η̄a : a→ T̄ (a); η̄a = ηA is a monad on Alg(F).

The above theorem together with the assumption of existence of an arbitrary free F -algebra

C Alg(F) Kl(T̄)⊥ ⊥

Figure 5

in Alg(F) leads to a pair of adjoint situations in Fig. 5. Since
the composition of adjoint situations is an adjoint situation
this yields a monadic structure on the functor TF ∗ : C→ C.

I Example 4.5. An example of this phenomenon is given by the monad P(Σ∗ × Id) from
Example 2.1 where in the above we set T = P and F = Σ× Id. This monad has already
been described e.g. in [8], but it arose as a consequence of the composition of a different pair
of adjunctions.

Monads on Bloom algebras. Above we gave a recipe for a general construction of a
monadic structure on the functor TF ∗. As witnessed in [6, 8], this monad is suitable to
model coalgebras and their weak bisimulations and weak finite trace semantics (i.e. their

CONCUR 2018

25:10 A Coalgebraic Take on (ω)-Regular Behaviour for Systems with Internal Moves

finite behaviour). Our primary interest is in modelling infinite behaviour and this monad will
prove itself insufficient. The purpose of this subsection is to show how to tweak the middle
category from Fig. 5 so that the monad obtained from the composition of two adjunctions is
suitable to our needs.

Let (a : FA → A, (−)†) be a Bloom algebra and define T̄B((a : FA → A, (−)†)) ,
(T̄ (a) : FTA→ TA, (−)‡), where for any e : X → FX the map e‡ is given by ηA ◦ e†. Since
ηA : A → TA is a homomorphism between a : FA → A and T̄ (a) : FTA → TA the pair
(T̄ (a), (−)‡) is a Bloom algebra. For a pair of Bloom algebras (a : FA → A, (−)†) and
(b : FB → B, (−)‡) and a Bloom algebra homomorphism h : A → B between them put
T̄B(h) = T (h). This defines a functor T̄B : AlgB(F)→ AlgB(F). Analogously to the previous
subsection we have the following direct consequence of the construction.

I Theorem 4.6. The triple (T̄B , µ̄B , η̄B) is a monad on AlgB(F), where for any Bloom algebra
(a : FA→ A, (−)†) the (a, (−)†)-components of the transformations µ̄B and η̄B are µ̄B(a,(−)†) :
T̄ 2
B(a, (−)†) → T̄B(a, (−)†); µ̄B(a,(−)†) = µA and η̄B(a,(−)†) : (a, (−)†) → T̄B(a, (−)†) with
η̄B(a,(−)†) = ηA.

Hence, we have the following two adjoint situations: C AlgB(F) Kl(T̄B)⊥ ⊥ . These
adjunctions impose a monadic structure on TF∞ : C → C. The monad P(Σ∗ × Id + Σω)
from Example 2.1 arises from the composition of the above adjoint situations (see also
Example 4.3). It is important to note that since any Set-based monad T is strong, the functor
Σ× Id : Set→ Set always lifts to a functor on the Kleisli category for T . If we additionally
assume T is a commutative monad then this is, in fact, true for any polynomial functor
F : Set→ Set [21], i.e. a functor defined by the grammar F , Σ ∈ Set | Id | F × F |

∑
F .

I Example 4.7. Let F = Σ× Id2. Then F∞ = TΣ(−) is a functor which assigns to any set
X the set of complete binary trees (i.e. every node has either two children or no children)
with inner nodes taking values in Σ and finitely many leaves, all taken from X [1]. This yields
a monadic structure on PF∞ = PTΣ, where the Kleisli composition for f : X → PTΣY and
g : Y → PTΣZ is g · f : X → PTΣZ with g · f(x) being a set of trees obtained from trees
in f(x) ⊆ TΣY by replacing any occurence of the leaf y ∈ Y with a tree from g(y) ⊆ TΣZ.
Let TTSω denote the theory associated with PTΣ. It is a simple exercise to prove that this
category is order enriched with the order f ≤ g defined by f(i) ⊆ g(i) for any i ∈ [n] being
complete, and that it is LD, ω-Cpo-enriched, and bRD.

I Example 4.8. For T = CM and F = Σ × Id we get the monad CM(Σ∗ × Id + Σω).
The composition · for f : X → CM(Σ∗ × Y + Σω) and g : Y → CM(Σ∗ × Z + Σω)
in its Kleisli category is as follows. If

∑n
i=1 ri · (σi, yi) +

∑n+k
i=n+1 ri · vi−n ∈ f(x) and∑nj

i=1 r
j
i · (σ

j
i , z

j
i) +

∑nj+kj

i=nj+1 r
j
i · v

j
i−nj

∈ g(yj) for j = 1, . . . , n, where σi, σji ∈ Σ∗ and
vi, v

j
i ∈ Σω, then the expression

n∑
i=1

(
ni∑
l=1

ri · ril · (σiσil , zli) +
ni+ki∑
l=ni+1

ri · ril · σivil−ni

)
+

n+k∑
i=n+1

ri · vi−n

is a member of the set g · f(x). The theory associated to this monad will be denoted by
SGLω. It is order enriched with f ≤ g whenever f(i) ⊆ g(i) for any i. For an arbitrary family
of morphisms fi their supremum

∨
i fi exists and is given by

∨
i fi(j) =

⋃
i fi(j). Hence, the

theory is complete with the infima
∧
i fi(j) =

⋂
i fi(j). It is also LD, ω-Cpo-enriched, and

bRD (the proof of this statement is analogous to the proof that the Kleisli categories for
CM or CM(Σ∗ × Id) have these properties [8, 9, 16] and, hence, is omitted).

T. Brengos 25:11

5 Abstract (Büchi) automata and their behaviour

The purpose of this section is to generalize the concepts from Section 3 to an arbitrary theory
with a suitable ordering. We start with the definition of an automaton for a theory T.

I Definition 5.1. A T-automaton or simply automaton is a pair (α,F), where α : n→ n is
an arbitrary endomorphism called transition morphism and F ⊆ [n].

In order to define finite and infinite behaviour of (α,F) we require the theory to satisfy more
assumptions. An order enriched theory T is called complete saturation theory (or CST in
short) provided that:
i hom-posets are complete lattices,
ii it is ω-Cpo-enriched, LD & bRD
iii bottom maps 0 satisfy f · 0 = 0 for any f ,
iv cotupling preserves the order.
From now on in this section we assume that T is a complete saturation theory. Note that
the definition of a T-automaton was stated in a more general framework. However, the finite
and infinite behaviour of (α,F) will be only considered for complete saturation theories.

I Remark. The assumption about completeness of the order, although a strong assumption,
will guarantee existence of two types of fixpoints, namely (−)∗ and (−)ω. The former fixpoint
operator was thoroughly studied in [7–10] in the context of coalgebraic weak bisimulation.
Although it can be defined in an arbitrary completely ordered category, it requires left
distributivity to be expressive enough [9] and ω-Cpo-enrichment to be calculated in terms of
countable joins. Right distributivity w.r.t. the base morphisms is a technical assumption
that is crucial in the proofs of theorems to come. This is a weak assumption as already
discussed in [9, Lemma 3.25]. The bottom maps 0 provide us with a natural annihilator
thanks to which given a set F ⊆ [n] we can encode it as an endomorphism fF : n→ n defined
as the cotuple of in’s and 01

n’s depending on whether the given coordinate is a member of F
or not. Finally, the last assumption guarantees that the order plays well with the coproduct.

For any endomorphism α : n→ n in T define α∗, α+ : n→ n and αω : n→ 0 by:

α∗ , µx.(id ∨ x · α), α+ , α∗ · α and αω , νx.x · α.

In a complete saturation theory we have α∗ =
∨
n<ω(id∨α)n [8] and αω =

∧
κ∈Ord(λx.x·α)κ>,

where > : n → 0 is the greatest element of T(n, 0) and (λx.x · α)κ is defined by the
transfinite induction by (λx.x · α)κ+1 = (λx.x · α)(λx.x · α)κ for a successor ordinal κ + 1
and (λx.x · α)κ =

∧
λ<κ(λx.x · α)λ for a limit ordinal κ.

I Theorem 5.2. For any α, β : n→ n we have:
1. id∗ = id, id ≤ α∗ and α∗ · α∗ = α∗,
2. (α · β)ω = (β · α)ω · β,
3. (αn)ω = αω for any n > 0,
4. αω = (α+)ω.

I Definition 5.3. Finite behaviour (ω-behaviour) ||(α,F)|| : n→ 1 (resp. ||(α,F)||ω : n→ 0)
of an automaton (α,F) is defined by:

||(α,F)|| ,! · fF · α∗ and ||(α,F)||ω , (fF · α+)ω.

Finite (ω-)behaviour of a state in : 1→ n of (α,F) is ||(α,F)|| · in (resp. ||(α,F)||ω · in).

CONCUR 2018

25:12 A Coalgebraic Take on (ω)-Regular Behaviour for Systems with Internal Moves

I Example 5.4. The theories LTSω, TTSω and SGLω are complete saturation theories. As
we have already seen in Section 3, the finite and ω-behaviour of LTSω-automata coincides
with the classical notions. The same can be easily proven to be true for TTSω (see e.g. [31]
for classical definitions in the theory of tree automata). According to our knowledge, Segala
automata or, in other words, SGLω-automata, have not been considered in the computer
science literature so far. See Subsection 5.1 for a discussion on these systems in the context
of expressivity in language theory.

I Remark. So far in the coalgebraic literature, finite behaviour of systems was introduced in
terms of the finite trace [6,26,35]. In the order enriched setting for systems with internal moves
for which the type functor encodes accepting states, finite trace is given by α† = µx.x · α [7].
However, from the point of our setting, the terminal states are not part of the transition. In
this case we can consider the exception monad Id+ 1 on any theory T, denote its associated
theory by T̂, and encode any T-automaton (α,F) as a T̂-endomorphism α̂ : n → n (or
equivalently T-morphism α̂ : n→ n+ 1) defined by α̂ = innn+1 · α ∨ f̂F, where f̂F : n→ n+ 1
is a morphism in T given by f̂F(i) = if i ∈ F then n+ 1 else 0. It is a simple exercise to
prove that, given the assumptions of this section, α̂† = ||(α,F)||. Therefore, our definition of
finite behaviour via (−)∗ coincides with the trace definition in an ordered category [6].

Kleene theorems. The prominent role in the theory of non-deterministic automata is
played by regular languages. Using the nomenclature of Section 3 these languages are
given by ! · f · α∗ · in : 1 → 1 for an LTSω automaton (α,F) in which we have α : [n] →
P(Σε × [n]). The set of regular languages, denoted by Reg(1, 1), is known to be closed under
the language composition, finite union and Kleene star operation. These three operations
are exactly the composition, finite joins and the saturation of morphisms 1 → 1 in the
theory LTSω. Moreover, Reg(1, 1) is the smallest set of languages containing the empty
language, single letter languages and being closed under the three operations. This classical
result is known under the name of Kleene theorem for regular languages [22]. A similar
theorem can be proven for automata that accept non-sequential data types, e.g. trees [17,31].

+t =

− 1
1 2

+
−

+[t1, t2] · t =

− t1
t1 t2

+
−

+[t2, t1] · t =

− t2
t2 t1

+
−

Figure 6 Tree composition with inner
nodes in {+,−} and variables in {1, 2}.

However for tree automata the result is slightly
more involved as the set Reg(1, 1) of regular
tree languages is closed under a more complex
type of composition, namely the composition of
regular tree languages with multiple variables.
To be more precise, if Reg(1, p) denotes the set
of regular tree languages whose leaves may end
in variables from {1, . . . , p}, then the morphism
[r1, . . . , rp] · r is a member of Reg(1, 1) for any r ∈ Reg(1, p) and ri ∈ Reg(1, 1). These
observations are generalized to the coalgebraic level below. As a direct consequence of this
treatment we get a characterization of ω-regular behaviours.

Let T = (T, µ, η) be a monad on Set and F a Set-endofunctor satisfying the assumptions
of Section 4. This allows us to consider the monad TF∞ and the theory TTF∞ associated
with it. We say that a map α : m→ n in TTF∞ is a (T, Fε)-map if α : [m]→ TFε[n] in Set
(it is a well defined notion as Fε is a subfunctor of F∞). Note that by the definition of F∞
the family of (T, Fε)-maps contains all base maps of TTF∞ and is closed under cotupling and
the composition with base morphisms (it follows by the definition of the monadic structure
of F∞, TF∞ and Remark in Subsection 4.1). TTF∞-automata whose transition maps are
(T, Fε)-maps will be referred to as (T, Fε)-automata. In this paragraph we assume that TTF∞
is a CST and:

T. Brengos 25:13

(T, Fε)-maps are closed under taking arbitrary suprema (hence, also contain 0’s),
0 · α = 0 for any (T, Fε)-map α.

As a direct consequence of these assumptions and since id is a base morphism we get that
0 · α∗ = α∗ · 0 = 0 for any (T, Fε)-map α which is a TTF∞ -endomorphism. We define the set
of regular morphisms m→ p by:

Reg(m, p) ,{j′ · fF · α∗ · j | (α : n→ n,F) is a (T, Fε)-aut. and
j : m→ n, j′ : n→ p are base maps}.

The set of regular morphisms Reg(1, p) will be often referred to as the set of regular trees
with variables in p. Note that Reg(1, 1) is exactly the set of finite behaviours of states in
(T, Fε)-automata. A regular morphism r ∈ Reg(m, p) is said to be in normal form (NF) if it
is given by r = [0np , idp] · [α, in

p
n+p]∗ · inmn+p for a (T, Fε)-map α : n→ n+ p and m ≤ n. The

following lemma states that all regular morphisms can be given in their normal forms and
that they can be obtained from regular trees via cotupling.

I Lemma 5.5. The following equality is true: Reg(m, p) = {[r1, . . . , rm] | ri ∈ Reg(1, p)} =
{[0np , idp] · [α, in

p
n+p]∗ · inmn+p | α : n→ n+ p is a (T, Fε)-map and m ≤ n}.

The next results (Lem. 5.6 and Th. 5.7) show, in particular, that regular morphisms with
suitable domains and codomains are closed under composition, finite joins and saturation
operation. The constructions used in the proofs of the results below are simple generalization
of classical constructions of non-deterministic automata with ε-moves used in proving that
concatenation/finite union/Kleene star of regular languages is regular (see e.g. [22]). Hence,
in our opinion, it can be considered a computer science folklore which presents itself very
aesthetically in terms of the string diagram calculus. Note that for classical regular languages
it was enough to consider the case where the normal form [0, idp] · [α, inp]∗ · inm of the
expressions satisfied m = p = 1 (i.e. one initial and one final state). These constructions can
be summarized by the following three diagrams.

r1 · r2

∨

r1 ∨ r2

∨

r∗

∨

I Lemma 5.6. The identity maps in TTF∞ are regular morphisms. Moreover, regular
morphisms are closed under the composition from TTF∞ .

Let Reg(T, F) be the category whose objects are the same as the objects of TTF∞ and whose
hom-sets are Reg(m,n) with the composition taken from TTF∞ . By the above lemmas this
definition is proper and, moreover, Reg(T, F) is a theory. It is order enriched with the order
from TTF∞ . Moreover, the following statement holds.

I Theorem 5.7 (Kleene thm. for regular behaviour). Reg(T, F) is an ordered theory which:
(a) contains all (T, Fε)-maps,
(b) admits finite suprema and each hom-set contains the bottom element,
(c) endomorphisms are closed under (−)∗.
If Rat(T, F) is the smallest subtheory of TTF∞ satisfying (a)-(c) then Rat(T, F) = Reg(T, F).

CONCUR 2018

25:14 A Coalgebraic Take on (ω)-Regular Behaviour for Systems with Internal Moves

Finally, put ωRat(T, F) , {[r1, . . . , rm]ω · r | r ∈ Rat(1,m), ri ∈ Rat(1,m) for m < ω} and

ωReg(T, F) , {||(α,F)||ω ·im : 1→ 0 | (α,F) is TTF∞ -aut. with (T, Fε)-map α : m→ m}.

I Theorem 5.8 (Kleene thm. for ω-regular behaviour). We have ωRat(T, F) = ωReg(T, F).

5.1 Behaviours v. languages
The purpose of this subsection is to define languages for TTF∞ -automata. Unlike behaviours,
languages are simply subsets of F∞1. As we will see below there is a natural way to introduce
such languages for abstract automata. The theory presented in this subsection is motivated
by (ω-)languages of probabilistic (ω-)automata [3] defined using a construction akin to the
one presented below. However, since fully probabilistic automata are not considered in our
paper (see the summary section for details), we will focus our attention on SGLω-automata
and the languages they generate. We will show that the classes of (ω-)regular languages of
these machines coincide with the class of (ω-)regular languages in the classical sense.

Let T be a functor on Set and consider the transformation τ : T =⇒ P whose
X-component is defined by τX(t) =

⋂
{Y ⊆ X | t ∈ TY }. If T preserves preimages and

infinite intersections then the transformation is natural [19]. Here, we assume it is the case.

I Example 5.9. For T = CM the transformation τ is given by:

τX(U) =
⋃
{{x1, . . . , xn} | r1 · x1 + . . .+ rn · xn ∈ U for ri > 0} for U ∈ CMX.

It is a simple exercise to prove that τ : CM =⇒ P is a natural transformation.

Let T and F and P and F satisfy the assumptions of Section 4. Then the transformation
τ : T =⇒ P imposes an assignment τF∞ between theories TTF∞ and TPF∞ given
by: τF∞(n) , n and τF∞(f : m → TF∞m) , τF∞n ◦ f . Assume that both TTF∞ and
TPF∞ are complete saturation theories. Given a TTF∞-automaton (α : n → n,F) and
i ∈ [n], we define its language (resp. ω-language) by L(α,F, i) , τF∞(||(α,F)|| · in) and
Lω(α,F, i) , τF∞(||(α,F)||ω · in). Now, the sets of regular and ω-regular languages for TTF∞
are LReg(T, F) , {(L(α,F, i) | α is a (T, Fε)-map} and

ωLReg(T, F) , {Lω(α,F, i) | α is a (T, Fε)-map}.

I Theorem 5.10. If τF∞ : TTF∞ → TPF∞ is a functor which preserves cotupling, preserves
0’s, finite suprema and suprema of ω-chains then LReg(T, F) ⊆ Reg(P, F)(1, 1). Moreover,
if τF∞(βω) = τF∞(β)ω for any TTF∞-endomorphism β of the form fF ·α+ for a (T, Fε)-map
α then ωLReg(T, F) ⊆ ωReg(P, F).

I Example 5.11. The assignment SGLω → LTSω induced by the natural transformation
from Example 5.9 satisfies the assumptions of the first part of Th. 5.10. Additionally, it
preserves the assumptions of the second part of this statement, and, hence, from the point
of view of regular and ω-regular languages Segala automata are equally expressive as the
non-deterministic (Büchi) automata.

6 Summary, future and related work

The purpose of this paper was to develop a coalgebraic (categorical) framework to reason
about abstract automata and their finite and infinite behaviours satisfying BAC. We achieved
this goal by constructing a monad suitable to handle the types of behaviours we were

T. Brengos 25:15

interested in and defining them in the right setting. A natural and direct consequence of this
treatment was Theorem 5.7 and Theorem 5.8, i.e. the coalgebraic characterization of regular
and ω-regular behaviour. These two results are the main reason why the primary interest of
this paper is the Set-based finite structures. Note that several definitions and properties of
Section 5 generalize to systems whose type monad is over a different category than Set (in
this case an automaton should be simply defined as a pair of endomorphisms in the given
Kleisli category).

Seemingly, the main restrictions of this framework are hidden behind the assumptions in
the definition of a complete saturation theory. However, many of these axioms can be relaxed.
For instance, in case of lack of left distributivity we may use a construction from our previous
work [9] which embeds suitably ordered categories into left distributive ones. Secondly, the
assumption about completeness of the order may be replaced with the assumption about
existence of (−)∗ and (−)ω satisfying the desired properties (note that the theory Reg defined
in Section 5 is not necessarily complete, yet finite joins, (−)∗ and (−)ω are well defined).

Future work. We plan that the next step from here will be to put fully probabilistic automata
into our framework, as this type of machines and their ω-languages play a significant role
in infinite language theory [2]. Probabilistic systems have been successfully put into the
saturation and weak bisimulation framework by embedding the category these systems are
described in, into a category which admits left distributivity [9].

Given our natural characterization of coalgebraic ω-regular languages we ask if it is
possible to characterize it in an algebraic way in terms of a preimage of a subset of a finite
algebraic structure. Especially, considering the fact that by Th. 5.2 the pair of hom-sets
(T(n, n),T(n, 0)) equipped with suitable operations resembles a Wilke algebra used in the
algebraic characterization of these languages (see e.g. [31] for details).

Related work. The first coalgebraic take on ω-languages was presented in [11], where authors
put deterministic Muller automata with Muller acceptance condition into the framework.
Our work is related to a more recent paper [36], where Urabe et al. give a coalgebraic
framework for modelling behaviour with Büchi acceptance condition for (T, F)-systems. The
main ingredient of their work is a solution to a system of equations which uses least and
greatest fixpoints. This is done akin to Park’s [30] classical characterization of ω-languages
via a system of equations. In our paper we also use least and greatest fixpoints, however,
the operators we consider are the two natural types of operators (−)∗ = µx.id ∨ x · (−) and
(−)ω = νx.x · (−) which generalize the language operators (−)∗ and (−)ω known from the
classical theory of regular and ω-regular languages. By calculating everything in the Kleisli
category for the given monad and by using the aforementioned operators we simplify the
language considerably. This allows us to state and prove Kleene-type theorems for (ω-)regular
input which was not achieved in [36] and (in our opinion) would be difficult to obtain in that
setting. To summarize, the major differences between our work and [36] are the following:

we use the setting of systems with internal moves (i.e. coalgebras over a monad) to
discuss infinite behaviour with BAC,
the infinite behaviour with BAC is calculated in terms of a simple expression which uses
(−)∗ and (−)ω in the Kleisli category,
we provide the definition of a finite behaviour of a system (using (−)∗) and build a bridge
between regular and ω-regular behaviours on a coalgebraic level in terms of the Kleene
theorem.

CONCUR 2018

25:16 A Coalgebraic Take on (ω)-Regular Behaviour for Systems with Internal Moves

Abstract finite automata have already been considered in the computer science literature
in the context of Lawvere iteration theories with analogues of Kleene theorems stated and
proven (see e.g. [5, 13–15]). Some of these results seem to be presented in a more general
setting than ours, using a slightly different language than ours (conf. Theorem 5.7 and
e.g. [5, Theorem 1.4]). We decided to state Theorem 5.7 the way we did, in order to
make a direct generalization of the classical Kleene theorem for regular input and to give a
coalgebraic interpretation which is missing in [5,13–15]. We should also mention that the
infinite behaviour with BAC was defined in loc. cit. only for a very specific type of theories
(i.e. the matricial theories over an algebra with an infinite iteration operator), which do not
encompass e.g. non-deterministic Büchi tree automata and their infinite tree languages.

References
1 Jirí Adámek, Mahdieh Haddadi, and Stefan Milius. Corecursive algebras, corecursive

monads and bloom monads. Logical Methods in Computer Science, 10(3), 2014. doi:
10.2168/LMCS-10(3:19)2014.

2 Christel Baier and Marcus Grosser. Recognizing omega-regular languages with probabilistic
automata. In Proceedings of the 20th Annual IEEE Symposium on Logic in Computer
Science, LICS ’05, pages 137–146, Washington, DC, USA, 2005. IEEE Computer Society.
doi:10.1109/LICS.2005.41.

3 Christel Baier, Marcus Grösser, and Nathalie Bertrand. Probabilistic omega-automata. J.
ACM, 59(1):1:1–1:52, 2012. doi:10.1145/2108242.2108243.

4 Jon Beck. Distributive laws. In B. Eckmann, editor, Seminar on Triples and Categorical
Homology Theory, pages 119–140, Berlin, Heidelberg, 1969. Springer Berlin Heidelberg.

5 Stephen Bloom and Zoltán Ésik. Iteration Theories. The Equational Logic of Iterative
Processes. Monographs in Theoretical Computer Science. Springer, 1993.

6 Filippo Bonchi, Stefan Milius, Alexandra Silva, and Fabio Zanasi. Killing epsilons with a
dagger: A coalgebraic study of systems with algebraic label structure. Theoretical Computer
Science, 604:102–126, 2015. doi:10.1016/j.tcs.2015.03.024.

7 Tomasz Brengos. On coalgebras with internal moves. In Marcello M. Bonsangue, editor,
Proc. CMCS, Lecture Notes in Computer Science, pages 75–97. Springer, 2014. doi:10.
1007/978-3-662-44124-4_5.

8 Tomasz Brengos. Weak bisimulation for coalgebras over order enriched monads. Logical
Methods in Computer Science, 11(2):1–44, 2015. doi:10.2168/LMCS-11(2:14)2015.

9 Tomasz Brengos, Marino Miculan, and Marco Peressotti. Behavioural equivalences for coal-
gebras with unobservable moves. Journal of Logical and Algebraic Methods in Programming,
84(6):826–852, 2015. doi:10.1016/j.jlamp.2015.09.002.

10 Tomasz Brengos and Marco Peressotti. A Uniform Framework for Timed Automata. In
Josée Desharnais and Radha Jagadeesan, editors, 27th International Conference on Con-
currency Theory (CONCUR 2016), volume 59 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 26:1–26:15, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.CONCUR.2016.26.

11 Vincenzo Ciancia and Yde Venema. Stream automata are coalgebras. In Proc. CMCS,
volume 7399 of Lecture Notes in Computer Science, pages 90–108, 2012. doi:10.1007/
978-3-642-32784-1_6.

12 Corina Cîrstea. Generic infinite traces and path-based coalgebraic temporal logics. Electr.
Notes Theor. Comput. Sci., 264(2):83–103, 2010. doi:10.1016/j.entcs.2010.07.015.

13 Zoltán Ésik and Tamás Hajgató. Iteration grove theories with applications. In Proc. Al-
gebraic Informatics, volume 5725 of Lecture Notes in Computer Science, pages 227–249.
Springer, 2009. doi:10.1007/978-3-642-03564-7_15.

http://dx.doi.org/10.2168/LMCS-10(3:19)2014
http://dx.doi.org/10.2168/LMCS-10(3:19)2014
http://dx.doi.org/10.1109/LICS.2005.41
http://dx.doi.org/10.1145/2108242.2108243
http://dx.doi.org/10.1016/j.tcs.2015.03.024
http://dx.doi.org/10.1007/978-3-662-44124-4_5
http://dx.doi.org/10.1007/978-3-662-44124-4_5
http://dx.doi.org/10.2168/LMCS-11(2:14)2015
http://dx.doi.org/10.1016/j.jlamp.2015.09.002
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.26
http://dx.doi.org/10.1007/978-3-642-32784-1_6
http://dx.doi.org/10.1007/978-3-642-32784-1_6
http://dx.doi.org/10.1016/j.entcs.2010.07.015
http://dx.doi.org/10.1007/978-3-642-03564-7_15

T. Brengos 25:17

14 Zoltán Ésik and Werner Kuich. A Unifying Kleene Theorem for Weighted Finite Auto-
mata, pages 76–89. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. doi:10.1007/
978-3-642-19391-0_6.

15 Zoltán Ésik and Werner Kuich. Modern automata theory, 2013. URL: http://www.dmg.
tuwien.ac.at/kuich/.

16 Sergey Goncharov and Dirk Pattinson. Coalgebraic weak bisimulation from recursive equa-
tions over monads. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Kout-
soupias, editors, Proc. ICALP, volume 8573 of Lecture Notes in Computer Science, pages
196–207. Springer, 2014. doi:10.1007/978-3-662-43951-7_17.

17 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata Logics, and Infinite
Games: A Guide to Current Research, page 392. Springer-Verlag New York, Inc., New York,
NY, USA, 2002.

18 H. Peter Gumm. Elements of the general theory of coalgebras. LUATCS 99, Rand Afrikaans
University, 1999.

19 H. Peter Gumm. From t-coalgebras to filter structures and transition systems. In José Luiz
Fiadeiro, Neil Harman, Markus Roggenbach, and Jan Rutten, editors, Algebra and Coal-
gebra in Computer Science, pages 194–212, Berlin, Heidelberg, 2005. Springer Berlin Heidel-
berg. doi:doi.org/10.1007/11548133_13.

20 Ichiro Hasuo. Generic forward and backward simulations. In Prof. CONCUR, volume 4137
of Lecture Notes in Computer Science, pages 406–420, 2006. doi:10.1007/11817949_27.

21 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace semantics via coinduction.
Logical Methods in Computer Science, 3(4), 2007. doi:10.2168/LMCS-3(4:11)2007.

22 John E. Hopcroft, Rajeev Motwani, Rotwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages and Computability. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2nd edition, 2000.

23 Martin Hyland and John Power. The category theoretic understanding of universal algebra:
Lawvere theories and monads. Electronic Notes in Theoretical Computer Science, 172:437–
458, 2007. doi:10.1016/j.entcs.2007.02.019.

24 Bart Jacobs. Trace semantics for coalgebras. Electr. Notes Theor. Comput. Sci., 106:167–
184, 2004. doi:/doi.org/10.1016/j.entcs.2004.02.031.

25 Bart Jacobs. Coalgebraic trace semantics for combined possibilistic and probabilistic sys-
tems. In Proc. CMCS, Electronic Notes in Theoretical Computer Science, pages 131–152,
2008. doi:10.1016/j.entcs.2008.05.023.

26 Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace semantics via determinization. In
Proc. CMCS, volume 7399 of Lecture Notes in Computer Science, pages 109–129, 2012.
doi:10.1007/978-3-642-32784-1_7.

27 F. W. Lawvere. Functorial semantics of algebraic theories. Proc. Nat. Acad. Sci. U.S.A.,
50:869–872, 1963. doi:10.1073/pnas.50.5.869.

28 Saunders Mac Lane. Categories for the Working Mathematician, volume 5 ofGraduate Texts
in Mathematics. Springer-Verlang New York, 1978. doi:10.1007/978-1-4757-4721-8.

29 Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.
30 David Park. Concurrency and automata on infinite sequences. In Peter Deussen, editor,

Theoretical Computer Science, pages 167–183, Berlin, Heidelberg, 1981. Springer Berlin
Heidelberg.

31 Jean-Eric Pin and Dominique Perrin. Infinite Words: Automata, Semigroups, Logic and
Games, page 538. Elsevier, 2004.

32 Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer
Science, 249(1):3–80, 2000. doi:10.1016/S0304-3975(00)00056-6.

33 Roberto Segala. Modeling and Verification of Randomized Distributed Real-Time Systems.
PhD thesis, Massachusetts Institute of Technology, 1995.

CONCUR 2018

http://dx.doi.org/10.1007/978-3-642-19391-0_6
http://dx.doi.org/10.1007/978-3-642-19391-0_6
http://www.dmg.tuwien.ac.at/kuich/
http://www.dmg.tuwien.ac.at/kuich/
http://dx.doi.org/10.1007/978-3-662-43951-7_17
http://dx.doi.org/doi.org/10.1007/11548133_13
http://dx.doi.org/10.1007/11817949_27
http://dx.doi.org/10.2168/LMCS-3(4:11)2007
http://dx.doi.org/10.1016/j.entcs.2007.02.019
http://dx.doi.org//doi.org/10.1016/j.entcs.2004.02.031
http://dx.doi.org/10.1016/j.entcs.2008.05.023
http://dx.doi.org/10.1007/978-3-642-32784-1_7
http://dx.doi.org/10.1073/pnas.50.5.869
http://dx.doi.org/10.1007/978-1-4757-4721-8
http://dx.doi.org/10.1016/S0304-3975(00)00056-6

25:18 A Coalgebraic Take on (ω)-Regular Behaviour for Systems with Internal Moves

34 Roberto Segala and Nancy Lynch. Probabilistic simulations for probabilistic processes. In
Proc. CONCUR, volume 836 of Lecture Notes in Computer Science, pages 481–496, 1994.
doi:10.1007/978-3-540-48654-1_35.

35 Alexandra Silva and Bram Westerbaan. A coalgebraic view of ε-transitions. In Reiko Heckel
and Stefan Milius, editors, Proc. CALCO, volume 8089 of Lecture Notes in Computer
Science, pages 267–281. Springer, 2013. doi:10.1007/978-3-642-40206-7_20.

36 Natsuki Urabe, Shunsuke Shimizu, and Ichiro Hasuo. Coalgebraic Trace Semantics for
Buechi and Parity Automata. In Josée Desharnais and Radha Jagadeesan, editors, 27th
International Conference on Concurrency Theory (CONCUR 2016), volume 59 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 24:1–24:15, Dagstuhl, Germany,
2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CONCUR.
2016.24.

http://dx.doi.org/10.1007/978-3-540-48654-1_35
http://dx.doi.org/10.1007/978-3-642-40206-7_20
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.24
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.24

Relating Syntactic and Semantic Perturbations of
Hybrid Automata
Nima Roohi
Univeristy of Pennsylvania, USA
roohi2@cis.upenn.edu

Pavithra Prabhakar
Kansas State University, USA
http://people.cs.ksu.edu/~pprabhakar/
pprabhakar@ksu.edu

Mahesh Viswanathan
University of Illinois at Urbana-Champaign, USA
http://vmahesh.cs.illinois.edu/
vmahesh@illinois.edu

Abstract
We investigate how the semantics of a hybrid automaton deviates with respect to syntactic per-
turbations on the hybrid automaton. We consider syntactic perturbations of a hybrid automaton,
wherein the syntactic representations of its elements, namely, initial sets, invariants, guards, and
flows, in some logic are perturbed. Our main result establishes a continuity like property that
states that small perturbations in the syntax lead to small perturbations in the semantics. More
precisely, we show that for every real number ε > 0 and natural number k, there is a real num-
ber δ > 0 such that Hδ, the δ syntactic perturbation of a hybrid automaton H, is ε-simulation
equivalent to H up to k transition steps. As a byproduct, we obtain a proof that a bounded
safety verification tool such as dReach will eventually prove the safety of a safe hybrid automa-
ton design (when only non-strict inequalities are used in all constraints) if dReach iteratively
reduces the syntactic parameter δ that is used in checking approximate satisfiability. This has
an immediate application in counter-example validation in a CEGAR framework, namely, when
a counter-example is spurious, then we have a complete procedure for deducing the same.

2012 ACM Subject Classification Computer systems organization → Embedded and cyber-
physical systems, Theory of computation → Timed and hybrid models, Software and its engi-
neering → Model checking

Keywords and phrases Model Checking, Hybrid Automata, Approximation, Perturbation

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.26

Funding Mahesh Viswanathan was partially supported by NSF CSR 1422798, and Pavithra
Prabhakar was partially supported by NSF CAREER Award No. 1552668 and ONR YIP Award
No. N00014-17-1-257.

1 Introduction

Hybrid automata are a mathematical framework to model systems consisting of a digital
controller interacting with a continuously evolving physical process. Such cyberphysical
systems arise in a variety of applications ranging from every day smart home appliances
to safety critical systems like avionics software and self driving cars. Hybrid automata
have discrete modes corresponding to phases in the digital controller, where the physical

© Nima Roohi, Pavithra Prabhakar, and Mahesh Viswanathan;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 26; pp. 26:1–26:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:roohi2@cis.upenn.edu
http://people.cs.ksu.edu/~pprabhakar/
mailto:pprabhakar@ksu.edu
http://vmahesh.cs.illinois.edu/
mailto:vmahesh@illinois.edu
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 Relating Syntactic and Semantic Perturbations of Hybrid Automata

x := 0
y := 0

q0

q1 q2

q3

x = 1
y := 0

x ≤ 2
x := 0

y ≥ 2
y := 0

x = 0
y ≥ 2

(a) Timed automaton TA.

x := 0
y := 0

q0 q1
x < 2
y > 2

(b) Timed automaton TB .

Figure 1 Example timed automata whose syntactic perturbations are not semantically close.
Continuous variables x, y are clocks, i.e., ẋ = ẏ = 1 and the invariant in each state is 0 ≤ x, y ≤ 3.
The states q3 in TA and state q1 in TB are not reachable. But q1 and q3 are reachable in infinitesimal
syntactic perturbations TA and TB , respectively.

environment evolves continuously according to physics laws based on the actuator inputs
from the controller in that phase. Transitions between modes model discrete changes to
actuator inputs from the controller based on sensor feedback.

Formal models of cyberphysical systems are typically “best effort” descriptions that may
not be 100% faithful to the actual system. There are several sources of inaccuracies. Envi-
ronment parameters, like network latency, are estimated based on extensive experimentation.
Differential equations governing the behavior of the physical plant maybe imprecise, either
because of limitations in our mathematical understanding of the physics, or because of a
conscious effort to construct a tractable model by approximating. Sensor and actuator delays
might either be unpredictable or have been ignored. Finally, inaccuracies in sensor input to
the controller may not have been faithfully modeled.

For these reasons, a system modeled by hybrid automaton H, may, in practice, behave
like the automaton Hδ which is obtained from H by syntactically perturbing constants,
constraints on mode switches, and flow equations governing continuous evolution, by some
δ > 0. A natural question to ask is if the automaton H and its perturbation Hδ are
semantically close (in some well defined sense). Can a perturbed automaton Hδ be arbitrarily
close to H? The challenge in answering this question lies in the presence of discrete mode
changes – small changes to the behavior of a hybrid automaton could result in transitions
becoming enabled that yield unexpected behavior in the perturbed automaton.

For example, consider the timed automaton TA shown in Figure 1a. Variables x, y are
clocks (i.e., ẋ = ẏ = 1), and the invariant in every location is 0 ≤ x, y,≤ 3. Observe that,
when the automaton first visits q1 from q0, x = 1 and y is set to 0. Because of this, when
the automaton switches between q1 and q2, it spends at most 1 time unit in q1 and at least
1 time unit in q2. Further since all transitions into q1 set y to 0, whenever the automaton
transitions to q2, x is set to 0, and y is at most 1. Therefore, the transition to q3 is never
enabled, and q3 is not reachable. However, perturbing TA slightly by changing the guard
from q1 to q2 to x ≤ 2 + δ and the guard from q2 to q1 to y ≥ 2− δ (for some small δ) makes
q3 reachable – in the perturbed automaton, we can ensure that the automaton stays for
1 + nδ units during its nth visit to q1, and so after visiting q1 n∗ times (for n∗ that satisfies
1 + n∗δ ≥ 2), when we reach q2, the transition to q3 will be enabled. Thus, even a small
δ-perturbation of TA, results in an automaton T δA that is not semantically close, as q3 is
reachable in T δA but not reachable in TA. The difference between TA and T δA arises when

N. Roohi, P. Prabhakar, and M. Viswanathan 26:3

one considers executions with arbitrarily many transitions. Does the property of semantic
closeness hold if one considers executions of bounded number of steps? The answer once
again is no. Consider the example timed automaton TB in Figure 1b. Once again, x, y are
clocks and the invariant in every location is 0 ≤ x, y ≤ 3. The transition from q0 to q1 is not
enabled in TB and so q1 is not reachable. However, perturbing the guard to x < 2 + δ and
y > 2− δ, results in an automaton where q1 is reachable, and hence not semantically close
to TB .

The examples in Figure 1 illustrate that in general syntactic perturbations can result
in models that are not semantically close. Any affirmative results, need to account for
the subtle issues that arise in the examples of Figure 1. Our main result is that for a
fairly general class of hybrid automata, that include hybrid automata with highly non-linear
and non-deterministic dynamics, syntactic perturbations are closely related to semantic
perturbations. We consider hybrid automata H all of whose components, like flows and
invariants in modes, and guards and resets on transitions, are described using formulas in
first-order logic over reals built from constraints of the form f ≥ 0, where f is a continuous
function, and using conjunction, disjunction, and first order quantification. For a formula
ϕ in this logic, its perturbation by δ, ϕδ, is the formula obtained by replacing all atomic
constraints f ≥ 0 in ϕ by f + δ ≥ 0. Using the notion of perturbation of a constraint, we
define Hδ to be the hybrid automaton obtained from H by perturbing all constraints ϕ
appearing in H by δ. We show that for any ε ∈ R+ and k ∈ N, there is a δ ∈ R+ such that
Hδ is ε-simulated for k-steps by H. In other words, every execution ρ of Hδ (having at most
k discrete transitions) is simulated by an execution ρ′ of H such that the states of ρ and ρ′
are within distance ε at all times. Our definition of perturbation ensures that H is always
simulated (in the formal sense) by Hδ. Therefore, we show that H and Hδ are approximately
simulation equivalent for k steps. Thus, one way to informally interpret our results is as
follows. Let us consider the function JHK that maps an automaton to its transition system
semantics. Our results can be seen as saying that J·K is a “continuous” map with the metric
on the hybrid automata induced by δ perturbations.

The crux of our result is a technical lemma that maybe of independent interest. Consider
any formula ϕ in the logic defined in the previous paragraph. Let us assume that all free
variables are constrained to take values from a bounded interval I. If X is the set of free
variables of ϕ, then we can see ϕ as defining a subset (denoted JϕK) of IX in the standard
way. We show that, for any formula ϕ, and any ε > 0, there is a δ > 0 such that the set JϕδK
(ϕδ is the δ-perturbation of ϕ) is contained in the ε-ball around JϕK.

Our results on relating syntactic and semantic perturbations have implications in satis-
fiability checking as well as verification, that served as our initial motivation for studying
this problem. Our first application is in the realm of δ-complete decision procedures [10, 11],
that take as input a formula in first order logic and a parameter δ, and return either that
the formula is unsatisfiable or that a δ syntactic perturbation of it is satisfiable. Note that
in the case that the formula is unsatisfiable, but a δ-perturbation of it is satisfiable, the
procedure is allowed to return either of the answers. Our results guarantee that if the formula
is unsatisfiable, then there is a δ for which the procedure will return unsat, and such a δ can
be computed by simply starting from 1 and halving it iteratively. This has direct implications
on the bounded safety verification using a tool such as dReach [12], that uses a δ-complete
decision procedure to check the satisfiability of the formula encoding the bounded verification
problem of hybrid automata. More precisely, dReach takes as input a hybrid automaton
H, a bound on the discrete steps k, an unsafe set U and a δ, and outputs either that H is
safe with respect to U and k discrete steps, or that Hδ is unsafe. Our results imply that if

CONCUR 2018

26:4 Relating Syntactic and Semantic Perturbations of Hybrid Automata

H is safe, then there is a δ for which dReach will necessarily conclude safety, and such a δ
again can be computed. Finally, these results are relevant in the context of counter-example
guided abstraction refinement (CEGAR) based analysis for hybrid automata [26], wherein
the above guarantees on bounded safety verification imply that the validation succeeds if the
counter-example is spurious and hence the CEGAR loop makes progress.

Related Work

There has been previous work on relating syntactic perturbation of first order logic formulas
over reals to their semantic perturbation [8, 24,25]. These papers show that small syntactic
perturbations result in small semantic perturbations. However, the notion of distance between
semantic sets is different from ours. The distance between two subsets A,B of Rn is taken
to be the volume of the symmetric difference between A and B. Thus, in [8, 24, 25], the
distance between JϕK and JψK may be 0 even if JϕK 6= JψK. This is not true for us, and is one
of the reasons our proofs rely significantly on the Bolzano-Weierstrass theorem. In addition,
using the observations in [8, 24,25], one cannot prove that syntactically perturbing a hybrid
automaton results in a model that is ε-simulation equivalent.

The results in this paper are closely related to robustness verification [1,3,4,7,9,14,15,23,
27, 29]. In robustness verification, the goal is to develop algorithms to determine if a system
H and all its perturbations Hδ in some small neighborhood, satisfy the correctness property
ϕ. While establishing the semantic proximity of H and Hδ may help answer the robustness
verification question, verification per se, is not the focus of this paper. Our principal goal is to
answer the meta-mathematical question of the relationship between syntactic and semantic
perturbations of a hybrid automaton.

Another related line of work consists of methods for constructing simplified models
of hybrid systems that are semantically close to the original system [13, 17, 18, 20–22] to
reduce the complexity of verification. Semantic closeness is expressed using the notions
of approximate simulations and bisimulations which establish that every execution of one
system can be matched by a corresponding execution of the other system that stays “close”
to it. Approximate bisimulation is weaker than bisimulation, however, it allows for the
construction of simplified models that are semantically close for a large class of systems [20]
under certain stability assumptions.

2 Preliminaries

2.1 Functions and Sets
The set of natural, positive natural, real, non-negative real, and positive real numbers are
represented by N, N+, R, R≥0, and R+, respectively. For any two sets A and B, power
set of A is denoted by 2A, the Cartesian product of A and B is denoted by A × B, and
the set of functions from A to B is denoted by A → B or BA. For any two functions
f, g ∈ A→ R, and number r ∈ R, functions f ± g ∈ A→ R given by a 7→ f(a)± g(a), maps
a to addition/subtraction of f(a) and g(a), are pointwise addition/subtraction of f and g,
function rf ∈ A → R given by a 7→ rf(a) is the scalar product of r and f , and function
f + r ∈ A→ R given by a 7→ f(a) + r is f shifted by r. For any set of variables X, we denote
the set of functions and continuous functions from RX to R by FX and CX , respectively.

Let X and Y be two arbitrary disjoint sets of variables. For any two points ν1 ∈ RX and
ν2 ∈ RY , concatenation of ν1 with ν2, denoted by ν1 _ ν2, is defined to be ν ∈ RX∪Y that
maps x to ν1(x) if x ∈ X and to ν2(x), otherwise (note that ν1 _ ν2 = ν2 _ ν1). Similarly,

N. Roohi, P. Prabhakar, and M. Viswanathan 26:5

for any two sets of points V1 ⊆ RX and V2 ⊆ RY , V1 _ V2 := {ν1 _ ν2 | ν1 ∈ V1, ν2 ∈ V2}. We
use X ′ to denote the primed version of X (i.e. for every x ∈ X, variable x′ belongs to X ′).

For any two numbers a, b ∈ R, we define [a, b] := {x ∈ R | a ≤ x ≤ b} to be the interval
of points between a and b. We use I to denote the set of intervals.

2.2 Extended Metric Space and Distance Functions
Let M be an arbitrary set and d ∈M ×M → R ∪ {∞} be an arbitrary function. Ordered
pair (M,d) is called an extended metric space and d is called a distance function iff for any
x, y, z ∈M the following conditions hold:
1. d(x, y) ≥ 0,
2. d(x, y) = 0⇔ x = y,
3. d(x, y) = d(y, x), and
4. d(x, z) ≤ d(x, y) + d(y, z).
Let X be a finite set of variables, and M ⊆ RX be an arbitrary set. A well-known distance
function onM , denoted by d∞(ν1, ν2), maps any two points ν1, ν2 ∈M to max

x∈X
|ν1(x)−ν2(x)|.

Let f ∈ M ×M −→ R≥0 ∪ {∞} be an arbitrary function. For any point p ∈ M and
set A ⊆ M , we define f→(p,A) to be inf

a∈A
f(p, a); note that if A = ∅, this means that

f→(p,A) =∞. Intuitively, if f is a distance function then f→(p,A) is the distance of p from
A. Furthermore, for any set B ⊆M , f→(A,B) is defined to be sup

a∈A
f→(a,B). This means

that when A = ∅, f→(A,B) = 0. Intuitively, if f is a distance function then f→(A,B) is the
asymmetric distance from A to B 1. For any ε ∈ R≥0, Bε∞(A) := {p ∈M | d→∞(p,A) ≤ ε} is
the ε-ball around A. Also, closure of A is denoted by cl(A) and is defined to be B0

∞(A). A
set is closed iff it is equal to its closure. We say A ⊆M is bounded iff sup

a1,a2∈A
d∞(a1, a2) ∈ R.

Finally, a set is compact iff it is closed and bounded.

2.3 Predicates and Perturbations
In this paper we will consider predicates described in first order logic, where the assignment
to free variables is constrained to be within a bounded, closed interval. We fix I to be this
interval bounding the domain of all variables, for the rest of this paper. Further for a finite
set of variables X, BX will denote IX , i.e. the box of dimension |X| defined by interval I.

Let us fix a finite set of variables X. An atomic predicate with free variables in X is a
constraint of the form f ≥ 0, where f ∈ CX is a continuous function. We denote the set of
atomic propositions by P and those with X as their set of free variables by PX . For any two
functions f, g ∈ FX , we use f ≥ g, f ≤ g, and f = g, to denote f − g ≥ 0, g − f ≥ 0, and
min(f − g, g − f) ≥ 0, respectively. A predicate is defined according to the following BNF
rules, where f ∈ C is an arbitrary continuous function, x is an arbitrary variable, and I ⊆ I
is an arbitrary interval:

ϕ ::= f ≥ 0 | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x ∈ I·ϕ | ∀x ∈ I·ϕ | ϕ(X ′/X)

To simplify notation, instead of writing ∃x1, x2, . . . , xn ∈ I·ϕ and ∀x1, x2, . . . , xn ∈ I·ϕ,
we write ∃Y ∈ I·ϕ and ∀Y ∈ I·ϕ, where Y := {x1, x2, . . . , xn}. Formula ϕ(X ′/X) is the
usual substitution of every free variable x ∈ X by x′, and can be found in a standard logic
book like [5, pp. 45-51]. We implicitly assume that before carrying out the substitution, all

1 max{f→(A, B), f→(B, A)} is the Hausdorff distance between A and B [19, Section 7.3].

CONCUR 2018

26:6 Relating Syntactic and Semantic Perturbations of Hybrid Automata

bound variables in ϕ are renamed using fresh variables that are also distinct from X ′. For
any predicate ϕ, the set of free variables of ϕ, denoted by fvar(ϕ), is inductively defined
according to the following rules:
1. fvar(f) is X, where f is a function from RX to R,
2. fvar(ϕ ∨ ψ) and fvar(ϕ ∧ ψ) are defined to be fvar(ϕ) ∪ fvar(ψ),
3. fvar(∃y ∈ I·ϕ) and fvar(∀y ∈ I·ϕ) are defined to be fvar(ϕ) \ {y}, and
4. fvar(ϕ(X ′/X)) is defined to be (fvar(ϕ) \X) ∪ (fvar(ϕ) ∩X)′.

For any predicate ϕ with X := fvar(ϕ), we use JϕK to refer to the subset of points in the
box BX that satisfy the predicate ϕ. We denote the set of predicates with Φ and those with
X as their set of free variables by ΦX . We may write ϕ(X) to emphasize fvar(ϕ) = X. Also,
for any point ν ∈ RX , we use ν(X ′/X) to denote the same point in RX′ , i.e. a function that
maps x′ to ν(x).

For any predicate ϕ ∈ Φ and value δ ∈ R, perturbation of ϕ by δ is denoted by ϕδ and is
a predicate constructed from ϕ by replacing all atomic predicates of the form f ≥ 0 with
f + δ ≥ 0. Note that JϕK = Jϕ0K, and for any δ1 ≤ δ2 ∈ R, we have Jϕδ1K ⊆ Jϕδ2K. For any
two predicates ϕ1 ∈ ΦX and ϕ2 ∈ ΦY , and δ ∈ R, it is easy to see that J(ϕ1∧ϕ2)δK = Jϕδ1∧ϕδ2K
and J(ϕ1 ∨ ϕ2)δK = Jϕδ1 ∨ ϕδ2K. Furthermore, if X = Y then Jϕδ1 ∧ ϕδ2K = Jϕδ1K ∩ Jϕδ2K and
Jϕδ1 ∨ ϕδ2K = Jϕδ1K ∪ Jϕδ2K.

I Definition 1 (Arbitrary Over-Approximation). For any predicate ϕ ∈ Φ, we say ϕ can be
arbitrarily over-approximated iff the following is true:

∀ε ∈ R+·∃δ ∈ R+·JϕδK ⊆ Bε∞(JϕK)

We end this section with an important result that is used many times in our proofs.

I Theorem 2 (Bolzano-Weierstrass [2]). For any finite set of variables X, a bounded set
M ⊂ RX , and τ an infinite sequence of points in M , τ has a convergent subsequence.

2.4 Transition Systems and Hybrid Automata
I Definition 3 (Transition Systems). A transition system T is a tuple (S, Σ,−→, Sinit) in which

S is a (possibly infinite) set of states,
Σ is a (possibly infinite) set of labels,
−→⊆ S× Σ× S is a transition relation, and
Sinit ⊆ S is a set of initial states.

We denote different elements of T by adding a subscript to their names. For example, we
use ST to denote the set of states of T . We may omit the subscript whenever it is clear from
the context. We write s σ−→ s′ instead of (s, σ, s′) ∈−→, and s −→ s′ to denote ∃σ ∈ Σ·s σ−→ s′.

I Definition 4 (Syntax of Hybrid Automata). A hybrid automaton H is specified by a tuple
(Q, X, E, T, I, F, S, D, R, Qinit, Xinit) in which

Q is a non-empty finite set of locations.
X is a non-empty finite set of variables that does not contain variable t.
E is a finite set of edges.
T ∈ R≥0 is a continuous transition time-bound. Wlog., we assume [0, T] ⊆ I.
I ∈ Q→ ΦX maps each location to a predicate as the invariant of that location.
F ∈ Q→ ΦX∪X′∪{t}, maps each location to a predicate as the flow of that location.
S, D ∈ E→ Q map each edge to its source and destination locations, respectively.
R ∈ E→ ΦX∪X′ maps each edge to its transition relation.

N. Roohi, P. Prabhakar, and M. Viswanathan 26:7

Qinit ∈ 2Q is a set of initial locations.
Xinit ∈ Qinit → ΦX maps each initial location to a predicate as the initial valuations of that
location.

We denote different elements of H by adding a subscript to their names. For example, we
use XH to denote the set of variables of H. We may omit the subscript whenever it is clear
from the context. Finally, we define Inv(H) :=

∨
q∈Q I(q) to be the union of invariants in H.

Note that Inv(H) ∈ ΦX.

I Definition 5 (Semantics of Hybrid Automata). Semantics of a hybrid automaton H is
defined using the transition system JHK = (S, Σ,−→, Sinit) in which

S := Q× BX,
Σ := E ∪ [0, T] 2,
Sinit :=

{
(q, ν) | q ∈ Qinit ∧ ν ∈ JXinit(q) ∧ I(q)K

}
, and

−→:=−→c ∪ −→d where
→c is the set of continuous transitions and for any r ∈ R we have (q, ν) r−→c (q′, ν′) iff
1. r ∈ [0, T],
2. q = q′,
3. ν ∈ JI(q)K,
4. ν′ ∈ JI(q′)K, and
5. ν _ ν′(X′/X) _ {t 7→ r} ∈ JF(q)K,
→d is the set of discrete transitions and for any e ∈ E we have (q, ν) e−→d (q′, ν′) iff
1. q = S(e),
2. q′ = D(e),
3. ν ∈ JI(q)K,
4. ν′ ∈ JI(q′)K, and
5. ν _ ν′(X′/X) ∈ JR(e)K.

For any two states s1 := (q1, ν1), s2 := (q2, ν2) ∈ S, we extend definition of d∞(s1, s2) to be
∞ if q1 6= q2 and d∞(ν1, ν2) otherwise. For any state s ∈ S, we define CPostH(s) := {s′ ∈
S | ∃t ∈ [0, T]·s t−→ s′}. Similarly, for any state s ∈ S and e ∈ E, we define DPosteH(s) :=
{s′ ∈ S | s e−→ s′}. Also, for any set of states S ⊆ S, we define CPostH(S) :=

⋃
s∈S CPostH(s),

and DPosteH(S) :=
⋃
s∈S DPost

e
H(s). To simplify notation, we may drop the subscript H if

it is clear from the context. Finally, for any number k ∈ N, we define reachk(H) to be the
set of states in S that can be reached from Sinit through at most k function applications of
CPost or DPost.

Next, we define a notion of distance between hybrid automata and a related notion of
simulation equivalence.

I Definition 6 (k-Step Asymmetric Distance). For any two hybrid automata H1 and H2 with
the same set of locations, variables, and edges, and for any two states s1 ∈ S, and s2 ∈ S, we
define adist0(s1, s2) to be d∞(s1, s2). For any k ∈ N+, we inductively define adistk(s1, s2)
to be maximum of the following values:

d∞(s1, s2)
adist→k−1(CPostH1(s1), CPostH2(s2))

max
e∈E

adist→k−1
(
DPosteH1

(s1), DPosteH2
(s2)

)
2 Wlog. we assume E and R are disjoint.

CONCUR 2018

26:8 Relating Syntactic and Semantic Perturbations of Hybrid Automata

Whenever, H1 and/or H2 are not clear from the context, we use adist→kH1,H2
. Finally, we define

adist→k (H1,H2) to be adist→kH1,H2

(
Sinit
H1
, Sinit
H2

)
.

I Definition 7 (k-Step ε-Simulation). For any two hybrid automata H1 and H2 with the
same set of locations, variables, and edges, and value ε ∈ R≥0, a relation R ⊆ S× S is called
a 0-step ε-simulation iff ∀s1, s2 ∈ S·s1Rs2 ⇒ d∞(s1, s2) < ε. For any k ∈ N+, R ⊆ S× S is
called a k-step ε-simulation iff there exists R′ ⊆ S× S, a k − 1-step ε-simulation, such that
for any s1, s2 ∈ S, if s1Rs2 then d∞(s1, s2) < ε and both the following conditions hold:
∀s′1 ∈ S, e ∈ E·s1

e−→ s′1 ⇒ ∃s′2 ∈ S·s2
e−→ s′2 ∧ s′1R′s′2

∀s′1 ∈ S, t ∈ R·s1
t−→ s′1 ⇒ ∃s′2 ∈ S, t′ ∈ R·s2

t′−→ s′2 ∧ s′1R′s′2
We say H1 is k-step ε-similar to H2, denoted by H1 �εk H2 iff there is a k-step ε-simulation
relation R such that ∀s1 ∈ Sinit

H1 ·∃s2 ∈ Sinit
H2 ·s1Rs2.

I Proposition 8 (Equivalence of k-Step Distance and ε-Simulation). For any two hybrid
automata H1 and H2, numbers k ∈ N and ε ∈ R+, H1 �εk H2 iff adist→k (H1,H2) < ε.

I Definition 9 (Perturbation of hybrid automata). For any hybrid automaton H and pertur-
bation δ ∈ R≥0, perturbation of H by δ, denoted by Hδ, is obtained from H by perturbing
all of its predicates by δ. More precisely, QHδ := QH, XHδ := XH, EHδ := EH, THδ := TH,
SHδ := SH, DHδ := DH, and Qinit

Hδ := Qinit
H . Furthermore, for any q ∈ Q and e ∈ E, we

have IHδ(q) := (IH(q))δ, FHδ(q) := (FH(q))δ, RHδ(e) := (RH(e))δ, and if q ∈ Qinit then
Xinit
Hδ(q) := (Xinit

H (q))δ.

It is easy to see, for any hybrid automaton H, perturbation δ ∈ R≥0, states s, s′ ∈ S,
time t ∈ R, and edge e ∈ E, we have s t−→JHK s

′ implies s t−→JHδK s
′, and s e−→JHK s

′ implies
s

e−→JHδK s
′. Also, if δ = 0 then JHδK = JHK. Finally, for any k ∈ N, it is easy to see

adist→k (H,Hδ) = 0. However, adist→k (Hδ,H) is not necessarily 0.

2.5 Encoding States, CPost, and DPost as Predicates

Since in Section 2.3, we only allow variables to be quantified over intervals, wlog., for the
rest of this paper and for any hybrid automaton H, we assume
1. QH is the set {0, 1, . . . , |Q| − 1}, and
2. XH contains variable xQ.
Variable xQ is used to model the current location. For any location q ∈ Q and edge e ∈ E,
wlog., we assume

JI(q)K = JxQ = q ∧ I(q)K
JF(q)K = JxQ = q ∧ F(q)K
JR(e)K = JxQ = S(e) ∧ x′Q = D(e) ∧ R(e)K
q ∈ Qinit ⇒ JXinit(q)K = JxQ = q ∧ Xinit(q)K

Let ϕ ∈ ΦX be a predicate encoding a subset of states in SJHK. For any edge e ∈ E, we
define DPosteH(ϕ) to be (∃X ∈ I·ϕ ∧ ψ1(X) ∧ ψ2(X′) ∧ ψ3(X ∪ X′))(X/X′), where
1. ψ1 := I(S(e)) ensures source location is correct and its invariant is satisfied,
2. ψ2 := I(D(e))(X′/X) ensures destination location is correct and its invariant is satisfied,

and
3. ψ3 := R(e) ensures transition relation is satisfied.

N. Roohi, P. Prabhakar, and M. Viswanathan 26:9

At the end of formula, substituting every free variable x′ ∈ X′ by x ∈ X, ensures all free
variables of DPosteH(ϕ) belong to X 3. Note that DPosteH(ϕ) belongs to ΦX.

For any q ∈ Q, we define CPostqH(ϕ) to be (∃X ∈ I, t ∈ [0, T]·ϕ ∧ ψ1(X) ∧ ψ2(X′) ∧
ψ3(X ∪ X′ ∪ {t}))(X/X′), where
1. ψ1 := I(q) ensures source location is correct and its invariant is satisfied,
2. ψ2 := I(q)(X′/X) ensures location does not change and its invariant will remain satisfied,

and
3. ψ3 := F(q) ensures flow relation is satisfied.
At the end of formula, substituting every free variable x′ ∈ X′ by x ∈ X, ensures all free
variables of CPostqH(ϕ) belong to X. We also define CPostH(ϕ) to be

∨
q∈Q CPost

q
H(ϕ).

Note that CPostqH(ϕ) and CPostH(ϕ) are both members of ΦX. Finally, it is easy to see
that for any e ∈ E and ϕ ∈ ΦX we have JDPosteH(ϕ)K = DPosteH(JϕK) and JCPostH(ϕ)K =
CPostH(JϕK) [9, 12].

3 Arbitrary Over-Approximation of a Predicate

The crux of our result on the relation between syntactic and semantic perturbations of hybrid
automata relies on the observation that we can arbitrarily over-approximate any predicate,
which is formalized in Theorem 10.

I Theorem 10. For any set of variables X and predicate ϕ ∈ ΦX , ϕ can be arbitrarily
over-approximated.

The proof is by induction on the structure of ϕ, and relies on an important topological
property of the formulas ϕ ∈ ΦX , namely, that the set of satisfiable assignments represented
by the formulas is closed. The proofs have been moved to the appendix in the interest of
space.

I Theorem 11. For any finite set of variables X and predicate ϕ ∈ ΦX , the set JϕK is closed.

Note that requiring quantified variables to range over bounded intervals is necessary here.
For example, let P := (xy = 1). Clearly JP K is a closed set. However, J∃y ∈ R·P K = {x ∈
I | x 6= 0} may not be closed anymore (if 0 ∈ I). Also, even though we do not allow strict
inequalities in the syntax, there are typically ways in which a constraint like f(X) > 0 can
be encoded. However, these different ways are effectively ruled out. Here are some examples
to illustrate this point.
1. The formula ∃ε ∈ R+·f(X) − ε ≥ 0 is ruled out because we only allow quantification

over closed intervals.
2. Consider ∃y ∈ [0, 1]·0 ≤ y ≤ 1 ∧ f(X)− g(y) ≥ 0, where g(y) = 1 if y = 0, and g(y) = y

if y 6= 0. This is also not allowed because the function g is discontinuous.
3. Finally, ∃y ∈ R·y ≥ 1 ∧ f(X)− 1

y ≥ 0 is ruled out because we only allow quantification
over bounded intervals.

3 As we mentioned in Section 2.3, in order to prevent variable capture that may happen as a result of a
substitution, before every substitution, all bound variables are renamed to some fresh variable distinct
from those in X or X′.

CONCUR 2018

26:10 Relating Syntactic and Semantic Perturbations of Hybrid Automata

4 Arbitrary Over-Approximation of Hybrid Automata

In Section 2.4, we defined hybrid automata, its semantics, its perturbation, as well as bounded
step distance function. In Theorem 10, we proved that for any set of variables X, every
predicate in ΦX can be arbitrarily over-approximated. Our main result of this section is that
for any bounded number of steps, any hybrid automaton can be arbitrarily over-approximated.
In other words, it is always possible to make sure a hybrid automaton and its perturbation
behave similarly for at least k steps. Theorem 14 formally states this result. Before, we
present this theorem and its proof, we will introduce two lemmas that will help us prove our
main result.

I Lemma 12 (CPost and DPost are Continuous). For any hybrid automaton H and edge
e ∈ E, functions CPostH and DPosteH are continuous with respect to d→∞ and perturbation.
More precisely,

∀ν ∈ JInv(H)K, ε ∈ R+·∃δ ∈ R+·∀ν′ ∈ JInv(Hδ)K·d∞(ν′, ν) ≤ δ ⇒

d→∞(CPostHδ(ν′), CPostH(ν)) < ε ∧ d→∞(DPosteHδ(ν
′), DPosteH(ν)) < ε

Proof. We prove this lemma for CPost. Proof of DPoste can be obtained by replacing every
CPost with DPoste. For the purpose of contradiction suppose this result does not hold for
some ν ∈ JInv(H)K, ε ∈ R+. For any n ∈ N, define δn := 1

n+1 , and let ν′n ∈ JInv(Hδn)K be a
point for which d∞(ν′n, ν) ≤ δn and d→∞(CPostHδn (ν′n), CPostH(ν)) ≥ ε are both true.

Define ϕ :=
∧
x∈X(x = ν(x)). Since ϕ ∈ PX, we know CPostH(ϕ) ∈ ΦX. Use Theorem 10

and fix n ∈ N such that J(CPostH(ϕ))δnK ⊆ Bε/2
∞ (JCPostH(ϕ)K). Definition of CPostH(ϕ)

ensures the following is true, because the two sides of the equality are syntactically the same.
∀δ ∈ R≥0·JCPostHδ(ϕδ)K = J(CPostH(ϕ))δK

Therefore, knowing ∀n ∈ N·ν′n ∈ JϕδnK, we conclude
CPostHδn (ν′n) ⊆ CPostHδn (JϕδnK) = JCPostHδn (ϕδn)K ⊆

Bε/2
∞ (JCPostH(ϕ)K) = Bε/2

∞ (CPostH(ν))
This means d→∞(CPostHδn (ν′n), CPostH(ν)) ≤ ε

2 , which is a contradiction. J

I Lemma 13 (adist is Continuous). For any hybrid automaton H and number k ∈ N,
distance function adist→k is continuous with respect to d→∞ and perturbation. More precisely,

∀ϕ ∈ ΦX, ε ∈ R+·∃δ ∈ R+·∀ψ ∈ ΦX·
JϕK ⊆ JInv(H)K ∧ JψK ⊆ JInv(Hδ)K ∧ d→∞(JψK, JϕK) ≤ δ ⇒ adist→kHδ,H

(JψK, JϕK) < ε

Proof. Proof is by induction on k. Base of induction, where k = 0, is trivial because adist→0
and d→∞ are identical. For the purpose of contradiction, suppose the inductive step does not
hold for some ε ∈ R+ and ϕ ∈ ΦX, where JϕK ⊆ JInv(H)K. For any n ∈ N, define δn := ε

n+3 ,
and let ψn ∈ ΦX be a predicate for which JψnK ⊆ JInv(Hδn)K, d→∞(JψnK, JϕK) ≤ δn ≤ ε

3 , and
adist→k+1Hδ,H

(JψnK, JϕK) ≥ ε are all true. We immediately know JϕK 6= ∅ ∧ ∀n ∈ N· ∧ JψnK 6= ∅.
Using the properties of supremum and infimum, for any n ∈ N, let ν′n ∈ JψnK be such that
∀ν ∈ JϕK·adistk+1(ν′n, ν) ≥ ε

2
Let νn ∈ JϕK ∩ Bδn∞(ν′n) be an arbitrary point (the set JϕK ∩ Bδn∞(ν′n) is never empty). Using
definition of adistk+1, we know at least one of the following conditions is true:

adist→k (CPostHδn (ν′n), CPostH(νn)) ≥ ε

2
adist→k (DPosteHδn (ν′n), DPosteH(νn)) ≥ ε

2 , for some e ∈ E

N. Roohi, P. Prabhakar, and M. Viswanathan 26:11

We assume the first condition is true. Proof of the other case can be obtained by replacing
every CPost with DPoste in the rest of this proof. Define ϕ′n :=

∧
x∈X(x = νn(x)) and

ψ′n :=
∧
x∈X(x = ν′n(x)). We know ϕ′n, ψ

′
n ∈ PX, and hence ϕ′′n := CPostH(ϕ′n) and ψ′′n :=

CPostHδn (ψ′n) are both members of ΦX. For any n ∈ N, we know Jϕ′′nK ⊆ JInv(H)K and
Jψ′′nK ⊆ JInv(Hδn)K are both true. Use induction hypothesis and find N ∈ N such that
∀n ∈ N·d→∞(Jψ′′nK, Jϕ′′nK) ≤ δN ⇒ adist→kHδn,H

(Jψ′′nK, Jϕ′′nK) <
ε

2
We conclude the following which is in contradiction with Lemma 12.
∀n ∈ N·νn ∈ JInv(H)K ∧ ν′n ∈ JInv(Hδn)K ∧ d→∞(ν′n, νn) ≤ δn∧

d→∞(CPostHδn (ν′n), CPostH(νn)) > δN J

I Theorem 14. For any hybrid automaton H, bounded step n ∈ N, and ε ∈ R+, there is
δ ∈ R+ such that

∀k ∈ {0, . . . , n}·adist→kHδ,H

(
Sinit

JHδK, S
init
JHK

)
< ε

Proof. Since n is given in advance and adist→kHδ,H
(·, ·) is a non-decreasing function with respect

to k, it is enough to prove this result for only k := n. Let ϕ := Inv(H) ∧
∨
q∈Qinit

H
Xinit(q)

be a formula in ΦX that represents initial states of H. We know Sinit
JHK = JϕK and ∀δ ∈

R·Sinit
JHδK = JϕδK. Using Lemma 13, find η ∈ R+ such that ∀δ ∈ R·d→∞(JϕδK, JϕK) < η ⇒

adist→kHη,H
(JϕδK, JϕK) < ε. Complete the proof by using Theorem 10 and finding δk ∈ R+ such

that d→∞(JϕδkK, JϕK) < η. J

I Corollary 15 (Arbitrary Over-Approximation of Reachable Sets). For any hybrid automaton
H, reachable set of H can be arbitrarily over-approximated. More precisely,

∀ε ∈ R+, k ∈ N·∃δ ∈ R+·reachk(Hδ) ⊆ Bε∞(reachk(H))

Proof. Immediate from Theorem 14. J

I Corollary 16 (Bounded ε-Simulation). For any hybrid automaton H, k ∈ N, and ε ∈ R+,
there is δ ∈ R+ such that H and Hδ ε-simulate each other for at least k steps.

∀ε ∈ R+, k ∈ N·∃δ ∈ R+·Hδ �εk H ∧H�εk Hδ
Proof. H�εk Hδ is trivially true for any ε ∈ R≥0 and k ∈ N. ε-simulation of Hδ by H for at
least k steps is immediate from Theorem 14 and Proposition 8. J

5 Applications to Safety Model Checking

In Section 3 and Section 4 we proved some results about the ability to arbitrarily over-
approximate sets and hybrid automata. In this section, we demonstrate three applications of
those results.

5.1 Co-completeness of δ-Complete Decision Procedures
It is well-known that the first order theory of reals with addition, multiplication, and
trigonometric functions is undecidable (one can easily encode integers in this logic) [5,
Chapter 3]. Authors in [10, 11] came up with an interesting compromise in their decision
procedure for checking satisfiability of these formulas. For any formula ϕ ∈ Φ, their so called
δ-complete decision procedure returns either unsat or δ-sat. If the output is unsat, we
know JϕK = ∅. However, if the output is δ-sat, we only know JϕδK 6= ∅. Parameter δ ∈ R+

CONCUR 2018

26:12 Relating Syntactic and Semantic Perturbations of Hybrid Automata

is an input to their algorithm and can be made arbitrary small. The algorithm in [10,11],
imposes one additional constraint on formulas: Every function used in atomic propositions of
a formula must be type 2 computable [6, 16, 28]. Intuitively, a function is type 2 computable
iff an arbitrary approximation of its value can be computed from arbitrary approximations of
its inputs. This condition is stronger than continuity requirement that we have in this paper.
Nevertheless, it still includes arithmetic, trigonometric, logarithmic, exponential, absolute
value, minimum, and maximum functions as well as solutions of many ordinary differential
equations.

Observe that δ-complete decision procedures provide approximate answers to the sat-
isfiability question. So even if a formula ϕ is unsatisfiable, there is no guarantee that the
δ-decision procedure will answer unsat. The procedure is guaranteed to answer unsat only
if it is called with a δ such that both ϕ and ϕδ are unsatisfiable. Does such a δ exist for all
unsatisfiable ϕ? Can it be computed? Theorem 10 answers in the affirmative for both these
questions – the value of δ can also be computed by repeatedly calling a δ-decision procedure
for smaller and smaller δ. Theorem 17 formalizes this result.

I Theorem 17. Let ϕ ∈ Φ be an arbitrary predicate with JϕK = ∅ and every function is
type 2 computable. One can compute δ ∈ R+ for which JϕδK = ∅.

We require that the predicates only use non-strict inequalities, whereas no such restriction
is imposed on the inputs to the δ-decision procedures [10,11]. However, predicates with strict
inequalities can be easily handled using predicates with non-strict inequalities. Consider
ϕ, a formula with some strict inequalities, and let ϕ′ be the formula obtained by changing
each strict inequality in ϕ to the corresponding non-strict one. Observe that if a δ-complete
decision procedure says ϕ′ is unsat, we know unsat is a valid output for ϕ as well. More
interestingly, output δ-sat for ϕ′ means 2δ-sat is a valid output for ϕ.

5.2 Completeness of dReach
δ-complete decision procedures have been used in [12] to develop a tool called dReach for
bounded time, bounded step safety model checking of non-linear hybrid automaton H. The
tool first takes H and unsafe predicate U ∈ ΦX as input, and then encodes the safety problem
into a satisfiability problem of a formula that is supported by the algorithm in [10,11]. Finally,
it checks its satisfiability and outputs the results. Possible outputs are either unsat, which
means reachk(H) ∩ JUK = ∅, and δ-sat, which means reachk(Hδ) ∩ JUδK 6= ∅. However, in
case the input hybrid automaton is k-step safe, it is not known if a value of δ exists, such
that reachk(Hδ) ∩ JU δK remains an empty set. Theorem 18 is an immediate consequence of
Corollary 15 and Theorem 17.

I Theorem 18. Let H be a hybrid automaton and U ∈ ΦX be an unsafe predicate. If syntax
of H and U is supported by dReach then for any k ∈ N, if H is k-step safe then one can
compute δ ∈ R+ for which dReach answers unsat (i.e. safe).

Note that the formulas considered here are more general that what is supported in dReach.
As argued in the previous section, our restriction to non-strict inequalities does not constrain
things when using δ-complete decision procedures. Flows specified using ordinary differential
equations in dReach, define continuous functions and thus are handled by our results. We
could also easily change the formula describing the continuous post predicate by requiring
∀t ∈ [0, T]·I(q)(f(t)), to ensure that the continuous state satisfies the invariant at all times
during a continuous transition.

δ-complete decision procedures can also be used for counter-example validation in a
CEGAR-based model checking framework [26]. Theorem 18 can also be used to provide
guarantees of progress for such tools – if a counter-example is spurious then such δ-decision
procedures are guaranteed to discover it.

N. Roohi, P. Prabhakar, and M. Viswanathan 26:13

6 Conclusion

We investigated whether syntactic perturbations of hybrid automata whose elements are
specified in a logic, are semantically close. Such a result does not hold in general as illustrated
by the timed automata in Figures 1a and 1b. We identify a fairly general class of systems
for which, for every ε > 0 and k, there is a δ > 0 such that δ-syntactic perturbations are
ε-simulation equivalent upto k-discrete steps. These results are important in the context of
providing certain theoretical guarantees on δ-decision procedures and bounded verification
using the same procedures.

Our results about the semantic closeness of δ-syntactic perturbations only apply when
one considers a bounded number of discrete jumps. It seems unlikely that such a result
can be extended when there is no a priori bound on the number of discrete steps; this is
illustrated by the timed automaton in Figure 1a. One interesting future direction consists of
exploring the computability issues with respect to the continuity property of the semantics.
More precisely, given an ε, can we effectively compute a δ such that δ syntactic perturbation
on the hybrid automaton lead to at most ε deviations in the semantics.

References
1 E. Asarin and A. Bouajjani. Perturbed turing machines and hybrid systems. In LICS,

pages 269–278, 2001.
2 R.G. Bartle and D.R. Sherbert. Introduction to Real Analysis, 4th Edition. John Wiley &

Sons, Incorporated, 2011.
3 P. Bouyer, N. Markey, and P.-A. Reynier. Robust model-checking of linear-time properties

in timed automata. In Proceedings of LATIN, pages 238–249, 2006.
4 Patricia Bouyer, Nicolas Markey, and Ocan Sankur. Robust model-checking of timed au-

tomata via pumping in channel machines. In Proceedings of FORMATS, pages 97–112,
2011.

5 Aaron R. Bradley and Zohar Manna. The Calculus of Computation: Decision Procedures
with Applications to Verification. Springer-Verlag, 2007.

6 Vasco Brattka, Peter Hertling, and Klaus Weihrauch. A Tutorial on Computable Analysis,
pages 425–491. Springer New York, New York, NY, 2008.

7 Martin de Wulf, Laurent Doyen, Nicolas Markey, and Jean-François Raskin. Robust safety
of timed automata. Formal Methods in System Design, 33(1):45–84, 2008.

8 Peter Franek, Stefan Ratschan, and Piotr Zgliczynski. Quasi-decidability of a fragment
of the first-order theory of real numbers. Journal of Automated Reasoning, 57(2):157–185,
Aug 2016.

9 Martin Fränzle. Analysis of Hybrid Systems: An Ounce of Realism Can Save an Infinity
of States, pages 126–139. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

10 Sicun Gao, Jeremy Avigad, and Edmund M. Clarke. δ-completee decision procedures for
satisfiability over the reals. In IJCAR, pages 286–300, Berlin, Heidelberg, 2012. Springer-
Verlag.

11 Sicun Gao, Jeremy Avigad, and Edmund M. Clarke. Delta-decidability over the reals. In
LICS, pages 305–314. IEEE Computer Society, 2012.

12 Sicun Gao, Soonho Kong, Wei Chen, and Edmund M. Clarke. Delta-complete analysis for
bounded reachability of hybrid systems. CoRR, abs/1404.7171, 2014.

13 Antoine Girard. Approximately bisimilar abstractions of incrementally stable finite or
infinite dimensional systems. In 53rd IEEE Conference on Decision and Control, CDC
2014, Los Angeles, CA, USA, December 15-17, 2014, pages 824–829, 2014.

CONCUR 2018

26:14 Relating Syntactic and Semantic Perturbations of Hybrid Automata

14 Vineet Gupta, Thomas A. Henzinger, and Radha Jagadeesan. Robust timed automata,
pages 331–345. Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

15 Thomas A. Henzinger and Jean-François Raskin. Robust Undecidability of Timed and
Hybrid Systems, pages 145–159. Springer Berlin Heidelberg, Berlin, Heidelberg, 2000.

16 K.I. Ko. Complexity theory of real functions. Progress in theoretical computer science.
Birkhäuser, 1991.

17 Ruggero Lanotte and Simone Tini. Taylor approximation for hybrid systems. In Manfred
Morari and Lothar Thiele, editors, Hybrid Systems: Computation and Control, pages 402–
416, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

18 Ruggero Lanotte and Simone Tini. Taylor approximation for hybrid systems. Information
and Computation, 205(11):1575–1607, 2007.

19 M. O’Searcoid. Metric Spaces. Springer Undergraduate Mathematics Series. Springer Lon-
don, 2006.

20 Giordano Pola, Antoine Girard, and Paulo Tabuada. Approximately bisimilar symbolic
models for nonlinear control systems. Automatica, 44(10):2508–2516, 2008.

21 Pavithra Prabhakar and Mahesh Viswanathan. A dynamic algorithm for approximate
flow computations. In Proceedings of the 14th ACM International Conference on Hybrid
Systems: Computation and Control, HSCC 2011, Chicago, IL, USA, April 12-14, 2011,
pages 133–142, 2011.

22 Pavithra Prabhakar, Vladimeros Vladimerou, Mahesh Viswanathan, and Geir E. Dullerud.
Verifying tolerant systems using polynomial approximations. In Proceedings of the 30th
IEEE Real-Time Systems Symposium, RTSS 2009, Washington, DC, USA, 1-4 December
2009, pages 181–190, 2009.

23 Anuj Puri. Dynamical properties of timed automata. Discrete Event Dynamic Systems,
10(1-2):87–113, 2000.

24 Stefan Ratschan. Quantified constraints under perturbation. Journal of Symbolic Compu-
tation, 33(4):493–505, 2002.

25 Stefan Ratschan. Efficient solving of quantified inequality constraints over the real numbers.
ACM Trans. Comput. Logic, 7(4):723–748, 2006.

26 Nima Roohi, Pavithra Prabhakar, and Mahesh Viswanathan. HARE: A Hybrid Abstraction
Refinement Engine for Verifying Non-linear Hybrid Automata, pages 573–588. Springer,
2017.

27 Nima Roohi, Pavithra Prabhakar, and Mahesh Viswanathan. Robust model checking of
timed automata under clock drifts. In HSCC, pages 153–162. ACM, 2017.

28 K. Weihrauch. Computable Analysis: An Introduction. Texts in Theoretical Computer
Science. An EATCS Series. Springer Berlin Heidelberg, 2000.

29 M. De Wulf, L. Doyen, N. Markey, and J.-F. Raskin. Robustness and implementability of
timed automata. In Proceedings of FORMATS, pages 118–133, 2004.

A Proofs

In this section we present all the proofs that we skipped in the main section of the paper.

I Theorem 11. For any finite set of variables X and predicate ϕ ∈ ΦX , the set JϕK is closed.

Proof. Immediate from an induction on the structure of ϕ, using Lemma 19, Lemma 20, and
Lemma 21 (closedness of finite disjunctions and closedness of finite conjunctions of closed
sets are trivial facts). J

I Theorem 10. For any set of variables X and predicate ϕ ∈ ΦX , ϕ can be arbitrarily
over-approximated.

N. Roohi, P. Prabhakar, and M. Viswanathan 26:15

Proof. Immediate from an induction on the structure of ϕ using Lemma 22, Lemma 23,
Lemma 24, Lemma 25, and Lemma 26. J

I Lemma 19. For any finite set of variables X and predicate P ∈ PX , JP K is closed.

Proof. This is a trivial proof once we noticed all functions in P are continuous and all
inequalities in P are non-strict. J

I Lemma 20. For any finite sets of variables X, variable y, interval I, and predicate ϕ ∈ ΦX ,
if JϕK is closed then J∃y ∈ I·ϕK is also closed.

Proof. Let ψ be ∃y ∈ I·ϕ. If I is an empty set then JψK = ∅. Otherwise, if y 6∈ X then
JψK = JφK. Otherwise, let ν0, ν1, ν2, . . . be a sequence of points in J∃y ∈ I·ϕK that converges
to ν∗. For every n ∈ N, there is ν′n ∈ JϕK such that ν′n(y) ∈ I and ∀x ∈ X\{y}·ν′n(x) = νn(x).
We know JϕK is bounded. Therefore, from Theorem 2 and closeness of I, there is a sub-
sequence with indices m0 < m1 < m2 < · · · such that ν′m0

, ν′m1
, ν′m2

, . . . converges to ν′∗
with ν′∗(y) ∈ I. We know ν′∗ ∈ JϕK, since it is closed, and ν′∗ agrees with ν∗ on every
variable x ∈ X \ {y}. Therefore, ν∗ ∈ J∃y ∈ I·ϕK. J

I Lemma 21. For any finite sets of variables X, variable y, interval I, and predicate ϕ ∈ ΦX ,
if JϕK is closed then J∀y ∈ I·ϕK is also closed.

Proof. Let ψ be ∀y ∈ I·ϕ. If I is an empty set then JψK = BX\{y}. Otherwise, if y 6∈ X then
JψK = JφK. Otherwise, let ν′ ∈ I{y} be an arbitrary point, and let ν0, ν1, ν2, . . . be a sequence
of points in J∀y ∈ I·ϕK that converges to ν∗. For any n ∈ N, we know νn _ ν′ ∈ JϕK. We
also know ν0 _ ν′, ν1 _ ν′, ν2 _ ν′, . . . converges to ν∗ _ ν′ which, by closedness of JϕK, is a
point in JϕK. Therefore, ν∗ ∈ J∀y ∈ I·ϕK, since we put no restriction on ν′. J

I Lemma 22. For any finite set of variables X, any predicate in PX can be arbitrarily
over-approximated.

Proof. For the purpose of contradiction, let P ∈ PX be a predicate with the following
condition: ∃ε ∈ R+·∀δ ∈ R+·∃ν ∈ JP δK·ν /∈ Bε∞(JP K). Fix ε, and for any n ∈ N, let
δn := 1

n+1 . Let νn ∈ JP δnK \ Bε∞(JP K) be an arbitrary element. Using Theorem 2, there is a
sequence m0 < m1 < · · · such that νm0 , νm1 , . . . converges to ν∗.

It is enough to show ν∗ ∈ JP K, because there are infinitely many indices n such that
d∞(νmn , ν∗) ≤ ε and any one of them contradicts the fact νmn /∈ Bε∞(JP K). Suppose ν∗ 6∈ JP K.
Let the atomic constraint corresponding to P be f ≥ 0. Since, ν∗ 6∈ JP K we have f(ν∗) < 0,
and since, νn ∈ JP δnK, we have ∀n ∈ N·f(νmn) + δmn ≥ 0. Since f is a continuous function,
∃N1 ∈ N·∀n > N1·|f(νmn)− f(ν∗)| < − 1

2f(ν∗). Let N2 ∈ N be such that δN2 < − 1
2f(ν∗)

and let N := max{N1, N2}. We know ∀n > N ·f(νmn) + δmn <
1
2f(ν∗)− 1

2f(ν∗) = 0 which
is a contradiction. J

I Lemma 23. For any finite sets of variables Y, Z and predicates ϕ ∈ ΦY and ψ ∈ ΦZ , if ϕ
and ψ can be arbitrarily over-approximated then ϕ ∨ ψ can be arbitrarily approximated as
well.

Proof. For any ε ∈ R+, let δ ∈ R+ be such that both JϕδK ⊆ Bε∞(JϕK) and JψδK ⊆ Bε∞(JψK)
hold. If Jϕδ ∨ ψδK = ∅ then the proof is complete. Otherwise, let ν ∈ Jϕδ ∨ ψδK be an
arbitrary value. At least one of ν�Y ∈ JϕδK and ν�Z∈ JψδK are true. Wlog. assume that the
first holds. Let ν′ ∈ Bε∞(JϕK) be any point for which d∞(ν′, ν�Y) ≤ ε, and let ν′′ ∈ RY ∪Z
be the point that maps y ∈ Y to ν′(y) and z ∈ Z \ Y to ν(z). We know d∞(ν, ν′′) :=

CONCUR 2018

26:16 Relating Syntactic and Semantic Perturbations of Hybrid Automata

max
x∈Y ∪Z

|ν(x) − ν′′(x)|. The right hand side is equal to the maximum of max
y∈Y
|ν(y) − ν′′(y)|

and max
z∈Z\Y

|ν(z)− ν′′(z)| = 0, and hence equal to max
y∈Y
|ν(y)− ν′(y)| = d∞(ν�Y , ν′) ≤ ε. What

remains is to show ν′′ ∈ Bε∞(Jϕ ∨ ψK). Let u′ ∈ JϕK be any point with d∞(ν′, u′) ≤ ε, and
let u′′ ∈ RY ∪Z be the point that maps y ∈ Y to u′(x) and z ∈ Z \ Y to ν′′(z). Clearly,
d∞(u′′, ν′′) = d∞(u′, ν′) ≤ ε. Therefore, it is enough to show u′′ ∈ Jϕ ∨ ψK, which can be
concluded from the facts u′′�Y = u′ and u′ ∈ JϕK. J

I Lemma 24. For any finite sets of variables Y, Z and predicates ϕ ∈ ΦY and ψ ∈ ΦZ , if ϕ
and ψ can be arbitrarily over-approximated then ϕ ∧ ψ can be arbitrarily approximated as
well.

Proof. For the purpose of contradiction, suppose ∃ε ∈ R+·∀δ ∈ R+·Jϕδ∧ψδK 6⊆ Bε∞(Jϕ ∧ ψK).
Fix such an ε and for any n ∈ N, let εn := ε

n+1 , and let δn ∈ R+ be a value for which
JϕδnK ⊆ Bεn∞(JϕK) and JψδnK ⊆ Bεn∞(JψK) hold. Also, make sure for any n ∈ N, δn+1 ≤ δn
and hence Jϕδn+1 ∧ ψδn+1K ⊆ Jϕδn ∧ ψδnK. Finally, let νn be an arbitrary element of the
non-empty set Jϕδn ∧ ψδnK \ Bε∞(Jϕ ∧ ψK). We know νn�Y ∈ JϕδnK and νn�Z∈ JψδnK.

Using Theorem 2, there is a sequence m0 < m1 < m2 < · · · such that νm0 , νm1 , νm2 , . . .

converges to ν∗. It is enough to show ν∗ ∈ Jϕ∧ψK, because, there are infinitely many indices
n such that d∞(νmn , ν∗) ≤ ε and any one of them contradicts the fact νmn 6∈ Bε∞(Jϕ ∧ ψK).
Note that νm0�Y , νm1�Y , νm2�Y , . . . converges to ν∗�Y and νm0�Z , νm1�Z , νm2�Z , . . . converges
to ν∗�Z .

By Theorem 11, we know JϕK is closed and hence ν∗�Y ∈ JϕK (otherwise, ν∗�Y will have
a positive distance with JϕK, which is a contradiction). Similarly, we know ν∗ �Z∈ JψK.
Therefore, ν∗ ∈ Jϕ ∧ ψK. J

I Lemma 25. For any finite set of variables X, variable y, interval I, and a predicate
ϕ ∈ ΦX , if ϕ can be arbitrarily over-approximated then ψ := ∃y ∈ I·ϕ can be arbitrarily
over-approximated as well.

Proof. The proof is trivial once we noticed for any two points ν1, ν2 ∈ RX we have
d∞(ν1�X\{y}, ν2�X\{y}) ≤ d∞(ν1, ν2). J

I Lemma 26. For any finite set of variables X, variable y, interval I, and a predicate
ϕ ∈ ΦX , if ϕ can be arbitrarily over-approximated then ψ := ∀y ∈ I·ϕ can be arbitrarily
over-approximated as well.

Proof. If I is an empty set then ∀δ ∈ R·JψδK = JψK. Otherwise, if y 6∈ X then ∀δ ∈
R·JψδK = JϕδK. Otherwise, For the purpose of contradiction, suppose ∃ε ∈ R+·∀δ ∈
R+·∃ν ∈ J∀y ∈ I·ϕδK·ν 6∈ Bε∞(J∀y ∈ I·ϕK). Fix such ε and let ν′ ∈ R{y} be an arbitrary
point. Also, for every n ∈ N, let νn ∈ J∀y ∈ I·ϕδnK \ Bε∞(J∀y ∈ I·ϕK) be an arbitrary point,
where δn := 1

n+1 .
Using Theorem 2, we know there is a sequence m0 < m1 < m2 < . . . such that

νm0 , νm1 , νm2 , . . . converges to ν∗. It is enough to show ν∗ ∈ J∀y ∈ I·ϕK, because, there
are infinitely many indices n such that d∞(νmn , ν∗) ≤ ε and any one of them contradicts
the fact νmn 6∈ Bε∞(J∀y ∈ I·ϕK). For any n ∈ N, we know νmn _ ν′ ∈ Jϕδmn K. We also
know, νm0 _ ν′, νm1 _ ν′, νm2 _ ν′, . . . converges to ν∗ _ ν′ which, by Theorem 11 and hence
closedness of JϕK, is a point in JϕK. Therefore, ν∗ ∈ J∀y ∈ I·ϕK, since there is no constraint
on ν′. J

Updating Probabilistic Knowledge on
Condition/Event Nets using Bayesian Networks
Benjamin Cabrera
University of Duisburg-Essen, Germany
benjamin.cabrera@uni-due.de

Tobias Heindel
University of Hawaii, USA
heindel@hawaii.edu

Reiko Heckel
University of Leicester, UK
rh122@leicester.ac.uk

Barbara König
University of Duisburg-Essen, Germany
barbara_koenig@uni-due.de

Abstract
The paper extends Bayesian networks (BNs) by a mechanism for dynamic changes to the prob-
ability distributions represented by BNs. One application scenario is the process of knowledge
acquisition of an observer interacting with a system. In particular, the paper considers con-
dition/event nets where the observer’s knowledge about the current marking is a probability
distribution over markings. The observer can interact with the net to deduce information about
the marking by requesting certain transitions to fire and observing their success or failure.

Aiming for an efficient implementation of dynamic changes to probability distributions of BNs,
we consider a modular form of networks that form the arrows of a free PROP with a commutative
comonoid structure, also known as term graphs. The algebraic structure of such PROPs supplies
us with a compositional semantics that functorially maps BNs to their underlying probability
distribution and, in particular, it provides a convenient means to describe structural updates of
networks.

2012 ACM Subject Classification Mathematics of computing → Bayesian networks, Software
and its engineering → Petri nets

Keywords and phrases Petri nets, Bayesian networks, Probabilistic databases, Condition/Event
nets, Probabilistic knowledge, Dynamic probability distributions

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.27

Related Version A full version of the paper is available at [3], https://arxiv.org/abs/1807.
02566.

Funding Research partially supported by the Deutsche Forschungsgemeinschaft (DFG) under
grant No. GRK 2167, Research Training Group “User-Centred Social Media”.

1 Introduction

Representing uncertain knowledge by probability distributions is the core idea of Bayesian
learning. We model the potential of an agent – the observer – interacting with a concurrent
system with hidden or uncertain state to gain knowledge through “experimenting” with

© Benjamin Cabrera, Tobias Heindel, Reiko Heckel, and Barbara König;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 27; pp. 27:1–27:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:benjamin.cabrera@uni-due.de
mailto:heindel@hawaii.edu
mailto:rh122@leicester.ac.uk
mailto:barbara_koenig@uni-due.de
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.27
https://arxiv.org/abs/1807.02566
https://arxiv.org/abs/1807.02566
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 Updating Probabilistic Knowledge on Condition/Event Nets using Bayesian Networks

Figure 1 Example: Social network account with location privacy.

the system, focussing on the problem of keeping track of knowledge updates correctly and
efficiently. Knowledge about states is represented by a probability distribution. Our system
models are condition/even nets where states or possible worlds are markings and transitions
describe which updates are allowed.

In order to clarify our intentions we consider an application scenario from social media:
preventing inadvertent disclosure, the concern of location privacy [8]. Consider the example
of a social network account, modelled as a condition/event net, allowing a user to update
and share their location (see Figure 1). We consider two users. User 1 does not allow location
updates to be posted to the social network, they are only recorded on their device. In the net
this is represented by places A1 and B1 modelling the user at corresponding locations, and
transitions GotoA1 and GotoB1 for moving between them. We assume that only User 1 can fire
or observe these transitions. User 2 has a similar structure for locations and movements, but
allows the network to track their location. The user can decide to make their location public
or hide it by firing transition publish2 or hide2. Any observer can attempt to fire ChkA2; RetA2
or ChkB2; RetB2 to query the current location of User 2. If public2 is marked, this will allow
the observer to infer the correct location. Otherwise the observer is left uncertain as to
why the query fails, i.e. due to the wrong location being tested or the lack of permission,
unless they test both locations. While our net captures the totality of possible behaviours,
we identify different observers, the two users, the social network, and an unrelated observer.
For each of these we define which transitions they can access. We then focus on one observer
and only allow transitions they are authorised for. In our example, if we want to analyse the
unrelated observer, we fix the users’ locations and privacy choices before it is the observer’s
turn to query the system.

The observer may have prior knowledge about the dependencies between the locations of
Users 1 and 2, for example due to photos with location information published by User 2,
in which both users may be identifiable. The prior knowledge is represented in the initial
probability distribution, updated according to the observations.

We also draw inspiration from probabilistic databases [28, 1] where the values of attributes
or the presence of records are only known probabilistically. However, an update to the database
might make it necessary to revise the probabilities. Think for instance of a database where
the gender of a person (male or female) is unknown and we assume with probability 1/2 that
they are male. Now a record is entered, stating that the person has married a male. Does it
now become more probable that the person is female?

Despite its simplicity, our system model based on condition/event nets allows us to
capture databases: the content of a database can be represented as a (hyper-)graph (where
each record is a (hyper-)edge). If the nodes of the graph are fixed, updates can be represented
by the transitions of a net, where each potential record is represented by a place.

B. Cabrera, T. Heindel, R. Heckel, and B. König 27:3

Given a net, the observer does not know the initial marking, but has a prior belief, given
by a probability distribution over markings. The observer can try to fire transitions and
observe whether the firing is successful or fails. Then the probability distribution is updated
accordingly. While the update mechanism is rather straightforward, the problem lies in the
huge number of potential states: we have 2n markings if n is the number of places.

To mitigate this state space explosion, we propose to represent the observer’s knowledge
using Bayesian networks (BNs) [22, 24], i.e., graphical models that record conditional
dependencies of random variables in a compact form. However, we encounter a new problem
as updating the observer’s knowledge becomes non-trivial. To do this correctly and efficiently,
we develop a compositional approach to BNs based on symmetric monoidal theories and
PROPs [20]. In particular, we consider modular Bayesian networks as arrows of a freely
generated PROP and (sub-)stochastic matrices as another PROP with a functor from the
former to the latter. In this way, we make Bayesian networks compositional and we obtain
a graphical formalism [27] that we use to modify Bayesian networks: in particular, we can
replace entire subgraphs of Bayesian networks by equivalent ones, i.e., graphs that evaluate
to the same matrix. The compositional approach allows us to specify complex updates in
Bayesian networks by a sequence of simpler updates using a small number of primitives.

We furthermore describe an implementation and report promising runtime results.
The proofs of all results can be found in the full version of this paper [3].

2 Knowledge Update in Condition/Event Nets

We will formalise knowledge updates by means of an extension of Petri nets with probabilistic
knowledge on markings. The starting point are condition/event nets [26].

I Definition 1 (Condition/event net). A condition/event net (CN) N = (S, T, •(), ()•,m0) is
a five-tuple consisting of a finite set of places S, a finite set of transitions T with pre-conditions
•() : T → P(S), post-conditions ()• : T → P(S), and m0 ⊆ S an initial marking. A marking
is any subset of places m ⊆ S. We assume that for any t ∈ T , •t ∩ t• = ∅.

A transition t can fire for a marking m ⊆ S, denoted m ⇒t, if •t ⊆ m and t• ∩m = ∅.
Then marking m is transformed into m′ = (m \ •t) ∪ t•, written m⇒t m′. We write m⇒t

to indicate that there exists some m′ with m⇒t m′.
We will use two different notations to indicate that a transition cannot fire, the first

referring to the fact that the pre-condition is not sufficiently marked, the second stating that
there are tokens in the post-condition: m 6⇒t

pre whenever •t 6⊆ m and m 6⇒t
post whenever

t• ∩m 6= ∅. We denote the set of all markings byM = P(S).

For simplicity we assume that S = {1, . . . , n} for n ∈ N. Then, a marking m can be
characterized by a boolean vector m : S → {0, 1}, i.e., M ∼= {0, 1}S . Using the vector
notation we write m(A) = {1} for A ⊆ S if all places in A are marked in m.

To capture the probabilistic observer we augment CNs by a probability distribution over
markings modelling uncertainty about the hidden initial or current marking.

I Definition 2 (Condition/Event net with Uncertainty). A Condition/Event Net with Un-
certainty (CNU) is a six-tuple N = (S, T, •(), ()•,m0, p) where (S, T, •(), ()•,m0) is a net
as in Definition 1. Additionally, p is a function p :M→ [0, 1] with

∑
m∈M p(m) = 1 that

assigns a probability mass to each possible marking. This gives rise to a probability space
(M,P(M),P) with P : P(M)→ [0, 1] defined by P

(
{m1, . . . ,mk}

)
=
∑k

i=1 p(mi).
We assume that p(m0) > 0, i.e. the initial marking is possible according to p.

CONCUR 2018

27:4 Updating Probabilistic Knowledge on Condition/Event Nets using Bayesian Networks

We model the knowledge gained by observers when firing transitions and observing their
outcomes. Firing t ∈ T can either result in success (all places of •t are marked and no place
in t• is marked) or in failure (at least one place of •t is empty or one place in t• is marked).
Thus, there are two kinds of failure, the absence of tokens in the pre-condition or the presence
of tokens in the post-condition. If a transition fails for both reasons, the observer will learn
only one of them. To model the knowledge gained we define the following operations on
distributions.

I Definition 3 (Operations on CNUs). Given a CNU N = (S, T, •(), ()•,m0, p) the following
operations update the mass function p and as a result the probability distribution P.

To assert that certain places A ⊆ S all contain a token (b = 1) or that none contains a
token (b = 0) we define the operation assert

assA,b(p)(m) = p(m)∑
m′∈M:m′(A)={b} p(m′)

, if m(A) = {b} and 0, otherwise.

To state that at least one place of a set A ⊆ S does (resp. does not) contain a token we
define operation negative assert

nasA,b(p)(m) = p(m)∑
m′∈M:m′(A)6={b} p(m′)

, if m(A) 6= {b} and 0, otherwise.

Modifying a set of places A ⊆ S such that all places contain a token (b = 1) or none
contains a token (b = 0) requires the following operation

setA,b(p)(m) =
∑

m′:m′|S\A=m|S\A

p(m′), if m(A) = {b} and 0, otherwise. (1)

A successful firing of a transition t leads to an assert (ass) and set of the pre-conditions
•t and the post-conditions t•. A failed firing translates to a negative assert (nas) of the
pre- or post-condition and nothing is set. Thus we define for a transition t ∈ T

successt(p) = sett•,1(set•t,0(asst•,0(ass•t,1(p)))), failpre
t (p) = nas•t,1(p),

failpost
t (p) = nast•,0(p).

Operations ass,nas are partial, defined whenever the sum in the denominator of their first
clause is greater than 0. That means, the observer only fires transitions whose pre- and
postconditions have a probability greater than zero, i.e., where according to their knowledge
about the state it is possible that these transitions are enabled. By Definition 1 the initial
marking is possible, and this property is maintained as markings and distributions are
updated. If this assumption is not satisfied, the operations in Definition 3 are undefined.

The ass and nas operations result from conditioning the input distribution on (not) having
tokens at A (compare Proposition 4). Also, set and ass for A = {s1, . . . , sk} ⊆ S can be
performed iteratively, i.e., setA,b = set{sk},b◦· · ·◦set{s1},b and assA,b = ass{sk},b◦· · ·◦ass{s1},b.
For a single place s we have ass{s},b = nas{s},1−b.

Figure 2 gives an example for a Petri net with uncertainty and explains how the observer
can update their knowledge by interacting with the net. We can now show that our operations
correctly update the probability assumptions according to the observations of the net.

I Proposition 4. Let N = (S, T, •(), ()•,m0, p) be a CNU where P is the corresponding
probability distribution. For given t ∈ T and m ∈ M let M[⇒t] = {m′ ∈ M | m′ ⇒t},
M[⇒t m] = {m′ ∈ M | m′ ⇒t m}, M[6⇒t

pre] = {m′ ∈ M | m′ 6⇒t
pre} and M[6⇒t

post] =

B. Cabrera, T. Heindel, R. Heckel, and B. König 27:5

S1

S2 S3t1

t2

t3

t4

– places – successt4 failpre
t1

S1 S2 S3 init as{S2},1 as{S3},0 set{S2},0 set{S3},1 nas{S1},1

1 1 1 1/12 1/6 0 0 0 0
1 1 0 1/6 1/3 1/2 0 0 0
1 0 1 1/8 0 0 0 1/2 0
1 0 0 1/8 0 0 1/2 0 0
0 1 1 1/12 1/6 0 0 0 0
0 1 0 1/6 1/3 1/2 0 0 0
0 0 1 1/8 0 0 0 1/2 1
0 0 0 1/8 0 0 1/2 0 0

Figure 2 Example of operations on a net with uncertainty. We set m0 = {S2} and assume the
observer first fires t4 (and succeeds) and then tries to fire t1 (and fails). Columns in the table
represent updated distributions on the markings after each operation (ordered from left to right). For
this example, in the end the observer knows that the final configuration is {S3} with probability 1.

{m′ ∈ M | m′ 6⇒t
post}. Then, provided that M[⇒t], M[6⇒t

pre] respectively M[6⇒t
post] are

non-empty, it holds for m ∈M that

successt(p)(m) = P(M[⇒t m] | M[⇒t]), failpre
t (p)(m) = P({m} | M[6⇒t

pre]),
failpost

t (p)(m) = P({m} | M[6⇒t
post]).

We shall refer to the the joint distribution (over all places) by P. Note that it is unfeasible
to explicitly store it if the number of places is large. To mitigate this problem we use a
Bayesian network with a random variable for each place, recording dependencies between
the presence of tokens in different places. If such dependencies are local, the BN is often
moderate in size and thus provides a compact symbolic representation. However, updating
the joint distribution of BNs is non-trivial. To address this problem, we propose a propagation
procedure based on a term-based, modular representation of BNs.

3 Modular Bayesian Networks and Sub-Stochastic Matrices

Bayesian networks (BNs) are a graphical formalism to reason about probability distributions.
They are visualized as directed, acyclic graphs with nodes random variables and edges
dependencies between them. This is sufficient for static BNs whose most common operation is
the inference of (marginalized or conditional) distributions of the underlying joint distribution.

For a rewriting calculus on dynamic BNs, we consider a modular representation of
networks that do not only encode a single probability vector, but a matrix, with several input
and output ports. The first aim is compositionality: larger nets can be composed from smaller
ones via sequential and parallel composition, which correspond to matrix multiplication and
Kronecker product of the encoded matrices. This means, we can implement the operations of
Section 2 in a modular way.

PROPs with Commutative Comonoid Structure

We now describe the underlying compositional structure of (modular) BNs and (sub-)
stochastic matrices, which facilitates a compositional computation of the underlying probabil-
ity distribution of (modular) BNs. The mathematical structure are PROPs [20] (see also [13,
Chapter 5.2]), i.e., strict symmetric monoidal categories (C,⊗, 0, σ) whose objects are (in

CONCUR 2018

27:6 Updating Probabilistic Knowledge on Condition/Event Nets using Bayesian Networks

f ; f ′f ; f ′m k
= ffm n f ′f ′n k f1 ⊗ f2f1 ⊗ f2

m1 +m2 n1 + n2
=

f1f1
m1 n1

f2f2
m2 n2

Figure 3 String diagrammatic composition (resp. tensor) of two arrows f : m → n, f ′ : n → k

(resp. f1 : m1 → n1, f2 : m2 → n2) of a PROP (C,⊗, 0, σ).

Table 1 Axioms for CC-structured PROPs and definition of operators of higher arity.

(t1; t3)⊗ (t2; t4) = (t1 ⊗ t2); (t3 ⊗ t4) (t1; t2); t3 = t1; (t2; t3)
idn; t = t = t; idm (t1 ⊗ t2)⊗ t3 = t1 ⊗ (t2 ⊗ t3) id0 ⊗ t = t = t⊗ id0

σ;σ = id2 (t⊗ idm);σn,m = σm,n; (idn ⊗ t) ∇; (∇⊗ id1) = ∇; (id1 ⊗∇)
∇ = ∇;σ ∇; (id1 ⊗>) = id1

id1 = id idn+1 = idn ⊗ id1

σn,0 = σ0,n = idn σn+1,1 = (id⊗ σn,1); (σ ⊗ idn)
σn,m+1 = (σn,m ⊗ id1); (idm ⊗ σn,1)

∇1 = ∇ ∇n+1 = (∇n ⊗∇); (idn ⊗ σn,1 ⊗ id)
>1 = > >n+1 = >n ⊗>

bijection with) the natural numbers, with monoidal product ⊗ as (essentially) addition, with
unit 0. The compositional structure of PROPs can be intuitively represented using string
diagrams with wires and boxes (see Figure 3). Symmetries σ serve for the reordering of wires.

A paradigmatic example is the PROP of 2n-dimensional Euclidean spaces and linear
maps, equipped with the tensor product: the tensor product of 2n- and 2m-dimensional
spaces is 2n+m-dimensional, composition of linear maps amounts to matrix multiplication,
and the tensor product is also known as Kronecker product (as detailed below). We refer to
the natural numbers of the domain and codomain of arrows in a PROP as their type; thus, a
linear map from 2n- to 2m-dimensional Euclidean space has type n→ m.

We shall have the additional structure on symmetric monoidal categories that was dubbed
graph substitution in work on term graphs [7], which amounts to a commutative comonoid
structure on PROPs.

I Definition 5 (PROPs with commutative comonoid structure). A CC-structured PROP is a
tuple (C,⊗, 0, σ,∇,>) where (C,⊗, 0, σ) is a PROP and the last two components are arrows
∇ : 1→ 2 and > : 1→ 0, which are subject to equations (2) (cf. Figure 4).

∇; (∇⊗ id1) = ∇; (id1 ⊗∇), ∇ = ∇;σ, ∇; (id1 ⊗>) = id1. (2)

To give another, more direct definition, the arrows of a freely generated CC-structured
PROP can be represented as terms over some set of generators g ∈ G and constants id : 1→ 1,
σ : 2 → 2, ∇ : 1 → 2, > : 1 → 0, combined with the operators sequential composition (;)
and tensor (⊗) and quotiented by the axioms in Table 1 (see [30]). This table also lists

B. Cabrera, T. Heindel, R. Heckel, and B. König 27:7

(CoUnit)(CoComm)(CoAssoc)CoMul

CoUnit

Figure 4 Comultiplication and counit arrows and the equations of commutative comonoids.

the definition of operators of higher arity. We often refer to the comultiplication ∆ and
its counit > as duplicator and terminator, resp. (cf. Figure 4). Intuitively, adding the
commutative comonoid structure amounts to the possibility to have several or no connections
to each one of the output port of gates and input ports. In other words, outputs can be
shared.

(Sub-)Stochastic Matrices

We now consider (sub-)stochastic matrices as an instance of a CC-structured PROP. A
matrix of type n→ m is a matrix P of dimension 2m × 2n with entries taken from the closed
interval [0, 1] ⊆ R. We restrict attention to sub-stochastic matrices, i.e., column sums will be
at most 1; if we require equality, we obtain stochastic matrices.

11
10
01
00


11
· ·

10
·
01
·
00

· · · ·
· · · ·
· · · ·


We index matrices over {0, 1}m×{0, 1}n, i.e., for x ∈ {0, 1}m,

y ∈ {0, 1}n the corresponding entry is denoted by P (x | y). We
use this notation to evoke the idea of conditional probability
(the probability that the first index is equal to x, whenever the
second index is equal to y.) When we write P as a matrix, the
rows/columns are ordered according to a descending sequence of
binary numbers (1 . . . 1 first, 0 . . . 0 last).

Sequential composition is matrix multiplication, i.e., given P : n → m, Q : m → ` we
define P ;Q = Q · P : n→ `, which is a 2` × 2n-matrix. The tensor is given by the Kronecker
product, i.e., given P : n1 → m1, Q : n2 → m2 we define P ⊗ Q : n1 + n2 → m1 + m2 as
(P ⊗Q)(x1x2 | y1y2) = P (x1 | y1) ·Q(x2 | y2) where xi ∈ {0, 1}ni , yi ∈ {0, 1}mi .

The constants are defined as follows:

id0 = (1) id =
(

1 0
0 1

)
∇ =


1 0
0 0
0 0
0 1

 σ =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 > =
(
1 1

)

I Proposition 6 ([12]). (Sub-)stochastic matrices form a CC-structured PROP.

Causality Graphs

We next introduce causality graphs, a variant of term graphs [7], to provide a modular
representation of Bayesian networks. Nodes play the role of gates of string diagrams; the main
difference to port graphs [13, Chapter 5] is the branching structure at output ports, which
corresponds to (freely) added commutative comonoid structure. We fix a set of generators G
(a.k.a. signature), elements of which can be thought of as blueprints of gates of a certain type;
all generators g ∈ G will be of type n→ 1, which means that each node can be identified
with its single output port while it has a certain number of input ports.

CONCUR 2018

27:8 Updating Probabilistic Knowledge on Condition/Event Nets using Bayesian Networks

I Definition 7 (Causality Graph (CG)). A causality graph (CG) of type n → m is a tuple
B = (V, `, s, out) where

V is a set of nodes,
` : V → G is a labelling function that assigns a generator `(v) ∈ G to each node v ∈ V ,
s : V →W ∗B where WB = V ∪ {i1, . . . , in} is the source function that assigns a sequence
of wires s(v) to each node v ∈ V such that |s(v)| = n if `(v) : n→ 1,
out : {o1, . . . , om} →WB is the output function that assigns each output port to a wire.

Moreover, the corresponding directed graph (defined by s) has to be acyclic.

By {i1, . . . , in} we denote the set of input ports and by {o1, . . . , om} the set of output
ports. By pred and succ we denote the direct predecessors and successors of a node, i.e.
pred(v0) = {v ∈ V | v ∈ s(v0)} and succ(v0) = {v ∈ V | v0 ∈ s(v)}, respectively. By
pred∗(v0) we denote the set of indirect predecessors, using transitive closure. Furthermore
path(v, w) denotes the set of all nodes which lie on paths from v to w.

A wire originates from a single input port or node and each node can feed into several
successor nodes and/or output ports. Note that input and output are not symmetric in the
context of causality graphs. This is a consequence of the absence of a monoid structure.

We equip CGs with operations of composition and tensor product, identities, and a
commutative comonoid structure. We require that the node sets of Bayesian nets B1, B2 are
disjoint.1

Composition. Whenever m1 = n2, we define B1;B2 := B = (V, `, s, out) : n1 → m2 with
V = V1] V2, ` = `1] `2, s = s1] c ◦ s2, out = c ◦ out2 where c : WB2 → WB is defined
as follows and extended to sequences: c(w) = w if w ∈ V2 and c(w) = out1(oj) if w = ij .

Tensor. Disjoint union is parallel composition, i.e., B1 ⊗B2 := B = (V, `, s, out) : n1 + n2 →
m1 + m2 with V = V1] V2, ` = `1] `2, s = s1] d ◦ s2, where d : WB2 → WB and
out : {o1, . . . , om1+m2} →WB are defined as follows: d(w) = w if w ∈ V2 and d(w) = in1+j

if w = ij . Furthermore out(oj) = out1(oj) if 1 ≤ j ≤ m1 and out(oj) = out2(oj−m1) if
m1 < j ≤ m1 +m2.

Operators. Finally the constants and generators are as follows:2
id0 = (∅, [], [], []) : 0→ 0 id = (∅, [], [], [o1 7→ i1]) : 1→ 1 > = (∅, [], [], []) : 1→ 0
σ = (∅, [], [], [o1 7→ i2, o2 7→ i1]) : 2→ 2 ∇ = (∅, [], [], [o1 7→ i1, o2 7→ i1]) : 1→ 2

Bg = ({v}, [v 7→ g], [v 7→ i1 . . . in], [o1 7→ v]) : n→ 1, whenever g ∈ G with type g : n→ 1

Finally, all these operations lift to isomorphism classes of CGs.

I Proposition 8 ([7]). CGs quotiented by isomorphism form the freely generated CC-
structured PROP over the set of generators G, where two causality graphs Bi = (Vi, `i, si, outi) :
n → m, i ∈ {1, 2}, are isomorphic if there is a bijective mapping ϕ : V1 → V2 such that
`1(v) = `2(ϕ(v)) and ϕ(s1(v)) = s2(v) hold for all v ∈ V1 and ϕ(out1(oi)) = out2(oi) holds
for all i ∈ {1, . . . ,m}.3

In the following, we often decompose a CG into a subgraph and its “context”.

I Lemma 9 (Decompositionality of CGs). Let B = (V, `, s, out) : n → m be a causality
graph. Let V ′ ⊆ V be a subset of nodes closed with respect to paths, i.e. for all v, w ∈
V ′ : path(v, w) ⊆ V ′. Then there exist k ∈ N and (Bi, ei) with Bi = (Vi, li, si, outi) for
i = 1, . . . , 3 such that V2 = V ′, B = B1; (idk ⊗B2);B3 and out2(oi) ∈ V ′ for all i.

1 The case of non-disjoint sets can be handled by a suitable choice of coproducts.
2 A function f : A→ B, where A = {a1, . . . , ak} is finite, is denoted by f = [a1 7→ f(a1), . . . , ak 7→ f(ak)].
We denote a function with empty domain by [].

3 We apply ϕ to a sequence of wires, by applying ϕ pointwise and assuming that ϕ(ij) = ij for 1 ≤ j ≤ n.

B. Cabrera, T. Heindel, R. Heckel, and B. König 27:9

Figure 5 The initial distribution of the CNU from Figure 2 as an MBN.

Thus, given a set of nodes in a BN that contains all nodes on paths between them, we have
the induced subnet of the node set and a suitable “context” such that the whole net can be
seen as the result of substition of the subnet into the “context”.

Modular Bayesian Networks

We will now equip the nodes of causality graphs with matrices, assigning an interpretation
to each generator. This fully determines the corresponding matrix of the BN. Note that
Bayesian networks as PROPs have earlier been studied in [12, 16, 17].

I Definition 10 (Modular Bayesian network (MBN)). A modular Bayesian network (MBN)
is a tuple (B, e) where B = (V, `, s, out) is a causality graph and e an evaluation function
that assigns to every generator g ∈ G with g : n→ 1 a 2n × 2-matrix e(g). An MBN (B, e) is
called an ordinary Bayesian network (OBN) whenever B has no inputs (i.e. B : 0→ m), out
is a bijection, and every node is associated with a stochastic matrix.

In an OBN every node V corresponds to a random variable and it represents a probability
distribution on {0, 1}m. OBNs are exactly the Bayesian networks considered in [14].

I Example 11. Figure 5 gives an example of a BN where 1/2 =
(

1/2
1/2

)
andMS3 =

(
1/3 1/2
2/3 1/2

)
.

It encodes exactly the probability distribution from Figure 2. Its term representation is
(g1 ⊗ (g2;∇)); (id2 ⊗ g3) where e(g1) = e(g2) = 1/2 and e(g3) = MS3 .

I Definition 12 (MBN semantics). Let (B, e) be an MBN where the network B = (V, `, s, out)
is of type n→ m. The MBN semantics is the matrix Me(B) with(

Me(B)
)

(x1 . . . xm | y1 . . . yn) =
∑

b : WB→{0,1}
b(ij)=yj ,b(out(oi))=xi

∏
v∈V

e
(
`(v)

)(
b(v)

∣∣∣ b(s(v))
)

with x1, . . . , xm, y1, . . . , ym ∈ {0, 1} where b is applied pointwise to sequences.

Intuitively the function b assigns boolean values to wires, in a way that is consistent with
the input/output values (x1 . . . xm, y1 . . . yn). For each such assignment, the corresponding
entries in the matrices `(v) are multiplied. Finally, we sum over all possible assignments.
I Remark. The semantics Me(B) is compositional. It is the canonical (i.e., free) extension
of the evaluation map from single nodes to the causality graph of an MBN (B, e). Here,
we rely on two different findings from the literature, namely, the CC-PROP structure of
(sub-)stochastic matrices [12] and the characterization of term graphs as the free symmetric
monoidal category with graph substition [7]. The formal details can be found in [3].

4 Updating Bayesian Networks

We have introduced MBNs as a compact and compositional representation of distributions
on markings of a CNU. Coming back to the scenario of knowledge update, we now describe
how success and failure of operations requested by the observer affect the MBN. We will first

CONCUR 2018

27:10 Updating Probabilistic Knowledge on Condition/Event Nets using Bayesian Networks

...

...

...

...

...

...

Figure 6 String diagrams of the updated distributions after setA,1, assA,1, nasA,1 operations were
applied to an initial distribution P .

describe how the operations can be formulated as matrix operations that tell us which nodes
have to be added to the MBN. We shall see that updated MBNs are in general not OBNs,
which makes it harder to interpret and retrieve the encoded distribution. However, we shall
show that MBNs can efficiently be reduced to OBNs.

Notation. In this section we will use the following notation: first, we will use variants
idn,∇n, σn,m,>n of the operators/matrices id,∇, σ,>, which have a higher arity (see the
definitions in Table 1). Furthermore, we will write

∏k
i=1 Pi for P1 · . . . · Pk and

⊗k
i=1 Pi for

P1 ⊗ · · · ⊗ Pk. By 0 : 1→ 1 we denote the 2× 2 zero matrix and set 0k =
⊗k

i=1 0. We also

introduce 1b as a notation for the matrix
(

1
0

)
if b = 1 (respectively

(
0
1

)
if b = 0).

With diag(a1, . . . , an) we denote a square matrix with entries a1, . . . , an ∈ [0, 1] on
the diagonal and zero elsewhere. In particular, we will need the sub-stochastic matrices
Fk,b : k → k where Fk,0 = diag(1, . . . , 1︸ ︷︷ ︸

2k−1 times

, 0) and Fk,1 = diag(0, 1, . . . , 1︸ ︷︷ ︸
2k−1 times

).

Given a bit-vector x ∈ {0, 1}n, we will write x[i] respectively x[i...j] to denote the i-th
entry respectively the sub-sequence from position i to position j. If A ⊆ {1, . . . , n} we define
x[A] = {x[i] | i ∈ A}.

CNU Operations on MBNs

In this section we characterize the operations of Definition 3 as stochastic matrices that can
be multiplied with the distribution to perform the update. We describe them as compositions
of smaller matrices that can easily be interpreted as changes to an MBN. In the following
lemmas, P : 0→ m is always a stochastic matrix representing the distribution of markings of
a CNU. Furthermore, A ⊆ S is a set of places and w.l.o.g. we assume that A = {1, . . . , k} for
some k ≤ m (as otherwise we can use permutations that preceed and follow the operations
and switch wires as needed).

Starting with the setA,b operation (1) recall that it is defined in a way so that the marginal
distributions of non-affected places S\A stay the same while the marginals of every single
place in A report b ∈ {0, 1} with probability one. The following lemma shows how the matrix
for a set operation can be constructed (see Figure 6).

I Lemma 13. It holds that setA,b(P) =
(⊗m

i=1 T
set
A,b(i)

)
· P where T set

A,b(i) is 1b · > if i ∈ A,
and id otherwise. Moreover,

⊗m
i=1 T

set
A,b(i) is stochastic.

Next, we deal with the ass operation. Applying it to a distribution P is simply a
conditioning of P on non-emptiness of all places A. Intuitively, this means that we keep only
entries of P for which the condition is satisfied and set all other entries to zero. However, in

B. Cabrera, T. Heindel, R. Heckel, and B. König 27:11

order to keep the updated P a probability distribution, we have to renormalize, which already
shows that modelling this operation introduces sub-stochastic matrices to the computation.
In the next lemma normalization involves the costly computation of a marginal P|A (the
probability that all places in A are set to b), however omitting the normalization factor will
give us a sub-stochastic matrix and we will later show how such sub-stochastic matrices can
be removed, in many cases avoiding the full costs of a marginal computation.

I Lemma 14. It holds that assA,b(P) = 1
P|A

(⊗m
i=1 T

ass
A,b(i)

)
·P with P|A = (

⊗m
i=1QA(i)) ·P

where T ass
A,b(i) is F1,1−b if i ∈ A, and id otherwise. We require that P|A 6= 0. Furthermore

Qass
A,b(i) =

(
1 0

)
if i ∈ A and > otherwise.

In contrast to set and ass, the nas operation couples all involved places in A. Asserting
that at least one place has no token means that once the observer learns that e.g. one
particular place definitely has a token it affects all the other ones. Thus for updating the
distribution we have to pass the wires of places A through another matrix that removes the
possibility of all places containing a token and renormalizes.

I Lemma 15. The following characterization holds: nasA,1(P) = 1
P c
|A

(Fk,1 ⊗ idm−k) ·P with
P c
|A = 1− P|A (P|A is defined as in Lemma 14). We require that P c

|A 6= 0.

An analogous result holds for nasA,0 by using Fk,0.
The previous lemmas determine how to update an MBN (B, e) to incorporate the changes

to the encoded distribution stemming from the operations on the CNU. We denote the
updated MBN by (B′, e′) with B′ = (V ′, `′, s′, out′).

For the setA,b operation Lemma 13 shows that we have to add a new node vs and a new

generator gs for each s ∈ A. We set `(vs) = gs and e′(gs) = 1b ·> =
(

1 1
0 0

)
, s′(vs) = out(os)

and out′(os) = vs. Similarly, this holds for the ass operation with the only difference that

the associated matrix for each vs is
(

1 0
0 0

)
(cf. Figure 6).

For the nasA,b operation Lemma 15 defines a usually larger matrix Fk,b : k → k that
intuitively couples the random variables for all places in A. We cannot simply add a node to
the MBN which evaluates to Fk,b since nodes in the MBN always have to be of type n→ 1.
However, one can show (see Lemma 18) that for each Fk,b-matrix, there exists an MBN
(B′, e′) such that Me′(B′). This can then be appended to (B, e) which has the same affect as
appending a single node with the Fk,b-matrix.

Simplifying MBNs to OBNs

The characterisations of operations above ensure that updated MBNs correctly evaluate
to the updated probability distributions. However, rather than OBNs we obtain MBNs
where the complexity of updates is hidden in newly added nodes. Evaluating such MBNs
is computationally more expensive because of the additional nodes. Below we show how to
simplify the MBN, minimising the number of nodes either after each update or (in a lazy
mode) after several updates.

As a first step we provide a lemma that will feature in all following simplifications. It
states that every matrix can be expressed by the composition of two matrices.

I Lemma 16 (Decomposition of matrices). Given a matrix P of type n → m and a set of
k < m outputs – without loss of generality we pick {m − k + 1, . . . ,m} – there exist two
matrices P` : n→ m− k and Pa : n+m− k → k such that

(idm−k ⊗ Pa) · ((∇m−k · P`)⊗ idn) · ∇n = P,

CONCUR 2018

27:12 Updating Probabilistic Knowledge on Condition/Event Nets using Bayesian Networks

P...

...
n m ...

...

...

...

...

...

...
n

m-k

k

P

P

=

Figure 7 Schematic string diagram depiction of the decomposition of matrices.

which is visualized in Figure 7. Moreover, the matrices can be chosen so that Pa is stochastic
and P` sub-stochastic. If P is stochastic P` can be chosen to be stochastic as well.

We can now deduce the known special case of arc reversal in OBN, stated e.g. in [4].

I Corollary 17 (Arc reversal in OBNs). Let (B, e) be an OBN with B = (V, `, s, out) and two
nodes u, y ∈ V , where u is a direct predecessor of y, i.e. u ∈ pred(y). Then there exists an
OBN (B′, e′) with B′ = (V, `′, s′, out), evaluating to the same probability distribution, where
`′(v) = `(v), s′(v) = s(v) if v 6= u and v 6= y and y ∈ pred(u). Thus the dependency between
u and v is reversed.

Arc reversal comes with a price: as can be seen in the proof, if u is associated with a
matrix Pu : n→ 1 and y with a matrix Py : m+ 1→ 1, then we have to create new matrices
P ′u : m+ n+ 1→ 1 and P ′y : m+ n→ 1, causing new dependencies and increasing the size of
the matrix. Hence arc reversal should be used sparingly.

After arc reversal a node might have duplicated inputs, which can be resolved by multi-
plying the corresponding matrix with ∇, thus reducing the dimension.

Next, we can use Lemma 16 to show that every matrix can be represented as an MBN.
This MBN can always be built in a “minimal” way in that only m nodes are needed to
represent a n→ m matrix.

I Lemma 18. Let M : n→ m be a (sub-stochastic) matrix. Then there exists an MBN (B, e)
with B = (V, l, s, out) such that M = Me(B), |V | = m and out is a bijection. Moreover, if M
is stochastic we can guarantee that e(l(v)) is stochastic for all v ∈ V . If M is sub-stochastic
we can guarantee that vfront – the first node in a topological ordering of all nodes V ′ – is the
only node where e(l(v)) is sub-stochastic, all other nodes have stochastic matrices.

I Corollary 19. Let (B, e) be an MBN without inputs and assume that Me(B) is stochastic.
Then there exists an OBN (B′, e′) such that Me(B) = Me′(B′).

Proof. The result follows trivially from the assumptions because for a stochastic MBN
without input ports Me(B) is simply a column vector holding a probability distribution.
It is well known that every probability distribution can be represented by some (ordinary)
Bayesian net. Alternatively the result follows directly from Lemma 18. J

We just argued that every MBN can be simplified so that it does not contain any
unnecessary nodes and at most one sub-stochastic matrix. However, while Lemma 18 shows
that these simplifications are always possible it is not helpful in practice: in fact in the proof
we take the full matrix represented by an MBN and then split it into (coupled) single nodes.
Since we chose to use MBNs in order not to deal with large distribution vectors in the first
place, this approach is not practical. Instead, in the following we will describe methods which
allow us to simplify an MBN without computing the matrix first.

B. Cabrera, T. Heindel, R. Heckel, and B. König 27:13

=

(F1)

=

P...k

...k

(F2)

(F4)

(F3)

k-1
...

... k ...

...-k-1 k-1
=

(F5)
k-1

...

... k = ...k-1

...

...k-1 k

=

k k-1...

...

Figure 8 Equalities on sub-stochastic matrices. Note that (F2) holds only if P is stochastic and
for (F4) and (F5) we have to assume k > 1.

First note that MBNs stemming from CNU operations can contain substructures that
can locally be replaced by simpler ones. They are depicted in Figure 8.

I Lemma 20. The equalities of Figure 8 hold for (sub-)stochastic matrices.

As a result, it makes sense to first eliminate all of these substructures. Then there are two
issues left to obtain an OBN. First, there are nodes that lost their direct connection with an
output port (since output ports were terminated in a set operation or since we added an
Fk,b-matrix). Those have to be merged with other nodes. Second, there are sub-stochastic
matrices that have to be eliminated as well. The following lemma states that a node not
connected to output ports can be merged with its direct successor nodes. This can introduce
new dependencies between these successor nodes, but we remove one node from the network.

I Lemma 21. lem Let B = (V, `, s, out) be a causality graph, e an evaluation function such
that (B, e) is an MBN. Assume that a node v0 ∈ V is not connected to an output port, i.e. for
all i ∈ {1, . . . ,m} : v0 6= out(oi), and e(`(v0)) is stochastic. Then there exists an MBN (B′, e′)
with B′ = (V \{v0}, `′, s′, out) such that Me(B) = Me′(B′). Moreover, e′ ◦ `′|V̄ = e ◦ `|V̄ and
s′|V̄ = s|V̄ where V̄ = V \({v0} ∪ succ(v0)).

The conditions on `′ and s′ mean that the update on B is local as it does not affect the
whole network. Only the direct successors of v0 are affected.

Finally, we have to get rid of sub-stochastic matrices inside the MBN, which have been
introduced by the ass and nas operations (we assume that we did not normalize yet). The
idea is to exchange nodes labelled with sub-stochastic matrices with the predecessor nodes
and move them to the front (as in Lemma 18). Once there, normalization is straightforward
by normalizing the vectors associated to these nodes.

I Lemma 22. Let B = (V, `, s, out) be a causality graph without input ports, i.e. of type
0→ m, e an evaluation function such that (B, e) is an MBN. Furthermore we require that
there is a one-to-one correspondence between output ports and nodes, i.e., out is a bijection.

Assume that V ′ ⊆ V is the set of all nodes equipped with sub-stochastic matrices, i.e. e(`(v))
is sub-stochastic for all v ∈ V ′. Then there exists an OBN (B′, e′) with B′ = (V, `′, s′, out)
such that Me(B) = Me′(B′) · pB where pB = >m ·Me(B) ≤ 1 is the probability mass of B.
Moreover, e′ ◦ `′|V̄ = e ◦ `|V̄ and s′|V̄ = s|V̄ where V̄ = V \(V ′ ∪ pred∗(V ′)).

Note that 1
pB

(whenever pB 6= 0) is the normalization factor that can be obtained by
terminating all input ports of B. We do not have to compute pB explicitly, but it can be
derived from the probabilities of the nodes which have been moved to the front (see proof).

CONCUR 2018

27:14 Updating Probabilistic Knowledge on Condition/Event Nets using Bayesian Networks

(F3)Lemma 22 (co-unit)

Figure 9 Exemplary update process for the successt4 operation of our running CNU example.

Here 1/2 =
(

1/2
1/2

)
and MS3 =

(
1/3 1/2
2/3 1/2

)
.

I Corollary 23. Let B = (V, `, s, out) be a causality graph without input ports, i.e. of type
0→ m, e an evaluation function such that (B, e) is an OBN. Let P = Me(B).

Then we can construct OBNs representing setA,b(P), assA,b(P),nasA,b(P), where
the set operation modifies only {out(oi) | i ∈ A} and their direct successors and
the ass and nas operations modify only {out(oi) | i ∈ A} and their predecessors.

The operations are costly whenever a node has many predecessors or direct successors. In
a certain way this is unavoidable because our operations are related to the computation of
marginals, which is NP-hard [6]. However, if the Bayesian network has a comparatively “flat”
structure, we expect that the efficiency is rather high in the average case, as supported by
our runtime results below. Applying the nas operation will introduce dependencies for the
random variables corresponding to the pre- and post-conditions of a transition, however this
effect is localized if we consider particular classes of Petri nets, such as free-choice nets [9].

I Example 24. Figure 9 shows an update process, following a lazy evaluation strategy, for a
Bayesian net representing the probability distribution from Figure 2.

5 Implementation

In order to quantitatively assess the performance of MBNs we developed a prototypical C++
implementation of the concepts in this paper, allowing to read, write, simplify, generate, and
visualize MBNs as well as perform operations on CNUs that update an underlying MBN.
The implementation is open-source and freely available on GitHub.4

As a first means of obtaining runtime results we randomly generated CNs with a range of
different parameters: e.g. number of places, number of places in a precondition of a transition,
places in the initial marking etc. We then successively picked transitions at random to fire
and performed the necessary operations to update the MBN and simplify it to an OBN.

We chose to guarantee a success rate of transition firing of around 1/3. We argue that
given the fact that we model an observer with prior knowledge it is realistic to assume
a certain rate of successful transitions. A very low sucess rate leads to an accumulation

4 https://github.com/bencabrera/bayesian_nets_program

https://github.com/bencabrera/bayesian_nets_program

B. Cabrera, T. Heindel, R. Heckel, and B. König 27:15

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
●●●●●●●●●●

●●●●●●
●●●●

●
●●●
●
●●●
●
●

●

●

●●

●
●

●

●

●

●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●0

3000

6000

9000

12000

10 15
#Places in CNU

M
illi

se
co

nd
s

CNU Type
●

●

BN
Joint Distribution
M

●●
●
●●●●●●● ●●●

●●
●●●●● ●●●●●●●●●● ●●●

●
●●●●●● ●●●

●
●●●●●● ●●●

●
●●●●●● ●●●

●
●●●●●●

●●●
●
●●
●●●● ●●●●●●●●●●

●●●●●
●●●●● ●●●●●●●●●● ●●

●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
●●●●●●●●●●

●●
●●●●●●●
● ●●

●
●
●●●●●● ●●●●●●●

●●● ●●●●●●●●●● ●●
●
●●●
●●●● ●●

●●●●●●
●● ●●

●
●●●●●●● ●●

●
●
●
●●●●● ●●

●●●●●●●● ●
●●●
●●●●●
● ●●●●●●●●●●

●●●●●●●
●
●●

●●●●●●●●●● ●
●●●●●●●●● ●

●●●●●●●●● ●
●●●●●●●●● ●●●●●●

●●●
● ●

●●●
●●●●●
●

●●●●●●●●●●
●
●
●●●
●
●●●●

●●●
●
●●●●●●

●●
●
●●
●
●●●●

●●●●●●
●●
●
● ●●●●

●

●●
●
●● ●●●●

●●●●●●
●
●
●●●●●●
●●

●●

●
●●
●
●●●● ●

●●●●●●●●● ●
●●●●●
●
●●● ●●●

●

●
●●●
●● ●

●
●●●●
●●
●
●

●●
●
●●●●●●●

●
●●●●●
●●
●● ●●●●●●●●●

● ●●
●
●●●●●●●

●
●
●●●●●●●
● ●●●●●●●●

●●
●
●●
●
●●●●●● ●

●
●●●●●●
●●

●●
●●
●●●
●●●

●●●●●●●●●●
●●●●●
●●
●●
●

●
●
●
●●●●●●
● ●

●●●●●●
●●● ●

●●●
●●

●●●● ●
●●●●●
●●●
● ●●●

●
●●●
●

●
● ●

●●●●●●
●
●●

●
●

●
●●
●●●●
● ●

●
●
●●
●
●
●●
● ●●

●●●
●●●●● ●●

●●●●●●●
●

●●●
●
●
●●●●●

●●
●●●●●●
●● ●●

●
●
●
●●
●
●●

●●
●●
●
●
●
●●●

●
●●●
●●●
●●
●

●●●●●
●●
●●
● ●

●●●●●●
●

●
●

●
●●●●
●●●●● ●●

●
●●●
●●

●
● ●

●
●
●

●
●●●
●
●

●
●
●
●
●
●

●
●●● ●

●
●
●
●
●
●●
●● ●●●●●●●●

●●
●
●
●●●●●
●●
●

●●
●

●●●●
●●● ●●

●
●
●
●
●●●● ●●●

●

●
●●●●
●

●

●●●●●●●●●
●●
●
●●●●●●● ●●

●

●
●
●●●●
● ●●

●
●
●●●●
●●

●
●●●●
●●●
●
●

●●
●
●●●
●●●● ●●

●
●●
●
●
●
●
● ●●●●●●●●●● ●●

●
●●●●●●●

●●●
●●●
●●●● ●●

●●●●
●
●●●

●●
●

●
●●
●
●
●
●

●●
●●
●●

●
●
●●

●●●●●
●●●●● ●●●●●●●●●

● ●

●

●●
●●
●●●
● ●

●

●
●●●●
●●
● ●

●●●
●●
●●●●

●
●

●
●
●●●
●●● ●●●●●●●

●●● ●
●
●

●

●
●
●

●

●

● ●●
●
●●

●

●●
●
●

●●●●●●
●
●●● ●●

●
●●●●●
●● ●●

●
●●●
●

●●
● ●●

●●
●●●

●
●●

●●●
●●●

●

●●● ●●
●●
●
●●●●● ●●

●
●●●●●●●

●
●●●
●●
●

●
●● ●

●

●

●
●
●
●
●●● ●●

●
●●●
●●●
●

●

●

●●
●●
●●●● ●●●●●

●
●
●
●

● ●
●
●
●
●●
●
●●●

●●●●●●●●●●

●
●●

●
●

●
●
●
●●

●

●

●
●

●●

●
●●
●

●●●●●
●●●
●● ●

●
●

●
●●
●●●
●

●
●●
●
●●
●●●
● ●

●

●●●
●
●
●
●

●
●
●●●
●
●●●●

●

●
●
●
●●●

●●
●● ●

●

●
●
●
●●●
●● ●

●

●
●
●●
●
●●
●

●
●●
●●
●●●
●●

●

●●●●●
●

●●

●
●

●

●
●●●

●
●
●
● ●

●

●●●●●
●●
●

●
●●

●

●●●

●
●● ●●

●
●●
●●●
●
●

●
●
●

●
●
●
●●
●●

●●●●●●

●

●

●
●

●

●

●
●

●●
●

●●●

●

●●●●
●
●
●●
●

●●

●

●
●●●●●●

●●
●

●

●
●●●
●● ●

●

●
●
●●
●

●
●
● ●

●
●
●

●●
●
●●● ●

●
●
●
●
●
●●
●
●

●●
●
●●
●

●●●
●

●●●
●●●
●
●●●

●

●
●●
●
●

●
●●●

●●●
●
●●
●●●

●

●
●

●
●

●
●●

●
●
●

●
●
●

●
●

●●
●

●

● ●
●●
●
●

●

●

●
●
● ●●

●
●

●
●

●

●

●

●
●
●●●●
●
●
●

●

●
●●
●
●
●
●
●●●
● ●

●
●
●●●
●
●

●
●

●

●
●
●●

●
●●

●
●

●
●

●●
●●●●
●●

●

●
●
●
●
●●
●
●

●

●●

●
●
●●
●
●●
●

●
●●

●

●●●

●
●

●
●

●

●
●
●
●●
●●
●

●●●●●
●●●
●

●

●
●

●
●
●●●
●
●●

●

●●

●

●
●
●

●

●

●
●
●●●
●●
●
●
●● ●

●●
●
●

●

●
●●

● ●
●

●

●
●
●
●●
●
● ●●

●
●

●●
●
●●
●

●
●●●●

●

●
●●● ●●●●

●

●

●●
●●

●
●

●

●●●
●
●●
● ●

●

●
●
●●
●

●

●

●

●●●●●●
●

●●
● ●

●

●

●

●
●●●●● ●

●

●

●

●

●●●
●
● ●●●●

●●
●
●

●●
●
●

●

●

●●●●

●
● ●●●

●●●●
●●● ●●●

●

●
●●
●●
●

●
●
●
●●
●

●
●●●

●

●●

●●
●

●●
●● ●●

●●
●
●
●
●
●
● ●

●

●
●●●●
●●
●

●●●●
●●

●

●

●
● ●

●
●

●

●
●●
●
●
●

●

●

●
●●

●

●●
●●

●
●
●●●
●
●
●
●● ●

●
●●
●●●
●
●
●

●

●
●
●●

●

●
●
●

●
●

●
●●●
●●●
●

●

●

●●
●
●

●
●
●

●

●
●●
●
●
●

●

●
●●● ●

●

●●
●
●●

●●
●

●
●
●

●

●

●●●●
● ●

●●●●
●
●
●●
●

●
●

●

●

●●●
●

●

●
●

●

●●
●
●
●

●●

●
●
●

●

●
●

●

●
●
●●

●

●

●
●●●
●
●
●●

●
●

●●
●

●

●

●

●●
●●●●

●

●

●

●

●
● ●●●

●

●

●

●
●

●●
●●●●●

●
●●
●
●

●

●

●

●

●
●●●●
●

●
●●
●

●
●
●

●●●
●

●

●

●

●

●

●
●

●●
●
●●

●

●
●●●●
●

●

●

●

●

●●●

●

●
●

●●
●

●●

●

●

●

●●

●●
●

●

●
●●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●
●

●●
●

●●

●

●

●
●
●

●
●

●
●

●

●
●●
●

●
●
●

●

●●

●●
●

●

●
●

●●
●
● ●

●

●
●
●
●

●●
●

●

●

●●●

●
●

●

●

●

●
●

●

●●●●●●
● ●

●
●

●

●●

●●

●

●

●

●

●

●
●
●

●

●

●

● ●
●
●

●

●
●

●

●

●
●

●

●

●●
●

●

●
●●
● ●

●
●
●

●

●●●

●
●

●

●

●●

●

●

●

●

●● ●

●

●

●
●●
●●
●

●
●
●
●
●●

●●
●

●

●

●

●

●
●
●●

●

●
●

●

●

●
●●

●

●

●
●

●

●
●
●

●

●

●

●

●

●
●

●
●●
●

●

●

●

●●

●

●
●

●

●
●●

●

●

●

●

●

●

●●

●
●

●

●

●

●● ●●
●
●●

●

●
●
●

●

●

●
●●
●
●

●
●
●●

●

●

●
●
●

●

●●
●●

●

●
●●●

●

●

●

●

● ●
●
●
●

●

●

●

●

●

●

●

●●

●
●

●
●

●●●

●
●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●●
●

●
●

●

●
●
●

●

●

●●
●

●

●
●

●

●

0

20

40

60

80

20 40 60 80 100
#Places in CNU

M
ill

is
ec

on
ds

tpre

●

●

●

1
2
3

Figure 10 Averaged runtimes for performing 100 CNU operations using joint distributions or
MBNs.

of successive Fk,b matrices which can only be eliminated using the costly operations on
substochastic matrices (see proof of Lemma 22). One could implement effective simplification
strategies merging successive Fk,b matrices – since composing 0,1 diagonal matrices yields
again 0,1 diagonal matrices. However, this is out of scope of this publication.

The plot on the left of Figure 10 shows a comparison between run times when performing
CNU operations directly on the joint distribution versus our MBN implementation. One can
clearly observe the exponential increase when using the joint distribution while the MBN
implementation in this setup stays relatively constant. The plot on the right of Figure 10
hints towards an increase in complexity when CNs – and thus MBNs – are more coupled.
When increasing the maximum number of places in the precondition of a transition we
observe an increase in run times. The number of outliers with a dramatic increase in run
times seem to rise as well.

6 Conclusion

Related work. A concept similar to our nets with uncertainty has been proposed in [18], but
without any mechanism for efficiently representing and updating the probability distribution.
There are also links to Hidden Markov Models [25] for inferring probabilistic knowledge on
hidden states by observing a model.

Bayesian networks were introduced by Pearl in [22] to graphically represent random
variables and their dependencies. Our work has some similarities to his probabilistic calculus
of actions (do-calculus) [23] which supports the empirical measurement of interventions.
However, while Pearl’s causal networks model describe true causal relationships, in our case
Bayesian networks are just compact symbolic representations of huge probability distributions.
There is also a notion of dynamic Bayesian networks [21], where a random variable has a
separate instance for each time slice. We instead keep only one instance of every random
variable, but update the BN itself. There is substantial work on updating Bayesian networks
(for instance [15]) with the orthogonal aim of learning BNs from training data.

PROPs have been introduced in [20], foundations for term-based proofs have been studied
in [19] and their graphical language has been developed in [27, 5]. Bayesian networks as
PROPs have already been studied in [12] under the name of causal theories, as well as
in [17, 16] in order to give a predicate/state transformer semantics to Bayesian networks.
However, these papers do not explicitly represent the underlying graph structure and in
particular they do not consider updates of Bayesian networks.

We use the results from [7] in order to show that our causality graphs are in fact term
graphs, which are freely generated gs-monoidal categories, which in turn are CC-structured
PROPs. Although this result is intuitive, it is non-trivial to show: given two terms with

CONCUR 2018

27:16 Updating Probabilistic Knowledge on Condition/Event Nets using Bayesian Networks

isomorphic underlying graphs, each can be reduced to a normal form which can be converted
into each other using the axioms of a CC-structured PROP. Similar results are given in
[11, 2] for PROPs with multiplication and unit, in addition to comultiplication and counit.

Future work. We would like to investigate further operations on probability distributions,
however it is unclear whether every operation can be efficiently implemented. For instance
linear combinations of probability distributions seem difficult to handle.

Van der Aalst [29] showed that all reachable markings in certain free-choice nets can
be inferred from their enabled transitions. An unrestricted observer may therefore be in a
very strong position. Privacy research often considers statistical queries, such as how many
records with certain properties exist in the database [10, 8]. To model such weaker queries we
require labelled nets where instead of transitions we observe their labels. To implement this
in BNs requires a disjunction of the enabledness conditions of all transitions with the same
label. Furthermore we are interested in scenarios where certain transitions are unobservable.

References

1 L. Antova, C. Koch, and D. Olteanu. 10̂ (10̂ 6) worlds and beyond: efficient representation
and processing of incomplete information. VLDB Journal, 18(1021), 2009.

2 R. Bruni, F. Gadducci, and U. Montanari. Normal forms for algebras of connections.
Theoretical Computer Science, 286(2):247–292, 2002.

3 B. Cabrera, T. Heindel, R. Heckel, and B. König. Updating probabilistic knowledge on Con-
dition/Event nets using Bayesian networks, 2018. arXiv:1807.02566. arXiv:1807.02566.

4 A.Y.W. Cheuk and C. Boutilier. Structured arc reversal and simulation of dynamic proba-
bilistic networks. In Proc. of UAI ’97 (Uncertainty in Artificial Intelligence), pages 72–79,
1997.

5 B. Coecke and A. Kissinger. Picturing Quantum Processes: A First Course in Quantum
Theory and Diagrammatic Reasoning. Cambridge University Press, 2017.

6 G.F. Cooper. The computational complexity of probabilistic inference using Bayesian belief
networks. Artif. Intell., 42(2-3):393–405, 1990. doi:10.1016/0004-3702(90)90060-D.

7 A. Corradini and F. Gadducci. An algebraic presentation of term graphs, via gs-monoidal
categories. Appl. Categor. Struct., 7:299–331, 1999.

8 M.L. Damiani. Location privacy models in mobile applications: conceptual view
and research directions. GeoInformatica, 18(4):819–842, 2014. doi:10.1007/
s10707-014-0205-7.

9 J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 1995.

10 C. Dwork. Differential privacy: A survey of results. In Proc. of TAMC ’08 (Theory and
Applications of Models of Computation), pages 1–19. Springer, 2008. LNCS 4978.

11 M. Fiore and M. Devesas Campos. The algebra of directed acyclic graphs. In Computation,
Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky, pages
37–51. Springer, 2013. LNCS 7860.

12 B. Fong. Causal theories: A categorical perspective on Bayesian networks. Master’s thesis,
University of Oxford, 2012. arXiv:1301.6201.

13 B. Fong and D. I Spivak. Seven Sketches in Compositionality: An Invitation to Applied
Category Theory. ArXiv e-prints, 2018. arXiv:1803.05316.

14 N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine Learn-
ing, 29:131–163, 1997.

http://arxiv.org/abs/1807.02566
http://dx.doi.org/10.1016/0004-3702(90)90060-D
http://dx.doi.org/10.1007/s10707-014-0205-7
http://dx.doi.org/10.1007/s10707-014-0205-7
http://arxiv.org/abs/1803.05316

B. Cabrera, T. Heindel, R. Heckel, and B. König 27:17

15 N. Friedman and M. Goldszmidt. Sequential update of bayesian network structure. In
Dan Geiger and Prakash Shenoy, editors, Proc. of UAI ’97 (Uncertainty in Artificial Intel-
ligence), pages 165–174, 1997.

16 B. Jacobs and F. Zanasi. A predicate/state transformer semantics for Bayesian learning.
In Proc. of MFPS, volume 325 of ENTCS, pages 185–200, 2016.

17 B. Jacobs and F. Zanasi. A formal semantics of influence in Bayesian reasoning. In Proc.
of MFCS, volume 83 of LIPIcs, pages 21:1–21:14, 2017.

18 I. Jarkass and M. Rombaut. Dealing with uncertainty on the initial state of a Petri net. In
Proc. of UAI ’98 (Uncertainty in Artificial Intelligence), pages 289–295, 1998.

19 C. Barry Jay. Languages for monoidal categories. Journal of Pure and Applied Algebra,
59(1):61–85, 1989.

20 S. MacLane. Categorical algebra. Bull. Amer. Math. Soc., 71(1):40–106, 1965.
21 K. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD

thesis, UC Berkeley, Computer Science Division, 2002.
22 J. Pearl. Bayesian networks: A model of self-activated memory for evidential reasoning. In

Proc. of the 7th Conference of the Cognitive Science Society, pages 329–334, 1985. UCLA
Technical Report CSD-850017.

23 J. Pearl. A probabilistic calculus of actions. In R. Lopez de Mantaras and D. Poole, editors,
Proc. of UAI ’94 (Uncertainty in Artificial Intelligence), 1994.

24 J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2000.
25 L. R. Rabiner. A tutorial on Hidden Markov Models and selected applications in speech

recognition. Proceedings of the IEEE, 77(2):257–286, 1989.
26 W. Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical Computer

Science. Springer-Verlag, Berlin, Germany, 1985.
27 P. Selinger. A survey of graphical languages for monoidal categories. In Bob Coecke, editor,

New Structures for Physics, pages 289–355. Springer, 2011.
28 D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic Databases. Morgan & Claypool

Publishers, 2011.
29 W.M.P. van der Aalst. Markings in perpetual free-choice nets are fully characterized by

their enabled transitions. In Proc. of PN ’18 (Petri Nets), pages 315–336. Springer, 2018.
LNCS 10877.

30 F. Zanasi. Interacting Hopf Algebras – the theory of linear systems. PhD thesis, ENS Lyon,
2015.

CONCUR 2018

Reachability in Timed Automata with Diagonal
Constraints
Paul Gastin
LSV, CNRS, ENS Paris-Saclay, Université Paris–Saclay, France
gastin@lsv.fr

Sayan Mukherjee
Chennai Mathematical Institute, India
sayanm@cmi.ac.in

B. Srivathsan
Chennai Mathematical Institute, India
sri@cmi.ac.in

Abstract
We consider the reachability problem for timed automata having diagonal constraints (like
x− y < 5) as guards in transitions. The best algorithms for timed automata proceed by enumer-
ating reachable sets of its configurations, stored in a data structure called “zones”. Simulation
relations between zones are essential to ensure termination and efficiency. The algorithm employs
a simulation test Z 4 Z ′ which ascertains that zone Z does not reach more states than zone
Z ′, and hence further enumeration from Z is not necessary. No effective simulations are known
for timed automata containing diagonal constraints as guards. We propose a simulation relation
4d

LU for timed automata with diagonal constraints. On the negative side, we show that deciding
Z 64d

LU Z ′ is NP-complete. On the positive side, we identify a witness for Z 64d
LU Z ′ and propose

an algorithm to decide the existence of such a witness using an SMT solver. The shape of the
witness reveals that the simulation test is likely to be efficient in practice.

2012 ACM Subject Classification Theory of computation → Verification by model checking

Keywords and phrases Timed Automata, Reachability, Zones, Diagonal constraints

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.28

Related Version A full version of the paper is available at [12], https://arxiv.org/abs/1806.
11007.

Funding Partly supported by UMI RELAX, Infosys foundation (India) and Tata Consultancy
Services - Innovation Labs (Pune, India)

1 Introduction

Timed automata [1] are models of real-time systems. They are finite automata equipped
with real valued variables called clocks. These clocks can be used to constrain the time
difference between events: for instance when an event a occurs a clock x can be set to 0
in the transition reading a, and when an event b occurs, the transition reading b can check
if x ≤ 4. These constraints on clocks are called guards and clocks which are made 0 in a
transition are said to be reset in the transition. Guards of the form x − y > 5 are called
diagonal constraints. They are convenient for checking conditions about events in the past:
when an event c occurs, we want to check that between events a, b which occurred previously
(in the said order), the time gap is at least 5. One can then reset a clock x at a, y at b

© Paul Gastin, Sayan Mukherjee, and B. Srivathsan;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 28; pp. 28:1–28:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gastin@lsv.fr
mailto:sayanm@cmi.ac.in
mailto:sri@cmi.ac.in
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.28
https://arxiv.org/abs/1806.11007
https://arxiv.org/abs/1806.11007
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2 Reachability in Timed Automata with Diagonal Constraints

and check for x− y > 5 at c. It is known that such diagonal constraints do not add to the
expressive power: each timed automaton can be converted into an equivalent one with no
diagonal guards, that is, a diagonal-free automaton [4]. However, this conversion leads to an
exponential blowup in the number of states, which is unavoidable in general [6].

State reachability is a basic question in timed automata verification. The problem is to
decide if there exists a run of the automaton from the initial state to a given accepting state.
This is known to be PSPACE-complete [1]. In practice, the best algorithms for reachability
proceed by a forward analysis of the automaton: starting from its initial state, enumerate
reachable sets of its configurations stored in the form of a data structure called zones. Zones
are conjunctions of difference constraints (like x− y < 6 ∧ w > 4) which can be efficiently
represented and manipulated using Difference Bound Matrices [11]. Abstractions of zones
are necessary for termination and efficiency of this enumeration. These abstractions are
functions with a finite range mapping each set of configurations to a bigger set. For diagonal
free timed automata various implementable abstraction functions are known [2, 16]. For
timed automata with diagonal constraints, no such abstraction functions are known and
such a forward analysis method does not work. A naïve method would be to analyze the
equivalent diagonal free automaton, but then this introduces a (systematic) blowup.

Abstractions of zones can be used in two ways during the forward analysis: explicitly or
implicitly. In the explicit case, each time a new zone Z appears, the abstraction function a

is applied on it and a(Z) is stored. Further enumeration starts from a(Z). For this explicit
method to work, a(Z) needs an efficient representation. Hence only abstractions where
a(Z) is also a zone (also called convex abstractions) are used. Extra+

LU [2] is the best known
convex abstraction for diagonal free automata and is implemented in the state-of-the-art tool
UPPAAL [3]. In the implicit case, zones are not extrapolated and are stored as they are.
Each time a new zone Z appears, it is checked if there exists an already visited zone Z ′ such
that Z ⊆ a(Z ′). Intuitively this means that zone Z cannot see more states than Z ′ and hence
the enumeration at Z can stop. Given that a has finite range, the computation terminates.
Since abstractions of zones are not stored explicitly, there is no restriction for a to result in
a zone, but an efficient inclusion test Z ⊆ a(Z ′) is necessary as this test is performed each
time a new zone appears. For diagonal-free automata, the best known abstraction is a4LU

and it subsumes Extra+
LU . The inclusion test Z ⊆ a4LU(Z ′) can be done in O(|X|2) where

X is the number of clocks [16]. In both cases - explicit or implicit - it is important to have
an abstraction that transforms zones into as big sets as possible, so that the enumeration
can terminate with fewer zone visits.

In this paper, we are interested in the implicit method for timed automata with diagonal
constraints. Since the abstractions that are usually used are based on simulation relations,
the inclusion test Z ⊆ a(Z ′) boils down to a simulation test Z 4 Z ′ between zones. In
particular, the a4LU abstraction is based on a simulation relation 4LU [2]. We choose to take
this point of view: from the next section, we refrain from using abstractions and present them
as simulations instead. We propose a simulation 4d

LU that is sound for diagonal constraints.
Contrary to the diagonal free case, we show that the simulation test Z 64d

LU Z ′ is NP-complete.
But on the positive side, we give a characterization of a witness for the fact that Z 64d

LU Z ′

and encode the existence of such a witness as the satisfiability of a formula in linear arithmetic.
This gives an algorithm for Z 64d

LU Z ′. The shape of the witness shows that in practice
the number of potential candidates would be low and the simulation test is likely to be
efficient. We have implemented our algorithm in a prototype tool. Preliminary experiments
demonstrate that the number of zones enumerated using 4d

LU simulation drastically reduces
compared to the number of zones obtained by doing the diagonal free conversion followed by

P. Gastin, S. Mukherjee, and B. Srivathsan 28:3

a forward analysis using 4LU . This simulation relation 4d
LU and the associated simulation

test also open the door for extending optimizations studied for diagonal free automata [15],
to the case of diagonal constraints; and also extending analysis of priced timed automata
with diagonal constraints [7, 18].

Related work. Convex abstractions used for diagonal free timed automata had been in
use also for diagonal constraints in tools like UPPAAL and KRONOS [19]. It was shown
in [5] that this is incorrect: there are automata with diagonal constraints for which using
Extra+

LU will give a yes answer to the reachability problem, whereas the accepting state is
not actually reachable in the automaton. This is because the extra valuations added during
the computation enable guards which were originally not enabled in the automaton, leading
to spurious executions. A non convex abstraction for diagonal constraints appears in [5], but
the corresponding inclusion test is not known. The current algorithm for diagonal constraints
proceeds by an abstraction refinement method [8].

Organization of the paper. Section 2 gives the preliminary definitions. In Section 3, we
propose a simulation relation 4d

LU between zones and observe some of its properties. Section
4 gives an algorithm for Z 64d

LU Z ′ via reduction to an SMT formula. Section 5 shows that
Z 64d

LU Z ′ is NP-hard by a reduction from 3-SAT. We report some experiments and conclude
in Section 6. Missing proofs can be found in the extended version [12].

2 Preliminaries

Let N denote the set of natural numbers, Z the set of integers and R≥0 the set of non-negative
reals. We denote the power set of a set S by P(S). A clock is a variable that ranges over
R≥0. Fix a finite set of clocks X. A valuation v is a function which maps each clock x ∈ X
to a value in R≥0. Let Φ(X) denote the set of clock constraints φ formed using the following
grammar: φ := x ∼ c | x− y ∼ c | φ ∧ φ, where x, y ∈ X, c ∈ N and ∼ ∈ {<,≤,=,≥, >}
Constraints of the form x− y ∼ c are called diagonal constraints. For a clock constraint φ,
we write v |= φ if the constraint given by φ is satisfied by replacing each clock x in φ with
v(x). For δ ∈ R≥0, we write v + δ for the valuation defined by (v + δ)(x) = v(x) + δ for all
clocks x. For a set R of clocks, we write [R]v for the valuation obtained by setting each clock
x ∈ R to 0 and each x /∈ R to v(x).

I Definition 1 (Timed Automata). A timed automaton A is a tuple (Q,X,∆, q0, F) where
Q is a finite set of states, X is a finite set of clocks, q0 ∈ Q is the initial state, F ⊆ Q is
a set of accepting states and ∆ ⊆ Q × Φ(X) × P(X) ×Q is the transition relation. Each
transition in ∆ is of the form (q, g, R, q′) where g ∈ Φ(X) is called the guard of the transition
and R ⊆ X is the set of clocks that are said to be reset at the transition.

Timed automata with no diagonal constraints are called diagonal-free. The semantics
of timed automata is described as a transition system over the space of its configurations.
A configuration is a pair (q, v) where q ∈ Q is a state and v is a valuation. There are two
kinds of transitions. Delay transitions are given by (q, v) →δ (q, v + δ) for each δ ∈ R≥0,
and action transitions are given by (q, v) →t (q′, v′) for each transition t ∈ ∆ of the form
(q, g, R, q′), if v |= g and v′ = [R]v. The initial configuration is (q0,0) where 0 denotes the
valuation mapping each clock to 0. Note that the above transition system is infinite. A run
of a timed automaton is an alternating sequence of delay and action transitions starting
from the initial configuration: (q0,0) →δ0→t0 (q1, v1) →δ1→t1 · · · (qn, vn). A run of the

CONCUR 2018

28:4 Reachability in Timed Automata with Diagonal Constraints

above form is said to be accepting if the last state qn ∈ F . The reachability problem for
timed automata is the following: given an automaton A, decide if there exists an accepting
run. This problem is known to be PSPACE-complete [1]. As the space of configurations is
infinite, the main challenge in solving this problem involves computing a finite (and as small
as possible) abstraction of the timed automaton semantics. In this section, we recall the
reachability algorithm for the diagonal free case. For the rest of the section we fix a timed
automaton A.

Instead of working with configurations, standard solutions in timed automata analysis
work with sets of valuations. The “successor” operation is naturally extended to the case of
sets. For every transition t of A and every set of valuationsW , we have a transition⇒t defined
as follows: (q,W)⇒t (q′,W ′) where W ′ = {v′ | ∃v ∈W, ∃δ ∈ R≥0 : (q, v)→t→δ (q′, v′)}.
Note that in the definition we have a→δ following the→t. This ensures that the⇒ successors
(where ⇒ =

⋃
t∈∆ ⇒t) are closed under time successors. Moreover, the sets which occur

during timed automata analysis using the ⇒ relation have a special structure, and are called
zones. A zone is a set of valuations which can be described using a conjunction of constraints
of the form: x ∼ c or x−y ∼ c where x, y ∈ X and c ∈ N. Zones can be efficiently represented
using Difference Bound Matrices (DBMs). To each automaton A, we associate a transition
system consisting of (state, zone) pairs: the zone graph ZG(A) is a transition system whose
nodes are of the form (q, Z) where q is a state of A and Z is a zone. The initial node is
(q0, Z0) with Z0 = {0 + δ | δ ≥ 0}. Transitions are given by ⇒.

I Lemma 2. The zone graph ZG(A) is sound and complete for reachability [9].

Although the zone graph is a more succinct representation than the space of configurations,
it could still be infinite. The reachability algorithm employs simulation relations between
zones to obtain a finite abstraction of the zone graph that is sound and complete1.

We start by defining this notion of simulations at the level of configurations. A (time-
abstract) simulation between pairs of configurations of A is a reflexive and transitive relation
(q, v) 4 (q′, v′) such that: q = q′; for every (q, v) →δ (q, v + δ) there exists δ′ such that
(q, v′)→δ′ (q, v′ + δ′) satisfying (q, v + δ) 4 (q, v′ + δ′); and if (q, v)→t (q1, v1), then there
exists (q, v′)→t (q1, v

′
1) satisfying (q1, v1) 4 (q1, v

′
1) for the same transition t. We say that

(q, v) is simulated by (q′, v′). We write v 4 v′ if (q, v) 4 (q, v′) for all states q. Simulations
can be extended to relate zones in the natural way: we write Z 4 Z ′ if for all v ∈ Z there
exists v′ ∈ Z ′ such that v 4 v′. A simulation relation 4 is said to be finite if there exists
N ∈ N such that for all n > N and every sequence of zones {Z1, Z2, . . . , Zn}, there exists
i < j ≤ n such that Zj 4 Zi.

Reachability algorithm. The input to the algorithm is a timed automaton A. The algorithm
maintains two lists, Passed and Waiting, and makes use of a finite simulation relation 4
between zones. The initial node (q0, Z0) is added to the Waiting list. Wlog. we assume that
q0 is not accepting. The algorithm repeatedly performs the following steps:
Step 1. If Waiting is empty, then return “A has no accepting run”; else pick (and remove) a

node (q, Z) from Waiting.
Step 2. For each successor (q, Z) ⇒ (q1, Z1) such that Z1 6= ∅ perform the following

operations: if q1 is accepting, return “A has an accepting run”; else check if there exists

1 Existing reachability algorithms make use of what are known as abstraction operators [2, 16], which are
based on simulation relations. Instead of abstractions, we choose to present the algorithm directly using
simulations between zones.

P. Gastin, S. Mukherjee, and B. Srivathsan 28:5

a node (q1, Z
′
1) in Passed or Waiting such that Z1 4 Z ′1: if yes, ignore the node (q1, Z1),

otherwise add (q1, Z1) to Waiting.
Step 3. Add (q, Z) to Passed and proceed to Step 1.

I Theorem 3. The reachability algorithm terminates with a correct answer.

The reachability algorithm relies on an operation Z1 4 Z ′1, where 4 is some finite
simulation relation as defined earlier. It has been shown that for the simulation relation
4LU of [2] which works for diagonal free automata, checking Z 4LU Z ′ can be done in time
O(|X|2) [16]. Hence in diagonal free timed automata, this simulation test is as efficient as
checking normal inclusion Z ⊆ Z ′. The successor computation can also be implemented in
O(|X|2) [20] using Difference Bound Matrices. These matrices can also be viewed as graphs.
We recall this graph-based representation of zones and some of its properties.

I Definition 4 (Distance graph). A distance graph G has clocks as vertices, with an additional
special vertex x0 representing constant 0. Between every two vertices there is an edge with a
weight of the form (/, c) where c ∈ Z and / ∈ {≤, <} or (/, c) = (<,∞). An edge x /c−→ y

represents a constraint y − x / c: or in words, the distance from x to y is bounded by c. We
let [[G]] be the set of valuations of clock variables satisfying all the constraints given by the
edges of G with the restriction that the value of x0 is 0.

We will sometimes write 0 instead of x0 for clarity. An arithmetic over the weights (/, c)
can be defined as follows [3].
Equality (/1, c1) = (/2, c2) if c1 = c2 and /1 = /2.
Addition (/1, c1) + (/2, c2) = (/, c1 + c2) where / = < iff either /1 or /2 is <.
Total order (/1, c1) < (/2, c2) if either c1 < c2 or (c1 = c2 and /1 = < and /2 = ≤).

This arithmetic lets us talk about the weight of a path as the sum of the weights of its edges.
A cycle in a distance graph G is said to be negative if the sum of the weights of its edges

is at most (<, 0). A distance graph is in canonical form if there are no negative cycles and
the weight of the edge from x to y is the lower bound of the weights of paths from x to y.
Given a distance graph, its canonical form can be computed by using an all-pairs shortest
paths algorithm like Floyd-Warshall’s [3] in time O((|X|+ 1)3) where |X| is the number of
clocks. Note that the number of vertices in the distance graph is |X|+ 1. A folklore result
is that: a distance graph G has no negative cycles iff [[G]] 6= ∅. Given two distance graphs
G1, G2 (not necessarily in their canonical form), we define min(G1, G2) to be the distance
graph obtained by setting for each x→ y the minimum of the corresponding weights in G1
and G2. For two distance graphs G1 and G2, we have [[min(G1, G2)]] = [[G1]] ∩ [[G2]].

A simulation relation for timed automata with diagonal constraints was proposed in
[5], but it has not been used in the reachability algorithm since no algorithm for the zone
simulation test was known.

3 A new simulation relation in the presence of diagonal constraints

In this section, we introduce a new simulation relation 4d
LU which extends the 4LU simulation

of [2]. For this, we first assume that all guards in timed automata are rewritten in the form
x− y / c or x / c, where c ∈ Z and / ∈ {<,≤}. We will also assume that X is a set of clocks
including the 0 clock.

I Definition 5 (LU-bounds). An LU bounds function is a pair of functions L : X ×X 7→
Z ∪ {∞} and U : X ×X 7→ Z ∪ {−∞} mapping each clock difference x − y to a constant
or ∞ or −∞ such that the conditions below are satisfied (we write L(x− y), U(x− y) for
L(x, y) and U(x, y) respectively):

CONCUR 2018

28:6 Reachability in Timed Automata with Diagonal Constraints

d

v(x) − v(y) v′(x) − v′(y)

Do not relate v and v′ if there is a guard x − y ≤ d or x − y < d

Figure 1 Black dots illustrate the values of v(x)− v(y) and v′(x)− v′(y). The value v(x)− v(y)
satisfies the guard x− y / d but v′(x)− v′(y) does not satisfy the same guard.

either L(x− y) =∞ and U(x− y) = −∞, or L(x− y) ≤ U(x− y) for all distinct pairs of
clocks x, y ∈ X,
L(x− 0) = 0 and U(0− x) = 0 for all non zero clocks x ∈ X

The L stands for lower and U stands for upper. Intuitively, each LU -bounds function
corresponds to a set of guards given by x− y / c with L(x− y) ≤ c ≤ U(x− y). We will now
define a simulation relation 4d

LU between valuations parameterized by LU -bounds. The idea
is to give a relation v 4d

LU v′ such that v′ satisfies all guards compatible with the parameter
LU that v satisfies. To achieve this, the situation as illustrated in Figure 1 needs to be
avoided. This is formalized by the following definition and the subsequent lemma.

I Definition 6 (LU-preorder 4d
LU). Let LU be a bounds function. A valuation v′ simulates

a valuation v with respect to LU , written as v 4d
LU v′, if for every pair of distinct clocks

x, y ∈ X the following hold:
v′(x)− v′(y) < L(x− y) if v(x)− v(y) < L(x− y)
v′(x)− v′(y) ≤ v(x)− v(y) if L(x− y) ≤ v(x)− v(y) ≤ U(x− y)

For a valuation v, we write 〈v〉LU for the set of all v′ such that v 4d
LU v′.

I Lemma 7. Let x, y be distinct clocks in X, and x− y / c with c ∈ Z be a guard. Let LU
be a bounds function such that L(x− y) ≤ c ≤ U(x− y). Then, for every pair of valuations
v, v′ such that v 4d

LU v′, if valuation v |= x− y / c then v′ |= x− y / c.

The next lemma shows that time delay preserves 4d
LU from two valuations v and v′ with

v 4d
LU v′. In fact, it is strong in the sense that if we delay δ from v, then the same delay

from v′ satisfies the LU preorder conditions. The proof of this lemma uses the fact that
L(x− 0) = 0 and U(0− x) = 0 for all non-zero clocks x.

I Lemma 8. Let LU be a bounds function. For every pair of valuations v and v′, if v 4d
LU v′,

then v + δ 4d
LU v′ + δ for all δ ≥ 0.

The next lemma shows that resets preserve 4d
LU under certain conditions on LU .

I Lemma 9. Let LU be a bounds function satisfying U(x− 0) ≥ U(x− y) for all y ∈ X and
L(0− y) ≤ L(x− y) for all x ∈ X. Then, v 4d

LU v′ implies [R]v 4d
LU [R]v′ for every R ⊆ X.

The LU preorder can be extended to configurations: (q, v) 4d
LU (q, v′) if v 4d

LU v′. The
above three lemmas give the necessary ingredients to generate an LU bounds function from
a timed automaton A such that the associated LU preorder is a simulation on its space of
configurations.

Let G be a set of constraints. We construct a new set G from G in the following way:
Add all the constraints of G to G
For each clock x ∈ X, add the constraints x ≤ 0 and −x ≤ 0 to G
For each constraint x− y / c ∈ G, add the constraints x / c and −y / c to G
Remove all constraints of the form x / c1 where c1 ∈ R<0 and constraints of the form
−x / c2 where c2 ∈ R>0 from G.

P. Gastin, S. Mukherjee, and B. Srivathsan 28:7

We define an LU -bounds function on G in the natural way: for each pair of clocks
x, y ∈ X, we set L(x− y) = min{c | x− y / c ∈ G} and U(x− y) = max{c | x− y / c ∈ G}.
If there are no guards of the form x− y / c in G, then we set L(x− y) to be ∞ and U(x− y)
to be −∞. Note that since G contains the constraints x ≤ 0 and has no constraints x / c
where c ∈ R<0, L(x − 0) = 0 for all x ∈ X. Similarly, U(0 − x) = 0 for all x ∈ X. For a
timed automaton A, let GA be the set of guards present in A. The LU -bounds of A is the
LU -bounds function defined on GA. The next theorem follows from Lemmas 7, 8 and 9.

I Theorem 10. For every timed automaton A, the relation 4d
LU obtained from the LU -bounds

of A is a simulation relation on its configurations.

We use this simulation relation extended to zones in the reachability algorithm, as
described in Page 4. To do so, we need to give an algorithm for the simulation test Z 4d

LU Z ′,
and show that 4d

LU is finite. Correctness and termination follow from Theorem 3. We first
describe the simulation test, and then prove finiteness. Observe that Z 64d

LU Z ′ iff there
exists v ∈ Z such that 〈v〉LU ∩ Z ′ = ∅. We give a distance graph representation for 〈v〉LU .

I Definition 11 (Distance graph for 〈v〉LU). Given a valuation v and an LU bounds function,
we construct distance graph GLU

〈v〉 as follows. For every pair of distinct clocks x, y ∈ X, add
the edges:

y −→ x with weight (<,L(x− y)), if v(x)− v(y) < L(x− y),
y −→ x with weight (≤, v(x)− v(y)), if L(x− y) ≤ v(x)− v(y) ≤ U(x− y).

Using Definition 6 we can show that [[GLU

〈v〉]] equals 〈v〉LU . The properties of distance
graphs as described in Page 5 then lead to the following theorem.

I Theorem 12. Let Z,Z ′ be zones such that Z ′ is non-empty, and let LU be a bounds
function. Let GZ′ be the canonical distance graph of Z ′. Then, Z 64d

LU Z ′ iff there is a
valuation v ∈ Z and a negative cycle in min(GLU

〈v〉, GZ′) in which no two consecutive edges
are from GZ′ .

A witness to the fact that Z 64d
LU Z ′ is therefore a v ∈ Z and a negative cycle of a certain

shape given by Theorem 12. As explained in Section 4, existence of such a witness can be
encoded as satisfiability of a formula in linear arithmetic. This gives an NP procedure. A
satisfying assignment to the formula reveals a valuation v ∈ Z and a corresponding negative
cycle across GLU

〈v〉 and GZ′ . Although there is no fixed bound on the length of this negative
cycle (contrary to the diagonal free case), note that each y → x edge from GLU

〈v〉 in the
negative cycle needs to have finite U(x − y) and L(x − y) constants (apart from x → 0
edges). If for an automaton, many pairs of clocks have no diagonal constraints (which we
believe occurs often in practice) then this simulation test would need to enumerate only a
small number of cycles.

The final step is to show that 4d
LU is finite. We make use of a notation: we write ↓Z to

be the set of valuations u such that u 4d
LU v for some v ∈ Z. Note that Z 64d

LU Z ′ implies
↓Z 6= ↓Z ′.

I Theorem 13. The simulation relation 4d
LU is finite for every LU bounds function.

Proof. We will first show that for any zone Z, ↓Z is a union of d-regions (parameterized by
LU) which are defined below. We will subsequently show that there are only finitely many
d-regions. The observation that Z 64d

LU Z ′ implies ↓Z 6= ↓Z ′ then proves the theorem.
Given a valuation v and LU -bounds function, we define the following relations over pairs

of clocks:

CONCUR 2018

28:8 Reachability in Timed Automata with Diagonal Constraints

y
1−→ x if v(x)− v(y) < L(x− y)

y
2−→ x if L(x− y) ≤ v(x)− v(y) ≤ U(x− y)

A d-region R is a set of valuations that satisfies the following:
all valuations in R have the same 1−→ and 2−→ relations.
for every subset S = {y1

2−→ x1, y2
2−→ x2, . . . , yk

2−→ xk} of ordered pairs of clocks, every

valuation in R satisfies one of the following constraints: either
(
i=k∑
i=1

xi − yi = c

)
or

c− 1 <
(
i=k∑
i=1

xi − yi
)
< c for an integer c satisfying

i=k∑
i=1

L(xi − yi) ≤ c ≤
i=k∑
i=1

U(xi − yi).

We will now show that if a d-region R intersects ↓Z then R ⊆ ↓Z. Let v ∈ R be such
that v ∈ ↓Z. Let v′ be another valuation in R. Suppose v′ /∈ ↓Z. Then 〈v′〉LU ∩Z = ∅. That
is, min(GLU

〈v′〉, GZ) has a negative cycle; let us call it Nv′ . Let Nv be the cycle Nv′ with the
edges coming from GLU

〈v′〉 replaced with the same edges from GLU

〈v〉. We want to show that Nv
is negative. Since v and v′ come from the same region R, we have:

The weight of a type 1 edge yi
1−→ xi is (<,L(xi − yi)) in both Nv and Nv′ . Let (<,S1)

be the sum of the weights of the type 1 edges. This sum is the same in Nv and Nv′ .
We let (≤, S2) = (≤,

∑
i v(xi)− v(yi)) and (≤, S′2) = (≤,

∑
i v
′(xi)− v′(yi)) be the sum

of the weights of type 2 edges yi
2−→ xi in Nv and Nv′ respectively. Then, for some integer

c, either S2 = S′2 = c or c− 1 < S2 < c and c− 1 < S′2 < c.
Also the edges coming from GZ have the same weight in Nv and Nv′ . Call (/3, S3) the
sum of the weights of the edges coming from GZ . Finally, let (/, S = S1 + S2 + S3) and
(/, S′ = S1 +S′2 +S3) be the weights of Nv and Nv′ respectively. Since Nv′ is negative, (/, S′)
is at most (<, 0). Now, S1 and S3 are integers, and using the relation between S2 and S′2, we
deduce that Nv is also negative. This entails 〈v〉LU ∩ Z = ∅, and contradicts the assumption
v ∈ ↓Z. We get R ⊆ ↓Z, thereby showing that each ↓Z is a union of d-regions.

Each d-region depends only on the 1−→ and 2−→ relations and the values of c for each subset
S of 2−→ edges. Since number of clocks is finite, the number of possible relations 1−→ and 2−→ is
finite. For each such relations, the possible values for the constants c is finite. Thus there
are only finitely many d-regions. J

4 Algorithm for Z 64d

LU
Z ′

Theorem 12 gives a witness for the fact that Z 64d
LU Z ′. In this section, we encode the

existence of this witness as an SMT formula over linear arithmetic. For clarity of exposition,
we will also restrict to timed automata having no strict constraints as guards, that is, every
guard is of the form x− y ≤ c or x ≤ c. This would in particular imply that in the zones
obtained during the forward analysis, there will be no strict constraints.

I Definition 14 (Satisfiability modulo Linear Arithmetic). Let Prop be a set of propositional
variables, and Vars a set of variables ranging over reals. An atomic term is a constraint of
the form c1x1 + c2x1 + · · ·+ ckxk ∼ d where c1, . . . , cn, d ∈ Z and x1, x2, . . . , xk ∈ Vars and
∼ ∈ {≤, <,=, >,≥}. A formula in linear arithmetic is a boolean combination of propositional
variables and atomic terms. Formula φ is satisfiable if there exists an assignment of boolean
values to propositions in Prop, and real values to variables in Vars such that replacing every
occurrence of the variables and propositions by the assigment evaluates φ to true.

The next lemma follows from [17].

P. Gastin, S. Mukherjee, and B. Srivathsan 28:9

I Lemma 15. Satisfiability of a formula in linear arithmetic is in NP.

Fix two zones Z,Z ′ and a bounds function LU . Zones Z and Z ′ are given by their
canonical distance graphs GZ and GZ′ . We write cyx for the weight of the edge y → x

in GZ and c′yx for the weight of y → x in GZ′ . Further we assume that the set of clocks
is {0,1, . . . ,n}. The final formula will be obtained by constructing suitable intermediate
subformulas as explained below:
Step 1. Guess a v ∈ Z.
Step 2. Guess a subset of edges y → x which forms a cycle (or a disjoint union of cycles).
Step 3. Guess a colour for each edge y → x in the cycle: red or blue. No two consecutive

edges in the cycle can both be red. Red edges correspond to edges from GZ′ . Blue edges
correspond to edges from GLU

〈v〉.
Step 4. Assign weights to each edge y → x: if it is coloured red, the weight is c′yx (edge

weight of GZ′). If the edge y → x is blue, assign weight according to the following cases:
wyx = (<,L(x− y)) if v(x)− v(y) < L(x− y)
wyx = (≤, v(x)− v(y)) if L(x− y) ≤ v(x)− v(y) ≤ U(x− y)

Add up the weights of all the edges (the comparison < or ≤ component of the weight can
be maintained using a boolean). If there are no strict edges (that is with weight <) in
the chosen cycle, check if the sum is < 0. Else, check if the sum is ≤ 0.

Formula for Step 1. We first guess a valuation v ∈ Z. We use real variables v0, v1, . . . , vn
to denote a valuation. These variables should satisfy the constraints given by Z:

v0 = 0 and
∧

x,y∈{0,...,n}

vx − vy ≤ cyx (1)

Call the above formula Φ1(v̄) where v̄ = (v0, . . . , vn). A satisfying assignment to Φ1 corres-
ponds to a valuation in Z.

Formula for Step 2. We now need to guess a set of edges of the form y → x which forms
a cycle, or a disjoint union of simple cycles. We will also ensure that no vertex appears in
more than one cycle. We will use boolean variables eij for i, j ∈ {0, . . . , n} and i 6= j.

The cycle must be non-empty.∨
0≤i,j≤n,j 6=i

eij (2)

If we pick an incoming edge to a clock, then we need to pick an outgoing edge.∧
0≤i≤n

(∨
0≤j≤n,j 6=i

eji

)
=⇒

(∨
0≤j≤n,j 6=i

eij

)
(3)

We do not pick more than one outgoing or incoming edges for each clock.∧
0≤i≤n

∧
0 ≤ j, k ≤ n

j 6= k, i 6= j, i 6= k

¬(eij ∧ eik) ∧ ¬(eji ∧ eki) (4)

Conjunction of (2, 3, 4) gives a formula Φ2(ē) over variables ē = {e01, . . . , enn−1}.

I Lemma 16. Let σ2 : ē 7→ {true, false} be an assignment which satisfies Φ2. Then the set
of edges {x→ y} such that σ2(exy) is true forms a vertex-disjoint union of cycles.

CONCUR 2018

28:10 Reachability in Timed Automata with Diagonal Constraints

Formula for Step 3. To colour the edges of the cycle formed by eij , we will use boolean
variables ri for 0 ≤ i ≤ n to color the source of the red edges. Once the red edges are
determined, the blue edges are also uniquely determined. Only edges chosen by ē are coloured
red, and no two consecutive edges can be coloured red.∧

0≤i≤n

(
ri =⇒

∨
0≤j≤n

eij ∧ ¬rj
)

(5)

Then, red edges are edges with corresponding source i satisfying ri. So for all i, j ∈ {0, . . . , n}
with i 6= j we introduce the macro redij := eij ∧ ri. Blue edges are those that have been
chosen for the cycle and have not been coloured red: blueij := eij ∧ ¬ri. Each blue edge
should satisfy one of the two conditions mentioned in Definition 11.∧

i,j∈{0,...,n},i6=j

blueij =⇒ vj − vi ≤ U(j − i) (6)

Conjunction of (5) and (6) gives formula Φ3.

I Lemma 17. Let σ3 be an assignment to variables v̄, ē and r̄. Suppose σ3 is a satisfying
assignment for Φ1 ∧Φ2 ∧Φ3. Then, the set of edges with σ3(eij) being true forms a collection
of vertex disjoint cycles using edges from GZ′ or from GLU

〈v〉 for some v ∈ Z.

Formula for Step 4. The last step is to add up weights of the red and blue edges. We make
use of real-valued variables wi for each source i of an edge. We associate weights of red and
blue edges.∧

i,j∈{0,...,n},i6=j

(redij =⇒ wi = c′ij)∧((blueij ∧ condition1) =⇒ wi = L(j − i))

∧((blueij ∧ condition2) =⇒ wi = vj − vi) (7)

where, condition1 := vj − vi < L(j − i) and condition2 := L(j − i) ≤ vj − vi ≤ U(j − i).
Uncoloured edges take weight 0,∧
0≤i≤n

(∧
0≤j≤n,j 6=i

¬eij
)

=⇒ (wi = 0) (8)

A boolean variable strict is true if one of the blue edges has a weight of the form (<, c).

strict ⇐⇒
∨

i,j∈{0,...,n},i6=j

blueij ∧ condition1 (9)

The final formula checks if the sum of the weights is at most (<, 0).

((
∑

0≤i≤n wi) < 0) ∨ [strict ∧ ((
∑

0≤i≤n wi) = 0)] (10)

Conjunction of (7), (8) and (10) gives formula Φ4. The final formula is Φ = Φ1∧Φ2∧Φ3∧Φ4.

I Theorem 18. Formula Φ as constructed above is satisfiable iff Z 64d
LU Z ′.

Note that there are O(n+ 1) real variables vi, wi, and O((n+ 1)2) booleans eij , ri. Given
the representations of Z,Z ′ and the LU bounds, the entire formula Φ can be computed in
O((n+ 1)3), with formula (4) taking the maximum time. This gives an NP procedure for
Z 64d

LU Z ′ (c.f. Lemma 15).

P. Gastin, S. Mukherjee, and B. Srivathsan 28:11

5 Checking Z 64d

LU
Z ′ is NP-hard

We will consider a special kind of LU bounds, which already turns out to be hard. We say
that an LU bounds is symmetric if L(x− y) = −U(y − x) for all distinct pairs of clocks x, y.
This symmetry gives rise to some nice properties which we will use to show hardness.

I Lemma 19. Let v, v′ be valuations and LU a symmetric bounds function. Then, v 4d
LU v′

iff for all distinct pairs of clocks x, y (denoting a = v(x)− v(y) and a′ = v′(x)− v′(y)):
either both a′ and a are < L(x− y)
or L(x− y) ≤ a′ = a ≤ U(x− y)
or both a′ and a are > U(x− y).

Proof. Since L(x− y) = −U(y− x), we deduce that L(x− y) ≤ a ≤ U(x− y) iff L(y− x) ≤
−a ≤ U(y − x). The rest follows by applying Definition 6 on a, a′ and −a,−a′. J

Thanks to the above lemma, when LU is symmetric: v 4d
LU v′ iff v′ 4d

LU v, and hence
4d

LU an equivalence over valuations. To make this explicit, we will write v 'LU v′ instead of
v 4d

LU v′, and [v]LU instead of 〈v〉LU for symmetric LU . With this definition, for symmetric
LU , we get Z 64d

LU Z ′ iff there exists v ∈ Z such that for all v′ 'LU v, we have v′ 6∈ Z ′.
Throughout this section, we will fix a symmetric LU bounds function.

The second condition in Lemma 19 constrains the difference between certain pairs of
clocks to a constant value for all valuations in an equivalence class of 'LU . We formalize
this notion. Let v be a valuation. Two clocks x and y are said to be tight in v if L(x− y) ≤
v(x) − v(y) ≤ U(x − y). We denote this by x� y (can be read as x and y are tied to
each other). Notice that� is symmetric. Let�∗ (can again be read as the tight relation)
denote the reflexive and transitive closure of�. The�∗ relation is an equivalence over
clocks. For every v′ ∈ [v]LU , Lemma 19 gives: v′(x)− v′(y) = v(x)− v(y) when x�∗ y and
v′(x)− v′(y) < L(x− y) when x 6�∗ y and v(x)− v(y) < L(x− y). Notice also that the�∗

equivalence classes are identical for v′ and v when v′ 'LU v.
Next, we make an observation about zones which do not have strict constraints (like

x− y < c). We say that a zone Z is topologically closed if every edge y −→ x in the canonical
distance graph of Z has weight of the form (≤, c) with c ∈ Z, or (<,∞). A valuation v

mapping each x to an integer is said to be an integral valuation. The next proposition says
that for certain topologically closed zones Z and Z ′, if Z 64d

LU Z ′ then there is an integral
valuation as a witness to this non-simulation. The proof of this proposition makes use of a
non-trivial observation on zones. We refer the reader to [12] for more details.

I Proposition 20. Let Z be a topologically closed zone s.t. the�∗ equivalence classes of
every valuation in Z are the same. Let LU be a symmetric bounds function. Let Z ′ be a zone
with Z 64d

LU Z ′. Then, there exists an integral valuation u ∈ Z such that [u]LU ∩ Z ′ is empty.

We now have the necessary ingredients to give the proof of NP-hardness. Consider the
decision problem which takes as inputs two zones Z,Z ′ and outputs whether Z 64d

LU Z ′. We
will give a polynomial time reduction from 3-SAT to this decision problem, showing that it
is NP-hard.

Notation. Let Var be a finite set of propositional variables. A literal is either a variable p or
its negation ¬p, and a 3-clause is a disjunction of three literals (l1∨ l2∨ l3). A 3-CNF formula
is a conjunction of 3-clauses. For a literal l, we write Var(l) for the variable corresponding to
l. For a 3-CNF formula φ, we write Var(φ) for the variables present in φ. An assignment to a
3-CNF formula φ is a function from Var(φ) to {true, false}. For a clause C and an assignment

CONCUR 2018

28:12 Reachability in Timed Automata with Diagonal Constraints

σ, we write σ |= C if substituting σ(p) for each variable p occurring in C evaluates the clause
to true. For a formula φ and an assignment σ, we write σ |= φ if all clauses of φ evaluate
to true under σ. A formula φ is said to be satisfiable if there exists an assignment such
that σ |= φ. For the rest of the section, fix a 3-CNF formula ϕ := C1 ∧ C2 ∧ · · · ∧ CN . Let
Clauses(ϕ) be the set {Ci | i ∈ {1, . . . , N}}.

We start with the idea for the reduction. We know that ϕ is satisfiable iff there exists
an assignment σ such that for all C ∈ Clauses(ϕ) : σ |= C. Correspondingly, we know that
Z 64d

LU Z ′ iff there exists a v ∈ Z such that for all v′ 'LU v : v′ /∈ Z ′. Given ϕ, we want to
construct two topologically closed zones Z,Z ′ such that ϕ is satisfiable iff Z 64d

LU Z ′. We
want the (potential) v ∈ Z for which every v′ 'LU v satisfies v′ 6∈ Z ′ to encode the (potential)
satisfying assignment for ϕ. In essence: valuations in Z should encode assignments, the
equivalent valuations v′ should encode clauses and the fact that v′ 6∈ Z ′ should correspond
to the chosen clause being true. We now proceed with the details of the construction. Figure
2 illustrates the construction on an example. For each literal lji of ϕ, we add three clocks
xji , y

j
i , z

j
i . There are N + 1 additional clocks r0, r1, . . . , rN , where r0 is assumed to be the

special 0 clock. We will assume that L(x − y) = −M , U(x − y) = M , L(0 − x) = −M ,
U(x − 0) = M for all non-zero clocks x, y and an arbitrary constant M > 3. This gives a
symmetric LU bounds function.

Construction of Z. Zone Z is described by three sets of constraints. The first set of
constraints are between clocks of each literal. For every i ∈ {1, . . . , N} and j ∈ {1, 2, 3}:

yji − x
j
i ≥ 1 and zji − y

j
i ≥ 1 and zji − x

j
i = 3 (11)

The second set of constraints relates the distance between clocks of different literals. In
addition, we use the ri clocks as separators between clauses. For i ∈ {1, . . . , N}:

x1
i − ri−1 = 2M − 3 and xj+1

i − zji = 2M − 3 for j ∈ {1, 2} and ri − z3
i = 2M (12)

Constraints (11) and (12) ensure that for every valuation in Z we have the following
order of clocks for each i ∈ {1, . . . , N}:

ri−1 < x1
i < y1

i < z1
i < x2

i < y2
i < z2

i < x3
i < y3

i < z3
i < ri (13)

In every valuation of Z, we have xji � yji � zji for every literal lji . This is because we
have assumed that M > 3 and we have restricted the gaps (absolute value of the differences)
between xji , y

j
i and yji , z

j
i to be in the interval [1, 2] (c.f. (11)). We do not want any other

pair of clocks that are consecutive according to the above ordering to be tight. Hence we
choose the rest of the gaps to be strictly more than M (c.f. (12)). Our choice of constraints
ensures that each valuation in Z gives a�∗ division where {xji , y

j
i , z

j
i } forms an equivalence

class (let us call it a block), and each {ri} is an equivalence class. Note that for each v ∈ Z,
we also have v(ri)− v(ri−1) = 8M for i ∈ {1, . . . , N}. We will next enforce that literals in ϕ
involving the same variable have the same y − x and z − y values for their corresponding
clocks. Without loss of generality, we assume that the three literals corresponding to the same
clause have different variables. Therefore this condition is relevant for literals in different
clauses, but with the same variable. For every lji and lj

′

i′ such that Var(lji) = Var(lj
′

i′) and
i′ > i:

yj
′

i′ − y
j
i = (i′ − i) · 8M + (j′ − j) · 2M (14)

Note that from (11) and (12) we can infer that the values of v(xj
′

i′)− v(xji) and v(zj
′

i′)− v(zji)
are already equal to the right hand side of the above equation, as the x and z clocks are
“fixed” and y is “flexible”. Constraint (14) then ensures that v(yji)− v(xji) = v(yj

′

i′)− v(xj
′

i′)
and v(zji)− v(yji) = v(zj

′

i′)− v(yj
′

i′) whenever lji and lj
′

i′ with i′ > i, have the same variable.

P. Gastin, S. Mukherjee, and B. Srivathsan 28:13

Zone Z

2M − 3 2M − 3 2M − 3 2M − 3 2M − 3 2M − 32M 2M

= 4M

= 12M

= 3 = 3 = 3 = 3 = 3 = 3

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

Zone Z′

2M − 3 2M − 3 2M − 3 2M − 3 2M − 3 2M − 3

4M + 2

2M + 2
2M + 2

2M + 2
4M + 2

2M + 2
2M + 1

−2M

2M + 1

−2M

= 3 = 3 = 3 = 3 = 3 = 3

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

−(16M + 1)

Figure 2 Illustration of the zone Z and Z′ for the formula (p1 ∨ p2 ∨ ¬p3) ∧ (p3 ∨ ¬p4 ∨ ¬p1).
The separator clocks r0, r1, r2 are shown by the green boxes (leftmost box is r0, middle one is r1

and the rightmost is r2). The intermediate literal clocks are shown by the black dots: between r0

and r1 are x1
1, y1

1 , z1
1 , x2

1, y2
1 , z2

1 , x3
1, y3

1 , z3
1 in the same sequence. Similarly between r1 and r2 are the

clocks x1
2, . . . , z3

2 . An edge of the form x
c−→ y simply denotes the constraint y− x ≤ c, whereas edges

x
= c−−→ y mean that y − x = c. When we write c between two consecutive clocks, we mean that the

difference between them equals c.

Encoding of assignments. By construction of Z, in every valuation v ∈ Z, we have v(ri),
v(xji) and v(zji) to be fixed integers. The value of v(yji) can vary between v(xji) + 1 and
v(xji) + 2. When this value is in the extremes, either 1 or 2, we get an integral valuation.
We encode assignments by such integral valuations. An integral valuation v encodes the
assignment σv given by: σv(Var(lji)) = true if v(yji)− v(xji) = 1 and σv(Var(lji)) = false if
v(yji) − v(xji) = 2. By (14), the above assignment is well defined. Moreover, the zone Z
contains an integral valuation for every possible assignment.

An assignment σ satisfies ϕ if every clause evaluates to true under σ. From a valuation
v encoding this assignment σ, we need a mechanism to check whether each clause is true.
This is where we will use the gaps which are not tight (that is the ones > M). Clauses
will be identified by certain kind of shifts to these unbounded gaps in v. We will introduce
some more notation. Let T := {(xji , y

j
i , z

j
i) | i ∈ {1, . . . , N} and j ∈ {1, 2, 3}} be the triplets

of clocks associated with each literal. A literal is said to be positive if it is a variable p,
and it is negative if it is the negation ¬p of some variable p. We will assume that in every
clause of ϕ, the positive literals are written before the negative literals: for example, we
write p1 ∨ p3 ∨ ¬p2 instead of p1 ∨ ¬p2 ∨ p3. For each clause Ci, let (ei, fi) be the pair of
clocks corresponding to Ci in the border between positive and negative literals:

(ei, fi) :=


(ri−1, x

1
i) if all literals in Ci are negative

(zji , x
j+1
i) if for j ∈ {1, 2}, lji is positive and lj+1

i is negative
(z3
i , ri) if all literals in Ci are positive

(15)

Given the formula ϕ, the above border clocks are fixed. For a valuation v ∈ Z and
i ∈ {1, . . . , N}, define vi to be the valuation such that:

vi(y)− vi(x) = v(y)− v(x) and vi(z)− vi(y) = v(z)− v(y) for all (x, y, z) ∈ T
vi(fi)− vi(ei) = 2M + 1 and vi(fi′)− vi(ei′) = 2M for all i′ 6= i,
vi(r0) = 0 and all other differences between consecutive clocks (according to order given
by (13)) is 2M − 3.

CONCUR 2018

28:14 Reachability in Timed Automata with Diagonal Constraints

Notice that vi 'LU v. Valuation vi acts as a representative for the clause Ci, through the
choice of the difference 2M + 1 in the border of Ci, and 2M in the other borders. We want
to construct zone Z ′ such that when Ci is true, the valuation vi forms a negative cycle with
the constraints of Z ′, via the literal which is true in Ci.

Construction of Z′. Zone Z ′ is described by five sets of constraints. The first set of
constraints are between the clocks of the same literal, and are identical to that in Z:

yji − x
j
i ≥ 1 and zji − y

j
i ≥ 1 and zji − x

j
i = 3 (16)

The second set of constraints are for border clocks in each clause. For each i ∈ {1, . . . , N}:

2M ≤ fi − ei ≤ 2M + 1 (17)

where ei and fi are according to the definition in (15). The third set of constraints fix
differences between consecutive blocks not involving border clocks to 2M − 3.

x1
i − ri−1 = 2M − 3 if (ri−1, x

1
i) 6= (ei, fi) and (18)

xj+1
i − zji = 2M − 3 for j ∈ {1, 2} when (zji , x

j+1
i) 6= (ei, fi) and

ri − z3
i = 2M − 3 when (z3

i , ri) 6= (ei, fi)

From (16,17,18), we see that for every valuation in Z ′ the difference between separators,
that is ri − ri−1, is between 8M and 8M + 1 with the flexibility coming from fi − ei. The
fourth set of constraints ensures that at least one of the fi − ei should be bigger than 2M .

rN − r0 ≥ (8M ·N) + 1 (19)

So far, the constraints that we have chosen for Z ′ do not talk about clauses being true
or false. Recall that valuation vi where the border vi(fi) − vi(ei) = 2M + 1 represents
the choice of Ci for evaluation. The final set of constraints ensure that for every integral
valuation v′ in Z ′ which has v′(fi)− v′(ei) = 2M + 1, every literal in Ci evaluates to false
under the encoding scheme given in Page 13: that is, if lji is positive then v′(yji) − v′(x

j
i)

cannot be 1 and when lji is negative, v′(yji)− v′(x
j
i) cannot be 2. For a positive literal lji let

dji ∈ {0, 1, 2} be the number of (x, y, z) blocks corresponding to positive literals between zji
and fi (does not include j). Similarly, for a negative literal, let dji ∈ {0, 1, 2} be the number
of blocks corresponding to negative literals between ei and xji (again, excludes j). We add
the following constraints:

fi − yji ≤ d
j
i · 2M + (2M + 2) if lji is a positive literal (20)

yji − ei ≤ d
j
i · 2M + (2M + 2) if lji is a negative literal

I Theorem 21. Formula ϕ is satisfiable iff Z 64d
LU Z ′ for the zones Z,Z ′ and LU bounds

function described above.

Proof sketch. Assume ϕ is satisfiable. Consider the valuation v ∈ Z corresponding to the
satisfying assignment. Pick an arbitrary v′ 'LU v. If v′ were to lie in Z ′, by (19), at least
one of the border differences should be > 2M . This forms a contradiction with the literal
that is true in clause Ci due to (20).

Assume Z 64d
LU Z ′. As Z and Z ′ are topologically closed, and the�∗ equivalence classes

are same for every valuation in Z, by Proposition 20 there is an integral valuation v such
that [v]LU ∩Z ′ is empty. This v gives a satisfying assignment. Mainly, each vi corresponding
to v will form a negative cycle with some literal clocks of Ci, and this literal will be made
true by the assignment corresponding to v. J

P. Gastin, S. Mukherjee, and B. Srivathsan 28:15

Table 1 Experiments to compare forward analysis with diagonal constraints versus forward
analysis on the equivalent diagonal free automaton. “Fischer K” is a model of a communication
protocol with K processes as described in [18]. Cex 1 is the automaton in [5] which revealed the bug
with the explicit abstraction method. Cex 2 is a similar version with more states, given in [18].

Model Diagonal constraints + 4d
LU Diagonal free + a4LU

Name # clocks # zones time (in sec.) # zones time (in sec.)

Cex 1 4 8 0.08 22 0.02

Cex 2 8 273 30.1 2051 0.1

Fischer 4 8 933 18.3 73677 2.1

Fischer 5 10 4181 132.5 1926991 117.1

Theorem 21 leads to the following result.

I Theorem 22. The decision problem Z 64d
LU Z ′ is NP-hard.

6 Conclusion

In this paper, we have proposed a simulation 4d
LU and a simulation test Z 4d

LU Z ′ that
facilitates a forward analysis procedure for timed automata with diagonal constraints. An
abstraction function based on symmetric 4d

LU was already proposed in [5] in the context
of forward analysis using explicit abstractions, but it was not used as no efficient storage
mechanisms for non-convex abstractions are known. Moreover, no simulation test apart
from a brute force check of enumerating over all regions was known either. Here, we
provide a more refined simulation test, which in principle gives a more structured way
of performing this enumeration. In the diagonal free case, this test can be performed in
O(|X|2) [16]. But, as we show here, in the presence of diagonal constraints, Z 64d

LU Z ′ is
NP-complete. Nevertheless, having this forward analysis framework creates the possibility
to incorporate recent optimizations studied for diagonal free automata which crucially
depend on this inclusion test, and have been indispensable in improving the performance
substantially [14, 15]. Moreover, we believe that this framework can be extended to various
other problems involving timed automata with diagonal constraints, for instance liveness
verification and cost optimal reachability in priced timed automata.

We have implemented reachability for timed automata with diagonal constraints using
simulation test Z 4d

LU Z ′ in a prototype tool T-Checker [13] which has been developed for
diagonal free timed automata. The simulation test constructs an SMT formula in linear
arithmetic and invokes the Z3 solver [10]. Preliminary experiments on models from [18] are
reported in Table 1. For each model A (with diagonal constraints), the table compares the
performance of running the forward analysis approach using 4d

LU on A (Columns 3 and 4)
versus the forward analysis using (diagonal free variant) a4LU [2] on the equivalent diagonal
free automaton Adf (Columns 5 and 6). We observe that there is a significant decrease in the
number of nodes explored while using 4d

LU on A. The problem with Adf is that each state q
of A has 2d copies in Adf if d is the number of diagonal constraints (essentially, the states of
Adf maintain the information about whether each diagonal is true or false when reaching
this state). Therefore a simulation of the form Z 4d

LU Z ′ arising from (q, Z) and (q, Z ′)
which occurs in the analysis of A might not be possible while analyzing Adf just because
the corresponding paths reach different copies of q, say (q1, Z) and (q2, Z

′). This prunes

CONCUR 2018

28:16 Reachability in Timed Automata with Diagonal Constraints

the search faster in A. Indeed, exploiting the conciseness of diagonal constraints could be a
valuable tool for modeling and verifying real-time systems. We believe that the performance
of our algorithm in terms of time is encouraging: despite the preliminary nature of our
implementation, our naïve SMT encoding and the underlying hardness of the simulation test,
the time taken is comparable to the diagonal free conversion. Investigating efficient methods
for Z 4d

LU Z ′ and comparing our method with other approaches [8] is part of future work.

References
1 Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,

126:183–235, 1994.
2 Gerd Behrmann, Patricia Bouyer, Kim G. Larsen, and Radek Pelánek. Lower and upper

bounds in zone-based abstractions of timed automata. International Journal on Software
Tools for Technology Transfer, 8(3):204–215, 2006.

3 Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools. In
Lectures on Concurrency and Petri Nets, Advances in Petri Nets, volume 3098 of Lecture
Notes in Computer Science, pages 87–124. Springer, 2004.

4 Béatrice Bérard, Antoine Petit, Volker Diekert, and Paul Gastin. Characterization of
the expressive power of silent transitions in timed automata. Fundamenta Informaticae,
36(2,3):145–182, 1998.

5 Patricia Bouyer. Forward analysis of updatable timed automata. Formal Methods in System
Design, 24(3):281–320, 2004.

6 Patricia Bouyer and Fabrice Chevalier. On conciseness of extensions of timed automata.
Journal of Automata, Languages and Combinatorics, 10(4):393–405, 2005.

7 Patricia Bouyer, Maximilien Colange, and Nicolas Markey. Symbolic optimal reachability in
weighted timed automata. In Computer Aided Verification (CAV), volume 9779 of Lecture
Notes in Computer Science, pages 513–530. Springer, 2016.

8 Patricia Bouyer, François Laroussinie, and Pierre-Alain Reynier. Diagonal constraints in
timed automata: Forward analysis of timed systems. In Formal Modeling and Analysis of
Timed Systems (FORMATS), volume 3829 of Lecture Notes in Computer Science, pages
112–126. Springer, 2005.

9 Conrado Daws and Stavros Tripakis. Model checking of real-time reachability properties
using abstractions. In Tools and Algorithms for the Construction and Analysis of Systems,
(TACAS), volume 1384 of Lecture Notes in Computer Science, pages 313–329. Springer,
1998.

10 Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS). Proceedings, volume 4963
of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

11 David L. Dill. Timing assumptions and verification of finite-state concurrent systems. In
Automatic Verification Methods for Finite State Systems, volume 407 of Lecture Notes in
Computer Science, pages 197–212. Springer, 1989.

12 Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Reachability in timed automata with
diagonal constraints. CoRR, abs/1806.11007, 2018. arXiv:1806.11007.

13 Frédéric Herbreteau. TChecker. http://www.labri.fr/perso/herbrete/tchecker/
index.html.

14 Frédéric Herbreteau, Dileep Kini, B. Srivathsan, and Igor Walukiewicz. Using non-convex
approximations for efficient analysis of timed automata. In IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTTCS),
volume 13 of LIPIcs, pages 78–89. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2011.

http://arxiv.org/abs/1806.11007
http://www.labri.fr/perso/herbrete/tchecker/index.html
http://www.labri.fr/perso/herbrete/tchecker/index.html

P. Gastin, S. Mukherjee, and B. Srivathsan 28:17

15 Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Lazy abstractions for timed
automata. In Computer Aided Verification (CAV), volume 8044 of Lecture Notes in Com-
puter Science, pages 990–1005. Springer, 2013.

16 Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Better abstractions for timed
automata. Information and Computation, 251:67–90, 2016.

17 Narendra Karmarkar. A new polynomial-time algorithm for linear programming. Combin-
atorica, 4(4):373–395, 1984.

18 Pierre-Alain Reynier. Diagonal constraints handled efficiently in uppaal. In Research report
LSV-07-02, Laboratoire Spécification et Vérification. ENS Cachan, France, 2007.

19 Sergio Yovine. Kronos: A verification tool for real-time systems. (Kronos user’s manual
release 2.2). International Journal on Software Tools for Technology Transfer, 1:123–133,
1997.

20 Jianhua Zhao, Xuandong Li, and Guoliang Zheng. A quadratic-time dbm-based successor
algorithm for checking timed automata. Information Processing Letters, 96(3):101–105,
2005.

CONCUR 2018

Parameterized complexity of games with
monotonically ordered ω-regular objectives
Véronique Bruyère
Département d’informatique, Université de Mons (UMONS), Mons, Belgium
veronique.bruyere@umons.ac.be

Quentin Hautem1

Département d’informatique, Université de Mons (UMONS), Mons, Belgium
quentin.hautem@umons.ac.be

Jean-François Raskin2

Département d’informatique, Université Libre de Bruxelles (ULB), Brussels, Belgium
jraskin@ulb.ac.be

Abstract
In recent years, two-player zero-sum games with multiple objectives have received a lot of interest
as a model for the synthesis of complex reactive systems. In this framework, Player 1 wins if he can
ensure that all objectives are satisfied against any behavior of Player 2. When this is not possible
to satisfy all the objectives at once, an alternative is to use some preorder on the objectives
according to which subset of objectives Player 1 wants to satisfy. For example, it is often natural
to provide more significance to one objective over another, a situation that can be modelled with
lexicographically ordered objectives for instance. Inspired by recent work on concurrent games
with multiple ω-regular objectives by Bouyer et al., we investigate in detail turned-based games
with monotonically ordered and ω-regular objectives. We study the threshold problem which
asks whether player 1 can ensure a payoff greater than or equal to a given threshold w.r.t. a
given monotonic preorder. As the number of objectives is usually much smaller than the size of
the game graph, we provide a parametric complexity analysis and we show that our threshold
problem is in FPT for all monotonic preorders and all classical types of ω-regular objectives. We
also provide polynomial time algorithms for Büchi, coBüchi and explicit Muller objectives for
a large subclass of monotonic preorders that includes among others the lexicographic preorder.
In the particular case of lexicographic preorder, we also study the complexity of computing the
values and the memory requirements of optimal strategies.

2012 ACM Subject Classification Theory of computation→ Fixed parameter tractability, The-
ory of computation → Algorithmic game theory

Keywords and phrases two-player zero-sum games played on graphs, ω-regular objectives, or-
dered objectives, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.29

Related Version A full version of the paper is available at https://arxiv.org/abs/1707.
05968.

Funding The three authors are supported by COST Action GAMENET CA 16228. Véronique

1 Quentin Hautem is supported by a FRIA fellowship.
2 Jean-François Raskin is supported by the ERC Starting Grant inVEST (279499), by the ARC project
“Non-Zero Sum Game Graphs: Applications to Reactive Synthesis and Beyond” (Fédération Wallonie-
Bruxelles), and by the EOS project “Verifying Learning Artificial Intelligence Systems” (FNRS-FWO),
and he is Professeur Francqui de Recherche funded by the Francqui foundation.

© Véronique Bruyère, Quentin Hautem, and Jean-François Raskin;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 29; pp. 29:1–29:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:veronique.bruyere@umons.ac.be
mailto:quentin.hautem@umons.ac.be
mailto:jraskin@ulb.ac.be
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.29
https://arxiv.org/abs/1707.05968
https://arxiv.org/abs/1707.05968
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

29:2 Parameterized complexity of games with monotonically ordered ω-regular objectives

Bruyère and Jean-François Raskin are both supported by the FNRS PDR project “Subgame
perfection in graph games” (T.0088.18).

Acknowledgements We would like to thank Antonia Lechner for useful discussions.

1 Introduction

Two-player zero-sum games played on directed graphs form an adequate framework for the
synthesis of reactive systems facing an uncontrollable environment [21]. To model properties
to be enforced by the reactive system within its environment, games with Boolean objectives
and games with quantitative objectives have been studied, for example games with ω-regular
objectives [15] and mean-payoff games [23].

Recently, games with multiple objectives have received a lot of attention since in practice,
a system must usually satisfy several properties. In this framework, the system wins if it
can ensure that all objectives are satisfied no matter how the environment behaves. For
instance, generalized parity games are studied in [11], multi-mean-payoff games in [22], and
multidimensional games with heterogeneous ω-regular objectives in [7].

When multiple objectives are conflicting or if there does not exist a strategy that can
enforce all of them at the same time, it is natural to consider trade-offs. A general framework
for defining trade-offs between n (Boolean) objectives Ω1, . . . ,Ωn consists in assigning to
each infinite path π of the game a payoff v ∈ {0, 1}n such that v(i) = 1 iff π satisfies Ωi,
and then to equip {0, 1}n with a preorder - to define a preference between pairs of payoffs:
v - v′ whenever payoff v′ is preferred to payoff v. Because the ideal situation would be
to satisfy all the objectives together, it is natural to assume that the preorder - has the
following monotonicity property: if v′ is such that whenever v(i) = 1 then v′(i) = 1, then it
should be the case that v′ is preferred to v.

As an illustration, let us consider a game in which Player 1 strives to enforce three
objectives: Ω1, Ω2, and Ω3. Assume also that Player 1 has no strategy ensuring all three
objectives at the same time, that is, Player 1 cannot ensure the objective Ω1 ∩Ω2 ∩Ω3. Then
several options can be considered, see e.g. [6]. First, we could be interested in a strategy of
Player 1 ensuring a maximal subset of the three objectives. Indeed, a strategy that enforces
both Ω1 and Ω3 should be preferred to a strategy that enforces Ω3 only. This preference is
usually called the subset preorder. Now, if Ω1 is considered more important than Ω2 itself
considered more important than Ω3, then a strategy that ensures the most important possible
objective should be considered as the most desirable. This preference is called the maximize
preorder. Finally, we could also translate the relative importance of the different objectives
into a lexicographic preorder on the payoffs: satisfying Ω1 and Ω2 would be considered as
more desirable than satisfying Ω1 and Ω3 but not Ω2. Those three examples are all monotonic
preorders.

In this paper, we consider the following threshold problem: given a game graph G, a set
of ω-regular objectives3 Ω1, . . . ,Ωn, a monotonic preorder - on the set {0, 1}n of payoffs,
and a threshold µ, decide whether Player 1 has a strategy such that for all strategies of
Player 2, the outcome of the game has payoff v greater than or equal to µ (for the specified
preorder), i.e. µ - v. As the number n of objectives is typically much smaller than the size
of the game graph G, it is natural to consider a parametric analysis of the complexity of
the threshold problem in which the number of objectives and their size are considered to be
fixed parameters of the problem. Our main results are as follows.

3 We cover all classical ω-regular objectives: reachability, safety, Büchi, co-Büchi, parity, Rabin, Streett,
explicit Muller, or Muller.

V. Bruyère, Q. Hautem, and J.-F. Raskin 29:3

Contributions

First, we provide fixed parameter tractable solutions to the threshold problem for all monotonic
preorders and for all classical types of ω-regular objectives. Our solutions rely on the following
ingredients:
1. We show that solving the threshold problem is equivalent to solve a game with a sin-

gle objective Ω that is a union of intersections of objectives taken among Ω1, . . . ,Ωn

(Theorem 3). This is possible by embedding the monotonic preorder - in the subset
preorder and by translating the threshold µ in preorder - into an antichain of thresholds
in the subset preorder. A threshold in the subset preorder is naturally associated with
a conjunction of objectives, and an antichain of thresholds leads to a union of such
conjunctions.

2. We provide a fixed parameter tractable algorithm to solve games with a single objective
Ω as described previously for all types of ω-regular objectives Ω1, . . . ,Ωn, leading to a
fixed parameter algorithm for the threshold problem (Theorem 4). Those results build
on the recent breakthrough of Calude et al. that provides a quasipolynomial time
algorithm for parity games as well as their fixed parameter tractability [9], and on the
fixed parameter tractability of games with an objective defined by a Boolean combination
of Büchi objectives (Proposition 5).

Second, we consider games with a preorder - having a compact embedding, with the main
condition that the antichain of thresholds resulting from the embedding in the subset preorder
is of polynomial size. The maximize preorder, the subset preorder, and the lexicographic
preorder, given as examples above, all possess this property. For games with a compact
embedding, we go beyond fixed parameter tractability as we are able to provide deterministic
polynomial time solutions for Büchi, coBüchi, and explicit Muller objectives (Theorem 6).
Polynomial time solutions are not possible for the other types of ω-regular objectives as
we show that the threshold problem for the lexicographic preorder with reachability, safety,
parity, Rabin, Streett, and Muller objectives cannot be solved in polynomial time unless
P = PSPACE (Theorem 7). Finally, we present a full picture of the study of the lexicographic
preorder for each studied objective. We give the exact complexity class of the threshold
problem, show that we can obtain the values from the threshold problem (which thus yields
a polynomial algorithm for Büchi, co-Büchi and Explicit Muller objectives, and an FPT
algorithm for the other objectives) and provide tight memory requirements for the optimal
and winning strategies (Table 2).

Related Work

In [6], Bouyer et al. investigate concurrent games with multiple objectives leading to payoffs
in {0, 1}n which are ordered using Boolean circuits. While their threshold problem is slightly
more general than ours, their games being concurrent and their preorders being not necessarily
monotonic, the algorithms that they provide are nondeterministic and guess witnesses whose
size depends polynomially not only in the number of objectives but also in the size of the
game graph. Their algorithms are sufficient to establish membership to PSPACE for all
classical types of ω-regular objectives but they do not provide a basis for the parametric
complexity analysis of the threshold problem. In stark contrast, we provide deterministic
algorithms whose complexity only depends polynomially in the size of the game graph. Our
new deterministic algorithms are thus instrumental to a finer complexity analysis that leads
to fixed parameter tractability for all monotonic preorders and all ω-regular objectives. We
also provide tighter lower-bounds for the important special case of lexicographic preorder, in
particular for parity objectives.

CONCUR 2018

29:4 Parameterized complexity of games with monotonically ordered ω-regular objectives

The particular class of games with multiple Büchi objectives ordered with the maximize
preorder has been considered in [2]. The interested reader will find in that paper clear practical
motivations for considering multiple objectives and ordering them. The lexicographic ordering
of objectives has also been considered in the context of quantitative games: lexicographic
mean-payoff games in [5], some special cases of lexicographic quantitative games in [8, 16],
and lexicographically ordered energy objectives in [12].

In [1] and [19], the authors investigate partially (or totally) ordered specifications expressed
in LTL. None of their complexity results leads to the results of this paper since the complexity
is de facto much higher with objectives expressed in LTL. Moreover no FPT result is provided
in those references.

Structure of the paper

In Section 2, we present all the useful notions about games with monotonically ordered
ω-regular objectives. In Section 3, we show that solving the threshold problem is equivalent to
solve a game with a single objective that is a union of intersections of objectives (Theorem 3),
and we establish the main result of this paper: the fixed parameter complexity of the threshold
problem (Theorem 4). Section 4 is devoted to games with a compact embedding and in
particular to the threshold problem for lexicographic games. The last section is dedicated to
the study of computing the values and memory requirements of optimal strategies in the
case of lexicographic games (Table 2). Full paper is available on arXiv.4

2 Monotonically ordered ω-regular games

We consider zero-sum turn-based games played by two players, P1 and P2, on a finite directed
graph. Given several objectives, we associate with each play of this game a vector of bits
called payoff, the components of which indicate the objectives that are satisfied. The set of
all payoffs being equipped with a preorder, P1 wants to ensure a payoff greater than or equal
to a given threshold against any behavior of P2. In this section we give all the useful notions
and the studied problem.

Preorders

Given some non-empty set P , a preorder over P is a binary relation - ⊆ P × P that is
reflexive and transitive. The equivalence relation ∼ associated with - is defined such that
x ∼ y if and only if x - y and y - x. The strict partial order ≺ associated with - is then
defined such that x ≺ y if and only if x - y and x 6∼ y. A preorder - is total if x - y

or y - x for all x, y ∈ P . A set S ⊆ P is upper-closed if for all x ∈ S, y ∈ P , if x - y,
then y ∈ S. An antichain is a set S ⊆ P of pairwise incomparable elements, that is, for all
x, y ∈ S, if x 6= y, then x 6- y and y 6- x.

Game structures and strategies

A game structure is a tuple G = (V1, V2, E) where (V,E) is a finite directed graph, with
V = V1 ∪ V2 the set of vertices and E ⊆ V × V the set of edges such that for each v ∈ V ,
there exists (v, v′) ∈ E for some v′ ∈ V (no deadlock), and (V1, V2) forms a partition of V
such that Vi is the set of vertices controlled by player Pi with i ∈ {1, 2}.

4 See https://arxiv.org/abs/1707.05968.

https://arxiv.org/abs/1707.05968

V. Bruyère, Q. Hautem, and J.-F. Raskin 29:5

A play of G is an infinite sequence of vertices π = v0v1 . . . ∈ V ω such that (vk, vk+1) ∈ E
for all k ∈ N. We denote by Plays(G) the set of plays in G. Histories of G are finite
sequences ρ = v0 . . . vk ∈ V + defined in the same way. Given a play π = v0v1 . . ., the
set Occ(π) denotes the set of vertices that occur in π, and the set Inf(π) denotes the set
of vertices visited infinitely often along π, i.e., Occ(π) = {v ∈ V | ∃k ≥ 0, vk = v} and
Inf(π) = {v ∈ V | ∀k ≥ 0,∃l ≥ k, vl = v}. Given a set Ω ⊆ V ω, we denote by Ω the set
V ω \ Ω.

A strategy σi for Pi is a function σi : V ∗Vi → V assigning to each history ρv ∈ V ∗Vi
a vertex v′ = σi(ρv) such that (v, v′) ∈ E. It is memoryless if σi(ρv) = σi(ρ′v) for all
histories ρv, ρ′v ending with the same vertex v, that is, if σi is a function σi : Vi → V . It is
finite-memory if σi(ρv) only needs finite memory of the history ρv (recorded by a Moore
machine). The size of σi is the size of its Moore machine.

The set of all strategies of Pi is denoted by Σi. Given a strategy σi of Pi, a play
π = v0v1 . . . of G is consistent with σi if vk+1 = σi(v0 . . . vk) for all k ∈ N such that vk ∈ Vi.
Given an initial vertex v0, and a strategy σi of each player Pi, we have a unique play
consistent with both strategies σ1, σ2, called outcome and denoted by Out(v0, σ1, σ2).

Single objectives and ordered objectives

An objective for P1 is a set of plays Ω ⊆ Plays(G). A game (G,Ω) is composed of a game
structure G and an objective Ω. A play π is winning for P1 if π ∈ Ω, and losing otherwise.
As the studied games are zero-sum, P2 has the opposite objective Ω, meaning that a play π
is winning for P1 if and only if it is losing for P2. Given a game (G,Ω) and an initial vertex
v0, a strategy σ1 for P1 is winning from v0 if Out(v0, σ1, σ2) ∈ Ω for all strategies σ2 of P2.
Vertex v0 is thus called winning for P1. We also say that P1 is winning from v0 or that he
can ensure Ω from v0. Similarly the winning vertices of P2 are those from which P2 can
ensure his objective Ω.

A game (G,Ω) is determined if each of its vertices is either winning for P1 or winning for
P2. Martin’s theorem [20] states that all games with Borel objectives are determined. The
problem of solving a game (G,Ω) means to decide, given an initial vertex v0, whether P1 is
winning from v0 (or dually whether P2 is winning from v0 when the game is determined).

Instead of a single objective Ω, one can consider several objectives Ω1, . . . ,Ωn that are
ordered with respect to a preorder - over {0, 1}n in the following way. We first define
the payoff of a play as a vector5 of bits the components of which indicate the objectives
that are satisfied. Formally, given n objectives Ω1, . . . ,Ωn ⊆ Plays(G), the payoff function
Payoff : Plays(G)→ {0, 1}n assigns a vector of bits to each play π ∈ Plays(G), where for all
k ∈ {1, . . . , n}, Payoffk(π) = 1 if π ∈ Ωk and 0 otherwise.

Given the preorder - over {0, 1}n, P1 prefers a play π to a play π′ whenever Payoff(π′) -
Payoff(π). We call ordered game the tuple (G,Ω1, . . . ,Ωn,-), the payoff function of which is
defined w.r.t. the objectives Ω1, . . . ,Ωn and its values are ordered with -. In this context,
we are interested in the following problem.

I Problem 1. The threshold problem for ordered games (G,Ω1, . . . ,Ωn,-) asks, given a
threshold µ ∈ {0, 1}n and an initial vertex v0 ∈ V , to decide whether P1 (resp. P2) has
a strategy to ensure the objective Ω = {π ∈ Plays(G) | Payoff(π) % µ} from v0 (resp.
Ω = {π ∈ Plays(G) | Payoff(π) 6% µ}).6

5 Note that in the sequel, we often manipulate equivalently vectors in {0, 1}n and sequences of n bits.
6 Note that when n = 1 and - is the usual order ≤ over {0, 1}, we recover the notion of single objective
with the threshold µ = 1.

CONCUR 2018

29:6 Parameterized complexity of games with monotonically ordered ω-regular objectives

v0

v1

v2

Figure 1 A simple lexicographic game.

In case P1 (resp. P2) has such a winning strategy, we also say that he can ensure (resp.
avoid) a payoff % µ.

Classical examples of preorders are the following ones [6]. Let x, y ∈ {0, 1}n.
Counting: x - y if and only if |{j | xj = 1}| ≤ |{j | yj = 1}|. The aim of P1 is to
maximize the number of satisfied objectives.
Subset: x - y if and only if {j | xj = 1} ⊆ {j | yj = 1}. The aim of P1 is to maximize
the subset of satisfied objectives with respect to the inclusion.
Maximise: x - y if and only if max{j | xj = 1} ≤ max{j | yj = 1}. The aim of P1 is to
maximize the higher index of the satisfied objectives.
Lexicographic: x - y if and only if either x = y or ∃j ∈ {1, . . . , n} such that xj < yj and
∀k ∈ {1, . . . , j − 1}, xk = yk. The objectives are ranked according to their importance.
The aim of P1 is to maximise the payoff with respect to the induced lexicographic order.

In this article, we focus on monotonic preorders. A preorder - is monotonic if it is
compatible with the subset preorder, i.e. if {i | xi = 1} ⊆ {i | yi = 1} implies x - y. Hence
a preorder is monotonic if satisfying more objectives never results in a lower payoff value.
This is a natural property shared by all the examples of preorders given previously.

I Example 2. Consider the game structure G depicted on Figure 1, where circle vertices
belong to P1 and square vertices belong to P2. We consider the ordered game (G,Ω1,Ω2,-)
with Ωi = {π ∈ Plays(G) | vi ∈ Inf(π)} for i = 1, 2 and the lexicographic preorder -.
Therefore the function Payoff assigns value 1 to each play π on the first (resp. second) bit
if and only if π visits infinitely often vertex v1 (resp. v2). In this ordered game, P1 has a
strategy to ensure a payoff % 01 from v0. Indeed, consider the memoryless strategy σ1 that
loops in v1 and in v2. Then, from v0, P2 decides to go either to v1 leading to the payoff 10,
or to v2 leading to the payoff 01. As 10 % 01, this shows that any play π consistent with σ1
satisfies Payoff(π) % 01. Notice that while P1 can ensure a payoff % 01 from v0, he has no
strategy to enforce the single objective Ω1 and similarly no strategy to enforce Ω2.

Homogeneous ω-regular objectives

In this article, given a monotonically ordered game (G,Ω1, . . . ,Ωn,-), we want to study the
threshold problem described in Problem 1 for homogeneous ω-regular objectives, in the sense
that all the objectives Ω1, . . . ,Ωn are of the same type, and taken in the following list of
well-known ω-regular objectives.
Given a game structure G = (V1, V2, E) and a subset U of V called target set:

The reachability objective asks to visit a vertex of U at least once, i.e. Reach(U) = {π ∈
Plays(G) | Occ(π) ∩ U 6= ∅}.
The safety objective asks to always stay in the set U , i.e. Safe(U) = {π ∈ Plays(G) |
Occ(π) ⊆ U}.

V. Bruyère, Q. Hautem, and J.-F. Raskin 29:7

The Büchi objective asks to visit infinitely often a vertex of U , i.e. Buchi(U) = {π ∈
Plays(G) | Inf(π) ∩ U 6= ∅}.
The co-Büchi objective asks to eventually always stay in the set U , i.e. CoBuchi(U) =
{π ∈ Plays(G) | Inf(π) ⊆ U}.

Given a family F = (Fi)ki=1 of sets Fi ⊆ V , and a family of pairs ((Ei, Fi)ki=1), with
Ei, Fi ⊆ V :

The explicit Muller objective asks that the set of vertices seen infinitely often is one
among the sets of F , i.e. ExplMuller(F) = {π ∈ Plays(G) | ∃i ∈ {1, . . . , k}, Inf(π) = Fi}.
The Rabin objective asks that there exists a pair (Ei, Fi) such that a vertex of Fi is visited
infinitely often while no vertex of Ei is visited infinitely often, i.e. Rabin((Ei, Fi)ki=1) =
{π ∈ Plays(G) | ∃i ∈ {1, . . . , k}, Inf(π) ∩ Ei = ∅ and Inf(π) ∩ Fi 6= ∅}.
The Streett objective asks that for each pair (Ei, Fi), a vertex of Ei is visited infinitely often
or no vertex of Fi is visited infinitely often, i.e. Streett((Ei, Fi)ki=1) = {π ∈ Plays(G) |
∀i ∈ {1, . . . , k}, Inf(π) ∩ Ei 6= ∅ or Inf(π) ∩ Fi = ∅}.

Given a coloring function p : V → {0, . . . , d} that associates with each vertex a color, and
F = (Fi)ki=1 a family of subsets Fi of p(V):

The parity objective asks that the minimum color seen infinitely often is even, i.e.
Parity(p) = {π ∈ Plays(G) | minv∈Inf(π) p(v) is even}.
The Muller objective asks that the set of colors seen infinitely often is one among the sets
of F , i.e. Muller(p,F) = {π ∈ Plays(G) | ∃i ∈ {1, . . . , k}, p(Inf(π)) = Fi}.

In the sequel, we make the assumption that the considered preorders are monotonic, and
by ordered game, we always mean monotonically ordered games. When the objectives of an
ordered game are of kind X, we speak of an ordered X game, or of a - X game if we want
to specify the used preorder -. As already mentioned, when n = 1, an ordered game (with -
equal to ≤) resumes to a game (G,Ω) with a single objective Ω, that is traditionally called an
Ω game. For instance, an ordered game (G,Ω1, . . . ,Ωn,-) where Ω1, . . . ,Ωn are reachability
objectives and - is the lexicographic preorder is called a lexicographic reachability game,
and when n = 1 (G,Ω1) is called a reachability game.

Note that given an ordered game with n non-homogeneous ω-regular objectives Ωi, we
can always construct a new equivalent ordered parity game, since each objective Ωi can be
translated into a parity objective [15].

Monotonic preorders embedded in the subset preorder

We here show that solving the threshold problem for an ordered game (G,Ω1, . . . ,Ωn,-)
is equivalent to solving a game (G,Ω) with a single objective Ω equal to the union of
intersections of objectives taken in {Ω1, . . . ,Ωn}. The arguments are the following ones. (1)
We consider the set {0, 1}n of payoffs ordered with - as well as ordered with the subset
preorder ⊆ (see the example of Figure 2 where - is the lexicographic preorder). To any
payoff ν ∈ {0, 1}n, we associate the set δν = {i ∈ {1, . . . , n} | νi = 1} containing all indices i
such that objective Ωi is satisfied. (2) Consider the set of payoffs ν % µ embedded in the
set {0, 1}n ordered with ⊆. By monotonicity of -, we obtain an upper-closed set S that
can be represented by the antichain of its minimal elements (with respect to ⊆), that we
denote by M(µ). (3) P1 can ensure a payoff % µ if and only if he has a strategy such that
any consistent outcome π has a payoff ν∗ ⊇ ν for some ν ∈ M(µ), equivalently such that π
satisfies (at least) the conjunction of the objectives Ωi such that νi = 1. (4) The objective Ω
of P1 is thus a disjunction (over ν ∈ M(µ)) of conjunctions (over i ∈ δν) of objectives Ωi.
This statement is formulated in the next theorem (see again Figure 2).

CONCUR 2018

29:8 Parameterized complexity of games with monotonically ordered ω-regular objectives

000 001 010 011 100 101 110 111

000

010001 100

011 101 110

111

Figure 2 Gray nodes represent the set of payoffs ν % µ = 010 for the lexicographic preorder and
its embedding for the subset preorder. The elements of M(µ) = {010, 100} are doubly circled.

I Theorem 3. Let (G,Ω1, . . . ,Ωn,-) be an ordered game, µ ∈ {0, 1}n be some threshold,
and v0 be an initial vertex. Then, P1 can ensure a payoff % µ from v0 in (G,Ω1, . . . ,Ωn,-)
if and only if P1 has a winning strategy from v0 in the game (G,Ω) with the objective
Ω = ∪ν∈M(µ) ∩i∈δν Ωi.

We end this section by giving some additional notations and terminology. Thanks to
Theorem 3, we will prove in Section 3 that the threshold problem is fixed parameter tractable.
The proof of this result uses two sizes depending on the number n of objectives:

the size s(n) of M(µ). It is upper bounded by 2n (an antichain of maximum size in the
subset preorder over {0, 1}n is of exponential size

(
n
bn2 c
)
).

the size s′(n) defined as follows. In case of Büchi objectives Ωi, we need to rewrite the
objective ∪ν∈M(µ)∩i∈δν Ωi in conjunctive normal form ∩k∪lΩ′k,l with Ω′k,l ∈ {Ω1, . . . ,Ωn}.
We denote by s′(n) the size of this conjunction. It is bounded by 22n .

In Section 4 we will show that, for several objectives, we can go beyond fixed parameter
tractability by providing polynomial time algorithms when the sizes s(n) and s′(n) are
polynomial in n. An ordered game (G,Ω1, . . . ,Ωn,-) is said to have a compact embedding
(in the subset preorder) if both sizes s(n) and s′(n) are polynomial in n. We will also show
that lexicographic games have a compact embedding.

3 Fixed parameter complexity of ordered ω-regular games

Parameterized complexity

A parameterized language L is a subset of Σ∗ × N, where Σ is a finite alphabet, the second
component being the parameter of the language. It is called fixed parameter tractable (FPT)
if there is an algorithm that determines whether (x, t) ∈ L in f(t) · |x|c time, where c is a
constant independent of the parameter t and f is a computable function depending on t only.
We also say that L belongs to (the class) FPT. Intuitively, a language is FPT if there is an
algorithm running in polynomial time w.r.t the input size times some computable function
on the parameter. In this framework, we do not rely on classical polynomial reductions but
rather use so called FPT-reductions. An FPT-reduction between two parameterized languages
L ⊆ Σ∗ × N and L′ ⊆ Σ′∗ × N is a function R : L→ L′ such that

(x, t) ∈ L if and only if (x′, t′) = R(x, t) ∈ L′,
R is computable by an algorithm that takes f(t) · |x|c time where c is a constant, and
t′ ≤ g(t) for some computable function g.

Moreover, if L′ is in FPT, then L is also in FPT. We refer the interested reader to [13] for
more details on parameterized complexity.

Our main result states that the threshold problem is in FPT for all the ordered games of
this article. Parameterized complexities are given in Table 1.

V. Bruyère, Q. Hautem, and J.-F. Raskin 29:9

Table 1 Fixed parameter tractability of ordered games (G,Ω1, . . . ,Ωn,-): for i ∈ {1, . . . , n},
ki/di denotes the number of pairs/colors of each Rabin/Streett/Muller objective Ωi. Sizes s(n) and
s′(n) are resp. upper bounded by 2n and 22n . For j ∈ {1, 2, 3}, Mj = 2mj where m1 =

∑n

i=1 2 · ki,
m2 = m3 =

∑n

i=1 di, and N1 = s(n) ·
∑n

i=1 2 · ki, N2 = s(n) ·
∑n

i=1
d2
i

2 , N3 = s(n) ·
∑n

i=1 2di · di.

Objectives Parameters Threshold problem
Reachability, Safety n O(s(n) · n+ 2n · (|V |+ |E|))

Büchi n O(s(n) · n+ s′(n) · |V |2)
co-Büchi n O(s(n) · n+ s(n) · |V |2)

Explicit Muller n O(s(n) · n+ (s(n) ·maxi |Fi|)3 · |V |2 · |E|2)
Rabin, Streett n, k1, . . . , kn O((2M1 ·N1 +MM1

1) · |V |5)
Parity n, d1, . . . , dn O((2M2 ·N2 +MM2

2) · |V |5)
Muller n, d1, . . . , dn O((2M3 ·N3 +MM3

3) · |V |5)

I Theorem 4. The threshold problem is in FPT for ordered reachability, safety, Büchi,
co-Büchi, explicit Muller, Rabin, Streett, parity, and Muller games.

The proof of this theorem needs to introduce additional kinds of games (G,Ω) with a
single ω-regular objective Ω, like the Boolean Büchi games. It also needs to show that solving
the latter games is in FPT.

Parameterized complexity of Boolean Büchi games

Let G be a game structure and U1, . . . , Um be m target sets. Let φ be a Boolean formula over
variables x1, . . . , xm. We say that a play π satisfies (φ,U1, . . . , Um) if the truth assignment
{xi = 1 if and only if Inf(π) ∩ Ui 6= ∅, and xi = 0 otherwise} satisfies φ. An objective Ω is a
Boolean combination of Büchi objectives, or shortly a Boolean Büchi objective, if Ω = {π ∈
Plays(G) | π satisfies (φ,U1, . . . , Um)}. It is denoted by BooleanBuchi(φ,U1, . . . , Um).

All operators ∨, ∧, ¬ are allowed in Boolean Büchi objectives. However we denote by |φ|
the size of φ equal to the number of disjunctions and conjunctions inside φ, and we say that
the Boolean Büchi objective BooleanBuchi(φ,U1, . . . , Um) is of size |φ| and with m variables.
The definition of |φ| is not the classical one that usually counts the number of operators
∨,∧,¬ and variables. This is not a restriction since one can transform any Boolean formula
φ into one such that negations only apply on variables.

We need to introduce some other kinds of ω-regular objectives with Boolean combinations
of objectives that are limited to

intersections of objectives: like a generalized reachability objective or a generalized Büchi
objective denoted respectively by GenReach(U1, . . . , Um) and GenBuchi(U1, . . . , Um),
unions of intersections (UI) of objectives: like a UI reachability objective, a UI safety
objective, or a UI Büchi objective.

I Proposition 5. Solving Boolean Büchi games (G,Ω) is in FPT, with an algorithm in
O(2M · |φ|+ (MM · |V |)5) time with M = 2m such that m is the number of variables of φ in
the Boolean Büchi objective Ω.

Proof. Let us show the existence of an FPT-reduction from Boolean Büchi games to Muller
games. For this purpose, consider a Boolean Büchi game (G,Ω) with the objective Ω =
BooleanBuchi(φ,U1, . . . , Um), where φ is a Boolean formula over variables x1, . . . , xm, and
m is seen as a parameter. We build an adequate Muller game (G,Muller(p,F)) on the same
game structure and parameterized by the number of colors. The coloring function p and the
family F are constructed as follows.

CONCUR 2018

29:10 Parameterized complexity of games with monotonically ordered ω-regular objectives

To any vertex v ∈ V , we associate a color p(v) = µ which is a subset of {1, . . . ,m} in the
following way: i ∈ µ if and only if v ∈ Ui.7 Intuitively, we keep track for all i, whether a
vertex belongs to Ui or not. The total number M of colors is thus equal to 2m. One can
notice that (∗) a play π visits a vertex v ∈ Ui if and only if π visits a color µ that contains i.

To any subset F of p(V), we associate the truth assignment χ(F) ∈ {0, 1}m of variables
x1, . . . , xm such that for all i, χ(F)i = 1 if there exists µ ∈ F such that i ∈ µ, and 0
otherwise. The idea (by (∗)) is that the set F of colors visited infinitely often by a play π
corresponds to the set Inf(π) of vertices visited infinitely often such that χ(F)i = 1 if and
only if Inf(π) ∩ Ui 6= ∅. We then define F = {F ⊆ p(V) | χ(F) |= φ}, that is, F corresponds
to the set of all truth assignments satisfying φ.

In this way we have the desired FPT-reduction: first, parameter M = 2m only depends on
parameter m. Second, we have that P1 is winning in (G,BooleanBuchi(φ,U1, . . . , Um)) from
an initial vertex v0 if and only if he is winning in (G,Muller(p,F)) from v0. Indeed, a play π
satisfies (φ,U1, . . . , Um) if and only if the truth assignment (xi = 1 if and only Inf(π)∩Ui 6= ∅,
and xi = 0 otherwise) satisfies φ. This is equivalent to have that F = p(Inf(π)) belongs to
F (by definition of χ(F)), that is, π belongs to Muller(p,F). Third, the construction of the
Muller game is in O(22m · |φ|) time since it requires O(|V |+ |E|) time for the game structure,
O(m · |V |) time for the coloring function p, and O(22m · |φ|) time for the family F .

From this FPT-reduction and as solving Muller games is in O((dd · |V |)5)) time where
d is the number of colors [9], we have an algorithm solving the Boolean Büchi game in
O(2M · |φ|+ (MM · |V |)5) time, where M = 2m. J

Proof of FPT membership for ordered games

Thanks to Theorem 3, we provide a proof of Theorem 4 with the parameterized complexities
given in Table 1.

Proof of Theorem 4. By Theorem 3, solving the threshold problem for an ordered game
(G,Ω1, . . . ,Ωn,-) is equivalent to solving a classical game (G,Ω) with Ω = ∪ν∈M(µ) ∩i∈δν Ωi.
We have |M(µ)| = s(n) and |δν | ≤ n ∀ν ∈ M(µ). Recall that s(n) ≤ 2n and s′(n) ≤ 22n .

We first show that the threshold problem for ordered reachability, safety, Büchi, co-Büchi,
and explicit Muller games is in FPT with parameter n. The reduction provided in Theorem 3
is an FPT-reduction as the number of disjunctions/conjunctions in Ω only depends on n.
Moreover the construction of the game (G,Ω) is in O(|V | + |E| + s(n) · n) time. In the
following items we describe a second FPT-reduction to add to the first one. The sum of the
complexities of both FPT-reductions leads to the complexities given in Table 1, rows 2-5.

If each Ωi is a reachability (resp. safety) objective, then (G,Ω) is a UI reachability (resp.
safety) game that can be reduced to a reachability (resp. safety) game over a game
structure of size 2n · |V | [14].8 The latter is solved in O(2n · (|V |+ |E|)) time.
If Ω is a union of intersections of Büchi objectives, then it can be rewritten as the
intersection of unions of Büchi objectives which is a generalized Büchi objective with at
most s′(n) target sets. The latter game is solved in O(s′(n) · |V |2) time by [10]. The

7 Our definition of color requires µ to be an integer. It suffices to associate with v a vector µv ∈ {0, 1}m

such that µv
i = 1 if v ∈ Ui and 0 otherwise, and to define the coloring function p : V → {0, . . . , 2m − 1}

that associates with each vertex v the color p(v) such that its binary encoding is equal to µv.
8 This result does not appear explicitly in [14] but can be easily adapted to the case of UI reachability
(resp. safety) objectives.

V. Bruyère, Q. Hautem, and J.-F. Raskin 29:11

union of intersections of co-Büchi objectives is the complementary of a generalized Büchi
objective with at most s(n) target sets, leading to an algorithm in O(s(n) · |V |2) time.
If each Ωi is an explicit Muller objective ExplMuller(Fi) then Ω is also an explicit Muller
objective. Indeed the intersection (resp. union) of explicit Muller objectives is an
explicit Muller objective such that ∩iExplMuller(Fi) = ExplMuller(F) with F = ∩iFi
(resp. ∪iExplMuller(Fi) = ExplMuller(F) with F = ∪iFi). Thus Ω can be here rewritten
as ExplMuller(F) for some set F such that |F| ≤

∑
ν∈M(µ) minj∈δν |Fj |. The latter game

is solved in O(|F| · (|V | · |E|+ |F|)2) = O((s(n) ·maxi |Fi|)3 · |V |2 · |E|2) time by [17].

We now show that the threshold problem for ordered parity, Rabin, Streett, and Muller
games is in FPT thanks to Proposition 5.

Let us show that the threshold problem for ordered parity games is in FPT with parameters
n, d1, . . . , dn. If each Ωi is a parity objective with di colors, then each Ωi is a Boolean
Büchi objective of size at most d2

i

2 and using di variables. Indeed, as a play is winning
for Ωi if and only there exists an even priority seen infinitely often along the play and
no lower priority seen infinitely often. Therefore, Ω is a Boolean Büchi objective Ω′ of
size |φ| ≤ s(n) ·

∑n
i=1

d2
i

2 , and with m =
∑n
i=1 di variables as ∪ν∈M(µ){Ωi | i ∈ δν} ⊆

{Ω1, . . . ,Ωn}. We thus have an FPT-reduction to the game (G,Ω′) depending on the
parameters n, d1, . . . , dn and with an algorithm in O(|V |+|E|+|φ|) time. By Proposition 5,
solving the game (G,Ω′) is in FPT with an algorithm in O(2M · |φ|+ (MM · |V |)5) time
with M = 2m. Thus the threshold problem is in FPT with parameters n, d1, . . . , dn, with
an overall algorithm in O((2M ·N +MM) · |V |5) time where N = 2n ·

∑n
i=1

d2
i

2 .
The arguments are similar for ordered Rabin, Streett, and Muller games. The only
differences are the upper bound on size |φ| and the number m of variables of the related
formula φ. J

4 Ordered games with a compact embedding

In the previous section, we have shown that solving the threshold problem for ordered
ω-regular games is in FPT. This result depends on sizes s(n) and s′(n) which vary with the
number n of objectives. In this section, we study ordered games with a compact embedding,
that is, such that these sizes are polynomial in n.

Beyond fixed parameter tractability

While the threshold problem is in FPT for ordered Büchi, co-Büchi, and explicit Muller
games, it becomes polynomial as soon as their preorder has a compact embedding. This is a
direct consequence of Table 1, rows 2-4.

I Theorem 6. The threshold problem is solved in polynomial time for ordered Büchi, co-Büchi,
and explicit Muller games with a compact embedding.

One can easily prove that ordered games using the subset or the maximize preorder have
a compact embedding. We will later prove that this also holds for the lexicographic preorder.
Nevertheless it is not the case for the counting preorder. Indeed solving the threshold problem
for counting Büchi games is co-NP-complete [6].

Recall that solving the threshold problem for ordered Büchi games reduces to solving
some UI Büchi game (by Theorem 3). Whereas solving the latter games is coNP-complete [4],
solving the threshold problem for ordered Büchi games is only polynomial when they have a
compact embedding (see Theorem 6).

CONCUR 2018

29:12 Parameterized complexity of games with monotonically ordered ω-regular objectives

There is no hope to extend Theorem 6 to the other ω-regular objectives studied in this
article, unless P = PSPACE. Indeed, we have PSPACE-hardness of the threshold problem for
the following lexicographic games.

I Theorem 7. (1) Lexicographic games have a compact embedding and (2) the threshold
problem is PSPACE-hard for lexicographic reachability, safety, Rabin, Streett, parity, and
Muller games.

The rest of this section is devoted to the proof of Theorem 7.

Lexicographic games

We now focus on the lexicographic preorder -. Let us first provide several useful terminology
and comments on this preorder. Recall that the lexicographic preorder is monotonic. It is
also total, hence x ∼ y if and only if x = y, and x ≺ y if and only if ¬(y - x). Given a vector
x ∈ {0, 1}n, we denote by x the complement of x, i.e. xi = 1 − xi, for all i ∈ {1, . . . , n}.
We denote by x− 1 the predecessor of x 6= 0n, that is, the greatest vector which is strictly
smaller than x. We define the successor x+ 1 of x similarly. In the sequel, as the threshold
problem is trivial for x = 0n, we do not consider this threshold. By abuse of notation, we
keep writing x ∈ {0, 1}n without mentioning that x 6= 0n. We denote by Last1(x) the last
index i of x such that xi = 1, i.e. Last1(x) = max{i ∈ {1, . . . , n} | xi = 1}. Note that P1 can
ensure a payoff % x 6= 0n if and only if he can ensure a payoff � x − 1, and when P2 can
avoid a payoff % x, we rather say that P2 can ensure a payoff ≺ x.

We now prove that the lexicographic games have a compact embedding (Part (1) of
Theorem 7): we first show that s(n) is polynomial in Proposition 8, and we then show that
s′(n) is also polynomial in Proposition 10.

I Proposition 8. Let x ∈ {0, 1}n. Then the set M(x) is equal to {x} ∪ {yj ∈ {0, 1}n | xj =
0 ∧ j < Last1(x)}, where for all j ∈ {1, . . . , Last1(x)− 1}, we define the vector yj ∈ {0, 1}n
as equal to x1 . . . xj−110n−j (x and yj share the same (possibly empty) prefix x1 . . . xj−1).
Moreover, s(n) = |M(x)| ≤ n.

I Example 9. Consider the vector x = 0010100 such that Last1(x) = 5. Then, the set M(x)
is equal to {x} ∪ {1000000, 0100000, 0011000}.

Proof of Proposition 8. We recall that M(x) is the set of minimal elements (with respect to
the subset preorder ⊆) of the set of payoffs y % x embedded in the set {0, 1}n ordered with
⊆. Let us show both inclusions between M(x) and M = {x} ∪ {yj ∈ {0, 1}n | xj = 0 ∧ j <
Last1(x)}.

Let y ∈ M(x). If y = x, then trivially y ∈M . Otherwise, assume y � x and let j be the
first index such that yj = 1 and xj = 0. Note that x1 . . . xj−1 = y1 . . . yj−1 since y � x. We
associate with y the vector yj = y1 . . . yj−110n−j . Note that yj � x. By minimality of y and
by construction of yj , we obtain y = yj showing that y ∈M .

For the second inclusion, as the lexicographic preorder is monotonic, we have x ∈ M(x).
Now, consider some yj ∈ M such that xj = 0 and j < Last1(x). Let us show that yj
belongs to M(x), that is, yj % x and there is no y % x, y 6= yj , such that y ⊂ yj (i.e.
{i | yi = 1} ⊂ {i | yji = 1}). First, we clearly have yj % x since yj = x1 . . . xj−110n−j and
xj = 0. Towards a contradiction, assume now that there exists some y % x, y 6= yj , such
that y ⊂ yj . Let i be the first index such that yi = 0 and yji = 1. As y ⊂ yj , we have i ≤ j.
If i < j, then y has x1 . . . xi−10 as prefix, yji = xi = 1, showing that y ≺ x in contradiction
with y % x. If i = j, then y = x1 . . . xj−10n−j+1, and again y ≺ x since j < Last1(x) by
construction of yj . J

V. Bruyère, Q. Hautem, and J.-F. Raskin 29:13

I Proposition 10. Let (G,Ω1, . . . ,Ωn,-) be a lexicographic Büchi game and µ ∈ {0, 1}n.
Then, Ω = ∪ν∈M(µ) ∩i∈δν Ωi can be rewritten in conjunctive normal form with a conjunction
of size s′(n) ≤ n.

Proof. The proof uses the property that given a lexicographic game (G,Ω1, . . . ,Ωn,-) and
a threshold µ ∈ {0, 1}n, P1 can ensure a payoff % µ in (G,Ω1, . . . ,Ωn,-) if and only if P1
can ensure a payoff - µ in the lexicographic game (G,Ω1, . . . ,Ωn,-). By Theorem 3 and
Martin’s theorem [20], equivalently, P2 cannot satisfy the objective ∪ν∈M(µ+1) ∩i∈δν Ωi. This
is equivalent to say that P1 can satisfy the complement of the latter objective, that is, the
objective ∩ν∈M(µ+1) ∪i∈δν Ωi. We have |M(µ+ 1)| ≤ n by Proposition 8. J

We finally prove Part (2) of Theorem 7.

Proof of Theorem 7, Part (2). Let us study the complexity lower bounds.
The PSPACE-hardness of the threshold problem for lexicographic reachability (resp. safety)
games is obtained thanks to a polynomial reduction from solving generalized reachability
games which is PSPACE-complete [14]. Let (G,Ω) be a generalized reachability game
with Ω = GenReach(U1, . . . , Un). Let (G,Ω1, . . . ,Ωn,-) be the lexicographic reachability
(resp. safety) game with Ωi = Reach(Ui) (resp. Ωi = Safe(V \ Ui)) ∀i.

Reachability: We have that P1 is winning in (G,Ω) from v0 if and only if P1 can ensure
a payoff % µ = 1n from v0 in the lexicographic reachability game (G,Ω1, . . . ,Ωn,-).
Safety: We claim that P1 is winning in (G,Ω) from v0 if and only if P1 can ensure a
payoff % µ = 0n−11 from v0 in the lexicographic safety game. This follows from the
determinacy of generalized reachability games, and from the fact that P1 can ensure a
payoff % µ from v0 in the lexicographic safety game if and only if P2 is losing in the
generalized reachability game (G,Ω) from v0.

The hardness of the threshold problem for lexicographic parity games is obtained thanks
to a polynomial reduction from solving games (G,Ω) the objective Ω of which is a union
of a Rabin objective and a Streett objective, which is known to be PSPACE-complete [3].
Let Ω = Rabin((Ei, Fi)n1

i=1) ∪ Streett((Ei, Fi)ni=n1+1). As any Rabin (resp. Streett)
objective is the union (resp. intersection) of parity objectives [11], we can rewrite Ω
as Ω = ∪n1

i=1(Parity(pi)) ∪ (∩ni=n1+1Parity(pi)), where all pi are coloring functions. Let
(G,Ω1, . . . ,Ωn,-) be the lexicographic parity game where Ωi = Parity(pi) for all i. We
claim that P1 is winning in the game (G,Ω) from v0 if and only if P1 can ensure a payoff
% µ from v0 in the lexicographic parity game (G,Ω1, . . . ,Ωn,-) where µ = 0n11n−n1 .
Indeed, if a play π satisfies Payoff(π) % µ then either Payoff(π) = µ in which case
π ∈ ∩ni=n1+1Parity(pi), i.e. π satisfies the Streett objective, or Payoff(π) � µ in which case
there exists 1 ∈ {1, . . . , n1} such that π ∈ Parity(pi), i.e. π satisfies the Rabin objective.
Conversely, if a play π satisfies the Streett or the Rabin objective then Payoff(π) % µ

since Payoff(π) % µ (resp. � µ) as soon as π satisfies the Streett (resp. Rabin) objective.
As parity objectives are a special case of Rabin (Streett) objectives, the lower bound
follows (from the previous item) for both lexicographic Rabin and Streett games.
Lexicographic Muller games with n = 1 and µ = 1 are a special case of Muller games and
solving the latter games is PSPACE-complete [18].

This completes the proof. J

5 Values and optimal strategies for lexicographic games

In this section, we first recall the notion of values and optimal strategies. We then show how
to compute the values in lexicographic games, and what are the memory requirements for the
related optimal strategies. This yields a full picture of the study of lexicographic games, see

CONCUR 2018

29:14 Parameterized complexity of games with monotonically ordered ω-regular objectives

Table 2 Overview of the results for lexicographic games with ω-regular objectives.

Threshold problem Value P1 memory P2 memory
Büchi

P-complete polynomial
linear memoryless

Co-Büchi memoryless linear
Explicit Muller exponential

Reachability, safety
PSPACE-complete exponential exponentialParity

Streett, Rabin and FPT and FPT
Muller

Table 2. In this table, the second column indicates the complexity of the threshold problem
(Theorems 4, 7 and PSPACE upper bounds follow from results of [6]), the third one indicates
the complexity of computing the values and the remaining columns summarize the memory
requirements of winning and optimal strategies (Theorem 12 hereafter).

Values and optimal strategies

In a lexicographic game, one can define the best reward that P1 can ensure from a given
vertex, that is, the highest threshold µ for which P1 can ensure a payoff % µ. Dually, we can
also define the worst reward that P2 can ensure.

In the following definition, the infimum and supremum functions are applied with -.

I Definition 11. Given a lexicographic game (G,Ω1, . . . ,Ωn,-), for every vertex v ∈ V , the
upper value Val(v) and the lower value Val(v) are defined as:

Val(v) = inf
σ2∈Σ2

sup
σ1∈Σ1

Payoff(Out(v, σ1, σ2)) and Val(v) = sup
σ1∈Σ1

inf
σ2∈Σ2

Payoff(Out(v, σ1, σ2)).

The lexicographic game (G,Ω1, . . . ,Ωn,-) is value-determined if Val(v) = Val(v) ∀v ∈ V .
In this case, we write Val(v) = Val(v) = Val(v) and we call Val(v) the value of v. Note that
the inequality Val(v) - Val(v) always holds. If P1 (resp. P2) can ensure a payoff % Val(v)
(resp. - Val(v)) from v, his related winning strategy σ∗1 (resp. σ∗2) is called optimal from v.

Notice that for all lexicographic games such that the objectives Ω1, . . . ,Ωn are Borel sets,
we have that these games are value-determined and have optimal strategies by Theorem 3 and
Martin’s theorem [20]. In the following theorem, we go further by giving time complexities
and memory sizes of the optimal strategies.

I Theorem 12. (1) The value of each vertex in lexicographic Büchi, co-Büchi, and explicit
Muller games can be computed with a polynomial time algorithm, and with an exponential
time and an FPT algorithm for lexicographic reachability, safety, parity, Rabin, Streett, and
Muller games.

(2) The following assertions hold for both winning strategies of the threshold problem
and optimal strategies. Linear memory strategies are necessary and sufficient for P1 (resp.
P2) while memoryless strategies are sufficient for P2 (resp. P1) in lexicographic Büchi (resp.
co-Büchi) games. Exponential memory strategies are both necessary and sufficient for both
players in lexicographic reachability, safety, explicit Muller, parity, Rabin, Streett, and Muller
games.

We only give a sketch of the proof.
First, for the considered lexicographic games, the values can be obtained by solving n

times well-chosen threshold problems. Therefore, results of Part (1) of Theorem 12 follows
from the second column of Table 2. In addition to give the exact value of a vertex, this

V. Bruyère, Q. Hautem, and J.-F. Raskin 29:15

procedure also shows that optimal strategies correspond to winning strategies for specific
threshold problems. Therefore, we just have to analyze memory requirements of winning
strategies for the threshold problem in lexicographic games to obtain those of optimal
strategies. Upper bounds on memory sizes of winning strategies are obtained by analyzing
the several reductions done in the proof of Theorem 4 in the case of a preorder with a
compact embedding. Lower bounds for lexicographic Büchi and co-Büchi games are obtained
thanks to a reduction from generalized Büchi games, and for the other lexicographic games
thanks to the reductions proposed in the proof of Theorem 7, Part (2). This yields results of
Part (2) of Theorem 12.

References
1 Shaull Almagor and Orna Kupferman. Latticed-LTL synthesis in the presence of

noisy inputs. Discrete Event Dynamic Systems, 27(3):547–572, 2017. doi:10.1007/
s10626-017-0242-0.

2 Rajeev Alur, Aditya Kanade, and Gera Weiss. Ranking automata and games for prioritized
requirements. In CAV Proceedings, volume 5123 of LNCS, pages 240–253. Springer, 2008.
doi:10.1007/978-3-540-70545-1_23.

3 Rajeev Alur, Salvatore La Torre, and P. Madhusudan. Playing games with boxes and
diamonds. In CONCUR Proceedings, volume 2761 of LNCS, pages 127–141. Springer, 2003.
doi:10.1007/978-3-540-45187-7_8.

4 Roderick Bloem, Krishnendu Chatterjee, Karin Greimel, Thomas A. Henzinger, and Bar-
bara Jobstmann. Robustness in the presence of liveness. In CAV Proceedings, volume 6174
of LNCS, pages 410–424. Springer, 2010. doi:10.1007/978-3-642-14295-6_36.

5 Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann.
Better quality in synthesis through quantitative objectives. In CAV Proceedings, volume
5643 of LNCS, pages 140–156. Springer, 2009. doi:10.1007/978-3-642-02658-4_14.

6 Patricia Bouyer, Romain Brenguier, Nicolas Markey, and Michael Ummels. Concurrent
games with ordered objectives. In FOSSACS Proceedings, volume 7213 of LNCS, pages
301–315. Springer, 2012. doi:10.1007/978-3-642-28729-9_20.

7 Véronique Bruyère, Quentin Hautem, and Jean-François Raskin. On the complexity of
heterogeneous multidimensional games. In CONCUR Proceedings, volume 59 of LIPIcs,
pages 11:1–11:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/
LIPIcs.CONCUR.2016.11.

8 Véronique Bruyère, Noémie Meunier, and Jean-François Raskin. Secure equilibria in
weighted games. In CSL-LICS Proceedings, pages 26:1–26:26. ACM, 2014. doi:10.1145/
2603088.2603109.

9 Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. De-
ciding parity games in quasipolynomial time. In STOC Proceedings, pages 252–263. ACM,
2017. doi:10.1145/3055399.3055409.

10 Krishnendu Chatterjee, Wolfgang Dvorák, Monika Henzinger, and Veronika Loitzenbauer.
Conditionally optimal algorithms for generalized Büchi games. In MFCS Proceedings, vol-
ume 58 of LIPIcs, pages 25:1–25:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2016. doi:10.4230/LIPIcs.MFCS.2016.25.

11 Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Generalized parity games.
In FOSSACS Proceedings, volume 4423 of LNCS, pages 153–167. Springer, 2007. doi:
10.1007/978-3-540-71389-0_12.

12 Thomas Colcombet, Marcin Jurdzinski, Ranko Lazic, and Sylvain Schmitz. Perfect half
space games. In LICS Proceedings, pages 1–11. IEEE Computer Society, 2017. doi:10.
1109/LICS.2017.8005105.

CONCUR 2018

http://dx.doi.org/10.1007/s10626-017-0242-0
http://dx.doi.org/10.1007/s10626-017-0242-0
http://dx.doi.org/10.1007/978-3-540-70545-1_23
http://dx.doi.org/10.1007/978-3-540-45187-7_8
http://dx.doi.org/10.1007/978-3-642-14295-6_36
http://dx.doi.org/10.1007/978-3-642-02658-4_14
http://dx.doi.org/10.1007/978-3-642-28729-9_20
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.11
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.11
http://dx.doi.org/10.1145/2603088.2603109
http://dx.doi.org/10.1145/2603088.2603109
http://dx.doi.org/10.1145/3055399.3055409
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.25
http://dx.doi.org/10.1007/978-3-540-71389-0_12
http://dx.doi.org/10.1007/978-3-540-71389-0_12
http://dx.doi.org/10.1109/LICS.2017.8005105
http://dx.doi.org/10.1109/LICS.2017.8005105

29:16 Parameterized complexity of games with monotonically ordered ω-regular objectives

13 Rodney G. Downey and M. R. Fellows. Parameterized Complexity. Springer Publishing
Company, Incorporated, 2012.

14 Nathanaël Fijalkow and Florian Horn. Les jeux d’accessibilité généralisée. Technique et
Science Informatiques, 32:931–949, 2013. doi:10.3166/tsi.32.931-949.

15 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and
Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February
2001], volume 2500 of LNCS. Springer, 2002.

16 Julian Gutierrez, Aniello Murano, Giuseppe Perelli, Sasha Rubin, and Michael Wooldridge.
Nash equilibria in concurrent games with lexicographic preferences. In IJCAI Proceedings,
pages 1067–1073. ijcai.org, 2017. doi:10.24963/ijcai.2017/148.

17 Florian Horn. Explicit Muller games are PTIME. In FSTTCS Proceedings, volume 2 of
LIPIcs, pages 235–243. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2008. doi:
10.4230/LIPIcs.FSTTCS.2008.1756.

18 Paul Hunter and Anuj Dawar. Complexity bounds for regular games. In MFCS Proceedings,
volume 3618 of LNCS, pages 495–506. Springer, 2005. doi:10.1007/11549345_43.

19 Orna Kupferman, Giuseppe Perelli, and Moshe Y. Vardi. Synthesis with rational envi-
ronments. In EUMAS Proceedings, volume 8953 of LNCS, pages 219–235. Springer, 2014.
doi:10.1007/978-3-319-17130-2_15.

20 Donald A. Martin. Borel determinacy. Annals of Mathematics, 102:363–371, 1975.
21 A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL Proceedings,

pages 179–190. ACM Press, 1989.
22 Yaron Velner, Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, Alexan-

der Moshe Rabinovich, and Jean-François Raskin. The complexity of multi-mean-payoff and
multi-energy games. Inf. Comput., 241:177–196, 2015. doi:10.1016/j.ic.2015.03.001.

23 Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs. Theor.
Comput. Sci., 158, 959:343–359, 1996.

http://dx.doi.org/10.3166/tsi.32.931-949
http://dx.doi.org/10.24963/ijcai.2017/148
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2008.1756
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2008.1756
http://dx.doi.org/10.1007/11549345_43
http://dx.doi.org/10.1007/978-3-319-17130-2_15
http://dx.doi.org/10.1016/j.ic.2015.03.001

A Universal Session Type for Untyped
Asynchronous Communication
Stephanie Balzer1

Carnegie Mellon University, USA

Frank Pfenning2

Carnegie Mellon University, USA

Bernardo Toninho3

NOVA LINCS, Universidade Nova de Lisboa, Portugal

Abstract
In the simply-typed λ-calculus we can recover the full range of expressiveness of the untyped
λ-calculus solely by adding a single recursive type U = U → U . In contrast, in the session-typed
π-calculus, recursion alone is insufficient to recover the untyped π-calculus, primarily due to
linearity: each channel just has two unique endpoints. In this paper, we show that shared channels
with a corresponding sharing semantics (based on the language SILLS developed in prior work) are
enough to embed the untyped asynchronous π-calculus via a universal shared session type US. We
show that our encoding of the asynchronous π-calculus satisfies operational correspondence and
preserves observable actions (i.e., processes are weakly bisimilar to their encoding). Moreover,
we clarify the expressiveness of SILLS by developing an operationally correct encoding of SILLS
in the asynchronous π-calculus.

2012 ACM Subject Classification Theory of computation → Process calculi, Theory of compu-
tation → Linear logic

Keywords and phrases Session types, sharing, π-calculus, bisimulation

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.30

1 Introduction

Session types [20, 22, 23] prescribe the protocols of message exchange between processes that
interact along channels. The recent discovery of a Curry-Howard isomorphism between linear
logic and the session-typed π-calculus [8, 9, 42, 38] has given message-passing concurrency a
firm logical foundation. Programming languages [40, 19] building on this isomorphism not
only guarantee session fidelity (i.e., protocol compliance) but also a form of global progress,
since the process graph forms a tree and is acyclic by construction.

While the linear logic session framework allows for persistent servers through the expo-
nential modality (i.e., replicated sessions that may be used an arbitrary number of times), it
enforces a strict separation between server instances by means of a copying semantics [8, 42].
For instance, interactions between a client and a server cannot affect future client-server
interactions. Thus, this session discipline fundamentally excludes programming scenarios that
require sharing of server resources such as shared databases or shared output devices. This
observation triggered the realization that linear session-typed calculi lag behind the untyped

1 NSF Grant No. CCF-1718267: “Enriching Session Types for Practical Concurrent Programming”
2 NSF Grant No. CCF-1718267: “Enriching Session Types for Practical Concurrent Programming”
3 NOVA LINCS (Ref. UID/CEC/04516/2013)

© Stephanie Balzer, Frank Pfenning, and Bernardo Toninho;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 30; pp. 30:1–30:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30:2 A Universal Session Type for Untyped Asynchronous Communication

asynchronous π-calculus in expressiveness and the question of whether the full expressiveness
of the untyped asynchronous π-calculus could be recovered in such a logical setting [42].

In this paper, we answer this question positively. In prior work we have introduced
manifest sharing [3], a modal-typing discipline that orchestrates the coexistence of linear and
shared channels while maintaining session fidelity, at the expense of generalized deadlock-
freedom. In this work we show that manifest sharing recovers the expressiveness of the
untyped asynchronous π-calculus. Given our language SILLS [3, 4] that supports manifest
sharing, we provide an encoding of the untyped asynchronous π-calculus into SILLS, showing
that our encoding satisfies operational correspondence and that π-calculus processes are
weakly bisimilar to their SILLS encodings. To clarify the expressiveness of SILLS, we moreover
develop an encoding in the other direction, embedding SILLS into the asynchronous (polyadic)
π-calculus and satisfying operational correspondence.

Key to our encoding of the untyped asynchronous π-calculus into SILLS is the representa-
tion of a π-calculus channel as a recursive shared session type US, reminiscent of the encoding
of the untyped λ-calculus into the simply-typed λ-calculus via the type U = U → U . While
the addition of a single recursive type is sufficient to recover the expressiveness of the untyped
λ-calculus in the simply-typed λ-calculus, our result reveals that both shared and recursive
session types are necessary to achieve the analogous result in the session-typed π-calculus.

The contributions of this paper are:
A proof that our encoding of the untyped asynchronous π-calculus into SILLS is opera-
tionally sound and complete and preserves observable actions (i.e., processes are weakly
bisimilar to their encoding);4

A formulation of a weak bisimulation between a labelled transition system for the
asynchronous π-calculus and a multiset rewriting system for closed terms of SILLS;
Evidence of the instrumental role shared channels take in the expressiveness of session-
typed process calculi;
An encoding of SILLS into the untyped asynchronous polyadic π-calculus, satisfying
operational correspondence.

Paper Structure. Section 2 provides the necessary background on SILLS. Section 3 intro-
duces the encoding of the untyped asynchronous π-calculus into SILLS and states and proves
operational and observational correspondence (i.e., preservation of reductions and observable
actions). Section 4 develops an encoding of SILLS into the untyped asynchronous polyadic
π-calculus, satisfying operational correspondence. Section 5 summarizes related work, and
Section 6 concludes the paper. Proofs are given in a companion technical report.

2 Manifest Sharing with Session Types

In this section, we provide an introduction to manifest sharing [3] and the programming
language SILLS [3, 4], to the extent necessary for the development in this paper. Session
types [20, 22, 23, 8, 40, 9, 42, 38] prescribe the protocols of message exchange between
processes that interact along channels. For example, the recursive linear session type

queue A = N{enq : A(queue A, deq : ⊕{none : 1, some : A⊗ queue A}}

4 A preliminary version of our encoding of the untyped asynchronous π-calculus into SILLS has been
published in [3] for illustration purposes, but without proof.

S. Balzer, F. Pfenning, and B. Toninho 30:3

Table 1 Overview of session types in SILLS together with their operational meaning.

Session type Process term
current cont current cont Description

cL : ⊕{l : AL} cL : ALh cL.lh ;P P provider sends label lh along cL

case cL of l⇒ Q Qh client receives label lh along cL

cL : N{l : AL} cL : ALh case cL of l⇒ P Ph provider receives label lh along c
cL.lh ;Q Q client sends label lh along cL

cL : AL ⊗BL cL : BL send cL dL ;P P provider sends channel dL : AL along cL

yL ← recv cL ;QyL [dL/yL]QyL client receives channel dL : AL along cL

cL : AL (BL cL : BL yL ← recv cL ;PyL [dL/yL]PyL provider receives channel dL : AL along cL

send cL dL ;Q Q client sends channel dL : AL along cL

cL : Πx:AS.BL cL : BL send cL dS ;P P provider sends channel dS : AS along cL

yS ← recv cL ;QyS [dS/yS]QyS client receives channel dS : AS along cL

cL : ∃x:AS.BL cL : BL yS ← recv cL ;PyS [dS/yS]PyS provider receives channel dS : AS along cL

send cL dS ;Q Q client sends channel dS : AS along cL

cL : 1 - close cL - provider sends “end” along cL

wait cL ;Q Q provider receives “end” along cL

cL : ↓S
LAS cS : AS cS ← detach cL ;PxS [cS/xS]PxS provider sends “detach cS” along cL

xS ← release cL ;QxS [cS/xS]QxS client receives “detach cS” along cL

cS : ↑S
LAL cL : AL cL ← acquire cS ;QxL [cL/xL]QxL client sends “acquire cL” along cS

xL ← accept cS ;PxL [cL/xL]PxL provider receives “acquire cL” along cS

defines the protocol of how to interact with a provider of a queue data structure that contains
elements of some variable type A. In a session-typed interpretation of intuitionistic linear
logic, session types are expressed from the point of view of the providing process, with the
channel along which the process provides the session behavior being defined by the session
type. This choice avoids the explicit dualization of a session type present in the original
presentations of session types [20, 22] and those based on classical linear logic [42]. We adopt
an equi-recursive [11] interpretation for recursive session types, silently equating a recursive
session type with its unfolding and requiring types to be contractive [16].

Table 1 provides an overview of SILLS’s session types and their operational reading. For
each type constructor, Table 1 lists the points of view of the provider and client of the given
type, in the first and second lines, respectively. For each connective, its session type before
the exchange (Session type current) and after the exchange (Session type cont(inuation))
is given. Likewise, the implementing process term is indicated before the exchange (Process
term current) and after the exchange (Process term continuation). Table 1 shows that
the process terms of a provider and a client for a connective come in matching pairs. Both
participants’ view of the session changes consistently.

For the linear session type queue A specified above, we have the following protocol: a
process providing a service of type queue A gives a client the choice to either enqueue (enq)
or dequeue (deq) an element of type A. Upon receipt of the label enq, the providing process
expects to receive a channel of type A to be enqueued and recurs. Upon receipt of the label
deq, the providing process either indicates that the queue is empty (none), in which case it
terminates, or that there is a channel stored in the queue (some), in which case it dequeues
this element, sends it to the client, and recurs.

Linearity restricts session type queue A to a single client. If we want the queue to be used
in a classical consumer-producer scenario, where we have multiple producers and consumers

CONCUR 2018

30:4 A Universal Session Type for Untyped Asynchronous Communication

q′ ← acquire q ;
q′.enq ;
send q′ x ;
q← release q′

Figure 1 A client of a shared queue.

accessing the queue, we can use the following shared session type instead:

queue AS = ↑S
LN{enq : Πx : AS.↓S

Lqueue AS,

deq : ⊕{none : ↓S
Lqueue AS, some : ∃x : AS.↓S

Lqueue AS}}

For ease of reading, we typeset shared session types and channels in programs in red and
bold font as opposed to linear session types and channels, which we typeset in black and
regular font. Session type queue AS now describes the session offered by a shared process.
Since a shared process can have multiple clients that refer to the process by a shared channel,
state-altering communication with a shared process must only happen once exclusive access
to the process has been obtained. Otherwise, session fidelity would be endangered. To this
end, SILLS imposes an acquire-release discipline on shared processes, where an acquire yields
exclusive access to a shared process, if the process is available, and a release relinquishes
exclusive access. As a result, processes can alternate between linear and shared, where a
successful acquire of a shared process turns the process into a linear one, and conversely, a
release of a linear process turns the process into a shared one.

A potential producer process can now interact with a process that implements session
type queue AS according to Figure 1, assuming that q is of type queue AS and x is of type AS.
The statement q′ ← acquire q, yields, if successful, the queue’s linear channel q′ along which
the producer process can enqueue the element. The statement q ← release q′ releases the
now linear queue process providing along q′, giving turn to another producer or consumer
process, and yields the queue’s shared channel q. As indicated by Table 1, there exist the
dual notions of an accept and detach for an acquire and release, respectively, denoting the
matching statements by a provider.

A key contribution of manifest sharing is not only to support acquire-release as a
programming primitive but also to make it manifest in the type system. Generalizing the
idea of type stratification [35, 6, 36], session types are stratified into a linear and shared layer
with two adjoint modalities going back and forth between them:

AS , ↑S
LAL

AL,BL , AL ⊗ BL | 1 | ⊕{l : AL} | ∃x : AS.BL | AL (BL | Πx : AS.BL | N{l : AL} | ↓S
LAS

The modal operator ↓S
LAS shifting down from the shared to the linear layer is then interpreted

as a release (and, dually, detach) and the operator ↑S
LAL shifting up from the linear to the

shared layer as an acquire (and, dually, accept). As a result, we obtain a type system where
a session type dictates any form of synchronization, including the acquisition and release of
a shared process.

Returning to the shared session type queue AS defined above, we can see that any exchange
of labels or channels with the queue is now guarded by a preceding acquire, and that the
queue must be released before it recurs. The shared session type further deviates from its
linear version in that it contains shared elements, as the entire queue is shared, and by
recurring in the empty case of a dequeueing request, as there are now multiple clients.

We briefly discuss the typing and the dynamics of acquire-release. The typing and the
dynamics of the residual linear connectives are standard. As is usual for an intuitionistic

S. Balzer, F. Pfenning, and B. Toninho 30:5

proc(cL, xL ← acquire aS ; QxL), proc(aS, xL ← accept aS ; PxL)
−→ proc(cL, [aL/xL] QxL), proc(aL, [aL/xL] PxL), unavail(aS)

proc(cL, xS ← release aL ; QxS), proc(aL, xS ← detach aL ; PxS), unavail(aS)
−→ proc(cL, [aS/xS] QxS), proc(aS, [aS/xS] PxS)

Figure 2 Multiset rewriting rules for acquire-release.

interpretation, each connective gives rise to a left and a right rule, denoting the use and
provision, respectively, of a session of the given type:

(T-↑S
LL)
Γ, xS : ↑S

LAL; ∆, xL : AL `Σ QxL :: (zL : CL)
Γ, xS : ↑S

LAL; ∆ `Σ xL ← acquire xS ;QxL :: (zL : CL)

(T-↑S
LR)

Γ; · `Σ PxL :: (xL : AL)
Γ `Σ xL ← accept xS ;PxL :: (xS : ↑S

LAL)
(T-↓S

LL)
Γ, xS : AS; ∆ `Σ QxS :: (zL : CL)

Γ; ∆, xL : ↓S
LAS `Σ xS ← release xL ;QxS :: (zL : CL)

(T-↓S
LR)

Γ `Σ PxS :: (xS : AS)
Γ; · `Σ xS ← detach xL ;PxS :: (xL : ↓S

LAS)

The typing judgments Γ `Σ P :: (xS : AS) and Γ; ∆ `Σ P :: (xL : AL) indicate that process P
provides a service of session type A along channel x, given the typing of services provided by
processes along the channels in typing contexts Γ (and ∆). Γ and ∆ consist of hypotheses
on the typing of shared and linear channels, respectively, where Γ is a structural and ∆ a
linear context. To allow for recursive process definitions, the typing judgment depends on a
signature Σ that is populated with all process definitions prior to type-checking. The adjoint
formulation forbids a shared process from depending on linear channels [3, 35]. Thus, when a
shared session accepts an acquire and shifts to linear, it starts with an empty linear context.

Operationally, the dynamics of SILLS is captured by multiset rewriting rules [10], which
denote computation in terms of state transitions between configurations of processes. Multiset
rewriting rules are local in that they only mention the parts of a configuration they rewrite.
For acquire-release we have the rules of Figure 2.
Configuration states are defined by the predicates proc(cm, P) and unavail(aS). The former
denotes a process with process term P providing along channel cm, the latter a placeholder
for a shared process providing along channel aS that is currently not available. The above
rule exploits the invariant that a process’ providing channel a can come at one of two modes,
a linear one, aL, and a shared one, aS. While the process is linear, it provides along aL, while
it is shared, along aS. When a process shifts between modes, it switches between the two
modes of its offering channel. This channel at the appropriate mode is substituted for the
variables occurring in process terms.

3 Recovering the Untyped Asynchronous π-calculus in SILLS

We now detail our encoding of the asynchronous π-calculus into SILLS, show that it satisfies
operational correspondence and that processes are weakly bisimilar to their SILLS encodings.

3.1 Encoding the Untyped Asynchronous π-calculus in SILLS

The essence of linear session-typed process calculi – treating channels as stateful resources
– is fundamental in facilitating reasoning about session-typed programs and to guarantee
strong properties, such as session fidelity and possibly deadlock-freedom. However, where
channels in linear session-typed process calculi connect exactly one sending process with
one receiving process, in the untyped π-calculus they may connect multiple sending and

CONCUR 2018

30:6 A Universal Session Type for Untyped Asynchronous Communication

empty : {US}
c← empty =
c′ ← accept c ;
case c′ of
| ins→ x← recv c′ ;

c← detach c′ ;
e← empty ;
c← elem ← x, e

| del→ c′.none ;
c← detach c′ ;
c← empty

elem : {US ← US, US}
c← elem ← x,d =
c′ ← accept c ;
case c′ of
| ins→ y← recv c′ ;

c← detach c′ ;
e← elem ← x,d ;
c← elem ← y, e

| del→ c′.some ;
c′ ← nd_pick ← x,d

nd_pick : {∃x:US. ↓S
L US ← US, US}

c′ ← nd_pick ← x,d =
ndc ← nd_choice ;
case ndc of
| yes→ send c′ x ;

c← detach c′ ;
wait ndc ;
fwd c d

| no→ d′ ← acquire d ;
d′.del ;
case d′ of
| none→ d← release d′ ;

send c′ x ;
c← detach c′ ;
wait ndc ;
fwd c d

| some→ y← recv d′ ;
d← release d′ ;
send c′ y ;
c← detach c′ ;
wait ndc ;
c← elem ← x,d

nd_choice : {⊕{yes : 1, no : 1}}
d← nd_choice =

c← coin_head ;
f ← coin_flipper ← c ;
c′ ← acquire c ;
case c′ of
| head→ c← release c′ ;

d.yes ;
wait f ;
close d

| tail→ c← release c′ ;
d.no ;
wait f ;
close d

Figure 3 Processes empty and elem implementing a π-calculus channel with auxiliary processes.
See Figure 4 for processes coin_head, coin_tail, and coin_flipper and session type coin.

receiving processes, giving rise to non-determinism. For example, the π-calculus process
c(x).P | c〈a〉 | c(y).Q, made up of three parallel components, where the first and third seek
to input along channel c and the second outputs the name a along c, may reduce to either
[a/x]P | c(y).Q or c(x).P | [a/y]Q.

In purely linear session-typed process calculi, on the other hand, message exchange
is completely deterministic, even in the presence of replicated or persistent sessions (this
argument is made precise through a typed contextual equivalence for intuitionistic linear
logic sessions in [34]). The addition of sharing to session-typed calculi – and with it non-
determinism – suggests that it should now be possible to faithfully encode the untyped
π-calculus. In previous work we have postulated this conjecture by providing an encoding
of the untyped asynchronous π-calculus into SILLS [3], without any further proof. We now
refine the encoding and prove it operationally and behaviorally correct.

The basic idea of our encoding is to represent a π-calculus process by a linear SILLS
process and a π-calculus channel by a shared SILLS process. Reminiscent of the encoding
of the untyped λ-calculus into the typed λ-calculus, we type π-calculus channels with a
universal recursive shared session type US:

US = ↑S
L N{ins : Πx:US. ↓S

L US, del : ⊕{none : ↓S
L US, some : ∃x:US. ↓S

L US}}

Similar to the type queue AS of Section 2, the type US represents a buffer that stores elements,
but with the elements being of type US themselves and without maintaining any order.
Figure 3 shows the processes empty and elem that implement session type US. In SILLS, we
declare the type of a defined process X with X : {A ← A1, . . . , An}, indicating that the
process provides a service of type A, using channels of type A1, . . . , An. The definition of
the process is then given by x← X ← y1, . . . , yn = P , where P is the body of the process
with occurrences of channels y1 : A1, . . . , yn : An. A new process X providing along channel
x is spawned with an expression of the form x ← X ← y1, . . . , yn ; Qx, where Qx is the
continuation binding x. We refer to Table 1 for the meaning of the process terms.

S. Balzer, F. Pfenning, and B. Toninho 30:7

coin = ↑S
L ⊕ {head : ↓S

Lcoin,
tail : ↓S

Lcoin}}
coin_head : {coin}
c← coin_head =
c′ ← accept c ;
c′.head ;
c← detach c′ ;
c← coin_tail

coin_tail : {coin}
c← coin_tail =
c′ ← accept c ;
c′.tail ;
c← detach c′ ;
c← coin_head

coin_flipper : {1← coin}
d← coin_flipper ← c =
c′ ← acquire c ;
case c′ of
| head→ c← release c′ ;

close d
| tail→ c← release c′ ;

close d

Figure 4 Processes coin_head, coin_tail, and coin_flipper and session type coin, upon which
process nd_choice in Figure 3 relies.

The buffer is implemented as a sequence of elem processes, ending in an empty process.
The recursive process elem provides a buffer sequence along channel c and uses a channel
x : US (the buffer element at the current position in the sequence) as well as a channel
d : US (the next elem of the sequence). Process empty, on the other hand, provides an empty
buffer sequence along channel c, without using any other channels. Both processes insert the
received element at the head of the buffer sequence in the ins case, but handle the del case
differently. Whereas process empty responds with label none, process elem responds with
label some, followed by sending and deleting an arbitrary element from the buffer. Process
elem achieves arbitrary deletion by recurring as process nd_pick. Process nd_pick, in turn,
uses process nd_choice to nondeterministically choose between sending and deleting the
element at the current position in the sequence (case yes) or, possibly recursively, propagating
the deletion request to the next element in the sequence (case no). While linear session-typed
calculi are deterministic, non-determinism arises in SILLS from the acquisition of shared
channels, since it is unknown which client among all those competing to acquire a shared
process will succeed. Process nd_choice uses this fact and achieves non-determinism by
reading a coin that it shares with process coin_flipper (see Figure 4). Both processes then
try to acquire the coin concurrently, which switches sides when read, with the result that the
value read by nd_choice depends on the order in which the coin is acquired.

Given the buffer abstraction, encoded π-calculus processes in SILLS simply amount
to “producers” and “consumers” of shared channels of type US. Any such process can
communicate along a π-calculus channel by acquiring the corresponding SILLS channel of
universal type. We are now ready to give the encoding of the untyped asynchronous monadic
π-calculus [30, 37] into SILLS. The syntax of the asynchronous π-calculus is [5]:

P , 0 | c〈a〉 | c(x).P | νc P | P1 | P2 | !P

0 denotes an inactive process. c〈a〉 represents an asynchronous send of channel a along
channel c. c(x).P amounts to a guarded input, where the channel received along c is bound
to x in the continuation P . νc P introduces a new channel c that is bound in P . P1 | P2
denotes parallel composition of P1 and P2, and !P replication of P (i.e., an unbounded
number of copies of P in parallel). We assume a standard reduction and labelled transition
semantics, but where replication involves an explicit reduction (and τ transition) instead of
expansion through structural congruence: !P −→ P |!P . Moreover, we enforce that structural
congruence is only applied at the top-level of processes.

Our encoding, shown in Figure 5, yields for each π-calculus process P a corresponding
linear process JPK in SILLS, satisfying the typing judgment: ΓF ; ΓB; ΓI ; · `Σ JPK :: (·). We
use an empty succedent to denote that the process does not provide any session. Since all
communication is going to happen along π-calculus channels, i.e., the shared SILLS processes
of type US, the linear SILLS processes representing π-calculus processes merely become clients

CONCUR 2018

30:8 A Universal Session Type for Untyped Asynchronous Communication

J0K = ·
Jc〈a〉K = x← snd ← c ;

send x a ;
wait x ; ·

Jc(x).PK = y ← poll_rcv ← c ;
z← recv y ;
wait y ;
[z/x] JPK

Jνx PK = y← empty ;
[y/x] JPK

JP1 | P2K = _← JP1K ;
JP2K

J!PK = Rec!P where
Rec!P = _← JPK ;

Rec!P

snd : {(Πx:US.1)← US}
d← snd ← c =

x← recv d ;
c′ ← acquire c ;
c′.ins ;
send c′ x ;
c← release c′ ;
close d

poll_rcv : {(∃x:US.1)← US}
d← poll_rcv ← c =
c′ ← acquire c ;
c′.del ;
case c′ of
| none→ c← release c′ ;

d← poll_rcv ← c
| some→ x← recv c′ ;

c← release c′ ;
send d x ;
close d

Figure 5 Translation of untyped asynchronous π-calculus processes into SILLS and auxiliary
processes snd and poll_recv (empty : {US} is defined in Figure 3).

of those processes, without providing any behavior outright. In our earlier encoding [3], we
have translated π-calculus processes into linear SILLS processes of type 1, since the notion
of a non-providing linear process is not present in SILLS. Our current encoding avoids the
spurious exchange of wait messages required by type 1 and constitutes a return to the original
interpretation of linear logic [8], where processes terminate silently. In the above typing
judgment, we moreover subdivide the context Γ into three parts, to keep track of the free (ΓF)
and bound (ΓB) π-calculus channels as well as of channels that are only used internally to the
encoding (ΓI). When an encoded process reduces, new linear channels may be generated, for
example, the providing channel of process nd_choice, which are all internal to the encoding.

The inactive process 0 is encoded as the empty SILLS process. The encoding of an output
Jc〈a〉K is implemented by spawning a new linear SILLS process snd of type Πx:US.1 with
access to the buffer implementing channel c. The encoding then sends the channel a to
the spawned process snd, waiting for snd to acquire the buffer c, insert a, and terminate.
The encoding of an input Jc(x).P K is implemented by spawning a new linear SILLS process
poll_rcv of type ∃x:US.1 with access to the buffer implementing channel c. The encoding
then waits for the spawned process poll_rcv to send back a channel and terminate, after
which it continues at P , substituting the received channel for x. Process poll_rcv repeatedly
checks, in a potentially infinite loop, if the buffer c contains an element. If so, it deletes it
from the buffer, passes it on, and terminates. New name creation (Jνx PK) simply spawns a
new buffer, offering on some fresh name x. Parallel (JP1 | P2K) composition is embodied by a
spawning of the processes P1 in parallel with the executing process P2. Finally, replication
(J!PK) is implemented by a loop that spawns copies of the replicated process.

To make our encoding more tangible, we derive the initial SILLS configuration obtained
from translating the process Jc〈a〉 | c(x).0K according to the rules in Figure 5:

aS, cS ; · ; · ; · �Σ proc(_, yL ← poll_rcv ← cS; zS ← recv yL; wait yL; ·),
proc(_, yL ← snd ← cS; send yL aS; wait yL; ·),
buf(aS | yL ← accept aS; PyL), buf(cS | yL ← accept cS; PyL)

To the left, we list the contents of the contexts ΓF ; ΓB; ΓI ; ∆, to the right the process
configuration. For readability we use the short-form buf(a | Pa) to represent a sequence of
empty-terminated elem processes denoting an entire buffer, with Pa standing for the next

S. Balzer, F. Pfenning, and B. Toninho 30:9

statements to be executed. The above configuration will reduce, according to the semantics
of SILLS, until it halts in a state that consists of buffers representing the π-calculus channels,
coin_head processes for any nondeterministic choices made, and unavail predicates for any
shared channels that are not available. On the other hand, any linearly spawned processes
that are internal to the encoding and not part of a buffer will have terminated.

Asynchrony of π-calculus outputs is achieved in our encoding by the introduction of the
buffers, which temporarily store outputs until there is a process that is willing to receive.
As a matter of fact, our buffers can be thought of manifestations of the “ether” to which
asynchronous outputs are sent in the untyped asynchronous π-calculus! Our encoding is
thus reminiscent of the encoding of the untyped asynchronous π-calculus into an untyped
synchronous π-calculus with bags [5]. In fact, unlike the π-calculus where synchronous and
asynchronous calculi have different expressive power [33], in the session-typed setting we
can easily and selectively implement one in the other either by using double shifts to force
acknowledgments [35] or by spawning single-message processes to achieve asynchrony [3]. The
only significant point in SILLS is that acquire/accept interactions must be a synchronization
point. As we discuss in Section 3.3, crucial to the correctness of our encoding is also the
removal of buffer elements non-deterministically. This guarantees that at no point in a
reduction is the order between outputs determined. The use of nondeterministic deletion is
another improvement over our earlier encoding [3], which uses non-deterministic insertion.

An interested reader may wonder whether asynchronous messages could not be encoded
directly as processes, rather than storing them temporarily in a buffer until their receipt.
After all, this is exactly what the syntax of the asynchronous π-calculus enforces! Non-
determinism would then be achieved by the operational dynamics of the multiset rewriting
rules, eliminating the need for the explicit encoding of non-deterministic buffers. Since every
π-calculus channel c is mapped to a shared SILLS channel cS, this hypothetical encoding would
require the ability to have multiple processes offering along the same shared channel (either
the sender or the receiver sides of the communication). This is not allowed by the typing
discipline, which crucially enforces that every process offers along a unique channel. Thus, an
explicit representation of buffers is key, which then requires the encoding of non-deterministic
bags to mimic the semantics of asynchrony in a precise way.

3.2 Operational Correspondence
We now develop an operational correspondence result for our encoding of the untyped
asynchronous π-calculus. Operational correspondence results are standard desiderata for
encodings of process calculi [18], showing that the computational features of the source
language are preserved by the encoding in a precise sense. Following the terminology of [18],
we aim to establish operational completeness (i.e., that π-calculus reductions are mimicked
by the encoding) and soundness (i.e., that computations of encoded processes can be mapped
back to those of the source terms) of our encoding.

As is the case in most encodings, some of the computation steps in the image of our
encoding are purely administrative artifacts, and thus may not have a counterpart in
the source. Specifically, the encoding of π-calculus channels as buffers introduces quite
a few such “spurious” steps. Rather than relating source and image of the encoding at
every step [5, 18], we introduce the notion of an administrative transition, and then state
operational correspondence modulo such administrative transitions.

Given the nature of the asynchronous π-calculus, in which outputs are sent into the “ether”
and synchronization only happens upon receipt, we deem the interactions leading to the
insertion into a buffer as administrative and only the removal itself relevant. This treatment

CONCUR 2018

30:10 A Universal Session Type for Untyped Asynchronous Communication

is consistent with the existing literature. In the encoding of the untyped asynchronous
π-calculus into an untyped synchronous π-calculus with bags [5], output prefixes are equated
with one-element bags, and synchronization amounts to directly reading from these bags.
We define relevant and administrative transitions in the image of our encoding as follows:

I Definition 1 (Relevant and Administrative Transitions of Encoding). We say that a relevant
transition, written −→r, is a standard transition between SILL configurations such that:
Ω, proc(dL, xS ← recv cL ; QxS) −→ Ω′, proc(dL, [aS/xS] QxS), for some Ω,ΓF ,ΓB,ΓI , aS, cS, and
dL such that aS ∈ ΓF ∪ ΓB, cS ∈ ΓF ∪ ΓB, and dS ∈ ΓI .

An administrative transition, written −→a, is a transition defined by the standard
transition relation between SILL configurations, but excluding a relevant transition. We write
=⇒a for the reflexive transitive closure of −→a, and write =⇒r for =⇒a−→r=⇒a.

Inspecting our encoding (Figure 3 and Figure 5), we can see that a relevant transition
amounts to the receive action in the some branch in process poll_rcv, which synchronizes
with the buffer to receive a channel. The parameters of the above definition uniquely identify
this synchronization point: process poll_rcv is a linear process providing along a linear
channel dL that is internal to the encoding (dL ∈ ΓI), and both the received channel aS and
the offering channel cS of the buffer are either free our bound names of the original π-calculus
process (aS ∈ ΓF ∪ ΓB and cS ∈ ΓF ∪ ΓB).

Equipped with these two notions of transition, we can establish operational soundness
and completeness. Their statements rely on the definition Jfn(P)K, which stand for a config-
uration of empty buffer processes of the form buf(cS1 | yL ← accept cS1 ; QyL), . . . , buf(cSn |
yL ← accept cSn ; QyL), where fn(P) = {c1, . . . , cn} denotes the set of free names in P . The
definition allows us to compose an encoded π-calculus process with the appropriate buffer
representations for all its free channel names.

I Theorem 2 (Operational Correspondence).
Completeness. For all P −→ P ′, there exists Ω1,Ω2 such that Jfn(P)K, proc(_, JPK) =⇒r

Ω1,Ω2 or Jfn(P)K, proc(_, JPK) =⇒a Ω1,Ω2, with Jfn(P ′)K, proc(_, JP ′K) =⇒a Ω2.
Soundness. For all P and Jfn(P)K, proc(_, JPK) =⇒r Ω, there exists a P ′,Ω1,Ω2 such that

P −→ P ′ and Ω = Ω1,Ω2 and Jfn(P ′)K, proc(_, JP ′K) =⇒a Ω2.

For operational completeness, we identify each individual π-calculus reduction with either
one relevant transition (possibly preceded or followed by several administrative transitions),
or, for the π-calculus reduction corresponding to forking a parallel replica (i.e., !P −→ P |!P),
with one administrative transition. For operational soundness, we match relevant transitions
of encoded processes with one process reduction. In both settings we identify the artifacts of
the encoding (coin processes and unavail channels) through the configuration Ω1.

We note that the encodings of continuations eventually “catch up” (via administrative
transitions) with the configuration that results from the relevant transition, instead of
having a more immediate identification through the encoding. This treatment is due to
the distinction between processes (static entities) and configurations (runtime entities) in
SILLS, a distinction not present in the π-calculus, where processes are the runtime entities.
For instance, parallel composition in SILLS is achieved via an explicit spawning construct,
whose semantics is to administratively transition to a configuration with the spawned process
executing in parallel.

S. Balzer, F. Pfenning, and B. Toninho 30:11

3.3 Observational Correspondence
In the previous section we have established that our encoding preserves reductions in the π-
calculus in a strong sense, by identifying precisely the transitions in the operational semantics
of SILLS that correspond to reductions in the π-calculus processes in a way that is consistent
with standard results on the nature of asynchrony of the untyped asynchronous π-calculus.

We now go further and relate observable actions (i.e., labelled transitions) in the π-calculus
with their corresponding observables in SILLS configuration rewrites. The key challenge
here is to identify what those observables in SILLS are because of the significant differences
between the semantic frameworks of the π-calculus and SILLS. Whereas the π-calculus adopts
an open-world view of observable actions with an unspecified environment (the “ether”),
SILLS adopts a closed-world view of a configuration of processes that are composed to form a
complete program that can be run.

To clarify, consider the π-calculus process c〈a〉 | c(x).P , where both c and a are free
names. This process can interact with the environment through its free names by taking
any of the following three observable actions: the output along c, the input along c, or the
τ -action, corresponding to the synchronization between these dual actions. Now consider
the SILLS encoding of Jc〈a〉 | c(x).P K. It results in a complete configuration consisting of
the encoding of the process together with an explicit encoding of the free names c and a
in terms of the buffers offering along c and a. Given this setup, any potential action on
the π-calculus side will result in a series of actual computational steps on the SILLS side,
affecting the buffers as prescribed by the protocol of type US. In such a closed-world setting,
trying to exactly mimic potential actions seems unnatural, if not impossible.

However, it is still the case that we want to relate π-calculus behavior with SILLS behavior
in a precise sense. To reconcile the open-world view of a labelled transition semantics with
the closed-world view of computational steps, we note that the encoding already accounts for
this issue by essentially implementing “the environment” through the channel encodings that
must be composed with the processes at the top-level. Thus, what we deem to be observable
when we consider a configuration made up of encoded π-calculus processes and corresponding
channel encodings are precisely the inputs and outputs to and from buffers. Conversely, any
steps in a SILLS configuration that do not involve any inputs or outputs to and from buffers,
we deem to be unobservable.

I Definition 3 (Unobservable Transitions of Configuration). Given a configuration Ω we say
that there is an unobservable transition from Ω to Ω′, written Ω −→un Ω′, iff Ω −→ Ω′ where
the transition does not involve any of the two reductions below:

Ω0, proc(dL, xS ← recv cL ; PxS) −→ Ω′
0, proc(dL, [aS/xS] PxS)

Ω0, proc(dL, send cL eS ; P) −→ Ω′
0, proc(dL, P)

for some Ω0,Ω′
0,ΓF ,ΓB,ΓI , aS, cS, dL and eS such that aS, eS, cS ∈ ΓF ∪ ΓB, and dS ∈ ΓI . We

write Ω =⇒un Ω′ to stand for the reflexive transitive closure of −→un.

I Definition 4 (Observable Transitions of Configuration). Given a configuration Ω we define
a notion of an observable transition Ω α−→ Ω′, stating that configuration Ω performs action
α and transitions to configuration Ω′, with α ::= c〈a〉 | c(a) | (νa)c〈a〉 | τ as follows:

Ω c〈a〉−→ Ω′ if c, a ∈ ΓF , Ω = Ω1, proc(dL, send c a; P),Ω2, for some Ω1, P , Ω2 and dS ∈ ΓI
and Ω −→ Ω′ with Ω′ = Ω′

1, proc(dL, P),Ω′
2, for some Ω′

1,Ω′
2.

Ω (νa)c〈a〉−→ Ω′ if c ∈ ΓF , a ∈ ΓB, Ω = Ω1, proc(dL, send c a; P),Ω2, for some Ω1, P , Ω2 and
dS ∈ ΓI and Ω −→ Ω′ with Ω′ = Ω′

1, proc(dL, P),Ω′
2, for some Ω′

1,Ω′
2.

CONCUR 2018

30:12 A Universal Session Type for Untyped Asynchronous Communication

Ω c(a)−→ Ω′ if c ∈ ΓF , a ∈ ΓF ∪ ΓB, Ω = Ω1, proc(dL, x ← recv c; Px),Ω2, for some Ω1, P,Ω2
and d, with dS ∈ ΓI and Ω −→ Ω′ with Ω′ = Ω′

1, proc(dL, [a/x] Px),Ω′
2, for some Ω′

1,Ω′
2.

Ω τ−→ Ω′ if all of the following:
1. c ∈ ΓB, a ∈ ΓF ∪ΓB, Ω = Ω1, proc(dL, send c a; P),Ω2, for some Ω1, P , Ω2 and dS ∈ ΓI

and Ω −→ Ω′′ with Ω′′ = Ω′
1, proc(dL, P),Ω′

2, for some Ω′
1,Ω′

2,Ω′′;
2. Ω′′ =⇒un Ω′′′ with Ω′′′ = Ω′′

1 , proc(dL, x ← recv c; Qx),Ω′′
2 , for some Ω′′

1 , Q,Ω′′
2 and d,

with dS ∈ ΓI and Ω′′′ −→ Ω′ with Ω′ = Ω′′′
1 , proc(dL, [a/x] Qx),Ω′′′

2 , for some Ω′′′
1 ,Ω′′′

2 .
We write Ω α=⇒ Ω′ for Ω =⇒un Ω′′ α−→ Ω′′′ =⇒un Ω′.

The several observable transitions mirror the π-calculus labelled transitions, but where
the role of the environment is replaced with the respective channel implementations. The
first three cases define, respectively, output of a free name, output of a bound name, and
input of a name (using the techniques of Definition 1 to track names). To account for
synchronizations (τ -actions) in the π-calculus, we model the three steps that are required to
perform a full communication in the encoding: an output action of a free or bound name to a
buffer, followed by some sequence of unobservable transitions (needed to complete the several
intermediate stages of the encoding), and an input action from the same buffer. With the
right definition of observable in place, we define the natural notion of (weak) bisimulation
between a π-calculus process and a SILLS configuration.

I Definition 5 (Weak Bisimulation). A relation R between asynchronous π-calculus processes
and SILLS configurations is a weak bisimulation if and only if, whenever PRΩ:

If P α−→ P ′ and α 6= τ then Ω α=⇒ Ω′ and P ′RΩ′

If P τ−→ P ′ then Ω =⇒un Ω′ or Ω τ=⇒ Ω′ and P ′RΩ′

plus the symmetric cases. We say that P is weakly bisimilar to Ω, written P ≈ Ω iff there
exists a weak bisimulation R such that PRΩ.

I Theorem 6 (Observational Correspondence). Let P be an asynchronous π-calculus process.
We have that P ≈ Ω, proc(_, JPK), where Ω is a configuration made up of process encodings
for the free names of P , with (non-empty) arbitrary contents.

The expert reader may wonder how our use of a weak bisimulation captures asynchrony in
the appropriate way, noting that a weak asynchronous bisimulation is necessary to accurately
relate the asynchronous π-calculus and synchronous π-calculus with bags [5]. Would it then
not be the case that we could use queues or stacks as buffers and replicate our bisimulation
argument? Our argument holds precisely because of the non-deterministic (i.e., bag-like)
nature of our buffer implementations. Otherwise, out-of-order message reception – a defining
characteristic of asynchrony – would not be simulated correctly by our encoding. In this
sense, our bisimulation is implicitly asynchronous by implementing the environment in terms
of buffers that enforce non-deterministic removals.

4 Simulating Shared Session Types in the π-calculus

In this section, we close the loop and provide an encoding of SILLS process terms into the
asynchronous polyadic π-calculus. The extension to the polyadic π-calculus is necessary to
send along with the actual channel a fresh continuation channel that must be used for the
next exchange in the protocol. This continuation-passing-style encoding (similar to that of
Dardha et al. [13]) ensures that messages are received in the order specified by the protocol.

S. Balzer, F. Pfenning, and B. Toninho 30:13

The resulting encoding is summarised in Figure 6. To simplify our encoding, we use
a type-directed expansion of forwarding corresponding to the standard identity expansion
in the sequent calculus. The resulting programs no longer use forwarding as a primitive,
but implement it by processes that forward messages from client to provider and vice versa.
Observational correctness of this expansion has been shown for the linear fragment [7]
and with recursive types [17]. The strong logical underpinnings lead us to conjecture that
observational correctness extends to sharing as well.

The general pattern of the encoding is to translate a positive type [35] to an output
and a negative type [35] to an input with matching bindings. In case of a linear output or
input, a fresh continuation channel is provided in addition to the actual channel to be sent
or received, respectively. This channel is then used in the process continuation (in parallel)
in place of the original channel, guaranteeing that the session discipline is not disturbed by
out-of-order messages. To encode the acquire-release discipline of SILLS, we must preserve
the shared mode of a channel throughout the translation. To this end, we indicate a linear
SILLS channel by a pair pxL, xSq, where the left and right projections yield the linear mode xL

and shared mode xS, respectively. A release then restores the session to the shared channel.
To ensure a blocking semantics for an acquire, the encoding of an acquire and accept forces
synchronization via the channel w. The encoding of choice makes use of a selection channel
per choice, used to indicate the choice outcome and unlock the appropriate continuation.
For simplicity, and without loss of generality, we limit the encoding to binary internal and
external choice. Process definitions are encoded as top-level replicated processes:

For each (xL ← p← yLi , wSj = PxL,yLi ,wSj
) ∈ Σ:

!(p(yLi , ySi ,wSj , z).νxL,xS (z〈xL, xS〉 | J[pyLi , ySiq/yLi , pxL, xSq/xL]PxL,yLi ,wSj
K))

For each (xS ← p← ySi = PxS,ySi
) ∈ Σ: !(p(ySi , z).νxS (z〈xS〉 | JPxS,ySi

K))

The name of the definition is used as a channel that the encoding of the spawn construct uses
to access new instances of the definition (generated via replication). The process receives the
sessions that are needed to execute the definition and a channel z, used to send back the
pair of (fresh) channels xS and xL used by the encoding of the definition body.

Operational Correspondence. To establish the operational correctness of our encoding, we
consider an asynchronous semantics for SILLS. While operational completeness would not be
affected by a synchronous semantics, soundness would require reasoning up-to observational
equivalence. Since the expressiveness of SILLS has been shown to be orthogonal to the choice
of synchrony or asynchrony, we opt for the latter for the sake of simplicity. The semantics
spawns single-message outputting processes using a continuation-passing style to achieve
type-safe asynchrony [3].

Recalling that in SILLS static entities are distinct from runtime entities, we lift the
encoding to configurations, where the channels along which processes offer their session
behavior are represented as bound names:

J·K = 0 Jproc(c, P), ΩK = (νcS, cL)(JP K | JΩK) Junavail(cS), ΩK = JΩK

We can now show that SILLS transitions are always matched by a synchronization in the
π-calculus (and vice-versa) rather straightforwardly, given the direct nature of the encoding.

I Theorem 7 (Operational Correspondence). Let −→+ be the transitive closure of −→:
Completeness. If P is a well-typed, forwarding-free SILLS process and proc(a, P) −→+ Ω

then JP K −→+ JΩK.
Soundness. For all well-typed, forwarding-free SILLS configurations Ω such that JΩK −→+ Q,

there exists a configuration Ω′ such that Ω −→+ Ω′ and Q =⇒ JΩ′K.

CONCUR 2018

30:14 A Universal Session Type for Untyped Asynchronous Communication

JxL ← p← pyLi , ySiq, wSj ; QxLK
SpawnLL = νz (p〈yLi , ySi ,wSj , z〉 | z(xL, xS).J[pxL, xSq/xL]QxLK)

JxS ← p← ySi ; QxSK
SpawnLL/SS = νz (p〈ySi , z〉 | z(xS).JQxSK)

JyL ← acquire xS; QyLK
↑S

LL = νyL,w (xS〈yL, xS,w〉 |w().J[pyL, xSq/yL]QyLK)

JyL ← accept xS; PyLK
↑S

LR = xS(yL, yS,w).(w〈 〉 | [pyL, ySq/yL] JPyLK)

JyS ← release pxL, xSq; QySK
↓S

LL = xL(yS).JQySK

JxS ← detach pxL, xSq; P K↓
S
LR = xL〈xS〉 | JP K

Jwait pxL, xSq; QK1L = xL().JQK

Jclose pxL, xSqK1R = xL〈 〉

JyL ← recv pxL, xSq; PyLK
⊗L/(R = xL(yL, yS, zL, zS).J[pzL, zSq/pxL, xSq, pyL, ySq/yL]PyLK

Jsend pxL, xSq pyL, ySq; P K⊗R/(L = νzL (xL〈yL, yS, zL, xS〉 | J[pzL, xSq/pxL, xSq]P K)

JyS ← recv pxL, xSq; PySK
∃L/ΠR = xL(yS, zL, zS).J[pzL, zSq/pxL, xSq]PySK

Jsend pxL, xSq yS; P K∃R/ΠL = νzL (xL〈yS, zL, xS〉 | J[pzL, xSq/pxL, xSq]P K)

JpxL, xSq.case(P,Q)K⊕L/NR = νyinl, yinr (xL〈yinl, yinr〉 |
yinl(zL, zS).J[pzL, zSq/pxL, xSq]P K |
yinr(zL, zS).J[pzL, zSq/pxL, xSq]QK)

JpxL, xSq.inl;P K⊕R1 /NL1 = νzL (xL(yinl, yinr).yinl〈zL, xS〉 | J[pzL, xSq/pxL, xSq]P K)

JpxL, xSq.inr;QK⊕R2 /NL2 = νzL (xL(yinl, yinr).yinr〈zL, xS〉 | J[pzL, xSq/pxL, xSq]QK)

Figure 6 Translation of SILLS process terms into the asynchronous, polyadic π-calculus.

5 Related Work

Encodings of Asynchrony. Encodability results are a standard benchmark for expressiveness
of π-calculi [18]. For the asynchronous π-calculus [21], encodings into various formulations of
synchronous π-calculi exist [5], as well as impossibility results [33] regarding the ability to
adequately encode certain forms of choice in an asynchronous setting.

Our encoding of the asynchronous π-calculus is reminiscent of the encoding of the
asynchronous π-calculus in a π-calculus with bags by Beauxis et al. [5], shown to be in
tight correspondence via an asynchronous bisimilarity. Their framework considers buffers as
primitives in the target calculus, whereas we encode the bag-like behavior of buffers explicitly
as SILLS processes that adhere to a particularly typed protocol, making our encoding more
primitive, but adding several administrative reductions to encoded processes due to the
sharing discipline and the implementation of nondeterminism when reading from a buffer.
This fact, combined with the restrictive (typed) usage of buffers in our setting allows us
to reason using a weak bisimilarity rather than a more involved asynchronous bisimilarity.
Beauxis et al. also consider an encoding of their calculus with bags in the asynchronous
π-calculus. The general structure of the encoding is similar to our encoding of SILLS in
the asynchronous π-calculus, modulo the richer syntax of SILLS, which introduces more
communication actions in the image of the encoding. We note that our encoding is greatly
simplified by linearity and by the fact that SILLS does not employ mixed choice [31].

S. Balzer, F. Pfenning, and B. Toninho 30:15

Linear Logic and Session Types. The propositions-as-types correspondence between linear
logic and session types introduced by Caires and Pfenning [8, 9] initiated an ongoing line
of research exploring the logical reading of sessions along various axes [42, 24, 34, 35, 2].
Starting with [8], which translates the linear session language into a π-calculus (which is
more expressiveness than the source language), various works on encodings in this logical
setting have been proposed [39, 41, 29, 28]. These study encodings between session-typed
processes and functional languages, since the considered session languages are not powerful
enough to express general π-calculus behaviors. Recent works [2, 12] attempt to address these
limitations in expressiveness by allowing composed processes to share more than one linear
channel, but still do not allow for the sharing available in SILLS, crucial to our encoding. We
also highlight the work of Dardha and Pérez [14] comparing session-typed processes arising
from linear logic and those from the Kobayashi-style typings [26, 25, 32] for the π-calculus.
They observe that the degree of sharing determines an expressiveness hierarchy for typed
processes and develop encodings from the latter into the former (not preserving the degree
of sharing). In this sense, our encoding of asynchronous π-calculus completely preserves the
sharing of channels, at the cost of allowing deadlocks when acquiring shared channels.

Session-Typed Behavioral Theory. The behavioral theory of session-typed processes has
been studied in both the multiparty [27] and the linear logic settings [7, 34, 1]. Our notion
of observation is related to the observed communication semantics of Atkey [1], which must
also address the challenge of observing actions within a “closed-world” framework. However,
their system is based on classical linear logic and does not have sharing, making the precise
relationship with our formulation of observable on shared names unclear.

Substructural Logical Reasoning. The work of Deng et al. [15] studies a natural notion
of logical preorder between linear logic contexts using process calculi techniques such as
simulation preorders. While the study of the relationship between contexts can be seen as a
study of multiset rewriting of configurations, the process calculus induced by their reading of
linear logic is a fairly different formalism from SILLS. For instance, their labelled transition
system cannot be reasonably used as a labelled transition system for SILLS since it cannot
represent the equivalent of channel passing, nor does it make use of the deep inspection of
multiset rewriting terms needed for our semantics and reasoning.

6 Concluding Remarks

In this paper, we gave an encoding of the untyped asynchronous π-calculus into SILLS via
a universal shared session type US, proving its operational and observational correctness.
This result shows that the full expressiveness of the untyped asynchronous π-calculus can
be recovered in session-typed process calculi. We also provide an operationally correct
encoding in the other direction to simulate shared session types in the π-calculus. Given
their universality, session-typed calculi with manifest sharing become strong competitors over
traditional approaches since they not only guarantee protocol compliance in the presence
of non-determinism but also make sharing explicit in the type structure. For future work,
we wish to investigate a general behavioral theory of manifest sharing, as well as study
techniques to establish deadlock-freedom in the presence of shared channels.

CONCUR 2018

30:16 A Universal Session Type for Untyped Asynchronous Communication

References
1 Robert Atkey. Observed communication semantics for classical processes. In European

Symposium on Programming (ESOP), pages 56–82, 2017.
2 Robert Atkey, Sam Lindley, and J. Garrett Morris. Conflation confers concurrency. In

S. Lindley et al., editor, Wadler Festschrift, pages 32–55. Springer LNCS 9600, 2016.
3 Stephanie Balzer and Frank Pfenning. Manifest sharing with session types. Proceedings of

the ACM on Programming Languages (PACMPL), 1(ICFP):37:1–37:29, 2017.
4 Stephanie Balzer and Frank Pfenning. Manifest sharing with session types. Technical

Report CMU-CS-17-106, Carnegie Mellon University, March 2017.
5 Romain Beauxis, Catuscia Palamidessi, and Frank D. Valencia. On the asynchronous

nature of the asynchronous π-calculus. In Concurrency, Graphs and Models, volume 5065
of Lecture Notes in Computer Science, pages 473–492. Springer, 2008.

6 P. N. Benton. A mixed linear and non-linear logic: Proofs, terms and models. In 8th
International Workshop on Computer Science Logic (CSL), volume 933 of Lecture Notes
in Computer Science, pages 121–135. Springer, 1994. An extended version appeared as
Technical Report UCAM-CL-TR-352, University of Cambridge.

7 Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. Behavioral poly-
morphism and parametricity in session-based communication. In European Symposium on
Programming (ESOP), pages 330–349. Springer, 2013.

8 Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In 21st
International Conference on Concurrency Theory (CONCUR), pages 222–236. Springer,
2010.

9 Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as session
types. Mathematical Structures in Computer Science, 26(3):367–423, 2016.

10 Iliano Cervesato and Andre Scedrov. Relating state-based and process-based concurrency
through linear logic. Information and Computation, 207(10):1044–1077, 2009.

11 Karl Crary, Robert Harper, and Sidd Puri. What is a recursive module? In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pages 50–63,
1999.

12 Ornela Dardha and Simon J. Gay. A new linear logic for deadlock-free session-typed pro-
cesses. In Foundations of Software Science and Computation Structures (FoSSaCS), pages
91–109, 2018.

13 Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. In Principles
and Practice of Declarative Programming (PPDP), pages 139–150, 2012.

14 Ornela Dardha and Jorge A. Pérez. Comparing deadlock-free session typed processes. In
EXPRESS/SOS, pages 1–15, 2015.

15 Yuxin Deng, Robert J. Simmons, and Iliano Cervesato. Relating reasoning methodologies
in linear logic and process algebra. Mathematical Structure in Computer Science, 26(5):868–
906, 2016.

16 Simon J. Gay and Malcolm Hole. Subtyping for session types in the π-calculus. Acta
Informatica, 42(2–3):191–225, 2005.

17 Hannah Gommerstadt, Limin Jia, and Frank Pfenning. Session-typed concurrent contracts.
In A. Ahmed, editor, European Symposium on Programming (ESOP’18), pages 771–798,
Thessaloniki, Greece, 2018. Springer LNCS 10801.

18 Daniele Gorla. Towards a unified approach to encodability and separation results for process
calculi. Information and Computation, 208(9):1031–1053, 2010.

19 Dennis Griffith and Frank Pfenning. SILL. https://github.com/ISANobody/sill, 2015.
20 Kohei Honda. Types for dyadic interaction. In 4th International Conference on Concur-

rency Theory (CONCUR), pages 509–523. Springer, 1993.

https://github.com/ISANobody/sill

S. Balzer, F. Pfenning, and B. Toninho 30:17

21 Kohei Honda and Mario Tokoro. An object calculus for asynchronous communication. In
5th European Conference on Object-Oriented Programming (ECOOP), Lecture Notes in
Computer Science, pages 133–147. Springer, 1991.

22 Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type
discipline for structured communication-based programming. In 7th European Symposium
on Programming (ESOP), pages 122–138. Springer, 1998.

23 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
In 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), pages 273–284. ACM, 2008.

24 Limin Jia, Hannah Gommerstadt, and Frank Pfenning. Monitors and blame assignment
for higher-order session types. In 43rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), pages 582–594, 2016.

25 Naoki Kobayashi. A type system for lock-free processes. Inf. Comput., 177(2):122–159,
2002.

26 Naoki Kobayashi. A new type system for deadlock-free processes. In International Confer-
ence on Concurrency Theory (CONCUR), pages 233–247, 2006.

27 Dimitrios Kouzapas and Nobuko Yoshida. Globally governed session semantics. Logical
Methods in Computer Science, 10(4), 2014.

28 Sam Lindley and J. Garrett Morris. A semantics for propositions as sessions. In European
Symposium On Programming (ESOP), pages 560–584, 2015.

29 Sam Lindley and J. Garrett Morris. Talking bananas: structural recursion for session types.
In International Colloquium on Functional Progrmaming (ICFP), pages 434–447, 2016.

30 Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge University
Press, 1999.

31 Uwe Nestmann. What is a "good" encoding of guarded choice? Inf. Comput., 156(1-2):287–
319, 2000.

32 Luca Padovani. Deadlock and lock freedom in the linear π-calculus. In Computer Science
Logic – Logic in Computer Science (CSL-LICS), pages 72:1–72:10, 2014.

33 Catuscia Palamidessi. Comparing the expressive power of the synchronous and asyn-
chronous pi-calculi. Mathematical Structures in Computer Science, 13(5):685–719, 2003.

34 Jorge A. Pérez, Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logical relations
and observational equivalences for session-based concurrency. Information and Computa-
tion, 239:254–302, 2014.

35 Frank Pfenning and Dennis Griffith. Polarized substructural session types. In 18th In-
ternational Conference on Foundations of Software Science and Computation Structures
(FoSSaCS), pages 3–22. Springer, 2015.

36 Jason Reed. A judgmental deconstruction of modal logic. Unpublished manuscript, January
2009. URL: http://www.cs.cmu.edu/~jcreed/papers/jdml.pdf.

37 Davide Sangiorgi and David Walker. The π-Calculus - A Theory of Mobile Processes.
Cambridge University Press, 2001.

38 Bernardo Toninho. A Logical Foundation for Session-based Concurrent Computation. PhD
thesis, Carnegie Mellon University and New University of Lisbon, 2015.

39 Bernardo Toninho, Luís Caires, and Frank Pfenning. Functions as session-typed processes.
In 15th International Conference on Foundations of Software Science and Computational
Structures (FOSSACS), pages 346–360. Springer, 2012.

40 Bernardo Toninho, Luís Caires, and Frank Pfenning. Higher-order processes, functions, and
sessions: a monadic integration. In 22nd European Symposium on Programming (ESOP),
pages 350–369. Springer, 2013.

CONCUR 2018

http://www.cs.cmu.edu/~jcreed/papers/jdml.pdf

30:18 A Universal Session Type for Untyped Asynchronous Communication

41 Bernardo Toninho and Nobuko Yoshida. On polymorphic sessions and functions - A tale of
two (fully abstract) encodings. In European Symposium On Programming (ESOP), pages
827–855, 2018.

42 Philip Wadler. Propositions as sessions. In 17th ACM SIGPLAN International Conference
on Functional Programming (ICFP), pages 273–286. ACM, 2012.

Verification of Immediate Observation Population
Protocols
Javier Esparza1

Technische Universität München, Munich, Germany
esparza@in.tum.de

https://orcid.org/0000-0001-9862-4919

Pierre Ganty2

IMDEA Software Institute, Madrid, Spain
pierre.ganty@imdea.org

https://orcid.org/0000-0002-3625-6003

Rupak Majumdar3

MPI-SWS, Kaiserslautern, Germany
rupak@mpi-sws.org

Chana Weil-Kennedy4

Technische Universität München, Munich, Germany
chana.wk@gmail.com

Abstract
Population protocols (Angluin et al., PODC, 2004) are a formal model of sensor networks con-
sisting of identical mobile devices. Two devices can interact and thereby change their states.
Computations are infinite sequences of interactions satisfying a strong fairness constraint.

A population protocol is well-specified if for every initial configuration C of devices, and every
computation starting at C, all devices eventually agree on a consensus value depending only on
C. If a protocol is well-specified, then it is said to compute the predicate that assigns to each
initial configuration its consensus value.

In a previous paper we have shown that the problem whether a given protocol is well-specified
and the problem whether it computes a given predicate are decidable. However, in the same
paper we prove that both problems are at least as hard as the reachability problem for Petri nets.
Since all known algorithms for Petri net reachability have non-primitive recursive complexity,
in this paper we restrict attention to immediate observation (IO) population protocols, a class
introduced and studied in (Angluin et al., PODC, 2006). We show that both problems are
solvable in exponential space for IO protocols. This is the first syntactically defined, interesting
class of protocols for which an algorithm not requiring Petri net reachability is found.

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases Population protocols, Immediate Observation, Parametrized verification

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.31

Related Version A full version of the paper is available at https://arxiv.org/abs/1807.
06071.

1 Supported by ERC Advanced Grant (787367: PaVeS).
2 Supported by Madrid Regional Government project S2013/ICE-2731, N-Greens Software – Next-

GeneRation Energy-EfficieNt Secure Software, the Spanish Ministry of Economy and Competitiveness
project No. TIN2015-71819-P, RISCO – RIgorous analysis of Sophisticated COncurrent and distributed
systems, and by a Ramón y Cajal fellowship RYC-2016-20281.

3 supported by the ERC Synergy award (IMPACT).
4 Part of this work was done during a visit at the IMDEA Software Institute.

© Javier Esparza, Pierre Ganty, Rupak Majumdar, and Chana Weil-Kennedy;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 31; pp. 31:1–31:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:esparza@in.tum.de
https://orcid.org/0000-0001-9862-4919
mailto:pierre.ganty@imdea.org
https://orcid.org/0000-0002-3625-6003
mailto:rupak@mpi-sws.org
mailto:chana.wk@gmail.com
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.31
https://arxiv.org/abs/1807.06071
https://arxiv.org/abs/1807.06071
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

31:2 Verification of Immediate Observation Population Protocols

1 Introduction

Population protocols [2, 3] are a model of distributed, concurrent computation by anonymous,
identical finite-state agents. They capture the essence of distributed computation in different
areas. In particular, even though they were introduced to model networks of passively mobile
sensors, they are also being studied in the context of natural computing [12, 7]. They also
exhibit many common features with Petri nets, another fundamental model of concurrency.

A protocol has a finite set of states Q and a set of transitions of the form (q, q′) 7→ (r, r′),
where q, q′, r, r′ ∈ Q. If two agents are in states, say, q1 and q2, and the protocol has a
transition of the form (q1, q2) 7→ (q3, q4), then the agents can interact and simultaneously
move to states q3 and q4. Since agents are anonymous and identical, the global state of
a protocol is completely determined by the number of agents at each local state, called a
configuration. A protocol computes a boolean value for a given initial configuration if in all fair
executions starting at it, all agents eventually agree to this value5 – so, intuitively, population
protocols compute by reaching a stable consensus. Observe that a protocol may compute no
value for some initial configuration, in which case it is deemed not well-specified [2].

Population protocols are parameterized systems. Every initial configuration yields a
different finite-state instance of the protocol, and the specification is a global property of
the infinite family of protocol instances so generated. More precisely, the specification is a
predicate P (x) stipulating the boolean value P (C) that the protocol must compute from the
initial configuration C.

Initial verification efforts for verifying population protocols studied the problem of checking
if P (x) is correctly computed for a finite set of initial configurations, a task within the reach
of finite-state model checkers. In 2015 we obtained the first positive result on parameterized
verification [9]. We showed that the problem of deciding if a given protocol is well-specified
for all initial configurations is decidable. The same result holds for the correctness problem:
given a protocol and a predicate, deciding if the protocol is well-specified and computes
the predicate. Unfortunately, we also showed [9, 10] that both problems are as hard as the
reachability problem for Petri nets. Since all known algorithms for Petri net reachability run
in non-primitive recursive time in the worst case, the applicability of this result is limited.

In this paper we initiate the investigation of subclasses of protocols with a more tractable
well specification and correctness problems. We focus on the subclass of immediate observation
protocols (IO protocols), introduced and studied by Angluin et al. [4]. These are protocols
whose transitions have the form (q1, q2) 7→ (q1, q3). Intuitively, in an IO protocol an agent
can change its state from q2 to q3 by observing that another agent is in state q1. This yields
an elegant model of protocols in which agents interact through sensing: If an agent in state
q2 senses the presence of another agent in state q1, then it can change its state to q3. The
other agent typically does not even know that it has been sensed, and so it keeps its current
state. They also capture the notion of catalysts in chemical reaction networks.

Angluin et al. focused on the expressive power of IO protocols. Our main result is that for
IO protocols, both the well specification and correctness problems can be solved in EXPSPACE
(we also show the problem is PSPACE-hard). This is the first time that the verification
problems of a substantial class of protocols are proved to be solvable in elementary time. To
ensure elementary time, our proof uses techniques significantly different from previous results

5 An execution is fair if it is finite and cannot be extended, or it is infinite and satisfies the following
condition: if C appears infinitely often in the execution, then every step enabled at C is taken infinitely
often in the execution.

J. Esparza, P. Ganty, R. Majumdar, and C. Weil-Kennedy 31:3

[9]. The key to our result is the use of counting constraints to symbolically represent possibly
infinite (but not necessarily upward-closed) sets of configurations. A counting constraint
is a boolean combination of atomic threshold constraints of the form xi ≥ k. We prove
that, contrary to the case of arbitrary protocols, the set of configurations reachable from a
counting set (the set of solutions of a counting constraint) is again a counting set and we
characterize the complexity of representing this set. We believe that this result can be of
independent interest for other parameterized systems.

Angluin et al. [4] proved that IO protocols compute exactly the predicates represented
by counting constraints. Our main theorem yields a new proof of this result as a corollary.
But it also goes further. Using our complexity results, we can provide a lower bound on the
state complexity of IO protocols, i.e., on the number of states necessary to compute a given
predicate. These results complement recent bounds obtained for arbitrary protocols [5].

2 Immediate Observation Population Protocols

2.1 Preliminaries
A multiset on a finite set E is a mapping C : E → N, thus, for any e ∈ E, C(e) denotes the
number of occurrences of element e in C. Operations on N like addition, subtraction, or
comparison, are extended to multisets by defining them component wise on each element
of E. Given e ∈ E, we denote by e the multiset consisting of one occurrence of element e,
that is, the multiset satisfying e(e) = 1 and e(e′) = 0 for every e′ 6= e. Given E′ ⊆ E define
C(E′) def=

∑
e∈E′ C(e). Given a total order e1 ≺ e2 ≺ · · · ≺ en on E, a multiset C can be

equivalently represented by the vector (C(e1), . . . , C(en)) ∈ Nn.

2.2 Protocol Schemes
A protocol scheme A = (Q,∆) consists of a finite non-empty set Q of states and a set ∆ ⊆ Q4.
If (q1, q2, q

′
1, q
′
2) ∈ ∆, we write (q1, q2) 7→ (q′1, q′2) and call it a transition.

Confugurations of a protocol scheme A are given by populations. A population P is
a multiset on Q with at least two elements, i.e., P (Q) ≥ 2. The set of all populations is
denoted Pop(Q). Intuitively, a configuration C ∈ Pop(Q) describes a collection of identical
finite-state agents with Q as set of states, containing C(q) agents in state q.

Pairs of agents interact using transitions from ∆. Formally, given two configurations C
and C ′ and a transition δ = (q1, q2) 7→ (q′1, q′2), we write C δ−→ C ′ if

C ≥ (q1 + q2) holds, and C ′ = C − (q1 + q2) + (q′1 + q′2) .

(Recall that q is the multiset consisting only of one occurrence of q.) From the definition
of interaction, it is easily seen that, inside the tuple (q1, q2, q

′
1, q
′
2) ∈ ∆, the ordering

between q1 and q2 and between q′1 and q′2 is irrelevant. We write C w−→ C ′ for a sequence
w = δ1 . . . δk of transitions if there exists a sequence C0, . . . , Ck of configurations satisfying
C = C0

δ1−→ C1 · · ·
δk−→ Ck = C ′. We also write C → C ′ if C δ−→ C ′ for some transition δ ∈ ∆,

and call C → C ′ an interaction. We say that C ′ is reachable from C if C w−→ C ′ for some
(possibly empty) sequence w of transitions.

Note that transitions are enabled only when there are at least two agents. This is why
we assume that populations have at least two elements.

An execution of A is a finite or infinite sequence of configurations C0, C1, . . . such that
Ci → Ci+1 for each i ≥ 0. An execution C0, C1, . . . is fair if it is finite and cannot be
extended, or it is infinite and for every step C → C ′, if Ci = C for infinitely many indices

CONCUR 2018

31:4 Verification of Immediate Observation Population Protocols

i ≥ 0, then Cj = C and Cj+1 = C ′ for infinitely many indices j ≥ 0 [2, 3]. Informally, if C
appears infinitely often in a fair execution, then every step enabled at C is taken infinitely
often in the execution.

Given a set S of configurations and a transition t of a protocol scheme (Q,∆), we define:
post[t](S) def= {C ′ | C t−→ C ′ for some C ∈ S} and post(S) def=

⋃
t∈∆ post[t](S).

post0(S) def= S; posti+1(S) def= post(posti(S)) for every i ≥ 0; and post∗(S) def=
⋃
i≥0 posti(S).

We also define pre[t](S) def= {C ′ | C ′ t−→ C for some C ∈ S}. The sets pre(S) and pre∗(S) are
defined as above for post.

2.2.1 Immediate Observation Protocol Schemes
A protocol scheme is immediate observation (IO) if all its transitions are immediate obser-
vation. A transition (q1, q2) 7→ (q′1, q′2) is immediate observation iff {q1, q2} ∩ {q′1, q′2} 6= ∅.
Consider, for instance, a transition (qs, qo, qd, qo) where qs, qo and qd are all distinct. Observe
that the transition is immediate observation since {qs, qo} ∩ {qd, qo} = {qo} 6= ∅. Intuitively,
in an interaction specified by an immediate observation transition, one agent observes the
state of another and updates it own state, but the observed agent remains as it was (and
its state, unmodified by the interaction, is given by {q1, q2} ∩ {q′1, q′2}). Other typical ex-
amples of immediate observation transitions are (qo, qo, qd, qo), (qs, qo, qo, qo) (qs, qo, qs, qo)
and (qo, qo, qo, qo) where qs, qo and qd are all distinct. Note that in the last two cases, the
state of two agents are the same before and after interacting.

2.3 Population Protocols
As Angluin et al. [2], we consider population protocols as a computational model, computing
predicates Π: Pop(Σ)→ {0, 1}, where Σ is a non-empty, finite set of input variables.

An input mapping for a protocol scheme A is a function I : Pop(Σ) → Pop(Q) that
maps each input population X ∈ Pop(Σ) to a configuration of A. The set of initial
configurations is I = {I(X) | X ∈ Pop(Σ)}. An input mapping I is Presburger if the
set of pairs (X,C) ∈ Pop(Σ) × Pop(Q) such that C = I(X) is definable in Presburger
arithmetic. An input mapping I is simple if there is an injective map ν : Σ→ Q such that
I(X) =

∑
σ∈ΣX(σ)ν(σ). That is, each input variable is assigned a (distinct) state, and a

population X over Σ is assigned the initial configuration consisting of X(σ) agents in the
state ν(σ) and no other agents. Unless otherwise specified, we restrict our attention to the
class of simple input mappings.

An output mapping for a protocol scheme is a function O : Q → {0, 1} that associates
to each state q of A an output value in {0, 1}. The output mapping induces the following
properties on configurations: a configuration C is a

b-consensus for b ∈ {0, 1} if
∑
p∈O−1(1−b) C(p) = 0 and a consensus if it is a b-consensus

for some b;
dissensus if it is a b-consensus for no b (that is C is a dissensus if

∑
p∈O−1(b) C(p) > 0

and
∑
p∈O−1(1−b) C(p) > 0).

A population protocol is a triple (A, I, O), where A is a protocol scheme, I is a simple input
mapping, and O is an output mapping. The population protocol is immediate observation
(IO) if A is immediate observation.

An execution C0, C1, . . . stabilizes to b for a given b ∈ {0, 1} if there exists n ∈ N such
that Cm is a b-consensus for every m ≥ n (if the execution is finite, then this means for every
m between n and the length of the execution). Notice that there may be many different

J. Esparza, P. Ganty, R. Majumdar, and C. Weil-Kennedy 31:5

executions from a given configuration C0, each of which may stabilize to 0 or to 1 or not
stabilize at all (by visiting infinitely many dissensus or infinitely many 0 and 1 consensus).

A population protocol (A, I, O) is well-specified if for every input configuration C0 ∈ I,
every fair execution of A starting at C0 stabilizes to the same value b ∈ {0, 1}. Otherwise,
it is ill-specified. The well specification problem asks if a given population protocol is
well-specified?

Finally, a population protocol (A, I, O) computes a predicate Π: Pop(Σ)→ {0, 1} if for
every X ∈ Pop(Σ), every fair execution of A starting at I(X) stabilizes to Π(X). It follows
easily from the definitions that a protocol computes a predicate iff it is well-specified. The
correctness problem asks, given a population protocol and a predicate whether the protocol
computes the predicate.

3 Counting Constraints and Counting Sets

I Definition 1. Let X = {x1, . . . , xn} be a set of variables, and let x ∈ X. A constraint of
the form l ≤ x, where l ∈ N, is a lower bound, and a constraint of the form x ≤ u, where
u ∈ N ∪ {∞}, is an upper bound. A literal is a lower bound or an upper bound.

A counting constraint is a boolean combination of literals. A counting constraint is in
counting normal form (CoNF) if it is a disjunction of conjunctions of literals, where each
conjunction, called a counting minterm, contains exactly two literals for each variable, one of
them an upper bound and the other a lower bound. We often write a counting constraint in
CoNF as the set of its counting minterms.

The semantics of a counting constraint is a counting set, a set of vectors in Nn or, equivalently,
a set of valuations to the variables in X. The semantics is defined inductively on the structure
of a counting constraint, as expected. Define Jl ≤ xK = {x 7→ m ∈ N | m ≥ l} (J∞ ≤ xK = ∅)
and Jx ≤ uK = {x 7→ m ∈ N | m ≤ u}. Disjunction, conjunction, and negation of counting
constraints translates into union, intersection, and complement of counting sets.

The following proposition follows easily from the definition of counting sets and the
disjunctive normal form for propositional logic.

I Proposition 2.
1. Counting sets are closed under Boolean operations.
2. Every counting constraint is equivalent to a counting constraint in CoNF.

Proof Sketch. 1. Proof is easy. 2. Put the constraint in disjunctive normal form. Remove
negations in front of literals using J¬(xi ≤ c)K = Jxi ≥ c+ 1K if c ∈ N and remove the enclosing
minterm otherwise; and J¬(xi ≥ c)K = Jxi ≤ c− 1K if c ∈ N \ {0} and remove the enclosing
minterm otherwise. Remove minterms containing unsatisfiable literals l ≤ xi ∧ xi ≤ u with
l > u. Remove redundant bounds, e.g., replace (l1 ≤ x ∧ l2 ≤ x) by max{l1, l2} ≤ x. If a
minterm does not contain a lower bound (upper bound) for xi, add 0 ≤ xi (xi ≤ ∞). J

Next, we introduce a representation of CoNF-constraints used in the rest of the paper.

I Definition 3 (Representation of CoNF-constraints). We represent a counting minterm by a
pairM def= (L,U) where L : X → N and U : X → N∪{∞} assign to each variable its lower and
upper bound, respectively. We represent a CoNF-constraint Γ as the set of representations
of its minterms: Γ = {M1, . . . ,Mm}.

I Definition 4 (Measures of counting constraints). The L-norm of a counting minterm
M = (L,U) is ‖M‖l

def=
∑
x∈X L(x), and its U-norm is ‖M‖u

def=
∑

x∈X
U(x)<∞

U(x) (and 0 if

CONCUR 2018

31:6 Verification of Immediate Observation Population Protocols

U(x) < ∞ for no x). The L- and U -norms of a CoNF-constraint Γ = {M1, . . . ,Mm} are
‖Γ‖l

def= maxi∈[1,m]{‖Mi‖l} and ‖Γ‖u
def= maxi∈[1,m]{‖Mi‖u}.

I Proposition 5. Let Γ1,Γ2 be CoNF-constraints over n variables.
There exists a CoNF-constraint Γ with JΓK = JΓ1K ∪ JΓ2K such that ‖Γ‖u ≤ max{‖Γ1‖u,
‖Γ2‖u} and ‖Γ‖l ≤ max{‖Γ1‖l, ‖Γ2‖l}.
There exists a CoNF-constraint Γ with JΓK = JΓ1K∩ JΓ2K such that ‖Γ‖u ≤ ‖Γ1‖u+‖Γ2‖u
and ‖Γ‖l ≤ ‖Γ1‖l + ‖Γ2‖l.
There exists a CoNF-constraint Γ with JΓK = Nn \ JΓ1K such that ‖Γ‖u ≤ n‖Γ1‖l and
‖Γ‖l ≤ n‖Γ1‖u + n.

Proof. Remember that a CoNF constraint for m minterms in dimension n is a m-disjunction
of n-conjunctions, and that the L-norm (respectively U -norm) is the maximum sum of lower
(resp. upper) bounds in one conjunction. The union of two counting sets Γ1,Γ2 with CoNF
constraints is represented by the disjunction of the two constraints, and it is still CoNF so
the result follows. The intersection is represented by a conjunction of the two constraints
and so is not CoNF and needs to be rearranged as in Proposition 2. The new n-conjunctions
of literals (i.e. the new minterms) mix unmodified bounds from Γ1 and Γ2, so the result
follows. The complement is represented by the negation of the original constraint, which we
rearrange into CoNF using ¬(l ≤ x ≤ u) ≡ (0 ≤ x ≤ l − 1) ∨ (u+ 1 ≤ x ≤ ∞). We obtain
n-conjunctions with lower bounds of the form u + 1, with u ≤ ‖Γ1‖u an upper bound in
a minterm of the original constraint. This yields ‖Γ‖l ≤ n‖Γ1‖u + n and the reasoning is
similar for the U -norm. J

I Remark 6. The counting sets contain the finite, upward-closed and downward-closed sets:
Every finite subset of Nn is a counting set. Indeed, {(k1, . . . , kn)} = J(L,U)K with
L(xi) = ki = U(xi) for every xi ∈ X, and so finite sets are counting sets too.
A set S ⊆ Nn is upward-closed if whenever v ∈ S and v ≤× v′, we have v′ ∈ S, where
we write v ≤× v′ if the ordering holds pointwise (meaning v(x) ≤ v′(x) for every x ∈ X).
Upward-closed sets are counting sets. Indeed, by Dickson’s lemma, every upward-closed
set has a finite set {v1, . . . , vk} of minimal elements with respect to ≤×, and so the set is
J{(L1, U), . . . , (Lk, U)}K where Li(xj) = vi(j) and U(xj) =∞ for every 1 ≤ j ≤ n.
A set S ⊆ Nn is downward-closed if whenever v ∈ S and v′ ≤× v, we have v′ ∈ S. Since
a set is downward-closed iff its complement is upward-closed, every downward-closed set
is a counting set. Further, it is easy to see that downward-closed sets are represented by
counting constraints {(L,U1), . . . , (L,Uk)} where L(xj) = 0 for every 1 ≤ j ≤ n.

Next, we define a well-quasi-ordering on counting sets. For two counting minterms M1
and M2, we write M1 � M2 if JM1K ⊇ JM2K. For CoNF-constraints Γ1 and Γ2, define the
ordering Γ1 v Γ2 if for each counting minterm M2 ∈ Γ2 there is a counting minterm M1 ∈ Γ1
such that M1 �M2. Note that Γ1 v Γ2 implies JΓ1K ⊇ JΓ2K.

I Theorem 7. For every u ≥ 0, the ordering v on counting sets represented by CoNF-
constraints of U -norm at most u is a well-quasi-order.

Proof. We first prove that counting minterms with � form a better quasi order. For two
counting mintermsM1 andM2, we writeM1 �M2 if JM1K ⊇ JM2K. LetM = M1,M2, . . . be
an infinite sequence of counting minterms of U -norm at most u, where Mi = (Li, Ui). Since
there are only finitely many mappings U : X → N ∪ {∞} of norm at most u, the sequence
M contains an infinite subsequenceM′ such that every minterm Mi ofM′ satisfies Ui = U

for some mapping U . SoM′ is of the form (L1, U), (L2, U) . . . By Dickson’s lemma, there

J. Esparza, P. Ganty, R. Majumdar, and C. Weil-Kennedy 31:7

are i < j such that Li ≤× Lj , and so J(Li, U)K ⊇ J(Lj , U)K. Hence, defining C be the set of
all counting minterms of U -norm at most u we find that (C,�) is a well-quasi-order. In fact,
standard arguments show that this is a better-quasi-order [1]. Hence, the ordering v is a
better quasi order on counting constraints [1], implying it is also a well-quasi-order. J

4 Reachability Sets of IO Population Protocols

We show that if S is a counting set, then post∗(S) and pre∗(S) are also counting sets. First
we show that we can restrict ourselves to IO protocols in a certain normal form.

4.1 A Normal Form for Immediate Observation Protocols
An IO protocol is in normal form if qs 6= qo for every transition (qs, qo) 7→ (qo, qd), i.e., the
state of the observed agent is different from the source state of the observer.

Given an IO population protocol P = (A, I, O) we define an IO protocol in normal form
P ′ = (A′, I ′, O′) which is well-specified iff P is well-specified. Further, the number of states
and transitions of P ′ is linear in the number of states and transitions of P. The mapping I ′
is a Presburger mapping even if I is simple, but this does not affect our results.
P ′ is defined adding transition and states to P . First we add a state r. Then, we replace

each transition t = (q, q) 7→ (q, qd) of P by a transition t′ = (q′, q) 7→ (q′, qd), where q′ is a
primed copy of q, and add two further transitions (q, r) 7→ (r, q′) and (q′, r) 7→ (r, q).

It remains to define the output function of the new states as well as the input mapping
I ′ of P ′. We define I ′ to be a Presburger initial mapping which coincides with I on the state
of P and such that I(X)(r) = 1 for all X and I(X)(q′) = 0 for all X and primed state q′.
The output of primed copies is the same as their unprimed version, that is O(q′) = O(q).
The only technical difficulty is the definition of the output of state r. Because of the way
in which we have defined the transitions involving r, the agent initially in state r cannot
leave r. Therefore, whatever the output O(r) we assign to r, the protocol P ′ can never reach
consensus 1−O(r), and so P ′ may not be well-specified even if P is. To solve this problem,
we add a primed copy r′ of r such that r and r′ have distinct outputs. Every transition
with r as observer is duplicated but this time with r′ as observed state. Finally, for every
state q of P , if O(q) = O(r′) we add the transition (q, r) 7→ (q, r′), and otherwise we add the
transition (q, r′) 7→ (q, r). After adding these states, the agent initially in r switches between
r and r′, and finally stabilizes to the same value the other agents stabilize to.

4.2 The Functions pre∗ and post∗ Preserve Counting Sets
We show that if S is a counting set, then post∗(S) and pre∗(S) are also counting sets. Further,
given a CoNF-constraint Γ representing S, we show how to construct a CoNF-constraint
representing post∗(S) and pre∗(S). In the following, we abbreviate post(JΓK) to post(Γ), and
similarly for other notations involving post and pre, like post[t](Γ), post∗(Γ), etc.

We start with some simple examples. First, we observe that the result does not hold for
arbitrary population protocols. Consider the protocol with four distinct states {q1, q2, q3, q4}
and one single transition (q1, q2) 7→ (q3, q4). Let M = J0 ≤ x3 ≤ 0 ∧ 0 ≤ x4 ≤ 0K. Then
post∗(M) = Jx3 = x4K, which is not a counting set. Intuitively, the reason is that the
transitions links the number of agents in states x3 and x4. However, this is only possible
because the transition is not IO. Indeed, consider now the protocol P1 with states {q1, q2, q3}
and one single IO transition (q1, q2) 7→ (q1, q3). Table 1 lists some typical constraints for M ,
and gives constraints for post∗(M).

CONCUR 2018

31:8 Verification of Immediate Observation Population Protocols

Table 1 The set post∗[t](M) for two IO transitions and counting minterm M . For conciseness
and clarity we use equality constraints instead of two inequalities.

M ‖M‖l‖M‖u Γ def= post∗[t](M) where t
def= (q1, q2) 7→ (q1, q3) ‖Γ‖l‖Γ‖u

x1 = 0 ∧ x2 ≥ 2 ∧ x3 = 1 3 1 x1 = 0 ∧ x2 ≥ 2 ∧ x3 = 1 3 1

x1 = 1 ∧ x2 = 2 ∧ x3 ≥ 1 4 3 (x1 = 1 ∧ x2 = 2 ∧ x3 ≥ 1)
∨(x1 = 1 ∧ x2 = 1 ∧ x3 ≥ 2)
∨(x1 = 1 ∧ x2 = 0 ∧ x3 ≥ 3)

4 3

x1 = 1 ∧ x2 ≥ 1 ∧ x3 = 2 4 3 (x1 = 1 ∧ x2 ≥ 1 ∧ x3 = 2)
∨(x1 = 1 ∧ x2 ≥ 0 ∧ x3 ≥ 3)

4 3

x1 ≥ 0 ∧ x2 ≥ 1 ∧ x3 ≥ 2 3 0 (x1 ≥ 0 ∧ x2 ≥ 1 ∧ x3 ≥ 2)
∨(x1 ≥ 1 ∧ x2 ≥ 0 ∧ x3 ≥ 3)

4 0

M ‖M‖l‖M‖u Γ def= post∗[t](M) where t
def= (q1, q2) 7→ (q2, q2) ‖Γ‖l‖Γ‖u

x1 ≥ 1 ∧ x2 = 0 1 0 x1 ≥ 1 ∧ x2 = 0 1 0

x1 = 1 ∧ x2 ≥ 2 3 1 (x1 = 1 ∧ x2 ≥ 2) ∨ (x1 = 0 ∧ x2 ≥ 3) 3 1

x1 ≥ 2 ∧ x2 = 1 3 1 (x1 ≥ 2 ∧ x2 ≥ 1) ∨ (x1 ≥ 1 ∧ x2 ≥ 2)
∨(x1 ≥ 0 ∧ x2 ≥ 3)

3 0

Given a minterm (L,U), we syntactically define a CoNF-constraint (L,U)t∗ for the set:

post∗[t](L,U) def= {C ′ | ∃k ≥ 0∃C ∈ J(L,U)K such that C tk−→ C ′} .

That is, (L,U)t∗ captures the set of all configurations that can be obtained from (L,U) by
firing transition t an arbitrary number of times.

I Definition 8. Let (L,U) be a minterm and let t = (qs, qo) 7→ (qd, qo) be an IO transition.
Define (L,U)t∗ to be the set given by (L,U) and all the minterms (L′, U ′) such that all the
following conditions hold:
1. J(L′′, U)K 6= ∅ where JL′′K = JLK ∩ Jxs ≥ 1 ∧ xo ≥ 1K.
2. U ′(x) = U(x) and L′(x) = L′′(x) for every x ∈ X \ {xs, xd}.
3. If U(xs) <∞, then there exists 1 ≤ k ≤ U(xs) such that U ′(xs) = U(xs)− k, L′(xs) =

max{0, L′′(xs)− k}, U ′(xd) = U(xd) + k and L′(xd) = L′′(xd) + k.
4. If U(xs) = ∞, then U ′(xs) = U ′(xd) = ∞ and there exists 1 ≤ k ≤ L′′(xs) such that

L′(xs) = L′′(xs)− k and L′(xd) = L′′(xd) + k.
Given a CoNF-constraint Γ = {M1, . . . ,Mm}, we define Γt∗ =

⋃m
i=1Mit∗ .

I Lemma 9. Let P be an IO protocol and let Γ be a CoNF-constraint. Then Γt∗ = post∗[t](Γ).
Further, ‖Γt∗‖u ≤ ‖Γ‖u.

Proof. It suffices to prove that for every minterm (L,U) and for every transition t we have
post∗[t](L,U) = (L,U)t∗ and ‖(L,U)t∗‖u ≤ ‖(L,U)‖u. The rest follows easily from the
definitions of post∗ and of a counting constraint.

Condition (1) holds iff some vector in J(L,U)K enables t, hence J(L′′, U)K is the set
J(L,U)K of vectors minus those disabling t. If no vector enables t then (L,U)t∗ is the
singleton {(L,U)}. Condition (2) states that the number of agents in states other than qs
and qd does not change. Condition (3–4) defines the result of firing t one or more times.

The inequality ‖(L,U)t∗‖u ≤ ‖(L,U)‖u follows immediately from (1–4). Observe that
‖(L,U)t∗‖u < ‖(L,U)‖u may hold if U(xs) =∞ and U(xd) <∞. J

To prove the main theorem of the section, we introduce the following definition.

J. Esparza, P. Ganty, R. Majumdar, and C. Weil-Kennedy 31:9

I Definition 10. Given a protocol P, let S be a set of configurations and let Γ be a
CoNF-constraint.

Define: posta(S) def=
⋃
t∈∆ post∗[t](S); post0

a(S) def= S and posti+1
a (S) def= posta(postia(S))

for every i ≥ 0; post∗a(S) def=
⋃
i≥0 postia(S).

Similarly, define in the constraint domain: posta(Γ) def=
⋃
t∈∆ Γt∗ ; post0

a(Γ) def= Γ and
posti+1

a (Γ) def= posta(postia(Γ)) for every i ≥ 0.
The a-subscript stands for “accelerated.” Observe that we cannot define post∗a(Γ) directly as
the infinite union

⋃
i≥0 postia(Γ) because constraints are only closed under finite unions.

I Theorem 11. Let P be an IO protocol and let S be a counting set. Then both post∗(S)
and pre∗(S) are counting sets.

Proof. We first prove that post∗(S) is a counting set. It follows from Definition 10 that
posti(S) ⊆ postia(S) but postia(S) ⊆ post∗(S) for every i ≥ 0, hence post∗a(S) = post∗(S),
and so it suffices to prove that post∗a(S) is a counting set.

Let Γ be a CoNF-constraint such that JΓK = S. By Lemma 9, postia(Γ) is a counting set
and ‖postia(Γ)‖u ≤ ‖Γ‖u for every i ≥ 0. By Theorem 7, there exist indices i < j such that
postja(Γ) ⊆ postia(Γ), hence postja(Γ) = postia(Γ) since Γ′ ⊆ posta(Γ′) for all Γ′, and finally
post∗a(Γ) =

⋃j
k=1 postka(Γ). Since counting sets are closed under finite union, post∗a(S) is a

counting set.
Finally we show that pre∗(S) is also a counting set. Consider the protocol Pr obtained

by “reversing” the transitions of P, i.e., Pr has a transition (q1, q2) 7→ (q3, q4) iff P has a
transition (q3, q4) 7→ (q1, q2). Then pre∗(S) in P is equal to post∗(S) in Pr. J

4.3 Bounding the Size of post∗(Γ)
Given a CoNF-constraint Γ, we obtain an upper bound on the size of a CoNF-constraint
denoting post∗(Γ) and pre∗(Γ). More precisely, we obtain bounds on the L-norm and U -norm
of a constraint for post∗(Γ) as a function of the same parameters for Γ.

We first recall a theorem of Rackoff [14] recast in the terminology of population protocols.

I Theorem 12 ([14, 6]). Let P be a population protocol with set of states Q and let C be a
configuration of P. For every configuration C ′, if there exists C ′′ such that C ′ ∗−→ C ′′ ≥× C,
then there exists σ and C ′′′ such that C ′ σ−→ C ′′′ ≥× C and |σ| ≤ (3 + C(Q))(3|Q|)!+1 ∈
C(Q)2O(|Q| log |Q|) . (Recall that C(Q) def=

∑
q∈Q C(q) and C(Q) ≥ 2.)

Observe that the bound on the length of σ depends only on C and P , but not on C ′. Using
this theorem we can already obtain an upper bounds for pre∗(Γ) when JΓK is upward-closed.
The bound is valid for arbitrary population protocols.

Recall that if JΓK is upward-closed we can assume ‖Γ‖u = 0 (see Remark 6).

I Proposition 13. Let P be population protocol with n states. Let S be an upward-closed set
of configurations and let Γ be a CoNF-constraint with ‖Γ‖u = 0 such that JΓK = S. There
exists a CoNF constraint Γ′ such that JΓ′K = pre∗(Γ) and ‖Γ′‖u = 0, ‖Γ′‖l ∈ (‖Γ‖l)2O(n log n) .

Proof. It is well known that if S is upward-closed, then so is pre∗(S). (This follows from
Lemma 9, but is also an easy consequence of the fact that C ∗−→ C ′ implies C+C ′′

∗−→ C ′+C ′′

for every C ′′). Let K def= (3 + ‖Γ‖l)(3n)!+1. By Theorem 12, for every configuration C,
if C ∈ pre∗(S) then C ∈

⋃K
i=0 prei(S), and so pre∗(S) =

⋃K
i=0 prei(S) = preKa (S). Let

Γ′ = preKa (Γ). Then JΓ′K = pre∗(S). Further, we have ‖Γ′‖u = 0 by Lemma 9 (the
Lemma proves the result for post∗, but exactly the same proof works for pre∗ by reversal of

CONCUR 2018

31:10 Verification of Immediate Observation Population Protocols

transitions). To prove the bound for the L-norm, observe that by the definition of (L,U)t∗
we have ‖(L,U)t∗‖l ≤ ‖(L,U)‖l + 1, as we are always in case 4. of Definition 8 (because S is
upward-closed). Since prea(Γ) =

⋃
t∈∆r

Γt∗ and the L-norm of a union is the maximum of
the L-norms, we get ‖prea(Γ)‖l ≤ ‖Γ‖l + 1. By induction, ‖preKa (Γ)‖l ≤ ‖Γ‖l +K, and the
result follows. J

In the rest of the section we obtain a bound valid not only for upward-closed sets, but
for arbitrary counting sets. The price to pay is a restriction to IO protocols. We start with
some miscellaneous notations that will be useful.

Given a mapping f : X → N and Y ⊆ X we write f(Y) for
∑
x∈Y f(x), and f |Y for the

projection of f onto Y .
Given a transition sequence σ, we denote by c(σ) the “compression” of σ as the shortest
regular expression r = t∗1 . . . t

∗
m such that σ ∈ L(r), and denote |c(σ)| = m. While σ

induces a sequence of pre[t] or post[t], c(σ) induces a sequence of pre∗[t] or post∗[t].

For the rest of the section we fix an IO protocol P with a set of states Q and |Q| = n.
We say that C covers C ′ if C ≥× C ′. We introduce a relativization.

I Definition 14. Let E ⊆ Q. A configuration C E-covers C ′, denoted C ≥E C ′, if
C(q) = C ′(q) for every q ∈ E and C(q) ≥ C ′(q) for every q ∈ Q \E. P is E-increasing if for
every transition (qs, qo) 7→ (qd, qo) either qs /∈ E or qd ∈ E.

Observe that P is vacuously ∅-increasing and Q-increasing. Intuitively, if P is E-increasing
then the total number of agents in the states of E cannot decrease. Indeed, for that we would
need a transition that removes agents from E without replacing them, i.e., a transition such
that qs ∈ E and qd /∈ E. So, by induction, we have:

I Lemma 15. If P is E-increasing and C ′ ∗−→ C then C ′(E) ≤ C(E).

Now we give a result bounding the length of E-covering sequences for E-increasing
protocols.

I Lemma 16. Let P = (Q,∆) be an IO protocol scheme, let C be a configuration of P,
and let E ⊆ Q such that P is E-increasing. For every configuration C ′, if there exists C ′′
such that C ′ ∗−→ C ′′ ≥E C, then there exists σ and C ′′′ such that C ′ σ−→ C ′′′ ≥E C and
|σ| ∈ C(Q)2O(n log n) , where the constant in the Landau symbol is independent of P and C.

Proof. We use a theorem of Bozzelli and Ganty [6] that generalizes Rackoff’s theorem to
Vector Addition Systems with States (VASS). Recall that a d-VASS is a pair (P,∆) where
P is a set of control points and ∆ ⊆ P × Zd × P is a finite set of transitions. The number
d is called the dimension. A configuration of a d-VASS is a pair (p, v), where p ∈ P and
v ∈ Nd. Intuitively, the VASS acts on d counters that can only take non-negative values.
Formally, we have (p, v)→ (p′, v′) if there is a transition (p, v′′, p′) such that v+ v′′ = v′, i.e.,
the machine moves from p to p′ by updating the counters with v′′. Given two configurations
(p, v) and (p′, v′), we write (p, v) ≥× (p′, v′) if p = p′ and v ≥× v′. It is shown [6] in Theorem
1 that given a d-VASS (P,∆) and a configuration C, for each configuration C ′, if there exists
C ′′ such that C ′ ∗−→ C ′′ ≥× C, then there exists σ and C ′′′ such that C ′ σ−→ C ′′′ ≥× C and
|σ| ≤ |P | · (‖∆‖1 + ‖C‖1 + 2)(3d)!+1, where ‖∆‖1 and ‖C‖1 denote the maximal components
of ∆ and C, respectively.

Let n = |Q|. We construct a VASS VP,E that simulates the protocol P, and then apply
Bozzelli and Ganty’s theorem. We do not give all the formal details of the construction.

J. Esparza, P. Ganty, R. Majumdar, and C. Weil-Kennedy 31:11

Intuitively, given a configuration C of P, we split it into (C|E , C|Q\E). Since P is E-
increasing, every configuration (C ′|E , C ′|Q\E) from which we can reach (C|E , C|Q\E) satisfies
C ′|E(E) ≤ C|E(E) (Lemma 15), and so there are only finitely many (at most (C(E) + 1)n)
possibilities for C ′|E . The control points of the VASS VP,E correspond to these finitely many
possibilities. Formally, the set of control points of VP,E is the set of all mappings M : E → N
such that M(E) ≤ C(E), plus some auxiliary control points (see below). The dimension, or
number of counters, is |Q \ E|. The transitions of VP,E simulate the transitions of P. For
example, assume t = (qo, qs) 7→ (qo, qd) is a transition of P such that qs, qo /∈ E and qd ∈ E.
Then for every control point M of VP,E the VASS has a transition t1 leading from M to an
auxiliary control point 〈M, t〉, and a transition t2 leading from 〈M, t〉 to the control point
M ′ given by M ′(qd) = M(qd) + 1 and M ′(q) = M(q) for every other q ∈ E. Transition t1
decrements the counter of qs and qo by 1, leaving all other counters untouched, and transition
t2 increments the counters qo, leaving all other counters untouched.

It follows that there is an execution C ′
∗−→ C ′′ ≥E C in P iff there is an execution

(C ′|E , C ′|Q\E) ∗−→ (C ′′|E , C ′′|Q\E) ≥× (C|E , C|Q\E) in VP,E of at most twice the length.
Applying Bozzelli and Ganty’s theorem, we obtain that the length of σ is bounded

by |P | · (‖∆̂‖1 + ‖C‖1 + 2)(3d)!+1, where |P |, ∆̂, and d are now the set of control points,
transitions, and dimension of VP,E . We have |P | ≤ (C(E) + 1)n + |∆|(C(E) + 1)n, d =
|Q \ E| ≤ n, ‖∆̂‖1 = 2. Further, we have ‖C‖1 ≤ C(Q \ E), which leads to a bound of
(1 + |∆|)(C(E) + 1)n · (C(Q \ E) + 4)(3n)!+1 ∈ C(Q)2O(n log n) . J

Next we prove a double exponential bound on the length of E-covering sequences. The
result is similar to Lemma 16 with two important changes: the restriction to E-increasing
protocols is dropped, and we consider the bound on the length of c(σ) instead of σ.

I Theorem 17. Let P be an IO protocol with a set Q of n states, and let C be a configuration
of P. For every E ⊆ Q and for every configuration C0, if there exists τ and C ′ such that
C0

τ−→ C ′ ≥E C, then there exists σ and C ′′ such that C0
σ−→ C ′′ ≥E C and |c(σ)| ∈

C(Q)2O(n2 log n) , where the constant in the Landau symbol is independent of P, C, and C0.

Proof. We prove by induction on |E| that the result holds with |c(σ)| ∈ C(Q)2eO(n log n) ,
where e def= max{1, |E|}, and then apply e ≤ n.
Base: |E| = 0. Then P is vacuously E-increasing, and the result follows from Lemma 16.
Step: |E| > 0. We use the following notation: Given a transition sequence ρ, we denote Pρ

the restriction of P to the transitions that occur in ρ.

If Pτ is E-increasing, then we can apply Lemma 16, and we are done. Else, the definition
of E-increasing shows there exist C1 and C2 and a decomposition τ = τ1 t τ2 such that

C0
τ1−→ C1

t−→ C2
τ2−→ C ′ ≥E C .

The protocol Pτ2 is E-increasing, but Ptτ2 is not E-increasing (observe that possibly τ2 = ε).
By Lemma 16 applied to Pτ2 , there exists σ2 and C̃ ′′ such that

C0
τ1−→ C1

t−→ C2
σ2−→ C̃ ′′ ≥E C and |σ2| ∈ C(Q)2O(n log n)

.

Since σ2 can remove at most |σ2| agents from a state, there exist C ′1, C ′2, C ′′ such that

C0
τ1−→ C1 ≥E C ′1

t−→ C ′2
σ2−→ C ′′ ≥E C and C ′1(Q) ∈ C(Q)2O(n log n)

.

Indeed, it suffices to define
C ′1(q) = min{C1(q), |σ2|+ C(q)} for every q ∈ Q \ E and C ′1(q) = C1(q) for every q ∈ E,

CONCUR 2018

31:12 Verification of Immediate Observation Population Protocols

C ′2(q) = min{C2(q), |σ2|+ C(q)} for every q ∈ Q \ (E ∪ {qd}), C ′2(q) = C2(q) for every
q ∈ E and C ′2(qd) = min{C2(qd), 1 + |σ2|+ C(q)} where t = (qo, qs) 7→ (qo, qd).

Recall that Ptτ2 is not E-increasing, and so t = (qo, qs) 7→ (qo, qd) for states qs, qd such
that qs ∈ E and qd /∈ E. (Intuitively, the occurrence of t “removes agents” from E.) Let
E′

def= E \ {qs}. Since C0
τ1−→ C1 ≥E C ′1, we also have C0

τ1−→ C1 ≥E′ C ′1. By induction
hypothesis, there exists σ1 and C ′′1 such that C0

σ1−→ C ′′1 ≥E′ C ′1 and

|c(σ1)| ∈ C ′1(Q)2e′O(n log n)
∈
(
C(Q)2O(n log n)

)2e′O(n log n)

∈ C(Q)2O(n log n)·2e′O(n log n)

∈ C(Q)2O(n log n)+e′O(n log n)
∈ C(Q)2eO(n log n)

.

(Observe that C ′′1 ≥E′ C ′1 holds, but C ′′1 ≥E C ′1 may not hold, we may have C ′′1 (qs) > C ′1(qs).)
To sum up, we have configurations C ′1, C ′′1 , C ′2, C ′′ and transition sequences σ1, σ2 such that

C0
σ1−→ C ′′1 ≥E′ C ′1

t−→ C ′2
σ2−→ C ′′ ≥E C and |c(σ1 t σ2)| ∈ C(Q)2eO(n log n)

.

Claim. There exist C ′′2 and C ′′′ such that

C0
σ1−→ C ′′1

tC
′′
1 (qs)−C′1(qs)+1

−−−−−−−−−−−→ C ′′2
σ2−→ C ′′′ ≥E C .

Proof of the claim. Since C ′′1 ≥E′ C ′1 and C ′1 enables t, so does C ′′1 . Since P is an IO
protocol (a hypothesis we had not used so far), C ′′1 enables not only t, but also the sequence
tC
′′
1 (qs)−C′1(qs)+1. So there indeed exists a configuration C ′′2 such that

C0
σ1−→ C ′′1

tC
′′
1 (qs)−C′1(qs)+1

−−−−−−−−−−−→ C ′′2 .

It remains to prove that C ′′2
σ2−→ C ′′′ ≥E C holds for some configuration C ′′′. First we show

C ′′2 ≥E C ′2, which amounts to proving C ′′2 ≥E′ C ′2 and C ′′2 (qs) = C ′2(qs).

The first part, i.e., C ′′2 ≥E′ C ′2, follows from: C ′′1
tC
′′
1 (qs)−C′1(qs)+1

−−−−−−−−−−−→ C ′′2 , C ′′1 ≥E′ C ′1,
C ′1

t−→ C ′2, qd /∈ E, which implies qd /∈ E′, and the fact that t move agents from qs to qd (thus
increasing their number in qd). The second part, C ′′2 (qs) = C ′2(qs), is proved by

C ′′2 (qs) = C ′′1 (qs)− (C ′′1 (qs)− C ′1(qs) + 1) = C ′1(qs)− 1 = C ′2(qs) .

So indeed we have C ′′2 ≥E C ′2. Now, since C ′2 enables σ2 and C ′′2 ≥E C ′2, the configuration
C ′′2 enables σ2 too. So there exists a configuration C ′′′ such that C ′′2

σ2−→ C ′′′. Further,

since

C ′′1
tC
′′
1 (qs)−C′1(qs)+1

−−−−−−−−−−−→C ′′2
σ2−→C ′′′

≥E′ ≥E
C ′1

t−−−−−−−−−−−→C ′2
σ2−→C ′′≥EC holds, we have

C ′′1
tC
′′
1 (qs)−C′1(qs)+1

−−−−−−−−−−−→C ′′2
σ2−→C ′′′

≥E′ ≥E ≥E
C ′1

t−−−−−−−−−−−→C ′2
σ2−→C ′′≥EC

So C ′′′ ≥E C ′′ ≥E C, and the claim is proved. J

By the claim we have C0
σ1 t

C′′1 (qs)−C′1(qs)+1 σ2−−−−−−−−−−−−−−−→ C ′′′ ≥E C . Let σ = σ1t
C′′1 (qs)−C′1(qs)+1σ2.

While C ′′1 (qs)−C ′1(qs) can be arbitrarily large, we have c(σ) = c(σ1 t σ2), and so we conclude
C0

σ−→ C ′′′ ≥E C and |c(σ)| ∈ C(Q)2eO(n log n) . J

Theorem 17 allows to derive the promised bounds on a constraint for pre∗(Γ) and post∗(Γ).

I Theorem 18. Let P be an IO population protocol with n states, and let Γ be a CoNF-
constraint. There exists a CoNF-constraint Γ′ satisfying JΓ′K = pre∗(Γ), ‖Γ′‖u ≤ ‖Γ‖u
and ‖Γ′‖l ∈ ‖Γ‖u (‖Γ‖l + ‖Γ‖u)2O(n2 log n)

. Further, Γ′ can be constructed in (2 + ‖Γ‖u)n ·
‖Γ‖u (‖Γ‖l + ‖Γ‖u)2O(n2 log n)

time and space. Further, the same holds for post∗(Γ).

J. Esparza, P. Ganty, R. Majumdar, and C. Weil-Kennedy 31:13

Proof. The bound on ‖Γ′‖u follows from Lemma 9. The bound on ‖Γ′‖l is proved in a
similar way to Proposition 13, but using Theorem 17 instead of Theorem 12. Let (L,U)
be a counting minterm in Γ. We define the set of states E(L,U) = {qi | U(xi) < ∞} and
Cmin

(L,U) = {C | ∀qi ∈ Q\E(L,U), L(xi) ≤ C(qi) ≤ U(xi) and ∀qi ∈ E(L,U), C(qi) = L(xi)} the
configurations of (L,U) minimal over Q\E(L,U). Notice that a configuration is in (L,U) if
and only if it covers a configuration in Cmin

(L,U). By applying Theorem 17 to every C ∈ Cmin
(L,U)

and to E(L,U), we get pre∗(L,U) =
⋃K
i=0 preia(L,U) for K the bound in Theorem 17 but

with
(∑

qi∈Q\E L(xi) +
∑
qi∈E U(xi)

)
instead of C(Q). Now since Γ is the union of such

minterms (L,U), and by definition of the L and U -norms, pre∗(Γ) =
⋃K
i=0 preia(Γ) for K ∈

(‖Γ‖l + ‖Γ‖u)2O(n2 log n)
. By Definition 8, we have ‖(L,U)t∗‖l ≤ ‖(L,U)‖l + (‖(L,U)‖u − 1).

Using ‖Γt∗‖u ≤ ‖Γ‖u, we reason by induction and get ‖preia(Γ)‖l ≤ ‖Γ‖l + i(‖Γ‖u − 1) for
all i, and the result on the L-norm follows.

The algorithm needs linear time and space in the number of minterms of Γ′. An
upper bound on the number of minterms (L,U) is computed as follows. Since ‖Γ′‖l ∈
‖Γ‖u (‖Γ‖l + ‖Γ‖u)2O(n2 log n)

, there are at most (1 + ‖Γ′‖l)n ∈ ‖Γ‖u (‖Γ‖l + ‖Γ‖u)2O(n2 log n)

possibilities for L, and since ‖Γ′‖u ≤ ‖Γ‖u at most (2 + ‖Γ‖u)n possibilities for U . J

The following result characterizes the size of counting constraints.

I Corollary 19. Let P be an IO protocol with n states. Given c ≥ 2, d ≥ 1, let G(c, d) be the
class of CoNF-constraints Γ such that ‖Γ‖l, ‖Γ‖u ≤ c2

d·(n2 log n) . There exists a constant k
that does not depend on n or P such that :
1. for every Γ1,Γ2 ∈ G(c, d), there exists Γ ∈ G(c, d) such that JΓK = JΓ1K ∪ JΓ2K.
2. for every Γ1,Γ2 ∈ G(c, d), there exists Γ ∈ G(c, d+ 1) such that JΓK = JΓ1K ∩ JΓ2K.
3. for every Γ1 ∈ G(c, d), there exists Γ ∈ G(c, d+ 1) such that JΓK = Nn \ JΓ1K.
4. for every Γ1 ∈ G(c, d), there exists Γ ∈ G(c, d+ k + 2) such that JΓK = pre∗ (JΓ1K).
5. for every Γ1 ∈ G(c, d), there exists Γ ∈ G(c, d+ k + 2) such that JΓK = post∗ (JΓ1K).

The first three bounds follow from Prop 5. For the last two, the constant k is the one
from the Landau symbol in Theorem 18.

5 An Algorithm for Deciding Well Specification

We show that the well-specification and correctness problems can be solved in exponential
space for IO protocols, improving on the result for general protocols stating that they are at
least as hard as the reachability problem for Petri nets [9]. We first introduce some notions.

I Definition 20. Given a population protocol P , a configuration C is a stable b-consensus if
C is a b-consensus and so is C ′ for every C ′ reachable from C. Let Cb and ST b denote the
sets of b-consensus and stable b-consensus configurations of P . Observe that ST b = pre∗(Cb).

Next, we characterize the well-specified protocols starting with the following lemma.

I Lemma 21. Let P be a population protocol, let C0, C1, C2, . . . be a fair execution of P,
and let S be a set of configurations. If S is reachable from Ci for infinitely many indices
i ≥ 0, then Cj ∈ S for infinitely many indices j ≥ 0.

Proof. Let n be the number of states of P and let m be the number of agents of C0. Then
there are at most K def= (m+ 1)n configurations reachable from C0. So for infinitely many
indices i ≥ 0 we have Ci ∈ ∪i≤Kprei(S). We proceed by induction on K. If K = 0, then

CONCUR 2018

31:14 Verification of Immediate Observation Population Protocols

Ci ∈ S and we are done. If K > 0, then by fairness there exist infinitely many indices j ≥ 0
such that Cj ∈ ∪i≤K−1prei(S), and we conclude by induction hypothesis. J

I Proposition 22. A population protocol P is well-specified iff the following hold:
1. post∗(I) ⊆ pre∗(ST 0 ∪ ST 1) (or, equivalently, post∗(I) ∩ pre∗(ST 0) ∩ pre∗(ST 1) = ∅);
2. pre∗(ST 0) ∩ pre∗(ST 1) ∩ I = ∅.

Proof. We start with ST b which is defined (Definition 20) as the set of configurations C
such that C is a b-consensus and so is C ′ for every C ′ reachable from C.

By definition, P is well-specified if for every input configuration C0 ∈ I, every fair
execution of P starting at C0 stabilizes to the same value b ∈ {0, 1}. Equivalently, P is
well-specified if every input configuration C0 ∈ I satisfies the following two conditions:
(a) every fair execution starting at C0 stabilizes to some value; and
(b) no two fair executions starting at C0 stabilize to different values (i.e., to 0 and to 1).
We claim that (a) is equivalent to:

for every C ∈ post∗(I) there exists C ′ such that C ∗−→ C ′ and C ′ ∈ ST 0 ∪ ST 1. (A)

Assume (a) holds, and let C ∈ post∗(I). Then C0
∗−→ C for some C0 ∈ I. Extend

C0
∗−→ C to a fair execution. By (a), the execution stabilizes to some value b. So ST b is

reachable from every configuration of the execution. By Lemma 21, the execution reaches
a configuration C ′ ∈ ST b. For the other direction, assume (A) holds, and consider a fair
execution starting at C0 ∈ I. By Lemma 21, the execution reaches a configuration of ST b
for b ∈ {0, 1}. By the definition of ST b, all successor configurations also belong to ST b, and
so the execution stabilizes to b. Now we claim that (b) is equivalent to:

no configuration C ∈ post∗(I) can reach both ST 0 and ST 1. (B)

Assume (B) does not hold, i.e., there is C ∈ post∗(I) and configurations C0 ∈ ST 0 and
C1 ∈ ST 1 such that C ∗−→ C0 and C ∗−→ C1. These two executions can be extended to fair
executions, and by the definition of ST 0 and ST 1 these executions stabilize to 0 and 1,
respectively. So (b) does not hold.

Assume now that (b) does not hold. Then two fair executions starting at C0 stabilize to
different values. So C0 can reach both ST 0 and ST 1, and (B) does not hold.

So (a) and (b) are equivalent to (A) and (B). Since (A) is equivalent to post∗(I) ⊆
pre∗(ST 0 ∪ST 1), and (B) is equivalent to pre∗(ST 0)∩ pre∗(ST 1)∩I = ∅, we are done. J

I Theorem 23. The well specification problem for IO protocols is in EXPSPACE and is
PSPACE-hard.

Proof. Let P be an IO protocol with n states. Recall that ST b is given by pre∗(Cb) where
Cb, for b ∈ {0, 1}, can be represented by the CoNF-constraint of single minterm defined by
xi = 0 for all qi ∈ O−1(1 − b) and 0 ≤ xi ≤ ∞ otherwise. By Corollary 19, there exists a
constant d, independent of P, and a CoNF constraint Γ ∈ G(2, d) such that JΓK is given by
post∗(I) ∩ pre∗(ST 0) ∩ pre∗(ST 1).

In order to falsify condition 1. of Proposition 22 it suffices to exhibit, following the previous
reasoning, a “small” configuration C, such that C(Q) ≤ c2d·(n2 log n) , in the intersection. Note
that C can be written in EXPSPACE. The EXPSPACE decision procedure follows the following
steps: 1. Guess a “small” configuration C. 2. Check that C belongs to post∗(I). 3. Check
that C belongs to pre∗(ST b), for b = 0, 1.
Algorithm for 2.: Guess a at most double exponential sequence of minterms such that the
first one is a minterm of I, and every pair of consecutive minterms is related by post∗[t]

J. Esparza, P. Ganty, R. Majumdar, and C. Weil-Kennedy 31:15

(given by Definition 8) for some t. Observe that we keep track of the last computed element
and the number of steps performed so far in exponential space. Then, check that C belongs
to the resulting minterm.
Algorithm for 3.: It follows from EXPSPACE = coEXPSPACE that it is equivalent to check
C ∈ pre∗(ST b) is in EXPSPACE. Our algorithm is divided in two steps.
Step 1. Let c, d be such that ST b ∈ G(c, d). Guess a minterm M in G(c, d) and proceed
similarly to Algorithm for 2. to compute a minterm of pre∗(M) and then check that C
belongs to the resulting minterm.
Step 2. Verify that M does indeed belong to ST b. Formally, we rely on the following
equivalences: JMK ⊆ ST b iff JMK ⊆ pre∗(Cb) iff JMK ∩ pre∗(Cb) = ∅. Using EXPSPACE =
coEXPSPACE we now show that JMK∩pre∗(Cb) 6= ∅ belongs to EXPSPACE. We nondetermin-
istically choose a minterm in Cb and as previously explained guess a minterm in pre∗(Cb).
Finally, we check whether it intersects with JMK.

We use a similar reasoning for checking in EXPSPACE condition 2. of Proposition 22.
The proof for PSPACE-hardness reduces from the acceptance problem for deterministic

Turing machines running in linear space [13]. The proof follows the structure of analogous
proofs for 1-safe Petri nets [11] (and also [8]) and will be provided in the full version. J

5.1 Consequences
In this section we list some consequences of Theorem 18 and Theorem 23.

In [4], Angluin et al. showed that IO protocols can compute exactly the counting
predicates, i.e., the predicates that can be expressed by counting constraints. This is also a
consequence of the proof of Theorem 23. Moreover, our results allow us to go further, and
provide a bound on the number of states required to compute a predicate.

I Corollary 24. IO population protocols compute exactly the counting predicates, i.e., the
predicates corresponding to counting constraints.

Proof. Let P be a well-specified IO protocol. The sets I ∩ pre∗(pre∗(ST b)) for b ∈ {0, 1}
are the sets of initial configurations from which P stabilizes to b = 0, 1. Theorem 18 shows
that they are counting sets. J

I Corollary 25. Let P be an IO protocol computing a counting predicate P (x1, . . . , xk) of
U -norm u and L-norm `. Then there exists a constant c, independent of P, such that P has at
least g log log(max{u, `}) states, where g denotes the inverse of the function n 7→ c · (n2 logn).

Proof. The set I ∩ pre∗(pre∗(ST 1)) describes the initial configurations that stabilize to 1,
i.e., the initial configurations for which the predicate computed by the protocol is true. By
Corollary 19 (using a reasoning similar to that of Theorem 23), if P has n states, then the
U -norm and L-norm of I ∩ pre∗(pre∗(ST 1)) are bounded by the function f(n) = 22O(n2 log n) .
Therefore, for a certain constant c, log log max{u, `} ≤ c · (n2 logn) and the number of states
of a protocol computing a predicate of U -norm u and L-norm ` is at least g log log(max{u, `}),
where g(x) is the inverse function of x 7→ c · (x2 log x). J

Finally, we can show that the correctness problem for IO protocols is also in EXPSPACE.

I Corollary 26. Let P be an IO population protocol with n states and k input states, and
let P (x1, . . . , xk) be a counting predicate, expressed as a CoNF-constraint. The correctness
problem for P and P , i.e., the problem of deciding if P computes P , is in EXPSPACE.

CONCUR 2018

31:16 Verification of Immediate Observation Population Protocols

Proof Sketch. We give a nondeterministic, exponential space algorithm for the complement
of the correctness problem. The algorithm guesses nondeterministically a minterm of
I ∩pre∗(pre∗(ST 1)), and checks that I ∩pre∗(pre∗(ST 1)) contains a configuration that does
not satisfy P . The algorithm does a similar check for ST 0 and a configuration that does
satisfy P . The minterm can be constructed in exponential space by Theorem 23, and the
check whether a minterm implies a CoNF-constraint can be done in polynomial time. J

References
1 Parosh A. Abdulla and Aletta Nylén. Better is better than well: on efficient verification

of infinite-state systems. In LICS ’00. IEEE Comput. Soc, 2000. doi:10.1109/lics.2000.
855762.

2 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Com-
putation in networks of passively mobile finite-state sensors. In PODC ’04, pages 290–299.
ACM, 2004. doi:10.1145/1011767.1011810.

3 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Com-
putation in networks of passively mobile finite-state sensors. Distributed Computing,
18(4):235–253, 2006. doi:10.1007/s00446-005-0138-3.

4 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational
power of population protocols. Distributed Computing, 20(4):279–304, 2007. doi:10.1007/
s00446-007-0040-2.

5 Michael Blondin, Javier Esparza, and Stefan Jaax. Large flocks of small birds: on the
minimal size of population protocols. In STACS ’18, volume 96, pages 16:1–16:14. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.STACS.2018.16.

6 Laura Bozzelli and Pierre Ganty. Complexity analysis of the backward coverability al-
gorithm for vass. In RP ’11, volume 6945 of LNCS, pages 96–109. Springer, 2011.
doi:10.1007/978-3-642-24288-5_10.

7 Ioannis Chatzigiannakis, Othon Michail, and Paul G. Spirakis. Algorithmic verification of
population protocols. In SSS ’10, volume 6366 of LNCS, pages 221–235. Springer, 2010.
doi:10.1007/978-3-642-16023-3_19.

8 Allan Cheng, Javier Esparza, and Jens Palsberg. Complexity results for 1-safe nets. Theor-
etical Computer Science, 147(1&2):117–136, 1995. doi:10.1016/0304-3975(94)00231-7.

9 Javier Esparza, Pierre Ganty, Jérôme Leroux, and Rupak Majumdar. Verification of popu-
lation protocols. In CONCUR ’15, volume 42 of LIPIcs, pages 470–482. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.CONCUR.2015.470.

10 Javier Esparza, Pierre Ganty, Jérôme Leroux, and Rupak Majumdar. Model checking
population protocols. In FSTTCS ’16, volume 65. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2016. doi:10.4230/lipics.fsttcs.2016.27.

11 Neil D. Jones, Lawrence H. Landweber, and Y. Edmund Lien. Complexity of some prob-
lems in petri nets. Theoretical Computer Science, 4(3):277–299, 1977. doi:10.1016/
0304-3975(77)90014-7.

12 Saket Navlakha and Ziv Bar-Joseph. Distributed information processing in biological and
computational systems. Commun. ACM, 58(1):94–102, 2014. doi:10.1145/2678280.

13 Christos H. Papadimitriou. Computational complexity. Academic Internet Publ., 2007.
14 Charles Rackoff. The covering and boundedness problems for vector addition systems.

Theoretical Computer Science, 6(2):223–231, 1978. doi:10.1016/0304-3975(78)90036-1.

http://dx.doi.org/10.1109/lics.2000.855762
http://dx.doi.org/10.1109/lics.2000.855762
http://dx.doi.org/10.1145/1011767.1011810
http://dx.doi.org/10.1007/s00446-005-0138-3
http://dx.doi.org/10.1007/s00446-007-0040-2
http://dx.doi.org/10.1007/s00446-007-0040-2
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.16
http://dx.doi.org/10.1007/978-3-642-24288-5_10
http://dx.doi.org/10.1007/978-3-642-16023-3_19
http://dx.doi.org/10.1016/0304-3975(94)00231-7
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.470
http://dx.doi.org/10.4230/lipics.fsttcs.2016.27
http://dx.doi.org/10.1016/0304-3975(77)90014-7
http://dx.doi.org/10.1016/0304-3975(77)90014-7
http://dx.doi.org/10.1145/2678280
http://dx.doi.org/10.1016/0304-3975(78)90036-1

The Satisfiability Problem for Unbounded
Fragments of Probabilistic CTL
Jan Křetínský
Technical University of Munich, Germany
jan.kretinsky@tum.de

https://orcid.org/0000-0002-8122-2881

Alexej Rotar
Technical University of Munich, Germany
alexej.rotar@tum.de

Abstract
We investigate the satisfiability and finite satisfiability problem for probabilistic computation-tree
logic (PCTL) where operators are not restricted by any step bounds. We establish decidability
for several fragments containing quantitative operators and pinpoint the difficulties arising in
more complex fragments where the decidability remains open.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics

Keywords and phrases temporal logic, probabilistic verification, probabilistic computation tree
logic, satisfiability

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.32

Related Version A full version of the paper is available at [24], https://arxiv.org/abs/1806.
11418.

Funding This research was funded in part by the Czech Science Foundation grant
No. P202/12/G061, TUM IGSSE Grant 10.06 (PARSEC), and the German Research
Foundation (DFG) project 383882557 “Statistical Unbounded Verification”.

1 Introduction

Temporal logics are a convenient and useful formalism to describe behaviour of dynamical
systems. Probabilistic CTL (PCTL) [17, 16] is the probabilistic extension of the branching-
time logic CTL [12], obtained by replacing the existential and universal path quantifiers with
the probabilistic operators, which allow us to quantify the probability of runs satisfying a
given path formula. At first, the probabilities used were only 0 and 1 [17], giving rise to the
qualitative PCTL (qPCTL). This has been extended to any values from [0, 1] in [16], yielding
the (quantitative) PCTL (onwards denoted just PCTL). More precisely, the syntax of these
logics is built upon atomic propositions, Boolean connectives, temporal operators such as
X (“next”) and U (“until”), and the probabilistic quantifier ./ q where ./ is a numerical
comparison such as ≤ or >, and q ∈ [0, 1] ∩ Q is a rational constant. A simple example
of a PCTL formula is okU=1(X≥0.9finish), which says that on almost all runs we reach a
state where there is 90% chance to finish in the next step and up to this state ok holds true.
PCTL formulae are interpreted over Markov chains [26] where each state is assigned a subset
of atomic propositions that are valid in a given state.

© Jan Křetínský and Alexej Rotar;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 32; pp. 32:1–32:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jan.kretinsky@tum.de
https://orcid.org/0000-0002-8122-2881
mailto:alexej.rotar@tum.de
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.32
https://arxiv.org/abs/1806.11418
https://arxiv.org/abs/1806.11418
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2 The Satisfiability Problem for Unbounded Fragments of PCTL

In this paper, we study the satisfiability problem, asking whether a given formula has
a model, i.e. whether there is a Markov chain satisfying it. If a model does exist, we also
want to construct it. Apart from being a fundamental problem, it is a possible tool for
checking consistency of specifications or for reactive synthesis. The problem has been shown
EXPTIME-complete for qPCTL in the setting where we quantify over finite models (finite
satisfiability) [17, 7] as well as over generally countable models (infinite satisfiability) [7].
The problem for (the general quantitative) PCTL remains open for decades. We address
this question on fragments of PCTL. The considered fragments are not of primary interst
themselves. Rather they illustrate the techniques we develop and how far we can push
decidability results when applying only those. In order to get a better understanding of this
ultimate problem, we answer the problem for several fragments of PCTL that are

quantitative, i.e. involving also probabilistic quantification over arbitrary rational numbers
(not just 0 and 1),
step unbounded, i.e. not imposing any horizon for the temporal operators.

Besides, we consider models with unbounded size, i.e. countable models or finite models, but
with no a priori restriction on the size of the state space. These are the three distinguishing
features, compared to other works. The closest are the following. Firstly, solutions for the
qPCTL have been given in [17, 7] and for a more general logic PCTL∗ in [25, 21]. Secondly,
[9] shows decidability for bounded PCTL where the scope of the operators is restricted by a
step bound to a given time horizon. Thirdly, the bounded satisfiability problem is to determine,
whether there exists a model of a given size for a given formula. This problem has been
solved by encoding it into an SMT problem [4]. There is an important implication of this
result. Namely, if we are able to determine a maximum required model size for some formula,
then it follows that the satisfiability of that formula can also be determined. We take this
approach in some of our proofs. Additionally, we use the result of [7] that the branching
degree (number of successors) for a model of a formula φ can be bounded by |φ|+ 2, where
|φ| is the length of φ.

Our contribution is as follows:
We show decidability of the (finite and infinite) satisfiability problem for several quantit-
ative unbounded fragments of PCTL, focusing on future- and globally-operators (F,G).
We investigate the relationship between finite and infinite satisfiability on these fragments.
We identify a fundamental issue preventing us from extending our techniques to the
general case. We demonstrate this on a formula enforcing a more complicated form of its
models. This allows us to identify the “smallest elegant” fragment where the problem
remains open and the solution requires additional techniques.

Due to space constraints, the proofs are sketched and then worked out in detail in [24].

1.1 Further related work
As for the non-probabilistic predecessors of PCTL, the satisfiability problem is known to
be EXPTIME-complete for CTL [12] as well as the more general modal µ-calculus [3, 15].
Both logics have the small model property [12, 20], more precisely, every satisfiable formula
φ has a finite-state model whose size is exponential in the size of φ. The complexity of the
satisfiability problems has been investigated also for fragments of CTL [23] and the modal
µ-calculus [18].

The satisfiability problem for qPCTL and qPCTL∗ was investigated already in the early
80’s [25, 21, 17], together with the existence of sound and complete axiomatic systems. The
decidability for qPCTL over countable models also follows from these general results for

J. Křetínský and A. Rotar 32:3

qPCTL∗, but the complexity was not examined until [7], showing it is also EXPTIME-
complete, both for finite and infinite satisfiability.

While the decidability of satisfiability is open, there are only few negative results. [7]
proves undecidability of the problem whether for a given PCTL formula there exists a model
with a branching degree that is bounded by a given integer, where the branching degree is
the number of successors of a state. However, the authors have not been able to extend their
proof and show the undecidability for the general problem.

The PCTL model checking problem is the task to determine, whether a given system
satisfies a given formula, i.e. whether it is a model of the formula. This problem has
been studied both for finite and infinite Markov chains and decision processes, see e.g.
[10, 19, 14, 13, 8]. The PCTL strategy synthesis problem asks whether the non-determinism
in a given Markov decision process can be resolved so that the resulting Markov chain satisfies
the formula [1, 22, 5, 6].

2 Preliminaries

In this section, we recall basic notions related to (discrete-time) Markov chains [26] and the
probabilistic CTL [16]. Let A be a finite set of atomic propositions.

2.1 Markov chains

I Definition 1 (Markov chain). A Markov chain is a tuple M = (S, P, s0, L) where S is a
countable set of states, P : S × S → [0, 1] is the probability transition matrix such that, for
all s ∈ S,

∑
t∈S P (s, t) = 1, s0 ∈ S is the initial state, and L : S → 2A is a labeling function.

Whenever we write M , we implicitly mean a Markov chain (S, P, s0, L). The semantics of
a Markov chain M , is the probability space (RunsM ,FM ,PM), where RunsM = Sω is the
set of runs of M , FM ⊆ 2Sω is the σ-algebra generated by the set of cylinders of the form
CylM (ρ) = {π ∈ Sω | ρ is a prefix of π} and the probability measure is uniquely determined
[2] by PM (CylM (ρ0 · · · ρn)) :=

∏
0≤i<n P (ρi, ρi+1) if ρ0 = s0 and 0 otherwise.

We say that a state is reached on a run if it appears in the sequence; a set of states is
reached if some of its states are reached. The immediate successors of a state s are denoted
by postM (s) := {t ∈ S | P (s, t) > 0} and the set of states reachable with positive probability
is the reflexive and transitive closure post∗M (s). We will write P(·), post(·), and post∗(·), if
M is clear from the context.

The unfolding of a Markov chain M is the Markov chain TM := (S+, P ′, s0, L
′) with the

form of an infinite tree given by P ′(ρs, ρss′) = P (s, s′) and L′(ρs) = L(s). Each state of
TM maps naturally to a state of M (the last one in the sequence), inducing an equivalence
relation ρs ∼ ρs′ iff s = s′. Consequently, each run of TM maps naturally to a run of M and
the unfolding preserves the measure of the respective events.

For a Markov chain M , a set T ⊆ S is called strongly connected if for all s, t ∈ T ,
t ∈ post∗(s); it is a strongly connected component (SCC) if it is maximal (w.r.t. inclusion)
with this property. If, moreover, post∗(t) ⊆ T for all t ∈ T then it is a bottom SCC (BSCC).
A classical result, see e.g. [2], states that the set of states visited infinitely often is almost
surely, i.e. with probability 1, a BSCC:

I Lemma 2. In every finite Markov chain, the set of BSCCs is reached almost surely.
Further, conditioning on runs reaching a BSCC C, every state of C is reached infinitely often
almost surely.

CONCUR 2018

32:4 The Satisfiability Problem for Unbounded Fragments of PCTL

2.2 Probabilistic Computational Tree Logic
The definition of probabilistic CTL (PCTL) [16] is usually based on the next- and until-
operators (X, U). In this paper, we restrict our attention to the future- and globally
operators (F, G), which can be derived from the until-operator. Further, w.l.o.g. we impose
the negation normal form and the lower-bound-comparison normal form; for the respective
transformations see, e.g., [2].

I Definition 3 (PCTL(F,G) syntax and semantics). The formulae are given by the following
syntax:

Φ ::= a | ¬a | Φ ∧ Φ | Φ ∨ Φ | FBqΦ | GBqΦ

where q ∈ [0, 1], B ∈ {≥, >}, and a ∈ A is an atomic proposition. Let M be a Markov chain
and s ∈ S its state. We define the modeling relation |= inductively as follows

M1 M, s |= a iff a ∈ L(s)
M2 M, s |= ¬a iff a /∈ L(s)
M3 M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ

M4 M, s |= φ ∨ ψ iff M, s |= φ or M, s |= ψ

M5 M, s |= FBqϕ iff PM(s)({π | ∃i ∈ N0 : M,π[i] |= ϕ}) B q

M6 M, s |= GBqϕ iff PM(s)({π | ∀i ∈ N0 : M,π[i] |= ϕ}) B q

where M(s) is M with s being the initial state, and π[i] is the ith element of π. We say that
M is a model of ϕ if M, s0 |= ϕ.

We will denote the set of literals by L := A∪{¬a | a ∈ A}. Instead of the constraint ≥ 1,
we often write = 1. Further, we define the set of all subformulae. This definition slightly
deviates from the usual definition of subformulae, e.g. the one in [7], in that ¬a ∈ sub(φ)
does not necessarily imply a ∈ sub(φ).

I Definition 4 (Subformulae). The set sub(φ) is recursively defined as follows
φ ∈ sub(φ)
if ψ ∧ ξ ∈ sub(φ) or ψ ∨ ξ ∈ sub(φ), then ψ, ξ ∈ sub(φ)
if FBqψ ∈ sub(φ) or GBqψ ∈ sub(φ) then ψ ∈ sub(φ)

Next, we introduce the satisfiability problems, which are the main topic of the paper.

I Definition 5 (The satisfiability problems). A formula φ is called (finitely) satisfiable, if there
is a (finite) model for φ. Otherwise, it is (finitely) unsatisfiable. The (finite) satisfiability
problem is to determine whether a given formula is (finitely) satisfiable.

Instead of simply writing “satisfiable” we sometimes stress the absence of “finitely” and
write “generally satisfiable” for satisfiablity on countable, i.e. finite or countably infinite,
models. For some proofs, it is more convenient to consider the unfolding of a Markov chain
instead of the original one. As we mentioned already, the measure of events is preserved in
the unfolding of a chain. Hence, we can state the following lemma.

I Lemma 6. If M is a model of φ then its unfolding TM is a model of φ.

We say that formulae φ, ψ are (finitely) equivalent if they have the same set of (finite)
models, written φ ≡ ψ (φ ≡fin ψ); that they are (finitely) equisatisfiable if they are both
(finitely) satisfiable or both (finitely) unsatisfiable; and that φ ⇒ ψ if every model of φ is
also a model of ψ.

J. Křetínský and A. Rotar 32:5

Fq,Gq,∨

Fq,G1,∨
Sec. 3.6
non-
bottom
SCCs

Fq,G1
Sec. 3.4
inf=fin=H:|φ|

Fq/1,G1,∨
Sec. 3.5
inf=fin=H:|φ|2

Gq(Fq,Gq,∨)
Sec. 3.1
inf 6=fin=|φ|

G1(Fq,G1,∨)
Sec. 3.3
inf=fin=|φ|

G1(Fq,G1)
Sec. 3.2
inf=fin=|φ|

a,¬a,∧

Figure 1 Hasse diagram summarizing the satisfiability results for the considered fragments of
PCTL(F, G), all containing literals and conjunctions, and some form of quantitative comparisons.
The fragments are described by the list of operators they allow (excluding the constructs of the
minimal fragment). The subscript denotes the possible constraints on probabilistic operators.
Gx(list) denotes formulae in the fragment described by list with G-operators at the top-level. fin
and inf abbreviate finite and general satisfiability, respectively. fin=inf denotes that the problems
are equivalent. H:x denotes that the height of a tree model can be bounded by x. By = x we denote
that the model size can be bounded by x. The Fq,G1,∨-fragment might require non-bottom SCCs
in finite models.

3 Results

In this section we present our results. A summary is schematically depicted in Fig. 1. We
briefly describe the considered fragments; the full formal definitions can be found in the
respective sections. Since already the satisfiability for propositional logic in negation normal
form has nontrivial instances only when all the constructs a,¬a and conjunction are present,
we only consider fragments with all three included; see the bottom of the Hasse diagram. The
fragments are named by the list of constructs they use, where we omit the three constructs
above to avoid clutter. Here 1 stands for ≥ 1 and q stands for Bq for all q ∈ [0, 1] ∩ Q.
Further, Gx(list) denotes the sub-fragment of list where the topmost operator is Gx. Finally,
Fq/1 denotes the use of Fq with the restriction that inside G only q = 1 can be used.

The fragments are investigated in the respective sections. We examine the problems
of the general satisfiability (“inf”) and the finite satisfiability (“fin”); equality denotes the
problems are equivalent. We use two results to prove decidability of the problems. Firstly,
[4] shows that given a formula φ and an integer n, one can determine whether or not there
is a model for φ that has at most n states. Consequently, we obtain the decidability result
whenever we establish an upper bound on the size of smallest models. Here “|φ|” denotes
the satisfiability of a given φ on models of size ≤ |φ|. Secondly, [7] establishes that for any
satisfiable PCTL formula there is a model with branching bounded by |φ|+ 2. Consequently,

CONCUR 2018

32:6 The Satisfiability Problem for Unbounded Fragments of PCTL

we obtain the decidability result whenever it is sufficient to consider trees of a certain height
H (with back edges) since the number of their nodes is then bounded by (|φ|+ 2)H . Here
“H:n” denotes that the models can be limited to a height H ≤ n.

While we obtain decidability in the lower part of the diagram, the upper part only treats
finite satisfiability, and in particular for Fq,G1,∨, we only demonstrate that models with
more complicated structure are necessary. Namely, the models may be of unbounded sizes for
structurally same formulae – i.e. formulae which only differ in the constraints on the temporal
operators – or require presence of non-bottom SCCs, see Section 3.6 and the discussion in
Section 4.

3.1 Finite satisfiability for Gq(Fq, Gq, ∨)
This section treats G-formulae of the Fq,Gq-fragment, i.e. of PCTL(F,G). In particular, it
includes G>0-formulae. In general, formulae in this fragment (even without quantified F
and G-operators) can enforce rather complicated behaviour [7]. Therefore, we will focus on
finitely satisfiable formulae. We will see that they can be satisfied by rather simple models.

I Definition 7. Gq(Fq,Gq,∨)-formulae are given by the grammar

Φ ::= GBqΨ
Ψ ::= a | ¬a | Ψ ∧Ψ | Ψ ∨Ψ | FBqΨ | GBqΨ

The main result of this section is that finitely satisfiable formulae in this fragment can be
satisfied by models of size linear in |φ|.

I Theorem 8. Let φ be a finitely satisfiable Gq(Fq,Gq,∨)-formula. Then φ has a model of
size at most |φ|.

Intuitively, we obtain the result from the fact that some BSCC is reached almost surely
and every state in a BSCC is reached almost surely, once we have entered one. In infinite
models, BSCCs are not reached almost surely and therefore the proofs cannot be extended to
general satisfiability. The following lemma and its proof demonstrate how we can make use
of the BSCC properties in order to obtain an equisatisfiable formula in a simpler fragment.

I Lemma 9. Let φ be a Gq(Fq,Gq,∨)-formula. Then, φ is finitely equisatisfiable to a
G1(F1,G1)-formula φ′, such that φ′ ⇒ φ.

Proof Sketch. Write φ as GBqψ. Assume that we have a finite model M for GBqψ. Intuit-
ively, we can select a BSCC that satisfies G=1ψ. We know that there is a BSCC because we
are dealing with a finite model. We also know that there is at least one BSCC satisfying our
formula, for otherwise M would not be a model for it. In a BSCC, every state is reached
almost surely from every other state by Lemma 2. Hence, we can select exactly one state
for each F-subformula which satisfies that formula’s argument. Then we can create a new
BSCC from these states, arranging them, e.g., in a circle. This BSCC models G=1ψ̂, where
ψ̂ replaces all probabilistic operators with their “almost surely” version. Hence, we have
created a model for a G1(F1,G1) formula from a model for GBqψ. The opposite direction
follows from the fact that G=1ψ̂ ⇒ GBqψ. J

Note that the transformation does not produce an equivalent formula. Hence, we cannot
replace an occurrence of such a formula in a more complex formula. For instance, the
formula G≥1/2¬a∧F≥1/2a is satisfiable, whereas G=1¬a∧F≥1/2a is not. The proof does not
work for equality because we are selecting one BSCC while ignoring the rest. This example

J. Křetínský and A. Rotar 32:7

∅

{a} ∅

∅ ∅

{a} {a}

∅

∅

{a}

Figure 2 A large and a small model for Formula (1).

demonstrates why we cannot ignore certain BSCCs in general. Using the above result, it is
easy to prove Theorem 8.

Proof Sketch. [Proof Sketch of Theorem 8] This follows immediately from the proof of
Lemma 9. The BSCC that we have created has at most as many states as there are
F-subformulae, which is bounded by |φ|. J

I Example 10. Consider the formula

φ := G≥1/2(F≥1/3a ∧ F≥1/3¬a). (1)

The large Markov chain in Figure 2 models φ. Unlabeled arcs indicate a uniform
distribution over all successors. It is clear that the model is unnecessarily complicated. After
reducing it according to Lemma 9, we obtain the smaller Markov chain on the right.

The example below shows that satisfiability is not equivalent to finite satisfiability for
this fragment, and that the proposed transformation does not preserve equisatisfiability over
general models. The decidability of the general satisfiability thus remains open here.

I Example 11. Note that we made use of the BSCC properties for the proofs of this
subsection, such as that some BSCC is reached almost surely. Since this is only the case for
finite Markov chains, our transformation only holds for finite satisfiability. If we consider the
general satisfiability problem, then the equivalent of Lemma 9 is not true. For instance, the
formula

φ := G>0(¬a ∧ F>0a) (2)

is satisfiable, but requires infinite models, as pointed out in [7]. One such model is given in
Figure 3. Observe that the single horizontal run has measure greater than 0. Now consider

φ̂ := G=1(¬a ∧ F=1a)

Obviously, this formula unsatisfiable. Hence, in this case φ is not equisatisfiable to φ̂.

3.2 Satisfiability for G1(Fq, G1)
This section treats G-formulae of a fragment where GBq only appears with q = 1 and
there is no disjunction. The results are later utilized in a richer fragment in Section 3.4.
In fact, the main result of this section is an immediate consequence of the main theorem
of Section 3.3. Still, the results are interesting themselves as they show some properties of
models for formulae in this fragment which do not apply in the generalized case.

CONCUR 2018

32:8 The Satisfiability Problem for Unbounded Fragments of PCTL

∅ ∅ ∅ ∅

{a} {a} {a} {a}

1/2 3/4 7/8

1/2 1/4 1/8 1/16

1 1 1 1

Figure 3 An infinite model for Formula (2).

I Definition 12. G1(Fq,G1)-formulae are given by the grammar

Φ ::= G=1Ψ
Ψ ::= a | ¬a | Ψ ∧Ψ | FBqΨ | G=1Ψ

We prove that satisfiable formulae of this fragment are satisfiable by models of linear size
and thus also finitely satisfiable.

I Theorem 13. Let φ be a satisfiable G1(Fq,G1)-formula. Then φ has a model of size at
most |φ|.

The idea here is that we can find a state which behaves similarly to a BSCC (even in
infinite models) in that it satisfies all G-subformulae. We can then use this state’s successors
to construct a small model. The outline of the proof is roughly as follows: First we show
that from every state and for every subformula we can find a successor that satisfies this
subformula. Using this, we can show that there is a state that satisfies all G-subformulae.

I Lemma 14. Let φ be a satisfiable G1(Fq,G1)-formula and M its model. Then, for every
ψ ∈ sub(φ), and s ∈ S, there is a state t ∈ post∗(s), such that M, t |= ψ.

Proof Sketch. This follows from the fact that we do not allow disjunctions in this fragment.
We apply induction over the depth of a subformula ψ. If the formula is φ itself, then there is
nothing to show. Otherwise, the induction hypothesis yields that the higher-level subformulae
are satisfied at some state s. From this, we can easily see that in all possible cases the claim
follows: If the higher-level formula is a conjunction, then ψ is one of its conjuncts. Since
both conjuncts must be satisfied by s, in particular ψ must be satisfied at s. A similar
argument applies to G-formulae. If it is of the form FBqξ, then we know that there must be
a reachable state where ξ holds. J

This concludes the first part of the proof. We continue with the second part and prove
that we can find a state which satisfies all G-subformulae.

I Lemma 15. Let φ be a satisfiable G1(Fq,G1)-formula, M its model, and let G := {ψ ∈
sub(φ) | ψ = G=1ξ for some ξ}. Then there is a state s ∈ S such that M, s |= ψ for all
ψ ∈ G.

Proof Sketch. It is clear that after encountering a G-formula at some state, all successors
will also satisfy it. Therefore, the set of satisfied G-formulae is monotonically growing and
bounded. Hence, we can apply induction over the number of yet unsatisfied G-formulae.
In every step, we are looking for the next state to satisfy an additional G-formula. This is
always possible (as long as there are still unsatisfied ones), due to Lemma 14. J

Now, we can prove Theorem 13.

J. Křetínský and A. Rotar 32:9

Proof Sketch of Theorem 13. By Lemma 15, we can find a state that satisfies all G-
subformulae. In some sense, this state’s subtree resembles a BSCC. We can include exactly
one state for each F-subformula and create a BSCC out of those states, e.g., arrange them in
a circle. We apply induction over ψ ∈ sub(φ). The satisfaction of literals and conjunctions is
straightforward. Since every state is reached almost surely, every F-formula will be satisfied
that way. The satisfaction of the G-formulae follows from the fact that all states used to
satisfy all G-formulae in the original model, and from the induction hypothesis. J

For the case of finite satisfiability, we also present an alternative proof, which sheds more
light on this fragment and its super-fragments. For details, see [24, Appendix B]. Let ≡fin
denote equivalence of PCTL formulae over finite models.

I Theorem 16. Let φ be a G1(Fq,G1)-formula. Then, the following equivalence holds:

G=1φ ≡fin G=1(
∧
l∈A

l ∧ F=1G=1
∧
l∈B

l ∧
∧
i∈I

F=1
∧
l∈Ci

l)

for appropriate I ⊂ N, and A,B,Ci ⊂ L.

Proof Sketch. The proof is based on the following auxiliary statements

G=1G=1φ ≡ G=1φ (3)
G=1FBqφ ≡fin G=1F=1φ (4)
F=1FBqφ ≡ FBqφ (5)

and follows by induction.
The second statement is the most interesting one. Intuitively, it is a zero-one law,

stating that infinitely repeating satisfaction with a positive probability ensures almost sure
satisfaction. Notably, this only holds if the probabilities are bounded from below, hence for
finite models, not necessarily for infinite models. J

It is an easy corollary of this theorem that a satisfiable formula has a model of a circle
form with A and B holding in each state and each element in each Ci holding in some state.
In general the models can be of a lasso shape where the initial (transient) part only has to
satisfy A, allowing for easy manipulation in extensions of this fragment.
I Remark. Note that the equivalence does not hold over infinite models. Indeed, consider as
simple a formula as G=1F>0a, which is satisfied on the Markov chain of Fig. 3 [7], while this
does not satisfy the transformed G=1F=1a. Crucially, equivalence (4) does not hold already
for this tiny fragment. Interestingly, when we build a model for the transformed formula,
which is equisatisfiable but not equivalent, it turns out to be a model of the original formula.
If, moreover, we consider ¬a,∧,G>0 then finite and general satisfiability start to differ.

Before we move on to the next fragment, we will prove another consequence of Lemma 14.
It is a statement about the BSCCs of models for formulae in this fragment and will be used
later for the proof of Theorem 21.

I Corollary 17. Let G=1φ be a satisfiable G1(Fq,G1)-formula and M its model. Then, for
every BSCC T ⊆ post∗(s0) of M , the following holds
1. For all ψ ∈ sub(G=1φ), there is a state t ∈ T , such that M, t |= ψ.
2. For all G=1ψ ∈ sub(G=1φ), and for all states t ∈ T , M, t |= G=1ψ.

Proof. Point 1 follows from the fact that every reachable BSCC must satisfy G=1φ, and
from Lemma 14. Point 2 follows immediately from point 1. J

CONCUR 2018

32:10 The Satisfiability Problem for Unbounded Fragments of PCTL

Note that we did not assume finite satisfiability here, so the model might not contain
a single BSCC. In that case, the claim is trivially true. However, Theorem 13 allows us to
focus on finitely satisfiable formulae in this fragment.

3.3 Satisfiability for G1(Fq, G1, ∨)

This section treats G-formulae of the fragment where GBq only appears with q = 1. We
thus lift a restriction of the previous fragment and allow for disjunctions. We generalize the
obtained results to this larger fragment. We mentioned earlier that some of the results of the
previous fragment do not apply here. Concretely, Lemma 14 does not hold here; that is, there
might be subformulae which are not satisfied almost surely. Therefore, there is not necessarily
a state that satisfies all G-subformulae. For example, consider G=1(F>0G=1a∨F>0G=1¬a).
There cannot be a single BSCC to satisfy both disjuncts. Although this is not a problem for
the results of this section, it will turn out to be a fundamental problem when dealing with
arbitrary formulae of the Fq,G1,∨ fragment.

I Definition 18. G1(Fq,G1,∨)-formulae are given by the grammar

Φ ::= G=1Ψ
Ψ ::= a | ¬a | Ψ ∧Ψ | Ψ ∨Ψ | FBqΨ | G=1Ψ

We prove that satisfiable formulae of this fragment are satisfiable by models of linear size
and thus also finitely satisfiable.

I Theorem 19. Let φ be a satisfiable G1(Fq,G1,∨)-formula. Then φ has a model of size at
most |φ|.

Proof Sketch. The proof for this theorem works essentially the same as it did for Theorem 13.
Recall that we looked for a state to satisfy all G-formulae. Though we will not necessarily
find a state that does so in this fragment, we can look for a state that satisfies maximal
subsets of satisfied G-formulae. Then, we can continue in a similar way as we did in the
simpler setting. J

3.4 Satisfiability for Fq, G1

This section treats general formulae of the fragment with no disjunction and where GBq only
appears with q = 1.

I Definition 20. Fq,G1-formulae are given by the grammar

Φ ::= a | ¬a | Φ ∧ Φ | FBqΦ | G=1Φ

In Section 3.2 we discussed a special case of this fragment, where the top-level operator
is G=1. Two results are particularly interesting for this section: Firstly, the construction
of models for such formulae as explained in the proof of Theorem 13, and secondly, the
properties of BSCCs in models for such formulae as stated in Corollary 17. We will use those
in order to simplify models in this generalized setting. We say a Markov chain has height h
if it is a tree with back edges of height h.

I Theorem 21. A satisfiable Fq,G1-formula φ has a model of height |φ|.

J. Křetínský and A. Rotar 32:11

Proof Sketch. Our aim is to transform a given, possibly infinite model into a tree-like shape.
To do so, we first construct a tree by considering all F-formulae which are not nested in Gs
(in the following simply non-nested F-formulae). Each path in this tree will satisfy each of
these F-formulae at most once. At the end of each path, we will then insert BSCCs satisfying
the G-formulae, in the spirit of Theorem 13.

The collapsing procedure from a state s is as follows: We first determine which of the
F-formulae that are satisfied at s are relevant. Those are the formulae which are not nested
in other temporal formulae and have not yet been satisfied on the current path. Once we
have determined this set, say I, we need to find the successors which are required to satisfy
the formulae in I. For this, we construct the set sel(s). Informally, sel(s) contains all states
t s.t. (i) t satisfies at least one formula ψ ∈ I, and (ii) there is no state on the path between
s and t satisfying ψ. Formally, sel(s) := {t ∈ post∗(s) | ∃FBrψ ∈ I. M, t |= ψ ∧ ∀t′ ∈
post∗(s) ∩ pre∗(t).M, t 6|= ψ}. Then, we connect s to every state in sel(s) directly; i.e. for
t ∈ sel(s), we set P (s, t) := P ∗(s, t), and for all states t 6∈ sel(s), we set P (s, t) := 0.1 A
simple induction on the length of a path yields that every state that is reachable from s in
the constructed MC is reached with at least the probability as in the original one. From this,
one can easily see that every non-nested F-formula is satisfied. The new set post(s) might be
infinite. However, we know that we can prune most of the successors and limit the branching
degree to |φ|+ 2 [7]. Then, we repeat the procedure from each of the successors. Since the
number of non-nested F-formulae decreases with every step, we will reach states which do
not have to satisfy non-nested F-formulae at all on every branch. The number of steps we
need to reach such states, is bounded by the number of non-nested F-formulae in φ. At
those states, we can use Theorem 13 to obtain models for the respective G-formulae. Those
are of size linear in the size of the G-formulae. The overall height is then bounded by |φ|.
The fact that the resulting MC is a model can be easily proved by induction over |φ|. J

The models that we construct have a quite regular shape: They start as a tree and in
every step ensure satisfaction of one of the F-formulae. As soon as they have satisfied all
outer F-formulae, on every branch a model of circle shape for the respective G-formula
follows. Since the branching degree is at most |φ| + 2 and the number of steps before we
repeat a state is bounded by |φ|, the overall size is bounded to (|φ|+ 2)2|φ|+1.

I Example 22. Let φp := F≥pG=1a, and ψp := F≥pG=1¬a. The large Markov chain of
Figure 4 is a model for φ1/2 ∧ ψ1/2. The grayed states illustrate the set sel(s0). The other
boxes show the sets sel(.) of the respective grayed state. Everything in between is omitted.
The smaller Markov chain is the reduced version of the original model.

3.5 Satisfiability for Fq/1, G1, ∨
In the previous section we have been able to construct simple models for formulae of the
Fq,G1-fragment by exploiting the nature of G-formulae thereof as presented in Section 3.2.
This works because every formula nested within a G is satisfied in every BSCC. Hence, we can
simply postpone the satisfaction of those until we reach a BSCCs. In the Fq,G1,∨-fragment,
this is not the case anymore, as discussed in Section 3.3. This can cause some complications,
which are discussed in more detail in Section 3.6. In order to be able to apply similar
techniques as in the previous section, we can simplify the fragment and enforce the property
that F-formulae occur only with q = 1 within Gs.

1 In fact, we need to scale P (s, t) in order to obtain a Markov chain, in general, as the probability to
reach sel(s) might be less than 1. For details, refer to the formal proof in [24, Appendix A].

CONCUR 2018

32:12 The Satisfiability Problem for Unbounded Fragments of PCTL

{φ1/2, ψ1/2}

s0

{φ3/4, ψ1/4} {φ1/4, ψ3/4}

{φ1} {ψ1} {φ1} {ψ1}

{φ1} {ψ1} {φ1} {ψ1}

{a} ∅ {a} ∅

1/2 1/2

3/4
1/4 1/4

3/4

1 1 1 1

1 1 1 1

1 1 1 1

{φ1/2, ψ1/2}

s0

{φ1} {ψ1} {φ1} {ψ1}

{a} ∅ {a} ∅

3/
8

1/
8 1/8

3/8

1 1 1 1

1 1 1 1

Figure 4 Example of a reduction for a Fq,G1-formula.

I Definition 23. Fq/1,G1,∨-formulae are given by the grammar

Φ ::= a | ¬a | Φ ∧ Φ | Φ ∨ Φ | FBqΦ | G=1Ψ
Ψ ::= a | ¬a | Ψ ∧Ψ | Ψ ∨Ψ | F=1Ψ | G=1Ψ

Again, we show that the necessary minimal height of models can be bounded.

I Theorem 24. A satisfiable Fq/1,G1,∨-formula φ has a model of height |φ|2.

Proof Sketch. As the first step, we apply the same procedure as in the proof of Theorem 21.
The outer F-formulae are then satisfied for the same reason as in the setting without
disjunctions. However, the G-nested F-formulae might not be satisfied anymore because
the BSCCs do not necessarily satisfy each of them. Since the G-nested F-formulae appear
only with q = 1, we know that once a state of the original model satisfies such a formula,
almost every path satisfies the respective path formula. Let s be a state of the reduced chain,
and t ∈ post(s). In the original model, there might be states in between s and t. If some
G-nested F-formula (say F=1ψ) which is satisfied at s is also satisfied at t, we do not need
to take care of it. If this is not the case, then we know for sure that some of the states
between s and t must satisfy ψ. We can determine such states for each G-nested F-formula.
We include exactly one of those for each such formula. Then, preserving the order, we chain
them in such a way that each one has a unique successor. The last one’s unique successor is
t. Let s′ be the first one. Then, we set P (s, s′) := P (s, t). We repeat this procedure for each
state of the reduced chain.

However, we must be careful when picking the states that we want to include. For
instance, if we always pick the first state to satisfy some formula, then we might in the end
violate φ. Say we have two formulae F=1ψ and F=1ξ and states u, v, w occuring in this order,
such that M,u |= ψ, M,v |= ξ, and M,w |= ψ . If M,v |= F=1ψ in the original model, we
might violate it if we omit w. Therefore, we shall rather omit u und pick w. In general, we
pick the last possible state for each formula. In a sense, we look backwards starting from t.
This way, it is guaranteed that whenever we have not yet satisfied some F-formula, it will be
propagated to t.

J. Křetínský and A. Rotar 32:13

s0

sel1

sel2

BSCCs

Figure 5 Reduction of models for Fq/1, G1, ∨.

This way, we preserve the reachability probabilities and therefore the satisfaction of the
outer F-formulae. The newly added states guarantee the satisfaction of nested F-formulae.
An induction over φ shows that the constructed MC is again a model. Since we add at most
|φ| new states between the states of the reduced MC which is of height at most |φ|, we obtain
the claimed bound on the height. J

Figure 5 illustrates the transformation of the models as described in the proof sketch. sel1
and sel2 are the selections. In the Fq,G1-fragment, we directly connected those sets. Here,
we insert simple chains between the selections. The construction guarantees that we have
at most one state per F-formula to satisfy. This is obtained by postponing the satisfaction
until the last possible moment before sel.
I Remark. Note that the resulting models have a tree shape with BSCCs. There are no
non-bottom SCCs. Even if the original model did have such, they are removed by this
construction: The reduction algorithm takes care that every non-nested F-formula occurs at
most once on every path. The inserted chains contain at most one state per nested F-formula
and do not introduce cycles.

I Example 25. Consider the formula

φ := F≥1/2(G=1a) ∧G=1(F=1¬a ∨ F=1b).

Figure 6 (a) shows a model for φ. The boxes illustrate the selection of s0. Figure 6 (b)
shows the corresponding reduced chain. However, it is not a model for φ. The reason is that
neither states satisfying ¬a nor such that satisfy b are reached almost surely from s0. By
including additional states, the chain in Figure 6 (c) corrects this, and thereby we obtain a
model of φ.

3.6 Finite Models for Fq, G1, ∨
In this section, we discuss PCTL(F,G) where G appears only with the contraint q = 1.
Previously for the Fq,G1-fragment, i.e. without disjunctions, we started from a model which
was unfolded for a number of steps; we simplified such a model by dropping states (including
all non-bottom SCCs) and then we inserted simple chains that guarantee the satisfaction of
the G-nested F-formulae. The resulting model thus (i) does not contain any non-bottom
SCCs and (ii) the size only depends on the structure of the formula, not on the constraints
of the F-formulae. However, in the general Fq,G1,∨-fragment, we cannot insert such simple

CONCUR 2018

32:14 The Satisfiability Problem for Unbounded Fragments of PCTL

{a}
s0

{a} {a}

∅ ∅ ∅ ∅

{a, b} {a, b}

{a}
s0

{a, b} ∅ ∅ {a, b}

{a, b}

{a}
s0

∅ ∅ ∅ ∅

{a, b} {a, b}

Figure 6 Example of a reduction in the Fq/1, G1, ∨ fragment: (a) original model, (b) reduced
model, (c) corrected model.

∅
s0

{a} {a}
1

p

1− p
1

Figure 7 Example model for φ.

chains to satisfy nested Fs. Instead, we may have to branch at several places. Intuitively, the
reason for such complications is the presence of a repeated, controlled choice. This enables us
to find a formula which requires more complicated models, namely models which either have
non-bottom SCCs or are of size which also depends on the constraints and not only on the
structure of the formula, or can even be infinite.

I Example 26. Consider φ := G=1(F=1(a ∧ F>0¬a) ∨ a) ∧ F=1G=1a ∧ ¬a. We can try to
construct a model for φ as follows: Firstly, we have to start at a state which satisfies ¬a.
This enforces the satisfaction of the first disjunct in the G-formula. Therefore, almost all
paths must lead to a state satisfying a ∧ F>0¬a. This state must eventually reach a state
that satisfies ¬a again with positive probability. Hence, we find ourselfs in the same situation
as was the case in the initial state. So, we need to either create an SCC of alternating states
that satisfy a and ¬a, or create an infinite model. If we create an SCC, the side constraint
F=1G=1a enforces us to eventually leave this SCC. Hence, it is a non-bottom SCC. The MC
in Figure 7 is a possible model. From s0 it models φ, for any p ∈ (0, 1).

Note that the formula given in the example is qualitative. For this fragment, it is known
how to solve the satisfiability problem already [7]. However, we can easily adapt the formula
to be quantitative. In this case, we might still be able to obtain a model for the quantitative
version by keeping its shape and only adapting the probabilties of the model for the qualitative
version. The question arises, whether this is possible in general or not. This question remains
open and might be interesting for future work.

4 Discussion, Conclusion, and Future Work

We have identified the pattern of the controlled repeated choice, i.e. formulae of the form

G=1(φ1 ∨ · · · ∨ φn)

where at least one of the φi contains an F-formula that has a constraint other than q = 1.
Additionally, we have “controlling” side constraints, as in Example 26. We have seen that the

J. Křetínský and A. Rotar 32:15

presence of this pattern enforces more complicated structure of models even in the qualitative
setting. This pattern is expressible in the Fq,G1,∨-fragment. Whenever we
(a) drop the side constraints, keeping only the G=1-part, i.e. consider the G1(Fq,G1,∨)-

fragment, or
(b) drop the disjunction for the choice and consider the Fq,G1-fragment, or
(c) drop the quantity of the choice and consider the Fq/1,G1,∨-fragment,
the structure is simpler and we obtain decidability. For these fragments, we have even shown
that the general satisfiability problem is equivalent to the finite satisfiability problem.

Further, adding quantities to G-constraints obviously also makes the satisfiability problem
more complicated. Already for the qualitative G>0(F>0)-fragment, satisfiability and finite
satisfiability differ. Nevertheless, we established the decidability of finite satisfiability even
for the Gq(Fq,Gq,∨)-fragment.

Consequently, instead of attacking the whole quantitative PCTL or even just PCTL(F,G),
we suggest two easier tasks, which should lead to a fundamental increase in understanding
the general problem, namely:

finite (and also general) satisfiability of the Fq,G1,∨-fragment, i.e. PCTL(F,G) where
G is limited to the = 1 constraint, and
infinite satisfiability of the Gq(Fq,Gq,∨)-fragment, i.e. G-formulae of PCTL(F,G).

While the former omits issues stemming from G>0 [7] and only deals with the repeated
choice, the latter generalizes the qualitative results for G>0,G=1 [17, 7] in the presence of
general quantitative F’s.

Further, potentially more straight-forward directions include the generalization of the
results obtained in this paper to the until- and release-operators instead of future- and
globally-operators, respectively, or the introduction of the next-operator.

References
1 C. Baier, M. Größer, M. Leucker, B. Bollig, and F. Ciesinski. Controller synthesis for

probabilistic systems. In Proceedings of IFIP TCS’2004, pages 493–506. Kluwer, 2004.
2 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.
3 B. Banieqbal and H. Barringer. Temporal logic with fixed points. In Temporal Logic in

Specification, volume 398 of LNCS, pages 62–74. Springer, 1987.
4 Nathalie Bertrand, John Fearnley, and Sven Schewe. Bounded satisfiability for PCTL. In

Computer Science Logic (CSL’12) - 26th International Workshop/21st Annual Conference
of the EACSL, CSL 2012, September 3-6, 2012, Fontainebleau, France, pages 92–106, 2012.

5 T. Brázdil, V. Brožek, V. Forejt, and A. Kučera. Stochastic games with branching-time
winning objectives. In Proceedings of LICS 2006, pages 349–358. IEEE, 2006.

6 T. Brázdil, V. Forejt, and A. Kučera. Controller synthesis and verification for Markov
decision processes with qualitative branching time objectives. In Proceedings of ICALP
2008, LNCS. Springer, 2008.

7 T. Brázdil, V. Forejt, J. Křetínský, and A. Kučera. The satisfiability problem for probabil-
istic CTL. In LICS, pages 391–402. IEEE, 2008. doi:10.1109/LICS.2008.21.

8 T. Brázdil, A. Kučera, and O. Stražovský. On the decidability of temporal properties of
probabilistic pushdown automata. In Diekert and Durand [11], pages 145–157.

9 Souymodip Chakraborty and Joost-Pieter Katoen. On the satisfiability of some simple
probabilistic logics. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in
Computer Science, pages 56–65. ACM, 2016.

10 C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. JACM,
42(4):857–907, 1995.

CONCUR 2018

http://dx.doi.org/10.1109/LICS.2008.21

32:16 The Satisfiability Problem for Unbounded Fragments of PCTL

11 Volker Diekert and Bruno Durand, editors. STACS 2005, 22nd Annual Symposium on
Theoretical Aspects of Computer Science, Stuttgart, Germany, February 24-26, 2005, Pro-
ceedings, volume 3404 of Lecture Notes in Computer Science. Springer, 2005.

12 E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in the temporal
logic of branching time. In Proceedings of STOC’82, pages 169–180. ACM, 1982.

13 J. Esparza, A. Kučera, and R. Mayr. Model-checking probabilistic pushdown automata.
Logical Methods in Computer Science, 2, 2006. doi:10.2168/LMCS-2(1:2)2006.

14 K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars, and
monotone systems of non-linear equations. In Diekert and Durand [11], pages 340–352.

15 M. Fischer and R. Ladner. Propositional dynamic logic of regular programs. JCSS, 18:194–
211, 1979.

16 H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. FAC, 6:512–
535, 1994.

17 S. Hart and M. Sharir. Probabilistic propositional temporal logics. Information and Control,
70(2/3):97–155, 1986.

18 T. Henzinger, O. Kupferman, and R. Majumdar. On the universal and existential fragments
of the µ-calculus. TCS, 354(2):173–186, 2006.

19 M. Huth and M.Z. Kwiatkowska. Quantitative analysis and model checking. In Proceedings
of LICS’97, pages 111–122. IEEE, 1997.

20 D. Kozen. A finite-model theorem for the propositional µ-calculus. Studia Logica, 47(3):233–
241, 1988.

21 S. Kraus and D. J. Lehmann. Decision procedures for time and chance (extended abstract).
In FOCS, pages 202–209. IEEE, 1983.

22 A. Kučera and O. Stražovský. On the controller synthesis for finite-state Markov de-
cision processes. In Proceedings of FST&TCS 2005, volume 3821 of LNCS, pages 541–552.
Springer, 2005.

23 O. Kupferman and M.Y. Vardi. An automata-theoretic approach to modular model check-
ing. ACM Transactions on Programming Languages and Systems (TOPLAS), 22:87–128,
2000.

24 Jan Křetínský and Alexej Rotar. The satisfiability problem for unbounded fragments of
probabilistic CTL. Technical report, arXiv.org, 2018. arXiv:1806.11418.

25 D. J. Lehmann and S. Shelah. Reasoning with time and chance (extended abstract). In
ICALP, volume 154 of LNCS, pages 445–457. Springer, 1983.

26 J.R. Norris. Markov Chains. Cambridge, 1998.

http://dx.doi.org/10.2168/LMCS-2(1:2)2006
http://arxiv.org/abs/1806.11418

Automatic Analysis of Expected Termination
Time for Population Protocols

Michael Blondin1

TU Munich, Germany
blondin@in.tum.de

https://orcid.org/0000-0003-2914-2734

Javier Esparza2

TU Munich, Germany
esparza@in.tum.de

https://orcid.org/0000-0001-9862-4919

Antonín Kučera3

Masaryk University, Brno, Czech Republic
kucera@fi.muni.cz

https://orcid.org/0000-0002-6602-8028

Abstract
Population protocols are a formal model of sensor networks consisting of identical mobile devices.
Two devices can interact and thereby change their states. Computations are infinite sequences
of interactions in which the interacting devices are chosen uniformly at random.

In well designed population protocols, for every initial configuration of devices, and for every
computation starting at this configuration, all devices eventually agree on a consensus value. We
address the problem of automatically computing a parametric bound on the expected time the
protocol needs to reach this consensus. We present the first algorithm that, when successful,
outputs a function f(n) such that the expected time to consensus is bound by O(f(n)), where
n is the number of devices executing the protocol. We experimentally show that our algorithm
terminates and provides good bounds for many of the protocols found in the literature.

2012 ACM Subject Classification Theory of computation → Distributed computing models,
Theory of computation → Probabilistic computation, Theory of computation → Logic and veri-
fication

Keywords and phrases population protocols, performance analysis, expected termination time

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.33

Related Version Extended version of the paper: [9], https://arxiv.org/abs/1807.00331.

Supplement Material Source code: https://github.com/blondimi/pp-time-analysis.

1 Supported by the Fonds de recherche du Québec – Nature et technologies (FRQNT).
2 Supported by ERC Advanced Grant (787367: PaVeS).
3 Supported by the Czech Science Foundation, grant No. P202/12/G061. The presented results were

achieved during the author’s stay at TU München supported by the Friedrich Wilhelm Bessel Research
Award (Alexander von Humboldt Foundation).

© Michael Blondin, Javier Esparza, and Antonín Kučera;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 33; pp. 33:1–33:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:blondin@in.tum.de
https://orcid.org/0000-0003-2914-2734
mailto:esparza@in.tum.de
https://orcid.org/0000-0001-9862-4919
mailto:kucera@fi.muni.cz
https://orcid.org/0000-0002-6602-8028
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.33
https://arxiv.org/abs/1807.00331
https://github.com/blondimi/pp-time-analysis
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

33:2 Automatic Analysis of Expected Termination Time for Population Protocols

1 Introduction

Population protocols are a model of distributed computation in which agents with very
limited computational resources randomly interact in pairs to perform computational tasks
[3, 4]. They have been used as an abstract model of wireless networks, chemical reactions,
and gene regulatory networks, and it has been shown that they can be implemented at
molecular level (see, e.g., [23, 21, 11, 20]).

Population protocols compute by reaching a stable consensus in which all agents agree
on a common output (typically a Boolean value). The output depends on the distribution of
the initial states of the agents, called the initial configuration, and so a protocol computes a
predicate that assigns a Boolean value to each initial configuration. For example, a protocol
in which all agents start in the same state computes the predicate x ≥ c if the agents agree
to output 1 when there are at least c of them, and otherwise agree to output 0. A protocol
with two initial states computes the majority predicate x ≥ y if the agents agree to output 1
exactly when the initial number of agents in the first state is greater than or equal to the
initial number of agents in the second state.

In previous work, some authors have studied the automatic verification of population
protocols. Since a protocol has a finite state space for each initial configuration, model
checking algorithms can be used to verify that the protocol behaves correctly for a finite
number of initial configurations. However, this technique cannot prove that the protocol is
correct for every configuration. In [16] it was shown that the problem of deciding whether a
protocol computes some predicate, and the problem of deciding whether it computes a given
predicate, are both decidable and at least as hard as the reachability problem for Petri nets.

In practice, protocols should not only correctly compute a predicate, but also do it fast.
The most studied quantitative measure is the expected number of pairwise interactions
needed to reach a stable consensus. The measure is defined for the stoichiometric model in
which the pair of agents of the next interaction are picked uniformly at random. A derived
measure is the parallel time, defined as the number of interactions divided by the number of
agents. The first paper on population protocols already showed that every predicate can be
computed by a protocol with expected total number of interactions O(n2 logn), where n is
the number of agents [3, 4]. Since then, there has been considerable interest in obtaining
upper and lower bounds on the number of interactions for some fundamental tasks, like leader
election and majority, and there is also much work on finding trade-offs between the speed of
a protocol and its number of states (see, e.g., [14, 1, 6] and the references therein). However,
none of these works addresses the verification [10] problem: given a protocol, determine its
expected number of interactions.

As in the qualitative case, probabilistic model checkers can be used to compute the
expected number of interactions for a given configuration. Indeed, in this case the behaviour
of the protocol is captured by a finite-state Markov chain, and the expected number of
interactions can be computed as the expected number of steps until a bottom strongly
connected component of the chain is reached. This was the path followed in [12], using
the PRISM probabilistic model checker. However, as in the functional case, this technique
cannot give a bound valid for every configuration.

This paper presents the first algorithm for the automatic computation of an upper bound
on the expected number of interactions. The algorithm takes advantage of the hierarchical
structure of population protocols where an initial configuration reaches a stable consensus
by passing through finitely many “stages”. Entering a next stage corresponds to entering
a configuration where some behavioral restrictions become permanent (for example, some

M. Blondin, J. Esparza, and A. Kučera 33:3

interactions become permanently disabled, certain states will never be populated again,
etc.). The algorithm automatically identifies such stages and computes a finite acyclic stage
graph representing the protocol evolution. If all bottom stages of the graph correspond
to stabilized configurations, the algorithm proceeds by deriving bounds for the expected
number of interactions to move from one stage to the next, and computes a bound for the
expected number of interactions by taking an “asymptotic maximum” of these bounds. In
unsuitable cases, the resulting upper bound can be higher than the actual expected number
of interactions. We report on an implementation of the algorithm and its application to case
studies.

Related work. To the best of our knowledge, we present the first algorithm for the automatic
quantitative verification of population protocols. In fact, even for sequential randomized
programs, the automatic computation of the expected time is little studied. After the seminal
work of Flajolet et al. in [17], there is recent work by Kaminski et al. [19] on the computation
of expected runtimes using weakest preconditions, by Chatterje et al. on the automated
analysis of recurrence relations for expected time [10], by Van Chan Ngo et al. [22] on the
automated computation of bounded expectations using amortized resource analysis, and by
Batz et al. [5, 22] on the computation of sampling times for Bayesian networks. These works
are either not targeted to distributed systems like population protocols, or do not provide
the same degree of automation as ours.

Structure of the paper. In Section 2, we introduce population protocols and a simple
modal logic to reason about their behaviours. In Section 3, we introduce stage graphs and
explain how they allow to prove upper bounds on the expected number of interactions of
population protocols. We then give a dedicated algorithm for the computation of stage
graphs in Section 4, analyze the bounds derived by this algorithm in Section 5, and report on
experimental results in Section 6. Finally, we conclude in Section 7. Due to space constraints,
we defer proofs of some statements to a full version of this paper [9].

2 Population protocols

In this section, we introduce population protocols and their semantics. We assume familiarity
with basic notions of probability theory, such as probability space, random variables, expected
value, etc. When we say that some event happens almost surely, we mean that the probability
of the event is equal to one. We use N to denote the set of non-negative integers.

A population consists of n agents with states from a finite set Q = {A,B, . . .} interacting
according to a directed interaction graph G (without self-loops) over the agents. The
interaction proceeds in a sequence of steps, where in each step an edge of the interaction
graph is selected uniformly at random, and the states (A,B) of the two chosen agents are
updated according to a transition function containing rules of the form (C,D) 7→ (E,F).
We assume that for each pair of states (C,D), there is at least one rule (C,D) 7→ (E,F). If
there are several rules with the same left-hand side, then one is selected uniformly at random.
The unique agent identifiers are not known to the agents and not used by the protocol.

Usually, G is considered as a complete graph, and this assumption is adopted also in
this work. Since the agent identifiers are hidden and G is complete, a population is fully
determined by the number of agents in each state. Formally, a configuration is a vector
C ∈ NQ, where C(A) is the number of agents in state A. For every A ∈ Q, we use 1A to

CONCUR 2018

33:4 Automatic Analysis of Expected Termination Time for Population Protocols

denote the vector satisfying 1A(A) = 1 and 1A(B) = 0 for all B 6= A. Note that there is no
difference between transitions (A,B) 7→ (C,D) and (A,B) 7→ (D,C), because both of them
update a given configuration in the same way.

Most of the population protocols studied for complete interaction graphs have a symmetric
transition function where pairs (A,B) and (B,A) are updated in the same way. For the sake
of simplicity, we restrict our attention to symmetric protocols.4 Then, the transitions can be
written simply as AB 7→ CD, because the ordering of states before/after the 7→ symbol is
irrelevant. Formally, AB and CD are understood as elements of Q〈2〉, i.e., multisets over Q
with precisely two elements.

I Definition 1. A population protocol is a tuple P = (Q,T,Σ, I, O) where
Q is a non-empty finite set of states;
T : Q〈2〉 ×Q〈2〉 is a total transition relation;
Σ is a non-empty finite input alphabet,
I : Σ→ Q is the input function mapping input symbols to states,
O : Q→ {0, 1} is the output function.

We write AB 7→ CD to indicate that (AB,CD) ∈ T . When defining the set T , we usually
specify the outgoing transitions only for some subset of Q〈2〉. For the other pairs AB, there
(implicitly) exists a single idle transition AB 7→ AB. We also write I(Σ) to denote the set
{q ∈ Q | q = I(σ) for some σ ∈ Σ}.

2.1 Executing population protocols
A transition AB 7→ CD is enabled in a configuration C if C − 1A − 1B ≥ 0. A transition
AB 7→ CD enabled in C can fire and thus produce a configuration C′ = C−1A−1B+1C+1D.
The probability of executing a transition AB 7→ CD enabled in C is defined by

P[C, AB 7→ CD] =


C(A)·(C(A)−1)

(n2−n)·|{EF∈Q〈2〉:AA7→EF}| if A = B ,

2·C(A)·C(B)
(n2−n)·|{EF∈Q〈2〉:AB 7→EF}| if A 6= B .

where n is the size of C. Note that 2 · C(A) · C(B) is the number of directed edges connecting
agents in states A and B (when A 6= B), and n2 − n is the total number of directed edges in
a complete directed graph without self-loops with n vertices. If a pair of agents in states A
and B is selected, one of the outgoing transitions of AB is chosen uniformly at random.

We write C→C′ to indicate that C′ is obtained from C by firing some transition, and we
use P[C→C′] to denote the probability of executing a transition enabled in C producing C′.
Note that there can be several transitions enabled in C producing C′, and P[C→C′] is the
total probability of executing some of them.

An execution initiated in a given configuration C is a finite sequence C0, . . . , C` of config-
urations such that ` ∈ N, C0 = C, and Ci→Ci+1 for all i < `. A configuration C′ is reachable
from a configuration C if there is an execution initiated in C ending in C′. A run is an infinite
sequence of configurations ω = C0, C1, . . . such that every finite prefix of ω is an execution.
The configuration Ci of a run ω is also denoted by ωi. For a given execution C0, . . . , C`, we
use Run(C0, . . . , C`) to denote the set of all runs starting with C0, . . . , C`.

4 All of the presented results can easily be extended to non-symmetric population protocols. The only
technical difference is the way of evaluating/estimating the probability of executing a given transition
in a given configuration.

M. Blondin, J. Esparza, and A. Kučera 33:5

For every configuration C, we define the probability space (Run(C),F ,PC), where F
is the σ-algebra generated by all Run(C0, . . . , C`) such that C0, . . . , C` is an execution ini-
tiated in C, and PC is the unique probability measure satisfying PC(Run(C0, . . . , C`)) =∏`−1
i=0 P[Ci→Ci+1] .

2.2 A simple modal logic for population protocols
To specify properties of configurations, we use a qualitative variant of the branching-time
logic EF. Let APP = Q ∪ {A! | A ∈ Q such that there is a non-idle transition AA 7→ BC}.
The formulae of our qualitative logic are constructed in the following way, where a ranges
over APP ∪ {Out0,Out1}:

ϕ ::= a | ¬ϕ | ϕ0 ∧ ϕ1 | �ϕ | ♦ϕ.

The semantics is defined inductively:

C |= A iff C(A) > 0,
C |= A! iff C(A) = 1,
C |= Out0 iff O(A) = 0 for all A ∈ Q such that C(A) > 0,
C |= Out1 iff O(A) = 1 for all A ∈ Q such that C(A) > 0,
C |= ¬ϕ iff C 6|= ϕ,

C |= ϕ0 ∧ ϕ1 iff C |= ϕ0 and C |= ϕ1,

C |= �ϕ iff PC({ω ∈ Run(C) | ωi |= ϕ for all i ∈ N}) = 1,
C |= ♦ϕ iff PC({ω ∈ Run(C) | ωi |= ϕ for some i ∈ N}) = 1.

Note that C |= �ϕ iff all configurations reachable from C satisfy ϕ, and C |= ♦ϕ iff a run
initiated in C visits a configuration satisfying ϕ almost surely (i.e., with probability one).
We also use tt, ff, and other propositional connectives whose semantics is defined in the
standard way. Furthermore, we occasionally interpret a given set of configurations B as a
formula where C |= B iff C ∈ B.

For every formula ϕ, we define a random variable Stepsϕ assigning to every run C0, C1, . . .
either the least ` ∈ N such that C` |= ϕ, or ∞ if there is no such `. For a given configura-
tion C, we use EC[Stepsϕ] to denote the expected value of Stepsϕ in the probability space
(Run(C),F ,PC).

2.3 Computable predicates, interaction complexity
Every input X ∈ NΣ is mapped to the configuration CX such that

CX (q) =
∑
σ∈Σ
I(σ)=q

X (σ) for every q ∈ Q.

An initial configuration is a configuration of the form CX where X is an input. A configuration
C is stable if C |= Stable, where Stable ≡ (�Out0) ∨ (�Out1). We say that a protocol P
terminates if C |= ♦Stable for every initial configuration C. A protocol P computes a unary
predicate Λ on inputs if it terminates and every stable configuration C′ reachable from an
initial configuration CX satisfies C′ |= Outx, where x is either 1 or 0 depending on whether
X satisfies Λ or not, respectively.

The interaction complexity of P is a function InterComplexityP assigning to every n ≥ 1
the maximal EC[StepsStable], where C ranges over all initial configurations of size n. Since
several interactions may be running in parallel, the time complexity of P is defined as

CONCUR 2018

33:6 Automatic Analysis of Expected Termination Time for Population Protocols

InterComplexityP(n) divided by n. Hence, asymptotic bounds on interaction complexity
immediately induce the corresponding bounds on time complexity.

2.4 Running examples
A well-studied predicate for population protocols is majority. Here, Σ = {A,B}, I(A) = A,
I(B) = B, and the protocol computes whether there are at least as many agents in state B
as there are in state A. As running examples, we use two different protocols for computing
majority, taken from [15] and [18].

I Example 2 (majority protocol of [15]). We have that Q = {A,B, a, b}, O(A) = O(a) = 0,
O(B) = O(b) = 1, and the transitions are the following: AB 7→ ab, Ab 7→ Aa, Ba 7→ Bb and
ba 7→ bb.

I Example 3 (majority protocol of [18]). Here, Q = {A,B,C, a, b}, O(A) = O(a) = 0,
O(B) = O(b) = O(C) = 1, and the transitions are the following: AB 7→ bC, AC 7→ Aa,
BC 7→ Bb, Ba 7→ Bb, Ab 7→ Aa and Ca 7→ Cb.

3 Stages of population protocols

Most of the existing population protocols are designed so that each initial configuration
passes through finitely many “stages” before reaching a stable configuration. Entering a next
stage corresponds to performing some additional non-reversible changes in the structure of
configurations. Hence, the transition relation between stages is acyclic, and each configuration
in a non-terminal stage eventually enters one of the successor stages with probability one.
This intuition is formalized in our next definition.

I Definition 4. Let P = (Q,T,Σ, I, O) be a population protocol. A stage graph for P is a
triple G = (S, ↪→, [[·]]) where S is a finite set of stages, ↪→ ⊆ S × S is an acyclic transition
relation, and [[·]] is a function assigning to each S ∈ S a set of configurations [[S]] such that
the following conditions are satisfied:
(a) For every initial configuration C there is some S ∈ S such that C ∈ [[S]].
(b) For every S ∈ S with at least one successor under ↪→, and for every C ∈ [[S]], we have

that5 C |= ♦Succ(S), where Succ(S) ≡
∨
S↪→S′ [[S′]].

Note that a stage graph for P is not determined uniquely. Even a trivial graph with one
stage S and no transitions such that [[S]] is the set of all configurations is a valid stage graph
by Definition 4. To analyze the interaction complexity of P, we need to construct a stage
graph so that the expected number of transitions needed to move from stage to stage can be
determined easily, and all terminal stages consist only of stable configurations (see Lemma 6
below).

Formally, a stage S is terminal if it does not have any successors, i.e., there is no S′
satisfying S ↪→ S′. Let T be the set of all terminal stages, and let Term ≡

∨
S∈T [[S]]. It

follows directly from Definition 4(b) that C |= ♦Term for every initial configuration C. Let
ReachTerminalG be a function assigning to every n ≥ 1 the maximal EC [StepsTerm], where
C ranges over all initial configurations of size n. Furthermore, for every S ∈ S, we define a

5 Recall that sets of configurations can be interpreted as formulae of the modal logic introduced in
Section 2.2.

M. Blondin, J. Esparza, and A. Kučera 33:7

¬a ∧ ¬b ∧ ¬CS0

�(A ∧ ¬B)S1 �(¬A ∧B)S2 �(¬A ∧ ¬B ∧ C)S3

�(A ∧ ¬B ∧ ¬C)S4 �(¬A ∧B ∧ ¬C)S5 �(¬A ∧ ¬B ∧ C ∧ ¬a)S6

�(A ∧ ¬B ∧ ¬C ∧ ¬b)S7 �(¬A ∧B ∧ ¬C ∧ ¬a)S8

Figure 1 A stage graph for the majority protocol of Example 3.

function ReachNextS assigning to every n ≥ 1 the maximal EC [StepsSucc(S)], where C ranges
over all configurations of [[S]] of size n (if [[S]] does not contain any configuration of size n,
we put ReachNextS(n) = 0).

An asymptotic upper bound for ReachTerminalG can be obtained by developing an
asymptotic upper bound for all ReachNextS , where S ∈ S. Even though such a bound on
ReachTerminalG depends on |S|, the latter is a constant since it is independent from the
number of agents. Therefore, the following holds:

I Lemma 5. Let P = (Q,T,Σ, I, O) be a population protocol and G = (S, ↪→, [[·]]) a stage
graph for P. Let f : N→ N be a function such that ReachNextS ∈ O(f) for all S ∈ S. Then
ReachTerminalG ∈ O(f).

Observe that if every terminal stage S satisfies [[S]] ⊆ Stable, then InterComplexityP ≤
ReachTerminalG (pointwise). Thus, we obtain the following:

I Lemma 6. Let P = (Q,T,Σ, I, O) be a population protocol and G = (S, ↪→, [[·]]) a stage
graph for P such that [[S]] ⊆ Stable for every terminal stage S. Let f : N→ N be a function
such that ReachNextS ∈ O(f) for all S ∈ S. Then InterComplexityP ∈ O(f).

3.1 An example of a stage graph
In this section, we give an example of a stage graph G for the majority protocol P of
Example 3, and we show how to analyze the interaction complexity of P using G.

The stage graph G of Fig. 1 is a simplified version of the stage graph computed by the
algorithm of the forthcoming Section 4. Intuitively, the hierarchy of stages corresponds to
“disabling more and more states” along runs initiated in initial configurations. For each stage
Si of G, the set [[Si]] consists of all configurations satisfying the associated formula shown in
Fig. 1. Since [[S0]] is precisely the set of all initial configurations, Condition (a) of Definition 4
is satisfied. For every C0 ∈ [[S0]], transition AB 7→ bC can be executed in all configurations
reachable from C0 until A or B disappears. Furthermore, the number of A’s and B’s can
only decrease along every run initiated in C0. Hence, C0 almost surely reaches a configuration
C where A or B (or both of them) disappear. Note that if, e.g., C(A) = 0 and C(B) > 0,
then this property is “permanent”, i.e., every successor C′ of C also satisfies C′(A) = 0 and
C′(B) > 0. Thus, we obtain the stages S1, S2, and S3. Observe that if A and B disappear
simultaneously (which happens iff the initial configuration C0 satisfies C0(A) = C0(B)), then
the configuration C will contain at least one copy of C which cannot be removed.

In all configurations of [[S1]], the only potentially executable transitions are the following:
AC 7→ Aa, Ab 7→ Aa, Ca 7→ Cb. Since A appears in all configurations reachable from
configurations of [[S1]], the transition AC 7→ Aa stays enabled in all of these configurations

CONCUR 2018

33:8 Automatic Analysis of Expected Termination Time for Population Protocols

until C disappears. Hence, every configuration of [[S1]] almost surely reaches a configuration of
[[S4]]. Similarly, we can argue that all configurations of [[S4]] almost surely reach a configuration
of [[S7]], etc. Hence, Condition (b) of Definition 4 is also satisfied.

Let C0 ∈ [[S0]] be an initial configuration of size n, and let C be a configuration reachable
from C0 such that m = min{C(A), C(B)} > 0. The probability of firing AB 7→ bC stays
larger than m2/n2 in all configurations reached from C by executing a finite sequence of
transitions different from AB 7→ bC. This means that AB 7→ bC is fired after at most n2/m2

trials on average. Since min{C0(A), C0(B)} ≤ n/2, we obtain

ReachNextS0(n) ≤
n/2∑
i=1

n2

i2
≤ n2 ·

n∑
i=1

1
i2

≤ n2 · Hn,2 ∈ O(n2) .

Here, Hn,2 is the n-th Harmonic number of order 2. As limn→∞Hn,2 = c <∞, we have that
n2 · Hn,2 ∈ O(n2).

Now, let us analyze ReachNextS1(n). Let C ∈ [[S1]] be a configuration of size n. We need
to fire the transition AC 7→ Aa repeatedly until all C’s disappear. Let C′ be a configuration
reachable from C such that C′(C) = m. Since C |= �(A ∧ ¬B), we have that C′(A) > 0, and
hence the probability of firing AC 7→ Aa in C′ is at least m/n2. Thus, we obtain

ReachNextS1(n) ≤
n∑
i=1

n2

i
≤ n2 ·

n∑
i=1

1
i
≤ n2 · Hn ∈ O(n2 log(n)) .

Here Hn denotes the n-th Harmonic number (of order 1). Since limn→∞Hn = c · log(n)
where c is a constant, we get n2 · Hn ∈ O(n2 log(n)).

Similarly, we can show that ReachNextSi(n) ∈ O(n2 log(n)) for every stage Si of the
considered stage graph. Since all configurations associated to terminal stages are stable, we
can apply Lemma 6 and conclude that InterComplexityP ∈ O(n2 log(n)). Let us note that
the algorithm of the forthcoming Section 4 can derive this result fully automatically in less
than a second.

4 Computing a stage graph

In this section, we give an algorithm computing a stage graph for a given population protocol.
Intuitively, the algorithm tries to identify a subset of transitions which will be simultaneously
and permanently disabled in the future with probability one, and also performs a kind of
“case analysis” how this can happen. The resulting stage graph admits computing an upper
asymptotic bounds on ReachNextS for every stage S, which allows to compute an asymptotic
upper bound on the interaction complexity of the protocol by applying Lemma 6.

For the rest of this section, we fix a population protocol P = (Q,T,Σ, I, O). A valuation
is a partial function ν : APP → {tt, ff} such that ν(A!) = tt implies ν(A) = tt whenever
A!, A ∈ Dom(ν), where Dom(ν) is the domain of ν. Slightly abusing our notation, we also
denote by ν the propositional formula∧

p∈Dom(ν)
ν(p)=tt

p ∧
∧

p∈Dom(ν)
ν(p)=ff

¬p

Hence, by writing C |= ν we mean that C satisfies the above formula.
For every transition head AB ∈ Q〈2〉, let ξAB be either the formula ¬A ∨ ¬B or the

formula ¬A ∨A!, depending on whether A 6= B or A = B, respectively. Hence, the formulae
ξAB and ¬ξAB say that all transitions of the form AB 7→ CD are disabled and enabled,

M. Blondin, J. Esparza, and A. Kučera 33:9

respectively. For a given set T ⊆ Q〈2〉, consider the propositional formula ΨT ≡
∧
AB∈T ξAB .

To simplify our notation, we write just T instead of ΨT , i.e., C |= T iff all transitions specified
by T are disabled in C.

I Definition 7. Let P = (Q,T,Σ, I, O) be a population protocol. A P-stage is a triple
S = (Φ, π, T) where

Φ is a propositional formula over APP ,
π is a valuation, called the persistent valuation,
T ⊆ Q〈2〉 is a set of transition heads, called the permanently disabled transition heads.

For every P-stage S = (Φ, π, T), we put [[S]] = {C | C |= Φ ∧�π ∧�T }.

Our algorithm computes a stage graph for P gradually by adding more and more P-stages.
It starts by inserting the initial P-stage S0 = (Φ, ∅, ∅), where

Φ ≡

 ∨
A∈I(Σ)

A

 ∧ ∧
A∈QrI(Σ)

¬A .

Note that [[S0]] is precisely the set of all initial configurations (the empty conjunction is
interpreted as true). Then, the algorithm picks an unprocessed P-stage in the part of the
stage graph constructed so far, and computes its immediate successors. This goes on until all
P-stages become either internal or terminal. Since the total number of constructed P-stages
can be exponential in the size of P , the worst-case complexity of our algorithm is exponential.
However, as we shall see in Section 6, protocols with hundreds of states and transitions can
be successfully analyzed even by our prototype implementation.

Let S = (Φ, π, T) be a non-terminal P-stage, and let APS ⊆ APP be the set of all
atomic propositions appearing in the formula Φ. The successor P-stages of S are constructed
as follows. First, the algorithm computes the set ValS consisting of all valuations ν with
domain APS such that ν satisfies Φ when the latter is interpreted over APS . Intuitively, this
corresponds to dividing [[S]] into disjoint “subcases” determined by different ν’s (as we shall
see, Φ always implies the formula π ∧ T , so ν cannot be in conflict with the information
represented by π and T ; furthermore, we have Dom(π) ⊆ Dom(ν)). Then, for each ν ∈ ValS ,
a P-stage Sν is constructed, and Sν may or may not become a successor of S. If none of
these Sν becomes a successor of S, then S is declared as terminal.

Let us fix some ν ∈ ValS . In the rest of this section, we show how to compute the P-stage
Sν = (Φν , πν , Tν), and how to determine whether or not Sν becomes a successor of S. An
explicit pseudocode for constructing Sν is given in [9].

4.1 Computing the valuation πν

The valuation πν is obtained by extending π with the “permanent part” of ν. Intuitively, we
try to identify A ∈ Q such that ν(A) = tt (or ν(A) = ff) and all transitions containing A
on the left-hand (or the right-hand) side are permanently disabled. Furthermore, we also
try to identify A ∈ Q such that ν(A!) = tt and the number of A’s cannot change by firing
transitions which are not permanently disabled. Technically, this is achieved by a simple
fixed-point computation guaranteed to terminate quickly. The details are given in [9].

4.2 Computing the set Tν and the formula Φν

In some cases, the constructed persistent valuation πν already guarantees that a configuration
satisfying πν ∧T is stable or cannot evolve (fire non-idle transitions) any further. Then, we in

CONCUR 2018

33:10 Automatic Analysis of Expected Termination Time for Population Protocols

A B

a b

A B

C

a b

Figure 2 Transformation graphs of Example 8.

fact identified a subset of configurations belonging to [[S]] which does not require any further
analysis. Hence, we put Tν = T , Φν = πν , and the configuration Sν becomes a successor
P-stage of S declared as terminal.

Formally, we say that (πν , T) is stable if there is x ∈ {0, 1} such that for all states A ∈ Q
where πν(A) = tt or A 6∈ Dom(πν) we have that Out(A) = x, and for every transition
CD 7→ EF where Out(E) 6= x or Out(F) 6= x, the formula (πν ∧T)⇒ ξCD is a propositional
tautology. Furthermore, we say that (πν , T) is dead if it is not stable and for every non-idle
transition CD 7→ EF we have that the formula (πν ∧ T)⇒ ξCD is a propositional tautology.

If Sν is not stable or dead, we use πν and T to compute the transformation graph Gν ,
and then analyze Gν to determine Tν and Φν .

4.2.1 The transformation graph
The vertices of the transformation graph Gν are the states which have not yet been perman-
ently disabled according to πν , and the edges are determined by a set of transitions whose
heads have not yet been permanently disabled according to πν and T . Formally, we put
Gν = (V, →) where the set of vertices V consists of all A ∈ Q such that either A 6∈ Dom(πν)
or πν(A) = tt, and the set of edges is determined as follows: Let AB 7→ CD be a non-idle
transition such that (πν ∧ T)⇒ ξAB is not a tautology.

If the sets {A,B} and {C,D} are disjoint, then the transition generates the edges A→C,
A→D, B→C, B→D. Intuitively, both A and B can be “transformed” into C or D.
Otherwise, the transition has the form AB 7→ AD for B 6= D. In this case it generates
the edge B→D. Intuitively, B can be “transformed” into D in the context of A.

I Example 8. Consider the protocol of Example 2 and its initial stage S = (Φ, π, T) where
Φ = (A∨B)∧¬a∧¬b and π = T = ∅. Three valuations satisfy Φ; in particular the valuation
ν which sets to tt precisely the variables A and B. Since both A and B can disappear in
the future, and both a and b can become populated, the “permanent part” of ν, i.e., the
valuation πν , has the empty domain. The transformation graph Gν is shown in Fig. 2 (left).

Consider now the majority protocol of Example 3 with initial stage (Φ, ∅, ∅) (where Φ
says there are only A’s and B’s), and a valuation ν which sets to tt precisely the variables A
and B. The domain of πν is again the empty set, and the transformation graph Gν is shown
in Fig. 2 (right).

A key observation about transformation graphs is that all transitions generating edges
connecting two different strongly connected components (SCCs) of Gν become simultaneously
disabled in the future almost surely. More precisely, let Expν be the set of all AB ∈ Q〈2〉 such
that there exists a transition AB 7→ CD generating an edge of Gν connecting two different
SCCs of Gν . We have the following:

I Lemma 9. Let Gν be a transformation graph, and let C be a configuration such that
C |= �πν ∧�T . Then C |= ♦Expν . Furthermore, C |= ♦�Expν .

M. Blondin, J. Esparza, and A. Kučera 33:11

However, there is a subtle problem. When the transitions specified by Expν become simul-
taneously disabled for the first time, they may be disabled only temporarily, i.e., C does not
have to satisfy the formula �(Expν ⇒ �Expν). As we shall see in Section 5, it is relatively
easy to obtain an upper bound on the expected number of transitions needed to visit a
configuration satisfying Expν . However, it is harder to give an upper bound on the expected
number of transitions needed to reach a configuration satisfying �Expν (i.e., entering the
next stage) unless C |= �(Expν ⇒ �Expν). This difficulty is addressed in the next section.

I Example 10. We continue with Example 8. For the transformation graph of Fig. 2 (left),
we have Expν = {AB}. For the transformation graph of Fig. 2 (right), we have Expν =
{AB,AC,BC}. Hence, according to Lemma 9, every initial configuration of the majority
protocol of Example 2 almost surely reaches a configuration satisfying ¬A ∨ ¬B, and
every initial configuration of the majority protocol of Example 3 almost surely reaches a
configuration satisfying (¬A ∨ ¬B) ∧ (¬A ∨ ¬C) ∧ (¬B ∨ ¬C). Furthermore, in both cases
C |= �(Expν ⇒ �Expν) for every initial configuration C.

4.2.2 Computing Tν and Φν: Case Expν 6= ∅
Let Γν ≡ ν ∧ �πν ∧ �T , and let C be a configuration satisfying Γν . A natural idea to
construct Tν is to enrich T by Expν . However, Expν can be empty, i.e., the transformation
graph Gν may consist just of disconnected SCCs. For this reason we first consider the case
where Expν is nonempty.

Computing Tν . As discussed in Section 4.2.1, the fact that C |= ♦�Expν does not necessarily
imply C |= �(Expν ⇒ �Expν) complicates the interaction complexity analysis. Therefore,
after computing Expν we try to compute a non-empty subset Jν ⊆ Expν such that C |=
�(Jν ⇒ �Jν) for all configurations C satisfying Γν . If we succeed, we put Tν = T ∪ Jν .
Otherwise, Tν = T ∪ Expν . Intuitively, the set Jν is the largest subset M of Expν such that
every element of M can be re-enabled only by firing a transition which has been identified
as permanently disabled. This again leads to a simple fixed-point computation, which is
detailed in [9].

A proof of the next lemma is straightforward.

I Lemma 11. For every configuration C such that C |= Γν we have that
(a) C |= ♦�

(
πν ∧ T ∧ Expν)

(b) C |= �(Jν ⇒ �Jν)
If Jν 6= ∅, we put Tν = T ∪ Jν . Otherwise, we put Tν = T ∪ Expν .

Computing Φν . We say that a configuration C is Sν-entering if C |= �πν ∧�Tν and there
is an execution C0, . . . , C` such that C0 |= Γν , C` = C, and Cj 6|= �πν ∧�Tν for all j < `. An
immediate consequence of Lemma 11 is the following:

I Lemma 12. Almost all runs initiated in a configuration satisfying Γν visit an Sν-entering
configuration.

The formula Φν specifies the properties of Sν-entering configurations. The formula Φν always
implies πν ∧ Tν , but it can also be more detailed if Jν 6= ∅. More precisely, we say that Jν is
ν-disabled if Jν 6= ∅ and for all AB ∈ Jν we have that ν ⇒ ξAB is a propositional tautology
(i.e., all transitions specified by Jν are disabled in all configurations satisfying ν). Similarly,
Jν is ν-enabled if Jν 6= ∅ and there exists AB ∈ Jν such that ν ⇒ ¬ξAB is a tautology (i.e.,
some transition specified by Jν is enabled in all configurations satisfying ν).

CONCUR 2018

33:12 Automatic Analysis of Expected Termination Time for Population Protocols

Observe that if Jν is ν-disabled, then all transitions specified by Jν are simultaneously
disabled in every configuration C satisfying Γν . Hence, all Sν-entering configurations satisfy
Γν (see Lemma 11 (b)). Now suppose that Jν is ν-enabled, and let Qν be the set of all A ∈ Q
such that AB ∈ Jν for some B ∈ Q. Since for every configuration C satisfying Γν there
is a transition specified by Jν enabled in C, the last transition executed before visiting an
Sν-entering configuration must be a transition “transforming” some A ∈ Qν , i.e., a transition
of the form AB 7→ CD generating an edge A→C of Gν . Let Kν be the set of all right-hand
sides of all such transitions. The formula Φν is defined as follows:

Φν ≡


πν ∧ Tν ∧ ν if Jν is ν-disabled,

πν ∧ Tν ∧
(∨
CD∈Kν

¬ξCD
)

if Jν is ν-enabled,

πν ∧ Tν otherwise.

It is easy to check that every Sν-entering configuration satisfies the formula Φν . The
constructed P-stage Sν = (Φν , πν , Tν) becomes a successor of the P-stage S.

4.2.3 Computing Tν and Φν: Case Expν = ∅

In this case Gν is a collection of disconnected SCCs. We put Tν = T . In the rest of the
section we show how to construct the formula Φν .

We say that an edge A→B of Gν is stable if there is a transition AC 7→ BD generating
A→B such that πν(C) = tt. Let Iν be the union of all non-bottom SCCs of the directed
graph obtained from Gν by considering only the stable edges of Gν .

I Lemma 13. For every configuration C such that C |= Γν we have that C |= ♦
(∧

A∈Iν ¬A
)
.

Similarly as above, we say that C is Sν-entering if C |= �πν ∧ �Tν ∧
∧
A∈Iν ¬A and

there is an execution C0, . . . , C` such that C0 |= Γν , C` = C, and Cj does not satisfy the above
formula for all j < `.

Observe that if ν(A) = ff for all A ∈ Iν , then ν implies
∧
A∈Iν ¬A and hence every

configuration C satisfying Γν is Sν-entering. Further, if ν(A) = tt for some A ∈ Iν , then the
last transition executed before visiting an Sν-entering configuration is a transition EF 7→ CD

generating a stable edge E→C of Gν where E ∈ Iν and C 6∈ Iν . Let Lν be the set of all
right-hand sides of all such transitions. We put

Φν ≡



πν ∧ Tν ∧
(∧
A∈Iν

¬A
)
∧
(∨
CD∈Lν

¬ξCD
)

if ν(A) = tt for some A ∈ Iν ,

πν ∧ Tν ∧ ν if ν(A) = ff for all A ∈ Iν ,

πν ∧ Tν ∧
(∧
A∈Iν

¬A
)

otherwise.

We say that the constructed P-stage Sν = (Φν , πν , Tν) is redundant if there is a P-stage
S′ = (Φ′, π′, T ′) on the path from the initial stage S0 to S such that πν = π′, Tν = T ′, and
Φ′ implies Φν . The P-stage Sν becomes a successor of S iff Sν is not redundant. This ensures
termination of the algorithm even for poorly designed population protocols.

M. Blondin, J. Esparza, and A. Kučera 33:13

5 Computing the interaction complexity

We show how to compute an upper asymptotic bounds on ReachNextS for every stage S in
the stage graph constructed in Section 4.

For the rest of this section, we fix a population protocol P = (Q,T,Σ, I, O), a P-stage
S = (Φ, π, T), and its successor Sν = (Φν , πν , Tν). Recall the formula Γν , the graph
Gν = (V, →), and the sets Expν , Jν defined in Section 4. We show how to compute
an asymptotic upper bound on the function ReachS,Sν that assigns to every n ≥ 1 the
maximal EC [StepsEnter(Sν)], where Enter(Sν) is a fresh atomic proposition satisfied precisely
by all Sν-entering configurations, and C ranges over all configurations of size n satisfying
Γν (if there is no such configuration of size n, we put ReachS,Sν (n) = 0). Observe that
maxSν{ReachS,Sν}, where Sν ranges over all successor stages of S, is then an asymptotic
upper bound on ReachNextS .

Let us note that if P terminates, then InterComplexityP ∈ 22O(n) . This trivial bound
follows by observing that the number of all configurations of size n is 2O(n), and the probability
of reaching a stable configuration in 2O(n) transitions is 2−2o(n) ; this immediately implies the
mentioned upper bound on InterComplexityP . As we shall see, the worst asymptotic bound
on ReachS,Sν is 2O(n), and in many cases, our results allow to derive even a polynomial upper
bound on ReachS,Sν .

Recall that if (πν , T) is stable or dead, we have that ReachS,Sν (n) = 0 for all n ∈ N (in
this case, we define Sν-entering configurations are the configurations satisfying �(πν ∧ T)).
Now suppose (πν , T) is not stable or dead. Furthermore, let us first assume Expν = ∅. Then,
the upper bound on ReachS,Sν is singly exponential in n.

I Theorem 14. If Expν = ∅, then ReachS,Sν ∈ 2O(n).

Now assume Expν 6= ∅. Let U ⊆ Q be the set of all states appearing in some non-bottom
SCC of Gν . We start with some auxiliary definitions.

I Definition 15. For every A ∈ U , let Expν [A] be the set of all B ∈ Q such that AB ∈
Expν . We say that Sν is fast if, for every A ∈ U , the formula

(
πν ∧ T ∧ ¬Expν ∧ A

)
⇒(∨

B∈Expν [A] ¬ξAB
)
is a propositional tautology.

I Definition 16. For every A ∈ V , let [A] be the SCC of Gν containing A. We say that Sν is
very fast if every transition AB 7→ CD such that AB,CD ∈ V 〈2〉 and {A,B,C,D} ∩ U 6= ∅
satisfies one of the following conditions:

The formula
(
πν ∧ T

)
⇒ ξAB is a propositional tautology.

[C] 6= [A] 6= [D] and [C] 6= [B] 6= [D].

I Theorem 17. If Expν 6= ∅ and Jν 6= ∅, then
ReachS,Sν ∈ O(n3).
If Sν is fast, then ReachS,Sν ∈ O(n2 · log(n)).
If Sν is very fast, then ReachS,Sν ∈ O(n2).

Computing an asymptotic upper bound on ReachS,Sν when Expν 6= ∅ and Jν = ∅ is more
complicated. We show that a polynomial upper bound always exists, and that the degree of
the polynomial is computable. However, our proof does not yield an efficient algorithm for
computing/estimating the degree.

I Theorem 18. If Expν 6= ∅ and Jν = ∅, then ReachS,Sν ∈ O(nc) for some computable
constant c.

CONCUR 2018

33:14 Automatic Analysis of Expected Termination Time for Population Protocols

Table 1 Results of the experimental evaluation where |Q|, |T | and |S| correspond respectively to
the number of states and transitions of the protocol, and the number of nodes of its stage graph.

Protocol
|S| Bound Timepredicate / params. |Q| |T |

x1 ∨ . . . ∨ xn [12] 2 1 5 n2 · log n 0.1
x ≥ y (Example 3) 5 6 13 n2 · log n 0.4
x ≥ y 7 4 3 9 n2 · log n 0.2
x ≥ y (Example 2) 4 4 11 exp(n) 0.3
Flocks-of-bird protocol [4]: x ≥ c

c = 5 6 21 26 n3 0.8
c = 10 11 66 46 n3 4.0
c = 15 16 136 66 n3 12.1
c = 20 21 231 86 n3 28.9
c = 25 26 351 106 n3 58.0
c = 30 31 496 126 n3 118.9
c = 35 36 666 146 n3 222.3
c = 40 41 861 166 n3 366.2
c = 45 46 1081 186 n3 495.3
c = 50 51 1326 206 n3 952.8
c = 55 56 1596 — — T/O
Logarithmic flock-of-birds protocol8: x ≥ c

c = 15 8 23 66 n3 2.6
c = 31 10 34 130 n3 6.1
c = 63 12 47 258 n3 13.9
c = 127 14 62 514 n3 39.4
c = 255 16 79 1026 n3 81.0
c = 1023 20 119 4098 n3 395.7
c = 2047 22 142 8194 n3 851.9
c = 4095 24 167 — — T/O

Protocol
|S| Bound Timepredicate / params. |Q| |T |

Flocks-of-bird protocol [12]: x ≥ c

c = 5 6 9 54 n3 2.5
c = 7 8 13 198 n3 11.3
c = 10 11 19 1542 n3 83.9
c = 13 14 25 12294 n3 816.4
c = 15 16 29 — — T/O
Average-and-conquer protocol9 [2]: x ≥ y with params. m and d

m = 3, d = 1 6 21 41 n2 · log n 2.0
m = 3, d = 2 8 36 1948 n2 · log n 98.7
m = 5, d = 1 8 36 1870 n3 80.1
m = 5, d = 2 10 55 — — T/O
m = 7, d = 1 10 55 — — T/O
Remainder protocol [8]:

∑
1≤i<m

i · xi ≡ 0 (mod m)
m = 3 5 12 27 n2 · log n 0.8
m = 5 7 25 225 n2 · log n 12.5
m = 7 9 42 1351 n2 · log n 88.9
m = 9 11 63 7035 n2 · log n 544.0
m = 10 12 75 — — T/O
Threshold protocol [4]:

∑
1≤i≤k

ai · xi < c

−x1 + x2 < 0 12 57 21 n3 3.0
−x1 + x2 < 1 20 155 131 n3 30.3
−x1 + x2 < 2 28 301 — — T/O
−2x1 − x2 + x3 + 2x4 < 0 20 155 1049 n3 166.3
−2x1 − x2 + x3 + 2x4 < 1 20 155 1049 n3 155.2
−2x1 − x2 + x3 + 2x4 < 2 28 301 — — T/O

6 Experimental results

We have implemented our approach as a tool6 that takes a population protocol as input
and follows the procedure of Section 4 to construct a stage graph together with an upper
bound on InterComplexityP . Our tool is implemented in Python 3, and uses the SMT
solver Microsoft Z3 [13] to test for tautologies and to obtain valid valuations.

We tested our implementation on multiple protocols drawn from the literature: a simple
broadcast protocol [12], the majority protocols of Example 2, Example 3 and [2], various
flock-of-birds protocols [4, 12, 7], a remainder protocol [8] and a threshold protocol [4]. Most
of these protocols are parametric, i.e. they are a family of protocols depending on some
parameters. For these protocols, we increased their parameters until reaching a timeout. In
particular, for the logarithmic flock-of-birds protocol computing x ≥ c, we used thresholds of
the form c = 2i − 1 as they essentially consist the most complicated case of the protocol.

All tests were performed on the same computer equipped with eight Intel® Core™ i5-
8250U 1.60 GHz CPUs, 8 GB of memory and Ubuntu Linux 17.10 (64 bits). Each test had a
timeout of 1000 seconds (∼16.67 minutes). The duration of each test was evaluated as the
sum of the user time and sys time reported by the Python time library.

The results of the benchmarks are depicted in Table 1, where the bound column refers to
the derived upper bound on InterComplexityP . In particular, the tool derived exponential
and n2 · logn bounds for the protocols of Example 2 and Example 3 respectively. The
generated trees across all instances grow in width but not much in height: the maximum
height between the roots and the leaves varies between 2 and 5, and most nodes are leaves.

6 The tool and its benchmarks are available at https://github.com/blondimi/pp-time-analysis.
7 Protocol of Example 2 without the tie-breaking rule ba 7→ bb (only correct if x 6= y).
8 An adapted version of the protocol of [7, Sect. 3] without so-called k-way transitions.
9 The protocol is only correct assuming x 6= y.

https://github.com/blondimi/pp-time-analysis

M. Blondin, J. Esparza, and A. Kučera 33:15

It is worth noting that the n2 logn bounds obtained in Table 1 for the average-and-conquer
and remainder protocols are tight with respect to the best known bounds [2, 4]. However,
some of the obtained bounds are not tight, e.g. we report n3 for the threshold protocol but
an n2 logn upper bound was shown in [4]. Moreover, it seems possible to decrease the n3

bound to n2 for the flocks-of-bird protocol of [4]. We are unsure of the precise bounds for the
remaining protocols.

7 Conclusion

We have presented the first algorithm for quantitative verification of population protocols
able to provide asymptotic bounds valid for any number of agents. The algorithm is able to
compute good bounds for many of the protocols described in the literature.

The algorithm is based on the notion of stage graph, a concept that can be of independent
value. In particular, we think that stage graphs can be valuable for fault localization and
perhaps even automatic repair of ill designed protocols.

An interesting question is whether our algorithm is “weakly complete”, meaning that for
every predicate there exists a protocol for which our algorithm can compute the exact time
bound. We know that this is the case for protocols with leaders, and conjecture that the
result extends to all protocols, but currently we do not have a proof.

Another venue for future research is the automatic computation of lower bounds. Here,
while stage graphs will certainly be useful, they do not seem to be enough, and will have to
be complemented with other techniques.

References
1 Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L. Rivest. Time-

space trade-offs in population protocols. In Proc. 28th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 2560–2579, 2017. doi:10.1137/1.9781611974782.
169.

2 Dan Alistarh, Rati Gelashvili, and Milan Vojnović. Fast and exact majority in population
protocols. In Proc. ACM Symposium on Principles of Distributed Computing (PODC),
pages 47–56, 2015. doi:10.1145/2767386.2767429.

3 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Com-
putation in networks of passively mobile finite-state sensors. In Proc. 23rd Annual
ACM Symposium on Principles of Distributed Computing (PODC), pages 290–299, 2004.
doi:10.1145/1011767.1011810.

4 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Com-
putation in networks of passively mobile finite-state sensors. Distributed Computing,
18(4):235–253, jan 2006. doi:10.1007/s00446-005-0138-3.

5 Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja.
How long, O bayesian network, will I sample thee? - A program analysis perspective on
expected sampling times. In Proc. 27th European Symposium on Programming (ESOP),
pages 186–213. Springer, 2018. doi:10.1007/978-3-319-89884-1_7.

6 Amanda Belleville, David Doty, and David Soloveichik. Hardness of computing and approx-
imating predicates and functions with leaderless population protocols. In Proc. 44th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP), pages 141:1–
141:14, 2017. doi:10.4230/LIPIcs.ICALP.2017.141.

7 Michael Blondin, Javier Esparza, and Stefan Jaax. Large flocks of small birds: on the
minimal size of population protocols. In Proc. 35th Symposium on Theoretical Aspects of

CONCUR 2018

http://dx.doi.org/10.1137/1.9781611974782.169
http://dx.doi.org/10.1137/1.9781611974782.169
http://dx.doi.org/10.1145/2767386.2767429
http://dx.doi.org/10.1145/1011767.1011810
http://dx.doi.org/10.1007/s00446-005-0138-3
http://dx.doi.org/10.1007/978-3-319-89884-1_7
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.141

33:16 Automatic Analysis of Expected Termination Time for Population Protocols

Computer Science (STACS), pages 16:1–16:14, 2018. doi:10.4230/LIPIcs.STACS.2018.
16.

8 Michael Blondin, Javier Esparza, Stefan Jaax, and Philipp J. Meyer. Towards efficient veri-
fication of population protocols. In Proc. 36th ACM Symposium on Principles of Distributed
Computing (PODC), pages 423–430, 2017. doi:10.1145/3087801.3087816.

9 Michael Blondin, Javier Esparza, and Antonín Kučera. Automatic analysis of expected
termination time for population protocols. ArXiv e-prints, 2018. arXiv:1807.00331.

10 Krishnendu Chatterjee, Hongfei Fu, and Aniket Murhekar. Automated recurrence analysis
for almost-linear expected-runtime bounds. In Proc. 29th International Conference on Com-
puter Aided Verification (CAV), pages 118–139, 2017. doi:10.1007/978-3-319-63387-9_
6.

11 Ho-Lin Chen, Rachel Cummings, David Doty, and David Soloveichik. Speed faults in
computation by chemical reaction networks. Distributed Computing, 30(5):373–390, 2017.
doi:10.1007/s00446-015-0255-6.

12 Julien Clément, Carole Delporte-Gallet, Hugues Fauconnier, and Mihaela Sighireanu.
Guidelines for the verification of population protocols. In Proc. 31st International Con-
ference on Distributed Computing Systems (ICDCS), pages 215–224, 2011. doi:10.1109/
ICDCS.2011.36.

13 Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In Proc.
14th International Conference Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), pages 337–340, 2008. doi:10.1007/978-3-540-78800-3_24.

14 David Doty and David Soloveichik. Stable leader election in population protocols requires
linear time. In Proc. 29th International Symposium on Distributed Computing (DISC),
pages 602–616, 2015. doi:10.1007/978-3-662-48653-5_40.

15 Moez Draief and Milan Vojnović. Convergence speed of binary interval consensus. In Proc.
29th IEEE International Conference on Computer Communications (INFOCOM), pages
1792–1800, 2010. doi:10.1109/INFCOM.2010.5461999.

16 Javier Esparza, Pierre Ganty, Jérôme Leroux, and Rupak Majumdar. Verification of popula-
tion protocols. Acta Informatica, 54(2):191–215, 2017. doi:10.1007/s00236-016-0272-3.

17 Philippe Flajolet, Bruno Salvy, and Paul Zimmermann. Automatic average-case ana-
lysis of algorithm. Theoretical Computer Science, 79(1):37–109, 1991. doi:10.1016/
0304-3975(91)90145-R.

18 Stefan Jaax. Personal communication, April 2018.
19 Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo.

Weakest precondition reasoning for expected run-times of probabilistic programs. In Proc.
25th European Symposium on Programming (ESOP), pages 364–389. Springer, 2016. doi:
10.1007/978-3-662-49498-1_15.

20 Othon Michail and Paul G. Spirakis. Elements of the theory of dynamic networks. Com-
munications of the ACM, 61(2):72, 2018. doi:10.1145/3156693.

21 Saket Navlakha and Ziv Bar-Joseph. Distributed information processing in biological and
computational systems. Communications of the ACM, 58(1):94–102, 2015. doi:10.1145/
2678280.

22 Van Chan Ngo, Quentin Carbonneaux, and Jan Hoffmann. Bounded expectations: re-
source analysis for probabilistic programs. In Proc. 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages 496–512, 2018.
doi:10.1145/3192366.3192394.

23 Etienne Perron, Dinkar Vasudevan, and Milan Vojnović. Using three states for binary con-
sensus on complete graphs. In Proc. 28th IEEE International Conference on Computer Com-
munications (INFOCOM), pages 2527–2535, 2009. doi:10.1109/INFCOM.2009.5062181.

http://dx.doi.org/10.4230/LIPIcs.STACS.2018.16
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.16
http://dx.doi.org/10.1145/3087801.3087816
http://arxiv.org/abs/1807.00331
http://dx.doi.org/10.1007/978-3-319-63387-9_6
http://dx.doi.org/10.1007/978-3-319-63387-9_6
http://dx.doi.org/10.1007/s00446-015-0255-6
http://dx.doi.org/10.1109/ICDCS.2011.36
http://dx.doi.org/10.1109/ICDCS.2011.36
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-662-48653-5_40
http://dx.doi.org/10.1109/INFCOM.2010.5461999
http://dx.doi.org/10.1007/s00236-016-0272-3
http://dx.doi.org/10.1016/0304-3975(91)90145-R
http://dx.doi.org/10.1016/0304-3975(91)90145-R
http://dx.doi.org/10.1007/978-3-662-49498-1_15
http://dx.doi.org/10.1007/978-3-662-49498-1_15
http://dx.doi.org/10.1145/3156693
http://dx.doi.org/10.1145/2678280
http://dx.doi.org/10.1145/2678280
http://dx.doi.org/10.1145/3192366.3192394
http://dx.doi.org/10.1109/INFCOM.2009.5062181

On Runtime Enforcement via Suppressions
Luca Aceto
Gran Sasso Science Institute, L’Aquila, Italy; and
Reykjavik University, Reykjavik, Iceland
luca.aceto@gssi.it

Ian Cassar
Reykjavik University, Reykjavik Iceland; and
University of Malta, Msida, Malta
ianc@ru.is

Adrian Francalanza
University of Malta, Msida, Malta
adrian.francalanza@um.edu.mt

Anna Ingólfsdóttir
Reykjavik University, Reykjavik, Iceland
annai@ru.is

Abstract
Runtime enforcement is a dynamic analysis technique that uses monitors to enforce the beha-
viour specified by some correctness property on an executing system. The enforceability of a logic
captures the extent to which the properties expressible via the logic can be enforced at runtime.
We study the enforceability of Hennessy-Milner Logic with Recursion (µHML) with respect to
suppression enforcement. We develop an operational framework for enforcement which we then
use to formalise when a monitor enforces a µHML property. We also show that the safety syn-
tactic fragment of the logic, sHML, is enforceable by providing an automated synthesis function
that generates correct suppression monitors from sHML formulas.

2012 ACM Subject Classification Theory of computation → Logic and verification, Software
and its engineering → Software verification, Software and its engineering → Dynamic analysis

Keywords and phrases Enforceability, Suppression Enforcement, Monitor Synthesis, Logic

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.34

Related Version https://arxiv.org/abs/1807.01004

Acknowledgements The research work disclosed in this publication is partially supported by
the projects “Developing Theoretical Foundations for Runtime Enforcement” (184776-051) and
“TheoFoMon: Theoretical Foundations for Monitorability” (163406-051) of the Icelandic Research
Fund, and by the Endeavour Scholarship Scheme (Malta), part-financed by the European Social
Fund (ESF) – Operational Programme II – Cohesion Policy 2014-2020.

1 Introduction

Runtime monitoring [22, 24] is a dynamic analysis technique that is becoming increasingly
popular in the turbid world of software development. It uses code units called monitors to
aggregate system information, compare system execution against correctness specifications,
or steer the execution of the observed system. The technique has been used effectively to
offload certain verification tasks to a post-deployment phase, thus complementing other

© Luca Aceto, Ian Cassar, Adrian Francalanza, and Anna Ingólfsdóttir;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 34; pp. 34:1–34:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luca.aceto@gssi.it
mailto:ianc@ru.is
mailto:adrian.francalanza@um.edu.mt
mailto:annai@ru.is
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.34
https://arxiv.org/abs/1807.01004
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

34:2 On Runtime Enforcement via Suppressions

(static) analysis techniques in multi-pronged verification strategies – see e.g., [6, 12, 27, 18, 28].
Runtime enforcement (RE) [33, 34, 21] is a specialized monitoring technique, used to ensure
that the behaviour of a system-under-scrutiny (SuS) is always in agreement with some
correctness specification. It employs a specific kind of monitor (referred to as a transducer [9,
42, 4] or an edit-automaton [33, 34]) to anticipate incorrect behaviour and counter it. Such a
monitor thus acts as a proxy between the SuS and the surrounding environment interacting
with it, encapsulating the system to form a composite (monitored) system: at runtime, the
monitor transforms any incorrect executions exhibited by the SuS into correct ones by either
suppressing, inserting or replacing events on behalf of the system.

We extend a recent line of research [25, 24, 2, 1] and study RE approaches that adopt
a separation of concerns between the correctness specification, describing what properties
the SuS should satisfy, and the monitor, describing how to enforce these properties on
the SuS. Our work considers system properties expressed in terms of the process logic
µHML [30, 32], and explores what properties can be operationally enforced by monitors that
can suppress system behaviour. A central element for the realisation of such an approach is
the synthesis function: it automates the translation from the declarative µHML specifications
to algorithmic descriptions formulated as executable monitors. Since analysis tools ought
to form part of the trusted computing base, enforcement monitoring should be, in and of
itself, correct. However, it is unclear what is to be expected of the synthesised monitor to
adequately enforce a µHML formula. Nor is it clear for which type of specifications should
this approach be expected to work effectively – it has been well established that a number
of properties are not monitorable [15, 40, 16, 25, 2] and it is therefore reasonable to expect
similar limits in the case of enforceability [19]. We therefore study the relationship between
µHML specifications and suppression monitors for enforcement, which allows us to address
the above-mentioned concerns and make the following contributions:
Modelling: We develop a general framework for enforcement instrumentation that is para-

metrisable by any system behaviour that is expressed via labelled transitions, and can
express suppression, insertion and replacement enforcement, Figure 2.

Correctness: We give formal definitions for asserting when a monitor correctly enforces a
formula defined over labelled transition systems, Definitions 3 and 8. These definitions
are parametrisable with respect to an instrumentation relation, an instance of which is
our enforcement framework of Figure 2.

Expressiveness: We provide enforceability results, Theorems 14 and 18 (but also Proposi-
tion 24), by identifying a subset of µHML formulas that can be (correctly) enforced by
suppression monitors.

As a by-product of this study, we also develop a formally-proven correct synthesis function,
Definition 12, that then can be used for tool construction, along the lines of [8, 7].

The setup selected for our study serves a number of purposes. For starters, the chosen
logic, µHML, is a branching-time logic that allows us to investigate enforceability for
properties describing computation graphs. Second, the use of a highly expressive logic allows
us to achieve a good degree of generality for our results, and so, by working in relation to
logics like µHML (a reformulation of the µ-calculus), our work would also apply to other
widely used logics (such as LTL and CTL [17]) that are embedded within this logic. Third,
since the logic is verification-technique agnostic, it fits better with the realities of software
verification in the present world, where a variety of techniques (e.g., model-checking and
testing) straddling both pre- and post-deployment phases are used. In such cases, knowing
which properties can be verified statically and which ones can be monitored for and enforced
at runtime is crucial for devising effective multi-pronged verification strategies. Equipped

L. Aceto, I. Cassar, A. Francalanza, and A. Ingólfsdóttir 34:3

Syntax
ϕ,ψ ∈ µHML ::= tt (truth) |ff (falsehood) |

∨
i∈I ϕi (disjunction)

|
∧
i∈I ϕi (conjunction) | 〈 p, c¡〉ϕ (possibility) | [p, c¡]ϕ (necessity)

|minX.ϕ (least fp.) |maxX.ϕ (greatest fp.) |X (fp. variable)

Semantics

Jtt, ρK def= Sys Jff, ρK def= ∅ JX, ρK def= ρ(X)
J
∧
i∈I ϕi, ρK

def=
⋂
i∈IJϕi, ρK JmaxX.ϕ, ρK def=

⋃{
S | S ⊆ Jϕ, ρ[X 7→ S]K

}
J
∨
i∈I ϕi, ρK

def=
⋃
i∈IJϕi, ρK J minX.ϕ, ρK def=

⋂{
S | Jϕ, ρ[X 7→ S]K ⊆ S

}
J [p, c¡]ϕ, ρK def=

{
s | (∀α, r · s α=⇒ r and (∃σ ·mtch(p, α)=σ and cσ ⇓ true)) implies q ∈ Jϕσ, ρK

}
J〈 p, c¡〉ϕ, ρK def=

{
s | ∃α, r, σ · (s α=⇒ r and mtch(p, α)=σ and cσ ⇓ true and q ∈ Jϕσ, ρK)

}
Figure 1 µHML Syntax and Semantics.

with such knowledge, one could also employ standard techniques [36, 5, 31] to decompose a
non-enforceable property into a collection of smaller properties, a subset of which can then
be enforced at runtime.

Structure of the paper. Section 2 revisits labelled transition systems and our touchstone
logic, µHML. The operational model for enforcement monitors and instrumentation is given
in Section 3. In Section 4 we formalise the interdependent notions of correct enforcement
and enforceability. These act as a foundation for the development of a synthesis function in
Section 5, that produces correct-by-construction monitors. In Section 6 we consider alternative
definitions for enforceability for logics with a specific additional interpretation, and show that
our proposed synthesis function is still correct with respect to the new definition. Section 7
concludes and discusses related work.

2 Preliminaries

The Model. We assume systems described as labelled transition systems (LTSs), triples
〈Sys,Act ∪ {τ} ,→〉 consisting of a set of system states, s, r, q ∈ Sys, a set of observable
actions, α, β ∈ Act, and a distinguished silent action τ /∈ Act (where µ ∈ Act∪{τ}), and a
transition relation, −→ ⊆ (Sys×Act∪{τ}×Sys). We write s µ−−→ r in lieu of (s, µ, r) ∈→,
and use s µ=⇒ s′ to denote weak transitions representing s(τ−→)∗· µ−−→ ·(τ−→)∗s′. We refer
to s′ as a µ-derivative of s. Traces, t, u ∈ Act∗ range over (finite) sequences of observable
actions, and we write s t=⇒ r to denote a sequence of weak transitions s α1==⇒ . . .

αn==⇒ r for
t = α1, . . . , αn. We also assume the classic notion of strong bisimilarity [39, 43] for our model,
s ∼ r, using it as our touchstone system equivalence. The syntax of the regular fragment of
CCS [39] is occasionally used to concisely describe LTSs in our examples.

The Logic. We consider a slightly generalised version of µHML [32, 3] that uses symbolic
actions of the form p, c¡. Patterns, p, abstract over actions using data variables d, e, f ∈ Var;
in a pattern, they may either occur free, d, or as binders, (d) where a closed pattern
is one without any free variables. We assume a (partial) matching function for closed
patterns mtch(p, α) that returns a substitution σ (when successful) mapping variables in
p to the corresponding values in α, i.e., if we instantiate every bound variable d in p with

CONCUR 2018

34:4 On Runtime Enforcement via Suppressions

σ(d) we obtain α. The filtering condition, c, contains variables found in p and evaluates
wrt. the substitutions returned by successful matches. Put differently, a closed symbolic
action p, c¡ is one where p is closed and fv(c) ⊆ bv(p); it denotes the set of actions
J p, c¡K def= { α ∃σ ·mtch(p, α)=σ and cσ ⇓ true } and allows more adequate reasoning about
LTSs with infinite actions (e.g., actions carrying data from infinite domains).

The logic syntax is given in Figure 1 and assumes a countable set of logical variables
X,Y ∈LVar. Apart from standard logical constructs such as conjunctions and disjunctions
(
∧
i∈I ϕi describes a compound conjunction, ϕ1∧ . . .∧ϕn, where I = {1, .., n} is a finite

set of indices, and similarly for disjunctions), and the characteristic greatest and least
fixpoints (maxX.ϕ and minX.ϕ bind free occurrences of X in ϕ), the logic uses necessity
and possibility modal operators with symbolic actions, [p, c¡]ϕ and 〈 p, c¡〉ϕ, where bv(p)
bind free data variables in c and ϕ. Formulas in µHML are interpreted over the system
powerset domain where S∈P(Sys). The semantic definition of Figure 1, Jϕ, ρK, is given
for both open and closed formulas. It employs a valuation from logical variables to sets of
states, ρ ∈ (LVar → P(Sys)), which permits an inductive definition on the structure of
the formulas; ρ′ = ρ[X 7→ S] denotes a valuation where ρ′(X) = S and ρ′(Y) = ρ(Y) for
all other Y 6= X. The only non-standard cases are those for the modal formulas, due to
the use of symbolic actions. Note that we recover the standard logic for symbolic actions
 p, c¡ whose pattern p does not contain variables (p=α for some α) and whose condition
holds trivially (c=true); in such cases we write [α]ϕ and 〈α〉ϕ for short. We generally assume
closed formulas, i.e., without free logical and data variables, and write JϕK in lieu of Jϕ, ρK
since the interpretation of a closed ϕ is independent of ρ. A system s satisfies formula ϕ
whenever s∈ JϕK whereas a formula ϕ is satisfiable, ϕ ∈ Sat, whenever there exists a system
r such that r ∈ JϕK.

I Example 1. Consider two systems (a good system, sg, and a bad one, sb) implementing a
server that interacts on port i, repeatedly accepting requests that are answered by outputting
on the same port, and terminating the service once a close request is accepted (on the same
port). Whereas sg outputs an answer (i!ans) for every request (i?req), sb occasionally refuses
to answer a given request (see the underlined branch). Both systems terminate with i?cls.

sg = recx.
(
i?req.i!ans.x+ i?cls.nil

)
sb = recx.

(
i?req.i!ans.x+ i?req.x+ i?cls.nil

)
We can specify that two consecutive requests on port i indicate invalid behaviour via
the µHML formula ϕ0

def= maxX.[i?req] ([i!ans]X∧[i?req]ff); it defines an invariant property
(maxX. (. . .)) requiring that whenever a system interacting on i inputs a request, it cannot
input a subsequent request, i.e., [i?req]ff, unless it outputs an answer beforehand, in which
case the formula recurses, i.e., [i!ans]X. Using symbolic actions, we can generalise ϕ0 by
requiring the property to hold for any interaction happening on any port number except j.

ϕ1
def= maxX.[(d)?req, d6=j¡]([d!ans, true¡]X∧[d?req, true¡]ff)

In ϕ1, (d)?req binds the free occurrences of d found in d 6=j and [d!ans, true¡]X∧[d?req, true¡]ff.
Using Figure 1, one can check that sg∈Jϕ1K, whereas sb 6∈Jϕ1K since sb

i?req−−−−→ · i?req−−−−→ . . .

3 An Operational Model for Enforcement

Our operational mechanism for enforcing properties over systems uses the (symbolic) trans-
ducers m,n ∈ Trn defined in Figure 2. The transition rules in Figure 2 assume closed terms,
i.e., for every symbolic-prefix transducer, p, c, p′¡.m, p is closed and

(
fv(c)∪fv(p′)∪fv(m)

)
⊆

bv(p), and yield an LTS with labels of the form γIµ, where γ ∈ (Act∪{•}). Our syntax

L. Aceto, I. Cassar, A. Francalanza, and A. Ingólfsdóttir 34:5

Syntax

m,n ∈ Trn ::= id | p, c, p′¡.m |
∑
i∈Imi | recx.m | x

Dynamics

eId
id µIµ−−−→ id

eSel
mj

γIµ−−−→ nj∑
i∈Imi

γIµ−−−→ nj
j∈I eRec

m{recx.m/x} γIµ−−−→ n

recx.m γIµ−−−→ n

eTrn
mtch(p, γ) = σ cσ ⇓ true µ= p′σ

 p, c, p′¡.m γIµ−−−→ mσ
Instrumentation

iTrn

s
α−→ s′

m
αIµ−−−→ n

m[s] µ−→ n[s′]
iAsy s

τ−→ s′

m[s] τ−→ m[s′]
iIns m

•Iµ−−→ n

m[s] µ−→ n[s]
iTer

s
α−→ s′

m 6α−→ m 6•−→
m[s] α−→ id[s′]

Figure 2 A model for transducers (I is a finite index set and m 6γ−−→ means @µ, n ·m γIµ−−−→n).

assumes a well-formedness constraint where for every p, c, p′¡.m, bv(c)∪bv(p′) = ∅. Intu-
itively, a transition m αIµ−−−→ n denotes the fact that the transducer in state m transforms
the visible action α (produced by the system) into the action µ (which can possibly become
silent) and transitions into state n. In this sense, the transducer action αIτ represents the
suppression of action α, action αIβ represents the replacing of α by β, and αIα denotes the
identity transformation. The special case •Iα encodes the insertion of α, where • represents
that the transition is not induced by any system action.

The key transition rule in Figure 2 is eTrn. It states that the symbolic-prefix transducer
 p, c, p′¡.m can transform an (extended) action γ into the concrete action µ, as long as
the action matches with pattern p with substitution σ, mtch(p, γ)=σ, and the condition is
satisfied by σ, cσ ⇓ true (the matching function is lifted to extended actions and patterns in
the obvious way, where mtch(•, •)=∅). In such a case, the transformed action is µ=p′σ, i.e.,
the action µ resulting from the instantiation of the free data variables in pattern p′ with the
corresponding values mapped by σ, and the transducer state reached is mσ. By contrast, in
rule eId, the transducer id acts as the identity and leaves actions unchanged. The remaining
rules are fairly standard and unremarkable.

Figure 2 also describes an instrumentation relation which relates the behaviour of the
SuS s with the transformations of a transducer monitor m that agrees with the (observable)
actions Act of s. The termm[s] thus denotes the resulting monitored system whose behaviour
is defined in terms of Act∪{τ} from the system’s LTS. Concretely, rule iTrn states that
when a system s transitions with an observable action α to s′ and the transducer m can
transform this action into µ and transition to n, the instrumented system m[s] transitions
with action µ to n[s′]. However, when s transitions with a silent action, rules iAsy allows
it to do so independently of the transducer. Dually, rule iIns allows the transducer to
insert an action µ independently of s’s behaviour. Rule iTer is analogous to standard
monitor instrumentation rules for premature termination of the transducer [22, 25, 23, 1],
and accounts for underspecification of transformations. Thus, if a system s transitions with
an observable action α to s′, and the transducer m does not specify how to transform it
(m 6α−→), nor can it transition to a new transducer state by inserting an action (m 6•−→), the
system is still allowed to transition while the transducer’s transformation activity is ceased,
i.e., it acts like the identity id from that point onwards.

CONCUR 2018

34:6 On Runtime Enforcement via Suppressions

I Example 2. Consider the insertion transducer mi and the replacement transducer mr
below:

mi
def= •, true, i?req¡. •, true, i!ans¡.id

mr
def= recx.

(
 (d)?req, true, j?req¡.x+ (d)!ans, true, j!ans¡.x+ (d)?cls, true, j?cls¡.x

)
When instrumented with a system, mi inserts the two successive actions i?req and i!ans before
behaving as the identity. Concretely in the case of sb we can only start the computation as:

mi[sb] i?req−−−−→ •, true, i!ans¡.id[sb] i!ans−−−→ id[sb] α−−→ . . . (where sb
α−−→)

By contrast, mr transforms input actions with either payload req or cls and output actions
with payload ans on any port name, into the respective actions on port j. For instance:

mr[sb] j?req−−−−→ mr[i!ans.sb] j!ans−−−−→ mr[sb] j?cls−−−→ mr[nil]

Consider now the two suppression transducers ms and mt for actions on ports other than j:

ms
def= recx.

(
 (d)?req, d 6= j, τ ¡.x+ (d)!ans, true, d!ans¡.x

)
mt

def= recx.
(
 (d)?req, d 6= j, d?req¡.rec y.

(
 d!ans, true, d!ans¡.x+ d?req, true, τ ¡.y

))
Monitor ms suppresses any requests on ports other than j, and continues to do so after any
answers on such ports. When instrumented with sb, we can observe the following behaviour:

ms[sb] τ−→ ms[i!ans.sb] i!ans−−−→ ms[sb] τ−→ ms[i!ans.sb] i!ans−−−→ ms[sb] . . .

Note that ms does not specify a transformation behaviour for when the monitored system
produces inputs with payload other than req. The instrumentation handles this underspe-
cification by ceasing suppression activity; in the case of sb we get ms[sb] i?cls−−−→ id[nil]. The
transducer mt performs slightly more elaborate transformations. For interactions on ports
other than j, it suppresses consecutive input requests following any serviced request (i.e., an
input on req followed by an output on ans) sequence. For sb we can observe the following:

mt[sb] i?req−−−−→ rec y.
(
 i!ans, true, i!ans¡.mt + i?req, true, τ ¡.y

)
[sb]

τ−→ rec y.
(
 i!ans, true, i!ans¡.mt + i?req, true, τ ¡.y

)
[i!ans.sb] i!ans−−−→ mt[sb]

In the sequel, we find it convenient to refer to p as the transformed pattern p where all the
binding occurrences (d) are converted to free occurrences d. As shorthand notation, we elide
the second pattern p′ in a transducer p, c, p′¡.m whenever p′=p and simply write p, c¡.m;
note that if bv(p) = ∅, then p=p. Similarly, we elide c whenever c=true. This allows us to
express mt from Example 2 as recx.

(
 (d)?req, d6=j¡.rec y.

(
 d!ans¡.x+ d?req, τ ¡.y

))
.

4 Enforceability

The enforceability of a logic rests on the relationship between the semantic behaviour specified
by the logic on the one hand, and the ability of the operational mechanism (the transducers
and instrumentation of Section 3 in our case) to enforce the specified behaviour on the other.

I Definition 3 (Enforceability). A logic L is enforceable iff every formula ϕ∈L is enforceable.
A formula ϕ is enforceable iff there exists a transducer m such that m enforces ϕ.

L. Aceto, I. Cassar, A. Francalanza, and A. Ingólfsdóttir 34:7

Definition 3 depends on what is considered to be an adequate definition for “m enforces
ϕ”. It is reasonable to expect that the latter definition should concern any system that the
transducer m– hereafter referred to as the enforcer – is instrumented with. In particular, for
any system s, the resulting composite system obtained from instrumenting the enforcer m
with it should satisfy the property of interest, ϕ, whenever this property is satisfiable.

I Definition 4 (Sound Enforcement). Enforcer m soundly enforces a formula ϕ, denoted as
senf(m,ϕ), iff for all s ∈ Sys, ϕ ∈ Sat implies m[s] ∈ JϕK holds.

I Example 5. Recall ϕ1, sg and sb from Example 1 where sg ∈ Jϕ1K (hence ϕ1 ∈ Sat) and
sb 6∈ Jϕ1K. For the enforcers mi, mr, ms and mt presented in Example 2, we have:

mi[sb] 6∈ Jϕ1K, since mi[sb] i?req−−−−→ · i!ans−−−→ id[sb] i?req−−−−→ id[sb] i?req−−−−→ id[sb]. This counter
example implies that ¬senf(mi, ϕ1).
mr[sg] ∈ Jϕ1K and mr[sb] ∈ Jϕ1K. Intuitively, this is because the ensuing instrumented
systems only generate (replaced) actions that are not of concern to ϕ1. Since this
behaviour applies to any system mr is composed with, we can conclude that senf(mr, ϕ1).
ms[sg] ∈ Jϕ1K and ms[sb] ∈ Jϕ1K because the resulting instrumented systems never
produce inputs with req on a port number other than j. We can thus conclude that
senf(ms, ϕ1).
mt[sg] ∈ Jϕ1K and mt[sb] ∈ Jϕ1K. Since the resulting instrumentation suppresses consec-
utive input requests (if any) after any number of serviced requests on any port other than
j, we can conclude that senf(mt, ϕ1).

By some measures, sound enforcement is a relatively weak requirement for adequate
enforcement as it does not regulate the extent of the induced enforcement. More concretely,
consider the case of enforcer ms from Example 2. Although ms manages to suppress the
violating executions of system sb, thereby bringing it in line with property ϕ1, it needlessly
modifies the behaviour of sg (namely it prohibits it from producing any inputs with req
on port numbers that are not j), even though it satisfies ϕ1. Thus, in addition to sound
enforcement we require a transparency condition for adequate enforcement. The requirement
dictates that whenever a system s already satisfies the property ϕ, the assigned enforcer m
should not alter the behaviour of s. Put differently, the behaviour of the enforced system
should be behaviourally equivalent to the original system.

I Definition 6 (Transparent Enforcement). An enforcer m is transparent when enforcing a
formula ϕ, denoted as tenf(m,ϕ), iff for all s ∈ Sys, s ∈ JϕK implies m[s] ∼ s.

I Example 7. We have already argued – via the counter example sg– why ms does not
transparently enforce ϕ1. We can also argue easily why ¬tenf(mr, ϕ1) either: the simple
system i?req.nil trivially satisfies ϕ1 but, clearly, we have the inequality mr[i?req.nil] 6∼
i?req.nil since mr[i?req.nil] j?req−−−−→ mr[nil] and i?req.nil 6j?req−−−−→.

It turns out that enforcer tenf(mt, ϕ1), however. Although this property is not as easy
to show – due to the universal quantification over all systems – we can get a fairly good
intuition for why this is the case via the example sg: it satisfies ϕ1 and mt[sg] ∼ sg holds.

I Definition 8 (Enforcement). A monitor m enforces property ϕ whenever it does so (i)
soundly, Definition 4 and (ii) transparently, Definition 6.

For any reasonably expressive logic (such as µHML), it is usually the case that not every
formula can be enforced, as the following example informally illustrates.

CONCUR 2018

34:8 On Runtime Enforcement via Suppressions

ϕ,ψ ∈ sHML ::= tt | ff |
∧
i∈I ϕi | [p, c¡]ϕ | X | maxX.ϕ

Figure 3 The syntax for the safety µHML fragment, sHML.

I Example 9. Consider the µHML property ϕns, together with the two systems sra and sr:

ϕns
def= [i?req]ff ∨ [i!ans]ff sra

def= i?req.nil + i!ans.nil sr
def= i?req.nil

A system satisfies ϕns if either it cannot produce action i?req or it cannot produce action i!ans.
Clearly, sra violates this property as it can produce both. This system can only be enforced via
action suppressions or replacements because insertions would immediately break transparency.
Without loss of generality, assume that our monitors employ suppressions (the same argument
applies for action replacement). The monitor mr

def= rec y.
(
 i?req, τ ¡.y+ i!ans, τ ¡.y

)
would in

fact be able to suppress the offending actions produced by sra, thus obtaining mr[sra] ∈ JϕnsK.
However, it would also suppress the sole action i?req produced by the system sr, even
though this system satisfies ϕns. This would, in turn, violate the transparency criterion
of Definition 6 since it needlessly suppresses sr’s actions, i.e., although sr ∈ JϕnsK we have
mr[sr] 6∼ sr. The intuitive reason for this problem is that a monitor cannot, in principle, look
into the computation graph of a system, but is limited to the behaviour the system exhibits
at runtime.

5 Synthesising Suppression Enforcers

Despite their merits, Definitions 3 and 8 are not easy to work with. The universal quantifica-
tions over all systems in Definitions 4 and 6 make it hard to establish that a monitor correctly
enforces a property. Moreover, according to Definition 3, in order to determine whether a
particular property is enforceable or not, one would need to show the existence of a monitor
that correctly enforces it; put differently, showing that a property is not enforceable entails
another universal quantification, this time showing that no monitor can possibly enforce the
property. Lifting the question of enforceability to the level of a (sub)logic entails a further
universal quantification, this time on all the logical formulas of the logic; this is often an
infinite set.We address these problems in two ways. First, we identify a non-trivial syntactic
subset of µHML that is guaranteed to be enforceable; in a multi-pronged approach to system
verification, this could act as a guide for whether the property should be considered at a pre-
deployment or post-deployment phase. Second, for every formula ϕ in this enforceable subset,
we provide an automated procedure to synthesise a monitor m from it that correctly enforces
ϕ when instrumented over arbitrary systems, according to Definition 8. This procedure can
then be used as a basis for constructing tools that automate property enforcement.

In this paper, we limit our enforceability study to suppression monitors, transducers
that are only allowed to intervene by dropping (observable) actions. Despite being more
constrained, suppression monitors side-step problems associated with what data to use in a
payload-carrying action generated by the enforcer, as in the case of insertion and replacement
monitors: the notion of a default value for certain data domains is not always immediate.
Moreover, suppression monitors are particularly useful for enforcing safety properties, as
shown in [33, 10, 20]. Intuitively, a suppression monitor would suppress actions as soon as it
becomes apparent that a violation is about to be committed by the SuS. Such an intervention
intrinsically relies on the detection of a violation. To this effect, we use a prior result from

L. Aceto, I. Cassar, A. Francalanza, and A. Ingólfsdóttir 34:9

[25], which identified a maximally-expressive logical fragment of µHML that can be handled
by violation-detecting (recogniser) monitors. We thus limit our enforceability study to this
maximal safety fragment, called sHML, since a transparent suppression monitor cannot
judiciously suppress actions without first detecting a (potential) violation. Figure 3 recalls
the syntax for sHML. The logic is restricted to truth and falsehood (tt and ff), conjunctions
(
∧
i∈Iϕ), and necessity modalities ([p, c¡]ϕ), while recursion may only be expressed through

greatest fixpoints (maxX.ϕ); the semantics follows that of Figure 1.
A standard way how to achieve our aims would be to (i) define a (total) synthesis function

L− M :: sHML 7→ Trn from sHML formulas to suppression monitors and (ii) then show
that for any ϕ ∈ sHML, the synthesised monitor Lϕ M enforces ϕ. Moreover, we would also
require the synthesis function to be compositional, whereby the definition of the enforcer
for a composite formula is defined in terms of the enforcers obtained for the constituent
subformulas. There are a number of reasons for this requirement. For one, it would simplify
our analysis of the produced monitors and allow us to use standard inductive proof techniques
to prove properties about the synthesis function, such as the aforementioned criteria (ii).
However, a naive approach to such a scheme is bound to fail, as discussed in the next example.

I Example 10. Consider a semantically equivalent reformulation of ϕ1 from Example 1.

ϕ2
def= maxX.([(d)?req, d6=j¡][d!ans, true¡]X)∧ ([(d)?req, d6=j¡][d?req, true¡]ff)

At an intuitive level, the suppression monitor that one would expect to obtain for the
subformula ϕ′2

def= [(d)?req, d6=j¡][d?req, true¡]ff is (d)?req, d 6= j¡.rec y. d?req, τ ¡.y (i.e., an
enforcer that repeatedly drops any req inputs following a req input on the same port),
whereas the monitor obtained for the subformula ϕ′′2

def= [(d)?req, d6=j¡][d!ans, true¡]X is
 (d)?req, d 6= j¡. d!ans¡.x (assuming some variable mapping from X to x). These monitors
would then be combined in the synthesis for maxX.ϕ′′2∧ϕ′2 as

mb
def= recx.

(
 (d)?req, d 6= j¡. d!ans¡.x

)
+
(
 (d)?req, d 6= j¡.rec y. d?req, τ ¡.y

)
One can easily see that mb does not behave deterministically, nor does it soundly enforce
ϕ2. For instance, for the violating system i?req.i?req.nil 6∈ Jϕ2K(= Jϕ1K) we can observe the
transition sequence mb[i?req.i?req.nil] i?req−−−−→ i!ans¡.mb[i?req.nil] i?req−−−−→ id[nil].

Instead of complicating our synthesis function to cater for anomalies such as those
presented in Example 10 – also making it less compositional in the process – we opted for a
two stage synthesis procedure. First, we consider a normalised subset for sHML formulas
which is amenable to a (straightforward) synthesis function definition that is compositional.
This also facilitates the proofs for the conditions required by Definition 8 for any synthesised
enforcer. Second, we show that every sHML formula can be reformulated in this normalised
form without affecting its semantic meaning. We can then show that our two-stage approach
is expressive enough to show the enforceability for all of sHML.

I Definition 11 (sHML normal form). The set of normalised sHML formulas is defined as:

ϕ,ψ ∈ sHMLnf ::= tt | ff |
∧
i∈I [pi, ci¡]ϕi | X | maxX.ϕ .

The above grammar combines necessity operators with conjunctions into one construct∧
i∈I [pi, ci¡]ϕi. Normalised sHML formulas are required to satisfy two further conditions:

1. For every
∧
i∈I [pi, ci¡]ϕi, for all j, h ∈ I where j 6=h we have J pj , cj¡K ∩ J ph, ch¡K = ∅.

2. For every maxX.ϕ we have X ∈ fv(ϕ).

CONCUR 2018

34:10 On Runtime Enforcement via Suppressions

In a (closed) normalised sHML formula, the basic terms tt and ff can never appear un-
guarded unless they are at the top level (e.g., we can never have ϕ∧ff or maxX0. . . .maxXn.ff).
Moreover, in any conjunction of necessity subformulas,

∧
i∈I [pi, ci¡]ϕi, the necessity guards

are disjoint and at most one necessity guard can satisfy any particular action.

I Definition 12. The synthesis function L− M : sHMLnf 7→Trn is defined inductively as:

LX M def= x L tt M def= L ff M def= id L maxX.ϕ M def= recx.Lϕ M

L
∧
i∈ I

[pi, ci¡]ϕi M
def= rec y.

∑
i∈I

{
 pi, ci, τ ¡.y if ϕi=ff
 pi, ci, pi¡.Lϕi M otherwise

The synthesis function is compositional. It assumes a bijective mapping between formula
variables and monitor recursion variables and converts logical variablesX accordingly, whereas
maximal fixpoints, maxX.ϕ, are converted into the corresponding recursive enforcer. The
synthesis also converts truth and falsehood formulas, tt and ff, into the identity enforcer
id. Normalized conjunctions,

∧
i∈ I [pi, ci¡]ϕi, are synthesised into a recursive summation of

enforcers, i.e., rec y.mi, where y is fresh, and every branch mi can be either of the following:
(i) when mi is derived from a branch of the form [pi, ci¡]ϕi where ϕi 6=ff, the synthesis

produces an enforcer with the identity transformation prefix, pi, ci, pi¡, followed by
the enforcer synthesised from the continuation ϕi, i.e., [pi, ci¡]ϕi is synthesised as
 pi, ci, pi¡.Lϕi M;

(ii) when mi is derived from a branch of the form [pi, ci¡]ff, the synthesis produces a
suppression transformation, pi, ci, τ ¡, that drops every concrete action matching the
symbolic action pi, ci¡, followed by the recursive variable of the branch y, i.e., a branch
of the form [pi, ci¡]ff is translated into pi, ci, τ ¡.y.

I Example 13. Recall formula ϕ1 from Example 1, recast in term of sHMLnf’s grammar:

ϕ1
def= maxX.

∧(
[(d)?req, d6=j¡]

(
[d!ans, true¡]X ∧ [d?req, true¡]ff

))
Using the synthesis function defined in Definition 12, we can generate the enforcer

Lϕ1 M = recx.rec z.
∑(

 (d)?req, d6=j¡.rec y.(d!ans, true¡.x + d?req, true, τ ¡.y)
)

which can be optimized by removing redundant recursive constructs (e.g., rec z._), obtaining:

= recx. (d)?req, d6=j¡.rec y.(d!ans, true¡.x + d?req, true, τ ¡.y) = mt

We now present the first main result to the paper.

I Theorem 14 (Enforcement). The (sub)logic sHMLnf is enforceable.

Proof. By Definition 3, the result follows if we show that for all ϕ∈ sHMLnf, Lϕ M enforces ϕ.
By Definition 8, this is a corollary following from Propositions 15 and 16 stated below. J

I Proposition 15 (Enforcement Soundness). For every system s∈Sys and ϕ∈ sHMLnf then
ϕ ∈ Sat implies Lϕ M[s]∈ JϕK.

I Proposition 16 (Enforcement Transparency). For every system s∈Sys and ϕ∈ sHMLnf
then s∈ JϕK implies Lϕ M[s] ∼ s.

L. Aceto, I. Cassar, A. Francalanza, and A. Ingólfsdóttir 34:11

Following Theorem 14, to show that sHML is an enforceable logic, we only need to show
that for every ϕ ∈ sHML there exists a corresponding ψ ∈ sHMLnf with the same semantic
meaning, i.e., JϕK = JψK. In fact, we go a step further and provide a constructive proof using
a transformation 〈〈−〉〉 : sHML 7→ sHMLnf that derives a semantically equivalent sHMLnf
formula from a standard sHML formula. As a result, from an arbitrary sHML formula ϕ
we can then automatically synthesise a correct enforcer using L 〈〈ϕ〉〉 M which is useful for tool
construction.

Our transformation 〈〈ϕ〉〉 relies on a number of steps; here we provide an outline of these
steps. First, we assume sHML formulas that only use symbolic actions with normalised
patterns p, i.e., patterns that do not use any data or free data variables (but they may use
bound data variables). In fact, any symbolic action p, c¡ can be easily converted into a
corresponding one using normalised patterns as shown in the next example.

I Example 17. Consider the symbolic action d!ans, d 6= j¡. It may be converted to a
corresponding normalised symbolic action by replacing every occurrence of a data or free
data variable in the pattern by a fresh bound variable, and then add an equality constraint
between the fresh variable and the data or data variable it replaces in the pattern condition.
In our case, we would obtain (e)!(f), d6=j ∧ e=d ∧ f=ans¡.

Our algorithm for converting sHML formulas (with normalised patterns) to sHMLnf
formulas, 〈〈−〉〉, is based on Rabinovich’s work [41] for determinising systems of equations
which, in turn relies on the standard powerset construction for converting NFAs into DFAs.
It consists in the following six stages that we outline below:
1. We unfold each recursive construct in the formula, to push recursive definitions inside

the formula body. E.g., the formula maxX.
(
[p1, c1¡]X∧[p2, c2¡]ff

)
is expanded to the

formula [p1, c1¡]
(
maxX.[p1, c1¡]X∧[p2, c2¡]ff

)
∧[p2, c2¡]ff.

2. The formula is converted into a system of equations. E.g., the expanded formula from
the previous stage is converted into the set {X0 = [p1, c1¡]X0∧[p2, c2¡]X1, X1 = ff}.

3. For every equation, the symbolic actions in the right hand side that are of the same
kind are alpha-converted so that their bound variables match. E.g., Consider X0 =
[p1, c1¡]X0∧[p2, c2¡]X1 from the previous stage where, for the sake of the example,
p1 = (d1)?(d2) and p2 = (d3)?(d4). The patterns in the symbolic actions are made
syntactically equivalent by renaming d3 and d4 in p2, c2¡ into d1 and d2 respectively.

4. For equations with matching patterns in the symbolic actions, we create a variant that
symbolically covers all the (satisfiable) permutations on the symbolic action conditions.
E.g., Consider X0 = [p1, c1¡]X0∧[p1, c3¡]X1 from the previous stage. We expand this to
X0 = [p1, c1 ∧ c3¡]X0 ∧ [p1, c1 ∧ c3¡]X1 ∧ [p1, c1 ∧ ¬(c3)¡]X0 ∧ [p1,¬(c1) ∧ c3¡]X1.

5. For equations with branches having syntactically equivalent symbolic actions, we carry
out a unification procedure akin to standard powerset constructions. E.g., we convert the
equation from the previous step to X{0} = [p1, c1 ∧ c3¡]X{0,1} ∧ [p1, c1 ∧ ¬(c3)¡]X{0} ∧
[p1,¬(c1) ∧ c3¡]X{1} using the (unified) fresh variables X{0}, X{1} and X{0,1}.

6. From the unified set of equations we generate again the sHML formula starting from
X{0}. This procedure may generate redundant recursion binders, i.e., maxX.ϕ where
X 6∈ fv(ϕ), and we filter these out in a subsequent pass.

We now state the second main result of the paper.

I Theorem 18 (Normalisation). For any ϕ∈sHML there exists ψ∈sHMLnf s.t. JϕK=JψK.

Proof. The witness formula in normal form is 〈〈ϕ〉〉, where we show that each and every stage
in the translation procedure preserves semantic equivalence. J

CONCUR 2018

34:12 On Runtime Enforcement via Suppressions

6 Alternative Transparency Enforcement

Transparency for a property ϕ, Definition 6, only restricts enforcers from modifying the
behaviour of satisfying systems, i.e., when s∈JϕK, but fails to specify any enforcement
behaviour for the cases when the SuS violates the property s/∈JϕK. In this section, we
consider an alternative transparency requirement for a property ϕ that incorporates the
expected enforcement behaviour for both satisfying and violating systems. More concretely,
in the case of safety languages such as sHML, a system typically violates a property along a
specific set of execution traces; in the case of a satisfying system this set of “violating traces”
is empty. However, not every behaviour of a violating system would be part of this set of
violating traces and, in such cases, the respective enforcer should be required to leave the
generated behaviour unaffected.

I Definition 19 (Violating-Trace Semantics). A logic L with an interpretation over systems
J−K : L 7→ P(Sys) has a violating-trace semantics whenever it has a secondary interpretation
J−Kv : L 7→ P(Sys×Act∗) satisfying the following conditions for all ϕ ∈ L:
1. (s, t) ∈ JϕKv implies s /∈ JϕK and s t=⇒ ,
2. s /∈ JϕK implies ∃t · (s, t) ∈ JϕKv .

We adapt the work in [26] to give sHML a violating-trace semantics. Intuitively, the
judgement (s, t) ∈ JϕKv according to Definition 20 below, denotes the fact that s violates the
sHML property ϕ along trace t.

I Definition 20 (Alternative Semantics for sHML [26]). The forcing relation `v⊆
(
Sys ×

Act∗ × sHML
)
is the least relation satisfying the following rules:

(s, ε,ff) ∈ R always
(s, t,

∧
i∈I ϕi) ∈ R if ∃j ∈ I such that (s, t, ϕj) ∈ R

(s, αt, [p, c¡]ϕ) ∈ R if mtch(p, α)=σ, cσ ⇓ true and s α=⇒ s′ and (s′, t, ϕσ) ∈ R
(s, t,maxX.ϕ) ∈ R if (s, t, ϕ{maxX.ϕ/X}) ∈ R .

We write s, t `v ϕ (or (s, t) ∈ JϕKv) in lieu of (s, t, ϕ) ∈`v. We say that trace t is a violating
trace for s with respect to ϕ whenever s, t `v ϕ. Dually, t is a non-violating trace for ϕ
whenever there does not exist a system s such that s, t `v ϕ.

I Example 21. Recall ϕ1, sb from Example 1 where ϕ1 ∈ sHML, and alsomt from Example 5
where we argued in Example 13 that Lϕ1 M = mt (modulo cosmetic optimisations). Even
though sb 6∈ Jϕ1K, not all of its exhibited behaviours constitute violating traces: for instance,
sb

i?req·i!ans======⇒ sb is not a violating trace according to Definition 20. Correspondingly, we also
have mt[sb] i?req·i!ans======⇒ mt[sb].

I Theorem 22 (Adapted and extended from [26]). The alternative interpretation J−Kv of
Definition 20 is a violating-trace semantics for sHML (with J−K from Figure 1) in the sense
of Definition 19.

Equipped with Definition 20 we can define an alternative definition for transparency
that concerns itself with preserving exhibited traces that are non-violating. We can then
show that the monitor synthesis for sHML of Definition 12 observes non-violating trace
transparency.

L. Aceto, I. Cassar, A. Francalanza, and A. Ingólfsdóttir 34:13

I Definition 23 (Non-Violating Trace Transparency). An enforcer m is transparent with
respect to the non-violating traces of a formula ϕ, denoted as nvtenf(m,ϕ), iff for all s ∈ Sys
and t ∈ Act∗, when s, t 6`v ϕ then

s
t=⇒ s′ implies m[s] t=⇒ m′[s′] for some m′, and

m[s] t=⇒ m′[s′] implies s
t=⇒ s′.

I Proposition 24 (Non-Violating Trace Transparency). For all ϕ ∈ sHML, s ∈ Sys and
t ∈ Act∗, when s, t 6`v ϕ then

s
t=⇒ s′ implies Lϕ M[s] t=⇒ m′[s′], and

Lϕ M[s] t=⇒ m′[s′] implies s
t=⇒ s′.

We can thus obtain a new definition for “m enforces ϕ” instead of Definition 8 by requiring
sound enforcement, Definition 6, and non-violating trace transparency, Definition 23 (instead
of the transparent enforcement of Definition 6). This in turn gives us a new definition for
enforceability for a logic, akin to Definition 3. Using Propositions 15 and 24, one can show
that sHML is also enforceable with respect to the new definition as well.

7 Conclusion

This paper presents a preliminary investigation of the enforceability of properties expressed
in a process logic. We have focussed on a highly expressive and standard logic, µHML,
and studied the ability to enforce µHML properties via a specific kind of monitor that
performs suppression-based enforcement. We concluded that sHML, identified in earlier
work as a maximally expressive safety fragment of µHML, is also an enforceable logic. To
show this, we first defined enforceability for logics and system descriptions interpreted over
labelled transition systems. Although enforceability builds upon soundness and transparency
requirements that have been considered in other work, our branching-time framework allowed
us to consider novel definitions for these requirements. We also contend that the definitions
that we develop for the enforcement framework are fairly modular: e.g., the instrumentation
relation is independent of the specific language constructs defining our transducer monitors
and it functions as expected as long as the transition semantics of the transducer and the
system are in agreement. Based on this notion of enforcement, we devise a two-phase
procedure to synthesise correct enforcement monitors. We first identify a syntactic subset of
our target logic sHML that affords certain structural properties and permits a compositional
definition of the synthesis function. We then show that, by augmenting existing rewriting
techniques to our setting, we can convert any sHML formula into this syntactic subset.

Related Work

In his seminal work [44], Schneider regards a property (in a linear-time setting) to be
enforceable if its violation can be detected by a truncation automaton, and prevents its
occurrence via system termination; by preventing misbehaviour, these enforcers can only
enforce safety properties. Ligatti et al. in [33] extended this work via edit automata – an
enforcement mechanism capable of suppressing and inserting system actions. A property
is thus enforceable if it can be expressed as an edit automaton that transforms invalid
executions into valid ones via suppressions and insertions. Edit automata are capable of
enforcing instances of safety and liveness properties, along with other properties such as
infinite renewal properties [33, 10]. As a means to assess the correctness of these automata,
the authors introduced soundness and transparency. In both of these settings, there is no

CONCUR 2018

34:14 On Runtime Enforcement via Suppressions

clear separation between the specification and the enforcement mechanism, and properties
are encoded in terms of the languages accepted by the enforcement model itself, i.e., as
edit/truncation automata. By contrast, we keep the specification and verification aspects of
the logic separate.

Bielova et al. [10, 11] remark that soundness and transparency do not specify to what
extent a transducer should modify an invalid execution. They thus introduce a predictability
criterion to prevent transducers from transforming invalid executions arbitrarily. More
concretely, a transducer is predictable if one can predict the number of transformations that
it will apply in order to transform an invalid execution into a valid one, thereby preventing
enforcers from applying unnecessary transformations over an invalid execution. Using this
notion, Bielova et al. thus devise a more stringent notion of enforceability. Although
we do not explore this avenue, Definition 23 may be viewed as an attempt to constrain
transformations of violating systems in a branching-time setup, and should be complementary
to these predictability requirements.

Könighofer et al. in [29] present a synthesis algorithm that produces action replacement
transducers called shields from safety properties encoded as automata-based specifications.
Shields analyse the inputs and outputs of a reactive systems and enforce properties by
modifying the least amount of output actions whenever the system deviates from the specified
behaviour. By definition, shields should adhere to two desired properties, namely correctness
and minimum deviation which are, in some sense, analogous to soundness and transparency
respectively. Falcone et al. in [19, 21, 20], also propose synthesis procedures to translate
properties − expressed as Streett automata − into the resp., enforcers. The authors show that
most of the property classes defined within the Safety-Progress hierarchy [35] are enforceable,
as they can be encoded as Streett automata and subsequently converted into enforcement
automata. As opposed to Ligatti et al., both Könighofer et al. and Falcone et al. separate
the specification of the property from the enforcement mechanism, but unlike our work they
do not study the enforceability of a branching time logic.

To the best of our knowledge, the only other work that tackles enforceability for the
modal µ-calculus [30] (a reformulation of µHML) is that of Martinelli et al. in [37, 38]. Their
approach is, however, different from ours. In addition to the µ-calculus formula to enforce,
their synthesis function also takes a “witness” system satisfying the formula as a parameter.
This witness system is then used as the behaviour that is mimicked by the instrumentation
via suppression, insertion or replacement mechanisms. Although the authors do not explore
automated correctness criteria such as the ones we study in this work, it would be interesting
to explore the applicability of our methods to their setting.

Bocchi et al. [12] adopt multi-party session types to project the global protocol specific-
ations of distributed networks to local types defining a local protocol for every process in
the network that are then either verified statically via typechecking or enforced dynamically
via suppression monitors. To implement this enforcement strategy, the authors define a
dynamic monitoring semantics for the local types that suppress process interactions so as to
conform to the assigned local specification. They prove local soundness and transparency for
monitored processes that, in turn, imply global soundness and transparency by construction.
Their local enforcement is closely related to the suppression enforcement studied in our
work with the following key differences: (i) well-formed branches in a session type are,
by construction, explicitly disjoint via the use of distinct choice labels (i.e., similar to our
normalised subset sHMLnf), whereas we can synthesise enforcers for every sHML formula
using a normalisation procedure; (ii) they give an LTS semantics to their local specifications
(which are session types) which allows them to state that a process satisfies a specification
when its behaviour is bisimilar to the operational semantics of the local specification – we do

L. Aceto, I. Cassar, A. Francalanza, and A. Ingólfsdóttir 34:15

not change the semantics of our formulas, which is left in its original denotational form; (iii)
they do not provide transparency guarantees for processes that violate a specification, along
the lines of Definition 23; (iv) Our monitor descriptions sit at a lower level of abstraction
than theirs using a dedicated language, whereas theirs have a session-type syntax with an
LTS semantics (e.g., repeated suppressions have to be encoded in our case using the recursion
construct while this is handled by their high-level instrumentation semantics).

In [14], Castellani et al. adopt session types to define reading and writing privileges
amongst processes in a network as global types for information flow purposes. These global
types are projected into local monitors capable of preventing read and write violations by
adapting certain aspects of the network. Although their work is pitched towards adaptation
[24, 13], rather than enforcement, in certain instances they adapt the network by suppressing
messages or by replacing messages with messages carrying a default nonce value. It would
be worthwhile investigating whether our monitor correctness criteria could be adapted or
extended to this information-flow setting.

Future Work

We plan to extend this work along two different avenues. On the one hand, we will attempt to
extend the enforceable fragment of µHML. For a start, we intend to investigate maximality
results for suppression monitors, along the lines of [25, 2]. We also plan to consider more
expressive enforcement mechanisms such as insertion and replacement actions. Finally, we
will also investigate more elaborate instrumentation setups, such as the ones explored in [1],
that can reveal refusals in addition to the actions performed by the system.

On the other hand, we also plan to study the implementability and feasibility of our
framework. We will consider target languages for our monitor descriptions that are closer to
an actual implementation (e.g., an actor-based language along the lines of [26]). We could
then employ refinement analysis techniques and use our existing monitor descriptions as
the abstract specifications that are refined by the concrete monitor descriptions. The more
concrete synthesis can then be used for the construction of tools that are more amenable
towards showing correctness guarantees.

References
1 Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir. A framework

for parameterized monitorability. In Foundations of Software Science and Computation
Structures, pages 203–220, Cham, 2018. Springer International Publishing.

2 Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir. Monitoring for
silent actions. In Satya Lokam and R. Ramanujam, editors, FSTTCS 2017: Foundations
of Software Technology and Theoretical Computer Science, volume 93 of LIPIcs, pages
7:1–7:14, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

3 Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen, and Jiri Srba. Reactive Systems:
Modelling, Specification and Verification. Cambridge University Press, New York, NY,
USA, 2007.

4 Rajeev Alur and Pavol Černý. Streaming transducers for algorithmic verification of single-
pass list-processing programs. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 599–610. ACM, 2011.

5 Henrik Reif Andersen. Partial model checking. In Proceedings of Tenth Annual IEEE
Symposium on Logic in Computer Science, pages 398–407. IEEE, 1995.

6 Cyrille Artho, Howard Barringer, Allen Goldberg, Klaus Havelund, Sarfraz Khurshid, Mi-
chael R. Lowry, Corina S. Pasareanu, Grigore Rosu, Koushik Sen, Willem Visser, and

CONCUR 2018

34:16 On Runtime Enforcement via Suppressions

Richard Washington. Combining test case generation and runtime verification. Theoretical
Computer Science, 336(2-3):209–234, 2005.

7 Duncan Paul Attard, Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingolfsdot-
tir. A Runtime Monitoring Tool for Actor-Based Systems., chapter 3, pages 49–74. River
Publishers, 2017.

8 Duncan Paul Attard and Adrian Francalanza. A monitoring tool for a branching-time logic.
In Runtime Verification, pages 473–481, Cham, 2016. Springer International Publishing.

9 Jean Berstel and Luc Boasson. Transductions and context-free languages. Ed. Teubner,
pages 1–278, 1979.

10 Nataliia Bielova. A theory of constructive and predictable runtime enforcement mechanisms.
PhD thesis, University of Trento, 2011.

11 Nataliia Bielova and Fabio Massacci. Predictability of enforcement. In International Sym-
posium on Engineering Secure Software and Systems, pages 73–86. Springer, 2011.

12 Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko Yoshida.
Monitoring networks through multiparty session types. Theoretical Computer Science,
669:33–58, 2017.

13 Ian Cassar and Adrian Francalanza. On implementing a monitor-oriented programming
framework for actor systems. In International Conference on Integrated Formal Methods,
pages 176–192. Springer, 2016.

14 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Jorge A. Pérez. Self-adaptation
and secure information flow in multiparty communications. Formal Aspects of Computing,
28(4):669–696, July 2016.

15 Edward Chang, Zohar Manna, and Amir Pnueli. The safety-progress classification. In Logic
and Algebra of Specification, pages 143–202. Springer, 1993.

16 Clare Cini and Adrian Francalanza. An LTL proof system for runtime verification. In
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 581–595. Springer, 2015.

17 Edmund M Clarke and E Allen Emerson. Design and synthesis of synchronization skelet-
ons using branching time temporal logic. In 25 Years of Model Checking, pages 196–215.
Springer, 2008.

18 Ankush Desai, Tommaso Dreossi, and Sanjit A. Seshia. Combining model checking and
runtime verification for safe robotics. In Runtime Verfication (RV), LNCS, pages 172–189,
Cham, 2017. Springer International Publishing.

19 Yliès Falcone. You should better enforce than verify. In Runtime Verification, pages 89–105.
Springer Berlin Heidelberg, 2010.

20 Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. What can you verify and
enforce at runtime? International Journal on Software Tools for Technology Transfer,
14(3):349, jun 2012.

21 Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, and Jean-Luc Richier. Runtime
enforcement monitors: composition, synthesis, and enforcement abilities. Formal Methods
in System Design, 38(3):223–262, jun 2011.

22 Adrian Francalanza. A Theory of Monitors. In International Conference on Foundations
of Software Science and Computation Structures, pages 145–161. Springer, 2016.

23 Adrian Francalanza. Consistently-Detecting Monitors. In 28th International Conference on
Concurrency Theory (CONCUR 2017), volume 85 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 8:1–8:19, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

24 Adrian Francalanza, Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Ian Cassar, Dario
Della Monica, and Anna Ingólfsdóttir. A foundation for runtime monitoring. In Runtime
Verification, pages 8–29, Cham, 2017. Springer International Publishing.

L. Aceto, I. Cassar, A. Francalanza, and A. Ingólfsdóttir 34:17

25 Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. Monitorability for the Hennessy-
Milner logic with recursion. Formal Methods in System Design, 51(1):87–116, 2017.

26 Adrian Francalanza and Aldrin Seychell. Synthesising correct concurrent runtime monitors.
Formal Methods in System Design, 46(3):226–261, 2015.

27 Limin Jia, Hannah Gommerstadt, and Frank Pfenning. Monitors and blame assignment for
higher-order session types. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 582–594, New York, NY, USA,
2016. ACM.

28 Katarína Kejstová, Petr Ročkai, and Jiří Barnat. From Model Checking to Runtime Veri-
fication and Back. In RV. Springer, 2017.

29 Bettina Könighofer, Mohammed Alshiekh, Roderick Bloem, Laura Humphrey, Robert
Könighofer, Ufuk Topcu, and Chao Wang. Shield synthesis. Formal Methods in System
Design, 51(2):332–361, Nov 2017.

30 Dexter C. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27:333–354, 1983.

31 Frédéric Lang and Radu Mateescu. Partial model checking using networks of labelled
transition systems and boolean equation systems. In Cormac Flanagan and Barbara König,
editors, TACAS, pages 141–156, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

32 Kim G Larsen. Proof systems for satisfiability in Hennessy-Milner logic with recursion.
Theoretical Computer Science, 72(2):265–288, 1990.

33 Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: enforcement mechanisms for
run-time security policies. International Journal of Information Security, 4(1):2–16, Feb
2005.

34 Jay Ligatti and Srikar Reddy. A theory of runtime enforcement, with results. In CESORICS,
pages 87–100, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

35 Zohar Manna and Amir Pnueli. A hierarchy of temporal properties. In Cynthia Dwork,
editor, Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed
Computing, pages 377–410. ACM, 1990. doi:10.1145/93385.93442.

36 Fabio Martinelli and Ilaria Matteucci. Partial model checking, process algebra operators
and satisfiability procedures for (automatically) enforcing security properties. In Founda-
tions of Computer Security, pages 133–144. Citeseer, 2005.

37 Fabio Martinelli and Ilaria Matteucci. Through modeling to synthesis of security automata.
Electronic Notes in Theoretical Computer Science, 179:31–46, 2006.

38 Fabio Martinelli and Ilaria Matteucci. An approach for the specification, verification and
synthesis of secure systems. Electronic Notes in Theoretical Computer Science, 168:29–43,
2007.

39 Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I.
Information and computation, 100(1):1–40, 1992.

40 Amir Pnueli and Aleksandr Zaks. PSL model checking and run-time verification via testers.
In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors, International Symposium
on Formal Methods, pages 573–586. Springer Berlin Heidelberg, 2006.

41 Alexander Moshe Rabinovich. A complete axiomatisation for trace congruence of finite state
behaviors. In Proceedings of the 9th International Conference on Mathematical Foundations
of Programming Semantics, pages 530–543, London, UK, UK, 1994. Springer-Verlag.

42 Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, New
York, NY, USA, 2009.

43 Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University
Press, New York, NY, USA, 2011.

44 Fred B Schneider. Enforceable security policies. ACM Transactions on Information and
System Security (TISSEC), 3(1):30–50, 2000.

CONCUR 2018

http://dx.doi.org/10.1145/93385.93442

Regular Separability of Well-Structured Transition
Systems
Wojciech Czerwiński1

University of Warsaw, Poland
wczerwin@mimuw.edu.pl

https://orcid.org/0000-0002-6169-868X

Sławomir Lasota2

University of Warsaw, Poland
sl@mimuw.edu.pl

https://orcid.org/0000-0001-8674-4470

Roland Meyer
TU Braunschweig, Germany
roland.meyer@tu-bs.de

https://orcid.org/0000-0001-8495-671X

Sebastian Muskalla
TU Braunschweig, Germany
s.muskalla@tu-bs.de

https://orcid.org/0000-0001-9195-7323

K. Narayan Kumar3

Chennai Mathematical Institute and UMI RELAX, India
kumar@cmi.ac.in

Prakash Saivasan
TU Braunschweig, Germany
p.saivasan@tu-bs.de

Abstract
We investigate the languages recognized by well-structured transition systems (WSTS) with up-
ward and downward compatibility. Our first result shows that, under very mild assumptions,
every two disjoint WSTS languages are regular separable: There is a regular language containing
one of them and being disjoint from the other. As a consequence, if a language as well as its
complement are both recognized by WSTS, then they are necessarily regular. In particular, no
subclass of WSTS languages beyond the regular languages is closed under complement. Our sec-
ond result shows that for Petri nets, the complexity of the backwards coverability algorithm yields
a bound on the size of the regular separator. We complement it by a lower bound construction.

2012 ACM Subject Classification Theory of computation → Models of computation, Theory
of computation → Formal languages and automata theory, Theory of computation → Regular
languages, Theory of computation → Parallel computing models

Keywords and phrases regular separability, wsts, coverability languages, Petri nets

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.35

1 Supported by the Polish National Science Centre under grant 2016/21/D/ST6/01376.
2 Partially supported by the European Research Council (ERC) project Lipa under the EU Horizon 2020

research and innovation programme (grant agreement No. 683080).
3 Partially supported by the Indo-French project AVeCSo, the Infosys Foundation, and DST-VR Project

P-02/2014.

© Wojciech Czerwiński, Sławomir Lasota, Roland Meyer, Sebastian Muskalla, K. Narayan Kumar,
and Prakash Saivasan;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 35; pp. 35:1–35:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wczerwin@mimuw.edu.pl
https://orcid.org/0000-0002-6169-868X
mailto:sl@mimuw.edu.pl
https://orcid.org/0000-0001-8674-4470
mailto:roland.meyer@tu-bs.de
https://orcid.org/0000-0001-8495-671X
mailto:s.muskalla@tu-bs.de
https://orcid.org/0000-0001-9195-7323
mailto:kumar@cmi.ac.in
mailto:p.saivasan@tu-bs.de
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.35
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

35:2 Regular Separability of Well-Structured Transition Systems

Related Version The full version is available as technical report on arXiv [18], https://arxiv.
org/abs/1702.05334.

Acknowledgements We thank an anonymous referee for pointing out Part (2) of Corollary 8.
We thank Sylvain Schmitz for helpful discussions.

1 Introduction

We study the languages recognized by well-structured transition systems (WSTS) [24, 25, 5,
1, 28]. WSTS form a framework subsuming several widely-studied models, like Petri nets [23]
and their extensions with transfer [22], data [54], and time [4], graph rewriting systems [36],
depth-bounded systems [47, 57, 21], ad-hoc networks [3], process algebras [13], lossy channel
systems (LCS) [5], and programs running under weak memory models [6, 7]. Besides their
applicability, the importance of WSTS stems from numerous decidability results. Finkel
showed the decidability of termination and boundedness [24, 25]. Abdulla came up with a
backward algorithm for coverability [5], for which a matching forward procedure was found
only much later [31]. Several simulation and equivalence problems are also decidable for
WSTS [28]. The work on WSTS even influenced algorithms for regular languages [58] and
recently led to the study of new complexity classes [55].

Technically, a WSTS is a transition system equipped with a quasi order on the configura-
tions that satisfies two properties. It is a well quasi order and it is (upward or downward)
compatible with the transition relation in the sense that it forms a simulation relation. For
our language-theoretic study, we assume the transitions to be labeled and the WSTS to
be equipped with sets of initial and final configurations. The set of final configurations
is supposed to be upward or downward closed wrt. the quasi order of the WSTS. When
specialized to VAS, this yields the so-called covering languages.

For WSTS languages, we study the problem of regular separability. Given two languages
L and K over the same alphabet, a separator is a language R that contains one of the
languages and is disjoint from the other, L ⊆ R and R ∩ K = ∅. The separator is regular
if it is a regular language. Separability has recently attracted considerable attention. We
discuss the related work in a moment.

Disjointness is clearly necessary for regular separability. We show that for most WSTS,
disjointness is also sufficient. Our main result is the following:

Any two disjoint WSTS languages are regular separable.

The only assumption we need is that, in the case of upward-compatible WSTS resp. downward-
compatible WSTS, one of the WSTS is finitely branching resp. deterministic.

The proof proceeds in two steps. In the first step, we link inductive invariants from
verification [43] to separability in formal languages. More precisely, we show that any
inductive invariant (of the product of the given systems) gives rise to a regular separator –
provided it can be finitely represented. We do not even need WSTS here, but only upward
compatibility. An inductive invariant is a set of configurations that contains the initial ones,
is closed under the transition relation, and is disjoint from the final configurations.

In a second step, we show that finitely-represented invariants always exist. To this end,
we use ideal completions from lattice theory [37, 9, 27]. The insight is that, in a WSTS,
any inductive invariant can be finitely represented by its ideal decomposition. This ideal
decomposition yields states in the ideal completion of the WSTS, and the first step applies.

The result has theoretical as well as practical applications. On the theoretical side, recall
the following about Petri nets from [49, 48]: Every two Petri net covering languages that are

https://arxiv.org/abs/1702.05334
https://arxiv.org/abs/1702.05334

W.Czerwiński, S. Lasota, R.Meyer, S.Muskalla, K.Narayan Kumar, and P. Saivasan 35:3

complements of each other are necessarily regular. The result not only follows from ours,
but the same applies to other classes of WSTS, for instance to the languages of LCS, and
actually to all WSTS languages fulfilling the above-mentioned assumptions. For instance, if
the covering language of a Petri net is the complement of the language of an LCS, they are
necessarily regular; and if the languages are just disjoint, they are regular separable.

The result is also important in verification. In 2016 and 2017, the Software Verification
Competition was won by so-called language-theoretic algorithms [33]. These algorithms
replace the classical state-space search by proofs of language disjointness (between a refinement
of the control-flow language and the language of undesirable behavior). Regular separators
are precisely what is needed to prove disjointness. In this setting, regular separators seem to
play the role that inductive invariants play for safety verification [43]. Indeed, our results
establishes a first link between the two.

We accompany our main result by two more findings. The first ones are determinization
results that broaden the applicability of our results. For upward compatibility, we show that
every finitely branching WSTS can be determinized. For downward compatibility, we show
that every WSTS can be determinized if the quasi order is an ω2-wqo. In fact all examples
from the literature are ω2-WSTS, hence they determinize, and in consequence satisfy the
assumptions of our results.

Our second accompanying result is on the size of regular separators for Petri nets. We
show how to construct a regular separator in the form of a non-deterministic automaton of
size triply exponential in size of the given nets. With the main result at hand, the result
amounts to giving a bound on the size of a finite representation of an inductive invariant. As
inductive invariant, we use the complement of the configurations backward reachable from
the final ones. The estimation starts from a result on the size of a basis for the backward
reachable configurations [40] and reasons about the complementation. There is a matching
lower bound for deterministic automata.

Outline. Section 2 recalls the basics on WSTS. The determinization results can be found
in Section 3. They prepare the main result in Section 4. The state complexity of separators
for Petri nets is in Section 5. Section 6 concludes the paper.

Related Work. Separability is a widely-studied problem in Theoretical Computer Science.
A classical result says that every two co-recursively enumerable languages are recursively
separable, i.e. separable by a recursive language [30]. In the area of formal languages,
separability of regular languages by subclasses thereof was investigated most extensively
as a decision problem: Given two regular languages, decide whether they are separable
by a language from a fixed subclass. For the following subclasses, among others, the
separability problem of regular languages is decidable: The piecewise-testable languages,
shown independently in [19] and [51], the locally testable and locally threshold-testable
languages [50], the languages definable in first-order logic [53], and the languages of certain
higher levels of the first-order hierarchy [52].

Regular separability of classes larger than the regular languages attracted little attention
until recently. As a remarkable example, already in the 70s, the undecidability of regular
separability of context-free languages has been shown [56] (see also a later proof [34]); then
the undecidability has been strengthened to visibly pushdown languages [38] and to languages
of one-counter automata [17].

An intriguing problem, to the best of our knowledge still open, is the decidability of
regular separability of Petri net languages, under the proviso that acceptance is by reaching a

CONCUR 2018

35:4 Regular Separability of Well-Structured Transition Systems

distinguished final configuration. As for now, positive answers are known only for subclasses
of VAS languages: PSPACE-completeness for one-counter nets (i.e. one-dimensional vector
addition systems with states) [17], and elementary complexity for languages recognizable by
Parikh automata (or, equivalently, by integer vector addition systems) [14]. Finally, regular
separability of commutative closures of VAS languages has been shown to be decidable
in [15]. As a consequence of this paper, regular separability of two VAS languages reduces
to disjointness of the same two VAS languages (and is thus trivially decidable), given that
acceptance is by covering a distinguished final configuration.

Languages of upward-compatible WSTS were investigated e.g. in [32], where interesting
closure properties have been shown, including a natural pumping lemma. Various subclasses
of languages of WSTS have been considered, e.g. in [20, 2, 45].

2 Well structured transition systems

Well Quasi Orders. A quasi order (X,�), i.e. a set X equipped with a reflexive and
transitive binary relation �, is called well quasi order (wqo) if for every infinite sequence
x1, x2, . . . ∈ X there are indices i < j such that xi � xj . It is folklore that (X,�) is wqo
iff it admits neither an infinite descending sequence (i.e. it is well-founded) nor an infinite
antichain (i.e. it has the finite antichain property).

We will be working either with wqos, or with ω2-wqos, a strengthening of wqos. We
prefer not to provide the technical definition of ω2-wqo (which can be found, e.g in [44]), as
it would not serve our aims. Instead, we take the characterization provided by Lemma 2
below as a working definition. The class of ω2-wqos provides a framework underlying the
forward WSTS analysis developed in [26, 27, 31]. Both classes, namely wqos and ω2-wqos,
are stable under various operations like taking the Cartesian product, the lifting to finite
multisets (multiset embedding), and the lifting to finite sequences (Higman ordering).

A subset U ⊆ X is upward closed with respect to � if u ∈ U and u′ � u implies u′ ∈ U .
Similarly, one defines downward closed sets. Clearly, U is upward closed iff X \U is downward
closed. The upward and downward closure of a set U ⊆ X are defined as:

↑U = {x ∈ X | ∃u ∈ U, x � u} and ↓U = {x ∈ X | ∃u ∈ U, x � u} .

The family of all upward-closed resp. downward-closed subsets of X we denote by P↑(X)
resp. P↓(X). If (X,�) is a wqo then every upward closed set is the upward closure of a finite
set, namely of the set of its minimal elements. This is not the case for downward closed
set; we thus distinguish a subfamily P↓fin(X) ⊆ P↓(X) of finitary downward closed subsets
of X, i.e. downward closures of finite sets. In general, these are not necessarily finite sets
(e.g. consider the set N ∪ {ω} with ω bigger than all natural numbers, and the downward
closure of {ω}). The set P↓fin(X), ordered by inclusion, is a wqo whenever (X,�) is:

I Lemma 1.
(
P↓fin(X),⊆

)
is a wqo iff (X,�) is a wqo.

This property does not necessarily extend to the whole set P↓(X) of all downward closed
subsets of X. As shown in [35]:

I Lemma 2.
(
P↓(X),⊆

)
is a wqo iff (X,�) is an ω2-wqo.

As a matter of fact, [35] considers the reverse inclusion order on upward closed sets, which is
clearly isomorphic to the inclusion order on downward closed sets.

W.Czerwiński, S. Lasota, R.Meyer, S.Muskalla, K.Narayan Kumar, and P. Saivasan 35:5

Labeled Transition Systems. In the sequel we always fix a finite alphabet Σ. A labeled
transition system (LTS) W = (S, T, I, F) over Σ consists of a set of configurations S, a set
of transitions T ⊆ S × Σ× S, and subsets I, F ⊆ S of initial and final configurations. We
write s a−→ s′ instead of (s, a, s′) ∈ T . A path from configuration s to configuration s′ over a
word w = a0 · · · ak−1 is a sequence of configurations s = s0, s1, . . . , sk−1, sk = s′ such that
si

ai−→ si+1 for all i ∈ {0, . . . , k − 1}. We write s w−→ s′. For a subset X ⊆ S of configurations
and a word w ∈ Σ∗ we write

ReachW(X,w) = {s ∈ S | ∃x ∈ X : x w−→ s} ,

Reach−1
W (X,w) = {s ∈ S | ∃x ∈ X : s w−→ x}

for the set of all configurations reachable (resp. reversely reachable) fromX along w. Note that
we have ReachW(X, ε) = X = Reach−1

W (X, ε). Important special cases will be the set of all
a-successors (resp. a-predecessors) for a ∈ Σ, i.e. configurations reachable along a one-letter
word a, and the configurations reachable from the initial configurations I (resp. reversely
reachable from the final configurations F):

SuccW(X, a) = ReachW(X, a) ReachW(w) = ReachW(I, w)
PredW(X, a) = Reach−1

W (X, a) Reach−1
W (w) = Reach−1

W (F,w)

satisfying the following equalities for all w ∈ Σ∗ and a ∈ Σ:

ReachW(w.a) = SuccW(ReachW(w), a) (1)
Reach−1

W (a.w) = PredW(Reach−1
W (w), a) . (2)

We also establish the notation for the whole set of (reversely) reachable configurations:

ReachW =
⋃
w∈Σ∗

ReachW(w) Reach−1
W =

⋃
w∈Σ∗

Reach−1
W (w) .

An LTSW = (S, T, I, F) is finitely branching if I is finite and for every configuration s ∈ S and
each a ∈ Σ there are only finitely many configurations s′ ∈ S such that s a−→ s′. Furthermore,
W is deterministic if it has exactly one initial configuration and for every s ∈ S and each a ∈ Σ
there is exactly one s′ ∈ S such that s a−→ s′. IfW is deterministic, we write s′ = SuccW(s, a)
(resp. s′ = ReachW(w)) instead of {s′} = SuccW(s, a) (resp. {s′} = ReachW(w)).

The language recognized by W, denoted L(W), is the set of words which occur on some
path starting in an initial configuration and ending in a final one, i.e.

L(W) = {w ∈ Σ∗ | ∃i ∈ I, f ∈ F : i w−→ f} .

We call two LTS W,W ′ equivalent if their languages are the same.
Note that we did not allow for ε-steps in transition systems. Even if ε-steps can be

eliminated by pre-composing and post-composing every transition s a−→ s′ with the reflexive-
transitive closure of ε−→, this transformation does not necessarily preserve finite branching.

Synchronized Products. Consider LTS W = (S, T, I, F) and W ′ = (S′, T ′, I ′, F ′). Their
synchronized product is the LTS W ×W ′ = (S×, T×, I×, F×) defined as follows: The configu-
rations are tuples of configurations, S× = S × S′, and the initial and final configurations are
I× = I × I ′ and F× = F × F ′, respectively. The transition relation is defined by

(s, s′) a−→ (r, r′) in W ×W ′ if s
a−→ r in W

and s′
a−→ r′ in W ′ .

CONCUR 2018

35:6 Regular Separability of Well-Structured Transition Systems

It is immediate from the definition that the language of the product is the intersection of the
languages, i.e. L(W ×W ′) = L(W) ∩ L(W ′). If W and W ′ both are finitely branching, then
so is their product.

Upward-Compatible Well-Structured Transition Systems. Now we define a labeled version
of well-structured transition systems as described in [28], here called upward-compatible
well-structured transition system (UWSTS). We start by defining the more general notions
of quasi ordered LTS and ULTS.

By a quasi-ordered LTS W = (S, T,�, I, F) we mean an LTS (S, T, I, F) extended with
a quasi order � on configurations.

An upward-compatible LTS (ULTS) is a quasi-ordered LTS such that the set F of final
configurations F is upward closed 4 with respect to �, and the following upward compatibility
5 is satisfied: whenever s � s′ and s a−→ r, then s′ a−→ r′ for some r′ ∈ S such that r � r′. In
other words, � is a simulation relation. Upward compatibility extends to words:

I Lemma 3. For w ∈ Σ∗, s � s′ with s w−→ r, we have s′ w−→ r′ for some r′ ∈ S with r � r′.

If the order (S,�) in a ULTS W = (S, T,�, I, F) is a wqo, we call W a UWSTS.
As F is upward closed, W is equivalent to its downward closure ↓W , obtained from W by

replacing the set I by its (not necessarily finite) downward closure ↓I with respect to �, and
by extending the transition relation as follows: s a−→ r in ↓W if s a−→ r′ in W for some r′ � r.
Note that with respect to the extended transition relation, Succ↓W(X, a) is downward
closed for every X ⊆ S. One easily checks that ↓W still satisfies upward compatibility, and
every word accepted by W is also accepted by ↓W. The converse implication follows by the
following simulation of ↓W by W:

I Lemma 4. Let w ∈ Σ∗. Whenever s � s′ and s w−→ r in ↓W, then s′ w−→ r′ in W for some
r′ ∈ S such that r � r′.

The synchronized product of two ULTS (S, T,�, I, F) and (S′, T ′,�′, I ′, F ′) is still a
ULTS with respect to the product order �× defined by (x, x′) �× (y, y′) iff x � y and
x′ �′ y′. Indeed, F ×F ′ is upward closed wrt. �× and the transition relation satisfies upward
compatibility. Since the product order of two wqos is again a wqo, the synchronized product
of two UWSTS is a UWSTS.

When � is a ω2-wqo, the UWSTS W is called ω2-UWSTS. When the LTS (S, T, I, F) is
finitely branching (resp. deterministic), the UWSTS W is called finitely-branching UWSTS
(resp. deterministic UWSTS). In the sequel we speak shortly of UWSTS-languages (resp. ω2-
UWSTS-languages, finitely-branching UWSTS-languages, etc.).

Downward-Compatible Well-Structured Transition Systems. A downward-compatible
well-structured transition system (DWSTS) is defined like its upward-compatible coun-
terpart, with two modifications. First, we assume the set of final configurations F to be
downward closed, instead of being upward closed. Second, instead of upward compatibility,
we require its symmetric variant, namely downward compatibility: Whenever s′ � s and
s
a−→ r, then s′ a−→ r′ for some r′ ∈ S such that r′ � r. In other words, the inverse of � is

a simulation relation. Downward compatibility extends to words, which can been shown
similar to Lemma 3. Symmetrically to the downward closure of a UWSTS, we may define
the upward closure ↑W of a DWSTS W that recognizes the same language.

4 Languages defined by upward-closed sets of final configurations are usually called coverability languages.
5 In the terminology of [28], this is strong compatibility.

W.Czerwiński, S. Lasota, R.Meyer, S.Muskalla, K.Narayan Kumar, and P. Saivasan 35:7

As above, we also speak of finitely-branching DWSTS, or ω2-DWSTS. We jointly call
UWSTS and DWSTS just WSTS.

Examples of WSTS. Various well known and intensively investigated models of computation
happen to be either an UWSTS or DWSTS. The list of natural classes of systems which are
UWSTS contains, among the others: vector addition systems (VAS) resp. Petri nets and
their extensions (e.g. with reset arcs or transfer arcs); lossy counter machines [10]; string
rewriting systems based on context-free grammars; lossy communicating finite state machines
(aka lossy channel systems, LCS) [12]; and many others. In the first two models listed above
the configurations are ordered by the multiset embedding, while in the remaining two ones
the configurations are ordered by Higman’s subsequence ordering. The natural examples of
UWSTS, including all models listed above, are ω2-UWSTS and, when considered without
ε-transitions, finitely-branching.

DWSTS are less common. A natural source of examples is gainy models, like gainy
counter system machines or gainy communicating finite state machines. For an overview, see
e.g. page 31 of [28].

3 Expressibility

Our proof of regular separability assumes one of the WSTS to be deterministic. In this
section, we show that this is no strong restriction. We compare the languages recognized by
different classes of WSTS, in particular deterministic ones. The findings are summarized in
Theorem 5, where we use ⊆ to say that every language of a WSTS from one class is also the
language of a WSTS from another class; and we use ⊆rev to say that every language of a
WSTS from one class is the reverse of the language of a WSTS from another class.

I Theorem 5. The following relations hold between the WSTS language classes:

ω2-UWSTS ⊆ deterministic UWSTS = finitely-branching UWSTS ⊆ all UWSTS ,
ω2-DWSTS ⊆ deterministic DWSTS ⊆ finitely-branching DWSTS = all DWSTS ,
ω2-UWSTS ⊆rev deterministic DWSTS ,
ω2-DWSTS ⊆rev deterministic UWSTS .

In short, ω2-UWSTS and ω2-DWSTS determinize and reverse-determinize; finitely-branching
UWSTS determinize too; and (unrestricted) DWSTS are equivalent to finitely-branching
DWSTS.

4 Regular Separability

We now show our first main results: Under mild assumptions, disjoint DWSTS resp. disjoint
UWSTS are regular separable. Both theorems follow from a technical result that establishes
a surprising link between verification and formal language theory: Every inductive invariant
(of a suitable product WSTS) that has a finite representation can be turned into a regular
separator. With this, the proofs of regular separability are invariant constructions.

Main Results. We say that two languages L and K over the same alphabet are regular
separable if there is a regular language R that satisfies L ⊆ R and R∩K = ∅. For two WSTS
W and W ′, we say that they are regular separable if so are their languages. Disjointness is
clearly necessary for regular separability. Our first main results show that for most WSTS
disjointness is also sufficient:

CONCUR 2018

35:8 Regular Separability of Well-Structured Transition Systems

I Theorem 6. Every two disjoint DWSTS, one deterministic, are regular separable.

I Theorem 7. Every two disjoint UWSTS, one finitely branching, are regular separable.

The results imply that the complement of a non-regular WSTS language cannot be a WSTS
language. They also show that there is no subclass of WSTS languages beyond the regular
languages that is closed under complement. More formally, for a class of languages C, we
call a language doubly C, if the language as well as its complement are in C. We obtain the
following corollary, generalizing earlier results for Petri net coverability languages [49, 48].

I Corollary 8. (1) Every doubly deterministic DWSTS language resp. every doubly finitely-
branching UWSTS language is regular. (2) No subclass of finitely-branching UWSTS lan-
guages resp. deterministic DWSTS languages beyond REG is closed under complement.

The rest of the section is devoted to the proofs. We will use that the product of two disjoint
WSTS is again a WSTS with the empty language. Whenever the language of a WSTS is
empty, we can find an inductive invariant, a downward-closed set of configurations separating
the reachability set from the final configurations. Given a finite representation for such an
invariant, we show how to turn it into a regular separator, provided one of the WSTS is
deterministic. This is our key technical insight, formulated as Theorem 11 below.

The proof of Theorem 6 follows directly from this result. For Theorem 7, we consider the
ideal completion of an UWSTS, an extended system in which every downward-closed set has
a finite representation. This in particular applies to inductive invariants, as we show in the
form of Proposition 21: Any inductive invariant in the original UWSTS induces an inductive
invariant in the ideal completion that has a finite representation. Combining this result with
Theorem 11 yields the desired proof.

Turning Inductive Invariants into Regular Separators. Inductive invariants are a standard
tool in the safety verification of programs [43]. Technically, an inductive invariant (of a
program for a safety property) is a set of program configurations that includes the initial
ones, is closed under the transition relation, and is disjoint from the set of undesirable states.
The following definition lifts the notion to WSTS (actually to the more general ULTS), where
it is natural to require inductive invariants to be downward-closed.

I Definition 9. An inductive invariant for a ULTS W with configurations S is a downward-
closed set X ⊆ S with the following three properties:

I ⊆ X , (3)
F ∩X = ∅ , (4)
SuccW(X, a) ⊆ X for all a ∈ Σ . (5)

An inductive invariant X is finitely-represented if X = ↓Q for a finite set Q ⊆ S.

By (3) and (5), the invariant has to contain the whole reachability set. By (4) and (5), it
has to be disjoint from the predecessors of the final configurations:

ReachW ⊆ X , Reach−1
W ∩X = ∅ .

This means every inductive invariant shows language emptiness. Even more, inductive
invariants are complete for proving emptiness, like inductive invariants for programs are
(relatively) complete for proving safety [16].

W.Czerwiński, S. Lasota, R.Meyer, S.Muskalla, K.Narayan Kumar, and P. Saivasan 35:9

(r, r′) ∈ Q

Q 3 (s, s′)

a

in A

11

a

in W×
// (t, t′) ∈ S×

�
×

Figure 1 The transition relation of A.

I Lemma 10. Consider ULTS W. Then L(W) = ∅ iff there is an inductive invariant for W.

For completeness, observe that X = ↓ReachW is an inductive invariant. It is the least
one wrt. inclusion. There is also a greatest inductive invariant, namely the complement of
Reach−1

W . Note that, due to upward compatibility, Reach−1
W is always upward-closed.

Other invariants may have the advantage of being easier to represent. We will be
particularly interested in invariants that are finitely-represented in the sense that they form
the downward closure of a finite set.

Here is the core result. Consider two disjoint ULTS. Any finitely-represented inductive
invariant for the product can be turned into a regular separator. We will comment on the
assumed determinism in a moment.

I Theorem 11. Let W and W ′ be disjoint ULTS, one of them deterministic, such that
W ×W ′ admits a finitely-represented inductive invariant ↓Q. Then W and W ′ are regular
separable by the language of a finite automaton with states Q.

For the definition of the separator, let W = (S, T,�, I, F) be an arbitrary ULTS and let
W ′ = (S′, T ′,�′, I ′, F ′) be a deterministic one such that their languages are disjoint. Let

W× =W ×W ′ = (S×, T×,�×, I×, F×)

be their synchronized product. By the disjointness of W and W ′ we know that L(W×) = ∅.
Let Q ⊆ S× be a finite set such that ↓Q is an inductive invariant.

We define a finite automaton A with states Q whose language will contain L(W) while
being disjoint from L(W ′). The idea is to over-approximate the configurations of W× by the
elements available in Q. The fact that ReachW× ⊆ ↓Q guarantees that every configuration
(s, s′) ∈ S× has such a representation. Since we seek to approximate the language of W , the
final states only refer to the W-component. Transitions are approximated existentially.

I Definition 12. We define the separating automaton induced by Q to be A = (Q,→, QI , QF).
A state is initial if it dominates some initial configuration ofW×, QI = {(s, s′) ∈ Q | (i, i′) �×
(s, s′) for some (i, i′) ∈ I×} . As final states we take pairs whose W-component is final,
QF = {(s, s′) ∈ Q | s ∈ F} . Finally, the transition relation in A is an over-approximation of
the transition relation in W×:

(s, s′) a−→ (r, r′) in A if (s, s′) a−→ (t, t′) in W× for some (t, t′) �× (r, r′) .

Figure 1 illustrates the construction.
To show separation, we need to prove L(W) ⊆ L(A) and L(A) ∩ L(W ′) = ∅. We begin

with the former. AsW ′ is deterministic, W× contains all computations ofW . Due to upward
compatibility, A over-approximates the computations in W×. Combining these two insights,
which are summarized in the next lemma, yields the result.

CONCUR 2018

35:10 Regular Separability of Well-Structured Transition Systems

I Lemma 13. (1) For every s ∈ ReachW(w) there is some (s, s′) ∈ ReachW×(w). (2) For
every (s, s′) ∈ ReachW×(w) there is some (r, r′) ∈ ReachA(w) with (s, s′) �× (r, r′).

I Proposition 14. L(W) ⊆ L(A) .

It remains to prove disjointness of L(A) and L(W ′). The key observation is that, due to
determinism, W ′ simulates the computations of A – in the following sense: If upon reading a
word A reaches a state (s, s′), then the unique computation of W ′ will reach a configuration
dominated by s′.

I Lemma 15. For every w ∈ Σ∗ and every (s, s′) ∈ ReachA(w) we have ReachW′(w) �′ s′.

With this lemma we can show disjointness. Towards a contradiction, suppose some word
w satisfies w ∈ L(A) ∩ L(W ′). As w ∈ L(A), there is a configuration (s, s′) ∈ ReachA(w)
with s ∈ F . As w ∈ L(W ′), the unique configuration ReachW′(w) belongs to F ′. With
the previous lemma and the fact that F ′ is upward-closed, we conclude s′ ∈ F ′. Together,
(s, s′) ∈ F×, which contradicts the fact that ↓Q is an inductive invariant, Property (4).

I Proposition 16. L(A) ∩ L(W ′) = ∅ .

Together, Proposition 14 and 16 show Theorem 11. With Theorem 11 at hand, the proof of
regular separability for DWSTS follows easily.

Proof of Theorem 6. Consider an arbitrary DWSTSW = (S, T,�, I, F) and a deterministic
one W ′ = (S′, T ′,�′, I ′, F ′). We start with the observation that the inversed versions of
W and W ′, namely with the orders �−1 and (�′)−1 and denoted by W−1 and (W ′)−1, are
ULTS. We claim that these ULTS satisfy the assumptions of Theorem 11. The language of
W−1
× =W−1 × (W ′)−1 is empty since the language of W× =W×W ′ is empty and inversion

does not change the language, L(W) = L(W−1) and similar for W ′. Inversion also does not
influence determinism.

It remains to find an inductive invariant of W−1
× that is finitely represented. We claim

that X = ↓−1ReachW−1
×

is a suitable choice. The subscript indicates that the downward
closure is computed relative to the quasi order of W−1

× . As the language of W−1
× is empty,

X is an inductive invariant by Lemma 10. For the finite representation, note that inversion
does not change the transition relation. Hence, W× and W−1

× reach the same configurations,
ReachW−1

×
= ReachW× = Z . With the definition of inversion, X = ↓−1Z = ↑Z holds.

Moreover, ↑Z = ↑min(Z), with minimum and upward closure computed relative to W×.
Since the configurations of W× are well quasi ordered, min(Z) is finite. Another application
of inversion yields X = ↑min(Z) = ↓−1min(Z). Hence, X is a finitely-represented downward-
closed subset of W−1

× .
By Theorem 11, the languages of W−1 and (W ′)−1 are regular separable and so are the

languages of W and W ′. J

Ideal Completions of UWSTS. The proof of regular separability for UWSTS is more
involved. Here, we need the notion of ideal completions [9, 27]. We show that any invariant
for a WSTS yields a finitely-represented invariant for the corresponding ideal completion.
Theorem 7 follows from this.

An ideal in a wqo (X,�) is a non-empty downward-closed subset Z ⊆ X which is directed:
For every z, z′ ∈ Z there is a z′′ ∈ Z with z � z′′ and z′ � z′′. Every downward-closed set
decomposes into finitely many ideals. In fact, the finite antichain property is sufficient and
necessary for this.

W.Czerwiński, S. Lasota, R.Meyer, S.Muskalla, K.Narayan Kumar, and P. Saivasan 35:11

I Lemma 17 ([37, 27, 41]). In a wqo, every downward-closed set is a finite union of ideals.

We use Id-decX(Z) to denote the set of inclusion-maximal ideals in Z. By the above lemma,
Id-decX(Z) is always finite and

Z =
⋃

Id-decX(Z) . (6)

We will also make use of the fact that ideals are irreducible in the following sense.

I Lemma 18 ([37, 27, 41]). Let (X,�) be a wqo. If Z ⊆ X is downward-closed and I ⊆ Z
is an ideal, then I ⊆ J for some J ∈ Id-decX(Z).

The ideal completion (X,⊆) of (X,�) has as elements all ideals in X. The order is
inclusion. The ideal completion X can be seen as extension of X; indeed, every element
x ∈ X is represented by ↓{x} ∈ X, and inclusion among such representations coincides with
the original quasi order �. Later, we will also need general ideals that may not be the
downward closure of a single element.

In [27, 9], the notion has been lifted to WSTS W = (S, T,�, I, F). The ideal completion
of W is the ULTS W, where the given wqo is replaced by its ideal completion. The initial
configurations are the ideals in the decomposition of ↓I. The transition relation is defined
similarly, by decomposing ↓SuccW(X, a), with X an ideal. The final configurations are the
ideals that intersect F .

I Definition 19 ([27, 9]). For an UWSTS W = (S, T,�, I, F), we define its ideal completion
W = (S, T ,⊆, I, F), where (S,⊆) is the ideal completion of (S,�), the transition relation is
defined by SuccW(X, a) = Id-decS(↓SuccW(X, a)) , I = Id-decS(↓I), and F = {X ∈
S | X ∩ F 6= ∅}.

Using upward compatibility in W, language equivalence holds and determinism is preserved.

I Lemma 20. The ideal completionW of an UWSTSW is a ULTS. We have L(W) = L(W).
If W is deterministic, then so is W.

As a matter of fact, W is even finitely branching, but we do not need this property.
The purpose of using ideal completions is to make it easier to find inductive invariants

that are finitely represented. Assume the given UWSTS W has an inductive invariant X, not
necessarily finitely represented. By definition, X is downward-closed. Thus, by Lemma 17,
X is a finite union of ideals. These ideals are configurations of the ideal completion W. To
turn Id-decS(X) into an inductive invariant of W , it remains to take the downward closure
of the set. As the order among ideals is inclusion, this does not add configurations. In short,
an inductive invariant for W induces a finitely-represented inductive invariant for W.

I Lemma 21. If X ⊆ S is an inductive invariant ofW, ↓Id-decS(X) is a finitely-represented
inductive invariant of W.

Proof. Define Q = Id-decS(X). Since Q contains all ideals Y ⊆ X that are maximal
wrt. inclusion, ↓Q contains all ideals Y ⊆ X. We observe that X (6)=

⋃
Q =

⋃
↓Q . By

Lemma 17, Q is finite and thus ↓Q is finitely-represented. It remains to check that ↓Q
satisfies the Properties (3), (4), and (5).

We have I ⊆ X by Property (3), and since X is downward-closed, we obtain ↓I ⊆ X.
Consequently, any ideal that is a subset of ↓I is also a subset of X, and ↓Q contains all
such ideals. For Property (4), assume towards a contradiction that ↓Q contains an ideal Y
that is final in W. This means Y contains a final configuration. Since Y ⊆ X, we obtain a

CONCUR 2018

35:12 Regular Separability of Well-Structured Transition Systems

contradiction to X ∩ F = ∅, Property (4). To check the inclusion SuccW(↓Q, a) ⊆ ↓Q, we
pick an ideal Y ∈ ↓Q and show SuccW(Y, a) ⊆ ↓Q. Recall the definition SuccW(Y, a) =
Id-decS(↓SuccW(Y, a)). Thus, any element of SuccW(Y, a) is an ideal that is a subset of
↓SuccW(Y, a). We have SuccW(X, a) ⊆ X by Property (5). This implies SuccW(Y, a) ⊆ X
as Y ⊆ X, and even ↓SuccW(Y, a) ⊆ X as X is downward-closed. Hence, any ideal that is
a subset of ↓SuccW(Y, a) is also subset of X, and thus an element of ↓Q. J

Theorem 11 expects invariants for UWSTS of a particular shape, namely products W ×W ′.
We now show that the operation of ideal completion commutes with taking products of
UWSTS, a fact that will be key to the proof of Theorem 7. We start by recalling that the
ideals in a product wqo X × Y are precisely the products of the ideals in X and in Y .

I Lemma 22 ([37, 27, 41]). A set Z ⊆ X × Y is an ideal iff Z = I × J , where I ⊆ X and
J ⊆ Y are ideals.

Lemma 22 yields the mentioned commutativity.

I Lemma 23. For two UWSTSes W and W ′, W ×W ′ and W ×W ′ are isomorphic.

We are now prepared to apply Theorem 11 once more to establish our second main result.

Proof of Theorem 7. Let W = (S, T,�, I, F) and W ′ = (S′, T ′,�′, I ′, F ′) be disjoint
UWSTS and W ′ finitely branching. By Theorem 5 we can assume W ′ is deterministic.

We would like to construct a finitely-represented inductive invariant in the synchronized
product of the ideal completions W×W ′ and then apply Theorem 11. Indeed, by Lemma 20
we know that the ideal completions are disjoint ULTS, and that the latter one is still
deterministic, so they satisfy the assumptions.

Relying on Lemma 23 we prefer to show the existence of a finitely-represented inductive
invariant in W ×W ′. Using Proposition 21, it is sufficient to find any inductive invariant
in W ×W ′, it does not have to be finitely-represented. We know that such an inductive
invariant exists by Lemma 10, since we assume L(W ×W ′) = L(W) ∩ L(W ′) = ∅. J

Effective Representation. The states of the separating automaton in the proof of Theorem 7
are ideals in the product systems. With Lemma 22, these are tuples of ideals in the original
systems. For most types of UWSTS, it is known how ideals can be effectively represented,
i.e. how to obtain finite representations on which the successors can be computed. We briefly
mention such a construction for Petri nets in Lemma 28, see e.g. [9] for more examples.
In general, one may exploit the fact that ideals are downward-closed sets, which in turn
are complements of upward-closed sets that can be represented by finitely many minimal
elements – an idea first proposed in [29]. Note that in the proof of Theorem 7, we invoke
Theorem 5 to determinize the given finitely-branching UWSTS. The states of the resulting
UWSTS are finitary downward-closed sets of states of the original one. For most types of
UWSTS, this construction can be avoided. We demonstrate this for the case of Petri nets in
the proof of Proposition 30.

5 Separator Size: The Case of Petri Nets

The UWSTS associated to Petri nets are finitely branching. Hence, Theorem 7 applies:
Whenever the coverability languages of two Petri nets are disjoint, they are regular separable.
We now show how to construct a triply-exponential non-deterministic finite automaton (NFA)
separating two such languages, provided they are disjoint. Moreover, for deterministic finite
automata (DFA), we show that this size cannot be avoided.

W.Czerwiński, S. Lasota, R.Meyer, S.Muskalla, K.Narayan Kumar, and P. Saivasan 35:13

I Theorem 24. Let L(N1), L(N2) be disjoint Petri net coverability languages. There is an
NFA A of size triply exponential in |N1|+ |N2| such that L(A) separates L(N1) and L(N2).

I Theorem 25. In general, Petri net coverability languages cannot be separated by DFA of
less than triply-exponential size.

Instead of invoking Theorem 7, which uses Theorem 5 to determinize, we directly show how
to construct an equivalent instance of the separability problem in which one of the nets is
deterministic. In this setting, we prove an upper bound that combines Theorem 11 with a size
estimation for an ideal decomposition. We then show how to handle non-determinism. The
lower bound combines a classical result from automata theory, showing that minimal DFA
may have exponentially many states [39], with a Petri net construction due to Lipton [42].

Petri Nets. A Petri net over the alphabet Σ is a tuple N = (P, T, F, λ,M0,Mf) where P is
a finite set of places, T is a finite set of transitions with P ∩T = ∅, F : (P ∪T)×(P ∪T)→ N is
a flow function, and λ : T → Σ is a labeling of the transitions. The runtime behavior of Petri
nets is defined in terms of so-called markings from M ∈ Nd with d = |P |. If M(p) = k > 0,
we say place p carries k tokens. We assume to be given an initial and a final marking,
M0,Mf ∈ Nd. Markings are changed by firing transitions: A transition t ∈ T is enabled
in marking M ∈ Nd, if M(p) ≥ F (p, t) for all places p. An enabled transition can be fired
leading to the marking M ′ with M ′(p) = M(p)− F (p, t) + F (t, p), denoted M [t〉M ′. Note
that enabledness and firing are upward compatible with the componentwise ordering ≤ on
markings, in the following sense. If M1 ≤M2 and M1[t〉M ′1, then M2[t〉M ′2 with M ′1 ≤M ′2.

Relying on this compatibility, we can define the UWSTS induced by N to be WN =
(NP , T ′,≤, {M0} , ↑Mf). The transition relation is defined by (M,a,M ′) ∈ T ′ if there is a
transition t ∈ T such that M [t〉M ′ and λ(t) = a. The language of WN is also called the
(coverability) language of N6, and denoted by L(N). We call N deterministic if WN is.

We use a product operation on Petri nets Ni = (Pi, Ti, Fi, λi,M0,i,Mf,i), i = 1, 2. The
product Petri net is obtained by putting the places of N1 and N2 side by side and creating
a new transition for all pairs of transitions in T1 × T2 that carry the same label. Formally,
N1 ×N2 = (P, T, F, λ,M0,Mf) with P = P1 ·∪P2, T = {(t1, t2) ∈ T1 × T2 | λ(t1) = λ(t2)}.
We have λ(t1, t2) = λ(t1) = λ(t2). The flow function is defined by the flow functions of the
component Petri nets, F (p, (t1, t2)) = Fx(p, tx) and F ((t1, t2), p) = Fx(tx, p), where x = i if
p ∈ Pi. We have M0(p) = M0,i(p) for p ∈ Pi, and similar for Mf . The product operation on
Petri nets coincides with the product on UWSTS.

I Lemma 26. WN1×N2 is isomorphic to WN1 ×WN2 .

We will need the size of a Petri net. It is defined using a binary encoding of the values in the
range of the flow function and in the markings. Define the infinity norm of a vectorM ∈ Nd to
be ‖M‖∞ = maxp∈P M(p). We extend this notion to matrices, sets of vectors, and functions
by taking the maximum over all entries, elements, and elements in the range, respectively.
The size of the Petri net N is now |N | = |P | |T | (1 + dlog2(1 + ‖F‖∞)e) + |M0|+ |Mf | . The
size of a marking M is |M | = |P |(1 + dlog2(1 + ‖M‖∞)e).

An Upper Bound Assuming Determinism. Theorem 11 assumes that one of the UWSTS
is deterministic. We now show that for Petri nets, in this case, the regular separator is (an
NFA of size) at most doubly exponential in the size of the input Petri nets.

6 We consider covering the final marking as acceptance condition, i.e. a sequence of transitions is accepting
if it reaches some marking M ′ with M ′(p) ≥Mf (p) for all p ∈ P .

CONCUR 2018

35:14 Regular Separability of Well-Structured Transition Systems

To prove the result, we show how a size estimation for the basis of Reach−1
W with

W = WN1×N2 can be turned into a size estimation for the ideal decomposition of the
complement. The size estimation of the basis is the following result. It is obtained by
inspecting Abdulla’s backward search [1].

I Theorem 27 (Bozzelli & Ganty [11]). Consider a Petri net N with final marking Mf . Then
Reach−1

WN
= ↑{v1, . . . , vk}, where k as well as ‖{v1, . . . , vk}‖∞ are bounded from above by

g = (|T | · (‖F‖∞ + ‖M0‖∞ + ‖Mf‖∞ + 2))2O(|P |·log|P |)
.

By Lemma 10, Nd \Reach−1
W is an inductive invariant ofW (provided the language is empty).

We can now apply Lemma 17 to finitely represent this set by its ideal decomposition. To
represent this ideal decomposition in turn, we have to explicitly represent ideals in Nd. The
following lemma gives such a representation.

Let Nω denote N extended by a new top element ω. Every ideal in Nd is the downward
closure ↓u of a single vector u ∈ Ndω. The lemma moreover shows how to compute the
intersection of two ideals and how to obtain the ideal decomposition of the complement
Nd \ ↑v of the upward closure of a vector v ∈ Nd.

I Lemma 28 (see e.g. [40]). (1) The ideals in Nd have the shape ↓u for u ∈ Ndω. (2) For
two ideals ↓u1, ↓u2 of Nd, the intersection is ↓u1 ∩ ↓u2 = ↓u with u(i) = min {u1(i), u2(i)}.
(3) For v ∈ Nd, we have Id-dec(Nd \ ↑v) = {↓u<v(j) | j ∈ [1..d]} , where u<v(j)(j) = v(j)− 1
and u<v(j)(i) = ω for i 6= j.

We can now combine Theorem 27 and Lemma 28 to obtained our upper bound.

I Proposition 29. Let N1 be an arbitrary Petri net and let N2 be deterministic. If N1 and
N2 are disjoint, they can be separated by an NFA of size doubly exponential in |N1|+ |N2|.

A General Upper Bound. The previous result yields a doubly-exponential separator in
the case where N2 is deterministic. We now show how to get rid of this assumption and
construct a separator in the general case.

I Proposition 30. Let N1 and N2 be disjoint Petri nets. Then they are separable by an NFA
of size triply exponential in |N1|+ |N2|.

The proof transforms N1 and N2 into N−λ and Ndet so that Ndet is deterministic, invokes
Proposition 29, and then turns the resulting separator for N−λ and Ndet into a separator for
N1 and N2. The approach is inspired by [14].

Let N2 be non-deterministic with labeling function λ : T2 → Σ. We define Ndet to be
a variant of N2 that is labeled by the identity function, i.e. Ndet is a Petri net over the
alphabet T2. We have L(N2) = λ(L(Ndet)), where we see λ as a homomorphism on words.
We furthermore define N−λ to be the T2-labeled Petri net obtained from N1 as follows. For
each a-labeled transition t1 of N1 and each a-labeled transition t of N2, N−λ contains a
t-labeled copy tt1 of t1 with the same input-output behavior. Transition t1 itself is removed.

I Lemma 31. L(N1 ×N2) = λ(L(N−λ ×Ndet)).

With this lemma, and since N1 and N2 are disjoint, N−λ and Ndet have to be disjoint. As
Ndet is deterministic, we can apply Proposition 29 and obtain a separator for N−λ and
Ndet . Let A be the doubly-exponential NFA over the alphabet T2 with L(N−λ) ⊆ L(A) and
L(Ndet) ∩ L(A) = ∅. We show how to turn A into a separator for N1 and N2. The first

W.Czerwiński, S. Lasota, R.Meyer, S.Muskalla, K.Narayan Kumar, and P. Saivasan 35:15

step is to determine the complement automaton AC , which satisfies L(Ndet) ⊆ L(AC) and
L(N−λ)∩L(AC) = ∅. The second step is to apply λ to AC . Let B = λ(AC) be the automaton
obtained from AC by relabeling each t-labeled transition to λ(t). The following lemma shows
that B is a separator for the original nets. The observation that the size of AC and hence
the size of B is at most exponential in the size of A concludes the proof of Proposition 30

I Lemma 32. L(N2) ⊆ L(B) and L(N1) ∩ L(B) = ∅.

Note that λ(A) is not necessarily a separator: There might be u ∈ L(A), u 6∈ L(Ndet) such
that there is u′ ∈ L(Ndet) with λ(u) = λ(u′). Thus, λ(u) ∈ λ(L(A)) ∩ L(N2).

A Lower Bound. We now consider separation by deterministic finite automata (DFA). In
this case, we can show a triply-exponential lower bound on the size of the separator.

I Proposition 33. For all n ∈ N, there are disjoint Petri nets N0(n) and N1(n) of size
polynomial in n such that any separating DFA has size at least triply exponential in n.

Our proof relies on the classical result that for each x ∈ {0, 1} and each k ∈ N, the minimal
DFA for the language Lx@k = {w ∈ {0, 1}≥k | the k-last letter in w is x} needs at least 2k
states [39]. To obtain the desired lower bound, we will show how to generate Lx@k for a
doubly-exponential number k by a polynomially-sized Petri net. To this end, we make use of
Lipton’s proof of EXPSPACE-hardness for coverability [42].

6 Conclusion

We have shown that, under mild assumptions, disjointness of WSTS languages implies
their regular separability. In particular, we have shown that if one of two disjoint upward-
compatible WSTS is finitely branching, they are regular separable. Using our expressibility
results, it is also sufficient if the underlying order for one of the two is an ω2-wqo. A similar
result holds for downward-compatible WSTS assuming that one of them is deterministic or
the underlying order is an ω2-wqo. As WSTS are typically ω2-WSTS, our result already
implies the decidability of regular separability for almost all WSTS of practical relevance.

Our work brings together research on inductive invariants and regular separability. We
show that a finite representation of an inductive invariant for the product system can be
transformed into a regular separator. For Petri nets, one may use any representation of
the coverability set. As we show, it is beneficial in terms of the worst-case size, to use an
inductive invariant obtained from the backward coverability algorithm [1]. For lossy channel
systems, the coverability set is not computable [46], but one can obtain a finitely-represented
inductive invariant e.g. from the EEC-algorithm [31].

We leave some questions without answer. It is not clear whether the assumptions of
Theorems 7 and 6 are necessary; we were neither able to drop the assumptions, nor to provide
a counterexample. Similarly, we do not know whether the inclusions in Theorem 5 are strict.
Finally, in the case of Petri nets, closing the gap between the triply-exponential size of the
NFA separator and the triply-exponential lower bound for DFA remains an open problem.

As future work, one could consider the well-behaved transition systems (WBTS) of [8], a
generalization of WSTS where only the finite-antichain property is required.

CONCUR 2018

35:16 Regular Separability of Well-Structured Transition Systems

References
1 P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theorems for

infinite-state systems. In LICS, pages 313–321, 1996.
2 P. A. Abdulla, G. Delzanno, and L. Van Begin. Comparing the expressive power of well-

structured transition systems. In CSL, pages 99–114, 2007.
3 P. A. Abdulla, G. Delzanno, O. Rezine, A. Sangnier, and R. Traverso. On the verification

of timed ad hoc networks. In FORMATS, volume 6919 of LNCS, pages 256–270. Springer,
2011.

4 P. A. Abdulla, J. Deneux, and P. Mahata. Multi-clock timed networks. In LICS, pages
345–354. IEEE, 2004.

5 P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. In LICS, pages
160–170. IEEE, 1993.

6 M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. On the verification problem
for weak memory models. In POPL, pages 7–18. ACM, 2010.

7 M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. What’s decidable about weak
memory models? In ESOP, volume 7211 of LNCS, pages 26–46. Springer, 2012.

8 M. Blondin, A. Finkel, and P. McKenzie. Well behaved transition systems. Logical Methods
in Computer Science, 13(3), 2017.

9 M. Blondin, A. Finkel, and P McKenzie. Handling infinitely branching well-structured
transition systems. Inf. Comput., 258:28–49, 2018.

10 A. Bouajjani and R. Mayr. Model checking lossy vector addition systems. In STACS, pages
323–333, 1999.

11 L. Bozzelli and P. Ganty. Complexity analysis of the backward coverability algorithm for
VASS. In RP, pages 96–109, 2011.

12 D. Brand and P. Zafiropulo. On communicating finite-state machines. J. ACM, 30(2):323–
342, 1983.

13 N. Busi, M. Gabbrielli, and G. Zavattaro. Comparing recursion, replication, and iteration
in process calculi. In ICALP, volume 3142 of LNCS, pages 307–319. Springer, 2004.

14 L. Clemente, W. Czerwiński, S. Lasota, and C. Paperman. Regular separability of Parikh
automata. In ICALP, pages 117:1–117:13, 2017.

15 L. Clemente, W. Czerwiński, S. Lasota, and C. Paperman. Separability of reachability sets
of vector addition systems. In STACS 2017, pages 24:1–24:14, 2017.

16 S. A. Cook. Soundness and completeness of an axiom system for program verification.
SIAM J. Comput., 7(1):70–90, 1978.

17 W. Czerwiński and S. Lasota. Regular separability of one counter automata. In LICS,
pages 1–12, 2017.

18 W. Czerwiński, S. Lasota, R. Meyer, S. Muskalla, K. Narayan Kumar, and P. Saivasan.
Regular separability of well structured transition systems. CoRR, abs/1702.05334, 2018.
arXiv:1702.05334.

19 W. Czerwiński, W. Martens, and T. Masopust. Efficient separability of regular languages
by subsequences and suffixes. In ICALP, pages 150–161, 2013.

20 G. Delzanno and F. Rosa-Velardo. On the coverability and reachability languages of mono-
tonic extensions of Petri nets. Theoretical Computer Science, 467:12–29, 2013.

21 E. D’Osualdo. Verification of Message Passing Concurrent Systems. PhD thesis, University
of Oxford, 2015.

22 C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset nets between decidability and undecid-
ability. In ICALP, volume 1443 of LNCS, pages 103–115. Springer, 1998.

23 J. Esparza. Decidability and complexity of Petri net problems - an introduction. In Lectures
on Petri Nets I: Basic Models, Advances in Petri Nets, pages 374–428. Springer, 1998.

http://arxiv.org/abs/1702.05334

W.Czerwiński, S. Lasota, R.Meyer, S.Muskalla, K.Narayan Kumar, and P. Saivasan 35:17

24 A. Finkel. A generalization of the procedure of Karp and Miller to well structured transition
systems. In ICALP, pages 499–508, 1987.

25 A. Finkel. Reduction and covering of infinite reachability trees. Inf. Comput., 89(2):144–
179, 1990.

26 A. Finkel and J. Goubault-Larrecq. Forward analysis for WSTS, part I: completions. In
STACS, pages 433–444, 2009.

27 A. Finkel and J. Goubault-Larrecq. Forward analysis for WSTS, part II: complete WSTS.
Logical Methods in Computer Science, 8(3), 2012.

28 A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! Theor.
Comput. Sci., 256(1-2):63–92, 2001.

29 P. Ganty, J.-F. Raskin, and L. Van Begin. A complete abstract interpretation framework
for coverability properties of WSTS. In VMCAI, pages 49–64, 2006.

30 W. Gasarch. A survey of recursive combinatorics. In Handbook of recursive mathematics,
Vol. 2, volume 139 of Stud. Logic Found. Math., page 1041–1176. Amsterdam: North-
Holland, 1998.

31 G. Geeraerts, J.-F. Raskin, and L. Van Begin. Expand, enlarge and check: New algo-
rithms for the coverability problem of WSTS. Journal of Computer and System Sciences,
72(1):180–203, 2006.

32 G. Geeraerts, J.-F. Raskin, and L. Van Begin. Well-Structured Languages. Acta Informat-
ica, 44(3-4):249–288, 2007.

33 M. Heizmann, J. Hoenicke, and A. Podelski. Nested interpolants. In POPL, pages 471–482.
ACM, 2010.

34 H. B. Hunt III. On the decidability of grammar problems. Journal of the ACM, 29(2):429–
447, 1982.

35 P. Jancar. A note on well quasi-orderings for powersets. Inf. Process. Lett., 72(5-6):155–160,
1999.

36 S. Joshi and B. König. Applying the graph minor theorem to the verification of graph
transformation systems. In CAV, volume 5123 of LNCS, pages 214–226. Springer, 2008.

37 M. Kabil and M. Pouzet. Une extension d’un théorème de P. Jullien sur les âges de mots.
ITA, 26:449–484, 1992.

38 E. Kopczynski. Invisible pushdown languages. In LICS, pages 867–872, 2016.
39 D. Kozen. Automata and computability. Undergraduate texts in Computer Science.

Springer, 1997.
40 R. Lazic and S. Schmitz. The ideal view on rackoff’s coverability technique. In RP, pages

76–88, 2015.
41 J. Leroux and S. Schmitz. Demystifying reachability in vector addition systems. In LICS,

pages 56–67, 2015.
42 R. J. Lipton. The reachability problem requires exponential space. Technical report, Yale

University, Department of Computer Science, 1976.
43 Z. Manna and A. Pnueli. Temporal verification of reactive systems - safety. Springer, 1995.
44 A. Marcone. Foundations of bqo theory. Transactions of the American Mathematical

Society, 345(2):641–660, 1994.
45 M. Martos-Salgado and F. Rosa-Velardo. Dynamic networks of timed Petri nets. In Petri

nets, pages 294–313, 2014.
46 R. Mayr. Undecidable problems in unreliable computations. Theor. Comput. Sci., 1-

3(297):337–354, 2003.
47 R. Meyer. On boundedness in depth in the pi-calculus. In TCS, volume 273 of IFIP, pages

477–489. Springer, 2008.
48 M. Mukund, K. N. Kumar, J. Radhakrishnan, and M. A. Sohoni. Robust asynchronous

protocols are finite-state. In ICALP, pages 188–199, 1998.

CONCUR 2018

35:18 Regular Separability of Well-Structured Transition Systems

49 M.Mukund, K. N. Kumar, J. Radhakrishnan, and M. A. Sohoni. Towards a characterisation
of finite-state message-passing systems. In ASIAN, pages 282–299, 1998.

50 T. Place, L. van Rooijen, and M. Zeitoun. Separating regular languages by locally testable
and locally threshold testable languages. In FSTTCS, pages 363–375, 2013.

51 T. Place, L. van Rooijen, and M. Zeitoun. Separating regular languages by piecewise
testable and unambiguous languages. In MFCS, pages 729–740, 2013.

52 T. Place and M. Zeitoun. Going higher in the first-order quantifier alternation hierarchy
on words. In ICALP, pages 342–353, 2014.

53 T. Place and M. Zeitoun. Separating regular languages with first-order logic. Logical
Methods in Computer Science, 12(1), 2016.

54 F. Rosa-Velardo and M. Martos-Salgado. Multiset rewriting for the verification of depth-
bounded processes with name binding. Inf. Comput., 215:68–87, 2012.

55 S. Schmitz and Ph. Schnoebelen. Multiply-recursive upper bounds with Higman’s lemma.
In ICALP, volume 6756 of LNCS, pages 441–452. Springer, 2011.

56 T. G. Szymanski and J. H. Williams. Noncanonical extensions of bottom-up parsing tech-
niques. SIAM Journal on Computing, 5(2):231–250, 1976.

57 T. Wies, D. Zufferey, and T. A. Henzinger. Forward analysis of depth-bounded processes.
In FOSSACS, volume 6014 of LNCS, pages 94–108. Springer, 2010.

58 M. De Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Antichains: A new algorithm
for checking universality of finite automata. In CAV, volume 4144 of LNCS, pages 17–30.
Springer, 2006.

Separable GPL: Decidable Model Checking with
More Non-Determinism
Andrey Gorlin
Stony Brook University
Department of Computer Science, Stony Brook, N.Y. 11794, USA
agorlin@cs.stonybrook.edu

C. R. Ramakrishnan
Stony Brook University
Department of Computer Science, Stony Brook, N.Y. 11794, USA
cram@cs.stonybrook.edu

Abstract
Generalized Probabilistic Logic (GPL) is a temporal logic, based on the modal mu-calculus,
for specifying properties of branching probabilistic systems. We consider GPL over branching
systems that also exhibit internal non-determinism under linear-time semantics (which is resolved
by schedulers), and focus on the problem of finding the capacity (supremum probability over
all schedulers) of a fuzzy formula. Model checking GPL is undecidable, in general, over such
systems, and existing GPL model checking algorithms are limited to systems without internal
non-determinism, or to checking non-recursive formulae. We define a subclass, called separable
GPL, which includes recursive formulae and for which model checking is decidable. A large class of
interesting and decidable problems, such as termination of 1-exit Recursive MDPs, reachability
of Branching MDPs, and LTL model checking of MDPs, whose decidability has been studied
independently, can be reduced to model checking separable GPL. Thus, GPL is widely applicable
and, with a suitable extension of its semantics, yields a uniform framework for studying problems
involving systems with non-deterministic and probabilistic behaviors.

2012 ACM Subject Classification Theory of computation → Verification by model checking

Keywords and phrases Modal mu-calculus, probabilistic logics, probabilistic systems, branching
systems, model checking

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.36

Related Version https://arxiv.org/abs/1604.06118

Funding This work was partially supported by NSF grants IIS-1447549 and CNS-1405641.

Acknowledgements We are grateful to the reviewers for their detailed and insightful comments.

1 Introduction

For finite-state systems, model checking a temporal property can be cast in terms of model
checking in the modal µ-calculus, the so-called “assembly language” of temporal logics. A
number of temporal logics have been proposed and used for specifying properties of finite-state
probabilistic systems.

GPL [5] is defined over branching probabilistic systems. In these systems, each state
has a set of labeled outgoing transitions; each transition, in turn, specifies a (probabilistic)
distribution of target states. Semantically, GPL treats probabilistic choices in the system as

© Andrey Gorlin and C.R. Ramakrishnan;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 36; pp. 36:1–36:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:agorlin@cs.stonybrook.edu
mailto:cram@cs.stonybrook.edu
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.36
https://arxiv.org/abs/1604.06118
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

36:2 Separable GPL

linear-time. GPL is expressive enough to serve as an “assembly language” of a large number
of probabilistic temporal logics.

In this paper, we consider GPL over branching systems that can also exhibit internal non-
determinism under linear-time semantics. In these systems, the internal non-determinism is
resolved by schedulers. We limit our attention to finding the capacity (supremum probability
over all schedulers) of fuzzy formulae, as this problem is already sufficiently interesting and
challenging; indeed, it is undecidable, in general. Existing GPL model checking algorithms,
therefore, were limited either to systems without internal non-determinism [5], or to checking
only non-recursive formulae [26].

Contributions and Significance. GPL is expressive enough that a variety of independently-
studied verification problems can be cast as model checking branching systems with GPL.
In fact, undecidable problems such as termination of multi-exit Recursive Markov Decision
Processes (Recursive MDPs or RMDPs) can be reduced in linear time to model checking
with GPL. We introduce a syntactically-defined subclass, called separable GPL, for which
model checking is decidable.

We illustrate the expressiveness of separable GPL by considering independently-studied
decidable verification problems involving systems that have probabilistic and non-deterministic
choice. Examples of such problems include LTL model checking of MDPs [2], reachability in
branching MDPs [10], and termination of 1-exit RMDPs [12]. These problems can all be
reduced, in linear time, to model checking separable GPL formulae (see Sect. 3).

We describe a procedure for model checking GPL, which either successfully returns the
model checking result, or terminates with failure. We also show that the procedure always
terminates successfully for separable GPL (see Sect. 4).

Termination of multi-exit RMDPs, when cast as a model checking problem over GPL
along the same lines as our treatment of 1-exit RMDPs, yields an entangled GPL formula,
which is outside of separable GPL. Thus, separability can be seen as a characteristic of the
verification problems that are known to be decidable, when cast in terms of model checking
in GPL. Consequently, GPL and its sublogic are useful formalisms to study the relationships
between verification problems over branching systems with both probabilistic and internal
non-deterministic choice. We discuss these issues in greater detail in Sect. 5.

2 GPL and Branching Systems

In this section, we formally define probabilistic branching systems and give the syntax and
semantics of GPL fuzzy formulae.

2.1 Probabilistic Branching Systems
We define a probabilistic branching system (PBS).

I Definition 1 (PBS). With respect to fixed sets Act and Prop of actions and propositions,
respectively, a PBS L is a quadruple (S, δ, P, I), where

S is a countable set of states;
δ ⊆ S ×Act × S is the transition relation;
P : δ × N→ [0, 1] is the transition probability distribution satisfying:
∀s ∈ S.∀a ∈ Act.∀c ∈ N.

∑
s′:(s,a,s′)∈δ

P (s, a, s′, c) ∈ {0, 1}, and

∀s ∈ S.∀a ∈ Act.∀s′ ∈ S.(s, a, s′) ∈ δ =⇒ (∃c ∈ N.P (s, a, s′, c) > 0);
I : S → 2Prop is the interpretation, recording the set of propositions true at a state.

A. Gorlin and C. R. Ramakrishnan 36:3

s1

s2s3 s4

s5 s6

a
b1, c1 b2, c2

a : 2
3a : 1

3
a : 3

4 a : 1
4

Figure 1 An example PBS.

This definition is in line with that of probabilistic automata [21, 24], in which, given an
action, a probabilistic distribution is chosen non-deterministically (we assume there are
finitely many distributions for any state-action pair). Other equally expressive models
include alternating automata, in which labeled non-deterministic choices are followed by
silent probabilistic choices. The difference between such models has been analyzed with
respect to bisimulation [25]. However, a PBS is explicitly a branching system, as we show
next.

Given L = (S, δ, P, I), a partial computation is a sequence σ = s0
a1→ s1

a2→ · · · an→ sn,
where for all 0 ≤ i < n, (si, ai+1, si+1) ∈ δ. Also, fst(σ) = s0 and last(σ) = sn denote,
respectively, the first and last states in σ. Each transition of a partial computation is
labeled with an action ai ∈ Act. The set of all partial computations of L is denoted by CL,
and CL(s) = {σ ∈ CL | fst(σ) = s}. Composition of partial computations, σ a→ σ′, where
σ′ = s′0

b1→ · · · bm→ s′m, represents s0
a1→ · · · an→ sn

a→ s′0
b1→ · · · bm→ s′m if (sn, a, s′0) ∈ δ. A partial

computation σ′ is a prefix of σ if σ′ = s0
a1→ · · · ai→ si for some i ≤ n.

From a set of partial computations, we can build deterministic trees. T ⊆ CL is prefix-
closed if, for every σ ∈ T and σ′ a prefix of σ, σ′ ∈ T . T is deterministic if for every σ, σ′ ∈ T
with σ = s0

a1→ · · · an→ sn
a→ s · · · and σ′ = s0

a1→ · · · an→ sn
a′

→ s′ · · · , either a 6= a′ or s = s′, i.e.,
if a pair of computations share a prefix, the first difference cannot involve transitions labeled
by the same action. If a tree T has a single starting state, it is denoted root(T); if s = root(T)
then T ⊆ CL(s). We also let edges(T) = {(σ, a, σ′) | σ, σ′ ∈ T ∧ ∃s ∈ S.σ′ = σ

a→ s}.

I Definition 2 (D-trees and outcomes). A d-tree is a set of partial computations with a
single starting state that is prefix-closed and deterministic. A d-tree T is maximal if there
exists no d-tree T ′ with T ⊂ T ′. An outcome is a maximal d-tree.

TL refers to all the d-trees of L, and TL(s) = {T ∈ TL | root(T) = s}. T ′ is a prefix of
T if T ′ ⊆ T . T a→ T ′ means T ′ = {σ | root(T) a→ σ ∈ T}. T is finite if |T | < ∞. ML and
ML(s) are analogous to TL and TL(s), but for maximal d-trees.

An example PBS and two of its outcomes are shown in Figs. 1 and 2. In the PBS,
transitions are usually annotated with their action label and probability (we may omit the
probability when it is 1). Note that there are two transitions labeled b (and c) from state s2,
reflecting internal non-determinism, and we use superscripts to distinguish them.

D-trees are constructed from S and δ, without regard for P . A fully probabilistic branching
system (fPBS) has no internal non-determinism, i.e., its transition probability distribution
P is a function of δ. An fPBS was called an RPLTS in [5], which may have obscured its
branching nature.

A property of a PBS will hold for some subset of its outcomes, and we need to measure
this set. To resolve the internal non-deterministic choices, we require a scheduler.

CONCUR 2018

36:4 Separable GPL

s1

s2s3 s3

s5 s5

a

b c

a a

s1

s2s3 s4

s5 s2s3 s4

s5 s6

a

b c

a a

b c

a a

Figure 2 Selected outcomes for the PBS in Fig. 1.

I Definition 3 (Scheduler). A scheduler for a PBS L is a function γ : CL×Act → N, such that
if an action a is present at s = last(σ), then γ(σ, a) = c implies that

∑
s′ P (s, a, s′, c) = 1.

Note that we have defined deterministic schedulers, which are also aware of their relevant
histories. Given a scheduler γ for a PBS L, we have an fBPS Lγ = (Sγ , δγ , Pγ , Iγ), where
Sγ ⊆ CL and so δγ ⊆ CL ×Act × CL.

Thus, given a scheduler γ for a PBS L, we can follow the definitions for the measure of
d-trees from [5]. A basic cylindrical subset ofML(s) contains all trees sharing a particular
prefix. Letting s ∈ S and T ∈ TL(s) such that T is finite, BT = {T ′ ∈ML | T ⊆ T ′}. Now,
we define the measure:

I Definition 4. For a PBS L with scheduler γ, the probability measure of a basic cylindrical
subset BT is defined by a partial function mγ : 2ML → [0, 1], where:

mγ(BT) =
∏

(σ,a,σ′)∈edges(T)

P (last(σ), a, last(σ′), γ(σ, a)) (1)

From here, a probability measure mγ
s : Bs → [0, 1] on the smallest σ-field of sets Bs is

generated from basic cylindrical subsets BT with mγ
s (BT) = mγ(BT) (cf. [5, Definition 8]).

I Example 5. Letting σ = s1
a→ s2, the measure of the left outcome in Figure 2 is 1

9 for any
scheduler γ where γ(σ, b) = γ(σ, c) = 1, and 0 for all other schedulers.

2.2 GPL Syntax
GPL fuzzy formulae depend on outcomes. We give the syntax of GPL fuzzy formulae ψ, with
A ∈ Prop,1 X ∈ Var , a ∈ Act, as:

ψ ::= A | ¬A | X | ψ ∧ ψ | ψ ∨ ψ | 〈a〉ψ | [a]ψ | µX.ψ | νX.ψ . (2)

Operators µX.ψ and νX.ψ are least and greatest fixed point operators for the “equation”
X = ψ. As in [5], fuzzy formulae are alternation-free, which allows a simpler semantics for
fixed points while retaining the expressiveness required for our applications. Additionally,
diamond implies box : 〈a〉ψ means that there is an a-transition and it satisfies ψ; [a]ψ means
that if there is an a-transition, it satisfies ψ. We may also use a set α ⊆ Act for the modalities,
reading 〈α〉ψ as

∨
a∈α
〈a〉ψ and [α]ψ as

∧
a∈α

[a]ψ. When we write “−” for α, then α = Act.

1 The full syntax allows any state formula [5, 15] as a fuzzy formula.

A. Gorlin and C. R. Ramakrishnan 36:5

Table 1 GPL semantics: fuzzy formulae.

ΘL(A)e =
⋃

A∈I(s)
ML(s),

ΘL(X)e = e(X),

ΘL(〈a〉ψ)e = {T ∈ ML | ∃T ′ : T a→ T ′ ∧ T ′ ∈ ΘL(ψ)e},

ΘL([a]ψ)e = {T ∈ ML | (T a→ T ′) ⇒ T ′ ∈ ΘL(ψ)e},

ΘL(ψ1 ∧ ψ2)e = ΘL(ψ1)e ∩ ΘL(ψ2)e,

ΘL(ψ1 ∨ ψ2)e = ΘL(ψ1)e ∪ ΘL(ψ2)e,

ΘL(µX.ψ)e =
∞⋃

i=0
Mi, where M0 = ∅ and Mi+1 = ΘL(ψ)e[X 7→ Mi],

ΘL(νX.ψ)e =
∞⋂

i=0
Ni, where N0 = ML and Ni+1 = ΘL(ψ)e[X 7→ Ni].

2.3 GPL Semantics
We define the semantics of fuzzy formulae with respect to a fixed PBS L = (S, δ, P, I), where
Ψ is the set of all fuzzy formulae. A function ΘL : Ψ → 2ML , augmented with an extra
environment parameter e : Var → 2ML , returns the set of outcomes satisfying a given fuzzy
formula. For a given s ∈ S, ΘL,s(ψ) = ΘL(ψ)∩ML(s). For the fuzzy formulae, the semantics
is as in Table 1.

We refer to the value supγ mγ
s (ΘL,s(ψ)) as a capacity (following [6]), and write it as

PrL,s(ψ). In particular, [a]ψ and 〈a〉ψ are equivalent when action a is present at a state.
As d-trees do not depend on P , several important properties for GPL over PBSs carry

over naturally from [5]. First, we have distributivity on box and diamond [5, Lemma 1]:

I Lemma 6 (Distributivity on modal operators). Letting ⊕ ∈ {∧,∨}:

ΘL([a]ψ1 ⊕ [a]ψ2) = ΘL

(
[a](ψ1 ⊕ ψ2)

)
ΘL(〈a〉ψ1 ⊕ 〈a〉ψ2) = ΘL

(
〈a〉(ψ1 ⊕ ψ2)

)
ΘL([a]ψ1 ∧ 〈a〉ψ2) = ΘL

(
〈a〉(ψ1 ∧ ψ2)

) (3)

Similarly, because a PBS L with a scheduler γ yields an fPBS Lγ , we can relate the
probability of a conjunction with that of a disjunction and compute the effect of taking a
step (where γs′

a (σ, a′) = γ(s a→ σ, a′) and fst(σ) = s′) [5, Lemma 2]:

mγ
s (ΘL,s(ψ1 ∨ ψ2)) = mγ

s (ΘL,s(ψ1)) + mγ
s (ΘL,s(ψ2))−mγ

s (ΘL,s(ψ1 ∧ ψ2)) (4)

mγ
s (ΘL,s(〈a〉ψ)) =

∑
s′:(s,a,s′)∈δ

P (s, a, s′, γ(s, a)) ·mγs′
a

s′ (ΘL,s′(ψ)) (5)

Additionally, we can express the negation of a fuzzy formula ψ, neg(ψ), such that, for any
PBS L and state s ([5, Lemma 3]):

ΘL,s(neg(ψ)) =ML(s)−ΘL,s(ψ) (6)

The proof involves switching all the operators to their duals.

I Example 7 (Distributivity and negation). The formula ψ = µX.[a][b]X ∧ [a][c]X is satisfied
by all finite outcomes of the PBS in Fig. 1. By Lemma 6, it is equivalent to µX.[a]([b]X∧[c]X).
Also, neg(ψ) = νX.〈a〉〈b〉X ∨ 〈a〉〈c〉X. Note that a scheduler that maximizes the measure of
ψ will minimize the measure of neg(ψ).

CONCUR 2018

36:6 Separable GPL

Table 2 Encoding of CTL over PLTSs.

ECTL(ψ) =



ψ, ψ ∈ Prop,
neg(ECTL(ψ′)), ψ = ¬ψ′,
ECTL(ψ1) ∧ ECTL(ψ2), ψ = ψ1 ∧ ψ2,

〈−〉ECTL(ψ), γ = EXψ,
µX.ECTL(ψ2) ∨ (ECTL(ψ1) ∧ [−]X), ψ = A[ψ1Uψ2],
µX.ECTL(ψ2) ∨ (ECTL(ψ1) ∧ 〈−〉X), ψ = E[ψ1Uψ2].

3 Encoding Other Model Checking Problems

When GPL was originally introduced, its most interesting known application was to PCTL*
model checking [2], as it is straightforward to encode any LTL formula as a fuzzy formula in
GPL [5]. In this section, we relate GPL to two applications involving branching systems.

3.1 PTTL and Branching Processes
As GPL fuzzy formulae are interpreted over outcomes of a system, they can encode LTL [5,
Sect. 3.2], in the fragment of GPL for systems with Act = {a} and no terminal states; then
the outcomes are paths, rather than trees. When Act is not limited to one action, so the
outcomes are trees, it is correspondingly straightforward to encode CTL (Table 2). This may
seem either obvious or strange, as GPL and CTL are both interpreted over trees, but CTL
is typically understood as a logic over systems and not their outcomes; this encoding also
reduces to the referenced LTL encoding when all the outcomes are paths.

Along similar lines, Probabilistic Tree Temporal Logic (PTTL), has been independently
introduced [4]. Branching Processes (BPs) are a branching extension of Markov chains, and
PTTL is a logic over BPs. PTTL’s fuzzy formulae are limited to the A and E versions of the
X, U, and R operators being applied to state formulae, a subset of our CTL encoding.

Additionally, BPs have been extended with non-determinism, yielding Branching MDPs
(BMDPs), for which the extinction and reachability problems have been analyzed [10, 12].
When we use only the modal operators [−] and 〈−〉, as with CTL and PTTL, PBSs are
equivalent to BMDPs (and fPBSs to BPs).

3.2 Encoding of RMDP Termination
A Recursive MDP (RMDP) [12] is specified as a set of components. A component has an
entry node and one or more exit nodes. Components may contain boxes, each box having
a call port that represents a procedure call and return ports to represent a possible return
from the called procedure. We provide the formal definition of the (more general) Recursive
Simple Stochastic Games (RSSGs) [12].

I Definition 8. An RSSG A is a tuple (A1, . . . , Ak), where each component graph Ai is a
septuple (Ni, Bi, Yi,Eni,Exi, pli, δi):

Ni is a set of nodes, containing subsets Eni and Exi of entry and exit nodes, respectively.
Bi is a set of boxes, with a mapping Yi : Bi → {1, . . . , k} assigning each box to a
component. Each box has a set of call and return ports, associated with the entry and

A. Gorlin and C. R. Ramakrishnan 36:7

1/4

1

1/2

1/4

n

n

1

3/5

2/5

2/3

1

1/3

1

1

A

n

n

B

n

n

r
1

r
2 ce

1

e
2

en

b
1
: B

u

z

ex
2

ex
1

en'

b
1
': A

b
2
': B

v

ex'
2

ex'
1

Figure 3 Example RMDP with Call, Return, and Exit edges added to Component “A”.

exit nodes, respectively, in the corresponding components: Callb = {(b, en) | en ∈ EnYi(b)},
Returnb = {(b, ex) | ex ∈ ExYi(b)}. Additionally, we have:

Calli =
⋃
b∈Bi

Callb, Returni =
⋃
b∈Bi

Returnb, Qi = Ni ∪ Calli ∪ Returni.

pli : Qi → {0, 1, 2} is a mapping that specifies whether, at each state, the choice
is probabilistic (i.e., player 0), or non-deterministic (player 1: maximizing, player 2:
minimizing). As any u ∈ Calli ∪ Exi has no outgoing transitions, let pli(u) = 0 for these
states.
δi is the transition relation, with transitions of the form (u, puv, v), when pli(u) = 0
and u is not an exit node or a call port, and v may not be an entry node or a return
port. Additionally, puv ∈ (0, 1] and, for each u,

∑
v′:(u,·,v′)∈δi

puv′ = 1. Meanwhile, when

pli(u) > 0, transitions are of the form (u,⊥, v).

RMDPs only have a player 1 or player 2, depending on whether they are maximizing or
minimizing, respectively. Figure 3 shows an RMDP with two components, A and B. Any
call to A non-deterministically results in either a call to B (via box b1) or a transition to u.

3.2.1 Translating RMDPs to PBSs
We can translate an RMDP into a PBS L with Act = {p, n, c, rj , ej}, with states of the PBS
corresponding to nodes of the RMDP. We retain the RMDP’s transitions, labeling them as
“n” for actions from a non-deterministic choice and “p” for probabilistic choice. To this basic
structure we add three new kinds of edges:

“ej” for the jth exit node of a component,
“c” edges from a call port to the called component’s entry node, and
“rj” edges from a call port to each return port in the box.

Figure 3 shows the new edges added to component A (r1 and r2 are distinct actions here).
Formally, we define the translation as follows:

I Definition 9 (Translated RMDP). The translated RMDP A is a PBS L = (S, δ, P, I):
The set of states S is the set of all the nodes, as well as the call and return ports of
the boxes, i.e., S =

⋃
iQi. Additionally, we associate a consistent index with each state

corresponding to an exit node or a return port.
The transition relation δ has all the transitions of the components, labeled by action
p for the probabilistic transitions and n for the non-deterministic ones. Thus, when
(u, puv, v) ∈ δi for any i, then (u, p, v) ∈ δ, and when (u,⊥, v) ∈ δi, (u, n, v) ∈ δ.
Additionally, we have ((b, en), c, en) ∈ δ and ((b, en), rj , (b, exj)) ∈ δ for every box b, and
(exj , ej , exj) ∈ δ for every exit node. Note the indices used, matching rj with ej .

CONCUR 2018

36:8 Separable GPL

The transition probability distribution P is defined as follows:
P (u, p, v, 0) = puv.
Assuming a one-to-one function num : S → N, P (u, n, v,num(v)) = 1.
When a ∈ {c, rj , ej} and (u, a, v) ∈ δ, P (u, a, v, 0) = 1.

I(s) = ∅ for all states s ∈ S.

While c edges denote control transfer due to a call, r edges summarize returns from
the called procedure (they are similar to the jump edges in nested state machines [1]).
Additionally, if an RMDP has no non-deterministic choices, it is called a Recursive Markov
Chain (RMC), and it can be translated to an fBPS.

3.2.2 GPL Formula for RMDP Termination
We define a formula for an m-exit RMDP, which we will show models termination. In this
section, we also write a mu-calculus formula via equations, where, e.g., if ψ1 =µ f1(ψ1, ψ2)
and ψ2 =µ f2(ψ1, ψ2), then ψ1 is µX1.f1(X1, µX2.f2(X1, X2)).

I Definition 10 (RMDP termination formula). For an m-exit RMDP, the termination formula
may be given as m equations, for 1 ≤ i ≤ m:

ψi =µ 〈ei〉tt ∨ 〈p〉ψi ∨ 〈n〉ψi ∨

 m∨
j=1
〈c〉ψj ∧ 〈rj〉ψi

 (7)

We show what the formula looks like for 1 and 2 exits ((8) and (9), respectively):

ψ1 = µX.〈e1〉tt ∨ 〈p〉X ∨ 〈n〉X ∨ (〈c〉X ∧ 〈r1〉X) (8)

ψ1 =µ 〈e1〉tt ∨ 〈p〉ψ1 ∨ 〈n〉ψ1 ∨ (〈c〉ψ1 ∧ 〈r1〉ψ1) ∨ (〈c〉ψ2 ∧ 〈r2〉ψ1)
ψ2 =µ 〈e2〉tt ∨ 〈p〉ψ2 ∨ 〈n〉ψ2 ∨ (〈c〉ψ1 ∧ 〈r1〉ψ2) ∨ (〈c〉ψ2 ∧ 〈r2〉ψ2) (9)

The termination problem for 1-exit RMDPs is equivalent to that of BMDP extinction. We
can see in (8) that the branching occurs at the call port, with the c and r actions.

Termination of multi-exit RMDPs is undecidable, in general [12].

I Theorem 11 (RMDP translation). Given an m-exit RMDP A, its translated BPS L, and
ψi as in (7), there is a one-to-one correspondence between the set of paths {Pi} through A
terminating at exit i and the set of minimal prefixes {Ti} of outcomes of L satisfying ψi.

Proof sketch. First, there is indeed a minimal prefix Ti for any outcome satisfying ψi, and
we can create it by truncating the tree after any e action and pruning the “incorrect” rj
branches (as ψ1, ψ2, . . . , ψm are all mutually exclusive, 〈c〉ψj is satisfied for exactly one j at
each branching node of the outcome). Also, probabilistic and (internal) non-deterministic
choices are made identically. We induct on the recursion depth of Pi.

If the depth of Pi is 0, then it never reaches a call port, and Ti is a path taking p and n
transitions until exit i, with a concluding ei transition.

Now, suppose that, for 1 ≤ i ≤ m, for all paths Pi with depth k < d, we have a matching
Ti. We show that for any path Pi with depth d, we also have a matching Ti.

In Ti, a node of the form (b, en) has a c transition to en and an rj transition to (b, exj).
The segment of Pi from en to exj is a path P ′j . P ′j must have depth k < d; so, by the induction
assumption, Ti has the matching T ′j as the subtree rooted at en (after the c transition).

A. Gorlin and C. R. Ramakrishnan 36:9

Then, Pi continues from (b, exj), which Ti matches by taking the rj transition. Thus, Ti
matches recursive calls with c transitions and, for the top level, has a partial computation
taking p, n, and rj transitions until exit i, with a concluding ei transition. J

I Corollary 12 (Undecidability). GPL model checking over PBSs is undecidable.

Proof. We can encode an undecidable problem, termination of multi-exit RMDPs, in GPL.
It remains to show that the BPS scheduler has sufficient information. This follows because
each partial computation in the minimal prefix includes the entire path through the RMDP
to reach a particular state, except for the calls that already returned, which are represented
by rj transitions instead. So, the scheduler knows the current state and all of the open
calls. J

4 Decidable Model Checking

The modchk-fuzzy procedure from [5, Sect. 4.1] finds the probability of a GPL fuzzy formula
over a fixed fPBS. In that case, we can eliminate top-level disjunctions, via (4). In general,
though, we would want the relation in (10).

PrL,s(ψ1 ∨ ψ2) ?= PrL,s(ψ1) + PrL,s(ψ2)− PrL,s(ψ1 ∧ ψ2) (10)

This requires that the same scheduler maximize ψ1, ψ2, ψ1 ∧ ψ2, and ψ1 ∨ ψ2; these may all
be distinct. Later, modchk-fuzzy was also adapted for systems with internal non-determinism,
but limited to non-recursive fuzzy formulae [26]. This is inadequate if we want to model
check LTL over MDPs or find the maximum probability of termination in a 1-exit RMDP.

4.1 Graph Construction
Disjunctions in themselves are not the problem, of course. We can still attempt a standard
graph construction and see whether we can evaluate the parts of the formula dependent on
the current state and cleanly separate the parts dependent on the (branching) future. In this
section, we describe this construction.

First, we define a few things needed for the construction. Let ψ[ψ′/X] represent the
formula ψ with all free instances of X replaced with ψ′.

I Definition 13 (Fischer-Ladner closure). Given a (closed) formula ψ, its Fischer-Ladner
closure, Cl(ψ), is the smallest set such that the following hold:

ψ ∈ Cl(ψ).
If ψ′ ∈ Cl(ψ), then:

if ψ′ = ψ1 ∧ ψ2 or ψ1 ∨ ψ2, then ψ1, ψ2 ∈ Cl(ψ);
if ψ′ = 〈a〉ψ′′ or [a]ψ′′ for some a ∈ Act, then ψ′′ ∈ Cl(ψ);
if ψ′ = σX.ψ′′, then ψ′′[σX.ψ′′/X] ∈ Cl(ψ), with σ either µ or ν.

It will be useful to view a fuzzy formula as an and-or tree.

I Definition 14 (And-or tree). The and-or tree of a fuzzy formula ψ, AO(ψ) is a node labeled
by ⊕, where ⊕ ∈ {∧,∨}, with children AO(ψ1) and AO(ψ2) when ψ = ψ1 ⊕ψ2, and a leaf ψ
otherwise.

A formula of the form 〈a〉ψ or [a]ψ is called modal. We say that ψ′ is an unguarded
subformula of ψ if it is a leaf in AO(ψ). Also, AO(S) represents the set of and-or trees with
elements of a set S as leaves. We want to separate a formula by actions, which we attempt
by finding its factored form.

CONCUR 2018

36:10 Separable GPL

I Definition 15 (Formula Transformations).
The fixed-point expansion of ψ, denoted by FPE(ψ), is a formula ψ′ obtained by expanding
any unguarded subformula of the form σX.ψX to ψX [σX.ψX/X] where σ ∈ {µ, ν}.
We say that a formula is non-probabilistic if it depends only on the current state, i.e.,
A ∈ Prop or of the form 〈a〉φ and [a]φ for a ∈ Act and φ ∈ {tt,ff}. The partial evaluation
of a fuzzy formula ψ at state s, denoted by PE(s, ψ), is a formula obtained by evaluating
unguarded non-probabilistic subformulae and simplifying the result (i.e., ψ′ ∧ φ, where φ
is non-probabilistic, becomes ψ′ if φ is true and ff otherwise).
A grouping of a formula ψ, denoted by GRP(ψ), groups modalities in a formula using
distributivity. Formally, GRP maps ψ to a ψ′ that is equivalent to ψ based on the
equivalences in Lemma 6, applied left-to-right as much as possible on the top level (i.e.,
〈a〉ψ1 ∧ 〈a〉ψ2 becomes 〈a〉(ψ1 ∧ ψ2); we may also rearrange the tree via commutativity
and associativity, e.g., from 〈a〉ψ1 ∧ (〈a〉ψ2 ∧ 〈b〉ψ3) to (〈a〉ψ1 ∧ 〈a〉ψ2) ∧ 〈b〉ψ3).

I Definition 16 (Factored form and entanglement). A formula ψ is in factored form if
ψ ∈ {tt,ff}, or if ψ satisfies ψ = GRP(ψ) and all leaves of AO(ψ) are modal.
Also, ψ is entangled if it is in factored form and any action guards multiple leaves of AO(ψ).

Given a state s, a formula ψ′ can be transformed into a semantically equivalent one ψ′′
that is in factored form, ψ′′ = FAC (s, ψ′) = GRP

(
PE
(
s,FPE(ψ′)

))
.2

I Example 17. For ψ1 in (9) and s with outgoing c and ri actions,
FAC (s, ψ1) = (〈c〉ψ1 ∧ 〈r1〉ψ1) ∨ (〈c〉ψ2 ∧ 〈r2〉ψ1), which is entangled on c, with leaves
{〈c〉ψ1, 〈c〉ψ2, 〈r1〉ψ1, 〈r2〉ψ1}.

I Definition 18 (Dependency graph). The dependency graph for model checking a formula
ψ with respect to a state s in PBS L, denoted by Dg(s, ψ), is a directed graph (N,E), where
node set N ⊆ S ×AO(Cl(ψ)), and edge set E ⊆ N × (Act ∪ {ε, ε∧, ε∨})×N ; i.e., the edges
are labeled from Act ∪ {ε, ε∧, ε∨}. If graph construction succeeds, the sets N and E are the
smallest such that:

(s, ψ) ∈ N .
If (s′, ψ′) ∈ N and ψ′ = FAC (s′, ψ′), then ψ′ is not entangled (if ψ′ is entangled, graph
construction terminates with failure).
If (s′, ψ′) ∈ N , ψ′′ = FAC (s′, ψ′), and ψ′ 6= ψ′′: (s′, ψ′′) ∈ N and ((s′, ψ′), ε, (s′, ψ′′)) ∈ E.
If (s′, ψ′1⊕ψ′2) ∈ N (an and-node or an or-node), then (s′, ψ′i) ∈ N for i = 1, 2. Moreover,
((s′, ψ′1 ⊕ ψ′2), ε⊕, (s′, ψ′i)) ∈ E for i = 1, 2, and ⊕ ∈ {∧,∨}.
If (s′, 〈a〉ψ′) ∈ N (action node), then (s′′, ψ′) ∈ N for each s′′ such that (s′, a, s′′) ∈ δ.
Moreover, ((s′, 〈a〉ψ′), a, (s′′, ψ′)) ∈ E.

When we transform ψ′ to the factored form ψ′′, the semantics does not change, i.e.,
ΘL,s′(ψ′) = ΘL,s′(ψ′′). For the formulae in factored form, standard GPL semantics applies
(Table 1). Recall that when a is present at state s′, then 〈a〉ψ′ and [a]ψ′ are equivalent; thus,
we can assume all action nodes to be of the form (s′, 〈a〉ψ′). From these semantics, we also
get the relationships for the capacities. Here,

∏
is the standard product operator, while∐

i∈I xi = 1−
∏
i∈I(1− xi).

2 After applying GRP, we may have a modal leaf 〈a〉ψ′
a /∈ AO(Cl(ψ)). Then, we may view a as a prefix

label on the subtree AO(ψ′
a) ∈ AO(Cl(ψ)).

A. Gorlin and C. R. Ramakrishnan 36:11

I Lemma 19 (Capacities). Fix Dg(s0, ψ) = (N,E). The capacity PrL,s(ψ′) for a node (s, ψ′)
is as follows:

PrL,s(ff) = 0 and PrL,s(tt) = 1.
If (s, ψ′) is an and-node, then: PrL,s(ψ′) =

∏
((s,ψ′),ε∧,(s,ψ′

i
))∈E PrL,s(ψ′i).

If (s, ψ′) is an or-node, then: PrL,s(ψ′) =
∐

((s,ψ′),ε∨,(s,ψ′
i
))∈E PrL,s(ψ′i).

If (s, ψ′) is an action node, i.e., ψ′ = 〈a〉ψ′a, then:

PrL,s(ψ′) = max
c∈N

∑
((s,ψ′),a,(s′,ψ′

a))∈E

P (s, a, s′, c) · PrL,s′(ψ′a) (11)

The remaining nodes (s, ψ′) have a unique successor (s, ψ′′) with PrL,s(ψ′) = PrL,s(ψ′′).

Proof. Most of the cases are straightforward and similar to the GPL model checking al-
gorithm [5, Lemma 8] and a result for two-player stochastic parity games [21, Theorem 4.22].
The and-node and or-node cases have the product and coproduct, respectively, due to
independence. We explain the action node case in more detail.

The sum over the probabilistic distribution follows from (5); we explain the internal
non-deterministic choice. A PBS scheduler makes a choice for an action given the partial
computation σ. Here, this choice is made based on a formula, ψ′a, to be satisfied. When the
graph construction succeeds, this is well defined: given L, s, and ψ, the scheduler can deduce
ψ′a from σ, a la traversal of the dependency graph. J

We note that, although a particular choice may maximize PrL,s(ψ′), this does not mean
that the corresponding capacity can be reached by a memoryless3 scheduler, as a scheduler
that makes this choice every time is not necessarily optimal. Indeed, no optimal scheduler
may exist, in which case we would only have ε-optimal schedulers for any ε > 0 [10, 21].
The capacity may be predicated on eventually making a different choice. The formulation
in Lemma 19 is consistent with this possibility, and the existence of (ε-)optimal schedulers
may be justified through a method called strategy improvement or strategy stealing [12, 21].
The intuition is that, in case of a loop, we can add a choice to succeed or fail immediately,
succeeding with probability equal to the corresponding capacity. This does not increase the
capacity, and the maximizing scheduler can otherwise be the same, if this choice does not
arise.

I Theorem 20 (Model checking termination). The graph construction of Dg(s, ψ) terminates
for any fuzzy formula ψ and (finite) PBS L.

Proof. Letting c = |Cl(ψ)|, the number of distinct formulae not in factored form is bounded
by 22c (since we may check DNF versions for equivalence). The number of actions in L and
ψ is finite, which bounds the number of action nodes. Thus, construction cannot continue
indefinitely. J

4.2 Separability of Fuzzy Formulae
Now, we describe a class of fuzzy formulae that cannot get entangled, regardless of the PBS,
which we denote as separability.

3 We consider a scheduler memoryless if it makes a choice based on a formula to be satisfied, but does
not know the history.

CONCUR 2018

36:12 Separable GPL

Recall that we used fixed-point expansion, partial evaluation, and grouping to get a
factored form. As partial evaluation replaced non-probabilistic formulae with either tt or ff,
we define a “worst-case” scenario.

I Definition 21 (Purely probabilistic abstraction). The purely probabilistic abstraction of
a fuzzy formula ψ, denoted by PPA(ψ), is a formula obtained by removing unguarded
non-probabilistic subformulae (i.e., ψ′ ∧ φ, where φ is non-probabilistic, becomes ψ′).

I Definition 22 (Separability). The set of all separable formulae is the largest set S such
that ∀ψ ∈ S, if ψ′ = GRP(PPA(FPE(ψ))), then
1. ψ′ is not entangled, and
2. for each leaf 〈a〉ψa of AO(ψ′), ψa ∈ S.
A formula ψ is separable if ψ ∈ S.

As separable formulae preclude entanglement, graph construction is guaranteed to succeed,
and we have the following result.

I Corollary 23 (Model checking separable formulae). The graph construction of Dg(s, ψ)
terminates without failure for any separable fuzzy formula ψ and (finite) PBS L.

The decidable problems in Sect. 3 involve separable fuzzy formulae. In the case of LTL,
there is only one action, in which case any formula in factored form is a single leaf. Though
a CTL formula may be entangled, all PTTL fuzzy formulae are separable, as there is no
explicit conjunction or disjunction; thus, we can model check PTTL over BMDPs. Finally,
for 1-exit RMDP termination, the same separable formula, (8), is used for any 1-exit RMDP.

4.3 Solving the Polynomial System
For model checking separable formulae, we show how, given the graph, to compare the
probabilistic value of ψ at a state s against a threshold p. We do this by first constructing a
system of polynomial max fixed point equations from the graph. Each node i in the dependency
graph is associated with a real-valued variable xi. Given a set of variables V , each equation
in the system is of the form xi = e where e is

a polynomial over V such that the sum of coefficients is ≤ 1; or
of the form max(V ′) where V ′ ⊆ V .

Furthermore, the equations form a stratified system, where each variable xi can be assigned
a stratum j = stratum(xi) such that xi is defined in terms of only variables of the form xk
such that stratum(xk) ≤ stratum(xi) (cf. [19, Def. 9]); and variables in the same stratum j

fall under the same fixed point. Let ./ ∈ {>,≥, <,≤}.

I Theorem 24. Given a real value p, a system of polynomial max fixed point equations and
a distinguished variable x defined in the system, whether or not x ./ p in its solution is
decidable.

Proof. We write the polynomial system, x = P (x), as a sentence in the first-order theory of
real closed fields, similar to [19]. The additional comparison will be x0 ./ p. Along with the
equation system, we need to encode fixed points and max.

We can encode xi = max(xj , xk) as (12) (cf. [12, Section 5]):

xi ≥ xj ∧ xi ≥ xk ∧ (xi ≤ xj ∨ xi ≤ xk) . (12)

A. Gorlin and C. R. Ramakrishnan 36:13

Meanwhile, letting V be the set of all variables and I a subset belonging to some stratum
with least fixed point, we can encode the fixed point itself as (13):

∀x′I .
(∧
i∈I

x′i = Pi(x′I ,xV \I) =⇒
∧
i∈I

xi ≤ x′i

)
. (13)

The stratification of fixed points in the equation system precludes a cyclical dependency
between a least and a greatest fixed point; a greatest fixed point can be encoded similarly.

The original fixed point equation system, along with the query x ./ p, (12)-(13), and the
counterpart encoding the greatest fixed point, are sentences in a first order theory of real
closed fields, which is decidable [27]. Hence the decidability of x ./ p in the solution to the
fixed point equations follows. J

We use the above result to determine whether or not PrL,s(ψ) ./ p for a separable formula
ψ. The polynomial fixed point system is derived similarly to [5, Section 4.1.2], with a
variable x(s,ψ) for each node (s, ψ) in the dependency graph Dg(s, ψ), and equations based
on Lemma 19.

If ψ is not in factored form, then (s, ψ) has a unique edge labeled by ε to a node (s, ψ′),
and x(s,ψ) = x(s,ψ′).
x(s,ff) = 0 and x(s,tt) = 1.
If (s, ψ) is an and-node, then x(s,ψ) =

∏
((s,ψ),ε∧,(s,ψi))∈E x(s,ψi).

If (s, ψ) is an or-node, then x(s,ψ) =
∐

((s,ψ),ε∨,(s,ψi))∈E x(s,ψi).
If (s, ψ) is an action node and ψ = 〈a〉ψa, then

x(s,ψ) = max
c∈N

∑
((s,ψ),a,(s′,ψa))∈E

P (s, a, s′, c) · x(s′,ψa). (14)

I Theorem 25 (Correctness). The construction of the dependency graph Dg(s, ψ), when ψ is
separable, yields a polynomial max fixed point equation system, such that the value of x(s,ψ)
in its solution is PrL,s(ψ).

Proof. The correctness result follows from Lemma 19 and the semantics of fixed points given
by (13) (and its counterpart). J

4.4 Model Checking Example
I Example 26 (Model Checking). For the PBS L in Fig. 1 and fuzzy formula ψ = µX.[a][b]X∧
[a][c]X, we have symmetric non-deterministic choices on b and c from state s2, and the
formula is satisfied by all finite d-trees (since both s3 and s4 have a probability greater than
1
2 of returning to s2, the infinite d-trees have positive measure on any scheduler). Letting
ψbc = [b]ψ ∧ [c]ψ, we get the dependency graph shown in Fig. 4.

We find PrL,s1(ψ) as the value of xa1 in the least fixed point from the following equations:

xa1 = xbc2 xb2 = max(xa3 , xa4) xa3 = 1
3x

bc
5 + 2

3x
bc
2 xbc5 = 1

xbc2 = xb2 · xc2 xc2 = max(xa3 , xa4) xa4 = 1
4x

bc
6 + 3

4x
bc
2 xbc6 = 1 (15)

Solving the equations, we get PrL,s1(ψ) = xa1 = 1
4 . (Also, PrL,s1(neg(ψ)) = 8

9 .)

CONCUR 2018

36:14 Separable GPL

(s1, ψ)

(s1, [a]ψbc)

(s2, [b]ψ ∧ [c]ψ)(s2, [b]ψ) (s2, [c]ψ)

(s3, ψ) (s4, ψ)

(s3, [a]ψbc) (s4, [a]ψbc)

(s5, [b]ψ ∧ [c]ψ) (s6, [b]ψ ∧ [c]ψ)

(s5, tt) (s6, tt)

ε

a

ε∧ ε∧

b b

εa

a

ε

cc

ε a

a

ε

Figure 4 GPL Model Checking Example: Dependency Graph.

5 Discussion and Future Work

Many interesting questions relevant to GPL have been raised in other contexts. Also, while
the syntax and semantics of GPL fuzzy formulae remains identical to [5] when over BPSs,
the state formulae require a change in syntax; with the resulting logic called XPL in our
related extended version [15] ([26] called its extension EGPL).

A probabilistic extension of µ-calculus closely related to separable GPL is Mio’s pLµ [20,
21]. In contrast to GPL, the most expressive version of pLµ, denoted pLµ�⊕ [20, 21], defines
three conjunction operators and their duals such that their probability values can be computed
from the probabilities of the conjuncts. The logic pLµ� is able to produce branching systems
and supports an intuitive game semantics [21]. Along the same lines as our GPL encoding, we
can encode termination of 1-exit RMDPs as model checking in pLµ�, and RMC termination in
pLµ�⊕. However, pLµ cannot easily encode LTL and has no entanglement, so that attempting
to encode multi-exit RMDP termination in pLµ�⊕ similarly to multi-exit RMC termination
would lead to an incorrect, rather than undecidable, encoding. Other recent extensions
of µ-calculus include the Lukasiewicz µ-calculus [22], µp-calculus [3], PµTL [17], and the
quantitative µ-calculi, such as qMµ [18] and Qµ [13]. PµTL’s expressiveness is orthogonal
even with PCTL; the others are more similar to pLµ than GPL.

Although closely related, algorithms to check properties of RMCs (and pPDSs [7]) were
developed independently [11]. These were related to algorithms for computing properties of
systems such as branching process (BP) extinction and the language probability of Stochastic
Context Free Grammars. The relationship between GPL and these systems was mentioned
briefly in [16], but has remained largely unexplored. The results of this paper together
with [16] also suggest that a separable GPL model checker can be encoded as a probabilistic
logic program, even over systems with internal non-determinism.

There has been significant interest in the study of branching systems that also have
non-deterministic choices, such as RMDPs and Branching MDPs (BMDPs) [12]. At the
same time, the understanding of the polynomial systems has expanded. In [8], the class of

A. Gorlin and C. R. Ramakrishnan 36:15

Probabilistic Polynomial Systems (PPS) is introduced, which characterizes when efficient
solutions to polynomial equation systems are possible even in the worst case [9]. While [11] did
not distinguish the systems arising from 1-exit RMCs from those from multi-exit RMCs, the
PPS class is limited to 1-exit RMCs. It was also extended for 1-exit RMDP termination and,
later, BMDP reachability, both having polynomial-time complexity for min/maxPPSs [8, 10].

We note that 1-exit RMDP termination, which always has optimal memoryless schedulers,
can be matched with the class of least fixed point GPL formulae without disjunctions;
meanwhile, BMDP reachability, for which only ε-optimal maximizing schedulers may exist,
corresponds to least fixed point formulae without conjunctions. Additionally, these systems
have been further extended into stochastic games, such as Recursive and Branching Simple
Stochastic Games (RSSGs and BSSGs, respectively) [12], and we should be able to model
these via separable GPL, as well, with a suitably extended BPS. Then, graph construction
should be the same, but both min and max operators could appear in the equation system.

Polynomial systems equivalent to those arising from separable GPL over fPBSs have
recently been considered in a more general setting in the context of game automata [19],
followed by an undecidability result for more general properties on the automata [23].
Characterizing equation systems that arise from separable formulae and investigating their
efficient solution is an interesting open problem. Another recent result suggests that the
alternation-free restriction may be lifted [14]. Finally, this paper addressed the decidability of
model checking; determining the complexity of model checking is a topic of future research.

References
1 Rajeev Alur, Swarat Chaudhuri, and P. Madhusudan. Software model checking using

languages of nested trees. ACM Trans. Program. Lang. Syst., 33(5):15:1–15:45, November
2011.

2 Christel Baier. On algorithmic verification methods for probabilistic systems. Habilitation
thesis, Fakultät für Mathematik & Informatik, Universität Mannheim, 1998.

3 Pablo Castro, Cecilia Kilmurray, and Nir Piterman. Tractable probabilistic mu-calculus
that expresses probabilistic temporal logics. In STACS, volume 30 of LIPIcs, pages 211–223.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015.

4 Taolue Chen, Klaus Dräger, and Stefan Kiefer. Model checking stochastic branching pro-
cesses. In MFCS, pages 271–282, Berlin, Heidelberg, 2012. Springer.

5 Rance Cleaveland, S. Purushothaman Iyer, and Murali Narasimha. Probabilistic temporal
logics via the modal mu-calculus. Theoretical Computer Science, 342(2-3):316–350, 2005.

6 Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Weak
bisimulation is sound and complete for PCTL*. In CONCUR, volume 2421 of LNCS, pages
355–370. Springer Berlin Heidelberg, 2002.

7 Javier Esparza, Antonín Kucera, and Richard Mayr. Model checking probabilistic push-
down automata. In LICS, pages 12–21, 2004.

8 Kousha Etessami, Alistair Stewart, and Mihalis Yannakakis. Polynomial time algorithms
for branching Markov decision processes and probabilistic min(max) polynomial Bellman
equations. In ICALP, Part I, pages 314–326, Berlin, Heidelberg, 2012. Springer.

9 Kousha Etessami, Alistair Stewart, and Mihalis Yannakakis. Polynomial time algorithms
for multi-type branching processes and stochastic context-free grammars. In STOC, pages
579–588. ACM, 2012.

10 Kousha Etessami, Alistair Stewart, and Mihalis Yannakakis. Greatest fixed points of prob-
abilistic min/max polynomial equations, and reachability for branching Markov decision
processes. In ICALP, Part II, pages 184–196, Berlin, Heidelberg, 2015. Springer.

CONCUR 2018

36:16 Separable GPL

11 Kousha Etessami and Mihalis Yannakakis. Recursive Markov chains, stochastic grammars,
and monotone systems of nonlinear equations. J. ACM, 56(1):1:1–1:66, February 2009.

12 Kousha Etessami and Mihalis Yannakakis. Recursive Markov decision processes and recurs-
ive stochastic games. J. ACM, 62(2):11:1–11:69, May 2015.

13 Diana Fischer, Erich Grädel, and Łukasz Kaiser. Model checking games for the quantitative
µ-calculus. Theory of Computing Systems, 47(3):696–719, 2010.

14 Tomasz Gogacz, Henryk Michalewski, Matteo Mio, and Michał Skrzypczak. Measure
properties of regular sets of trees. Information and Computation, 256:108 – 130, 2017.
URL: http://www.sciencedirect.com/science/article/pii/S0890540117300627,
doi:https://doi.org/10.1016/j.ic.2017.04.012.

15 Andrey Gorlin and C. R. Ramakrishnan. XPL: an extended probabilistic logic for probab-
ilistic transition systems. CoRR, abs/1604.06118, 2016.

16 Andrey Gorlin, C. R. Ramakrishnan, and Scott A. Smolka. Model checking with probabil-
istic tabled logic programming. TPLP, 12(4-5):681–700, 2012.

17 Wanwei Liu, Lei Song, Ji Wang, and Lijun Zhang. A simple probabilistic extension of
modal mu-calculus. In IJCAI, 2015.

18 Annabelle McIver and Carroll Morgan. Results on the quantitative µ-calculus qMµ. ACM
Trans. Comput. Logic, 8(1), January 2007.

19 Henryk Michalewski and Matteo Mio. On the problem of computing the probability of
regular sets of trees. In FSTTCS, volume 45 of LIPIcs, pages 489–502. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2015.

20 Matteo Mio. Game semantics for probabilistic modal mu-calculi. PhD thesis, The University
of Edinburgh, 2012.

21 Matteo Mio. Probabilistic modal µ-calculus with independent product. Logical Methods in
Computer Science, Volume 8, Issue 4, November 2012. URL: https://lmcs.episciences.
org/789, doi:10.2168/LMCS-8(4:18)2012.

22 Matteo Mio and Alex Simpson. Łukasiewicz mu-calculus. In FICS, volume 126 of EPTCS,
pages 87–104, 2013.

23 Marcin Przybylko and Michal Skrzypczak. On the complexity of branching games with reg-
ular conditions. In LIPIcs, volume 58. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2016.

24 Roberto Segala. A compositional trace-based semantics for probabilistic automata. In
CONCUR, pages 234–248, 1995.

25 Roberto Segala and Andrea Turrini. Comparative analysis of bisimulation relations on al-
ternating and non-alternating probabilistic models. In QEST, pages 44–53. IEEE Computer
Society, 2005.

26 Arvind Soni. Probabilistic and nondeterministic systems. Masters thesis, North Carolina
State University, 2004.

27 Alfred Tarski. A decision method for elementary algebra and geometry. Bulletin of the
American Mathematical Society, 59, 1951.

http://www.sciencedirect.com/science/article/pii/S0890540117300627
http://dx.doi.org/https://doi.org/10.1016/j.ic.2017.04.012
https://lmcs.episciences.org/789
https://lmcs.episciences.org/789
http://dx.doi.org/10.2168/LMCS-8(4:18)2012

(Metric) Bisimulation Games and Real-Valued
Modal Logics for Coalgebras
Barbara König
Universität Duisburg-Essen, Germany
barbara_koenig@uni-due.de

Christina Mika-Michalski
Universität Duisburg-Essen, Germany
christina.mika-michalski@uni-due.de

Abstract
Behavioural equivalences can be characterized via bisimulations, modal logics and spoiler-defender
games. In this paper we review these three perspectives in a coalgebraic setting, which allows
us to generalize from the particular branching type of a transition system. We are interested in
qualitative notions (classical bisimulation) as well as quantitative notions (bisimulation metrics).

Our first contribution is to introduce a spoiler-defender bisimulation game for coalgebras in
the classical case. Second, we introduce such games for the metric case and furthermore define
a real-valued modal coalgebraic logic, from which we can derive the strategy of the spoiler. For
this logic we show a quantitative version of the Hennessy-Milner theorem.

2012 ACM Subject Classification Theory of computation → Concurrency, Theory of computa-
tion → Logic and verification

Keywords and phrases coalgebra, bisimulation games, spoiler-defender games, behavioural met-
rics, modal logic

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.37

Related Version A full version of the paper is available at [23], https://arxiv.org/abs/1705.
10165.

Funding Research partially supported by DFG Project BEMEGA.

Acknowledgements We thank Paul Wild, Lutz Schröder and Dirk Pattinson for inspiring dis-
cussions on fuzzy modal logic, and in particular on preservation of total boundedness.

1 Introduction

In the characterization of behavioural equivalences one encounters the following triad: First,
such equivalences can be described via bisimulation relations, where the largest bisimulation
(or bisimilarity) can be characterized as a greatest fixpoint. Second, a modal logic provides
us with bisimulation-invariant formulas and the aim is to prove a Hennessy-Milner theorem
which says that two states are behaviourally equivalent if and only if they satisfy the same
formulas [21]. A third, complementary view is given by spoiler-defender games [32]. Such
games are useful both for theoretical reasons, see for instance the role of games in the Van
Benthem/Rosen theorem [26], or for didactical purposes, in particular for showing that two
states are not behaviourally equivalent. The game starts with two tokens on two states and
the spoiler tries to make a move that cannot be imitated by the defender. If the defender

© Barbara König and Christina Mika-Michalski;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 37; pp. 37:1–37:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:barbara_koenig@uni-due.de
mailto:christina.mika-michalski@uni-due.de
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.37
https://arxiv.org/abs/1705.10165
https://arxiv.org/abs/1705.10165
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

37:2 (Metric) Bisimulation Games and Real-Valued Modal Logics for Coalgebras

is always able to match the move of the spoiler we can infer that the two initial states are
behaviourally equivalent. If the states are not equivalent, a strategy for the spoiler can be
derived from a distinguishing modal logic formula.

Such games are common for standard labelled transition systems, but have been studied
for other types of transition systems only to a lesser extent. For probabilistic transition
systems there are game characterizations in [15, 17], where the players can make moves
to sets of states, rather than take a transition to a single state. Furthermore, in [11] a
general theory of games is introduced in order to characterize process equivalences of the
linear/branching time spectrum.

Our aim is to extend this triad of bisimulation, logics and games in two orthogonal
dimensions. First, we work in the general framework of coalgebras [28], which allows to specify
and uniformly reason about systems of different branching types (e.g. non-deterministic,
probabilistic or weighted), parameterized over a functor. While behavioural equivalences
[31] and modal logics [29, 27] have been extensively studied in this setting, there are almost
no contributions when it comes to games. We are mainly aware of the work by Baltag [7],
which describes a coalgebraic game based on the bisimulation relation, which differs from
the games studied in this paper and is associated with another variant of logic, namely Moss’
coalgebraic logics [25]. A variant of Baltag’s game was used in [24] for terminal sequence
induction via games. (There are more contributions on evaluation games which describe the
evaluation of a modal formula on a transition system, see for instance [18].) Our contribution
generalizes the games of [15] and allows us, given a new type of system characterized by
a functor on the category Set, satisfying some mild conditions, to automatically derive
the corresponding game. The second dimension in which we generalize is to move from a
qualitative to a quantitative notion of behavioural equivalence. That is, we refrain from
classifying systems as either equivalent or non-equivalent, which is often too strict, but rather
measure their behavioural distance. This makes sense in probabilistic systems, systems with
time or real-valued output. For instance, we might obtain the result, that the running times
of two systems differ by 10 seconds, which might be acceptable in some scenarios (departure
of a train), but inacceptable in others (delay of a vending machine). On the other hand, two
states are behaviourally equivalent in the classical sense if and only if they have distance 0.
Such notions are for instance useful in the area of conformance testing [22] and differential
privacy [9].

Behavioural metrics have been studied in different variants, for instance in probabilistic
settings [13, 14, 8] as well as in the setting of metric transition systems [12, 16], which are
non-deterministic transition systems with quantitative information. The groundwork for
the treatment of coalgebras in metric spaces was laid by Turi and Rutten [33]. We showed
how to characterize behavioural metrics in coalgebras by studying various possibilities to lift
functors from Set to the category of (pseudo-)metric spaces [5, 6]. Different from [33, 35] we
do not assume that the coalgebra is given a priori in the category of pseudometric spaces,
that is we have to first choose a lifting of the behaviour functor in order to specify the
behavioural metric. Such liftings are not unique1 and in particular we introduced in [5, 6]
the Kantorovich and the Wasserstein liftings, which generalize well-known liftings for the
probabilistic case and also capture the Hausdorff metric. Here we use the Kantorovich lifting,
since this lifting integrates better with coalgebraic logic. Our results are parameterized over
the lifting, in particular the behavioural metrics, the game and the logics are dependent on a
set Γ of evaluation functions.

1 In fact, consider the product bifunctor F (X,Y) = X × Y , for which there are several liftings: we can
e.g. use the maximum or the sum metric. While the maximum metric is canonically induced by the
categorical product, the sum metric is also fairly natural.

B. König and C. Mika-Michalski 37:3

In the metric setting it is natural to generalize from classical two-valued logics to real-
valued modal logics and to state a corresponding Hennessy-Milner theorem that compares
the behavioural distance of two states with the logical distance, i.e., the supremum of the
differences of values, obtained by the evaluation of all formulas. Such a Hennessy-Milner
theorem for probabilistic transition systems was shown in [14] and also studied in a coalgebraic
setting [35, 34]. Similar results were obtained in [37] for fuzzy logics, on the way to proving a
van Benthem theorem. Fuzzy logics were also studied in [30] in a general coalgebraic setting,
but without stating a Hennessy-Milner theorem.

Here we present a real-valued coalgebraic modal logic and give a Hennessy-Milner theorem
for the general coalgebraic setting as a new contribution. Our proof strategy follows the
one for the probabilistic case in [35]. We need several concepts from real analysis, such as
non-expansiveness and total boundedness in order to show that the behavioural distance
(characterized via a fixpoint) and the logical distance coincide.

Furthermore we give a game characterization of this behavioural metric in a game where
we aim to show that d(x, y) ≤ ε, i.e., the behavioural distance of two states x, y is bounded by
ε. Furthermore, we work out the strategies for the defender and spoiler: While the strategy
of the defender is based on the knowledge of the behavioural metric, the strategy of the
spoiler can be derived from a logical formula that distinguishes both states.

Again, work on games is scarce: [15] presents a game which characterizes behavioural
distances, but pairs it with a classical logic.

The paper is organized as follows: we will first treat the classical case in Section 2,
followed by the metric case in Section 3. The development in the metric case is more complex,
but in several respects mimics the classical case. Hence, in order to emphasize the similarities,
we will use the same structure within both sections: we start with foundations, followed by
the introduction of modal logics and the proof of the Hennessy-Milner theorem. Then we
will introduce the game with a proof of its soundness and completeness. Finally we will show
how the strategy for the spoiler can be derived from a logical formula. In the end we wrap
everything up in the conclusion (Section 4). The proofs can be found in the full version of
this paper [23].

2 Logics and Games for the Classical Case

2.1 Foundations for the Classical Case
We fix an endofunctor F : Set → Set, intuitively describing the branching type of the
transition system under consideration. A coalgebra, describing a transition system of this
branching type is given by a function α : X → FX [28]. Two states x, y ∈ X are considered
to be behaviourally equivalent (x ∼ y) if there exists a coalgebra homomorphism f from α

to some coalgebra β : Y → FY (i.e., a function f : X → Y with β ◦ f = Ff ◦ α) such that
f(x) = f(y).

I Example 1. We consider the (finitely or countably supported) probability distribution
functor D with DX = {p : X → [0, 1] |

∑
x∈X p(x) = 1} (where the p are either finitely or

countable supported). Furthermore let 1 = {•} be a singleton set.
Now coalgebras of the form α : X → DX + 1 can be seen as probabilistic transition

systems where each state x is either terminating (α(x) = •) or is associated with a probability
distribution on its successor states. Note that one could easily integrate labels as well, but
we will work with this version for simplicity.

CONCUR 2018

37:4 (Metric) Bisimulation Games and Real-Valued Modal Logics for Coalgebras

x

1

3
4

5

1
2

1
4

1
4

1

y

2

6 7

1
2 − ε

1
2 + ε

1
(a) Probabilistic transition system for the functor FX =
DX + 1.

x

1

3 4

a a

y

2

5

6 7 8 9

a

b c b c

(b) Non-deterministic transition system for
the functor FX = P(A×X).

Figure 1

Figure 1a displays an example coalgebra (where 0 ≤ ε ≤ 1
2). Note that whenever ε = 0,

we have x ∼ y, since there is a coalgebra homomorphism from the entire state space into the
right-hand side component of the transition system. If ε > 0 we have 1 6∼ 2.

Furthermore we need the lifting of a preorder under a functor F . For this we use the
lifting introduced in [4] which guarantees that the lifted relation is again a preorder whenever
F preserves weak pullbacks: Let ≤ be a preorder on Y , i.e. ≤ ⊆ Y × Y . We define the
preorder ≤F⊆ FY × FY with t1, t2 ∈ FY as follows: t1 ≤F t2 whenever some t ∈ F (≤)
exists such that Fπi(t) = ti, where πi : ≤ → Y with i ∈ {1, 2} are the usual projections.

I Lemma 2. Let (Y,≤) be an ordered set and let p1, p2 : X → Y be two functions. Then
p1 ≤ p2 implies Fp1 ≤F Fp2. (Both inequalities are to be read as pointwise ordering.)

I Example 3. We are in particular interested in lifting the order 0 ≤ 1 on 2 = {0, 1}. In the
case of the distribution functor D we have D2 ∼= [0, 1] and ≤D corresponds to the order on
the reals. For the powerset functor P we obtain the order {0} ≤P {0, 1} ≤P {1} where ∅ is
only related to itself.

2.2 Modal Logics for the Classical Case
We will first review coalgebraic modal logics, following mainly [27, 29], using slightly different,
but equivalent notions. In particular we will introduce a logic where a predicate lifting is
given by an evaluation map of the form λ : F2→ 2, rather than by a natural transformation.
In particular, each predicate p : X → 2 is lifted to a predicate λ ◦ Fp : FX → 2. We do this
to obtain a uniform presentation of the material. Of course, both views are equivalent, as
spelled out in [29].

Given a cardinal κ and a set Λ of evaluation maps λ : F2→ 2, we define a coalgebraic
modal logic Lκ(Λ) via the grammar:

ϕ ::=
∧

Φ | ¬ϕ | [λ]ϕ where Φ ⊆ Lκ(Λ) with card(Φ) < κ and λ ∈ Λ.

The last case describes the prefixing of a formula ϕ with a modality [λ].
Given a coalgebra α : X → FX and a formula ϕ, the semantics of such a formula is

given by a map JϕKα : X → 2, where conjunction and negation are interpreted as usual and
J[λ]ϕKα = λ ◦ F JϕKα ◦ α. For simplicity we will often write JϕK instead of JϕKα. Furthermore
for x ∈ X we write x |= ϕ whenever JϕKα(x) = 1.

In [27] Pattinson has isolated the property of a separating set of predicate liftings to
ensure that logical and behavioural equivalence coincide, i.e., the Hennessy-Milner property
holds. It means that every t ∈ FX is uniquely determined by the set {(λ, p) | λ ∈ Λ, p : X →
2, λ(Fp(t)) = 1}.

B. König and C. Mika-Michalski 37:5

I Definition 4. A set Λ of evaluation maps is separating for a functor F : Set → Set
whenever for all sets X and t1, t2 ∈ FX with t1 6= t2 there exists λ ∈ Λ and p : X → 2 such
that λ(Fp(t1)) 6= λ(Fp(t2)).

The Hennessy-Milner theorem for coalgebraic modal logics can be stated as follows. The
result has already been presented in [27, 29, 20]

I Proposition 5 ([29]). The logic Lκ(Λ) is sound, that is given a coalgebra α : X → FX

and x, y ∈ X, x ∼ y implies that JϕKα(x) = JϕKα(y) for all formulas ϕ.
Whenever F is κ-accessible2 and Λ is separating for F , the logic is also expressive:

whenever JϕKα(x) = JϕKα(y) for all formulas ϕ we have that x ∼ y.

In [29] it has been shown that a functor F has a separating set of predicate liftings iff
(Fp : FX → F2)p : X→2 is jointly injective. We extend this characterization to monotone
predicate liftings, respectively evaluation maps, i.e., order-preserving maps λ : (F2,≤F)→
(2,≤) where ≤ is the order 0 ≤ 1. This result will play a role in Section 2.3.

I Proposition 6. F has a separating set of monotone evaluation maps iff ≤F is anti-
symmetric and (Fp : FX → F2)p : X→2 is jointly injective.

Note that an evaluation map is monotone if and only if its induced predicate lifting is
monotone (see [23]).

2.3 Games for the Classical Case
We will now present the rules for the behavioural equivalence game. At the beginning of a
game, there are two states x, y available for selection. The aim of the spoiler (S) is to prove
that x 6∼ y, the defender (D) attempts to show the opposite.

Initial situation: Given a coalgebra α : X → FX, we start with x, y ∈ X.
Step 1: S chooses s ∈ {x, y} and a predicate p1 : X → 2.
Step 2: D takes t ∈ {x, y}\{s} and has to answer with a predicate p2 : X → 2, which
satisfies Fp1(α(s)) ≤F Fp2(α(t)).
Step 3: S chooses pi with i ∈ {1, 2} and some state x′ ∈ X with pi(x′) = 1.
Step 4: D chooses some state y′ ∈ X with pj(y′) = 1 where i 6= j.

After one round the game continues in Step 1 with states x′ and y′. D wins the game if
the game continues forever or if S has no move at Step 3. In the other cases, i.e. D has no
move at Step 2 or Step 4, S wins.

In a sense such a game seems to mimic the evaluation of a modal formula, but note
that the chosen predicates do not have to be bisimulation-invariant, as opposed to modal
formulas.

I Theorem 7. Assume that F preserves weak pullbacks and has a separating set of monotone
evaluation maps. Then x ∼ y iff D has winning strategy for the initial situation (x, y).

Part of the proof of Theorem 7 is to establish a winning strategy for D whenever x ∼ y.
We will quickly sketch this strategy: In Step 1 S plays p1 which represents a set of states.
One good strategy for D in Step 2 is to close this set under behavioural equivalence, i.e., to

2 A functor F : Set→ Set is κ-accessible if for all sets X and all x ∈ FX there exists Z ⊆ X, |Z| < κ
such that x ∈ FZ ⊆ FX [1]. (Note that we use the fact that Set-functors preserve injections f : A→ B
whenever A 6= ∅.) For details and a more categorical treatment see [2].

CONCUR 2018

37:6 (Metric) Bisimulation Games and Real-Valued Modal Logics for Coalgebras

add all states which are behaviourally equivalent to a state in p1, thus obtaining p2. It can
be shown that Fp1(α(s)) ≤F Fp2(α(t)) always holds for this choice. Now, if S chooses x′, p1
in Step 3, D simply takes x′ as well. On the other hand, if S chooses x′, p2, then either x′ is
already present in p1 or a state y′ with x′ ∼ y′. D simply chooses y′ and the game continues.

I Example 8. Now consider an example coalgebra for the functor FX = P(A×X), where P
is the powerset functor (see Figure 1b). Obviously x 6∼ y, so S must have a winning strategy.
Somewhat different from the usual bisimulation game, here the two players play subsets of
the state space, instead of single states. Otherwise the game proceeds similarly.

Assume that S chooses s = 1 and defines a predicate p1, which corresponds to the set
{3}. Then Fp1(α(s)) is {(a, 0), (a, 1)} (one a-successor of s – 3 – satisfies the predicate, the
other – 4 – does not). Now D must take t = 2 and has to choose a predicate p2 where at
least p2(5) = 1. In this case Fp2(α(t)) is {(a, 1)} and {1} is larger than {0, 1} in the lifted
order (see Example 3). However, now S can pick 5, which leaves only 3 to D.

In the next step, S can choose s = 5 and a predicate p1, which corresponds to {9}. Hence
Fp1(α(s)) is {(b, 0), (c, 1)}, but it is impossible for D to match this, since (c, 1) is never
contained in Fp2(α(t)) for t = 3.

We can see from this game why it is necessary to use an inequality ≤F instead of an
equality. If there were no b, c-transitions (just a-transitions), 1 ∼ 2 would hold. And then, as
explained above, D cannot match the move of S exactly, but only by choosing a larger value.

This game is inspired by the game for labelled Markov processes in [15] and the connection
is explained in more detail in [23].

Note that in the probabilistic version of the game, it can again be easily seen that an
inequality is necessary in Step 2: if, in the system in Figure 1a (where ε = 0), S chooses
s = 1 and p1 corresponds to {4}, then D can only answer by going to 7, which results in a
strictly larger value. That is, we must allow D to do “more” than S.

Game variant

By looking at the proof of Theorem 7 it can be easily seen that the game works as well if we
replace the condition Fp1(α(s)) ≤F Fp2(α(t)) in Step 2 by λ(Fp1(α(s))) ≤ λ(Fp2(α(t))) for
all λ ∈ Λ, provided that Λ is a separating set of monotone evaluation maps. This variant is in
some ways less desirable, since we have to find such a set Λ (instead of simply requiring that it
exists), on the other hand in this case the proof does not require weak pullback preservation,
since we do not any more require transitivity of ≤F . This variant of the game is conceptually
quite close to the Λ-bisimulations studied in [19]. In our notation, a relation S ⊆ X ×X is a
Λ-bisimulation, if whenever xS y, then for all λ ∈ Λ, p : X → 2, λ(Fp(α(x))) ≤ λ(Fq(α(y))),
where q corresponds to the image of p under S (and the same condition holds for S−1).
Λ-bisimulation is sound and complete for behavioural equivalence if F admits a separating
set of monotone predicate liftings, which coincides with our condition.

2.4 Spoiler Strategy for the Classical Case
In bisimulation games the winning strategy for D can be derived from the bisimulation or,
in our case, from the map f that witnesses the behavioural equivalence of two states x, y
(see the remark after Theorem 7). Here we will show that the winning strategy for S can be
derived from a modal formula ϕ which distinguishes x, y, i.e., x |= ϕ and y 6|= ϕ. We assume
that all modalities are monotone (cf. Proposition 6).

B. König and C. Mika-Michalski 37:7

The spoiler strategy is defined over the structure of ϕ:
ϕ =

∧
Φ: in this case S picks a formula ψ ∈ Φ with y 6|= ψ.

ϕ = ¬ψ: in this case S takes ψ and reverses the roles of x, y.
ϕ = [λ]ψ: in this case S chooses x and p1 = JψK in Step 1. After D has chosen y and
some predicate p2 in Step 2, we can observe that p2 6≤ JψK (see proof of Theorem 9 in
[23]). Now in Step 3 S chooses p2 and a state y′ with p2(y′) = 1 and y′ 6|= ψ. Then D
must choose JψK and a state x′ with x′ |= ψ in Step 4 and the game continues with x′, y′
and ψ.

It can be shown that this strategy is successful for the spoiler.

I Theorem 9. Assume that α : X → FX is a coalgebra and F satisfies the requirements of
Theorem 7. Let ϕ be a formula that contains only monotone modalities and let x |= ϕ and
y 6|= ϕ. Then the spoiler strategy described above is winning for S.

3 Logics and Games for the Metric Case

We will now consider the metric version of behavioural equivalence, including logics and
games. Analogous to Section 2 we will first introduce behavioural distance, which will in this
case be defined via the Kantorovich lifting and is parameterized over a set Γ of evaluation
maps. Then we introduce a modal logic inspired by [34] and show a quantitative coalgebraic
analogue of the Hennessy-Milner theorem. This leads us to the definition of a game for
the metric case, where we prove that the distance induced by the game coincides with the
behavioural distance. We will conclude by explaining how the strategy for the spoiler can be
derived from a logical formula distinguishing two states.

3.1 Foundations for the Metric Case
Note that this subsection contains several results which are new with respect to [6], in partic-
ular the extension of the Kantorovich lifting to several evaluation maps and Propositions 18,
19, 20, 21 and 24.

In the following we assume that > is an element of R0, it denotes the upper bound of our
distances.

We first define the standard notions of pseudometric space and non-expansive functions.

I Definition 10 (Pseudometric, pseudometric space). Let X be a set and d : X ×X → [0,>]
a real-valued function, we call d a pseudometric if it satisfies
1. d(x, x) = 0 (d is a metric if in addition d(x, y) = 0 implies x = y.)
2. d(x, y) = d(y, x)
3. d(x, z) ≤ d(x, y) + d(y, z)
for all x, y, z ∈ X. If d satisfies only Condition 1 and 3, it is a directed pseudometric.

A (directed) pseudometric space is a pair (X, d) where X is a set and d is a (directed)
pseudometric on X.

I Example 11. We will consider the following (directed) metrics on [0,>]: the Euclidean
distance de : [0,>]× [0,>]→ [0,>] with de(a, b) = |a− b| and truncated subtraction with
d	(a, b) = a	 b = max{a− b, 0}. Note that de(a, b) = max{d	(a, b), d	(b, a)}.

Maps between pseudometric spaces are given by non-expansive functions, which guarantee
that mapping two elements either preserves or decreases their distance.

CONCUR 2018

37:8 (Metric) Bisimulation Games and Real-Valued Modal Logics for Coalgebras

I Definition 12 (Non-expansive function). Let (X, dX), (Y, dY) be pseudometric spaces. A
function f : X → Y is called non-expansive if dX(x, y) ≥ dY (f(x), f(y)) for all x, y ∈ X. In
this case we write f : (X, dX) 1−→ (Y, dY). By PMet (DPMet) we denote the category of
(directed) pseudometric spaces and non-expansive functions.

On some occasions we need to transform an arbitrary function into a non-expansive
function, which can be done as follows.

I Lemma 13. Let d be a pseudometric on X and let f : X → [0,>] be any function. Then
the function h : (X, d) → ([0,>], de) defined via h(z) = sup{f(u) − d(u, z) | u ∈ X} is
non-expansive and satisfies f ≤ h.

Analogously the function g : (X, d) → ([0,>], de) defined via g(z) = inf{f(u) + d(u, z) |
u ∈ X} is non-expansive and satisfies g ≤ f .

We will now define the Kantorovich lifting for Set-functors, introduced in [5]. Given a
functor F we lift it to a functor F̄ : PMet→ PMet such that UF = F̄U , where U is the
forgetful functor, discarding the pseudometric. The Kantorovich lifting is parameterized
over a set Γ of evaluation maps γ : F [0,>]→ [0,>], the analogue to the evaluation maps for
modalities in the classical case. This is an extension of the lifting in [5] where we considered
only a single evaluation map. The new version allows to capture additional examples, without
going via the somewhat cumbersome multifunctor lifting described in [5].

I Definition 14 (Kantorovich lifting). Let F be an endofunctor on Set and let Γ be a set of
evaluation maps γ : F [0,>]→ [0,>]. For every pseudometric space (X, d) the Kantorovich
pseudometric on FX is the function d↑Γ : FX × FX → [0,>], where for t1, t2 ∈ FX:

d↑Γ(t1, t2) := sup{de(γ(Ff(t1)), γ(Ff(t2))) | f : (X, d) 1−→ ([0,>], de), γ ∈ Γ}

We define F̄Γ(X, d) = (FX, d↑Γ) on objects, while F̄Γ is the identity on arrows.

We will abbreviate F̃γf = γ◦Ff . Note that F̃γ is a functor on the slice category Set/[0,>],
which lifts real-valued predicates p : X → [0,>] to real-valued predicates F̃γp : FX → [0,>].

It still has to be shown that F̄ is well-defined. The proofs are a straighforward adaptation
of the proofs in [5].

I Lemma 15. The Kantorovich lifting for pseudometrics (Definition 14) is well-defined, in
particular it preserves pseudometrics and maps non-expansive functions to non-expansive
functions.

As a sanity check we observe that all evaluation maps γ ∈ Γ are non-expansive for
the Kantorovich lifting of de. In fact, the Kantorovich lifting is the least lifting that
makes the evaluation maps non-expansive. This also means that a non-expansive function
f : (X, d) 1−→ ([0, 1], de) is always mapped to a non-expansive F̃γf : (FX, d↑Γ) 1−→ ([0, 1], de).

For the following definitions we need the supremum metric on functions.

I Definition 16 (Supremum metric). Let (Y, d) be a pseudometric space. Then the set of all
functions f : X → Y is equipped with a pseudometric d∞, the supremum metric, defined as
d∞(f, g) = supx∈X d(f(x), g(x)) for f, g : X → Y .

We consider the following restrictions on evaluation maps respectively predicate liftings,
which are needed in order to prove the results.

I Definition 17 (Properties of evaluation maps). Let γ : F [0,>] → [0,>] be an evaluation
map for a functor F : Set→ Set.

B. König and C. Mika-Michalski 37:9

The predicate lifting F̃γ induced by γ is non-expansive wrt. the supremum metric whenever
d∞e (F̃γf, F̃γg) ≤ d∞e (f, g) for all f, g : X → [0,>] and the same holds if we replace de by
d	.
The predicate lifting F̃γ is contractive wrt. the supremum metric whenever d∞e (F̃γf, F̃γg)
≤ c · d∞e (f, g) for some c with 0 < c < 1.
The predicate lifting F̃γ is ω-continuous, whenever for an ascending chain of functions fi
(with fi ≤ fi+1) we have that F̃γ(supi<ω fi) = supi<ω(F̃γfi).

It can be shown that the first property is equivalent to a property of the lifted functor,
called local non-expansiveness, studied in [33].

I Proposition 18 (Local non-expansiveness). Let Γ be a set of evaluation maps and let F̄ be
the Kantorovich lifting of a functor F via Γ. It holds that

(dFY)∞(F̄ f, F̄ g) ≤ (dY)∞(f, g)

for all non-expansive functions f, g : (X, dX)→ (Y, dY) (where F̄ (Y, dY) = (FY, dFY)) if and
only if

d∞e (F̃γf, F̃γg) ≤ d∞e (f, g)

for all non-expansive functions f, g : (X, dX)→ ([0,>], de) and all γ ∈ Γ.

Assumption. In the following we will always assume the first property in Definition 17 for
every evaluation map γ, i.e., the predicate lifting F̃γ is non-expansive wrt. the supremum
metric.

Under this assumption it can be shown that the Kantorovich lifting itself is non-expansive
(respectively contractive).

I Proposition 19. Let Γ be a set of evaluation maps and let d1, d2 : X ×X → [0,>] be two
pseudometrics. Then d∞e (d↑Γ1 , d↑Γ2) ≤ d∞e (d1, d2), that is, the Kantorovich lifting of metrics
is non-expansive for the supremum metric.

If, in addition, every predicate lifting F̃γ for γ ∈ Γ is contractive (cf. Definition 17), we
have that d∞e (d↑Γ1 , d↑Γ2) ≤ c · d∞e (d1, d2) for some c with 0 < c < 1, that is, the Kantorovich
lifting of metrics is contractive.

We will now see that for the functors studied in this paper, we have evaluation maps that
satisfy the required conditions.

I Proposition 20. The following evaluation maps induce predicate liftings which are non-
expansive wrt. the supremum metric and ω-continuous.

The evaluation map γP for the (finite or general) powerset functor P with γ : P[0,>]→
[0,>] where γP(R) = supR.
The evaluation map γD for the (finitely or countably supported) probability distribution
functor D (for its definition see Example 1) with γD : D[0, 1] → [0, 1] where γD(p) =∑
r∈[0,1] r · p(r). Note that γD corresponds to the expectation of the identity random

variable.
The evaluation map γM for the constant functorMX = [0,>] with γM : [0,>]→ [0,>]
and γM(r) = r.
The evaluation map γS for the constant functor SX = 1 = {•} with γS : 1→ [0,>] and
γS(r) = >.

CONCUR 2018

37:10 (Metric) Bisimulation Games and Real-Valued Modal Logics for Coalgebras

As shown in [5] the evaluation map γP induces the Hausdorff lifting3 on metrics and the
evaluation map γD the classical Kantorovich lifting4 for probability distributions [36].

Contractivity can be typically obtained by using a predicate lifting which is non-expansive
and multiplying with a discount factor 0 < c < 1, for instance by using γP(R) = c · supR in
the first item of Proposition 20 above.

It can be shown that the properties of evaluation maps are preserved under various forms
of composition.

I Proposition 21 (Composition of evaluation maps). The following constructions on evaluation
maps preserve non-expansiveness for the supremum metric and ω-continuity for the induced
predicate liftings. Let γF : F [0,>] → [0,>], γG : G[0,>] → [0,>] be evaluation maps for
functors F,G.

γ : F [0,>]×G[0,>]→ [0,>] with γ = γF ◦ π1, as an evaluation map for F ×G.
γ : F [0,>] +G[0,>]→ [0,>] with γ(t) = γF (t) if t ∈ F [0,>] and γ(t) = 0 otherwise, as
an evaluation map for F +G.
γ : FG[0,>]→ [0,>] with γ = γF ◦ FγG, as an evaluation map for FG.

Now we can define behavioural distance on a coalgebra, using the Kantorovich lifting.
Note that the behavioural distance is parameterized over Γ, since, if we are given a coalgebra
in Set, the notion of behaviour in the metric case is dependent on the chosen functor lifting.

I Definition 22 (Behavioural distance). Let the coalgebra α : X → FX and a set of evaluation
maps Γ for F be given. We define the pseudometric dα : X × X → [0,>] as the smallest
fixpoint of dα = d↑Γα ◦ (α× α).

Note that every lifting of metrics is necessarily monotone (since it turns the identity into
a non-expansive function, cf. [5]). Since in addition the space of pseudometrics forms a
complete lattice (where sup is taken pointwise), the smallest fixpoint exists by Knaster-Tarski.

It has been shown in [6] that whenever the Kantorovich lifting preserves metrics (which
is the case for our examples) and the final chain converges, then dα characterizes behavioural
equivalence, i.e., dα(x, y) = 0 iff x ∼ y.

I Example 23. Using the building blocks introduced above we consider the following
coalgebras with their corresponding behavioural metrics, generalizing notions from the
literature. In both cases we are interested in the smallest fixpoint.

Metric transition systems [12]: FX = [0,>]×PX with two evaluation maps γi : [0,>]×
P[0,>]→ [0,>], i ∈ {1, 2} with γ1(r,R) = r, γ2(r,R) = supR.
This gives us the following fixpoint equation, where dH is the Hausdorff lifting of a
metric d. Let α(x) = (rx, Sx), α(y) = (ry, Sy), then

d(x, y) = max{|rx − ry|, dH(Sx, Sy)}

Probabilistic transition systems: GX = DX+1 with two evaluation maps γ̄D, γ• : D[0, 1]+
1 → [0, 1], i ∈ {1, 2} with γ̄D(p) = γD(p), γ•(p) = 0 where p ∈ D[0, 1], γ̄D(•) = 0,
γ•(•) = 1.

3 Given a metric d on X, the Hausdorff lifting of d is the metric dH with dH(X1, X2) =
max{supx1∈X1

infx2∈X2 d(x1, x2), supx2∈X2
infx1∈X1 d(x1, x2)} for X1, X2 ⊆ X.

4 Given a metric d on X, the (probabilistic) Kantorovich lifting of d is the metric dK with dK(p1, p2) =
sup{|

∑
x∈X f(x) · (p1(x) − p2(x))| | f : (X, d) 1−→ ([0, 1], de)} where p1, p2 : X → [0, 1] are probability

distributions.

B. König and C. Mika-Michalski 37:11

Table 1 Overview of the modal logic formulas, their semantics JϕKα and modal depths md(ϕ).

ϕ: > [γ]ψ min(ψ,ψ′) ¬ψ ψ 	 q
JϕKα: > γ ◦ F JψKα ◦ α min{JψKα, Jψ′Kα} > − JψKα JψKα 	 q
md(ϕ): 0 md(ψ) + 1 max{md(ψ),md(ψ′)} md(ψ) md(ψ)

This gives us the following fixpoint equation, where dK is the (probabilistic) Kantorovich
lifting of a metric d. Let T = {x | α(x) = •} and let px = α(x) 6= •.

d(x, y) =


1 if x ∈ T, y /∈ T or x /∈ T, y ∈ T
0 if x, y ∈ T
dK(px, py) otherwise

Some of the results on (real-valued) modal logics in Section 3.2 will require that the fixpoint
iteration terminates in ω steps. This is related to the fact that the original Hennessy-Milner
theorem requires finite branching.

I Proposition 24. Let Γ be a set of evaluation maps and let α : X → FX be a coalgebra.
We define an ascending sequence of metrics di : X ×X → [0,>] as follows: d0 is the constant
0-function and di+1 = d↑Γi ◦ α× α. Furthermore dω = supi<ω di.

If for all evaluation maps γ ∈ Γ the induced predicate liftings are ω-continuous (see
Definition 17) and F is ω-accessible, the fixpoint dα equals dω.
If for all evaluation maps γ ∈ Γ the induced predicate liftings are contractive wrt. the
supremum metric (see Definition 17), the fixpoint dα equals dω.

Hence, if we are working with the finite powerset functor or the finitely supported
distribution functor, the first case applies, whereas in the case of contractiveness, these
restrictions are unnecessary (compare this with the result of [33] which guarantees the
existence of a final coalgebra for a class of locally contractive functors).

3.2 Modal Logics for the Metric Case
We now define a coalgebraic modal logicM(Γ), which is inspired by [35]. Assume also that
Γ is a set of evaluation maps.

The formulas of the logic are defined together with their semantics JϕKα and their modal
depth md(ϕ) in Table 1. Given a coalgebra α : X → FX and a formula ϕ, the semantics
of such a formula is given by a real-valued predicate JϕKα : X → [0,>], defined inductively,
where γ ∈ Γ, q ∈ Q ∩ [0,>]. Again we will occasionally omit the subscript α.

Note that, given a state x and a logical formula ϕ, we do not just obtain a true value
(true, false) dependent on whether x satisfies the formula or not. Instead we obtain a value
in the interval [0, 1] that measures the degree or weight according to which x satisfies ϕ.

I Definition 25 (Logical distance). Let α : X → FX be a coalgebra and let x, y ∈ X. We
define the logical distance of x, y as

dLα(x, y) = sup{de(JϕKα(x), JϕKα(y)) | ϕ ∈M(Γ)}.

We also define the logical distance up to modal depth i.

dLi (x, y) = sup{de(JϕKα(x), JϕKα(y)) | ϕ ∈M(Γ),md(ϕ) ≤ i}.

CONCUR 2018

37:12 (Metric) Bisimulation Games and Real-Valued Modal Logics for Coalgebras

I Example 26. We are considering probabilistic transition systems with evaluation maps as
defined in Example 23.

The formula ϕ = [γ̄D][γ•]> distinguishes the states x, y in Figure 1a. The formula
ψ = [γ•]> evaluates to a predicate JψK that assigns 1 to terminating states and 0 to
non-terminating states. Now x makes a transition to a terminating state with probability
1
2 , which means that JϕK(x) = γ̄D(DJψK(α(x))) = 1

2 . Similarly JϕK(y) = 1
2 + ε. Hence

dLα(x, y) ≥ de(JϕK(x), JϕK(y)) = ε. (In fact, the logical distance equals ε.)

We will now show that the logical distance dLα and the behavioural distance dα coincide,
i.e. a quantitative version of the Hennessy-Milner theorem, by generalizing the proof from [35].
Note that in some respects we simplify wrt. [35] by not working in Meas, the category of
measurable spaces, but in a discrete setting. On the other hand, we generalize by considering
arbitrary Set-endofunctors.

I Theorem 27. Let di be the sequence of pseudometrics from Proposition 24. Then:
1. For every i ∈ N0 d

L
i ≤ di.

2. For every ϕ with md(ϕ) ≤ i we have non-expansiveness: JϕK : (X, di)→ ([0,>], de).
3. dLα ≤ dα.

Note that from Theorem 27 it also follows that for every formula ϕ the function JϕK is
non-expansive. Non-expansiveness is analogous to bisimulation-invariance that holds for
formulas in a classical logic. In particular, in the classical case if x ∼ y, then JϕK(x) = JϕK(y)
for every ϕ, in other words JϕK is non-expansive for the discrete metric d.

The other inequality (dLα ≥ dα) is more difficult to prove: we will first show that each di
is totally bounded and then show that each non-expansive function can be approximated
at each pair of points by a modal formula. Since modal formulas are closed under min and
max, this enables us to use a variant of a lemma from [3] to prove that the formulas form a
dense subset of all non-expansive functions. In order to achieve the approximation, we need
all operators of the logic.

We first have to recall some definitions from real-valued analysis.

I Definition 28 (Total boundedness). A pseudometric space (X, d) is totally bounded iff for
every ε > 0 there exist finitely many elements x1, . . . , xn ∈ X such that X =

⋃n
i=1 Bε(xi)

where Bε(xi) = {z ∈ X | d(z, xi) ≤ ε} denotes the ε-ball around xi.

Our first result is to show that the lifting preserves total boundedness, by adapting a
proof from [37] from a specific functor to arbitrary functors.

I Proposition 29. Let (X, d) be a totally bounded pseudometric space, then (FX, d↑Γ) is
totally bounded as well.

Using this result it can be shown that every pseudometric in the ascending chain from
Proposition 24 (apart from dω) is totally bounded.

I Proposition 30. Let di be the sequence of pseudometrics from Proposition 24. Then every
(X, di) is a totally bounded pseudometric space.

Since total boundedness is not preserved by taking a supremum, dω is not necessarily
totally bounded and we can not iterate the argument. This is one of the reasons for requiring
that the fixpoint is reached in ω steps in Theorem 32 below.

In the next step we show that the formulas are dense in the non-expansive functions.

I Proposition 31. {JϕK : X → [0, 1] | md(ϕ) ≤ i} is dense (wrt. the supremum metric) in
{f : (X, dLi) 1−→ ([0,>], de)}.

B. König and C. Mika-Michalski 37:13

Finally we can show under which conditions the inequality dα ≤ dLα holds.

I Theorem 32. If the fixpoint dα is reached in ω steps, it holds that dα ≤ dLα.

3.3 Games for the Metric Case
We will now present the two-player game characterizing the behavioural distance between
two states. The roles of S and D are similar to those in the first game, where D wants to
defend the statement that the distance of two states x, y ∈ X in a coalgebra α is bounded by
ε ∈ [0,>], i.e., dα(x, y) ≤ ε. S wants to disprove this claim.

Initial situation: Given a coalgebra α : X → FX, we start with (x, y, ε) where x, y ∈ X
and ε ∈ [0,>].
Step 1: S chooses s ∈ {x, y} and a real-valued predicate p1 : X → [0,>].
Step 2: D takes t ∈ {x, y}\{s} and has to answer with a predicate p2 : X → [0,>], which
satisfies d	(F̃γp1(α(s)), F̃γp2(α(t))) ≤ ε for all γ ∈ Γ.
Step 3: S chooses pi with i ∈ {1, 2} and some state x′ ∈ X.
Step 4: D chooses some state y′ ∈ X with pi(x′) ≤ pj(y′) where j 6= i

Next round: (x′, y′, ε′) with ε′ = pj(y′)− pi(x′).

After one round the game continues with the initial step, but now D tries to show that
dα(x′, y′) ≤ ε′. D wins if the game continues forever. In the other case, e.g., D has no move
at Step 2 or Step 4, S wins.

The game distance of two states is defined as follows.

I Definition 33 (Game distance). Let α : X → FX be a coalgebra and let x, y ∈ X. We
define the game distance of x, y as

dGα (x, y) = inf{ε | D has a winning strategy for (x, y, ε)}.

We now prove that the behavioural distance and the game distance coincide. We first
show that dGα is indeed a pseudometric.

I Proposition 34. The game distance dGα is a pseudometric.

Next we show that the game distance is always bounded by the behavioural distance.

I Theorem 35. It holds that dGα ≤ dα.

While the general proof of this theorem is given in [23], the strategy for D can be straight-
forwardly explained whenever X is finite. In particular we want to show that whenever
dα(x, y) ≤ ε, then D has a winnning strategy for (x, y, ε). Assume that S chooses s ∈ {x, y}
with p1 : X → [0,>]. In this case D chooses p2 with p2(z) = sup{p1(u)− dα(u, z) | u ∈ X}
in Step 2. From Lemma 13 we know that p1 ≤ p2 and p2 is non-expansive. It can be shown
that this choice satisfies d	(F̃γp1(α(s)), F̃γp2(α(t))) ≤ ε for all γ ∈ Γ. Now S chooses i and
x′ ∈ X in Step 3. Then either i = 1 and D can choose y′ = x′ in Step 4 and the game
continues with x′, y′ and ε′ = p2(y′)− p1(x′) ≥ 0. Or i = 2 and D can choose y′ such that
p1(y′) − dα(y′, x′) = p2(x′) (the supremum is reached since X is finite). This means that
p1(y′) ≥ p2(x′) and ε′ = p1(y′)− p2(x′) = dα(x′, y′). In both cases, the game can continue.

I Example 36. Imagine the initial game situation (x, y, ε) for our example in Figure 1a and
S chooses x with predicate p1(4) = 1 and zero for all remaining states. Now D follows the
strategy above and plays a predicate p2 with p2(4) = p2(5) = p2(7) = 1 and zero for all other

CONCUR 2018

37:14 (Metric) Bisimulation Games and Real-Valued Modal Logics for Coalgebras

x

x1 xi

1
2i

1
21

.

y

y0

1

Figure 2 Probabilistic transition system for the functor FX = DX + 1, where X is infinite.

states. Since 5, 7 are at distance 0 to 4, they are now mapped to 1 as well. Since in particular
4 and 7 are mapped to 1, we obtain d	(D̃γ̄Dp1(α(x)), D̃γ̄Dp2(α(y))) = d	(1

4 ,
1
2 + ε) = 0 ≤ ε

(we obtain the same value for γ•). Note again that D must be allowed to do “more” than S.
Now the winning strategy for D is obvious: if S picks a terminating state x′ and pi, D can
also pick a terminating state y′ and pj with pj(y′)− pi(x′) = 0 (similarly for non-terminating
states). We then end up in (x′, y′, 0) where x′, y′ are behaviourally equivalent.

If S had instead chosen y a prediate p1 with p1(7) = 1 and zero for all other states, D
would choose the same predicate p2 with d	(D̃γ̄Dp1(α(y)), D̃γ̄Dp2(α(x))) = d	(1

2 + ε, 1
2) = ε.

We now demonstrate that in the case of infinite branching, the construction of the winning
strategy for the D is not as simple as described before.

I Example 37. Consider the coalgebra α : X → DX + 1 in Figure 2 on the state space
X = {y, y0, x, x1, x2, . . . }, where the probability of going from x to xi is α(x)(xi) = 1

2i .
For both states x, y the probability to terminate is 1 and hence x ∼ y. Now imagine that

S selects x and the real-valued predicate p1 with p1(xi) = 1− 1
2i and p1(x) = 0. If we would

construct the predicate for D as above, via p2(z) = sup{p1(u)− dα(u, z) | u ∈ X}, this would
yield p2(y0) = 1 since the distance of all terminating states is 0.

Then S chooses x′ = y0 and p2 in Step 3 and D has no available state y′ with which to
answer in Step 4. If y′ = xi, then p1(xi) = 1− 1

2i < 1 = p2(x′), otherwise p1(y′) = 0 < 1.
In fact, D has no winning strategy for ε = 0, but we can show that there is a winning

strategy for every ε > 0 (since D can play a predicate that is below p2, but at distance
ε). Since the game distance is defined as the infinum over all such ε’s it still holds that
dGα (x, y) = 0.

Finally, we can show the other inequality.

I Theorem 38. It holds that dα ≤ dGα .

3.4 Spoiler Strategy for the Metric Case
The strategy for S for (x, y, ε) can be derived from a modal formula ϕ with d	(JϕK(x), JϕK(y))
> ε. If ε < dα(x, y) = sup{de(JϕK(x), JϕK(y)) | ϕ}, such a formula must exist (since we can
use negation to switch x, y if necessary). The spoiler strategy is defined over the structure of
ϕ:

ϕ = >: this case can not occur.
ϕ = [γ]ψ: S chooses x, p1 = JψK at Step 1. After D has chosen y, p2 at Step 2, we can
observe that p2 6≤ JψK (see proof of Theorem 39 in [23]). Now in Step 3 S chooses p2
and x′ such p2(x′) > JψK(x′). Now D needs to choose y′ such that JψK(y′) ≥ p2(x′) in
Step 4 and ε′ = JψK(y′) − p2(x′) < JψK(y′) − JψK(x′) = de(JψK(x′), JψK(y′)) and so the
game continues in the situation (x′, y′, ε′) with the formula ψ.
ϕ = min(ψ,ψ′): In this case either de(JψK(x), JψK(y)) > ε or de(Jψ′K(x), Jψ′K(y)) > ε and
S picks ψ or ψ′ accordingly.
ϕ = ¬ψ: In this case S takes ψ, since de(JψK(x), JψK(y)) = de(JϕK(x), JϕK(y)) > ε.

B. König and C. Mika-Michalski 37:15

ϕ = ψ 	 q: In this case de(JψK(x), JψK(y)) ≥ de(JϕK(x), JϕK(y)) > ε and hence S takes ψ.

It can be shown that this strategy is indeed correct.

I Theorem 39. Assume that α : X → FX is a coalgebra. Let ϕ be a formula with
de(JϕK(x), JϕK(y)) > ε. Then the spoiler strategy described above is winning for S in the
situation (x, y, ε).

Note that Theorem 38 is not a direct corollary of this theorem, since here we require
that a formula ϕ with de(JϕK(x), JϕK(y)) > ε exists, which is not necessarily true in scenarios
where the fixpoint iteration does not terminate in ω steps.

I Example 40. We will show how S can construct a winning strategy for (x, y, ε2) based on
the formula ϕ = [γ̄D][γ•]> from Example 26. The transition system is shown in Figure 1a.

It holds that d	(JϕK(y), JϕK(x)) = ε > ε
2 . S plays y and p1 = J[γ•]>K which, due to

the definition of γ• equals 1 on terminating states and zero on non-terminating states.
Now γ̄D(Dp1(α(y))) = 1

2 + ε, so D must play in such a way that γ̄D(Dp2(α(x))) ≥ 1
2 + ε

2 .
This can only be achieved by setting p2(3) = ε (or to a larger value). Now S chooses
p2, x′ = 3 and D can only take p1 and either 4, 5 or 7 as y′. In each case we obtain
ε′ = p1(y′)− p2(x′) = 1− ε < 1 = de(0, 1) = de(J[γ•]>K(x′), J[γ•]>K(y′)).

The spoiler continues to follow his strategy and plays x′, p1 = J>K in the next step, which
is successful, since y′ is a terminating state and x′ is not.

4 Conclusion

Comparison to related work can be found in the introduction and throughout the text.
We will conclude by discussing some open points and questions: Section 3, which treats

the metric cases, follows the outline of Section 2, which treats the classical case, with some
variations. An important difference is the fact that the metric case is parameterized over a set
Γ of evaluation maps. Note that we actually mimic the variant of the game discussed at the
end of Section 2.3, where we fix evaluation maps, but omit the requirement of weak pullback
preservation. The requirement of monotonicity is replaced by local non-expansiveness in the
metric case. The fact that monotonicity for partial orders generalizes to non-expansiveness
for directed metrics has already been discussed in [33]. The variant of the classical game that
uses the lifted order ≤F is more reminiscent of the Wasserstein lifting for metrics, which has
been introduced in [5] and compared to the Kantorovich lifting. It is future work to define a
variant of the metric game that corresponds to the Wasserstein lifting (or other liftings) of
metrics.

Another open question is to prove the Hennessy-Milner theorem for the real-valued
logic in the case where the fixpoint is not reached in ω steps. The original variant of the
Hennessy-Milner-theorem only holds for finitely-branching transition systems, but this result
can be generalized if we allow infinite conjunctions (cf. the logic in Section 3.2). A natural
question is whether the same solution is applicable to the metric case, by replacing the min-
by an inf-operator (of restricted cardinality κ, as in Section 2.2). However, for this it seems
necessary to generalize the notion of total boundedness to a new variant where we do not
require that the set of “anchors” {x1, . . . , xn} of Definition 28 is finite, but bounded by κ.

A related question is the following: does the Kantorovich lifting preserve completeness
of metrics? (A metric space (X, d) is complete if every Cauchy sequence converges in X.)
Furthermore we would like to add ∞ as a possible distance value, as in [5]. However, this
can not be integrated so easily, for instance it is unclear how to define negation.

CONCUR 2018

37:16 (Metric) Bisimulation Games and Real-Valued Modal Logics for Coalgebras

Finally, in the quantitative case it could be interesting to know whether we can use
existing efficient algorithms (for the probabilistic case), for instance in order to generate the
strategy of the spoiler (see e.g. [10]).

References
1 J. Adámek, H.P. Gumm, and V. Trnková. Presentation of Set functors: A coalgebraic

perspective. Journal of Logic and Computation, 20(5), 2010.
2 J. Adámek and J. Rosický. Locally Presentable and Accessible Categories, volume 189 of

London Mathematical Society Lecture Note Series. Cambridge University Press, 1994.
3 R.B. Ash. Real Analysis and Probability. Academic Press, 1972.
4 A. Balan and A. Kurz. Finitary functors: From Set to Preord and Poset. In Proc. of

CALCO ’11, pages 85–99. Springer, 2011. LNCS 6859.
5 P. Baldan, F. Bonchi, H. Kerstan, and B. König. Behavioral metrics via functor lifting. In

Proc. of FSTTCS ’14, volume 29 of LIPIcs, 2014.
6 P. Baldan, F. Bonchi, H. Kerstan, and B. König. Coalgebraic behavioral metrics. Logical

Methods in Computer Science, to appear. Selected Papers of the 6th Conference on Algebra
and Coalgebra in Computer Science (CALCO 2015).

7 A. Baltag. Truth-as-simulation: Towards a coalgebraic perspective on logic and games.
Technical Report SEN-R9923, Centrum voor Wiskunde en Informatica (CWI), November
1999.

8 V. Castiglioni, D. Gebler, and S. Tini. Logical characterization of bisimulation metrics. In
Proc. of QAPL ’16, 2016. EPTCS 227.

9 K. Chatzikokolakis, D. Gebler, C. Palamidessi, and L. Xu. Generalized bisimulation metrics.
In Proc. of CONCUR ’14. Springer, 2014. LNCS/ARCoSS 8704.

10 D. Chen, F. van Breugel, and J. Worrell. On the complexity of computing probabilistic
bisimilarity. In Proc. of FOSSACS ’12, pages 437–451. Springer, 2012. LNCS/ARCoSS
7213.

11 X. Chen and Y. Deng. Game characterizations of process equivalences. In Proc. of APLAS
’08, pages 107–121. Springer, 2008. LNCS 5356.

12 L. de Alfaro, M. Faella, and M. Stoelinga. Linear and branching system metrics. IEEE
Trans. Softw. Eng., 35(2):258–273, 2009.

13 J. Desharnais. Labelled Markov processes. PhD thesis, McGill University, Montreal, Novem-
ber 1999.

14 J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labelled Markov
processes. Theoretical Computer Science, 318:323–354, 2004.

15 J. Desharnais, F. Laviolette, and M. Tracol. Approximate analysis of probabilistic processes:
Logic, simulation and games. In Proc. of QEST ’08, pages 264–273. IEEE, 2008.

16 U. Fahrenberg, A. Legay, and C. Thrane. The quantitative linear-time–branching-time
spectrum. In Proc. of FSTTCS ’11, volume 13 of LIPIcs, pages 103–114, 2011.

17 N. Fijalkow, B. Klin, and P. Panangaden. Expressiveness of probabilistic modal logics.
In Proc. of ICALP ’17, volume 80 of LIPIcs, pages 105:1–12. Schloss Dagstuhl – Leibniz
Center for Informatics, 2017.

18 G. Fontaine, R.A. Leal, and Y. Venema. Automata for coalgebras: An approach using
predicate liftings. In Proc. of ICALP ’10, pages 381–392. Springer, 2010. LNCS 6198.

19 D. Gorín and L. Schröder. Simulations and bisimulations for coalgebraic modal logics. In
Proc. of CALCO ’13, pages 253–266. Springer, 2013. LNCS 8089.

20 H. Peter Gumm. Universal coalgebras and their logics. AJSE-Mathematics, 34(1D):105–
130, 2009.

21 M. Hennessy and R. Milner. On observing nondeterminism and concurrency. In Proc. of
ICALP ’80, pages 299–309. Springer, 1980. LNCS 85.

B. König and C. Mika-Michalski 37:17

22 N. Khakpour and M.R. Mousavi. Notions of conformance testing for cyber-physical systems:
Overview and roadmap (invited paper). In Proc. of CONCUR ’15, volume 42. LIPIcs, 2015.

23 B. König and C. Mika-Michalski. (Metric) bisimulation games and real-valued modal logics
for coalgebras, 2018. arXiv:1705.10165. arXiv:1705.10165.

24 C. Kupke. Terminal sequence induction via games (international tbilisi symposium on
language, logic and computation). In Prof. of TbiLLC ’07, pages 257–271. Springer, 2009.
LNAI 5422.

25 L.S. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96(1–3):277–317, 1999.
26 M. Otto. Elementary proof of the van Benthem-Rosen characterisation theorem. Technical

Report 2342, Department of Mathematics, Technische Universität Darmstadt, 2004.
27 D. Pattinson. Coalgebraic modal logic: soundness, completeness and decidability of local

consequence. Theoretical Computer Science, 309(1):177–193, 2003.
28 J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science,

249:3–80, 2000.
29 L. Schröder. Expressivity of coalgebraic modal logic: The limits and beyond. Theoretical

Computer Science, 390(2):230–247, 2008.
30 L. Schröder and D. Pattinson. Description logics and fuzzy probability. In Proc. of IJCAI

’11, volume 2, pages 1075–1080. AAAI Press, 2011.
31 S. Staton. Relating coalgebraic notions of bisimulation. In Proc. of CALCO ’09, pages

191–205. Springer, 2009. LNCS 5728.
32 C. Stirling. Bisimulation, modal logic and model checking games. Logic Journal of the

IGPL, 7(1):103–124, 1999.
33 D. Turi and J. Rutten. On the foundations of final coalgebra semantics: non-well-founded

sets, partial orders, metric spaces. Mathematical Structures in Computer Science, 8:481–
540, 1998.

34 F. van Breugel and J. Worrell. Approximating and computing behavioural distances in
probabilistic transition systems. Theoretical Computer Science, 360:373–385, 2005.

35 F. van Breugel and J. Worrell. A behavioural pseudometric for probabilistic transition
systems. Theoretical Computer Science, 331(1):115–142, 2005.

36 C. Villani. Optimal Transport – Old and New, volume 338 of A Series of Comprehensive
Studies in Mathematics. Springer, 2009.

37 P. Wild, L. Schröder, D. Pattinson, and B. König. A van Benthem theorem for fuzzy modal
logic. In Proc. of LICS ’18, 2018. to appear. arXiv:1802.00478.

CONCUR 2018

http://arxiv.org/abs/1705.10165
http://arxiv.org/abs/1802.00478

The Complexity of Rational Synthesis for
Concurrent Games
Rodica Condurache
Computer Science Department, “A.I.Cuza” University, Iaşi
700483, ROMANIA
rodica.b.condurache@gmail.com

Youssouf Oualhadj
Université Paris Est Créteil, LACL(EA 4219), UPEC
94010 Créteil Cedex, France
youssouf.oualhadj@lacl.fr

Nicolas Troquard
The KRDB Research Centre, Free University of Bozen-Bolzano
I-39100 Bozen-Bolzano BZ, Italy
nicolas.troquard@unibz.it

Abstract
In this paper, we investigate the rational synthesis problem for concurrent game structures for a
variety of objectives ranging from reachability to Muller condition. We propose a new algorithm
that establishes the decidability of the non cooperative rational synthesis problem that relies solely
on game theoretic techniques as opposed to previous approaches that are logic based. Given an
instance of the rational synthesis problem, we construct a zero-sum turn-based game that can be
adapted to each one of the class of objectives. We obtain new complexity results. In particular,
we show that in the cases of reachability, safety, Büchi, and co-Büchi objectives the problem
is in PSpace, providing a tight upper-bound to the PSpace-hardness already established for
turn-based games. In the case of Muller objective the problem is in ExpTime. We also obtain
positive results when we assume a fixed number of agents, in which case the problem falls into
PTime for reachability, safety, Büchi, and co-Büchi objectives.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory, Theory
of computation → Solution concepts in game theory

Keywords and phrases Synthesis, concurrent games, Nash equilibria

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.38

Related Version A full version of the paper is available at https://arxiv.org/abs/1707.
06936.

Funding The second author is supported by the RFSI DIM McSYS project.

Acknowledgements The first author did part of this work when she was member of Université
Paris Est Créteil, LACL, UPEC.

1 Introduction

The synthesis problem aims at automatically designing a program from a given specification.
Several applications for this formal problem can be found in the design of interactive systems
i.e., systems interacting with an environment. From a formal point of view, the synthesis

© Rodica Condurache, Youssouf Oualhadj, and Nicolas Troquard;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 38; pp. 38:1–38:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rodica.b.condurache@gmail.com
mailto:youssouf.oualhadj@lacl.fr
mailto:nicolas.troquard@unibz.it
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.38
https://arxiv.org/abs/1707.06936
https://arxiv.org/abs/1707.06936
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

38:2 The Complexity of Rational Synthesis for Concurrent Games

problem is traditionally modelled as a zero-sum turn-based game. The system and the
environment are modeled by two players with opposite interest. The goal of the system is the
desired specification. Hence, a strategy that allows the system to achieve its goal against any
behavior of the environment is a winning strategy and is exactly the program to synthesize.

For a time, the described approach was the standard in the realm of controller synthesis.
However, due to the variety of systems to model, such a pessimistic view is not always the
most faithful one. For instance, consider a system that consists of a server and n clients.
Assuming that all the agents have opposite interests is not a realistic assumption. Indeed,
from a design perspective, the purpose of the server is to handle the incoming requests. On
the other hand, each client is only concerned with its own request and wants it granted.
None of the agents involved in the described interaction have antagonistic purposes. The
setting of non-zero-sum games was proposed as model with more realistic assumptions.

In a non zero-sum game, each agent is equipped with a personal objective and the system
is just a regular agent in the game. The agents interact together aiming at achieving the
best outcome. The best outcome in this setting is often formalized by the concept of Nash
equilibria. Unfortunately, a solution in this setting offers no guarantee that a specification
for a given agent is achieved, and in a synthesis context one wants to enforce a specification
for one or a subset of the agents.

The rational synthesis problem was introduced as a generalization of the synthesis problem
to environment with multiple agents [4]. It aims at synthesizing a Nash equilibrium such
that the induced behavior satisfies a given specification. This vision enjoys nice algorithmic
properties since it matches the complexity bound of the classical synthesis problem. Later
on, yet another version of the problem was proposed where the agents are rational but not
cooperative [6, 7]. In the former formalization, the specification is guaranteed as long as the
agents agree to behave according to the chosen equilibrium. But anything can happen if
not, in particular they can play another equilibrium that does not satisfy the specification.
In the Non Cooperative Rational Synthesis (NCRSP), the system has to ensure that the
specification holds in any equilibrium (c.f., Section 3 for a formal definition and Figure 1a
for an example). A solution for both problems was presented for specifications expressed in
Linear Temporal Logic (LTL). The proposed solution relies on the fact that the problem can
be expressed in a decidable fragment of a logic called Strategy Logic. The presented algorithm
runs in 2-ExpTime. While expressing the problem in a decidable fragment of Strategy Logic
gives an immediate solution, it could also hide a great deal of structural properties. Such
properties could be exploited in a hope of designing faster algorithms for less expressive
objectives. In particular, specifications such as reachability, liveness, fairness, etc.

In [3], the first author took part in a piece of work where they considered this very problem
for specific objectives such as reachability, safety, Büchi, etc in a turn-based interaction
model. They established complexity bounds for each objective.

In this paper we consider the problem of non-cooperative rational synthesis with concurrent
interactions. We address this problem for a variety of objectives and give exact complexity
bounds relying exclusively on techniques inspired by the theory of zero-sum games. The
concurrency between agents raises a formal challenge to overcome as the techniques used in [3]
do not directly extend. Intuitively, when the interaction is turn-based, one can construct a
tree automaton that accepts solutions for the rational synthesis problem. The nodes of an
accepted tree are exactly the vertices of the game. This helps a lot in dealing with deviations
but cannot be used in concurrent games.

In Section 3, we present an alternative algorithm that solves the general problem for LTL
specification. This algorithm constructs a zero-sum turn-based game. This fresh game is
played between Constructor who tries to construct a solution and Spoiler who tries to falsify

R. Condurache, Y. Oualhadj, and N. Troquard 38:3

the proposed solution. We then show in Section 5 how to use this algorithm to solve the
NCRSP for reachability, safety, Büchi, co-Büchi, and Muller conditions. We also observe
that we match the complexity results for the NCRSP in turn-based games.

2 Preliminaries

2.1 Concurrent Game Structures
I Definition 1. A game structure is defined as a tuple G = (St, s0,Agt, (Acti)i∈Agt,Tab),
where St is the set of states in the game, s0 is the initial state, Agt = {0, 1, ..., n} is the set
of agents, Acti is the set of actions of Agent i, Tab : St×

∏
i∈Agt Acti → St is the transition

table.

I Remark. Note that we consider game structures that are complete and deterministic. That
is, from each state s and any tuple of actions ā ∈

∏
i∈Agt Acti, there is exactly one successor

state s′.

I Definition 2. A play in the game structure is a sequence of states and actions profile
ρ = s0ā0s1ā1s2ā2... in (St

∏
i∈Agt Acti)ω such that s0 is the initial state and for all j ≥ 0,

sj+1 = Tab(sj , āj).

Throughout the paper, for every word w, over any alphabet, we denote by w[j] the
j + 1-th letter, and we denote by w[0..j] the prefix of w of size j + 1.

By ρ �St we mean the projection of ρ over St, and Plays(G) is the set of all the plays in
the game structure G. We call history any finite sequence in St (

∏
i∈Agt Acti St)∗. For a

history h, we denote by h �St its projection over St, and by LastSt(h) the last element of h �St.
We denote by Hist the set of all the histories.

In this paper we allow agents to see the actions played between states. Therefore, they
behave depending on the past sequence of states and tuples of actions.

I Definition 3 (Strategy and strategy profile). A strategy for Agent i is a mapping σi :
St
(∏

i∈Agt Acti St
)∗
→ Acti .

A strategy profile is defined as a tuple of strategies σ̄ = 〈σ0, σ1, ..., σn〉 and by σ̄[i] we
denote the strategy of i-th position (of Agent i).

Also, σ̄−i is the partial strategy profile obtained from the strategy profile σ̄ from which
the strategy of Agent i is ignored. The tuple of strategies 〈σ̄−i, σ′i〉 is obtained from the tuple
σ̄ by substituting Agent i’s strategy with σ′i.

Once a strategy profile is chosen it induces a play ρ. We say that a play ρ = s0ā0s1ā1s2ā2...

in (St
∏
i∈Agt Acti)ω is compatible with a strategy σi of Agent i if for every prefix of ρ[0..2k]

with k ≥ 0, we have σ(ρ[0..2k]) = āk(i), where āk(i) is the action of Agent i in the vector āk.
We denote by Plays(σi) the set of all the plays that are compatible with the strategy σi

for Agent i. Hist(σi) is the set of all the histories that are compatible with σi. The outcome
of an interaction between agents following a certain strategy profile σ̄ defines a unique play
in the game structure G denoted Out(σ̄). It is the unique play in G compatible with all the
strategies in the profile σ̄ which is an infinite sequence over (St

∏
i∈Agt Acti).

2.2 Payoff and Solution Concepts
Each Agent i ∈ Agt has an objective expressed as a set Obji of infinite sequences of states in
G. As defined before, a play ρ is a sequence of states and action profiles. We slightly abuse
notation and also write ρ ∈ Obji, meaning that the sequence of states in the play ρ (that

CONCUR 2018

38:4 The Complexity of Rational Synthesis for Concurrent Games

is, ρ �St) is in Obji. We define the payoff function that associates with each play ρ a vector
Payoff(ρ) ∈ {0, 1}n+1 defined by

∀i ∈ Agt,Payoffi(ρ) = 1 ⇐⇒ ρ ∈ Obji .

We borrow game theoretic vocabulary and say that Agent i wins whenever her payoff is
1. We sometimes abuse this notation and write Payoffi(σ̄), which is the payoff of Agent i
associated with the unique play induced by σ̄.

In this paper we are interested in winning objectives such as Safety, Reachability, Büchi,
coBüchi, and Muller that are defined as follows. Let ρ be a play in a concurrent game
structure G. We use the following notations:

occ(ρ) = {s ∈ St | ∃j ≥ 0 s.t. ρ[j] = s}

to denote the set of states that appear along ρ and

inf(ρ) = {s ∈ St | ∀j ≥ 0,∃k ≥ j s.t. ρ[k] = s}

to denote the set of states appearing infinitely often along ρ. Then,
Reachability: For some T ⊆ St, Reach(T) = {ρ ∈ Stω | occ(ρ) ∩ T 6= ∅};
Safety:For some T ⊆ St, Safe(T) = {ρ ∈ Stω | occ(ρ) ⊆ T};
Büchi: For some T ⊆ St, Büchi(T) = {ρ ∈ Stω | inf(ρ) ∩ T 6= ∅};
coBüchi: For some T ⊆ St, coBüchi(T) = {ρ ∈ Stω | inf(ρ) ∩ T = ∅};
Parity: For some priority function p : St → N, Parity(p) = {ρ ∈ Stω | min{p(s) | s ∈
inf(ρ)} is even };
Muller: For some boolean formula µ over St, Muller(µ) = {ρ ∈ Stω | inf(ρ) |= µ}.

A Nash equilibrium is the formalisation of a situation where no agent can improve her payoff
by unilaterally changing her behaviour. Formally:

I Definition 4. (Nash equilibrium) A strategy profile σ̄ is a Nash equilibrium (NE) if for
every agent i and every strategy σ′ of i the following holds true:

Payoffi(σ̄) ≥ Payoffi(〈σ̄−i, σ′〉) .

Throughout this paper, we will assume that Agent 0 is the agent for whom we wish to
synthesize the strategy, therefore, we use the concept of 0-fixed Nash equilibria.

I Definition 5 (0-fixed Nash equilibrium). A profile 〈σ0, σ̄−0〉 is a 0-fixed NE (0-NE), if for
every strategy σ′ for agent i in Agt \ {0} the following holds true:

Payoffi(〈σ0, σ̄−0〉) ≥ Payoffi(〈σ0, (σ̄−0)−i, σ
′〉) .

That is, fixing σ0 for Agent 0, the other agents cannot improve their payoff by unilaterally
changing their strategy.

2.3 Rational synthesis
The rational synthesis can be defined in a optimistic or pessimistic setting. The former one
is the so-called Cooperative Rational Synthesis (CRSP) Formally defined as

I Problem 6. Is there a 0-NE σ̄ such that Payoff0(σ̄) = 1?

The latter is the so-called Non Cooperative Rational Synthesis Problem (NCRSP) and is
formally defined as

R. Condurache, Y. Oualhadj, and N. Troquard 38:5

s0

s1s2

T{0,1}T{2}

(l, ∗, ∗) (r, ∗, ∗)

(l, ∗, b)

(l, ∗, a)

(r, b, ∗)
(r, a, ∗)

(l, ∗, ∗)(r, ∗, ∗)

(a) A concurrent game.

s0

s1s2

T{0,1}T{2}

(r, ∗, ∗)

(l, ∗, b)

(l, ∗, a)

(r, b, ∗)
(r, a, ∗)

(b) Subgame induced from the strategy σ0.

Figure 1

I Problem 7. Is there a strategy σ0 for Agent 0 such that for every 0-NE σ̄ = 〈σ0, σ̄−0〉, we
have Payoff0(σ̄) = 1?

In this paper we study computational complexity for the rational synthesis problem in
both cooperative and non-cooperative settings.

For the CRSP, the complexity results are corollaries of existing work. In particular, for
Safety, Reachability, Büchi, co-Büchi, Rabin and Muller objectives, we can apply algorithms
from [2] to obtain the same complexities for CRSP as for the turn-based models when the
number of agents is not fixed. More precisely, in [2] the problem of finding NE in concurrent
games is tackled. In this problem one asks for the existence of NE whose payoff is between
two thresholds. Then, by choosing the lower thresholds to be such that only Agent 0 satisfies
her objective and the upper thresholds such that all agents win, we reduce to the cooperative
rational synthesis problem. Brenguier et al. [2] showed that the existence of constrained NE
in concurrent games can be solved in PTime for Büchi objectives, NP for Safety, Reachability
and coBüchi objectives, and PSpace for Muller objectives. All hardness results are inferred
directly from the hardness results in the turn-based setting. This is a consequence of the fact
that every turn-based game can be encoded as a concurrent game by allowing at each state
at most one agent to have non-vacuous choices. For Streett objectives, by reducing to [2] we
only obtain PSpace-easiness and the NP-hardness comes from the turn-based setting [3].

In the case of non-cooperative rational synthesis, we cannot directly apply the existing
results. However, we define an algorithm inspired from the suspect games [2]. The suspect
game was introduced to decide the existence of pure NE in concurrent games with ω-regular
objectives. We inspire ourselves from that approach and design a zero-sum game that
combines the behaviors of Agent 0 and an extra entity whose goal is to prove, when needed,
that the current play is not the outcome of a 0-NE. We also extend the idea in [3] that
consists roughly in keeping track of deviations. Recall that the non-cooperative rational
synthesis problem consists in designing a strategy σ0 for the protagonist (Agent 0 in our
case) such that her objective Obj0 is satisfied by all the plays that are outcomes of 0-NE
compatible with σ0. This is equivalent to finding a strategy σ0 for Agent 0 such that for any
play ρ compatible with it, either ρ satisfies Obj0, or there is no strategy profile σ̄ = 〈σ0, σ̄−0〉
that is a 0-NE whose outcome is ρ.

I Example 8. Consider the concurrent game with reachability objectives depicted in Figure 1a.
The game starts in the state s0. There are three agents, the controller Agent 0, Agent 1, and
Agent 2. Agent 0 has two actions r for right and l for left. Agents 1 and 2 have two actions,
denoted a and b. For any subset C of {0, 1, 2}, the states TC indicate that the agents in C
have reached their objectives (These states are sinks). In addition, there are three states s0,

CONCUR 2018

38:6 The Complexity of Rational Synthesis for Concurrent Games

s1, and s2. The edges represent the transitions table. The labels indicate the action profiles
e.g. the vector (r, a, b) means that Agent 0 took action r, Agent 1 took action a, and Agent
2 took action b. Finally action ∗ stands for the indifferent choice that is any action for a
given agent. We can see that at s0, Agent 0 is the only agent with non-vacuous choices. He
can choose to go to s1 by playing action r, or to go to s2 by playing action l.

Now consider the strategy σ0 for Agent 0 defined as follows: σ0(s0) = r, σ0(s1) =
r, σ0(s2) = l We argue that this strategy is a solution to the NCRSP. Indeed, by applying
this strategy, we obtain the subgame of Figure 1b. In this game, all the plays falsifying the
objective of Agent 0 are the ones where Agent 1 plays b. Notice now that these plays are not
outcomes of a 0-NE since Agent 1 can deviate by playing action a.

3 Solution for Problem 6

We will now describe a general algorithm that solves the NCRSP. As a first step in our
procedure, we construct a two-player turn based game.

3.1 Construction of a two-player game
Given a concurrent game G = (St, s0,Agt, (Acti)i∈Agt,Tab) we construct a turn-based 2-player
zero-sum game H = (Q, q0,ActE ,ActA,Tab′,Obj).

The game H is obtained as follows:
q0 = (s0, ∅, ∅)
The set ActE is ActaE ∪ ActcE where:

ActaE = Act0 ×
∏n
i=1(Acti ∪ {−})

ActcE =
∏n
i=1(Acti ∪ {−}).

The set ActA is
∏n
i=1 Acti.

The set Q of states is QA ∪QB ∪QC ∪QD where

QA = St× 2Agt × 2Agt

QB = St× 2Agt × 2Agt × ActaE
QC = St× 2Agt × 2Agt × ActaE × ActA
QD = St× 2Agt × 2Agt × ActaE × ActA × ActcE .

Player Eve plays in the states in QA and QC, while Player Adam plays in the states in
QB and QD. The legal moves are given as follows:

From a state (s,W,D) ∈ QA, Eve plays an action

ā ∈ Act0 ×
n∏
i=1

(Acti ∪ {−}) s.t. ∀1 ≤ i ≤ n, ā[i] = − ⇐⇒ i 6∈W .

From a state (s,W,D, ā) ∈ QB, Adam plays an action b̄ ∈ ActA.
From a state (s,W,D, ā, b̄) ∈ QC, Eve plays an action

c̄ ∈
n∏
i=1

(Acti ∪ {−}) s.t. i ∈W ∪D =⇒ c̄[i] = − .

From a state (s,W,D, ā, b̄, c̄) ∈ QD, Adam plays an action d̄ ∈ ActA.

The transition Tab′ and the objective Obj of the game H are described next.

R. Condurache, Y. Oualhadj, and N. Troquard 38:7

3.2 Transition function

The game H is best understood as a dialogue between Eve and Adam. In each state (s,W,D)
Eve proposes an action for Agent 0 together with the actions corresponding to the winning
strategies of the agents in the set W . Then, Adam responds with an action profile played by
all agents in the environment. In the next step, Eve knows the entire action profile played by
the agents and proposes some new deviations for the agents that do not have a deviation
yet (they are neither in W nor in D). The last move is performed by Adam, it is his role to
“check” that the proposed deviations and winning strategies are correct. Therefore, Adam
can choose any continuation for the game and the sets W and D are updated according to
the previous choices to some new values W ′ and D′. Each dialogue “round” is decomposed
into four moves.

The transitions are given by the (partial) function Tab′ : Q× (ActE ∪ ActA)→ Q:

When (s,W,D) ∈ QA, Tab′((s,W,D), ā) = (s,W,D, ā).

When (s,W,D, ā) ∈ QB, Tab′((s,W,D, ā), b̄) = (s,W,D, ā, b̄).

When (s,W,D, ā, b̄) ∈ QC, Tab′((s,W,D, ā, b̄), c̄) = (s,W,D, ā, b̄, c̄).

When (s,W,D, ā, b̄, c̄) ∈ QD, Tab′((s,W,D, ā, b̄, c̄), d̄) = (s′,W ′, D′), such that:

s′ = Tab(s, (ā[0], d̄)).

W ′ = W ∪
{
i 6∈W ∪D | (d̄[i] = c̄[i]) and (∀j ∈ Agt \ {0, i}, d̄[j] = b̄[j])

}
\
{
i ∈W | d̄[i] 6= ā[i]

}
. That is, Agent i is added to the set W ′ on the continuations

where Agent i plays the new action proposed by Eve in ā (supposedly compatible with
a winning strategy) and the other agents do not change their actions with respect to
d̄. Also, any agent for whom Eve proposes an action in c̄ is a hint to Adam that this
agent can deviate from that point. It is up to Adam to agree or not. If Adam agrees,
we say that he has agreed with the recommendation of Eve. In this case, Eve has to
prove that she made the right choice, this will be checked by the winning condition of
the game.

D′ = D ∪ {i ∈W | d̄[i] 6= ā[i]}
∪
{
i 6∈W ∪D | (c̄[i] 6= −) and (d̄[i] 6= c̄[i]) and (∀j ∈ Agt \ {0, i}, d̄[j] = b̄[j])}

}
. This

is the opposite case where Adam stood by his choices, in this case the winning condition
has to check that this was a wrong decision.

3.3 Winning condition

We equip Q with the canonical projection πi that is the projection over the i-th component.
In particular, for every (s,W,D) ∈ QA, we have π1((s,W,D)) = s, π2((s,W,D)) = W , and
π3((s,W,D)) = W . We also extend πi over Q+ and Qω as expected. Histories for Eve are
finite words in q0(ActEQActAQ)∗. Histories for Adam are finite words in q0(ActEQ)∗. Plays
are infinite sequence in q0(ActEQActAQ)ω. Let r be a play, we denote r �QA the restriction
of r over the states in QA which is an infinite sequence in QA

ω. The set lim π2(r �QA) (resp.
lim π3(r �QA)) is the set of agents in the limit of W ’s (resp. D’s). The limit lim π3(r �QA)
exists because the sets D occurring in the states Q along a play are non-decreasing subsets
of Agt, and Agt is finite. The limit lim π2(r �QA) exists because (1) an agent is added into
W only if it is not in D, and (2) when an agent leaves W , it gets into D indefinitely. This
means that when an agent leaves from W , it never goes back.

CONCUR 2018

38:8 The Complexity of Rational Synthesis for Concurrent Games

We define the following sets:

S0 = {r ∈ Qω | π1(r �QA) ∈ Obj0} , (1)
SW = {r ∈ Qω | ∀i ∈ lim π2(r �QA), π1(r � QA) ∈ Obji} , (2)
SD = {r ∈ Qω | ∃i ∈ lim π3(r �QA), π1(r � QA) 6∈ Obji} . (3)

Obj = (S0 ∪ SD) ∩ SW .

3.4 Transformations
Lifting of histories

We define a transformation over histories in G to create histories in H. For every strategy σ
for Eve in H, we define the transformation G2Hσ.

Let h be a history in G and assume that h = s0m̄0s1m̄1...skm̄ksk+1. The lifting of h is a
history h̃ in H obtained by the mapping G2Hσ inductively defined as follows:

G2Hσ(s0) = (s0, ∅, ∅) ,

and

G2Hσ(h) = G2Hσ(s0m̄0s1m̄1...sk)︸ ︷︷ ︸
h̃′

āqbb̄qcc̄qdd̄qa ,

where

ā = σ(h̃′) , qb = Tab′(Last(h̃′), ā) ,

b̄ = m̄k−0 , qc = Tab′(qb, b̄) ,

c̄ = σ(h̃′āqbb̄qc) , qd = Tab′(qc, c̄) ,

d̄ = b̄ = m̄k−0 , qa = Tab′(qd, d̄) .

Observe that every history G2Hσ(h) ends in a state in QA, where Eve plays an action from
ActaE , that always specifies an action for Agent 0. The function G2Hσ is thus instrumental
in obtaining a strategy σ0 for Agent 0 in G from a strategy of Player Eve in H. For every
history h in G, we define:

σ0(h) = σ(G2Hσ(h))[0] . (4)

For every strategy σ of Eve, we call 0-strategy the strategy obtained by Equation 4. The
following claim is consequence of the same equation.

I Claim 9. Let σ be a strategy for Eve, and let σ0 be the 0-strategy. If a history h in G is
compatible with σ0 then the history h̃ = G2Hσ(h) in H is compatible with σ.

The function G2Hσ maps every history in G into a history in H. We define G2H•σ as the
natural extension of G2Hσ over the domain of plays in G. We extend the previous claim as
expected.

I Claim 10. Let σ be a strategy for Eve, and let σ0 be the 0-strategy. If a run ρ in G is
compatible with σ0 then the run r = G2H•σ(ρ) in H is compatible with σ.

I Lemma 11. Let σ be a strategy for Eve, let ρ be a run in G compatible with the 0-strategy σ0.
Let h be a history in G, assume h to be a prefix of ρ. If h̃ = G2Hσ(h) then π1(h̃ �QA) = h �St.

R. Condurache, Y. Oualhadj, and N. Troquard 38:9

Proof. By induction on the size of h. The base case is h = s0, in which case G2Hσ(h) = h̃ =
(s0, ∅, ∅). We have π1(h̃ �QA) = s0 = h �St. Now assume for induction that π1(h̃ �QA) = h �St
for every history h = s0m̄0s1m̄1...sk of size 1 + 2k and let G2Hσ(h) = h̃.

Now consider the history hmksk+1 by definition G2Hσ(hmksk+1) = h̃āqbb̄qcc̄qdd̄qa where
ā, b̄, c̄, d̄ are obtained thanks to G2Hσ, by I.H. π1(h̃) = s0s1...sk, it thus suffices to show that
π1(qa) = sk+1. For this, one needs to remark that mk = (σ(h̃)[0], d̄), and that

sk+1 = Tab(sk,mk) = π1(Tab′((s,W,D, ā, b̄, c̄), d̄)) = π1(qa)

where the second equality is by definition of the construction. J

Since the previous lemma is true for any histories that are respectively prefixes of r and
ρ we obtain the following claim:

I Claim 12. Let σ be a strategy for Eve, let ρ be a run in G compatible with the 0-strategy
σ0. If r = G2H•σ(ρ) then π1(r �QA) = ρ �St.

Projection of histories

We now define in some sense the reverse operation. Let us define the transformation H2G.
Let h̃ be a history in H ending in a state in QA.

H2G(q0) = s0

H2G(h̃āqbb̄qcc̄qdd̄qa) = H2G(h̃)︸ ︷︷ ︸
induction

(ā[0], d̄−0)︸ ︷︷ ︸
action

qa

I Lemma 13. Let h̃ be a run in H, h be a history in G. If h = H2G(h̃), then π1(h̃ �QA) = h �St

Proof. By induction over the length of h̃. For h̃ = (s0, ∅, ∅) the result trivially true. Assume
the result holds for any history h̃ and let us show that it holds for h̃āqbb̄qcc̄qdd̄qa. By
induction we have π1(h̃ �QA) = h �St, to conclude notice that

π1(qa) = Tab(Last(H2G(h̃)), (ā[0], d̄−0)) J

The function H2G maps every history in H ending in a state in QA into a history in G.
We define H2G• as the natural extension of H2G over the domain of runs in H.

The following claim follows

I Claim 14. Let r be a run in H, ρ be a run in G. If ρ = H2G•(r), then π1(r �QA) = ρ �St

4 Main Theorem

I Theorem 15. There exists a solution for the NCRSP iff Eve wins.

We denote σhi the strategy that mimics the strategy σi when the current history is h i.e.

σhi (h′) =


σi(h′) if h′ is a prefix of h
σi(h · h′) if h is a prefix of h′

⊥ otherwise

I Definition 16. Let ρ be a play and let h = s0ā
0s1ā

1 · · · skāksk+1 be a prefix of ρ. We say
that h is a good deviation point for Agent i ∈ Agt \ {0} if:

CONCUR 2018

38:10 The Complexity of Rational Synthesis for Concurrent Games

ρ �St 6∈ Obji and,
there exists a strategy σ′i of Agent i from [h] such that for all (σj)j∈Agt\{0,i} we have:

[h] · Out
(
σ

[h]
0 , ..., σ′i, ..., σ

[h]
n

)
∈ Obji , where

[h] = ρ[0..k] · 〈āk−i, σ′i(ρ[0..k])〉 · Tab
(
sk, 〈āk−i, σ′i(ρ[0..k])〉

)
.

We say that ρ has a good deviation if some prefix h of ρ is a good deviation point.

We use the notion of deviation point in the following lemma. This lemma states that a
strategy σ0 is a solution for the NCRSP if any play ρ compatible with it, either is winning
for Agent 0 or some Agent i would unilaterally deviate and win against any strategy profile
of the other agents.

I Lemma 17. A strategy σ0 is a solution for NCRSP iff every play ρ compatible with σ0
either ρ �St∈ Obj0 or, ρ has a good deviation.

Proof. We start by establishing the if direction, let σ0 be a solution for the NCRSP. If any
outcome ρ ∈ Plays(σ0) is such that ρ �St∈ Obj0 then there is nothing to prove. Let ρ be a
play in Plays(σ0) such that ρ is not in Obj0. Assume toward a contradiction that ρ does not
contain a good deviation point. Then by Definition 16 we know that for any prefix h of ρ,
any agent i 6= 0 such that Payoffi(ρ) = 0, and any strategy τi of i there exists σ1, · · · , σn
strategies for agents 1 to n such that the following holds:

[h] · Out
(
σh0 , σ

h
1 , · · · , τhi , · · · , σhn

)
6∈ Obji .

The above equation implies that Agent i does not have a profitable deviation under the
strategy σ0, hence the profile 〈σ0, · · · , σn〉 is a 0-fixed NE contradicting the fact that σ0 is a
solution for the NCRSP.

For the only if direction, let σ0 be a strategy for agent 0, assume that every ρ in Plays(σ0)
satisfies
1. ρ �St∈ Obj0 or,
2. ρ has a good deviation.
If every play ρ in Plays(σ0) is in Obj0 then σ0 is a solution for NCRSP. Let ρ be a play in
Plays(σ0) such that it is not in Obj0. By assumption, ρ has a good deviation point i.e. there
exists an Agent i 6= 0 and a strategy τi for the same agent such that: i) ρ �St 6∈ Obji and ii)
after a finite prefix h of ρ for any tuple of strategies (σj)j∈Agt\{0,i} the following holds:

[h] · Out
(
σh0 , σ

h
1 , · · · , τhi , · · · , σhn

)
∈ Obji .

Hence, ρ is not the outcome of a 0-fixed NE and therefore σ0 is a solution for the NCRSP. J

4.1 Correctness
I Definition 18. Eve wins if she has a strategy that ensures Obj against any strategy of
Adam.

I Proposition 19. If Eve wins then there exists a solution for the NCRSP.

Proof. Let σE be a winning strategy for Eve in H, and let σ0 be the strategy for Agent 0 in
G obtained by the construction in Sec. 3.4 Equation (4), that is, for every history h in G,
σ0(h) = σE(G2HσE

(h))[0]. We show that σ0 is solution to the NCRSP.
Let ρ be an arbitrary run in G compatible with σ0.

R. Condurache, Y. Oualhadj, and N. Troquard 38:11

According to Lemma 17 it is sufficient to show that ρ is in Obj0 or ρ has a good deviation
point. Consider the run r = G2H•σE

(ρ) in H. As a consequence of Claim 10, we have that r
is compatible with σE . Since σE is winning, we also have r ∈ Obj, i.e.,

r ∈ (S0 ∪ SD) ∩ SW = (S0 ∩ SW) ∪ (SD ∩ SW) .

As a first case, assume that r ∈ S0 ∩ SW implying π1(r �QA) ∈ Obj0. By Claim 12 we can
write π1(r �QA) = ρ �St, and thus ρ �St∈ Obj0.

As a second case, assume r ∈ SD ∩SW . It implies that there exists a state qa in QA along
r such that qa = (s,W,D) and there exists an agent i in D such that i in lim π3(r �QA) and
π1(r �QA) 6∈ Obji.

We argue that Agent i has a profitable deviation from a prefix of ρ entailing that ρ
contains a good deviation point.

Assume w.l.o.g. that qa is the first state along r for which there exists an Agent i in D
such that i in lim π3(r �QA) and π1(r �QA) 6∈ Obji. The run r is of the form:

r = h̃āpbb̄pcc̄pdd̄qat̃ (5)

where h̃ is a finite prefix of r ending in a state in QA, and t̃ is an infinite suffix. Remember
also that r = G2H•σE

(ρ), hence there exists a history h which is a prefix of ρ such that
h̃ = G2H(h). We claim that h is a good deviation point (c.f. Definition 16) for Agent i.
Indeed, we use notation τi for the strategy defined only after h has occurred as follows:
τi(h) = c̄[i] where c̄ is the action available for agent i in Equation (5), and for any history
hh′ in G: τi(hh′) = σE(G2H(hh′))[i] . (Observe that by construction G2H(hh′) always ends
in a state in QA, controlled by Eve.)

We define the set T as the set of all the plays in G that start with h and are compatible
with τi. Let ρ′ be a play in T , and let r′ = G2H(ρ′) be a play in H. The play r′

enjoys two properties, first i ∈ lim π2(r′ �QA) and second it is compatible with σE . Hence
π1(r′ �QA) ∈ Obji. This shows that ρ has a good deviation point after history By Lemma 17
we conclude that σ0 is solution to the problem NCRSP. J

4.2 Completeness
I Proposition 20. There exists a solution for the NCRSP then Eve wins.

We first introduce some technical tools.

Deviator : Hist(σ0)× Agt→ Act ∪ {−}

(h, i) 7→

{
a if h is a good deviation point for Agent i using action a,
− if not.

Root : Hist× Agt→ Hist ∪ {⊥}

(h, i) 7→

{
h′ where h′ is the shortest prefix of h s.t. Deviator(h′, i) ∈ Act
⊥ if no such a prefix exists

I Claim 21. Let h be a history and i an agent s.t. Deviator(h, i) ∈ Act, then there exists a
winning strategy τi from Root(h, i) for agent i.

Indeed, assuming that Deviator(h, i) ∈ Act and that there is no winning strategy from
Root(h, i), would entail that Root(h, i) is not a good deviation point.

CONCUR 2018

38:12 The Complexity of Rational Synthesis for Concurrent Games

Proof of Proposition 20. Let σ0 be a solution for the NCRSP. Given a history h̃ in H
s.t. Last(h̃) is in QA, we let h = H2G(h̃). We construct a strategy σE for Eve as follows:
σE(h̃) = ā such that ā[0] = σ0(h) and for every i in W, ā[i] = τi(h) where τi is the strategy
described by Claim 21. Notice that this strategy is only defined for histories h that satisfy
Root(h, i) 6= ⊥. This is ensured because i is in W , meaning that there exists a prefix h′ of h
such that h′ is a good deviation point for Agent i.

We also need to define σE for histories ending in a QC. Consider any history of the
form h̃āqbb̄qc, the strategy σE is defined as follows: σE(h̃āqbb̄qc) = c̄ such that for every i
not in W ∪D, c̄[i] = Deviator(h, i) Let us show that σE is winning for Eve. Let r be a run
compatible with σE . We must show that r ∈ (S0 ∪ SD) ∩ SW . Denote ρ = H2G•(r). By
Claim 14 we have π1(r �QA) = ρ �St.

If ρ �St∈ Obj0 then r ∈ S0. If ρ �St 6∈ Obj0, since σ0 is a solution, it follows that along ρ
some player has a good deviation point and is loosing. This entails that at some point i will
be in D along r i.e. Deviator(h̃, i) ∈ Act for some h̃ a prefix of r. Thus r ∈ SD.

It remains to show that r ∈ SW this follows from the facts that 1) any player in W is due
to the mapping Deviator that correctly guesses the correct deviations and 2) Claim 21. J

5 Computational Complexity

In this section, we take advantage of the construction presented in the previous section
to give complexity bounds for a variety of winning conditions. In fact, we can adapt the
technique used in [3] in order to establish the upper bound complexity for NCRSP.

In the case of Reachability, Safety, Büchi and coBüchi conditions, we reduce the game H
to a finite duration game. We actually tranform the winning condition into a finite horizon
condition in a finite duration game. In order to obtain this finite duration game, we simply
rewrite the winning objective of H and obtain a new game H′ with Parity objective. The
plays in the finite duration game Hf are obtained by stopping the plays in the game H′ after
the first loop.

In the remainder of this section, for technical convenience, we assume that the histories
in H are defined over the set Q∗ and that the plays are defined over Qω. This does not
affect the validity of the results since Tab′ is deterministic and the actions are encoded in
the states.

When the game H′ is equipped with a parity condition, we construct a finite duration
game that stops after the first loop. In particular, if Pr : St′ → N is the priority function in
H′. Then, the finite duration game Hf is defined over the same game structure as H′, but
each play stops after the first loop. We will consider such a play winning if the least parity
in the loop is even i.e a play r = xy1y2y3 . . . yly1 where x ∈ q0Q

∗ and y1, y2, . . . , yl ∈ Q is
winning for Eve if min{Pr(yk) | 0 ≤ k ≤ l} is even.

The following lemma establishes the relation between H′ and Hf . It is actually a
consequence of a result that appeared in [1].

I Lemma 22. Eve has a winning strategy in the game H′ with the parity condition Pr if and
only if she has a winning strategy in the game Hf .

The following lemma establishes the fact that inside a cycle in the game H, the values of
the sets W and D do not change.

I Lemma 23. Let r be a play in H, and consider a loop along r. Let also q and q′ be two
states on this loop. We have π2(q) = π2(q′) and π3(q) = π3(q′).

R. Condurache, Y. Oualhadj, and N. Troquard 38:13

Proof. Let r = xqyqz be an infinite play in H. From the definition of the transition relation
in H, r′ = x(qy)ω is also a valid play in H. Then, assume towards contradiction that there
are two states in qy having different values on states W or D. It means that there is at least
one player i that is added or removed to/from W or D. Therefore, along r′ we would have an
infinite number of additions or removals to/from W or D. But, according to the transition
relation, this is not possible because once a player is removed from W , it is added to the
set D and never added to W again along r′. Also, once a player added in the set D, he is
never removed. Therefore, along each path, along each loop, the values of W and D do not
change. J

In order to check the condition of reachability, we keep along plays in the game H a set
P of players in the environment that already have visited their target states. Then, the
resulting game H′ has states in Q× 2Agt where Q is the set of states in the game H. The set
P is initially equal to the set of players for which the initial state is in their target set. Let
Ri ⊆ St be the target set of Player i. Then, P0 = {i | s0 ∈ Ri} and the initial state in the
resulting game H′ is (s0, ∅, ∅, P0).

The set P is updated as follows:
if (q, q′) ∈ Tab′ inH and q′ = (s,W,D) ∈ St×2Agt×2Agt, then ((q, P), (q′, P∪{i | s ∈ Ri}))
is the corresponding transition in H′.
if (q, q′) ∈ Tab′ in H and q′ 6∈ St× 2Agt × 2Agt, then ((q, P), (q′, P)) is the corresponding
transition in H′.

Note that the set P also eventually stabilizes since it only increases and there is a finite
number of players in G. Let lim π4(r �QA) be the limit along the play r.

The objective of Eve in the game H is written in H′ as the Büchi condition Büchi(FR)
where:

FR = {(s,W,D, P) | (0 ∈ P or D \ P 6= ∅) and (W ⊆ P)} .

Now, the Büchi objective Büchi(FR) can be expressed as the parity objective Parity(Pr)
with Pr(v) = 0 if v = (s,W,D, P) ∈ FR and Pr(v) = 1 otherwise.

We now define the finite duration game Hf over the same game arena as H, but each play
stops when the first state in St× 2Agt× 2Agt× 2Agt is repeated. Then, each play is of the form
r = xy1y2y3 . . . yly1 where x ∈ q0(Q′)∗ and y1, y2, . . . , yl ∈ Q′ with Q′ = St×2Agt×2Agt×2Agt.
Eve wins in the game Hf if y1 = (s,W,D, P) is such that (0 ∈ P or D\P 6= ∅) and (W ⊆ P).
Equivalently, thanks to Lemma 23 and because the value of P does not change for the same
argument that showW andD eventually stabilize. Finally Eve wins if min{Pr(yk) | 0 ≤ j < l}
is even.

I Lemma 24. All plays in the game Hf have polynomial length in the size of the initial
game.

Proof. Since D and P are monotone, there are at most |Agt|+ 1 different values that they
can take on a path of H. Also, in the set W we can have at most one addition and one
removal for each player i ∈ Agt and hence 2|Agt| + 1 different values for W . Therefore,
along a play π there are at most r = 1 + (2|Agt|+ 1) · (|Agt|+ 1)2 · |St| different states in
St× 2Agt × 2Agt × 2Agt. Then, between two states in St× 2Agt × 2Agt × 2Agt, there are three
intermediate states. Therefore, since all the plays in Hf stop after the first cycle, the length
of each play is of at most 4r + 1 states since there is only one state that appears twice.
Therefore, all plays in Hf have polynomial length in Agt and St of the initial play G. J

CONCUR 2018

38:14 The Complexity of Rational Synthesis for Concurrent Games

I Proposition 25. Deciding if there is a solution for the non-cooperative rational synthesis
in concurrent games with Reachability objectives is in PSpace.

Proof. Using Lemmas 22 and 24, solving the non-cooperative rational synthesis problem,
reduces to solving the finite duration game Hf which has polynomial length plays. This can
be done in PSpace using an alternating Turing machine runing in PTime. J

In the case of Safety, Büchi and coBüchi conditions, we essentially use similar constructions;
c.f. long version for full details on the constructions. Roughly speaking, in the case of safety
it sufficient to “dualize” the winning condition. In the cases of Büchi and coBüchi objectives,
the idea is to transform the game H by possibly adding some counters such that Eve’s
objective can be written as a parity objective. Note that these constructions are similar to
the ones in [3]. In the case of Muller conditions, we have to use Least Appearance Record
(LAR) construction to get the parity game H′ and then the finite duration game would
have plays with exponential length in the size of the initial game. This approach would give
ExpSpace complexity. Fortunately, the parity condition in the game H′ that we obtain after
applying the LAR construction has an exponential number of states but only a polynomial
number of priorities. Then, by using the result from [5, 8], we obtain ExpTime complexity.

I Theorem 26. Deciding if there is a solution for the non-cooperative rational synthesis
problem in concurrent games is in PSpace for Safety, Reachability, Büchi and co-Büchi
objectives and ExpTime for Muller objectives.

In the case of a fixed number of agents, the game H that we build has polynomial size in
the size of the initial game G (when considering that the transitions are given explicitly in
the table Tab since we build nodes in H for each possible action profile). This lowers the
complexities that we obtain for the rational synthesis problem. The theorem below holds
because the game H has polynomial size and Eve’s objective is fixed.

I Theorem 27. Deciding if there is a solution for the non-cooperative rational synthesis in
concurrent games with a fixed number of agents and Safety, Reachability, Büchi or co-Büchi
objectives is in PTime.

I Theorem 28. Deciding if there is a solution for the non-cooperative rational synthesis in
concurrent games with a fixed number of agents and Muller objectives is in PSpace.

6 Conclusions

In some circumstances, the Non Cooperative Rational Synthesis Problem (NCRSP) introduced
in [6] and defined here as Problem 6 might arguably accept undesired solutions. It asks
whether there is a strategy σ0 for Agent 0 such that for every 0-NE, if σ̄ = 〈σ0, σ̄−0〉, then
Payoff0(σ̄) = 1. One sees the objective of Agent 0 as a critical property satisfied by all
rational evolutions of the system. A possibly unwanted consequence is that a strategy σ0
which does not allow any rational evolution of the system, thus forcing anarchy, would be a
solution. The original definition of NCRSP can be strengthened so as to ask for a strategy
σ0 for Agent 0 such that there is at least one 0-NE. Another amendment can also restrict
the class of game structures. For instance, one can consider pseudo turn-based games, where
0-NE are certain to exist. It suffices to add in Definition 1 the constraint that in every state,
only Agent 0 and at most one other agent have non-vacuous choices. The games are still
concurrent. Agent 0 can still effectively control every state, but once her strategy σ0 is fixed,
the sub-game induced by σ0 has all the characteristics of a turn-based game, where there is
always a 0-NE.

R. Condurache, Y. Oualhadj, and N. Troquard 38:15

References
1 Benjamin Aminof and Sasha Rubin. First-cycle games. Inf. Comput., 254:195–216, 2017.

doi:10.1016/j.ic.2016.10.008.
2 Patricia Bouyer, Romain Brenguier, Nicolas Markey, and Michael Ummels. Pure nash

equilibria in concurrent deterministic games. Logical Methods in Computer Science, 11(2),
2015. doi:10.2168/LMCS-11(2:9)2015.

3 Rodica Condurache, Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin. The
complexity of rational synthesis. In 43rd International Colloquium on Automata, Languages,
and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages
121:1–121:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/
LIPIcs.ICALP.2016.121.

4 Dana Fisman, Orna Kupferman, and Yoad Lustig. Rational synthesis. In Tools and
Algorithms for the Construction and Analysis of Systems, 16th International Confer-
ence, TACAS 2010, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings,
volume 6015 of Lecture Notes in Computer Science, pages 190–204. Springer, 2010. doi:
10.1007/978-3-642-12002-2_16.

5 Marcin Jurdzinski, Mike Paterson, and Uri Zwick. A deterministic subexponential al-
gorithm for solving parity games. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-
26, 2006, pages 117–123, 2006. URL: http://dl.acm.org/citation.cfm?id=1109557.
1109571.

6 Orna Kupferman, Giuseppe Perelli, and Moshe Y. Vardi. Synthesis with rational envir-
onments. In Multi-Agent Systems - 12th European Conference, EUMAS 2014, Prague,
Czech Republic, December 18-19, 2014, Revised Selected Papers, pages 219–235, 2014.
doi:10.1007/978-3-319-17130-2_15.

7 Orna Kupferman, Giuseppe Perelli, and Moshe Y. Vardi. Synthesis with rational environ-
ments. Ann. Math. Artif. Intell., 78(1):3–20, 2016. doi:10.1007/s10472-016-9508-8.

8 Sven Schewe. Solving parity games in big steps. In FSTTCS 2007: Foundations of Software
Technology and Theoretical Computer Science, 27th International Conference, New Delhi,
India, December 12-14, 2007, Proceedings, volume 4855 of Lecture Notes in Computer
Science, pages 449–460. Springer, 2007. doi:10.1007/978-3-540-77050-3_37.

CONCUR 2018

http://dx.doi.org/10.1016/j.ic.2016.10.008
http://dx.doi.org/10.2168/LMCS-11(2:9)2015
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.121
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.121
http://dx.doi.org/10.1007/978-3-642-12002-2_16
http://dx.doi.org/10.1007/978-3-642-12002-2_16
http://dl.acm.org/citation.cfm?id=1109557.1109571
http://dl.acm.org/citation.cfm?id=1109557.1109571
http://dx.doi.org/10.1007/978-3-319-17130-2_15
http://dx.doi.org/10.1007/s10472-016-9508-8
http://dx.doi.org/10.1007/978-3-540-77050-3_37

Logics Meet 1-Clock Alternating Timed Automata
Shankara Narayanan Krishna
Department of Computer Science & Engineering IIT Bombay, India
krishnas@cse.iitb.ac.in

Khushraj Madnani
Department of Computer Science & Engineering IIT Bombay, India
khushraj@cse.iitb.ac.in

Paritosh K. Pandya
School of Technology and Computer Science, TIFR, India
pandya@tcs.tifr.res.in

Abstract
This paper investigates a decidable and highly expressive real time logic QkMSO which is obtained
by extending MSO[<] with guarded quantification using block of less than k metric quantifiers.
The resulting logic is shown to be expressively equivalent to 1-clock ATA where loops are without
clock resets, as well as, RatMTL, a powerful extension of MTL[UI] with regular expressions. We
also establish 4-variable property for QkMSO and characterize the expressive power of its 2-
variable fragment. Thus, the paper presents progress towards expressively complete logics for
1-clock ATA.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics

Keywords and phrases Metric Temporal Logic, Alternating Timed Automata, MSO, Regular
Expressions, Expressive Completeness

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.39

Related Version A full version of the paper is available at [15], https://arxiv.org/abs/1802.
02514.

1 Introduction

Since the inception of real-time logics and timed automata, the question of finding expressive
timed logics which are also decidable has been a prominent concern. Both classical first-
order/monadic second-order logics as well as temporal logics were extended with metric
constraints. Expressive power of a logic is typically measured by comparing it with respect to
other well established logics and automata as exemplified by the celebrated Büchi and Kamp
theorems [11, 13]. In real-time scenario, Alur and Henzinger in 1990 asked whether First
order logic of Distance FO[<,+], a hybrid logic TPTL[U,S], and the metric temporal logic
MTL[UI, SI] all have the same expressive power [2]. It took 15 years to show that MTL[UI, SI]
is less expressive than TPTL over timed words [18] [3]. It is only in the last few years, that
extensions of MTL[UI, SI] which are expressively complete for FO[<,+] have been found [9, 8].
Unfortunately all these logics have undecidable satisfiability.

For establishing the decidability of satisfiability of a logic, often an effective reduction
to some form of automata with decidable non-emptiness is used. Alur and Henzinger in
1991 came up with the sub-logic MITL which is MTL[UI, SI] where time interval constraints
I are non-singular intervals [1]. They showed the decidability of this logic by reducing its
formulae essentially to language equivalent non-deterministic timed automata. However,

© Shankara Narayanan Krishna, Khushraj Khushraj and Paritosh K. Pandya;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 39; pp. 39:1–39:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:krishnas@cse.iitb.ac.in
mailto:khushraj@cse.iitb.ac.in
mailto:pandya@tcs.tifr.res.in
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.39
https://arxiv.org/abs/1802.02514
https://arxiv.org/abs/1802.02514
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

39:2 Logics Meet 1-Clock Alternating Timed Automata

the logic was expressively weak as compared to timed automata . Looking for a more
expressive but decidable logic, Wilke in a seminal paper introduced the Monadic Second
Order logic of relative distance, L

←→
d , and showed that this had exactly the expressive power

of non-deterministic timed automata [22]. Moreover, the logic had decidable satisfiability.
Wilke also showed that L

←→
d subsumed the expressive power of temporal logic EMITL, which

was MITL extended with a finite automaton modality. Unfortunately, for any such logic,
the validity and model checking (against timed automata) are necessarily undecidable as
non-deterministic timed automata have undecidable universality/language inclusion. In
another important paper, Henzinger, Raskin and Schobbens related Event Clock Logic ECL
extended with automata modality to recursive event clock automata [6]. Attempts in these
works have been to match the expressive power of timed automata and to have decidable
satisfiability. The alternative is to try to match expressive power of some decidable and
boolean closed class of timed automata. 1-clock Alternating Timed Automata (1-ATA)
over finite words are perhaps the largest boolean closed class of timed languages for which
emptiness is known to be decidable [17], [16]. Utilizing this fact, Ouaknine and Worrell
showed in their seminal work that satisfiability as well as model checking of MTL[UI] (with
pointwise interpretation) over finite words is decidable. The result was proved by constructing
a language equivalent 1-ATA for a formula of MTL[UI] [17]. Unfortunately, the logic turns
out to have much less expressive power than 1-ATA. In a series of papers [20], [12] we have
investigated decidable extensions of MTL[UI] with increasing expressive power culminating
in RatMTL [21]. Logic RatMTL is a powerful extension of MTL[UI] allowing counting and
regularity constraints. But in retrospect it also turns out to be less expressive than 1-ATA.

The quest for expressively complete real-time logics matching the power of 1-ATA has
remained open for over 13 years. In this paper, we give a partial solution to this problem.
We show expressive completeness of some classical and metric temporal logics for natural
subclasses of 1-ATA. We define an extension of Monadic Second Order Logic MSO[<] over
words by adding guarded quantification with blocks of at most k−1 metric quantifiers to
give a real time logic QkMSO. An essential syntactic restriction is that no free second order
variable occurs in the scope of a metric quantifier, and a metric quantifier block results into a
formula with only one free variable. In this, we have been inspired by the logic Q2MLO (over
continuous time) defined by Hirshfeld and Rabinovich [7] as well as Hunter [8]. A carefully
defined syntax gives us a logic which allows only future time properties to be stated. Note
that punctual constraints are permitted in QkMSO unlike Q2MLO.

We investigate the decidability and expressive power of QkMSO. Firstly, we define a
subclass of 1-ATA called 1-ATA with reset-free loops (1-ATA-rfl). In these automata, there
is no cycle involving clock reset. Thus, on any run each transition with reset occurs at
most once. As our first main result, we show that a) QkMSO, b) the 1-ATA-rfl, and, c) the
metric temporal logic RatMTL, introduced earlier in [21], are all expressively equivalent (with
effective reductions). In the process, we also prove that QkMSO has four variable property
over timed words. This can be seen akin to the famous 3-variable property of FO[<] over
words [10].

For our second main result, we turn to the two variable fragment Q2MSO of QkMSO.
For its automaton characterization, we introduce a syntactic restriction of conjunctive-
disjunctiveness (C⊕D) in 1-ATA. Here, each ATA thread is either in conjunctive mode or in
disjunctive mode at a time, and it can switch modes only on a reset transition. We show that
a) Q2MSO, b) the C⊕D-1-ATA-rfl, and c) the sublogic FRatMTL of RatMTL have exactly
the same expressive power. Here logic FRatMTL uses only restricted version FRat of the

S.N. Krishna, K. Khushraj, and P. K. Pandya 39:3

modality Rat of RatMTL. A similar modality was also defined earlier by Wilke [22] in logic
EMITL. In summary, we show that

QkMSO ≡ 1−ATA−rfl ≡ RatMTL
Q2MSO ≡ C⊕D−1−ATA−rfl ≡ FRatMTL

These results make QkMSO to be amongst the highly expressive logics with decidable
satisfiability and model checking problems.

2 Preliminaries

Let Σ be a finite set of propositions. A finite timed word over Σ is a tuple ρ = (σ, τ),
where σ and τ are sequences σ1σ2 . . . σn and τ1τ2 . . . τn respectively, with σi ∈ Γ = 2Σ\∅,
and τi ∈ R≥0 for 1 ≤ i ≤ n. For all i ∈ dom(ρ), we have τi ≤ τi+1, where dom(ρ) is the
set of positions {1, 2, . . . , n} in the timed word. For convenience, we assume τ1 = 0. The
σi’s can be thought of as labeling positions i in dom(ρ). For example, given Σ = {a, b, c},
ρ = ({a, c}, 0)({a}, 0.7)({b}, 1.1) is a timed word. ρ is strictly monotonic iff τi < τi+1 for all
i, i+ 1 ∈ dom(ρ). Otherwise, it is weakly monotonic. The set of finite timed words over Σ is
denoted TΣ∗. Given ρ = (σ, τ) with σ = σ1 . . . σn ∈ Γ+, σsingle denotes the set of all words
w1w2 . . . wn where each wi ∈ σi. ρsingle consists of all timed words (σsingle, τ). For the ρ as
above, ρsingle consists of timed words ({a}, 0)({a}, 0.7)({b}, 1.1) and ({c}, 0)({a}, 0.7)({b}, 1.1).

2.1 Temporal Logics
In this section, we define preliminaries pertaining to the temporal logics studied in the paper.
Let Iν be a set of open, half-open or closed time intervals. The end points of these intervals
are in N∪{0,∞}. Examples of such intervals are [1, 3), [2, 2], [2,∞). For a time stamp τ∈R≥0
and an interval 〈a, b〉, where 〈 is left-open or left-closed and 〉 is right-open or right-closed,
τ + 〈a, b〉 represents the interval 〈τ + a, τ + b〉.

Metric Temporal Logic (MTL [14]). Given a finite alphabet Σ, the formulae of logic MTL
are built from Σ using boolean connectives and time constrained version of the until modality
U as follows: ϕ ::= a(∈ Σ) |true |ϕ ∧ ϕ | ¬ϕ | ϕ UIϕ, where I ∈ Iν. For a timed word
ρ = (σ, τ) ∈ TΣ∗, a position i ∈ dom(ρ), and an MTL formula ϕ, the satisfaction of ϕ at
a position i of ρ is denoted ρ, i |= ϕ, and is defined as follows: (i) ρ, i |= a ↔ a ∈ σi, (ii)
ρ, i |= ¬ϕ ↔ ρ, i 2 ϕ, (iii) ρ, i |= ϕ1 ∧ϕ2 ↔ ρ, i |= ϕ1 and ρ, i |= ϕ2, (iv) ρ, i |= ϕ1 UIϕ2 ↔
∃j > i, ρ, j |= ϕ2, τj − τi ∈ I, and ρ, k |= ϕ1 ∀ i < k < j. The language of a MTL formula
ϕ is L(ϕ) = {ρ | ρ, 1 |= ϕ}. Two formulae ϕ and φ are said to be equivalent denoted as
ϕ ≡ φ iff L(ϕ) = L(φ). The subclass of MTL restricting the intervals I in the until modality
to non-punctual intervals is denoted MITL. Punctual intervals like [2,2] are disallowed. Note
that we restrict to until-only fragment of MTL for the sake of decidability.

I Theorem 1 ([17]). MTL satisfiability is decidable over finite timed words with non-primitive
recursive complexity.

MTL with Rational Expressions (RatMTL)

We first recall an extension of MTL with rational expressions (RatMTL), introduced in [21].
The modalities in RatMTL assert the truth of a rational expression (over subformulae) within
a particular time interval with respect to the present point. For example, the formula

CONCUR 2018

39:4 Logics Meet 1-Clock Alternating Timed Automata

RatI(ϕ1.ϕ2)+ when evaluated at a point i, asserts the existence of 2k points with time
stamps τj+1 < τj+2 < · · · < τj+2k, k > 0, such that τj+1 and τj+2k are the first and last
time stamps in τi + I, respectively. ϕ1 evaluates to true at τj+2l+1, and ϕ2 evaluates to true
at τj+2l+2, for all 0 ≤ l < k.

RatMTL Syntax. Formulae of RatMTL are built from a finite alphabet Σ as:
ϕ ::= a(∈ Σ) |true |ϕ∧ϕ | ¬ϕ | RatI re(S) | FRatI,re(S)ϕ, where I ∈ Iν and S is a finite set of
RatMTL subformulae, and re(S) is defined as a rational expression over S. re(S) ::= ε | ϕ(∈
S) | re(S).re(S) | re(S)+ re(S) | [re(S)]∗. Thus, RatMTL is MTL extended with modalities URat
and Rat (RatMTL=MTL+Rat+FRat). An atomic rational expression re is any well-formed
formula ϕ ∈ RatMTL.

RatMTL Semantics. For a timed word ρ = (σ, τ) ∈ TΣ∗, a position i ∈ dom(ρ), a RatMTL
formula ϕ, and a finite set S of subformulae of ϕ, we define the satisfaction of ϕ at a position
i as follows. For positions i < j ∈ dom(ρ), let Seg(ρ, S, i, j) denote the untimed word over 2S

obtained by marking the positions k ∈ {i+ 1, . . . , j − 1} of ρ with ψ ∈ S iff ρ, k |= ψ. For
a position i∈dom(ρ) and an interval I, let TSeg(ρ,S, I, i) denote the untimed word over 2S

obtained from ρ by marking all the positions k, where τk − τi ∈ I, with ψ ∈ S iff ρ, k |= ψ.
ρ, i |= FRatI,re(S)ϕ ↔ ∃j>i, ρ, j|= ϕ, τj − τi∈I and, [Seg(ρ,S, i, j)]single ∩ L(re(S)) 6= ∅,
where L(re(S)) is the language of the rational expression re formed over the set S.
ρ, i |= RatI re ↔ [TSeg(ρ, S, I, i)]single ∩ L(re(S)) 6= ∅.

The language accepted by a RatMTL formula ϕ is given by L(ϕ) = {ρ | ρ, 1 |= ϕ}. The sub-
class of RatMTL using only the FRat modality is denoted FRatMTL (FRatMTL=MTL+FRat).
If we stick to non-punctual intervals, the subclass obtained is FRatMITL (FRatMITL=MITL +
FRat). Some remarks are in order.
1. In [21], the URat modality was used instead of FRat; however, both have the same

expressiveness. Note that ϕ1URatI,re(S)ϕ2 is equivalent to FRatI,re′(S∪{ϕ1})ϕ2 where
re′(S ∪ {ϕ1}) = re(S) ∩ ϕ∗1.

2. The classical ϕ1 UIϕ2 modality can be written in FRatMTL as FRatI,ϕ∗1ϕ2. Also, it can
be shown (see [21]) that the URat(and thus FRat) modality can be expressed using the
Rat modality.

Modal depth. The modal depth (md) of a RatMTL formula is defined as follows. Let PLΣ be
the set of propositional logic formulae over Σ (up to equivalence). An atomic RatMTL formula
over Σ is an element of PLΣ and has modal depth 0. A RatMTL formula ϕ over Σ having
a single modality (Rat or FRat) has modal depth one and has the form RatI re or FRatI,reψ
where re is a regular expression over PLΣ and ψ ∈ PLΣ. Inductively, we define modal depth
as follows: (i) md(ϕ ∧ ψ) = md(ϕ ∨ ψ) = max[md(ϕ),md(ψ)]. Similarly, md(¬ϕ) = md(ϕ).
(ii) Let re be a regular expression over the set of subformulae S = {ψ1, . . . , ψk}.
md(FRatI,re(ϕ))=1+ max(ψ1, . . . , ψk, ϕ). Similarly md(RatI(re))=1+ max(ψ1, . . . , ψk).

I Example 2. Consider the formula ϕ = Rat[1,1](Rat(0,1)(aa)∗). Then ϕ = Rat[1,1]re1
where re1 = Rat(0,1)(aa)∗. The subformulae of interest are S = {Rat(0,1)(aa)∗, a}. For
ρ=({a}, 0) ({a, b}, 0.9) ({a}, 1)({a}, 1.2), ρ, 3 2 re1, since [TSeg(ρ,S, (0, 1), 3)]single has only
the word a and hence [TSeg(ρ, S, (0, 1), 3)]single ∩ L((aa)∗) = ∅. Hence, ρ, 1 2 ϕ. On the
other hand, for ρ = ({a}, 0)({a}, 0.3) ({a}, 1)({a}, 1.1) ({a}, 1.8), ρ, 1 |= ϕ, since aa ∈
[TSeg(ρ, S, (0, 1), 3)]single ∩ L((aa)∗).

S.N. Krishna, K. Khushraj, and P. K. Pandya 39:5

2.2 MSO with guarded metric quantifiers QkMSO
Let ρ = (σ, τ) be a timed word over a finite alphabet Σ, as before. We define a real-time logic
QkMSO (with parameter k ∈ N) which is interpreted over such words. It includes MSO[<]
over words σ relativized to specify only future properties. This is extended with a notion of
time constraint formula ψ(ti). All variables in our logic range over positions in the timed word
and not over time stamps. There are two sorts of formulae in QkMSO which are mutually
recursively defined : these are MSOt0 formulae φ which have no real-time constraints except
time constraint subformulae ψ(tp). These subformulae (ψ(tp)) have only one free variable tp,
which is a first order variable. Such a time constraint formula ψ(tp) consists of a block of
real-time constrained quantification applied to a QkMSO formula with no free second order
variables. This form of real time constraints in first order logic was pioneered by Hirshfeld and
Rabinovich [7] in their logic Q2MLO, which we refer in this paper as Q2FO, and later used
by Hunter [8]. Let t0, t1, . . . be first order variables and T0, T1, . . . the monadic second-order
variables. We have a two sorted logic consisting of MSO formulae φ and time constrained
formulae ψ. Let a ∈ Σ, and let ti range over first order variables, while Ti range over second
order variables. Each quantified first order variable in φ is relativized to the future of some
variable, say t0, called anchor variable, giving formulae of MSOt0 . The syntax of φ ∈ MSOt0

is given by: tp=tq | tp<tq | Qa(tp) | Tj(ti) | φ∧φ | ¬φ | ∃t′.t′>t0 ∧ φ | ∃Tiφ | ψ(tp).
Here, ψ(tp) ∈ MSOtp is a time constraint formula whose syntax and semantics are given
little later. A formula in MSOt0 with first order free variables t0, t1, . . . tk and second-
order free variables T1, . . . , Tm and which is relativized to the future of t0 is denoted φ(↓
t0, . . . tk, T1, . . . , Tm). (The ↓ is only to indicate the anchor variable. It has no other function.)
The semantics of such formulae is as usual. Given ρ, positions a0, . . . ak in dom(ρ), and sets
of positions A1, . . . , Am with Ai ⊆ dom(ρ),we define

ρ, (a0, a1, . . . , ak, A1, . . . , Am)|=φ(↓t0, t1, . . . tk, T1, . . . , Tm)

inductively, as usual.
1. (ρ, a0, a1, . . . , ak, A1, . . . , Am)|= ti<tj iff ai<aj ,
2. (ρ, a0, a1, . . . , ak, A1, . . . , Am)|= Qa(ti) iff a∈σ(ai),
3. (ρ, a0, a1, . . . , ak, A1, . . . , Am)|= Tj(ti) iff ai∈Aj ,
4. (ρ, a0, a1, . . . , ak, A1, . . . , Am)|= ∃tk t0<tk∧φ(↓t0, . . . tk, T1, . . . , Tm) iff

(ρ, a0, . . . , a
′
k, A1, . . . , Am) |= φ(↓t0, . . . tk, , T1, . . . , Tm) for some a′k ≥ a0.

The time constraint ψ(t0) has the form Q1t1Q2t2 . . .Qjtj φ(↓ t0, t1, . . . tj) where φ ∈
MSOt0 and j < k, the parameter of logic QkMSO. Each quantifier Qiti has the form ∃ti ∈
t0+Ii or ∀ti ∈ t0+Ii for a time interval Ii as in MTL formulae. Qi is called a metric quantifier.
The semantics of such a formula is as follows. (ρ, a0) |= Q1t1Q2t2 . . .Qjtj φ(↓ t0, t1, . . . tj)
iff for 1 ≤ i ≤ j, there exist/for all ai such that a0 ≤ ai and τai ∈ τa0 + Ii, we have
(ρ, a0, a1 . . . aj) |= φ(↓t0, t1, . . . tj). Note that each time constraint formula has exactly one
free variable. Variables t0, t1, . . . , tj are called time constrained in ψ(t0).

I Example 3. Let ρ=({a}, 0) ({b}, 2.1) ({a, b}, 2.75) ({b}, 3.1) be a timed word. Consider
the time constraint ψ(x) = ∃y ∈ x+ (2,∞)∃z ∈ x+ (3,∞)(Qb(y) ∧Qb(z)). It can be seen
that ρ, 1|=Qa(x) ∧ ψ(x).

Metric Depth. The metric depth of a formula ϕ denoted (md(ϕ)) gives the nesting depth
of time constraint constructs. It is defined inductively as follows: For atomic formulae ϕ,
md(ϕ) = 0. All the constructs of MSOti do not increase md. For example, md[ϕ1 ∧ ϕ2] =
max(md[ϕ],md[ϕ2]) and md[∃t.ϕ(t)]. However, md is incremented for each application of
metric quantifier block. md[Q1t1Q2t2 . . .Qjtjφ] = md[φ] + 1.

CONCUR 2018

39:6 Logics Meet 1-Clock Alternating Timed Automata

I Example 4. The sentence ∀t0 ∀t1 ∈ t0 + (1, 2) {Qa(t1)→(∃t0 ∈ t1 + [1, 1] Qb(t0))} accepts
all timed words such that for each a which is at distance (1,2) from some time stamp t,
there is a b at distance 1 from it. This sentence has metric depth two with time constrained
variables t0, t1.

Note that QkMSO is not closed under second order quantification: arbitrary use of second
order quantification is not allowed, and its syntactic usage as explained above is restricted to
prevent a second order free variable from occurring in the scope of the real-time constraint
(similar to [19], [6] and [22]). For example, ∃X.∃t.[X(t)∧∃t′∈t+(1, 2)Qa(t′)] is a well-formed
QkMSO formula while, ∃X.∃t.∃t′∈t+(1, 2)[Qa(t′)∧X(t)] is not, since X is freely used within
the scope of the metric quantifier.

Special Cases of QkMSO. The case when k = 2 gives logic Q2MSO. The absence of second
order variables and second order quantifiers gives logics QkFO and Q2FO. The formulae in
example 4 is a Q2FO formulae. Note that our Q2FO is the pointwise counterpart of logic
Q2MLO studied in [7] in the continuous semantics.

2.3 1-clock Alternating Timed Automata (1-ATA)
Let Σ be a finite alphabet and let Γ = 2Σ\∅. A 1-ATA [17] [16] is a 5 tuple A = (Γ, S, s0, F, δ),
where S is a finite set of locations, s0 ∈ S is the initial location and F ⊆ S is the set of final
locations. Let x denote the clock variable in the 1-ATA, and x ∈ I denotes a clock constraint
where I is an interval. Let X denote a finite set of clock constraints of the form x ∈ I. The
transition function is defined as δ : S × Γ→ Φ(S ∪X) where Φ(S ∪X) is a set of formulae
over S ∪X defined by the grammar ϕ ::= >|⊥|ϕ1 ∧ϕ2|ϕ1 ∨ϕ2|s|x ∈ I|x.ϕ where s ∈ S, and
x.ϕ is a binding construct resetting clock x to 0. A state of 1-ATA is defined as a pair of a
location and a clock valuation. In other words, a state of a 1-ATA is an element of S × R≥0,
where S is a set of locations. A set of states M ⊆ S × R≥0 and a clock valuation ν ∈ R≥0
defines a boolean valuation for Φ(S ∪X) as follows:

M |=ν s iff (s, ν) ∈M ; M |=ν x ∈ I iff ν ∈ I ; M |=ν x.s iff (s, 0) ∈M
The conjunctions, disjunctions, > and ⊥ are are handled in the usual way. We say that M is
a minimal model of ϕ ∈ Φ(S ∪X) with respect to ν iff M |=ν ϕ and no proper subset M ′ of
M is such that M ′ |=ν ϕ.

A configuration of a 1-ATA is a set of states. Given a configuration C = {(s, ν) | s ∈ S, ν ∈
R≥0}, we denote by C+t the configuration {(s, ν+t) | (s, ν) ∈ C}, obtained after a time elapse
t, i.e., when t is added to all the valuations in C. Let α ∈ Γ. Given any configuration Cx =
{(sj , νj)|j ∈ J}, we say that any configuration Cy is a ’α-discrete successor’ of Cx if and only if
Cy can be constructed using Cx by choosing a minimal model Mj of δ(sj , g) with respect to νj
for every j ∈ J followed by taking their union. That is, Cy =

⋃
j∈JMj , whereMj is a minimal

model of δ(sj , g) with respect to νj . Given a timed word ρ = (α0, 0)(α1, t1) . . . (αm, tm), a
run associated with ρ over a given 1-ATA starts from the initial configuration C0 = {(s0, 0)}
and has the form C0

g0→ C1
t1−0→ C1 + t1 . . . Cm−1 + (tm − tm−1) gm→ Cm and proceeds with

alternating time elapse transitions and discrete transitions reading a symbol from Σ. A
discrete transition Ci + (ti − ti−1) αi→ Ci+1 is included if and only if Ci+1 is a αi-discrete
successor of Ci + (ti − ti−1). Note that there could be more than one αi-discrete successors
and hence more than one run could be associated with a timed word. Note that if at any
point in the run there is no discrete successor for a discrete transition, the automaton gets
stuck and that run will not be associated with the word. A configuration C is accepting iff for
all (s, ν) ∈ C, s ∈ F . Note that the empty configuration is also an accepting configuration.

S.N. Krishna, K. Khushraj, and P. K. Pandya 39:7

The language accepted by a 1-ATA A, denoted L(A) is the set of all timed words ρ such
that, there exists a run associated with ρ which ends at an accepting configuration.

I Example 5. Let Γ=2{a,b} \ ∅. Consider the 1-ATA A=(Γ, {t0, t1, t2}, t0, {t0, t2}, δA) with
transitions δA(t0, {b})=t0, δA(t0, {a})=(t0 ∧ x.t1) ∨ t2, δA(t1, {a})=(t1 ∧ x<1) ∨ (x>1)=
δA(t1, {b}), and δA(t2, {b})=t2, δA(t2, {a})=⊥, δA(t, {a, b})=⊥ for t ∈ {t0, t1, t2}. The au-
tomaton accepts all strings where {a, b} does not occur, and every non-last {a} has no
symbols at distance 1 from it, and has some symbol at distance > 1 from it.

1-ATA are closed under boolean operations using well-known constructions. One additional
operation which is repeatedly used in this paper can be designated as A1[tr ∧ A2]. Here
A1, A2 are 1-ATA over the same alphabet and tr = δ1(s, a) = φ is a transition of A1. The
aim is to conjunctively start the automaton A2 on taking transition tr. Formally, transition
tr is replaced by tr′ = φ ∧ δ2(s2

init, a) where s2
init is the start state of A2. Semantically, runs

of A2 must now commence with a time delay after tr. The delayed run defined below defines
such an execution of A2.

Time-Delayed Runs & Acceptance. Given a timed word ρ = (α0, 0)(α1, t1) . . . (αm, tm), a
time delayed run associated with ρ over a given 1-ATA starts from the initial configuration
C′0 = {(s0, 0)} and has the form C′0

t1→ C′0 + t1 − 0 α1→ C′1
t2−t1→ C′1 + (t2 − t1) · · · αm→ C′m, where

C′i−1 + (ti − ti−1) αi→ C′i is included if and only if C′i is one of the αi-discrete successors
of C′i−1 + (ti − ti−1). Note that the only difference between a run and a time-delayed run
is that the time delayed run starts with the time elapse between the first and the second
symbol of the timed word and ignores the first symbol.

We say that any timed word ρ is accepted in time-delayed semantics by an ATA A =
(Γ, S, s0, F, δ), if and only if, there exists a time-delayed run associated with ρ which ends
with an accepting configuration. The set of all timed words accepted by time -delayed
semantics of A is Lst(A).

I Example 6. Let Γ = 2{a,b}\∅. Let α and αb be any symbol in Γ and Γ\{{a, }},respectively.
Consider the 1-ATA A=(Γ, {s0, s1, s2, s3}, s0, {s2}, δA) with transitions
δA(s0, α)=s1; δA(s1, αb)=[s2 ∧ x ∈ (1, 2)] ∨ [s3 ∧ x ∈ (0, 1)]; δA(s1, {a})=s3; δA(s2, α)=s2;
δA(s3, α)=s3. Consider a timed word ρ = ({a}, 0)({b}, 0.5)({b}, 1.2). The run associated
with ρ is : {(s0, 0)} {a}→ {(s1, 0)} 0.5→ {(s1, 0.5)} {b}→ {(s3, 0.5)} 0.7→ {(s3, 1.2)} b→ {(s3, 1.2)}
Time delayed run associated with the same word is: {(s0, 0)} 0.5→ {(s0, 0.5)} {b}→ {(s1, 0.5)} 0.7→
{(s2, 1.2)} b→ {(s2, 1.2)}. Thus ρ is not accepted by the automaton in usual semantics, but
accepted in time-delayed semantics.

We will define some terms which will be used in sections 4, 5. Consider a transition
δ(s, a) = C1 ∨ · · · ∨ Cn in the 1-ATA. Each Ci is a conjunction of x ∈ I, locations p and x.p.
We say that p is free in Ci if there is an occurrence of p in Ci and no occurrences of x.p in
Ci; if Ci has an x.p, then we say that p is bound in Ci. We say that p is bound in δ(s, a) if it
is bound in some Ci.

Expressive Completeness and Equivalence. Let Fi be a logic or automaton class i.e. a
collection of formulae or automata describing/accepting finite timed words. For each φ ∈ Fi
let L(Fi) denote the language of Fi. We define F1 ⊆e F2 if for each φ ∈ F1 there exists
ψ ∈ F2 such that L(φ) = L(ψ). Then, we say that F2 is expressively complete for F1. We
also say that F1 and F2 are expressively equivalent, denoted F1 ≡e F2, iff F1 ⊆e F2 and
F2 ⊆e F1.

CONCUR 2018

39:8 Logics Meet 1-Clock Alternating Timed Automata

3 A Normal Form for 1-ATA

In this section, we establish a normal form for 1-ATA, which plays a crucial role in the rest of
the paper. Let A = (Γ, S, s0, F, δ) be a 1-ATA. A is said to be in normal form if and only if

The set of locations S is partitioned into two sets Sr and Snr. The initial state s0 ∈ Sr.
The locations of S are partitioned into P1, . . . , Pk satisfying the following: Each Pi has a
unique header location sri ∈ Sr. Also, Pi −{sri } ⊆ Snr. Moreover, for any transition of A
of the form δ(s, a) = C1 ∨ C2 . . . ∨ Ck with Ci = x ∈ I ∧ p1 ∧ . . . ∧ pm ∧ x.qi ∧ . . . ∧ x.qr
we have (a) each qi ∈ Sr, and (b) If s ∈ Pi then each pj ∈ Pi − {sri }. 1

We refer to each partition Pj as an island of locations. Each island has a unique header
(obtained on reset) location sri . All transitions into Pj occur only to this unique header
location, and only with reset of clock x. Moreover, all non-reset transitions stay in the same
island until a clock is reset, at which point, the control extends to the header location of
same or another island (this behaviour can be seen on each path of the run tree).

Establishing the Normal Form. The main result of this section is that every 1-ATA A
can be normalized, obtaining a language equivalent 1-ATA, Norm(A). The key idea behind
this is to duplicate locations of A such that the conditions of normalization are satisfied.
Let the set of locations of A be S = {s1, . . . , sn}. For each location si, 1 ≤ i ≤ n, create
a reset copy denoted sri as well as n non-reset copies snr,ji , 1 ≤ j ≤ n. The superscript
r on a location represents that all incoming transitions to it are on a clock reset, while
superscripts nr, j represent that all incoming transitions to that location are on non-reset and
it belongs to island Pj . If s0 is the initial location of A, then the initial location of Norm(A)
is sr0. The island Pi in Norm(A) consists of locations sri , s

nr,i
h for 1 ≤ h ≤ n; entry into Pi

happens through the header sri . A transition δ(si, a) = ϕ of A is rewritten in Norm(A) by
replacing all occurrences of locations x.sj with x.srj (leading into Pj), while occurrences of
free locations sh are replaced with snr,ih . The final locations of Norm(A) are sri , s

nr,j
i for

1 ≤ j ≤ n whenever si is a final location in A. The full version gives a formal proof for the
following straightforward lemma. Thanks to lemma 7, we assume without loss of generality,
in the rest of the paper, that 1-ATA are in normal form.

I Lemma 7. Given a 1-ATA A, one can construct a 1-ATA Norm(A) in normal form such
that L(A) = L(Norm(A)).

I Example 8. The 1-ATA B = ({a, b}, {s0, s1, s2}, s0, {s1}, δ) with transitions δ(s0, b) =
x.s2, δ(s0, a) = (s0 ∧ x.s1), δ(s1, a) = (s1 ∧ s0) = δ(s1, b) and δ(s2, b) = x.s0, δ(s2, a) =
(s2 ∧ x.s1) is not in normal form. Following the normalization technique, we obtain Norm(B)
with locations S = {sri , s

nr,i
j | 0 ≤ i, j ≤ 2} and final locations {sr1, s

nr,0
1 , snr,11 , snr,21 }. Figure

1(right) describes Norm(B) consisting of islands P0, P1 and P2.

4 1-ATA-rfl and Logics

In this section, we show the first of our expressive equivalence results connecting logics
RatMTL, QkMSO and a subclass of 1-ATA called 1-ATA with reset-free loops (1-ATA-rfl).We
first introduce 1-ATA-rfl. A 1-ATA A (in normal form) is said to be a 1-ATA-rfl if it satisfies

1 If the transitions of the 1-ATA are presented in CNF, the equivalent restriction is that each free location
in the transition should be in Pi − {sr

i } while each bound location should be in Sr.

S.N. Krishna, K. Khushraj, and P. K. Pandya 39:9

Figure 1 left: strict island hopping. right: Norm(B) corresponding to B in Example 8.

the following: There is a partial order (Sr,�) on the header locations (equivalently, islands
Pi). Moreover, for any location p ∈ Pi and a location q, if x.q occurs in δ(p, a) for any a
(hence q = srj) then srj ≺ sri . Thus, islands (which are only connected by reset transitions)
form a DAG, and every reset transition goes to a lower level island. See Figure 1 (left),
where we call this strict island hopping. The colored islands are all disjoint. On non-reset
transitions, control stays in the same island; on resets, it may expand to another island. From
this finite control, you cannot go back to the island where you started from. This provides a
partial order between islands due to resets (the name rfl comes from here). Semantically,
this means that on any branch of a run tree, a reset transition occurs at most once.

I Example 9. The 1-ATA with locations s, p, q and transitions δ(s, α)=(x.p ∧ x ≤ 1) ∨ (q ∧
x=2), δ(p, α)=x.q ∧ p and δ(q, a)=s ∧ (0<x<1) is not 1-ATA-rfl, since q is bound in δ(p, α)
and starting from q, we can reach x.p via s.

4.1 Useful Lemmas
In this section, we introduce some notations and prove lemmas (Lemma 10, Lemma 11)
which will be used several times in the paper. Let ρ = (a0, 0)(a1, τ1)(a2, τ2) . . . (am, τm) be
a timed word and let i ∈ dom(ρ). Let rel(ρ, i) denote the timed word obtained from ρ by
relativizing at position i; rel(ρ, i) = (ai, 0)(ai+1, τi+1 − τi)(ai+2, τi+2 − τi) . . . (am, τm − τi).

Region Words. Let cmax be any non-negative integer. Let regcmax
= {0, (0, 1), . . . , cmax,

(cmax,∞)} be the set of regions. Given a finite alphabet Σ, with Γ = 2Σ\∅, a region
word is a word over the alphabet Γ × regcmax called the interval alphabet. A region
word w = (a1, I1) (a2, I2) . . . (am, Im) is good iff Ij ≤ Ik ⇔ j < k. Here, Ij ≤ Ik
represents that either Ij = Ik or the upper bound of Ij is at most the lower bound of
Ik. The timed word ρ = (a0, 0)(a1, τ1)(a2, τ2) . . . (am, τm) is consistent with a region word
(a1, I1)(a2, I2) . . . (am, Im) iff τj ∈ Ij for all 0 < j ≤ m. Note that for technical reasons,
which will be clearer later, the region abstraction of the word defined here is by ignoring the
first point. The set of timed words ρ consistent with a good region word w is denoted Tw.
Likewise, given a timed word ρ, reg(ρ) represents the good region word w such that ρ ∈ Tw.

I Lemma 10 (Untiming P to A(P)). Let P be a 1-ATA over Γ having no resets. We can
construct an alternating finite automaton A(P) over the interval alphabet Γ× regcmax

such
that for any good region word w=(a1, I1) . . . , (an, In), w ∈ L(A(P))⇒ ∀ρ ∈ Tw, ρ ∈ Lst(P).
Conversely, ρ ∈ Lst(P)⇒ reg(ρ) ∈ L(A(P)). Hence, Lst(P)={ρ | w ∈ L(A(P) ∧ ρ ∈ Tw}.

Proof. Given a reset-free 1-ATA P = (Γ, S, s0, F, δ) we construct an alternating finite
automaton (AFA) A(P) = (Γ× regcmax , S, s0, F, δ

′) where cmax is the maximum constant
used in the clock constraints of P and δ′ is defined using δ as follows. A clock constraint

CONCUR 2018

39:10 Logics Meet 1-Clock Alternating Timed Automata

x ∈ I is called a region constraint if I ∈ regcmax . Without loss of generality, we assume that
all the transitions of P have the form C1 ∨ · · · ∨ Cm, where each clause Ci has exactly one
region constraint.

Construction of δ′. Given a transition δ(s, a) = C1 ∨ · · · ∨ Cn of P , let CI1 , . . . , CIk
∈

{C1, . . . , Cn} be clauses containing the region constraint x ∈ I, I ∈ regcmax
. We construct

δ′(s, (a, I)) as C ′I1 ∨ · · · ∨ C
′
Ik

where C ′Ij
is obtained by removing the conjunct x ∈ I from

CIj
. If there is no clause containing x ∈ I in δ(s, a), then δ′(s, (a, I)) = ⊥.

1. For any timed word ρ, ρ ∈ Lst(P)⇒ reg(ρ) ∈ L(A(P)): Let ρ = (a1, 0) . . . (am, τm). The
time-delayed accepting run from the initial configuration C0 = {(s0, 0)} to an accepting
configuration Cm in P is as follows: C0

τ1→ C0 + τ1
a1→ C1

τ2−τ1→ · · · τm−τm−1→ Cm−1 + (τm −
τm−1) am→ Cm. As P is a reset-free 1-ATA, the valuation ν(x) at any point is equal to the
total time elapse till that point. Hence for all positions j ∈ dom(ρ), I ∈ regcmax , τj ∈ I iff
ν(x) ∈ I. By construction of A(P), for each transition δ(s, aj) = (x ∈ Ij ∧ψ)∨C of P we
have a transition δ′(s, (aj , Ij)) = ψ (wlg we assume that C has no occurrence of x ∈ Ij).
The accepting run of P translates into the run D0

(a1,I1)→ D1
(a2,I2)→ D2 · · ·

(am,Im)→ Dm
in A(P), where D0 = {s | (s, 0) ∈ C0}, and Dj = {s | (s, t) ∈ Cj , t ∈ Ij}, j ≥ 1. Since
all locations in Cm are accepting, Dm is an accepting configuration in A(P) accepting
(a1, I1) . . . (am, Im).

2. For any good word w, w ∈ L(A(P))⇒ ρ ∈ Lst(P) for all ρ ∈ Tw. The argument is similar
to the previous bullet. Full proof can be found in the full version. J

I Lemma 11 (A(P) to RatMTL). Let A(P) be an AFA over the interval alphabet Γ×regcmax

constructed from a reset-free 1-ATA P as in lemma 10. We can construct a RatMTL formula
ϕst such that for any good word w, w ∈ L(A(P))⇒ ρ ∈ L(ϕst) for all ρ ∈ Tw, and, for any
timed word ρ, ρ ∈ L(ϕst) ⇒ reg(ρ) ∈ L(A(P)). L(ϕst) = {Tw | w ∈ L(A(P))}. Hence, by
lemma 10, L(ϕst) = Lst(P).

Proof. Let Det[A(P)] be the deterministic automaton which is language equivalent to A(P).
Let δD be the transition function of Det[A(P)] obtained from δ′ (see lemma 10) and let δ̂D
be its extension to words. Let s0 be the initial location of Det[A(P)] and let F be the set of
its final locations. For any pair of locations p, q of Det[A(P)] and Ii ∈ regcmax , we construct
a regular expression re(p, q, Ii) equivalent to the language {w ∈ (Γ×{Ii})+ | δ̂D(p, w) = q}.
Construction of re(p, q, Ii). Let Det[A(P)[p, q]] be the DFA obtained from Det[A(P)] by

setting the initial location to p and set of final locations to {q}. Let A(I∗i) denote the
DFA accepting all words (Γ × {Ii})∗. Let Det[Ai] = Det[A(P)[p, q]] ∩ A(I∗i). Then
L(re(p, q, Ii)) = L(Det[Ai]).

Obtaining RatMTL formula. Consider a sequence of locations sseq=q0, q1, q2 . . . qk with
k=2 ∗ cmax + 2, q0=s0 and qk∈F . Let
re=re(q0, q1, [0, 0]).re(q1, q2, (0, 1)). · · · .re(qk−1, qk, (cmax,∞)) where re(q2i−1, q2i, (i −
1, i)) ⊆ (Γ × (i − 1, i))∗ and re(q2i, q2i+1, [i, i]) ⊆ (Γ × [i, i])∗, and L(re) ⊆ L(DetA(P)).
Define the RatMTL formula φ(sseq) = Rat[0,0]re(q0, q1, [0, 0]) ∧ Rat(0,1)re(q1, q2, (0, 1)) ∧
· · · ∧Rat(cmax,∞)[re(qk−1, qk, (cmax,∞))]. Then
L(φ(sseq))={Tw | w ∈ L(re(q0, q1, [0, 0]).re(q1, q2, (0, 1)) · · · re(qk−1, qk, (cmax,∞))}. Let
ϕst = ∨sseq φ(sseq)2. Then clearly, L(ϕst) = {Tw | w ∈ L(A(P))}. By lemma 10, we
obtain L(ϕst) = Lst(P). J

2 The superscript st in ϕst represents that it is a strict future formulae. The truth of the formula at any
point i is only dependent on points j > i

S.N. Krishna, K. Khushraj, and P. K. Pandya 39:11

Remark. ρ, i |= ϕst iff rel(ρ, i) ∈ Lst(P). ρ, i |= ϕst iff rel(ρ, i) ∈ L(ϕst) since the truth of ϕst

only depends on the truth value of the propositions at the points strictly greater than i and
the relative time difference with respect to i. The proof of Lemma 12 is in the full version.

I Lemma 12. Let P = (Γ, S, s0, F, δ) be any reset free 1-ATA and A(P) be an AFA as
constructed in lemma 10.Let ϕst be the formula constructed from A(P) as in lemma 11.We
can construct a formula ϕ ∈ RatMTL such that L(ϕ) = L(P).

4.2 1-ATA-rfl meets RatMTL
I Theorem 13. 1-ATA-rfl are expressively equivalent to RatMTL.

Proof.
1. 1-ATA-rfl ⊆e RatMTL: Let A be a 1-ATA-rfl in normal form. For each location sri ∈ Sr

(which is the header of partition Pi) let A[sri] denote the same automaton as A except
that the initial location is changed to sri , the header location of Pi. We can also delete
all islands higher than Pi as their locations are not reachable. For each such automaton
A[sri], we construct a pair of RatMTL formulae mtl(A[sri]) and mtlst(A[sri]) such that
L(mtl(A[sri])) = L(A[sri]) and L(mtlst(A[sri])) = Lst(A[sri]). Note that (Sr,�) is a partial
order. The construction and proof of equivalence are by complete induction on the level
of the header location sri of island Pi in the partial order. All x.srj occurring in any
transition of A[sri] are of lower level in the partial order (Sr,�). Hence, by induction
hypothesis, there is a RatMTL formula ψst

j = mtlst(A[srj]) such that Lst(A[srj]) = L(ψst
j).

The behaviour of all the lower level srj is independent of the label of the transition that
calls them. In other words, the automata Ai[srj] which is called at position i does not
read the symbol at point i. Thus any lower level automaton starting from some srj called
at a point i restricts the behaviour of the points strictly in the future of i, fixing the
anchor (the point with respect to which the time differences are checked) at i. Let wj be
a fresh witness variable for each x.srj above, which also corresponds to RatMTL formula
ψstj . Let the set of such witness variables be {w1, . . . ,wk}. We construct a modified
automaton Aw[sri] with transition function δ′ and set of locations Pi as follows. Its
alphabet is Γ × {0, 1}k with the jth component giving the truth value of witness wj .
Let δ′(s, a,w1, . . . ,wk) = δ(s, a)[wj/x.srj], i.e., each occurrence of x.srj is replaced by the
truth value of wj for 1 ≤ j ≤ k.Note that Aw[sri] is a reset-free 1-ATA. By lemmas 10,
11, we get a RatMTL formula φst,w such that Lst(Aw[sri]) = L(φst,w) and using lemma 12
we get a language equivalent formula φw over the variables Σ ∪ {w1, . . . ,wk}. Now we
substitute each wj by ψst

j (and hence ¬wj by ¬ψst
j) in φw and φst,w to obtain the required

formulae mtl(A[sri]) and mtlst(A[sri]), respectively. It is clear from the substitution that
Lst(A[sri]) = L(mtlst(A[sri])) and L(A[sri]) = L(mtl(A[sri])). An example illustrating this
construction is in the full version

2. RatMTL ⊆e 1-ATA-rfl: Consider a formula ψ1 = RatI(re0) with I = [l, u). The case of
other intervals are handled similarly. For the base case, ψ1 has modal depth 1 and has a
single modality. As the formula is of modal depth 1, re0 is an atomic regular expression
over alphabet 2Σ. Let D = (Γ, Q, q0, Qf , δ

′) be a DFA such that L(D) = L(re0), with
Γ = 2Σ\∅. From D, we construct the 1-ATA A=(Γ, Q∪ {qinit, qtimecheck, qf}, qinit, {qf}, δ)
where qinit, qtimecheck, qf are disjoint from Q. The transitions δ are as follows. Assume
l > 0.
δ(qinit, a) = x.qtimecheck, a ∈ Γ,
δ(qtimecheck, a) = [(x ≥ l ∧ δ′(q0, a)∨ (qtimecheck)]∨ [x > u∧ qf] where the latter disjunct
is added only when q0 ∈ Qf ,
δ(q, a) = (x ∈ [l, u)) ∧ δ′(q, a)), for all q ∈ Q \Qf ,

CONCUR 2018

39:12 Logics Meet 1-Clock Alternating Timed Automata

δ(q, a) = (x ∈ [l, u) ∧ δ′(q, a)) ∨ (x > u ∧ qf), for all q ∈ Qf , δ(qf , a) = qf .
It is easy to see that A has the reset-free loop condition since qf is the only location
entered on resets, and control stays in qf once it enters qf . The correctness of A is easy
to establish, the location qtimecheck is entered on the first symbol, resetting the clock;
control stays in qtimecheck as long as x < l, and when x ≥ l, the DFA is started. As long as
x ∈ [l, u), we simulate the DFA. If x > u and we are in a final location of the DFA, the
control switches to the final location qf of A. If q0 is itself a final location of the DFA,
then from qtimecheck, we enter qf when x > u. It is clear that A indeed checks that re0 is
true in the interval [l, u). If l = 0, then the interval on which re0 should hold good is [0, u).
In this case, if q0 is non-final, we have the transition δ(qinit, a) = x.δ′(q0, a), a ∈ Γ (since
our timed words start at time stamp 0, the first symbol is read at time 0, so x.δ′(q0, a)
preserves the value of x after the transition δ′(q0, a)). The location qtimecheck is not used
then. The case when ψ1 has modal depth 1 but has more than one Rat modality is
dealt as follows. Firstly, if ψ1 = ¬RatI(re0), then the result follows since 1-ATA-rfl are
closed under complementation (the fact that the resets are loop-free on a run does not
change when one complements). For the case when we have a conjunction ψ1 ∧ ψ2 of
formulae, having 1-ATA-rfl A1 = (Γ, Q1, q1, F1, δ1) and A2 = (Γ, Q2, q2, F2, δ2) such that
L(A1) = L(ψ1) and L(A2) = L(ψ2), we construct A = (Γ, Q1 ∪Q2 ∪ {qinit}, qinit, F, δ)
such that δ(qinit, a) = x.δ1(q1, a) ∧ x.δ2(q2, a). Clearly, A is a 1-ATA-rfl since A1,A2 are.
It is easy to see that L(A) = L(A1)∩L(A2). The case when ψ = ψ1∨ψ2 follows from the
fact that we handle negation and conjunction. The case of formulae of higher modal depth
ψk+1 = RatI(rek) is handled by substituting all lower depth formulae in rek with witness
variables, and using the inductive hypothesis that there exist 1-ATA-rfl equivalent to these.
The main argument is then to show that on plugging-in these automata corresponding to
the witnesses, we obtain a 1-ATA-rfl equivalent to ψk+1. Details in the full version. J

4.3 RatMTL meets QkMSO
I Theorem 14. QkMSO is expressively equivalent to RatMTL.

Proof.
1. QkMSO ⊆e RatMTL: Proof is by Induction on the metric depth of the formula. For

the base case,consider a formula ψ(t0) = Q1t1 . . .Qk−1tk−1ϕ(↓ t0, t1, . . . , tk−1) of met-
ric depth one.Let cmax be the maximal constant used in the metric quantifiers Qi.
Let Rj(t) for j in reg={0, (0, 1),1, . . . , cmax, (cmax,∞)} be fresh monadic predicates.
We modify ψ(t0) to obtain an untimed MSO formula ψrg(t0) over the alphabet 2Σ ×
{0, 1}|reg| × {0, 1} as follows. Define CON(Ii, ti) = ∨{Rj(ti) | j⊆Ii}. We replace every
quantifier ∃ti∈t0 + Ii φ by ∃ti(t0≤ti)∧CON(Ii, ti)∧φ. Every quantifier ∀ti∈t0 + Ii φ is
replaced by ∀ti.(t0≤ti∧CON(Ii, ti)→φ). To the resulting MSO formula we add a conjunct
WELLREGION that states that (a) exactly one Rj(t) holds at any t, and (b) ∀t, t′. [t<t′
∧Rj(t)∧Rj′(t′)] → j ≤ j′ (asserting region order). Note that these are natural properties
of region abstraction of time. This gives us the formula ψrg(t0). It has predicates Rj(t) for
j ∈ reg and free variable t0. Being an MSO formula, we can construct a DFA A(ψrg(0))
for it over the alphabet 2Σ × {0, 1}|reg|. Note that we have substituted 0 for t0. This is
isomorphic to automaton over the alphabet 2Σ × reg. From the construction, it is clear
that ρ |= ψ(0) iff reg(ρ) ∈ L(A(ψrg(0))). By Lemma 12, we then obtain an equivalent
RatMTL formula ζ. It is easy to see that L(ψ(0)) = L(ζ). Because ψ(0) and ζ are purely
future time formulae, this gives ρ, i |= ψ(t0) iff ρ, i |= ζ. For the induction step, consider
a metric depth n+ 1 formula ψ(t0). We can replace every time constraint sub-formula

S.N. Krishna, K. Khushraj, and P. K. Pandya 39:13

ψi(tk) occurring in it by a witness monadic predicate wi(tk). This gives a metric depth 1
formula and we can obtain a RatMTL formula, say ζ, over variables Σ ∪ {wi} exactly as
in the base step. Notice that each ψi(tk) was a formula of modal depth n or less. Hence
by induction hypothesis we have an equivalent RatMTL formula ζi. Substituting ζi for
wi in ζ gives us a formula language equivalent to ψ(t0).

2. RatMTL ⊆e QkMSO : Let ϕ ∈ RatMTL. The proof is by induction on the modal depth of
ϕ. For the base case, let ϕ = RatI(re) where re is a regular expression over propositions.
Let ζ(x, y) be an MSO formula with the property that σ, i, j |= ζ(x, y) iff σ[x : y] ∈ L(re),
where σ[x : y] denotes the sub-string σ(x+ 1) . . . σ(y). Since MSO has exactly the expres-
sive power of regular languages, such a formula can always be constructed. Consider ψ(t0):
∃tfirst∈t0+I. ∃tlast∈t0+I.∀t′∈t0+I.[(t′=tfirst∨t′=tlast∨tfirst<t′<tlast)∧ ζ(tfirst, tlast)]
Then, it is clear that ρ, i |= ϕ iff ρ, i |= ψ(t0). Note that the time constraint formula
ψ(t0) is actually a formula of QkMSO with k = 4 using time constrained variables
t0, tfirst, tlast, t

′ only. Atomic and boolean constructs can be straightforwardly translated.
Now let ϕ = RatI(re) where re is over a set of subformulae S. For each ζi ∈ S, substitute it
by a witness proposition wi to get a formula ϕflat. This is a modal depth 1 formula and we
can construct a language equivalent formula of QkMSO, say Ξ(t0) over alphabet Σ∪{wi}.
By induction hypothesis, for each ζi there exists a language equivalent time constrained
QkMSO formula κi(t0). Now substitute κi(tj) for each occurrence of wi(tj) in Ξ(t0) to
get a formula ψ(t0). Then ψ(t0) is language equivalent to ϕ. Note that ψ(t0)∈Q4MSO as
it only uses time constrained variables t0, tfirst, tlast, t′ which are inductively reused. J

5 C⊕D-1-ATA-rfl and Logics

In this section, we show our second main result connecting logics FRatMTL, Q2MSO and a
subclass of 1-ATA called conjunctive-disjunctive (abbreviated C⊕D) 1-ATA with reset-free
loops. Let A = (Γ, Q, q0, F, δ) be a 1-ATA. Let Qx = {x.q | q ∈ Q} and let B(Qx) ::=
true|false|α|α ∧ α|α ∨ α, where α ∈ Qx. A is said to be a C⊕D 1-ATA if
1. Q is partitioned into Q∧ and Q∨,
2. Let q ∈ Q∧. Transitions δ(q, a) can be written as D1∧D2∧ . . .∧Dm, where any Di has

one the following forms. (i) Di = q′ ∨ B(Qx) where q′ ∈ Q∧, (ii) Di = x /∈ I ∨ B(Qx).3
Each Di has at most one free location from Q∧, or at most one clock constraint x /∈ I.

3. Let q ∈ Q∨. Transitions δ(q, a) can be written as C1∨C2∨ . . .∨Cm where any Ci has one
of the following forms. (i) Ci = q′∧B(Qx), where q′ ∈ Q∨, (ii) Ci = x ∈ I ∧B(Qx). Thus,
each Ci has at most one free location from Q∨, or at most one clock constraint x ∈ I.

In other words, all the non-reset transitions coming out of q ∈ Q∧ will go to all the locations in
Q′ ⊆ Q∧ conjunctively asserting some time constraint. Similarly, all the non-reset transitions
coming out of q ∈ Q∨ will non-deterministically go to one of the locations in Q∨, without
checking any time constraint.

Remark. If any C⊕D-1-ATA A is normalized to Norm(A), then any island of Norm(A) is
exclusively made of locations from Q∧ or Q∨ (not both). Note that if we delete all the reset
transitions from any island of Norm(A), all the transitions within the island will be either
conjunctive or disjunctive. Thus, the name C⊕D is based on the fact that each island of
Norm(A) is either conjunctive or disjunctive. A 1-ATA which has both reset-free loops and

3 Note that x /∈ I can be re-written as x ∈ [0, l〉 ∨ x ∈ 〈u,∞), where [0, l〉 ∪ 〈u,∞) is the complement
of the interval I with lower and upper bounds l, u respectively. We restrict the specification of time
intervals in this form to make sure that, using conjunctions and non-punctual intervals, one cannot
express punctual intervals. This is used to define non-punctual C⊕D-1-ATA.

CONCUR 2018

39:14 Logics Meet 1-Clock Alternating Timed Automata

conjunctive-disjunctiveness is denoted C⊕D-1-ATA-rfl. If all the intervals in a C⊕D-1-ATA
are non-punctual, then it is referred to as a np-C⊕D-1-ATA.

I Example 15. We illustrate examples of 1-ATA violating the C⊕D condition.
(a) For a ∈ Σ, let Sa and S¬a denote any set containing a and not containing a, respectively.

Consider the automaton B with transitions δ(s0, Sa)=s0 ∨ x > 1, δ(s0, S¬a)=s0 ∧ x /∈
(1,∞), where s0 is the only location, which is non-final. The only way to accept a
word is by reaching an empty configuration. The C⊕D condition is violated due to the
combination of having a free location and a clock constraint simultaneously in a clause
irrespective of s0 ∈ Q∨ or s0 ∈ Q∧. This accepts the set of all words where the first
symbol in (1,∞) has an a.

(b) Let Sa, S¬a be as above. The automaton B with δ(s0, Sa)=s0 ∨ s1, δ(s2,Γ) = x ≤ 1,
δ(s0, S¬a)=s0 ∧ s2, δ(s1,Γ)=x > 1 with s0 being initial and none of the locations being
final satisfies rfl but violates C⊕D. The C⊕D condition is violated since a clause contains
more than one free location irrespective of s0, s1, s2 ∈ Q∨ or s0, s1, s2 ∈ Q∧. This accepts
the language of all words where the last symbol in (0, 1) has an a.

(c) The automaton B with δ(s0,Γ)=s0∨s1, δ(s1, Sa) = s2∧s3, δ(s1, S¬a) = ⊥, δ(s2,Γ)=(x ≤
1), δ(s3,Γ)=s4, δ(s4,Γ)=x > 1 with s0 being initial and s1 being final satisfies rfl but
violates C⊕D. The C⊕D condition is violated since the automata switches between
conjunctive and disjunctive locations without any reset. Note that s0∈Q∨ while s1∈Q∧.
The language accepted is all words where the second last symbol in (0, 1) has an a.

5.1 C⊕D-1-ATA-rfl meets FRatMTL
I Theorem 16. C⊕D-1-ATA-rfl are expressively equivalent to FRatMTL.

Proof. We only detail the containment C⊕D-1-ATA-rfl ⊆e FRatMTL; the converse direction
is almost identical to the proof of RatMTL ⊆e1-ATA−rfl and is provided in the full version.
1. C⊕D-1-ATA-rfl ⊆e FRatMTL : The first thing is to convert C⊕D 1-ATA with no resets

to FRat formula of modal depth 1 as in Lemma 17.
I Lemma 17. Given a C⊕D 1-ATA A over Σ with no resets, we can construct a FRat
formula ϕ such that for any timed word ρ = (a1, τ1) . . . (am, τm), ρ, i |= ϕst iff A accepts
rel(ρ, i) in time-delayed semantics. L(ϕst) = Lst(A).
Assuming q0 ∈ Q∨, the key idea is to check how an accepting configuration is reached.
The reset-freeness ensures that any transition δ(q, a) = C1 ∨ · · · ∨ Cm is such that Ci is
either a location or a clock constraint x ∈ I. Assume time-delayed acceptance happens
through an empty configuration via a clock constraint x ∈ Ia, from some location q on
an a, and q is reachable from q0. Let reIa

be the regular expression whose language is
the set of all such words reaching some q, from where acceptance happens via interval Ia
on an a. The formula FRatIa,reIa

a sums up all such words. Disjuncting over all possible
intervals and symbols, we have the result. The second case is when a final state qf is
reached from some q′ reachable from q0. If reqf ,a is the regular expression whose language
is all words reaching such a q′, the formula FRat[0,∞), reqf ,a(a ∧�⊥) sums up all words
accepted via q′, a, qf .The �⊥ ensures that no further symbols are read, and can be
written as ¬FRat[0,∞),Σ∗>. Disjuncting over all possible final states qf and a ∈ Σ gives
us the formula. The case when q0 ∈ Q∧ is handled by negating the automaton, obtaining
q0 ∈ Q∨ and negating the resulting formula. Details in the full version Like lemma 12,
given any C⊕D-1-ATA-rfl A, we can construct ϕ ∈ FRatMTL such that L(ϕ) = L(A).
The rest of the proof is very similar to Theorem 13(1) and omitted.

S.N. Krishna, K. Khushraj, and P. K. Pandya 39:15

2. FRatMTL ⊆e C⊕D-1-ATA-rfl: This is almost identical to the proof of Theorem 13(2), and
is provided in the full version for completeness. J

5.2 FRatMTL meets Q2MSO

I Theorem 18. FRatMTL is expressively equivalent to Q2MSO.

Proof.
1. Q2MSO ⊆e FRatMTL : We first consider formulae of metric depth one. These have the

form ψ(t0) = Q1t1ϕ(↓t0, t1) and ϕ(↓t0, t1) is an MSO formula (bound first order variables
t′ in ϕ only have the comparison t′>t0, and there are no free variables other than t0, t1,
and hence no metric comparison exists in ϕ). Let reϕ be the regular expression equivalent
to ϕ(↓t0, t1). The presence of free variables t0, t1 implies that reϕ ie over the alphabet
2Σ×{0, 1}2, where the last two bits are for t0, t1. As seen in the case of QkMSO to RatMTL,
t0 is assigned the first position of reϕ since all other variables take up a position to its
right. Hence reϕ can be rewritten as (2Σ, 1, 0)re′. Since t1 is assigned a unique position,
there is exactly one occurrence of a symbol of the form (2Σ, 0, 1) in re′. Using (Lemma 7,
page 16) [4], we can write re′ as a finite union of disjoint expressions each of the form
re`(α, 0, 1)rer where α ∈ 2Σ, and re`, rer ⊆ [(2Σ, 0, 0)]∗. ϕ(↓ t0, t1) is thus equivalent to
having a symbol (α, 0, 1) at a time point t ∈ t0+I, and (2Σ, 0, 1)re` holds till t, and beyond
t, rer holds. This is captured by the formula FRatI,re′ [

∨
α∈2Σ(α, 0, 1) ∧ FRat(0,∞),rer

�⊥].
Here, re′ = (2Σ, 0, 1)re`, and the �⊥ symbolizes the fact that we see rer in the latter part
after (α, 0, 1) and no more symbols after that. See the full version for higher depth case.

2. FRatMTL ⊆e Q2MSO : Proof is similar to RatMTL ⊆e QkMSO and is in the full version.
J

6 Discussion

We have defined a new real-time logic QkMSO by extending MSO[<] with guarded quantifica-
tion with a block of k−1 metric quantifiers. We have shown that it is expressively equivalent
to 1-ATA where loops do not have clock-reset. We have also shown that it is expressively
equivalent to a powerful extension of MTL[UI] called RatMTL. This makes QkMSO as well
as RatMTL to be amongst highly expressive, real-time logics (future only) with decidable
satisfiability and model-checking. We have established a 4-variable property for QkMSO
and also characterized the expressive power of its two variable fragment. The question of a
logic expressively equivalent to full 1-ATA remains open. It may be noted that [5] gave an
extension of hybrid logic 1-TPTL with fixed point operators to get the expressive power of
full 1-ATA but our quest is for a more traditional logic. The expressive power of 3 variable
fragment of QkMSO also remains unexplored.

We briefly discuss some special cases and extensions of our results. PO-1-ATA [21] and
PO−C⊕D-1-ATA are subclasses of 1-ATA and C⊕D-1-ATA respectively, where the only loops
in the automaton are reset-free self-loops. Likewise, SfrMTL and FSfrMTL are subclasses of
RatMTL and FRatMTL respectively, where the regular expression used in the modality has
an equivalent star-free expression.
1. Thanks to theorems 13, 14 and 16, we can obtain the expressive equivalence of (i) QkFO,

SfrMTL and PO-1-ATA, and (ii) Q2FO, FSfrMTL and PO−C⊕D-1-ATA, In the absence
of second order quantification, the regular expressions have a star-free equivalent, and
the respective automata are aperiodic.

CONCUR 2018

39:16 Logics Meet 1-Clock Alternating Timed Automata

2. The emptiness problem for non punctual C⊕D-1-ATA is elementarily decidable. The proof
is via a reduction to FRatMITL with least fix points [15]. To the best of our knowledge,
this is the largest known subclass of 1-ATA which is elementarily decidable.

3. Lastly, to obtain a logical equivalence with 1-ATA, the logic RatMTL with least fixpoint
operators suffices [15]. Previously, Haase et al [5] showed that 1−TPTL with fixed points
had the expressive power of 1-ATA.

References
1 Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of relaxing punc-

tuality. In Proceedings of the Tenth Annual ACM Symposium on Principles of Dis-
tributed Computing, Montreal, Quebec, Canada, August 19-21, 1991, pages 139–152, 1991.
doi:10.1145/112600.112613.

2 Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and expressiveness.
In Proceedings of the Fifth Annual Symposium on Logic in Computer Science (LICS ’90),
Philadelphia, Pennsylvania, USA, June 4-7, 1990, pages 390–401, 1990. doi:10.1109/
LICS.1990.113764.

3 Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. On the expressiveness of TPTL
and MTL. In FSTTCS 2005: Foundations of Software Technology and Theoretical Com-
puter Science, 25th International Conference, Hyderabad, India, December 15-18, 2005,
Proceedings, pages 432–443, 2005. doi:10.1007/11590156_35.

4 J. Engelfriet and H. Hoogeboom. MSO definable string transductions and two-way finite-
state transducers. ACM Trans. Comput. Log., 2(2):216–254, 2001.

5 C. Haase, J. Ouaknine, and J. Worrell. On process-algebraic extensions of metric temporal
logic. In Reflections on the Work of C. A. R. Hoare., pages 283–300. 2010.

6 Thomas A. Henzinger, Jean-François Raskin, and Pierre-Yves Schobbens. The regular real-
time languages. In Automata, Languages and Programming, 25th International Colloquium,
ICALP’98, Aalborg, Denmark, July 13-17, 1998, Proceedings, pages 580–591, 1998. doi:
10.1007/BFb0055086.

7 Y. Hirshfeld and A. Rabinovich. An expressive temporal logic for real time. In MFCS,
pages 492–504, 2006.

8 P. Hunter. When is metric temporal logic expressively complete? In CSL, pages 380–394,
2013.

9 P. Hunter, J. Ouaknine, and J. Worrell. Expressive completeness for metric temporal logic.
In LICS, pages 349–357, 2013.

10 Neil Immerman and Dexter Kozen. Definability with bounded number of bound variables.
Inf. Comput., 83(2):121–139, 1989. doi:10.1016/0890-5401(89)90055-2.

11 J.R.Büchi. On a decision method in restricted second-order arithmetic. In Proceedings of
the 1960 Congress on Logic, Methdology and Philosophy of Science, Stanford Univeristy
Press, Stanford, 1962.

12 S. N. Krishna K. Madnani and P. K. Pandya. Partially punctual metric temporal logic is
decidable. In TIME, pages 174–183, 2014.

13 Hans Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Ucla, 1968.
14 Ron Koymans. Specifying real-time properties with metric temporal logic. Real-Time

Systems, 2(4):255–299, 1990. doi:10.1007/BF01995674.
15 Shankara Narayanan Krishna, Khushraj Madnani, and Paritosh K. Pandya. Büchi-kamp

theorems for 1-clock ATA. CoRR, abs/1802.02514, 2018. arXiv:1802.02514.
16 S. Lasota and I. Walukiewicz. Alternating timed automata. ACM Trans. Comput. Log.,

9(2):10:1–10:27, 2008. doi:10.1145/1342991.1342994.

http://dx.doi.org/10.1145/112600.112613
http://dx.doi.org/10.1109/LICS.1990.113764
http://dx.doi.org/10.1109/LICS.1990.113764
http://dx.doi.org/10.1007/11590156_35
http://dx.doi.org/10.1007/BFb0055086
http://dx.doi.org/10.1007/BFb0055086
http://dx.doi.org/10.1016/0890-5401(89)90055-2
http://dx.doi.org/10.1007/BF01995674
http://arxiv.org/abs/1802.02514
http://dx.doi.org/10.1145/1342991.1342994

S.N. Krishna, K. Khushraj, and P. K. Pandya 39:17

17 J. Ouaknine and J. Worrell. On the decidability of metric temporal logic. In LICS, pages
188–197, 2005.

18 Paritosh K. Pandya and Simoni S. Shah. On expressive powers of timed logics: Comparing
boundedness, non-punctuality, and deterministic freezing. In CONCUR 2011 - Concurrency
Theory - 22nd International Conference, CONCUR 2011, Aachen, Germany, September 6-
9, 2011. Proceedings, pages 60–75, 2011. doi:10.1007/978-3-642-23217-6_5.

19 Jean Francois Raskin. Logics, Automata and Classical Theories for Deciding Real Time.
PhD thesis, Universite de Namur, 1999.

20 S.Krishna, K. Madnani, and P. K. Pandya. Metric temporal logic with counting. In
FoSSaCS, pages 335–352, 2016.

21 P. K. Pandya S.Krishna, K. Madnani. Making metric temporal logic rational. In MFCS,
2017.

22 T. Wilke. Specifying timed state sequences in powerful decidable logics and timed automata.
In FTRTFT, pages 694–715, 1994.

CONCUR 2018

http://dx.doi.org/10.1007/978-3-642-23217-6_5

Progress-Preserving Refinements of CTA
Massimo Bartoletti
Università degli Studi di Cagliari
Cagliari, Italy

Laura Bocchi
University of Kent
Canterbury, UK

Maurizio Murgia
University of Kent
Canterbury, UK

Abstract
We develop a theory of refinement for timed asynchronous systems, in the setting of Communic-
ating Timed Automata (CTA). Our refinement applies point-wise to the components of a system
of CTA, and only affecting their time constraints – in this way, we achieve compositionality
and decidability. We then establish a decidable condition under which our refinement preserves
behavioural properties of systems, such as their global and local progress. Our theory provides
guidelines on how to implement timed protocols using the real-time primitives of programming
languages. We validate our theory through a series of experiments, supported by an open-source
tool which implements our verification techniques.

2012 ACM Subject Classification Theory of computation → Timed and hybrid models

Keywords and phrases protocol implementation, communicating timed automata, message pass-
ing

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.40

Funding This work has been partially supported by EPSRC EP/N035372/1 “Time-sensitive pro-
tocol design and implementation”, and by Aut. Reg. of Sardinia project P.I.A. 2013 “NOMAD”.

1 Introduction

Formal reasoning of real-time computing systems is supported by established theories and
frameworks based on e.g., timed automata [4,32,44]. In the standard theory of timed automata,
communication between components is synchronous: a component can send a message only
when its counterpart is ready to receive it. However, in many concrete scenarios, such as web-
based systems, communications are asynchronous and often implemented through middlewares
supporting FIFO messaging [5,42]. These systems can be modelled as Communicating Timed
Automata (CTA) [29], an extension of timed automata with asynchronous communication.
Asynchrony comes at the price of an increased complexity: interesting behavioural properties,
starting from reachability, become undecidable in the general case, both in the timed [1, 22]
and in the untimed [14] setting. Several works propose restrictions of the general model, or
sound approximate techniques for the verification of CTA [11, 22]. These works leave one
important problem largely unexplored: the link between asynchronous timed models and their
implementations.

Relations between models at different levels of abstraction are usually expressed as
refinements. These have been used, e.g., to create abstract models which enhance effectiveness
of verification techniques (e.g., abstraction refinement [25, 43], time-wise refinement [40]), or

© Massimo Bartoletti, Laura Bocchi, and Maurizio Murgia;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 40; pp. 40:1–40:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.40
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

40:2 Progress-Preserving Refinements of CTA

to concretize abstract models into implementations [21,23]. Existing notions of refinement
between timed models are based on synchronous communications [7,17,26,33]. Asynchronous
refinement has been investigated in the untimed setting, under the name of subtyping
between session types [8, 20, 24, 34–36]. To our knowledge, no notion of refinement has been
yet investigated in the asynchronous timed setting. The only work that studies a notion
close to that of refinement is [12], which focusses on the relation between timed multiparty
session types and their implementations (processes in an extended π-calculus). The work
in [12] has two main limitations. First, their model is not as general as CTA: in particular, it
does not allow states with both sending and receiving outgoing transitions (so-called mixed
states). Mixed states are crucial to capture common programming patterns like timeouts [38]
(e.g. a server waiting for a message that sends a timeout notification after a deadline). Some
programming languages provide specific primitives to express timeouts, e.g. the receive/after
construct of Erlang [6]. The second limitation of [12] is that its calculus is very simple
(actions are statically set to happen at precise points in time), and cannot express common
real-world blocking receive primitives (with or without timeout) that listen on a channel
until a message is available.

To be usable in practice, a theory of refinements should support real-world programming
patterns (e.g., timeouts à la Erlang) and primitives, and feature decidable notions of refine-
ment. Further, refinement should be compositional (i.e. a system can be refined by refining
its single components, independently), and preserve desirable properties (e.g., progress) of
the system being refined. These goals contrast with the fact that, in general (e.g. when
refinements may arbitrarily alter the interaction structures) establishing if an asynchronous
FIFO-based communication model is a refinement of another is undecidable, even in the
untimed setting [15, 30]. Therefore, when defining an asynchronous refinement, a loss of
generality is necessary to preserve decidability.

Contributions

We develop a theory of asynchronous timed refinement for CTA. Our main purpose is to
study preservation of behavioural properties under refinement, focussing on two aspects:
timed behaviour and progress. The former kind of preservation, akin timed similarity [18],
ensures that the observable behaviour of the concrete system can be simulated by the abstract
system. The latter requires that refinement does not introduce deadlocks, either globally
(i.e., the whole system gets stuck), or locally (i.e., a single CTA gets stuck, although the
whole system may still proceed).

Refinement. We introduce a new refinement relation, which is decidable and compositional,
so enabling modular development of systems of CTA. Our refinement is structure preserving,
i.e. it may only affect time constraints: refinements can only restrict them; further, for
receive actions, refinements must preserve the deadline of the original constraint (i.e., the
receiving component must be ready to receive until the very last moment allowed of the
original constraint). This way of refining receive actions, and structure preservation, are key
to obtain decidability and other positive results. Furthermore, structure preservation reflects
the common practice of implementing a model: starting from a specification (represented as a
system of CTA), one derives an implementation by following the interaction structure of the
CTA, and by adjusting the timings of actions as needed, depending on implementation-related
time constraints, and on the programming primitives one wants to use for each action (e.g.,
blocking/unblocking, with/without timeout). We illustrate in Section 6 how to exploit our
theory in practice, to implement progress-preserving timed protocols in Go.

M. Bartoletti, L. Bocchi, and M. Murgia 40:3

Positive and negative results. Our main positive result (Theorem 26) is a decidable
condition called Locally Latest-Enabled Send Preservation (LLESP) ensuring preservation of
timed behaviour, global and local progress under our refinement. Our refinement and the
LLESP condition naturally apply to most of the case studies found in literature (Section 4)
In Section 6 we show how our tool and results can be used to guide the implementation of
timed protocols with the Go programming language. We also considered other refinement
strategies: (i) arbitrary restriction of constraints of send and receive actions (similarly to [12]),
and (ii) asymmetric restriction where constraints of send actions may be restricted, and
those of receive actions may be relaxed (this is the natural timed extension of the subtyping
relation in [24]). Besides being relevant in literature, (i) and (ii) reflect common programming
practices: (i) caters for e.g. non-blocking receive with constraint reduced to an arbitrary point
in the model’s guard, and (ii) caters e.g. for blocking receive without timeouts. For (i) and
(ii) we only have negative results, even when LLESP holds, and if mixed states are forbidden
(Fact 27). Our negative results have a practical relevance on their own: they establish that if
you implement a CTA as described above, you have no guarantees of behaviour/progress
preservation.

A new semantics for CTA. The original semantics for CTA [29] was introduced for studying
decidability issues for timed languages. To achieve such goals, [29] adopts the usual language-
based approach of computability theory: (1) it always allows time to elapse, even when
this prevents the system from performing any available action, and (2) it rules out “bad”
executions a posteriori, e.g. only keeping executions that end in final states. Consider, for
example, the following two CTA:

As : q0 q1
sr!a(x ≤ 2) Ar :

q′0 q′1
sr?a(y ≤ 3)

The CTA As models a sender s who wants to deliver a message a to a receiver r. The
guard x ≤ 2 is a time constraint, stating that the message must be sent within 2 time units.
The receiver wants to read the message a from s within 3 time units. In [29], a possible
(partial) computation of the system (As,Ar) would be the following:

γ0 = ((q0, q
′
0), (ε, ε), {x, y 7→ 0}) 5−→ ((q0, q

′
0), (ε, ε), {x, y 7→ 5})

The tuple γ0 at the LHS of the arrow is the initial configuration of the system, where
both CTA are in their initial states; the pair (ε, ε) means that the communication queues
between r and s are empty; the last component means that the clocks x and y are set to
0. The label on the arrow represents a delay of 5 time units. This computation does not
correspond to a reasonable behaviour of the protocol: we would expect the send action to be
performed before the deadline expires.

To capture this intuition, we introduce a semantics of CTA, requiring that the elapsing
of time does not disable the send action in As. Namely, we can procrastinate the send for 2
time units; then, time cannot delay further, and the only possible action is the send:

γ0
2−−−→ ((q0, q

′
0), (ε, ε), {x, y 7→ 2}) sr!a−−−→ ((q1, q

′
0), (a, ε), {x, y 7→ 2})

We prove (Theorem 7) that our semantics enjoys a form of persistency: if at least one
receive action is guaranteed to be enabled in the future (i.e. a message is ready in its queue
and its time constraint is satisfiable now or at some point in the future) then time passing
preserves at least one of these guaranteed actions. Instead, time passing can disable all send
actions, but only if it preserves at least one guaranteed receive.

CONCUR 2018

40:4 Progress-Preserving Refinements of CTA

receive {s,a1} -> Body1

. . .
{s,ak} -> Bodyk

after 10 -> p!b

q0 · · ·

q1

qk

q′

sr?a1(x < 10)

sr?ak(x < 10)

rp!b(x = 10)

Figure 1 The receive/after pattern of Erlang (left), and the corresponding CTA (right).

It is well known that language-based approaches are not well suited to deal with con-
currency issues like those addressed in this paper. To see this, consider the following CTA,
where the states with a double circle are accepting:

q0 q1
Ap : pq!a(y ≤ 1)

p0 p1
Aq : pq?a(x ≤ 1)

q0 q1
A′

p : pq!a(y ≤ 2)

The systems S = (Ap,Aq) and S′ = (A′p,Aq) accept the same language, namely t0 pq!a t1 pq?a t2
with t0 + t1 ≤ 1 and t2 ∈ R≥0. So, the language-based approach does not capture a funda-
mental difference between S and S′: S enjoys progress, while S′ does not. Our approach to
defining CTA semantics provides us with a natural way to reason on standard properties of
protocols like progress, and to compare behaviours using e.g., (bi)simulation.

Our semantics allows for CTA with mixed states, by extending the one in [11] (where,
instead, mixed states are forbidden). As said above, mixed states enable useful programming
patterns. Consider e.g. the code snippet in Figure 1 (left), showing a typical use of the
receive/after construct in Erlang. The snippet attempts to receive a message matching
one of the patterns {s,a1},. . . ,{s,ak}, where s represents the identifier of the sender, and
a1,. . . ,ak are the message labels. If no such message arrives within 10 ms, then the process in
the after branch is executed, sending immediately a message b to process p. This behaviour
can be modelled by the CTA in Figure 1 (right), where q0 is mixed. Our semantics properly
models the intended behaviour of timeouts.

Urgency. Another practical aspect that is not well captured by the existing semantics of
CTA [11,29] is urgency. Indeed, while in known semantics receive actions can be deferred,
the receive primitives of mainstream programming languages unblock as soon as the ex-
pected message is available. These primitives include the non-blocking (resp. blocking)
WaitFreeReadQueue.read() (resp. WaitFreeReadQueue.waitForData()) of Real-Time Java [16],
and receive...after in Erlang, just to mention some. Analysing a system only on the basis of
a non-urgent semantics may result in an inconsistence between the behaviour of the model
and that of its implementation. To correctly characterise urgent behaviour, we introduce a
second semantics (Definition 28), that is urgent in what it forces receive actions as soon as
the expected message is available. Theorem 29 shows that the urgent semantics preserves the
behaviour of the non-urgent. However, the urgent semantics does not enjoy the preservation
results of Theorem 26. Still, it is possible to obtain preservation under refinement by com-
bining Theorem 26 with Theorem 33. More specifically, the latter ensures that, if a system
of CTA enjoys progress in the non-urgent semantics, then it will also enjoy progress in the
urgent one, under a minor and common assumption on the syntax of time constraints. So, one
can use Theorem 26 to obtain a progress-preserving refinement (in the non-urgent semantics),
and then lift the preservation result to the urgent semantics through Theorem 33. Overall,
our theory suggests that, despite the differences between semantics of CTA and programming
languages, verification techniques based on CTA can be helpful for implementing distributed
timed programs.

M. Bartoletti, L. Bocchi, and M. Murgia 40:5

Artifact and experiments. We validate our approach through a suite of use cases, which
we analyse through a tool we have developed to experiment with our theory (https://github.
com/cta-refinement). The suite includes real-world use cases, like e.g. SMTP [41] and Ford
Credit web portal [39]. Experimentation shows that for each use case we can find a refinement
which implements the specification in a correct way. All use cases require less than twenty
control states, and our tool takes a few milliseconds to perform the analysis. In the absence
of larger use cases in literature, we tried the tool on a deliberately large example with
thousands of states and multiple clocks: even in that case, termination time is in the order of
dozens of minutes. Performance data, as well as the proofs of our statements, are available
at www.cs.kent.ac.uk/people/staff/lb514/catr.html.

2 Communicating Timed Automata

We assume a finite set P of participants, ranged over by p, q, r, s, . . . , and a finite set A of mes-
sages, ranged over by a, b, . . .We define the set C of channels as C = {pq | p, q ∈ P and p 6= q}.
We denote with A∗ the set of finite words on A (ranged over by w, w′, . . .), with ww′ the
concatenation of w and w′, and with ε the empty word.

Clocks, guards and valuations. Given a (finite) set of clocks X (ranged over by x, y, . . .),
we define the set ∆X of guards over X (ranged over by δ, δ′, . . .) as follows:

δ ::= true | x ≤ c | c ≤ x | ¬δ | δ1 ∧ δ2 (c ∈ Q≥0)

We denote with V = X → R≥0 the set of clock valuations on X. Given t ∈ R≥0, λ ⊆ X, and
a clock valuation ν, we define the clock valuations:
(i) ν + t as the valuation mapping each x ∈ X to ν(x) + t;
(ii) λ(ν) as the valuation which resets to 0 all the clocks in λ ⊆ X, and preserves to ν(x)

the values of the other clocks x 6∈ λ.
Furthermore, given a set K of clock valuations, we define the past of K as the set of clock
valuations ↓ K = {ν | ∃δ ≥ 0 : ν + δ ∈ K}. The semantics of guards is defined as function
J·K : ∆X → ℘(V), where: JtrueK = V, Jx ≤ cK = {ν | ν(x) ≤ c}, Jδ1 ∧ δ2K = Jδ1K ∩ Jδ2K,
J¬δK = V \ JδK, and Jc ≤ xK = {ν | c ≤ ν(x)}.

Actions. We denote with Act = C × {!, ?} × A the set of untimed actions, and with
TActX = Act × ∆X × 2X the set of timed actions (ranged over by `, `′, . . .). A (timed)
action of the form sr!a(δ, λ) is a sending action: it models a participant s who sends to r a
message a, provided that the guard δ is satisfied. After the message is sent, the clocks in
λ ⊆ X are reset. An action of the form sr?a(δ, λ) is a receiving action: if the guard δ is
satisfied, r receives a message a sent by s, and resets the clocks in λ ⊆ X afterwards. Given
` = pr!a(δ, λ) or ` = qp?a(δ, λ), we define:
(i) msg(`) = a,
(ii) guard(`) = δ,
(iii) reset(`) = λ,
(iv) subj(`) = p, and
(v) act(`) is pr! (in the first case) or qp? (in the second case).

We omit δ if true, and λ if empty.

CONCUR 2018

https://github.com/cta-refinement
https://github.com/cta-refinement
https://www.cs.kent.ac.uk/people/staff/lb514/catr.html

40:6 Progress-Preserving Refinements of CTA

CTA and systems of CTA. A CTA A is a tuple of the form (Q, q0, X,E), where Q is a
finite set of states, q0 ∈ Q is the initial state, X is a set of clocks, and E ⊆ Q×TActX ×Q is
a set of edges, such that the set

⋃
{subj(e) | e ∈ E} is a singleton, that we denote as subj(A).

We write q `−→ q′ when (q, `, q′) ∈ E. We say that a state is sending (resp. receiving) if it has
some outgoing sending (resp. receiving) edge. We say that A has mixed states if it has some
state which is both sending and receiving. We say that a state q is final if there exist no
` and q′ such that (q, `, q′) ∈ E. Systems of CTA (ranged over by S, S′, . . .) are sequences
(Ap)p∈P , where each Ap = (Qp, q0p, Xp, Ep) is a CTA, and
(i) for all p ∈ P, subj(Ap) = p;
(ii) for all p 6= q ∈ P, Xp ∩Xq = ∅ = Qp ∩Qq.

Configurations. CTA in a system communicate via asynchronous message passing on FIFO
queues, one for each channel. For each couple of participants (p, q) there are two channels,
pq and qp, with corresponding queues wpq (containing the messages from p to q) and wqp

(messages from q to p). The state of a system S, or configuration, is a triple γ = (~q, ~w, ν)
where:
(i) ~q = (qp)p∈P is the sequence of the current states of all the CTA in S;
(ii) ~w = (wpq)pq∈C with wpq ∈ A∗ is a sequence of queues;
(iii) ν :

⋃
p∈P Xp → R≥0 is a clock valuation.

The initial configuration of S is γ0 = (~q0, ~ε, ν0) where ~q0 = (q0p)p∈P , ~ε is the sequence of
empty queues, and ν0(x) = 0 for each x ∈

⋃
p∈P Xp. We say that (~q, ~w, ν) is final when all

q ∈ ~q are final.
We introduce a new semantics of systems of CTA, that generalises Definition 9 in [11] to

account for mixed states. To this aim, we first give a few auxiliary definitions. We start by
defining when a guard δ′ is satisfiable later than δ in a clock valuation.

I Definition 1 (Later satisfiability). For all ν, we define the relation ≤ν as:

δ ≤ν δ′ ⇐⇒ ∀t ∈ R≥0 : ν + t ∈ JδK =⇒ ∃t′ ≥ t : ν + t′ ∈ Jδ′K

The following lemma states some basic properties of later satisfiability.

I Lemma 2. The relation ≤ν is a total preorder, for all clock valuations ν. Further, for all
guards δ, δ′, for all t ∈ R≥0, and c, d ∈ Q≥0:
(a) (x ≤ c) ≤ν (x ≤ c+ d);
(b) δ ∧ δ′ ≤ν δ′;
(c) δ ≤ν δ′ =⇒ δ ≤ν+t δ

′.

I Definition 3 (FE, LE, ND). In a configuration (~q, ~w, ν), we say that an edge (q, `, q′) ∈ Ep

is future-enabled (FE), latest-enabled (LE), or non-deferrable (ND) iff, respectively:
∃t ∈ R≥0. ν + t ∈ Jguard(`)K (FE)
∀`′, q′′ : (q, `′, q′′) ∈ Ep =⇒ guard(`′) ≤ν guard(`), and (q, `, q′) is FE (LE)
∃s, w′ : act(`) = sp?, wsp = msg(`)w′ and (q, `, q′) is FE (ND)

An edge is FE when its guards can be satisfied at some time in the future; it is LE when
no other edge (starting from the same state) can be satisfied later than it. The type of action
(send or receive) and the co-party involved are immaterial to determine FE and LE edges. A
receiving edge is ND when the expected message is already at the head of the queue, and
there is some time in the future when it can be read. Note that an edge (q, sp?a(δ, λ), q′) is
deferrable when wsp = bw′ and a 6= b (i.e., the first message in the queue is not the expected

M. Bartoletti, L. Bocchi, and M. Murgia 40:7

one). Non-deferrability is not affected by the presence of send actions in the outgoing edges.
It could happen that two receiving edges in a CTA are ND, if both expected messages are in
the head of each respective queue.

The semantics of systems is given as a timed transition system (TLTS) between configur-
ations.

I Definition 4 (Semantics of systems). Given a system S, we define the TLTS JSK as
(Q,L,→), where
(i) Q is the set of configurations of S,
(ii) L = Act ∪ R≥0,
(iii) γ = (~q, ~w, ν) α−→ (~q′, ~w′, ν′) = γ′ holds when one of the following rules apply:

1. α = sr!a, (qs, α(δ, λ), q′s) ∈ Es, and
(a) q′p = qp for all p 6= s;
(b) w′sr = wsra and w′pq = wpq for all pq 6= sr;
(c) ν′ = λ(ν) and ν ∈ JδK;

2. α = sr?a, (qr, α(δ, λ), q′r) ∈ Er, and

(a) q′p = qp for all p 6= r;
(b) wsr = aw′sr and w′pq = wpq for all pq 6= sr;
(c) ν′ = λ(ν) and ν ∈ JδK;

3. α = t ∈ R≥0, and
(a) q′p = qp for all p ∈ P;
(b) w′pq = wpq for all pq ∈ C;
(c) ν′ = ν + t;
(d) for all p ∈ P, if some sending edge starting from qp is LE in γ, then such edge is LE

also in γ′;
(e) for all p ∈ P, if some edge starting from qp is ND in γ, then there exists an edge

starting from qp that is ND in γ′.
We write γ−→γ′ when γ α−→γ′ for some label α, and γ α−→ if γ α−→γ′ for some configuration γ′.
We denote with −→∗ the reflexive and transitive closure of −→.

Rules (1), (2) and the first three items of (3) are adapted from [11]. In particular, (1)
allows a CTA s to send a message a on channel sr if the time constraints in δ are satisfied by
ν; dually, (2) allows r to consume a message from the channel, if δ is satisfied. In both rules,
the clocks in λ are reset. Rule (3) models the elapsing of time. Items 3a and 3b require that
states and queues are not affected by the passing of time, which is implemented by item 3c.
Items 3d and 3e put constraints on when time can pass. Condition 3d requires that time
passing preserves LE sending edges: this means that if the current state of a CTA has the
option to send a message (possibly in the future), time passing cannot prevent it to do so.
Instead, condition 3e ensures that, if at least one of the expected messages is already at the
head of a queue, time passing must still allow at least one of the messages already at the
head of some queue to be received.

Our semantics (Definition 4) enjoys two classic properties [38] of timed systems, recalled
below.

I Definition 5.

γ t−→γ′ ∧ γ t−→γ′′ =⇒ γ′ = γ′′ (Time determinism)
γ t + t′−−−→γ′ ⇐⇒ ∃γ̃ : γ t−→γ̃ ∧ γ̃ t

′
−→γ′ (Time additivity)

CONCUR 2018

40:8 Progress-Preserving Refinements of CTA

q0 q1
A1 :

sr!a(x < 3)

sr!b(x < 2)

q2 q3
A2 :

sr?a(y ≤ 4)

sr?b(y = 5)

q0 q1
A3 :

rp?a(x < 2)

ps!b(x < 4)

Figure 2 A collection of CTA, to illustrate the semantics of systems.

I Lemma 6. The semantics of CTA enjoys time determinism and time additivity [38].

Our semantics does not, instead, enjoy persistency [38], because the passing of time can
suppress the ability to perform some actions. However, it enjoys a weaker persistency
property, stated by Theorem 7. More specifically, if a receive action is ND, then time passing
cannot suppress all receive actions: at least a ND action (not necessarily the first one) always
remains FE after a delay. Instead, time passing can disable all send actions, but only if it
preserves at least a ND receive action.

I Theorem 7 (Weak persistency). For all configurations γ, γ′:

γ t
′
−→ rp?−−→ ∧ γ t−→γ′ =⇒ ∃γ′′, s, t′′ : γ′ t′′

−→γ′′ ∧ p has a ND edge in γ′′

γ t
′
−→ pr!−−→ ∧ γ t−→γ′ =⇒ ∃γ′′, s, t′′ : γ′ t′′

−→γ′′ ∧ p has a FE sending edge or a ND edge in γ′′

Definition 8 below will be useful to reason on executions of systems.

I Definition 8 (Maximal run). A run of a system S starting from γ is a (possibly infinite)
sequence ρ = γ1

t1−→ γ′1
α1−→ γ2

t2−→ · · · with γ1 = γ and αi ∈ Act for all i. We omit the clause
“starting from s” when γ = γ0. We call trace the sequence t1 α1 t2 · · · . For all n > 0, we
define the partial functions: conf n(ρ) = γn, delayn(ρ) = tn, actn(ρ) = αn. We say that a
run is maximal when it is infinite, or given its last element γn it never happens that γn t−→ α−→,
for any t ∈ R≥0 and α ∈ Act.

We show the peculiarities of our semantics through the CTA in Figure 2. First, consider
the system composed of A0 and A0. A possible maximal run of (A0,A0) from the initial
configuration γ0 = ((q0, q2), ~ε, ν0) is the following:

γ0
2−−→ γ1 = ((q0, q2), (ε, ε), ν0 + 2) sr!a−−→ γ2 = ((q1, q2), (a, ε), ν0 + 2)

1.5−−−→ γ3 = ((q1, q2), (a, ε), ν0 + 3.5) sr?a−−−→ γ4 = ((q1, q3), (ε, ε), ν0 + 3.5)

The first delay transition is possible because there are no ND edges in A0 (both edges are
sending), and the LE edge (q0, sr!a(x < 3), q1), continues to be LE in ν0 + 2; further, in A0
there are no LE sending edges, and no ND edges (since the queue sr is empty). Note that
condition 3d prevents γ0 from making transitions with label t ≥ 3, since (q0, sr!a(x < 3), q1)
is LE in γ0, but it is not LE in ν0 + t if t ≥ 3. The transition from γ1 to γ2 corresponds to a
send action. The delay transition from γ2 to γ3 is possible because the state of A0 is final,
while the state q2 of A0 has a ND edge, (q2, sr?a(y ≤ 4), q3), which is still ND at ν0 + 3.5.
Note instead that condition 3e prevents γ2 from making a transition with t > 2, because no
edge is ND in ν0 + 2 + t if t > 2. Indeed, the last moment when the edge (q2, sr?a(y ≤ 4), q3)
is FE is y = 4. Finally, the transition from γ3 to γ4 corresponds to a receive action.

The CTA A0 has mixed states, with the send action enabled for longer than the receive
action. We show the behaviour of A0 (abstracting from its co-parties that, we assume,
always allow delays e.g. have all guards set to true). This CTA has a LE sending action
(q0, ps!b(x < 4), q1) in the initial configuration γ0. Hence, condition 3d is satisfied in γ0 iff
the delay t is less than 4. Condition 3e is satisfied in γ0, as there are no ND edges. When A0

M. Bartoletti, L. Bocchi, and M. Murgia 40:9

is at state q0, with wrp = a and ν(x) = 0, the CTA allows a delay t iff t < 2: later, no edge
would be ND, so 3e would be violated. If the message a is in the queue but it is too late to
receive it (i.e., ν(x) ≥ 2), then the receive action would be deferrable, and so a delay would
be allowed – if condition 3d is respected.

3 Compositional asynchronous timed refinement

In this section we introduce a decidable notion of refinement for systems of CTA. Our system
refinement is defined point-wise on its CTA. Point-wise refinement A′ v1 A only alters the
guards, in the refined CTA A′, while leaving the rest unchanged. The guards of A′ – both in
send and receive actions – must be narrower than those of A. Further, the guards in receive
actions must have the same past in both CTA. Formally, to define the relation A′ v1 A
we use structure-preserving functions that map the edges of A into those of A′, preserving
everything but the guards.

I Definition 9 (Structure-preserving). Let E,E′ be sets of edges of CTA. We say that a
function f : E → E′ is structure-preserving when, for all (q, `, q′) ∈ E, f(q, `, q′) = (q, `′, q′)
with act(`) = act(`′), msg(`) = msg(`′), and reset(`) = reset(`′).

I Definition 10 (Refinement). Let A = (Q, q0, X,E) and A′ = (Q, q0, X,E
′) be CTA. The

relation A′ v1 A holds whenever there exists a structure-preserving isomorphism f : E → E′

such that, for all edges (q, `, q′) ∈ E, if f(q, `, q′) = `′, then:
(a) Jguard(`′)K ⊆ Jguard(`)K;
(b) if (q, `, q′) is a receiving edge, then ↓ Jguard(`′)K = ↓ Jguard(`)K.
Condition a allows the guards of send/receive actions to be restricted. For receive actions,
condition b requires restriction to preserve the final deadline.

System refinement reflects a modular engineering practice where parts of the system are
implemented independently, without knowing how other parts are implemented.

I Definition 11 (System Refinement). Let S = (A1, . . . ,An), and let S′ = (A′1, . . . ,A′n). We
write S v S′ iff Ai v1 A′i for all i ∈ 1 . . . n.

I Example 12. With the CTA below, we have: A′s v1 As, A′r v1,Ar, and A′′r 6v1 Ar.

As : q0 q1
sr!a(x ≤ 2) A′s : q0 q1

sr!a(x > 1.5 ∧ x ≤ 1.8)

Ar :
q′0 q′1

sr?a(y ≤ 2) A′r :
q′0 q′1

sr?a(y = 2) A′′r :
q′0 q′1

sr?a(y = 1.8)

Theorem 13 establishes decidability of v1. This follows by the fact that CTA have a
finite number of states and that:
(i) the function ↓ JδK is computable, and the result can be represented as a guard [10,27];
(ii) the relation ⊆ between guards is computable.

I Theorem 13. Establishing whether A′ v1 A is decidable.

We now formalise properties of systems of CTA that one would like to be preserved upon
refinement. Behaviour preservation, which is based on the notion of timed similarity [18],
requires that an implementation (refining system) at any point of a run allows only actions that
are allowed by its specification (refined system). Below, we use] to denote the disjoint union of
TLTSs, i.e. (Q1,Σ1,→1)](Q2,Σ2,→2) = (Q1]Q2,Σ1∪Σ2, {((i, q), a, (i, q′)) | (q, a, q′) ∈→i}),
where Q1]Q2 = {(i, q) | q ∈ Qi}.

CONCUR 2018

40:10 Progress-Preserving Refinements of CTA

I Definition 14 (Timed similarity). Let (Q,L,→) be a TLTS. A timed simulation is a relation
R⊆ Q×Q such that, whenever γ1 R γ2:

∀α ∈ L : γ1
α−→γ′1 =⇒ ∃γ′2 : γ2

α−→γ′2 and γ′1 R γ′2

We call timed similarity (in symbols, .) the largest timed simulation relation.

I Definition 15 (Behaviour preservation). Let R be a binary relation between systems. We
say that R preserves behaviour iff, whenever S1 R S2, we have (1, γ1

0) . (2, γ2
0) in the TLTS

JS1K] JS2K, where γ1
0 and γ2

0 are the initial configurations of S1 and S2.

I Example 16 (Behaviour preservation). Let R be the inclusion of runs, let S1 = (As,A′r)
and S2 = (As,Ar), where:

q0 q1
As :

sr!a(x < 2)

sr!b(x > 2)

q2 q3
Ar :

sr?a(y < 2)

sr?b(true)

q2 q3
A′r :

sr?a(y < 2)

sr?b(y > 7)

We have that S2 R S1, while S1 R S2 does not hold, since the traces with b in S1 strictly
include those of S2. The relation R preserves timed behaviour in {S1, S2}: indeed, (γ2

0 , 1) .
(γ1

0 , 2) follows by trace inclusion and by the fact that S1, S2 have deterministic TLTS. Now,
let S3 be as S2, but for the guard of sr?b(true), which is replaced by y < 2. We have that
S3 R S2, and R preserves timed behaviour in {S2, S3}. However, S3 does not allow to
continue with the message exchange: b is sent too late to be received by r, who keeps waiting
while b remains in the queue forever.

As shown by Example 16, behaviour preservation may allow a system (e.g., S3) to remove
“too much” from the runs of the original system (e.g., S2): while ensuring that no new actions
are introduced, it may introduce deadlocks. So, besides behaviour preservation we consider
two other properties: global progress of the overall system, and local progress of each single
participant.

I Definition 17 (Global/local progress). We say that a system S enjoys
global progress when: ∀γ : γ0−→∗γ not final =⇒ ∃t ∈ R≥0, α ∈ Act : γ t−→ α−→
local progress when: ∀γ, p : γ0−→∗γ = (~q, ~w, ν) and ~q 3 qp not final =⇒

∀ maximal runs ρ from γ : ∃n : subj(actn(ρ)) = p

I Lemma 18. If a system enjoys local progress, then it also enjoys global progress.

The converse of Lemma 18 does not hold, as witnessed by Example 19.

I Example 19 (Global vs. local progress). Consider the following CTA:

Ap :
q0

pq!a(x ≤ 2, {x})
Aq :

q1

pq?a(y < 1, {y})
A′q :

q2

pq?a(y = 2, {y})

The system (Ap,Aq) enjoys global progress, since, in each reachable configuration, Ap can
always send a message (hence the system makes an action in Act). However, if Ap sends a
after time 1, then Aq cannot receive it, since its guard y < 1 is not satisfied. Formally, in any
maximal run starting from ((q0, q1), (a, ε), {x, y 7→ 1}), there will be no actions with subject
q, so (Ap,Aq) does not enjoy local progress. The system (Ap,A′q), instead, enjoys both global
and local progress.

M. Bartoletti, L. Bocchi, and M. Murgia 40:11

I Definition 20 (Progress preservation). Let R be a binary relation between systems. We
say that R preserves global (resp. local) progress iff, whenever S1 R S2 and S2 enjoys global
(resp. local) progress, then S1 enjoys global (resp. local) progress.

I Example 21. Let S1, S2, S3 be as in Example 16. While S1 and S2 enjoy local and global
progress, S3 does not enjoy neither. Hence, R = {(S2, S1), (S3, S1), (S3, S2)} (i.e., trace
inclusion restricted to the three given systems), does not preserve local nor global progress.

4 Verification of properties of refinements

We now study preservation of behaviour/progress upon refinements. Our first result is
negative: in general, refinement does not preserve behaviour nor (local/global) progress, even
for CTA without mixed states. This is shown by the following examples.

I Example 22. Consider Ap and A′p below, with A′p v1 Ap.

p0 p1 p2
Ap :

qp?a(x ≥ 2) pq!b(true)

p0 p1 p2
A′p :

qp?a(x ≥ 2) pq!b(x = 0)

When Ap reaches p1, the guard of the outgoing edge is satisfiable. Instead, A′p gets stuck in
p1.

I Example 23. Let S = (Ap,Aq), and let S′ = (A′p,Aq), where:

p0 p1
Ap :

qp?a(x ≤ 2)

pq!b(x ≤ 3)

p0 p1
A′p :

qp?a(x ≤ 2)

pq!b(x ≤ 1)

q0 q1
Aq : pq?b(y = 4)

We have that A′p v1 Ap, and so S′ v S. Behaviour is not preserved as S′ allows the
run γ0

4−→, while S does not. This is because Ap has a LE sending edge, which prevents
step 4−→ by condition 33d of Definition 4, while A′p does not have a LE sending edge.
Progress (local and global) is enjoyed by S. Instead, S′ does not enjoy progress: S′ allows
γ0

2−→γ = ((p0, q0), ~ε, ν0 + 2), but there are no t and α ∈ Act such that γ t−→ α−→ as the sending
action is expired and all the queues are empty.

The issue in Example 23 is that a LE sending edge, which was crucial for making execution
progress, is lost after the refinement. In Definition 25 we devise a decidable condition –
which we call LLESP after locally LE send preservation – that excludes scenarios like the
above. In Theorem 26 we show that, with the additional LLESP condition, v1 guarantees
preservation of behaviour and progress. Unlike Definition 10, which is defined “edge by
edge”, LLESP is defined “state by state”. This is because LLESP preserves the existence of
LE sending edges (outgoing from the given state), and not necessarily the LE sending edge
himself, making the analysis more precise.

I Definition 24. Let A = (Q, q0, X,E), let q ∈ Q, and let K be a set of clock valuations.
We define the following sets of clock valuations:

PreA
q = {ν0 | q0 = q} ∪ {ν | ∃q′, `, ν′ : (q′, `, q) ∈ E , ν′ ∈ Jguard(`)K, ν = reset(`)(ν′)}

LesA
q = {ν | q has a LE sending edge in ν}

PostA
q (K) =

{
ν + t

∣∣ ν ∈ K ∧ (ν ∈ LesA
q =⇒ ν + t ∈ LesA

q)
}

CONCUR 2018

40:12 Progress-Preserving Refinements of CTA

We briefly comment the auxiliary definition above. The set LesA
q is self-explanatory,

and its use is auxiliary to the definition of Post. Let (~q, ~w, ν), where q is in ~q, that can be
reached by the initial configuration of some system S containing A. The set PreA

q contains
all (but not only) the clock valuations under which a configuration like the one above can
be reached with a label α ∈ Act fired by A. Instead, PostA

q (K) computes a symbolic step
of timed execution, in the following sense: if ν ∈ K and γ t−→(~q, ~w, ν′), where q is in ~q, then
ν′ ∈ PostA

q (K). This is obtained by defining PostA
q (K) as the set of clock valuations that

would satisfy item 3d of Definition 4 for A at runtime, when starting from a configuration
whose clock valuation is in K. Since every configuration reachable with a finite run and with
an action in Act as last label can also be reached by a run ending with a delay (the original
run followed by a null delay), the set PostA

q (PreA
q) contains the set of clock valuations ν such

that (~q, ~w, ν), with q is in ~q, can be reached by the initial configuration of some system S

containing A.

I Definition 25 (LLESP). A relation R is locally LE send preserving (in short, LLESP)
iff, for all A = (Q, q0, X,E) and A′ = (Q, q0, X,E

′) such that A′ R A, and for all q ∈ Q:
PostA′

q (PreA′

q) ∩ LesA
q ⊆ PostA′

q (PreA′

q) ∩ LesA′

q . We define vL
1 as the largest LLESP relation

contained in v1.

Basically, LLESP requires that, whenever A′ R A, if q has a LE sending edge in ν with
respect to A, then q has a LE sending edge in ν with respect to A′, where ν ranges over
elements of PostA′

q (PreA′

q).
It follows our main result: vL

1 preserves behaviour and progress (both global and local).
Further, LLESP is decidable, so paving the way towards automatic verification.

I Theorem 26 (Preservation under LLESP). vL
1 preserves behaviour, and global and local

progress. Furthermore, establishing whether A′ vL
1 A is decidable.

Negative results on alternative refinement strategies. Besides introducing a new refine-
ment we have investigated behavioural/progress preservation under two refinement strategies
inspired from literature. They are both variants of our definition of refinement that al-
ter conditions a and b in Definition 10. The first strategy (e.g., [12]) is a naïve variant
of Definition 10 where b is dropped. The second strategy (e.g., [24]) is an asymmetric
variant of Definition 10 that allows to relax guards of the receive actions: a is substituted by
Jguard(`′)K ⊇ Jguard(`)K and b is dropped.

I Fact 27. LLESP restrictions of “naïve” and “asymmetric” refinements do not preserve
behaviour, global progress, nor local progress, not even if mixed states are ruled out.

We refer to www.cs.kent.ac.uk/people/staff/lb514/catr.html for counter-examples of
behaviour and progress preservation for LLESP restrictions of “naïve” and “asymmetric”
refinements without mixed states. Exampke 23, which has mixed states, is also a counter-
example for such refinements.

Experiments. We evaluate our theory against a suite of protocols from literature. To
support the evaluation we built a tool that determines, given A and A′, if A′ v1 A and if
A′ vL

1 A. For each participant of each protocol we construct three refinement strategies.
For sending edges, if the guard has an upper bound (e.g. x ≤ 10) then we refine it with,
respectively: (strategy #1) the lower bound (e.g. x = 0), (strategy #2) the average value (e.g.
x = 5), and (strategy #3) the upper bound (if any) (e.g. x = 10). In all strategies, receiving

https://www.cs.kent.ac.uk/people/staff/lb514/catr.html

M. Bartoletti, L. Bocchi, and M. Murgia 40:13

Table 1 Benchmarks. Participants satisfying LLESP are marked with 3, the others with 7. We
omitted participants for which the strategy was not meaningful, or gave identical results as the other
columns.

Case study Strategy #1 Strategy #2 Strategy #3
Ford Credit web portal [39] 7Server 3 Server

Scheduled Task Protocol [11] 3User 3Worker 3Aggregator 3User 3Worker 3Aggregator 3User 3Worker 3Aggregator
OOI word counting [37] 3Master 3Worker 3Aggregator 3Master 3Master

ATM [19] 7Bank, 3User 7Machine 3Bank 3User 3Machine 3Bank 3User
Fisher Mutual Exclusion [9] 3Producer 3Consumer 3Producer 3Producer

SMTP [41] 3Client 3Client

edges are refines in the same way: if the guard has a not strict upper bound (e.g. x ≤ 10)
then we restrict the guard as its upper bound (e.g. x = 10); if the upper bound is strict (e.g.
x < 10) we “procrastinate” the guard, but making it fully left-closed (Definition 31) (e.g.
10− ε ≤ x < 10, where we set ε as a unit of time); if there is no upper bound (e.g. x > 10)
the guard is left unchanged. Our tool correctly classifies the pairs of CTA defined above
as refinements. In Table 1 we show the output of the tool when checking LLESP. We can
see that strategies #2 and #3 never break the LLESP property. While this should always
hold for strategy #3 (procrastinating sending edges guarantees that LE sending edges are
preserved), the case for strategy #2 is incidental. Among the case studies, Ford Credit web
portal and SMTP contain mixed states (used to implement timeouts). The fact that, for each
protocol, there is always some refinement strategy that satisfies LLESP (hence a provably
safe way to implement that protocol) witnesses the practicality of our theory. Surprisingly,
the states that falsify LLESP are not mixed. The three models for which strategy #1 does
not produce “good” refinements suffer from the same issue of Example 22: the guard of a
sending edge is restricted in a way that makes it possibly unsatisfiable with respect to the
guard of the previous action.

5 Preservation under an urgent semantics

The semantics in Definition 4 does not force the receive actions to happen, (unless time
passing prevents the CTA from receiving in the future, by condition 33e. This behaviour,
also present in [11, 29], contrasts with the actual behaviour of the receive primitives of
mainstream programming languages which return as soon as a message is available. We now
introduce a variant of the semantics in Definition 4 which faithfully models this behaviour.
We make receive actions urgent [13,38] by forbidding delays when a receiving edge is enabled
and the corresponding message is at the head of the queue. Below, Act? denotes the set of
input labels.

I Definition 28 (Urgent semantics of systems). Given a system S, we define the TLTS
JSKu = (Q,L,→u), where Q is the set of configurations of S, L = Act ∪ R≥0, and:

γ α−→uγ
′ ⇐⇒

{
γ α−→γ′ if α ∈ Act
γ t−→γ′ if α = t and ∀t′ < t, γ′′, α′ ∈ Act? : γ t

′
−→γ′′ =⇒ γ′′ 6 α

′
−−→

The non-urgent and the urgent semantics are very similar: they only differ in time actions. In
the urgent semantics, a system can make a time action t only if no receive action is possible
earlier than t (hence no message is waiting in a queue with “enabled” guard). Theorem 29
formally relates the two semantics. Since the urgent semantics restricts the behaviour of
systems (by dropping some timed transitions), the urgent semantics preserves the behaviour
of the non-urgent one.

CONCUR 2018

40:14 Progress-Preserving Refinements of CTA

I Theorem 29. For all systems S, the relation {((1, γ), (2, γ)) | γ is a configuration of S}
between states of JSKu] JSK is a timed simulation.

In general, however, a system that enjoys progress with the non-urgent semantics may
not enjoy progress with the urgent one. This is illustrated by Example 30.

I Example 30. Consider the system S = (As,Ar), where:

As : q0 q1
sr!a(y = 0) Ar :

q′0 q′1
sr?a(x > 3)

With the non-urgent semantics, γ0
sr!a−−→ 3−→γ = ((q1, q

′
0), (a, ε), ν0 + 3) t−→ sr?a−−−→, for all t ∈ R≥0.

With the urgent semantics, γ0
sr!a−−→u

3−→uγ 6 α−→u, for all α 6= 0. Hence, the non-urgent
semantics leads to a final state, whereas the urgent semantics does not.

The issue highlighted by Example 30 is subtle (but known in literature [13]): if there is
no precise point in time in which a guard becomes enabled (e.g. in x > 3), then the run may
get stuck. In Definition 31 we deal with this issue through a restriction on guards, which
guarantees that urgent semantics preserves progress. Our restriction, generalising the notion
of right-open time progress [13] (to deal with non-convex guards), corresponds to forbidding
guards defined as the conjunction of sub-guards of the form x > c (but we allow subguards
of the form x ≥ c). To keep our results independent from the syntax of guards, our definition
is based on sets of clock valuations.

I Definition 31 (Fully left closed). For all ν, and for all sets of clock valuations K, let
Dν(K) = {t | ν + t ∈ K} and let inf Z denote the infimum of Z. We say that a guard δ is
fully left closed iff: ∀ν : ∀K ⊆ JδK :

(
Dν(K) 6= ∅ =⇒ ν + inf Dν(K) ∈ JδK

)
. We say that a

CTA is input fully left closed when all guards in its receiving edges are fully left closed. A
system is input fully left closed when all its components are such.

Fully left closed guards ensure that there is an exact time instant in which a guard of
an urgent action becomes enabled. The requirement that left closedness must hold for any
subset K of the semantics of the guards is needed to cater for non-convex guards (i.e. guards
with disjunctions). Consider e.g. δ = 1 ≤ x ≤ 3 ∨ x > 4. While δ is left closed, it is not fully
left closed: indeed, for K = Jx > 4K ⊆ JδK, it holds that inf Dν0(K) = 4, but ν + 4 6∈ JδK.

I Example 32. The guard x > 3 in Example 30 is not fully left closed, as inf Dν0(Jx > 3K) =
inf {t | t > 3} = 3, but ν0 + 3 6∈ Jx > 3K. Instead, guard x ≥ 3 is fully left closed. Consider
now a variant of the system of Example 30 where guard x > 3 is replaced by x ≥ 3. The run
γ0

sr!a−−→u
3−→uγ would not get stuck and allow γ sr?a−−−→.

The following theorem states that urgent semantics preserves progress with respect to
non-urgent semantics, when considering fully left closed systems.

I Theorem 33 (Preservation of progress vs. urgency). Let S be input fully left closed. If S
enjoys global (resp. local) progress under the non-urgent semantics, then S enjoys global (resp.
local) progress under the urgent semantics.

6 Implementing protocols via refinement

We illustrate how to exploit our theory to implement timed protocols, by considering the
real-world protocol in [37], which distributedly counts the occurrences of a word in a log.
Because of space limitations, we slightly simplify and adapt the protocol in [37]. The system

M. Bartoletti, L. Bocchi, and M. Murgia 40:15

q0 q1 q2

q3

AM :

MW!log
(x < 2, {x})

WM?data
(x ≥ 3 ∧ x < 9)

MW!log
(x ≤ 15, {x})

MW!end
(9 ≤ x ≤ 15, {x})

q0 q1 q2

q3

A′
M :

MW!log
(x = 1, {x})

WM?data
(x ≥ 6 ∧ x ≤ 7)

MW!log
(x = 8, {x})

MW!end
(x = 9, {x})

q0 q1 q2

q3

A′′
M :

MW!log
(x = 1, {x})

WM?data
(x ≥ 7 ∧ x < 9)

MW!log
(x = 10, {x})

MW!end
(x = 10, {x})

Figure 3 AM (left); A′
M 6v1 AM (centre); A′′

M v1 AM (right).

has two nodes: a master M and a worker W. We focus on M, modelled as AM in Figure 3 (left).
AM repeatedly: sends a log to AW, then either receives data from AW (within timeout x < 9)
or sends a notice and terminates. We implement the CTA in Go, a popular programming
language with concurrency features. Here, we just sketch an implementation which intuitively
follows the CTA model. A rigorous correspondence between the Go primitives and the CTA
model (supporting e.g., automatic code generation) is a future work that is out of the scope
of this paper. We use: (i) variables of type time.Time as clocks (e.g., x), and (ii) function
rel below to return the value (of type time.Duration) of a clock (since the last reset):
func rel(x time .Time) time . Duration { return time .Now (). Sub(x)}

A naïve implementation in Go. We first attempt to implement AM following A′M (Figure 3).
A′M is obtained from AM by restricting guards obliviously of our results. We start from the
edge from q0 to q1, assuming that the preparation of the log to send takes 1s (with negligible
jitter). This could result in the snippet below:
1 x := time .Now () // initial setting of clock x
2 time . Sleep (time . Second * 1 - rel(x)) // sleep for 1s
3 x = time .Now () // reset x
4 MW <- "log" // send string "log" on FIFO channel MW

The statement in line 2 represents the invocation of a time-consuming function that prepares
the log to be sent in line 4 (here we send the string “log”). In general, implementations may
be informed by estimated durations of code instructions. Providing such information is made
possible by orthogonal research on cost analysis, e.g. [28]. Next, we want to (i) implement the
receive action from q1 to q3 as a blocking primitive with timeout, (ii) minimise the waiting
time of the master listening on the channel, and restrict the interval to x ≥ 6 ∧ x ≤ 7. This
could result in the following:
1 time . Sleep (time . Second *6 - rel(x))
2 select { case res := <- WM:
3 // here goes the implementation of edge q3 -- > q1
4 case <- time . After (time . Second * 7 + time . Nanosecond * 1 - rel(x)):
5 // here goes the implementation of edge q1 -- > q2

Note that without the addition of one nanosecond in line 4 above the snippet would implement
a constraint (x ≥ 6 ∧ x < 7). To enable the program to read the message when x = 7, we
add the smallest time unit in Go, which is negligible with respect to the protocol delays. The
study of implementability of such equality constraints at this granularity of time is left as
future work.

Next, we implement the edge from q1 to q2 by substituting line 5 above with:
1 time . Sleep (time . Second *9 - rel(x))
2 x = time .Now () // reset x
3 MW <- "end" // send string "end"

The edge from q3 to q1 can be implemented in a similar way, where the sleep statement
represents a time-consuming log preparation of 1s, as before.

CONCUR 2018

40:16 Progress-Preserving Refinements of CTA

Assessing implementations via our tool. The implementation sketched in the previous
paragraphs corresponds to A′M (Figure 3). Analysis of A′M with our tool reveals that A′M 6v1 AM:
the constraints of receiving edges of AM have been restricted not respecting the final deadlines.
From Section 4 we know that A′M may not preserve behaviour and progress. Suppose that the
worker node is set to send the data to AM when x = 8.5: according to the original specification
AM, this message is in time, hence the worker will expect a log message back from the master.
However, in the implementation reflected in A′M, the master will reply with an end message,
potentially causing a deadlock. Thanks to Theorem 26 we know that we can, instead, safely
restrict the constraints using v1: guard x ≥ 6∧x ≤ 7 of A′M can be amended as x ≥ 7∧x < 9.
After this amendment, however, the tool detects a violation of LLESP: the deadlines set by
guards of sending edges from q3 and q1 are after the deadline of the receive action. A correct
refinement A′′M vL

1 AM is shown in Figure 3 (right) and can be used to produce the following
implementation in Go:

MW := make (chan string , 100)
WM := make (chan string , 100)
go func (){

// q0 -- > q1
x := time .Now ()
time . Sleep (time . Second *1 - rel(x))
x = time .Now ()
MW <- "log"
// q1 -- > q3
time . Sleep (time . Second *7 - rel(x))
select {

case res := <- WM:
// q3 -- > q2
x = time .Now ()
time . Sleep (time . Second *10 - rel(x))
MW <- "log"

case <- time . After (time . Second *9 - rel(x)):
// q1 -- > q2
time . Sleep (time . Second *10 - rel(x))
x = time .Now ()
MW <- "end" }}()

}

Practicality. In some scenarios, one may want to implement receive actions with non-blocking
primitives (unlike above, where we have used blocking ones). Non-blocking primitives can be
modelled as CTA refinements where constraints (e.g., x ≤ 9) are restricted to a point in time
(e.g., x = 9). Punctual guards can be attained in the real world by assuming a tolerance (e.g.,
around 9) that is negligible against the scale of x. In some cases, it may be desirable to not
restrict the constraint of receive actions, to be able to receive a message as soon as possible.

CTA can capture delays of the communication medium e.g., by adding them at the
receiver side. This is common when using semantics where actions are timeless and delays
are modelled separately, as these semantics can be encoded into ones where actions have an
associated duration.

Our theory can be applied to non real-time operating systems and languages (like, e.g.,
Go), as long as the time granularity of the modelled protocols is coarse enough with respect
to the jitter of the operating system / language. However, negligible delays may accumulate,
eventually compromising the correctness of long-lived protocols. In this case, adjustments like
e.g. those suggested in [37] or based on analysis on the robustness of protocols to jitters [31],
may be in order to recover correctness.

7 Conclusions

Our theory provided a formal basis to support implementation of well-behaved systems
from well-behaved models. This is obtained through a decidable refinement relation, and a
condition (LLESP) that guarantees behaviour and progress preservation. To overcome the
undecidability results of refinement in asynchronous models [15,30], we considered “purely
timed” refinements, that only affect time constraints. While not fully general, our refinement
captures the practical relations between models, and implementations obtained by following
them (Section 6). Moreover, our refinement and the LLESP condition apply well to realistic
protocols expressed as CTA (Section 4): for each participant of each protocol in our portfolio,

M. Bartoletti, L. Bocchi, and M. Murgia 40:17

there exist one or more non-trivial (i.e. not the identity) LLESP refinements, from which one
can derive behaviour- and progress-preserving implementations of that protocol. Evaluating
our theory was facilitated by a tool, that can also be used to guide implementations. Being
this the first work which enables refinements between CTA, there is no benchmark against
which to study limitations or compare with. Other “purely timed” refinements strategies
inspired by literature gave only negative results (Fact 27) when applied to the asynchronous
timed setting, hence e.g., even if an implementation preserves the interactions structure
of the initial CTA, and even if the timings of actions chosen for the implementation are
within the range of the guards of the initial CTA, still that implementation may not preserve
behaviour or progress.

Technically, we focused on interaction-based (rather than language-based) semantics,
improving the state of the art in two ways: mixed choices and urgency. Mixed choices cannot
be expressed in models based on session types of [11, 12]. There, interactions follow two
constructs: selection, which corresponds to an internal choice of send actions, and branching,
an external choice of receive actions. The behaviour of mixed states captured by our semantics
falls somewhere in between internal and external choices, so it is not expressible in the setting
of [11, 12]. Besides, the known semantics [11, 12, 29] do not account for urgency. Our
preservation results from non-urgent to urgent semantics pave the way to implementations
of refinements that preserve behaviour and progress (e.g. derived incrementally using the
non-urgent semantics, and relying on the results in Section 4).

Other work on relating timed models with implementations is, e.g. [2, 3]. The work [2]
approximates dense time models in synchronous models with fixed sampling rates, so to
enable for hardware implementations. Here, instead, we considered asynchronous models, and
delays at a coarser granularity, aiming at time-sensitive (not necessarily real-time) languages.
The work [3] generates Erlang code from real-time Rebeca models (so, focussing on the actor
model, rather than on FIFO channels). Extending our tool in this direction is an ongoing
work of ours.

References

1 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Shankara Narayanan Krishna. What is
decidable about perfect timed channels? CoRR, abs/1708.05063, 2017. arXiv:1708.05063.

2 Parosh Aziz Abdulla, Pavel Krcál, and Wang Yi. Sampled semantics of timed automata.
Logical Methods in Computer Science, 6(3), 2010. URL: http://arxiv.org/abs/1007.
2783.

3 Luca Aceto, Matteo Cimini, Anna Ingólfsdóttir, Arni Hermann Reynisson, Steinar Hugi
Sigurdarson, and Marjan Sirjani. Modelling and simulation of asynchronous real-time
systems using timed Rebeca. Sci. Comput. Program., 89:41–68, 2014.

4 Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

5 Advanced Message Queuing protocols (AMQP) homepage. https://www.amqp.org/.
6 Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic Book-

shelf, 2007.
7 Massimo Bartoletti, Tiziana Cimoli, and Maurizio Murgia. Timed session types. Logical

Methods in Computer Science, 13(4), 2017. doi:10.23638/LMCS-13(4:25)2017.
8 Massimo Bartoletti, Alceste Scalas, and Roberto Zunino. A semantic deconstruction of

session types. In CONCUR, volume 8704 of Lecture Notes in Computer Science, pages
402–418. Springer, 2014. doi:10.1007/978-3-662-44584-6_28.

CONCUR 2018

http://arxiv.org/abs/1708.05063
http://arxiv.org/abs/1007.2783
http://arxiv.org/abs/1007.2783
https://www.amqp.org/
http://dx.doi.org/10.23638/LMCS-13(4:25)2017
http://dx.doi.org/10.1007/978-3-662-44584-6_28

40:18 Progress-Preserving Refinements of CTA

9 Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on Uppaal. In SFM,
volume 3185 of Lecture Notes in Computer Science, pages 200–236. Springer, 2004. doi:
10.1007/b110123.

10 Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools. In Lec-
tures on Concurrency and Petri Nets, volume 3098 of Lecture Notes in Computer Science,
pages 87–124. Springer, 2003. doi:10.1007/b98282.

11 Laura Bocchi, Julien Lange, and Nobuko Yoshida. Meeting deadlines together. In CON-
CUR, volume 42 of LIPIcs, pages 283–296. Schloss Dagstuhl - Leibniz-Zentrum fuer Inform-
atik, 2015. doi:10.4230/LIPIcs.CONCUR.2015.283.

12 Laura Bocchi, Weizhen Yang, and Nobuko Yoshida. Timed multiparty session types. In
CONCUR, volume 8704 of Lecture Notes in Computer Science, pages 419–434. Springer,
2014. doi:10.1007/978-3-662-44584-6_29.

13 Sébastien Bornot, Joseph Sifakis, and Stavros Tripakis. Modeling urgency in timed systems.
In COMPOS, volume 1536 of Lecture Notes in Computer Science, pages 103–129. Springer,
1997. doi:10.1007/3-540-49213-5_5.

14 Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. J. ACM,
30(2):323–342, 1983.

15 Mario Bravetti, Marco Carbone, and Gianluigi Zavattaro. Undecidability of asynchronous
session subtyping. Inf. Comput., 256:300–320, 2017.

16 Eric J. Bruno and Greg Bollella. Real-Time Java Programming: With Java RTS. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 2009.

17 Stefano Cattani and Marta Z. Kwiatkowska. A refinement-based process algebra for timed
automata. Formal Asp. Comput., 17(2):138–159, 2005.

18 Karlis Cerans. Decidability of bisimulation equivalences for parallel timer processes. In
CAV, volume 663 of Lecture Notes in Computer Science, pages 302–315. Springer, 1992.
doi:10.1007/3-540-56496-9.

19 Prakash Chandrasekaran and Madhavan Mukund. Matching scenarios with timing con-
straints. In FORMATS, volume 4202 of Lecture Notes in Computer Science, pages 98–112.
Springer, 2006. doi:10.1007/11867340.

20 Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas, and Nobuko Yoshida. On
the preciseness of subtyping in session types. Logical Methods in Computer Science, 13(2),
2017.

21 Chris Chilton, Marta Z. Kwiatkowska, and Xu Wang. Revisiting timed specification theor-
ies: A linear-time perspective. In FORMATS, volume 7595 of Lecture Notes in Computer
Science, pages 75–90. Springer, 2012. doi:10.1007/978-3-642-33365-1_7.

22 Lorenzo Clemente, Frédéric Herbreteau, Amélie Stainer, and Grégoire Sutre. Reachability
of communicating timed processes. In FoSSaCS, volume 7794 of Lecture Notes in Computer
Science, pages 81–96. Springer, 2013. doi:10.1007/978-3-642-37075-5_6.

23 Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Nyman, Louis-Marie Traonouez, and
Andrzej Wasowski. Real-time specifications. STTT, 17(1):17–45, 2015. doi:10.1007/
s10009-013-0286-x.

24 Romain Demangeon and Kohei Honda. Full abstraction in a subtyped pi-calculus with
linear types. In CONCUR, volume 6901 of Lecture Notes in Computer Science, pages
280–296. Springer, 2011. doi:10.1007/978-3-642-23217-6_19.

25 Henning Dierks, Sebastian Kupferschmid, and Kim Guldstrand Larsen. Automatic ab-
straction refinement for timed automata. In FORMATS, volume 4763 of Lecture Notes in
Computer Science, pages 114–129. Springer, 2007. doi:10.1007/978-3-540-75454-1_10.

26 Harald Fecher, Mila E. Majster-Cederbaum, and Jinzhao Wu. Refinement of actions in a
real-time process algebra with a true concurrency model. Electr. Notes Theor. Comput.
Sci., 70(3):260–280, 2002. doi:10.1016/S1571-0661(05)80496-7.

http://dx.doi.org/10.1007/b110123
http://dx.doi.org/10.1007/b110123
http://dx.doi.org/10.1007/b98282
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.283
http://dx.doi.org/10.1007/978-3-662-44584-6_29
http://dx.doi.org/10.1007/3-540-49213-5_5
http://dx.doi.org/10.1007/3-540-56496-9
http://dx.doi.org/10.1007/11867340
http://dx.doi.org/10.1007/978-3-642-33365-1_7
http://dx.doi.org/10.1007/978-3-642-37075-5_6
http://dx.doi.org/10.1007/s10009-013-0286-x
http://dx.doi.org/10.1007/s10009-013-0286-x
http://dx.doi.org/10.1007/978-3-642-23217-6_19
http://dx.doi.org/10.1007/978-3-540-75454-1_10
http://dx.doi.org/10.1016/S1571-0661(05)80496-7

M. Bartoletti, L. Bocchi, and M. Murgia 40:19

27 Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic model
checking for real-time systems. Inf. Comput., 111(2):193–244, 1994.

28 Jan Hoffmann and Zhong Shao. Automatic static cost analysis for parallel programs. In
ESOP, volume 9032 of Lecture Notes in Computer Science, pages 132–157. Springer, 2015.
doi:10.1007/978-3-662-46669-8.

29 Pavel Krcál and Wang Yi. Communicating timed automata: The more synchronous, the
more difficult to verify. In CAV, volume 4144 of Lecture Notes in Computer Science, pages
249–262. Springer, 2006. doi:10.1007/11817963.

30 Julien Lange and Nobuko Yoshida. On the undecidability of asynchronous session subtyping.
In FoSSaCS, volume 10203 of Lecture Notes in Computer Science, pages 441–457, 2017.
doi:10.1007/978-3-662-54458-7.

31 Kim G. Larsen, Axel Legay, Louis-Marie Traonouez, and Andrzej Wasowski. Robust syn-
thesis for real-time systems. Theor. Comput. Sci., 515:96–122, 2014. doi:10.1016/j.tcs.
2013.08.015.

32 Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. STTT,
1(1-2):134–152, 1997.

33 Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager. Hybrid I/O automata. Inf.
Comput., 185(1):105–157, 2003.

34 Dimitris Mostrous. Session Types in Concurrent Calculi: Higher-Order Processes and
Objects. PhD thesis, Imperial College London, November 2009.

35 Dimitris Mostrous and Nobuko Yoshida. Session-based communication optimisation for
higher-order mobile processes. In TLCA, volume 5608 of Lecture Notes in Computer Sci-
ence, pages 203–218. Springer, 2009. doi:10.1007/978-3-642-02273-9_16.

36 Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. Global principal typing in partially
commutative asynchronous sessions. In ESOP, volume 5502 of Lecture Notes in Computer
Science, pages 316–332. Springer, 2009.

37 Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed runtime monitoring for
multiparty conversations. Formal Asp. Comput., 29(5):877–910, 2017. doi:10.1007/
s00165-017-0420-8.

38 Xavier Nicollin and Joseph Sifakis. An overview and synthesis on timed process algebras.
In CAV, volume 575 of Lecture Notes in Computer Science, pages 376–398. Springer, 1991.

39 Julien Ponge, Boualem Benatallah, Fabio Casati, and Farouk Toumani. Analysis and
applications of timed service protocols. ACM Trans. Softw. Eng. Methodol., 19(4):11:1–
11:38, 2010.

40 Steve Schneider. Concurrent and Real Time Systems: The CSP Approach. John Wiley &
Sons, Inc., New York, NY, USA, 1st edition, 1999.

41 The Simple Mail Transfer Protocol. http://tools.ietf.org/html/rfc5321.
42 Steve Vinoski. Advanced message queuing protocol. IEEE Internet Computing, 10(6):87–89,

2006.
43 Weifeng Wang and Li Jiao. Trace abstraction refinement for timed automata. In ATVA,

volume 8837 of Lecture Notes in Computer Science, pages 396–410. Springer, 2014. doi:
10.1007/978-3-319-11936-6.

44 Sergio Yovine. Kronos: A verification tool for real-time systems. (Kronos user’s manual
release 2.2). STTT, 1(1-2):123–133, 1997. doi:10.1007/s100090050009.

CONCUR 2018

http://dx.doi.org/10.1007/978-3-662-46669-8
http://dx.doi.org/10.1007/11817963
http://dx.doi.org/10.1007/978-3-662-54458-7
http://dx.doi.org/10.1016/j.tcs.2013.08.015
http://dx.doi.org/10.1016/j.tcs.2013.08.015
http://dx.doi.org/10.1007/978-3-642-02273-9_16
http://dx.doi.org/10.1007/s00165-017-0420-8
http://dx.doi.org/10.1007/s00165-017-0420-8
http://tools.ietf.org/html/rfc5321
http://dx.doi.org/10.1007/978-3-319-11936-6
http://dx.doi.org/10.1007/978-3-319-11936-6
http://dx.doi.org/10.1007/s100090050009

Automated Detection of Serializability Violations
Under Weak Consistency
Kartik Nagar
Purdue University, USA
nagark@purdue.edu

Suresh Jagannathan
Purdue University, USA
suresh@cs.purdue.edu

Abstract
While a number of weak consistency mechanisms have been developed in recent years to improve
performance and ensure availability in distributed, replicated systems, ensuring the correctness
of transactional applications running on top of such systems remains a difficult and important
problem. Serializability is a well-understood correctness criterion for transactional programs;
understanding whether applications are serializable when executed in a weakly-consistent en-
vironment, however remains a challenging exercise. In this work, we combine a dependency
graph-based characterization of serializability and leverage the framework of abstract executions
to develop a fully-automated approach for statically finding bounded serializability violations
under any weak consistency model. We reduce the problem of serializability to satisfiability of
a formula in First-Order Logic (FOL), which allows us to harness the power of existing SMT
solvers. We provide rules to automatically construct the FOL encoding from programs written in
SQL (allowing loops and conditionals) and express consistency specifications as FOL formula. In
addition to detecting bounded serializability violations, we also provide two orthogonal schemes
to reason about unbounded executions by providing sufficient conditions (again, in the form of
FOL formulae) whose satisfiability implies the absence of anomalies in any arbitrary execution.
We have applied the proposed technique on TPC-C, a real-world database program with complex
application logic, and were able to discover anomalies under Parallel Snapshot Isolation (PSI),
and verify serializability for unbounded executions under Snapshot Isolation (SI), two consistency
mechanisms substantially weaker than serializability.

2012 ACM Subject Classification Theory of computation → Automated reasoning

Keywords and phrases Weak Consistency, Serializability, Database Applications

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.41

Related Version A full version of the paper is available at [24], https://arxiv.org/abs/1806.
08416.

1 Introduction

We consider the problem of detecting serializability violations of transactional programs
executing in a weakly-consistent replicated distributed database. An execution of such
programs is said to be serializable if it is equivalent to some sequential execution of the
transactions that comprise the program. Ensuring that all executions of such programs
are serializable greatly simplifies reasoning about program correctness by reducing the
complexity of understanding concurrent executions to the problem of understanding sequential
ones. Unfortunately, enforcing serializability using runtime synchronization mechanisms

© Kartik Nagar and Suresh Jagannathan;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 41; pp. 41:1–41:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nagark@purdue.edu
mailto:suresh@cs.purdue.edu
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.41
https://arxiv.org/abs/1806.08416
https://arxiv.org/abs/1806.08416
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

41:2 Automated Detection of Serializability Violations Under Weak Consistency

is problematic in geo-replicated distributed systems without sacrificing availability (low-
latency) [18]. To reap the correctness benefits of serializability with the performance and
scalability benefits of high-availability, we study the conditions under which transactional
programs can be statically identified to always yield a serializable execution without the need
for global synchronization. The challenge to realizing this goal stems from the complexity in
reasoning about replicated state in which not all replicas share the same view of the data
they hold.

To address this challenge, we present a fully automated static analysis that precisely
encodes salient dependencies in the program as abstract executions defined in terms of
an axiomatic specification of a particular weak consistency model (§4). The analysis then
leverages a theorem prover to systematically search for the presence or absence of cycles
in these executions consistent with these dependencies; the presence of a cycle indicates a
serializability violation (§5.1). Notably, our approach can be applied to any weak consistency
model whose specification can be expressed in first-order logic, a class that subsumes all
realistic data stores we are aware of. More specifically, our approach constructs a dependency
graph [2] from the input program containing a cycle and then asks whether there exists a
valid execution under the given consistency specification that can result in this graph. To do
this, we automatically extract dependency conditions from the transactional program, and
relate these dependencies to artifacts in an event-based model to find whether there exists a
valid abstract execution corresponding to the dependency graph. These dependencies are
encoded in a first-order logic formula that is satisfiable only if there exists an execution that
violates serializability.

Given a transactional program written in SQL, we discover serializability violations
of bounded length under the given weak consistency model (with the bound limiting the
number of concurrent transaction instances that are considered). We output the actual
anomaly including the transactions involved and their inputs. This output can then be
used to strengthen the consistency of the transactions involved in the anomaly (or even
modifying the transactions themselves). Since the approach is parametric on a consistency
policy, it can also be used to determine the weakest consistency policy for which the program
is serializable. Similar to other bounded verification techniques used to detect bugs in e.g.,
concurrent programs [23], we posit that most serializability violations will manifest using a
small number of transaction instances.

Nonetheless, we additionally provide two orthogonal schemes to reason about arbitrarily
long executions with an unbounded number of transaction instances (§5.2, §5.3). The first
scheme formalizes the argument that it is enough to check serializability violations in bounded
executions by proving that longer violations beyond that bound would induce violations
within the bound. The second scheme applies an inductive argument to check the absence of
anomalies in arbitrarily long executions. Our approach is sound, but not complete - while
all discovered anomalies are justified by counterexamples offered by the theorem prover, we
cannot rule out the possibility of serializability violations appearing in unbounded executions
that are not identified by these two schemes.

As serious case studies to assess the applicability of our approach, we have applied our
technique on TPC-C, a real-world transactional program, and a course grading applica-
tion [19] (§6). In both cases, we were able to detect multiple serializability violations under
Eventual Consistency and a weaker variant of snapshot isolation (SI) called parallel snapshot
isolation [26], and verified that these anamolies do not occur when using SI for unbounded
executions. We now present an overview of our approach using a simple example.

K.Nagar and S. Jagannathan 41:3

withdraw (ID , Amount)
SELECT Balance AS bal WHERE AccID=ID
IF bal > Amount

UPDATE SET Balance =bal - Amount WHERE AccID=ID

Figure 1 Example Application.

withdraw(1, 50) ar //

RW,WW

''

withdraw(1, 60)
RW

gg

Figure 2 Abstract Execution E and its Dependency Graph.

2 Overview

In this section, we show how our approach discovers serializability violations, and how
the output of our analysis can be used to repair violations using selective synchronization.
Consider a simple banking application which maintains the balance of multiple accounts in a
table Account which is indexed using the primary key AccID and contains the field Balance.
Consider a withdraw operation (shown in Fig. 1) written in a SQL-style language, which
takes ID and Amount as input, and deducts the amount from the account with account number
ID, if the balance is sufficient. Suppose the application is deployed in a distributed, replicated
environment which allows concurrent invocations of the withdraw operation at potentially
different replicas, with the only guarantee provided being eventual consistency - eventually,
all replicas will witness all updates to the Balance field. Under eventual consistency, the
application is clearly not serializable, since concurrent withdraws operations to the same
account–whose total withdrawn amount exceeds the balance of the account–could both
succeed, which is not possible in a serializable execution.

A convenient way to express executions in such an environment is to use an axiomatic
event-based representation. In this framework, an abstract execution [12] is expressed
as the tuple (T, vis, ar), where T is the set of transaction invocations, vis ⊆ T × T is a
visibility relation such that if t vis−→ t′ then updates of t are visible to t′, and ar ⊆ T × T
is an arbitration relation which totally orders all writes to the same location and ensures
eventual consistency [9]. For example, if t1 = withdraw(1,50), t2 = withdraw(1,60), then
E = ({t1, t2}, {}, {(t1, t2)}) is an abstract execution which is not serializable, because the
final value of Balance in the account number 1 will only reflect the withdraw operation
t2 (assuming an initial Balance of 100 in AccID 1), since there is no visibility constraint
enforced between the two operations. This is an example of a lost update [5] anomaly. Our
goal is to automatically construct such anomalous executions.

A useful technique to detect serializability violations is to build dependency graphs
from abstract executions, and then search for cycles in the dependency graph. The nodes
of the dependency graph are invocations, and edges indicate dependencies between them.
There are three type of dependencies relevant to serializability detection: t1

WR−−→ t2 is a
read dependency, which means that t2 reads a value written by t1, t1

WW−−→ t2 is a write
dependency, which means that both t1 and t2 write to the same location, with the write of
t2 arbitrated after t1, and t1

RW−−→ t2 is an anti-dependency, which means that t1 does not
read a value written by t2 but instead reads an older version. For example, the dependency
graph of the anomalous execution E described above is shown in Fig. 2.

CONCUR 2018

41:4 Automated Detection of Serializability Violations Under Weak Consistency

t1 //
##

t2 // t3 // t4 // t5 t1 //
&&

t2 // t3 // t4 // t5

t1 // t2 //
��

t3 // t4 // t5 t1 // t2 //
##

t3 // t4 // t5

Figure 3 Different possibilities for paths of length 4 in the dependency graphs of the banking
application. Note that transactions in bold perform writes.

In our approach, we start with a dependency graph containing a cycle, and then ask
whether an execution corresponding to the dependency graph is possible. From the transaction
code, we automatically extract the conditions under which a dependency edge can manifest
between invocations of the transactions. In our running example, a dependency edge (of
any type) between two withdraw invocations can only manifest if they are called with the
same account ID. Further, we link the dependency edges with the relations vis and ar of the
corresponding abstract execution. For example, t1

RW−−→ t2 ⇒ ¬(t2
vis−−→ t1), because otherwise,

t1 would read the value written by t2. This is useful because different consistency schemes
can be axiomatically expressed by placing constraints on the vis and ar relations.

In order to prevent the anomalous execution in our running example, we can use PSI
[26] which ensures that if two invocations write to the same location, then they cannot be
concurrent. While PSI is implemented using a complex, distributed protocol, in our abstract
framework, it can be simply expressed using the following constraint: ∀t, t′. t WW−−→ t′ =⇒
t

vis−→ t′. Now, the anomalous execution E is not possible, because t1
WW−−→ t2 ⇒ t1

vis−→ t2,
which contradicts t2

RW−−→ t1.
To summarize, the following is the relevant portion of formulae that we generate for the

above application under PSI:

∀t, t′. t RW−−→ t′ ⇒ (∃r. AccID(r) = ID(t) ∧ AccID(r) = ID(t′) ∧ bal(t′) > Amount(t′)) (1)
∀t, t′, r. (AccID(r) = ID(t) ∧ bal(t) > Amount(t) ∧ AccID(r) = ID(t′)

∧bal(t′) > Amount(t′) ∧ t ar−→ t′)⇒ t
WW−−→ t′ (2)

∀t, t′. t RW−−→ t′ ⇒ ¬(t′ vis−→ t) (3)

∀t, t′. t WW−−→ t′ ⇒ t
vis−→ t′ (4)

We use t, t′ to denote invocations of the transaction, and r to denote a record in the
database. We define the function AccID to access the primary key of a record. Similarly, ID,
Amount, etc. are functions which map an invocation to its parameters and local variables.
The existence of a dependence between two invocations forces the existence of a record
that both invocations must access, as well as conditions on the local variables required to
perform the access (Eqn. 1). On the other hand, if two invocations are guaranteed to write
to the same location, there must exist a WW dependency between them (Eqn. 2). Now,
it is not possible to have invocations t1 and t2, obeying Eqns. (1)-(4) such that t1

RW−−→ t2

and t2
RW−−→ t1, the condition necessary to induce a cycle and thus manifest a serializability

violation.
In fact, it is not possible to have a cycle of any arbitrary length in a dependency graph of

this application under PSI. To show this, we use the following observation: any long path in
a dependency graph generated by the above application will have chords in it, resulting in a
shorter path. In fact, it can be shown that the shortest path between any two invocations in
any dependency graph of the application (if there is a path) will always be less than or equal

K.Nagar and S. Jagannathan 41:5

to 3. This can shown by using the above constraints (1)-(4) (and adding similar constraints
for WR edges), instantiating a path of length 4 such that there is no chord between any of
the nodes involved in the path, and then showing the unsatisfiability of such an encoding.
Since a cycle is also a path, it is now sufficient to only check for cycles of length 3, since any
longer cycle will necessarily induce a cycle of length less than or equal to 3.

Intuitively, this is happening in the banking application because the presence of any
dependency edge between two nodes implies that both invocations must access the same
account, and at least one of them must perform a write. Further, any two writes are always
related by a WW edge. Now, as shown in Figure 3, in any path of length 4 in the dependency
graph, one of t1 or t2 and one of t4 or t5 must be a write, which implies a chord between
the two writes. Hence, there will always be a shorter path of length less than or equal to 3
between t1 and t5.

3 Preliminaries

3.1 Input Language and Database Model
v ∈ Variables f ∈ Fields Q ∈ {MIN, MAX, COUNT}
⊕ ∈ {+,−,×, /} � ∈ {<,≤,=, >,≥} ◦ ∈ {∧,∨}

ed := f | v | ed ⊕ ed | Z
φd := f� ed | f ∈ v | ¬φd | φd ◦ φd
ec := v | CHOOSE v | ec ⊕ ec | Z
φc := v� ec | v = NULL | v1 ∈ v2 | ¬φc | φc ◦ φc
c := SELECT f̄ AS v WHERE φd | SELECT Q f AS v WHERE φd | UPDATE SET f = ec WHERE φd |

INSERT VALUES f̄ = ēc | DELETE WHERE φd | v = ec | IF φc THEN c ELSE c | c ; c
FOREACH v1 IN v2 DO c END | SKIP

vlist := v | vlist, vlist
T := Tname(vlist){c}

We start with description of the language of transactional programs in our framework.
We assume a database model, where data is organized in tables with multiple records, where
each record has multiple fields and transactions can insert/delete records and read/modify
fields in selected records. The grammar is essentially a simplified version of standard SQL,
allowing SQL statements which access the database to be combined with usual program
connectives such as conditionals, sequencing and loops. Every transactional program T
has a set of parameter variables (vlist) which are instantiated with values on invocation,
and a set of local variables which are used to store intermediate values from the database
(typically as output of SELECT queries). For a transactional program T , let Vars(T) be the
set of parameters and local variables of T . Let Stmts(T) be the set of SQL statements (i.e.
INSERT, DELETE, SELECT or UPDATE) in T .

To simplify the presentation, we will assume that there is only one table and each record
is a set of values indexed by the set Fields. Furthermore all fields store integer values. The
FOREACH loop iterates over a set of records in v2, and assigns v1 to an individual record
during each iteration. We call v2 as the loop variable. Let D(v) denote the nesting depth
of v, which is 0 if v is assigned a value outside any loop (or is a parameter variable), and
otherwise is the number of enclosing loops. For a variable v assigned a value inside a loop,
let LVar(v, i) denote the loop variable at depth i, for all 1 ≤ i ≤ D(v).

SQL statements use predicates φd to select records that would be accessed/modified,
where φd allows all boolean combinations of comparison predicates between fields and values.
Conditionals used inside IF statements (φc) are only allowed to used local variables and

CONCUR 2018

41:6 Automated Detection of Serializability Violations Under Weak Consistency

parameters. To check whether the output of a SELECT query is empty, we use the conditional
expression v = NULL, where v stores the output of the query.

We assume a fixed non-empty subset of Fields to be the primary key PK. Any two
records must have distinct values in at least one of their PK fields. Assume that there is
a special field called Alive ∈ Fields whose value is 1 if the record is in the database, 0
otherwise. Initially, all records are not Alive. When a record is inserted into the database,
it becomes Alive, and when the record is deleted, it again becomes not Alive.

3.2 Abstract Executions
Executions of transactional programs in our framework are expressed using an event structure,
which is based on the approach used in [5]. The execution of a transaction instance consists
of events, which are database operations. A database operation is a read or write to a field
of a record. Let R = PK → Z be the set of all possible primary keys. Then, the set of all
database operations is O = {wri(r, f, n) | r ∈ R, f ∈ Fields \ PK, n ∈ Z} ∪ {rd(r, f, n) | r ∈
R, f ∈ Fields, n ∈ Z} .

To simplify the presentation, we assume that a transaction reads (writes) at most once
from (to) a field of a record and does not read any record that it writes, inserts or deletes.
These assumptions allow us to ignore the ordering among events of a single transaction
instance. Our approach can be easily adapted if these assumptions are not satisfied.

I Definition 1 (Transaction Instance). A transaction instance is a tuple σ = (TID, ε), where
TID is a unique transaction instance-ID and ε ⊆ O is a set of events.

In this work, we assume that transactions are executed in an environment which guarantees
atomicity and isolation (also called atomic visibility [12]). That is, either all events of a
transaction are made visible to other transactions, or none are, and the same set of transactions
are visible to all events in a transaction. Atomicity and isolation are crucial properties for
transactional programs, and both can be implemented efficiently in a replicated, distributed
environment [9, 3]. Note that atomicity and isolation does not guarantee serializability,
as seen in example in §2, and our goal is to explore serializability in this context of weak
consistency.

I Definition 2 (Abstract Execution). An abstract execution is a tuple χ = (Σ, vis, ar), where
Σ is a set of transaction instances, vis ⊆ Σ× Σ is an anti-symmetric, irreflexive relation, and
ar ⊆ Σ× Σ is a total order on Σ such that vis ⊆ ar.

Intuitively, given transaction instances σ, σ′ in an abstract execution χ, if σ vis−→ σ′, then
all writes performed by σ are visible to σ′ and hence may affect the output of the reads
performed by σ′. ar is used to order all writes to the same location. We use the notation
σ ` o to specify that transaction instance σ performs a database operation o. The length of
an abstract execution is defined to be the number of transaction instances involved in the
execution (i.e. |Σ|).

Given a set of transaction instances Σ′, we use the notation [Σ′]<wri(r,f)> = {σ ∈ Σ′ | σ `
wri(r, f, n), n ∈ Z} to denote the set of transactions which are writing to field f of record
r. We use the notation MAXar(Σ′) to denote σ ∈ Σ′ such that ∀σ′ ∈ Σ′. σ = σ′ ∨ σ′ ar−→ σ.
Given a transaction instance σ, we use vis−1(σ) to denote the set {σ′ ∈ Σ | σ′ vis−→ σ}. The
last writer wins nature of the database dictates that a transaction reads the most recent
value (according to ar) written by the transactions visible to it. Formally, this is specified as
follows: σ ` rd(r, f, n)⇒ (f 6∈ PK⇒ MAXar([vis−1(σ)]<wri(r,f)>) ` wri(r, f, n)) ∧ (f ∈ PK⇒
r(f) = n).

K.Nagar and S. Jagannathan 41:7

I Definition 3 (Dependency Graph). Given an abstract execution χ = (Σ, vis, ar), the
dependency graph Gχ = (Σ, E) is a directed, edge-labeled multigraph where the edges and
their labels are defined as follows :

σ
WRr,f−−−−→ σ′ if σ′ ` rd(r, f, n) and σ = MAXar([vis−1(σ′)]<wri(r,f)>).

σ
WWr,f−−−−→ σ′ if σ ` wri(r, f, n), σ′ ` wri(r, f,m) and σ ar−→ σ′.

σ
RWr,f−−−−→ σ′ if σ ` rd(r, f, n), σ′ ` wri(r, f,m) and there exists another transaction

instance σ′′ such that σ′′ WRr,f−−−−→ σ and σ′′ WWr,f−−−−→ σ′.
Edges in the dependency graph Gχ also induce corresponding binary relations on the
transaction instances (we use the same notation for these relations). Let WR,WW,RW be the
union of WRr,f ,WWr,f ,RWr,f for all r, f respectively. The following lemma follows directly
from the definition1:

I Lemma 4. Given an abstract execution χ = (Σ, vis, ar) and its dependency graph Gχ =
(Σ, E), the following are true:

If σ WRr,f−−−−→ σ′ ∈ E, then σ vis−→ σ′.
If σ WWr,f−−−−→ σ′ ∈ E, then σ ar−→ σ′.
If σ RWr,f−−−−→ σ′ ∈ E, then ¬(σ′ vis−→ σ).

In our framework, transaction instances are generated by assigning values to all the parameter
variables of a transactional program T , written using the grammar specified in §3.1. We
use the notation Γ(σ) to denote the transactional program T associated with transaction
instance σ.

Different weak consistency and weak isolation models can be expressed by placing
constraints on vis and ar relations associated with an abstract execution. This gives rise to
the notion of valid abstract executions under a specific model, which are executions satisfying
the constraints associated with those models. Below, we provide examples of several known
weak consistency and weak isolation models:

Full Serializability : ΨSer , vis = ar
Selective Serializability for Transactional Programs T1, T2 [16] : ΨSer(T1,T2) , ∀σ1, σ2.

((Γ(σ1) = T1 ∧ Γ(σ2) = T2) ∨ (Γ(σ1) = T2 ∧ Γ(σ2) = T1) ∧ σ1
ar−→ σ2)⇒ σ1

vis−→ σ2

Causal Consistency (CC) [22] : ΨCC , ∀σ1, σ2, σ3. σ1
vis−→ σ2 ∧ σ2

vis−→ σ3 ⇒ σ1
vis−→ σ3

Prefix Consistency (PC) (equivalent to repeatable read in centralized databases) [27, 10] :
ΨPC , ∀σ1, σ2, σ3. σ1

ar−→ σ2 ∧ σ2
vis−→ σ3 ⇒ σ1

vis−→ σ3

Parallel Snapshot Isolation (PSI) [26] : ΨPSI , ∀σ1, σ2. σ1
WW−−→ σ2 ⇒ σ1

vis−→ σ2
Different models can be also be combined together to create a hybrid model. For example,
ΨPSI ∧ ΨPC is equivalent to Snapshot Isolation [4] in centralized databases. Below, we
formalize the classical notion of conflict serializability [6] in our setting and then relate it to
the presence of cycles in the dependency graph.

I Definition 5 (Serializable Execution). An abstract execution χ = (Σ, vis, ar) is said to be
serializable if there exists another abstract execution χ′ = (Σ, vis′, ar′) which satisfies ΨSer
such that Gχ and Gχ′ are isomorphic.

I Theorem 6. Given an abstract execution χ = (Σ, vis, ar), if there is no cycle in the
dependency graph Gχ, then χ is serializable.

1 All proofs can be found in Appendix C in the extended version of the paper[24].

CONCUR 2018

41:8 Automated Detection of Serializability Violations Under Weak Consistency

3.3 Operational Semantics

We now propose an operational semantics to generate abstract executions from transactional
programs under a consistency specification. The purpose of the operational semantics is to
link SQL statements with abstract database operations, and to prove the soundness of our
encoding in FOL. Here, we only provide an informal overview; the full operational semantics
can be found in Appendix B of [24].

The semantics is a transition system ST,Ψ = (∆,→) parametrized over a set of trans-
actional programs T and a consistency specification Ψ. The state (δ ∈ ∆) is stored as a
tuple (Σ, vis, ar,P) where Σ is the set of committed transaction instances, vis and ar are
relations on Σ, and P is the running pool of transaction instances. The transitions are of
two types : spawning a new instantiation of a transactional program T ∈ T or executing
a statement of a transaction instance in the running pool. When a new execution of a
transaction instance begins, a subset of Σ is non-deterministically selected to be made visible
to the new instance. A view of the database is constructed for the new instance based on
the set of visible transactions and the ar relation (ensuring the last writer wins policy), and
all queries of the transaction instance are answered on the basis of this view. At any point,
any transaction instance from P can be non-deterministically selected for execution of its
next statement. Any new event generated during the execution of a transaction instance
is stored in the running pool. Finally, when a transaction instance wants to commit, it is
checked whether the consistency specification (Ψ) is satisfied if the instance were to commit,
and if yes, it is added to Σ. We can now define a valid abstract execution in terms of traces
of the transition system:

I Definition 7 (Valid execution of T under Ψ). An abstract execution χ = (Σ, vis, ar) is said
to be a valid execution produced by T under Ψ if there exists a trace ({}, {}, {}, {}) →∗
(Σ, vis, ar, {}) of the transition system ST,Ψ.

4 FOL Encoding

4.1 Vocabulary

Given a set of transactional programs T and a consistency specification Ψ we now show how
to construct a formula in FOL such that any valid abstract execution χ of T under Ψ and its
dependency graph Gχ is a satisfying model of the formula. The encoding is parametric over
T and Ψ. We first describe the vocabulary of the encoding. We define two uninterpreted
sorts τ and R, such that members of τ are transaction instances, and members of R are
records. In addition, we also define a finite sort T which contains the transaction types,
where each type is a transactional program.

The function Γ : τ → T associates each transaction instance with its type. For each
transactional program T ∈ T and for each variable v ∈ Vars(T), the variable projection
function ρv gives the value of v in a transaction instance. The signature of ρv depends
upon the type of the variable and whether it is assigned inside a loop. First, let us consider
variables which are assigned values outside any loop. In our framework, variables are of
two types : a value or a set of values. Further, the value can be either an integer (e.g. the
parameter ID of the withdraw transaction) or a record. Let V = Z ∪R. If v is a value, the
ρv has the signature τ → V. If v is a set of values, then ρv is a predicate with signature
V× τ → B, such that ρv(r, t) is true if r belongs to v in the transaction instance t.

K.Nagar and S. Jagannathan 41:9

Consider a loop of the form : FOREACH v1 IN v2 DO c END. All local variables which
are assigned values inside the loop body (including v1) will be indexed by values in the set
v2. Hence, if a local variable v3 is assigned inside the loop, and it is a value, then ρv3 will
have the signature V × τ → V. On the other hand, if v3 stores a set of values, then ρv3

will have the signature V× V× τ → B, with the interpretation that ρv3(r1, r2, t) is true if
v3 contains r2 in the iteration where v1 is r1 ∈ v2. Similarly, nested loops will have local
variables which are indexed by records in all enclosing loops.

To summarize, the signature of ρv is either VD(v) × τ → V or VD(v)+1 × τ → B. Similar
to the variable projection function, the field projection function ρf : R → Z is defined for
each field f ∈ Fields, such that ρf(r) gives the value of f in a record r.

We define predicates WR,WW,RW all of type τ × τ → B which specify the read, write
and anti-dependency relations respectively between transaction instances. We also define
predicates WRR,RWR,WWR all of type R×Fields× τ × τ → B which provide more context
by also specifying the records and fields causing the dependencies. Predicates vis, ar of type
τ × τ → B specify the visibility and arbitration relation between transaction instances. The
predicate Alive : R× τ → B indicates whether a record is Alive for a transaction instance.

4.2 Relating Dependences with Abstract Executions
By Lemma 4, in any abstract execution, the presence of a dependency edge between two
transaction instances enforces constraints on the vis and/or ar relations between the two
instances. The following formula encodes this along with basic constraints satisfied on vis
and ar:

ϕbasic = TotalOrder(ar) ∧ ∀(t, s : τ). (vis(t, s)⇒ ¬vis(s, t)) ∧ (vis(t, s)⇒ ar(t, s))
∧ (WR(t, s)⇒ vis(t, s)) ∧ (WW(t, s)⇒ ar(t, s)) ∧ (RW(t, s)⇒ ¬vis(s, t)) (5)

The following formula encodes a fundamental constraint involving the dependency relations
on the same field of the same record due to the last writer wins nature of the database:

ϕdep =
∧

f∈Fields

∀(t1, t2, t3 : T)(r : R). WRR(r, f, t2, t1) ∧ RWR(r, f, t1, t3)⇒WWR(r, f, t2, t3)

Finally, the consistency specification Ψ can be directly encoded using the relations and
functions defined in our vocabulary (we denote this formula by ϕΨ).

4.3 Relating dependences with transactional programs
The presence of a dependency edge between two transaction instances places constraints
on the type of transactional programs generating the instances and their parameters. To
automatically infer these constraints, we use the following strategy : if there is a dependency
edge between two instances, then there must exist SQL statements in both transactions
which access a common record.

To encode this, we first extract the conditions under which a SQL statement in a
transactional program can be executed. By performing a simple syntactic analysis over the
code of a transaction T , we obtain a mapping ΛT from each SQL statement in Stmts(T) to
a conjunction of enclosing IF conditionals (the complete algorithm can be found in Appendix
A of [24]).

The FOL encoding of all conditionals in a program and all WHERE clauses in a SQL
statement is constructed by replacing variables and fields with the corresponding variable
projection and field projection functions respectively. A representative set of rules for this

CONCUR 2018

41:10 Automated Detection of Serializability Violations Under Weak Consistency

Jv = NULLKt = (∃(r1, . . . , rD(v) : R).
∧D(v)

i=1 V(Jri ∈ LVar(v, i)Kt), fresh(r1, . . . , rD(v), r)
∀(r : R).¬ρv(r1, . . . , rD(v), r, t))

Jr ∈ vKt = (∃(r1, r2, . . . , rD(v) : R).
∧D(v)

i=1 V(Jri ∈ LVar(v, i)Kt), fresh(r1, . . . , rD(v))
ρv(r1, . . . , rD(v), r, t))

Jv1 ∈ v2Kt = (ϕ1 ∧ ϕ2, ψ2) Jv1Kt = (ϕ1, ψ1)
Jψ1 ∈ v2Kt = (ϕ2, ψ2)

Jf� eKt,r =

{
(ϕ, ρf(r)� ψ) if f ∪ F(e) ⊆ PK

(true, true) otherwise
JeKt,r = (ϕ,ψ)

Figure 4 Encoding conditionals and WHERE clauses.

encoding are shown in Fig. 4. For conditionals φ used in IF statements, we use the notation
JφKt to describe the FOL encoding specialized to transaction instance t. The interpretation
is that JφKt is satisfiable only if the conditional φ is true in the transaction instance t. If φ
is inside a loop, then JφKt must be satisfiable if φ is true in any arbitrary iteration of the
enclosing loop(s) in t. For this reason, JφKt is actually represented as a tuple (ϕ,ψ), where
ϕ chooses any arbitrary iteration of enclosing loops, and the formula ψ is the value of the
conditional in that iteration. We define an evaluation function V(ϕ,ψ) = ϕ ∧ ψ which gives
the final FOL encoding.

The formula ϕ chooses an iteration by instantiating records belonging to loop variables
of all enclosing loops. For example, consider the encoding of v = NULL. Here, ϕ instantiates
a record belonging to the loop variable of every enclosing loop of v (encoded as V(Jri ∈
LVar(v, i)Kt)), and ψ encodes that ρv in the chosen iteration is false for every record. Similarly,
in the encoding of Jr ∈ vKt, ρv must be true for the record r. In the encoding of Jv1 ∈ v2Kt,
we first obtain the value of v1 (the second term in the tuple Jv1Kt), and then check whether
it is present in v2.

A similar procedure is used to obtain the encoding of the WHERE clauses used inside SQL
statements. Since WHERE clauses are evaluated on records, the encoding is specialized on both
records and transaction instances, for which we use the notation JφKt,r. The interpretation is
that JφKt,r is satisfiable only if φ is true for transaction instance t on record r. The encoding
replaces field accesses with the corresponding field projection function applied on r. Note
that the field projection function is only used for primary key fields which are accessed within
WHERE clauses (expressed as F ⊆ PK). The complete encoding for all types of conditionals
and WHERE clauses can be found in the Appendix A of [24].

As stated earlier, our strategy is to encode the necessary condition for a dependency edge
based on the access of a common record. For each pair of transaction types T1, T2 ∈ T, each
dependency typeR ∈ {WR,RW,WW}, and each pair of SQL statements c1 ∈ Stmts(T1), c2 ∈
Stmts(T2), we compute a necessary condition ηR→,T1,T2

c1,c2
(t1, t2) for dependency R to exist

between instances t1 and t2 of types T1 and T2 due to statements c1 and c2 respectively. The
following formula encodes the fact that a dependency between two transaction instances can
be caused due to a dependency between any two SQL statements in those transactions:

ϕR→,T1,T2 , ∀(t1, t2 : τ).(Γ(t1) = T1 ∧ Γ(t2) = T2 ∧R(t1, t2))⇒
∨

c1∈Stmts(T1)
c2∈Stmts(T2)

ηR→,T1,T2
c1,c2 (t1, t2)

The general format of ηR→,T1,T2
c1,c2

(t1, t2) is a conjunction of the conditionals required to
execute the statements c1 and c2 (i.e. ΛT1(c1) and ΛT2(c2)) in t1 and t2 resp. and the
WHERE clauses of the two statements evaluated on some record r. If they can never access the

K.Nagar and S. Jagannathan 41:11

same field of the same record, then ηR→,T1,T2
c1,c2

(t1, t2) is simply false. While this is the general
format of the clauses, in addition, we can also infer more information depending upon the
type of the SQL statements. To illustrate this we present a sample rule below:

c1 ≡ SELECT MAX f AS v WHERE φ1 c2 ≡ UPDATE SET f = e WHERE φ2

c1 ∈ Stmts(T1) c2 ∈ Stmts(T2) Γ(t1) = T1 Γ(t2) = T2 JvKt1 = (ϕ1, ψ1) JeKt2 = (ϕ2, ψ2)
ηRW→,T1,T2

c1,c2 (t1, t2) = (∃r. V(JΛT1 (c1)Kt1) ∧ V(Jφ1Kt1,r) ∧ V(JΛT2 (c2)Kt2) ∧ V(Jφ2Kt2,r)∧
Alive(r, t2) ∧ ϕ1 ∧ ϕ2 ∧ ψ1 < ψ2)

The rule encodes a necessary condition for an anti-dependency to exist from a SELECT
MAX to a UPDATE statement. First, it encodes that the conflicting SQL statements actually
execute in their respective transactions and there is a common record which satisfies the
WHERE clauses of both statements. SELECT MAX selects the record with the maximum value
in the field f among all records that satisfy φ1, and stores the value in variable v. If there is
an anti-dependency from SELECT MAX to UPDATE, then the updated value must be greater
than the output of SELECT MAX, because otherwise, the update does not affect the output of
SELECT MAX.

In addition, some transaction instances may be guaranteed to execute certain SQL
statements, which forces the presence of a dependency edge between them. For example, if two
transaction instances are guaranteed to update the same field of a record, then there must be a
WW dependeny between them. For each pair of transaction types T1, T2 ∈ T, each dependency
type R ∈ {WR,RW,WW}, and each pair of SQL statements c1 ∈ Stmts(T1), c2 ∈ Stmts(T2),
we compute a condition η→R,T1,T2

c1,c2
(t1, t2) which forces the dependency R to exist between

instances t1 and t2 of types T1 and T2 respectively due to c1 and c2. The following formula
encodes this:

ϕ→R,T1,T2 , ∀t1, t2.(Γ(t1) = T1 ∧ Γ(t2) = T2 ∧
∨

c1∈Stmts(T1)
c2∈Stmts(T2)

η→R,T1,T2
c1,c2 (t1, t2))⇒R(t1, t2)

c1 ≡ UPDATE SET f = e1 WHERE φ1 c2 ≡ UPDATE SET f = e2 WHERE φ2

c1 ∈ Stmts(T1) c2 ∈ Stmts(T2) Γ(t1) = T1 Γ(t2) = T2

η→WW,T1,T2
c1,c2 (t1, t2) = (∃r. V(JΛT1 (c1)Kt1) ∧ V(Jφ1Kt1,r) ∧ V(JΛT1 (c1)Kt2) ∧ V(Jφ2Kt2,r)∧

Alive(r, t1) ∧ Alive(r, t2) ∧ ar(t1, t2))

η→R,T1,T2
c1,c2

(t1, t2) is computed in the same manner as ηR,T1,T2→
c1,c2

(t1, t2). As an example
consider the above rule. Two UPDATE statements modifying the same field are guaranteed to
cause a WW dependency if both statements actually execute in their respective transactions,
and there exists a common record accessed by both statements which is Alive to both
transactions.

In addition, there are some auxiliary facts which are satisfied by all abstract executions
(which we encode as the formula ϕaux) such as a record present in the output variable of a
SELECT query must satisfy the WHERE clause of the query, the value of the iterator variable
in a loop must belong to the loop variable, etc. For more details, we again refer to the
Appendix. The final encoding is defined as follows:

ϕT,Ψ , ϕbasic ∧ ϕdep ∧
∧

R∈{WR,RW,WW}

∧
T1,T2∈T

(ϕR→,T1,T2 ∧ ϕ→R,T1,T2) ∧ ϕΨ ∧ ϕaux (6)

I Theorem 8. Given a set of transactional programs T and a consistency specification Ψ,
for any valid abstract execution χ = (Σ, vis, ar) generated by T under Ψ and its dependency

CONCUR 2018

41:12 Automated Detection of Serializability Violations Under Weak Consistency

graph Gχ, there exists a satisfying model of the formula ϕT,Ψ with τ = Σ and the binary
predicates vis, ar,WR,RW,WW being equal to the corresponding relations in χ and Gχ.

Note that ϕT,Ψ is always satisfiable, since the empty abstract execution is a satisfying model.

5 Applications

5.1 Bounded Anomaly Detection

By Theorem 6, any execution which violates serializability must have a cycle in its dependency
graph. We can directly instantiate a dependency graph which contains a cycle of bounded
length and then ask for a satisfying model of the formula built in the previous section which
contains the cycle. We introduce a new predicate D : τ×τ → B which represents the presence
of any dependency edge between two transaction instances : ϕD , ∀(t1, t2 : τ).D(t1, t2)⇔
(t1 = t2)∨WR(t1, t2)∨RW(t1, t2)∨WW(t1, t2). A cycle of length less than or equal to k can now
be directly encoded as follows: ϕCycle,k , ∃t1, . . . , tk.

∧k−1
i=1 D(ti, ti+1) ∧ D(tk, t1) ∧ (t1 6= tk).

I Theorem 9. Given a set of transactional programs T and a consistency specification Ψ, if
ϕT,Ψ ∧ ϕD ∧ ϕCycle,k is UNSAT, then all valid abstract executions produced by T under Ψ of
length less than or equal to k are serializable.

5.2 Verifying Serializability: The Shortest Path Approach

We propose a condition, which can be also be encoded in FOL, and which if satisfied would
imply that it is enough to check for violations of bounded length to prove the absence of
violations of any arbitrary length.

The condition is based on the simple observation that any long path in the dependency
graph could induce a short path due to chords among the nodes in the path (as demonstrated
in the example in §2). This would imply that any long cycle would also induce a short
cycle, and hence lack of short cycles would imply the lack of longer cycles. To check for
this condition, we encode a shortest path of length k in the dependency graph and then ask
whether there is a satisfying model:

ϕShortest Path,k , ∃t1, . . . , tk, tk+1.

k∧
i=1

D(ti, ti+1)∧
k−1∧
i=1

k+1∧
j=i+2

¬D(ti, tj)∧
∧

1≤i<j≤k+1
ti 6= tj

The condition instantiates a path of length k in the dependency graph and also asserts the
absence of any chord, which implies that the path is shortest. If there does not exist a
shortest path of length k, then there also cannot exist a shortest path of greater length,
because if not, such a path would necessarily contain a shortest path of length k. Now, it is
enough to check for cycles of length less than or equal to k, because any longer cycle would
contain a path of length at least k, which would imply the presence of a shorter path and
thus a cycle of length less than or equal to k.

I Theorem 10. Given a set of transactional programs T and a consistency specification
Ψ, if both ϕT,Ψ ∧ ϕD ∧ ϕShortest Path,k and ϕT,Ψ ∧ ϕD ∧ ϕCycle,k are UNSAT, then all valid
abstract executions produced by T under Ψ are serializable.

K.Nagar and S. Jagannathan 41:13

5.3 Verifying Serializability: An Inductive Approach
We now present an alternative approach to verifying serializability which uses the transitivity
and irreflexivity of the ar relation to show lack of cycles. In this approach, our goal is to
show that if there is a path in the dependency graph from t1 to t2, then t1

ar−→ t2. By the
irreflexivity of ar, this would imply that there cannot be a cycle in the dependency graph.
Since paths can be of arbitrary length, we will use the transitivity of ar and an inductive
argument to obtain a simple condition which can be encoded in FOL.

I Lemma 11. Given a set of transactional programs T, a consistency specification Ψ and a
subset of programs T′ ⊆ T, if for all valid executions χ and their dependency graphs Gχ, the
following conditions hold:
1. if σ1 → σ2 in Gχ and Γ(σ1) ∈ T′, then σ1

ar−→ σ2

2. if σ1 → σ2 → σ3 in Gχ, then either σ1
ar−→ σ3 or σ2

ar−→ σ3
then all valid executions which contain at least one instance of a program in T′ are serializable.

The proof uses an inductive argument to show that if there is path from σ1, an instance of a
program in T′ to any other instance σ2, then σ1

ar−→ σ2. This would imply that any instance
of T′ cannot be present in a cycle. The above conditions can be directly encoded in FOL:

ϕInductive,T′ , (∃(t1, t2 : τ). Γ(t1) ∈ T′ ∧ D(t1, t2) ∧ t1 6= t2 ∧ ¬ar(t1, t2))∨

(∃(t1, t2, t3 : τ).D(t1, t2) ∧ D(t2, t3) ∧
∧

1≤i<j≤3
ti 6= tj ∧ ¬ar(t1, t3) ∧ ¬ar(t2, t3)) (7)

I Theorem 12. Given a set of programs T and a consistency specification Ψ, if ϕT,Ψ ∧ϕD ∧
ϕInductive,T′ is UNSAT, then all valid executions of T under Ψ which contains at least one
instance of a program in T′ are serializable.

If T′ = T, then all valid executions of T are serializable, otherwise, we can focus only on
programs in T \ T′, and re-apply the technique with ϕT′,Ψ ∧ ϕD ∧ ϕInductive,T′′ for T′′ ⊆ T′.
In the next section, we show how we use this technique to verify serializability of TPC-C, a
real-world database benchmark.

6 Case Studies

We have developed a tool called Anode which takes a set of programs written in the language
presented in §3.1 and a consistency specification and uses the encoding rules presented in §4
to automatically generate an FOL encoding. We use the Z3 SMT solver to determine the
satisfiabiliy of the generated formulae. In order to evaluate the effectiveness of our approach,
we have applied the proposed technique on TPC-C [1], a well-known Online Transaction
Processing (OLTP) benchmark widely used in the database community, and a Courseware
application (used in [19]) which is a representative of course registration systems used in
universities.

TPC-C. TPC-C has a complex database schema with 9 tables, and complex application
logic in its 5 transactions. The transactions contain loops and conditionals, have multiple
parameters and behave differently depending upon the values of the parameters; they also
use complex queries such as SELECT MIN and SELECT MAX. To the best of our knowledge,
this is the first automated static analysis for validating serializability of TPC-C under weak
consistency.

CONCUR 2018

41:14 Automated Detection of Serializability Violations Under Weak Consistency

Order-Status1 RW
,,

New-Order
WR 22

Payment
WR
rr

Order-Status2RW
ll

Figure 5 Long fork anomaly in TPC-C under PSI.

Under eventual consistency, TPC-C has a number of ‘lost update’ anomalies, similar to
the anomaly in the banking application described in §2. These anomalies are small in length
and were automatically detected using encoding presented in §5.1 (with k = 2) . To get rid
of these anomalies, we upgraded the consistency specification to PSI [26]. Under PSI, we did
not find any anomalies for k = 2 or k = 3, but for k = 4, the ‘long fork’ anomaly involving
the New-Order, Payment and Order-Status transactions was discovered, as shown in Fig. 5.

This anomaly happens because the New-Order and Payment transactions update two
different tables (Order and Customer table resp.) while the Order-Status transaction
reads both those tables. Since there is no synchronization between New-Order and Payment
transactions, it is possible for Order-Status1 to see the update of New-Order but not
Payment, and the vice versa for Order-Status2. We also discovered a similar anomaly
involving two instances of New-Order and two instances of Stock-level transactions.

To get rid of these anomalies, we further upgraded the consistency level to Snapshot
Isolation (SI), after which we did not find any anomalies for k = 4. We then turned our
attention to verifying serializability of TPC-C under SI. We first tried the Shortest Path
approach (which worked well for the banking application), but we were able to discover
a long path (which can be arbitrarily extended) without any chords. Next, we tried the
inductive approach, which was successful in proving serializability of TPC-C. Specifically,
with T′ = {New-Order, Payment}, the formula ϕInductive,T′ was shown to be UNSAT, and with
the remaining 3 transactions ϕInductive,{Delivery} was UNSAT. The remaining two transactions
do not have any dependencies between them, which implies that all executions of TPC-C
under SI are serializable.

Courseware. The Courseware application maintains a database of courses and students, and
provides the functionality of adding/removing students and courses, and enrolling students
into courses subject to course capacities. Under EC, the following anomalies were discovered
by our encoding : (1) two concurrent Enroll transactions may enroll students beyond the
course capacity, (2) two courses with the same name or two students with the same name
may be registered, (3) a student may be enrolled in a course which is being concurrently
removed, or the student is being concurrently removed. Note that all these anomalies were
discovered for k = 2.

In order to remove these violations, we upgraded the consistency model in a number of
ways : the Enroll transaction was upgraded to PSI, while selective serializability was used for
two instances of AddCourse and AddStudent, and for instances of Enroll and RemCourse,
Enroll and RemStudent. While these upgrades took care of the above mentioned anomalies,
we discovered a new long fork anomaly (for k = 4) as shown in Fig. 6. Here, two Enroll
transactions trying to enroll a student (s) into a course (c) see conflicting views of the
database, with one Enroll witnessing the student but not the course, and vice versa for the
other. We note that while this is an actual serializability violation, it is completely harmless
as both transactions which witness inconsistent database states ultimately fail, so that the
final database state is the same as that which manifests at the end of an execution in which

K.Nagar and S. Jagannathan 41:15

Enroll1(s,c) RW
,,

AddCourse(c)
WR 22

AddStudent(s)
WR
rr

Enroll2(s,c)RW
ll

Figure 6 Long fork anomaly in the Courseware application under PSI.

the effects of neither of the two enroll transactions occur. This is a limitation of our analysis
as it does not provide any way to ignore harmless serializability violations. We plan to
address this issue as part of future work.

In order to remove this violation, we upgraded the consistency level of Enroll to SI,
after which we did not find any anomalies. Next, we moved to verification, and here we were
successfully able to use the Shortest Path approach and prove that there does not exist a
shortest path in any dependency graph of the Courseware application of length greater than
or equal to 8. Along with the fact there does not exist any cycle of length less than or equal
to 8, this implies that any execution of the application is serializable. In all instances, the
solver produced its output in a few (< 10) seconds.

7 Related Work and Conclusions

Serializability is a well-studied problem in the database community, but there is a lack of
static automated techniques to check for serializability of database applications. Early work
by Fekete et al. [17] and Jorwekar et al. [20] proposed lightweight syntactic analyses to check
for serializability under SI in centralized databases, by looking for dangerous structures in
the static dependency graph of an application (which is an over-approximation of all possible
dynamic dependency graphs). Several recent works [5, 12, 13, 14, 30, 28] have continued
along this line, by deriving different types of dangerous structures in dependency graphs
that are possible under different weak consistency mechanisms, and then checking for these
structures on static dependency graphs.

However, static dependency graphs are highly imprecise representations of actual exe-
cutions, and any analysis reliant on these graphs is likely to yield a large number of false
positives. Indeed, recent effortsin this space [5, 13, 14] recognize this and propose complex
conditions to reduce false positives for specific consistency mechanisms, but these works
do not provide any automated methodology to check those conditions on actual programs.
Further, application logic could prevent these harmful structures from manifesting in actual
executions, for example as in TPC-C, which has a harmful structure in its static dependency
graph under SI, but which does not appear in any dynamic dependency graph. In our work,
we precisely model the application logic and the consistency specification using FOL, so that
the solver would automatically derive harmful structures which are possible under the given
consistency specification and search for them in actual dependency graphs taking application
logic into account.

[8] proposes a static analysis for serializability under causal consistency by constructing
actual dependency graphs with cycles using a FOL encoding. While this work is similar to
ours in spirit, their notion of serializability is stronger than ours, since they allow transactions
to be grouped together in sessions, with the serial order forced to accommodate the chosen
session order. While this eases the task of verifying serializability for unbounded executions,
it also results in a large number of harmless serializability violations, for which they propose

CONCUR 2018

41:16 Automated Detection of Serializability Violations Under Weak Consistency

various ad hoc filtering approaches. Further, their focus is on programs operating on high-level
data types rather than SQL programs, and their analysis is not parametric on consistency
specifications.

There are also dynamic anomaly detection techniques [29, 11, 7] which either build
the dependency graphs at run-time and check for cycles, or analyze the trace of events
after execution. These approaches do not provide any guarantee that all anomalies will be
detected, even for bounded executions. A number of approaches have been proposed recently
[25, 19, 21, 15] which attempt to verify that high-level application invariants are preserved
under weak consistency. These approaches are also parametric on consistency specifications,
but they are not completely automated as they require correctness conditions in the form of
invariants from the user, and they do not tackle serializability.

To conclude, in this paper we take the first step towards building a precise, fully automated
static analysis for veifying serializability of database applications under weak consistency.
We leverage the acyclic dependency graph based characterization of serializability and the
framework of abstract executions to develop a FOL based analysis which is parametric on
the consistency specification. We show how our approach can be used to detect bounded
anomalies, and to verify serializability under specific conditions for unbounded executions.
We show the practicality of our approach by successfully applying it on several realistic
database benchmarks.

References

1 Tpc-c benchmark. http://www.tpc.org/tpc_documents_current_versions/pdf/
tpc-c_v5.11.0.pdf. Online; Accessed 20 April 2018.

2 Atul Adya, Barbara Liskov, and Patrick E. O’Neil. Generalized isolation level definitions.
In Proceedings of the 16th International Conference on Data Engineering, San Diego, Cali-
fornia, USA, February 28 - March 3, 2000, pages 67–78, 2000. doi:10.1109/ICDE.2000.
839388.

3 Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. Scalable
atomic visibility with RAMP transactions. ACM Trans. Database Syst., 41(3):15:1–15:45,
2016. doi:10.1145/2909870.

4 Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J. O’Neil, and
Patrick E. O’Neil. A critique of ANSI SQL isolation levels. In Proceedings of the 1995
ACM SIGMOD International Conference on Management of Data, San Jose, California,
May 22-25, 1995., pages 1–10, 1995. doi:10.1145/223784.223785.

5 Giovanni Bernardi and Alexey Gotsman. Robustness against consistency models with
atomic visibility. In 27th International Conference on Concurrency Theory, CONCUR
2016, August 23-26, 2016, Québec City, Canada, pages 7:1–7:15, 2016. doi:10.4230/
LIPIcs.CONCUR.2016.7.

6 Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1987.

7 Lucas Brutschy, Dimitar Dimitrov, Peter Müller, and Martin T. Vechev. Serializability
for eventual consistency: criterion, analysis, and applications. In Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017, pages 458–472, 2017. URL: http://dl.acm.org/citation.
cfm?id=3009895.

8 Lucas Brutschy, Dimitar Dimitrov, Peter Müller, and Martin T. Vechev. Static serializabil-
ity analysis for causal consistency. In Proceedings of the 39th ACM SIGPLAN Conference on

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://dx.doi.org/10.1109/ICDE.2000.839388
http://dx.doi.org/10.1109/ICDE.2000.839388
http://dx.doi.org/10.1145/2909870
http://dx.doi.org/10.1145/223784.223785
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.7
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.7
http://dl.acm.org/citation.cfm?id=3009895
http://dl.acm.org/citation.cfm?id=3009895

K.Nagar and S. Jagannathan 41:17

Programming Language Design and Implementation, PLDI 2018, Philadelphia, PA, USA,
June 18-22, 2018, pages 90–104, 2018. doi:10.1145/3192366.3192415.

9 Sebastian Burckhardt, Daan Leijen, Manuel Fähndrich, and Mooly Sagiv. Eventually con-
sistent transactions. In Programming Languages and Systems - 21st European Symposium
on Programming, ESOP 2012, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012.
Proceedings, pages 67–86, 2012. doi:10.1007/978-3-642-28869-2_4.

10 Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fähndrich. Global
sequence protocol: A robust abstraction for replicated shared state. In 29th European Con-
ference on Object-Oriented Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech
Republic, pages 568–590, 2015. doi:10.4230/LIPIcs.ECOOP.2015.568.

11 Michael J. Cahill, Uwe Röhm, and Alan David Fekete. Serializable isolation for snapshot
databases. ACM Trans. Database Syst., 34(4):20:1–20:42, 2009. doi:10.1145/1620585.
1620587.

12 Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. A framework for transactional
consistency models with atomic visibility. In 26th International Conference on Concurrency
Theory, CONCUR 2015, Madrid, Spain, September 1.4, 2015, pages 58–71, 2015. doi:
10.4230/LIPIcs.CONCUR.2015.58.

13 Andrea Cerone and Alexey Gotsman. Analysing snapshot isolation. In Proceedings of the
2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL,
USA, July 25-28, 2016, pages 55–64, 2016. doi:10.1145/2933057.2933096.

14 Andrea Cerone, Alexey Gotsman, and Hongseok Yang. Algebraic laws for weak consistency.
In 28th International Conference on Concurrency Theory, CONCUR 2017, September 5-8,
2017, Berlin, Germany, pages 26:1–26:18, 2017. doi:10.4230/LIPIcs.CONCUR.2017.26.

15 Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. Seeing is believing: A
client-centric specification of database isolation. In Proceedings of the ACM Symposium
on Principles of Distributed Computing, PODC 2017, Washington, DC, USA, July 25-27,
2017, pages 73–82, 2017. doi:10.1145/3087801.3087802.

16 Alan Fekete. Allocating isolation levels to transactions. In Proceedings of the Twenty-
fourth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
June 13-15, 2005, Baltimore, Maryland, USA, pages 206–215, 2005. doi:10.1145/1065167.
1065193.

17 Alan Fekete, Dimitrios Liarokapis, Elizabeth J. O’Neil, and Patrick E. O’Neil a fnd Dennis
E. Shasha. Making snapshot isolation serializable. ACM Trans. Database Syst., 30(2):492–
528, 2005. doi:10.1145/1071610.1071615.

18 Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002. doi:10.1145/
564585.564601.

19 Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro.
’cause i’m strong enough: reasoning about consistency choices in distributed systems. In
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016,
pages 371–384, 2016. doi:10.1145/2837614.2837625.

20 Sudhir Jorwekar, Alan Fekete, Krithi Ramamritham, and S. Sudarshan. Automating the
detection of snapshot isolation anomalies. In Proceedings of the 33rd International Con-
ference on Very Large Data Bases, University of Vienna, Austria, September 23-27, 2007,
pages 1263–1274, 2007. URL: http://www.vldb.org/conf/2007/papers/industrial/
p1263-jorwekar.pdf.

CONCUR 2018

http://dx.doi.org/10.1145/3192366.3192415
http://dx.doi.org/10.1007/978-3-642-28869-2_4
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.568
http://dx.doi.org/10.1145/1620585.1620587
http://dx.doi.org/10.1145/1620585.1620587
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.58
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.58
http://dx.doi.org/10.1145/2933057.2933096
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2017.26
http://dx.doi.org/10.1145/3087801.3087802
http://dx.doi.org/10.1145/1065167.1065193
http://dx.doi.org/10.1145/1065167.1065193
http://dx.doi.org/10.1145/1071610.1071615
http://dx.doi.org/10.1145/564585.564601
http://dx.doi.org/10.1145/564585.564601
http://dx.doi.org/10.1145/2837614.2837625
http://www.vldb.org/conf/2007/papers/industrial/p1263-jorwekar.pdf
http://www.vldb.org/conf/2007/papers/industrial/p1263-jorwekar.pdf

41:18 Automated Detection of Serializability Violations Under Weak Consistency

21 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan. Alone to-
gether: compositional reasoning and inference for weak isolation. PACMPL, 2(POPL):27:1–
27:34, 2018. doi:10.1145/3158115.

22 Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t
settle for eventual: scalable causal consistency for wide-area storage with COPS. In Proceed-
ings of the 23rd ACM Symposium on Operating Systems Principles 2011, SOSP 2011, Cas-
cais, Portugal, October 23-26, 2011, pages 401–416, 2011. doi:10.1145/2043556.2043593.

23 Madan Musuvathi. Systematic concurrency testing using CHESS. In Proceedings of the
6th Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging, held
in conjunction with the ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2008), PADTAD 2008, Seattle, Washington, USA, July 20-21, 2008,
page 10, 2008. doi:10.1145/1390841.1390851.

24 Kartik Nagar and Suresh Jagannathan. Automated Detection of Serializability Violations
under Weak Consistency (Extended Version). arXiv:1806.08416.

25 K. C. Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. Declarative program-
ming over eventually consistent data stores. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, Portland, OR, USA,
June 15-17, 2015, pages 413–424, 2015. doi:10.1145/2737924.2737981.

26 Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional storage for
geo-replicated systems. In Proceedings of the 23rd ACM Symposium on Operating Systems
Principles 2011, SOSP 2011, Cascais, Portugal, October 23-26, 2011, pages 385–400, 2011.
doi:10.1145/2043556.2043592.

27 Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan, Mar-
cos K. Aguilera, and Hussam Abu-Libdeh. Consistency-based service level agreements
for cloud storage. In ACM SIGOPS 24th Symposium on Operating Systems Principles,
SOSP 13, Farmington, PA, USA, November 3-6, 2013, pages 309–324, 2013. doi:
10.1145/2517349.2522731.

28 Todd Warszawski and Peter Bailis. Acidrain: Concurrency-related attacks on database-
backed web applications. In Proceedings of the 2017 ACM International Conference on
Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017,
pages 5–20, 2017. doi:10.1145/3035918.3064037.

29 Kamal Zellag and Bettina Kemme. Consistency anomalies in multi-tier architectures:
automatic detection and prevention. VLDB J., 23(1):147–172, 2014. doi:10.1007/
s00778-013-0318-x.

30 Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K. Aguilera, and Jinyang
Li. Transaction chains: achieving serializability with low latency in geo-distributed storage
systems. In ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13,
Farmington, PA, USA, November 3-6, 2013, pages 276–291, 2013. doi:10.1145/2517349.
2522729.

http://dx.doi.org/10.1145/3158115
http://dx.doi.org/10.1145/2043556.2043593
http://dx.doi.org/10.1145/1390841.1390851
http://arxiv.org/abs/1806.08416
http://dx.doi.org/10.1145/2737924.2737981
http://dx.doi.org/10.1145/2043556.2043592
http://dx.doi.org/10.1145/2517349.2522731
http://dx.doi.org/10.1145/2517349.2522731
http://dx.doi.org/10.1145/3035918.3064037
http://dx.doi.org/10.1007/s00778-013-0318-x
http://dx.doi.org/10.1007/s00778-013-0318-x
http://dx.doi.org/10.1145/2517349.2522729
http://dx.doi.org/10.1145/2517349.2522729

Effective Divergence Analysis for Linear
Recurrence Sequences
Shaull Almagor
Department of Computer Science, Oxford University, UK
shaull.almagor@cs.ox.ac.uk

Brynmor Chapman
MIT CSAIL
brynmor@mit.edu

Mehran Hosseini
Department of Computer Science, Oxford University, UK
mehran.hosseini@cs.ox.ac.uk

Joël Ouaknine1

Max Planck Institute for Software Systems, Germany &
Department of Computer Science, Oxford University, UK
joel@mpi-sws.org

James Worrell2

Department of Computer Science, Oxford University, UK
jbw@cs.ox.ac.uk

Abstract
We study the growth behaviour of rational linear recurrence sequences. We show that for low-
order sequences, divergence is decidable in polynomial time. We also exhibit a polynomial-time
algorithm which takes as input a divergent rational linear recurrence sequence and computes
effective fine-grained lower bounds on the growth rate of the sequence.

2012 ACM Subject Classification Computing methodologies → Algebraic algorithms, Theory
of computation → Logic and verification

Keywords and phrases Linear recurrence sequences, Divergence, Algebraic numbers, Positivity

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.42

Related Version The full version of this paper can be found at https://arxiv.org/abs/1806.
07740.

1 Introduction

Linear recurrence sequences (LRS), such as the Fibonacci numbers, permeate a wide range of
scientific fields, from economics and theoretical biology to computer science and mathematics.
In computer-aided verification, for example, LRS techniques play a key rôle in the termination
analysis of a large class of simple while loops – see [17] for a short survey on this topic.
Likewise, the ergodic behaviour of Markov chains in probability theory [1], or the stability of
supply-and-demand price equilibria in laggy markets in economics (the so-called “cobweb

1 Supported by ERC grant AVS-ISS (648701)
2 Supported by EPSRC Fellowship EP/N008197/1

© Shaull Almagor, Brynmor Chapman, Mehran Hosseini, Joël Ouaknine, and James Worrell;
licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).
Editors: Sven Schewe and Lijun Zhang; Article No. 42; pp. 42:1–42:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shaull.almagor@cs.ox.ac.uk
mailto:brynmor@mit.edu
mailto:mehran.hosseini@cs.ox.ac.uk
mailto:joel@mpi-sws.org
mailto:jbw@cs.ox.ac.uk
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.42
https://arxiv.org/abs/1806.07740
https://arxiv.org/abs/1806.07740
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

42:2 Effective Divergence Analysis for Linear Recurrence Sequences

model”) [3] can be analysed through an examination of the asymptotic behaviour of certain
types of LRS; in particular, instability of price equilibria corresponds precisely to divergence
of the associated LRS.

In this paper, we undertake a systematic and fine-grained analysis of the growth behaviour
of rational linear recurrence sequences from the point of view of effectiveness and complexity.
In order to describe our main results, we first require some preliminary definitions. A
sequence of real numbers u = 〈u〉∞n=1 is said to satisfy a linear recurrence of order k if there
are real numbers a1, . . . , ak+1 such that

un+k = a1un+k−1 + · · ·+ ak−1un+1 + akun + ak+1 (1)

for all n ∈ N. Such a recurrence is said to be homogeneous if ak+1 = 0 and inhomogeneous if
ak+1 6= 0. The characteristic polynomial of the recurrence is

p(x) := xk − a1x
k−1 − · · · − ak−1x− ak .

The zeros of p are called the characteristic roots. A characteristic root of maximum modulus
is said to be dominant and its modulus is the dominant modulus. The multiplicity of a
characteristic root γ is the maximal m ∈ N such that (x− γ)m divides p(x).

An LRS is said to be rational if it consists of rational numbers, integral if it consists
of integers, and algebraic if it consists of algebraic numbers. An LRS is simple if all of its
characteristic roots have multiplicity 1, and is non-degenerate if no ratio of two distinct
characteristic roots is a root of unity.3

We say that an LRS u diverges to ∞ if limn→∞ un = ∞ (technically speaking: for all
T ∈ N, there exists N ∈ N such that, for all n ≥ N , we have un ≥ T). We also say that u is
absolutely divergent (or diverges in absolute value) if limn→∞ |un| =∞.

The LRS u is said to be positive if un ≥ 0 for all n ≥ 1, and ultimately positive if there is
some N ∈ N such that un ≥ 0 for all n ≥ N .

A celebrated result from the 1930s, the Skolem-Mahler-Lech theorem (see [9]), implies
that all non-degenerate integral LRS are absolutely divergent. This statement is however
non-effective in a very basic sense: given a finite representation of a non-degenerate integral
LRS u, there is no known algorithm to compute a bound N such that un 6= 0 for n ≥ N . It
is also worth pointing out that the divergence assertion fails in general for non-integral LRS.

The question of the so-called rate of absolute divergence for non-degenerate integral LRS
was subsequently extensively studied; see [9, Sec. 2.4] for an account of some of the key
results accumulated over the last several decades. To begin with, a fairly straightforward
fact is the following: if u is an algebraic LRS of order k with dominant modulus ρ, then
there is an effectively computable constant a such that, for all n ≥ 1, |un| ≤ aρnnk. In the
1970s, a conjecture was formulated to the effect that any non-degenerate integral LRS has,
essentially, the maximal possible growth rate (see the next theorem for a precise statement).
The conjecture was finally settled positively independently by Evertse [10] and by van der
Poorten and Schlickewei [21]:

I Theorem 1. For any non-degenerate algebraic LRS u of dominant modulus ρ > 1, and
any ε > 0, there exists a constant N such that, for all n ≥ N , we have |un| ≥ ρ(1−ε)n.

3 For most practical purposes – and certainly for all of the computational tasks considered in this paper –
LRS can be assumed to be non-degenerate, since any degenerate LRS can be effectively decomposed
into a finite number of non-degenerate LRS; moreover this reduction can be carried out in polynomial
time for rational LRS of bounded order [9, 14].

S. Almagor, B. Chapman, M. Hosseini, J. Ouaknine, and J. Worrell 42:3

This is a highly non-trivial result making use of deep number-theoretic tools concerning
bounds on the sum of S-units. Unfortunately, the proof is not effective, in the sense that
given ε > 0, it does not provide estimates for the corresponding value of N . This effectiveness
issue is described as “an important open problem” in [9], where it is furthermore suggested
that any progress on the matter would likely hinge upon substantial improvements of deep
number-theoretic results, such as Roth’s theorem, the prospects of which currently appear to
be remote.

Nevertheless – and in particular for algorithmic applications in computer science –
effectiveness is of central importance. The sharpest known results in this vein are due
to Mignotte [12] as well as Shorey and Stewart [19], capping a long line of work in this area:

I Theorem 2. For any homogeneous non-degenerate integral LRS u of order at most 3 with
dominant modulus ρ, there are effective constants a and d such that, for all n ≥ 1, we have
|un| ≥ aρn

nd
.

For most problems in computer science and automated verification, such as the analysis
of the long-run behaviour of dynamical systems or the termination of linear while loops,
the primary notion of divergence is clearly much more relevant than that of ‘divergence in
absolute value’. In view of the above results, however, one might expect that little could be
said about effective rates of divergence. Somewhat surprisingly, divergence does turn out to
be significantly more tractable than absolute divergence. At a high level, the main results of
this paper can now be summarised as follows:

Given a rational LRS u, homogeneous or inhomogeneous, either of order at
most 5, or, if the LRS is simple, of order at most 8, we can carry out the
following tasks in polynomial time:

decide if u diverges to ∞ or not; and
in divergent instances, provide effective fine-grained lower bounds on the
rate of divergence of u.

The precise statements can be found in Theorems 12 and 13. The most obvious contrast
in comparison with Theorem 2 is the higher order of LRS that can be handled effectively (5
and 8 versus 3). It is also worth noting, however, that our results apply more generally to
rational (as opposed to integral) LRS, and that we can handle inhomogeneous sequences at no
cost – this is remarkable in that the folklore wisdom usually broadly equates inhomogeneous
LRS of order k with homogeneous LRS of order k + 1 (this assertion, as well as the manner
in which we circumvent it, are made precise in the main body of the paper).

Finally, let us point out that our analysis of divergence rates relies, among others, on
improvements to results concerning the positivity and ultimate positivity of LRS, which
were originally developed in [15, 14, 16]. As a by-product, therefore, stronger results on the
Positivity and Ultimate Positivity Problems – notably dealing with inhomogeneous LRS –
can be found in the present paper, in particular in the form of Theorems 19 and 20.

2 Preliminaries

2.1 Linear Recurrence Sequences
Let us start by reformulating the notion of linear recurrence more abstractly as follows.
Define the shift operator E : RN → RN by E(f)(n) = f(n+ 1) for a sequence f ∈ RN. The
polynomial ring R[E] acts on the set of sequences RN on the left in a natural way, turning

CONCUR 2018

42:4 Effective Divergence Analysis for Linear Recurrence Sequences

RN into a left R[E] module. Then a sequence u = 〈u〉∞n=1 satisfies the recurrence equation (1)
if and only if p(E) · u = ak+1 · 1, where p is the characteristic polynomial of the recurrence
and 1 is the all-ones sequence.

The following homogenization construction is well known.

I Proposition 3. Let u = 〈un〉∞n=1 satisfy an inhomogeneous linear recurrence of order k.
Then u satisfies a homogeneous recurrence of order k + 1.

Proof. By assumption we have that p(E) ·u = c for some monic polynomial p(x) of degree k
and constant sequence c. Writing q(x) = (x− 1)p(x), we have q(E) ·u = (E − 1) · c = 0. J

We have the following partial converse to Proposition 3.

I Proposition 4. Let u = 〈un〉∞n=1 satisfy a homogeneous linear recurrence of order k + 1
with a positive real characteristic root ρ. Then the sequence v = 〈vn〉∞n=1 defined by vn = un

ρn

satisfies an inhomogeneous linear recurrence of order k.

Proof. By assumption, u satisfies the recurrence f(E) · u = 0 for some monic polynomial
f(x) ∈ R[x] of degree k + 1 that has a positive real root ρ. Define a sequence v = 〈vn〉∞n=1
by vn := un

ρn for all n ∈ N. Then v satisfies the recurrence g(E) · v = 0 where g is the monic
polynomial g(x) = ρ−(k+1)f(ρx).

But g(1) = 0 and hence we have the factorization g(x) = (x − 1)h(x) for some monic
polynomial h(x) ∈ R[x]. It follows that (E − 1)h(E) · v = 0 and hence h(E) · v is constant,
i.e., v satisfies an inhomogeneous recurrence of order k. J

Let ‖u‖ denote the binary representation length4 of u. We remark that the transforma-
tions back and forth between homogeneous and inhomogeneous LRS can be carried out in
polynomial time in ‖u‖ if the given LRS have real algebraic coefficients. For an inhomogen-
eous LRS u of order k, we refer to the corresponding homogeneous LRS obtained as per
Proposition 3 as the homogenization of u, denoted hom(u). The proof of Proposition 3 gives
us the following useful property.

I Property 5. The characteristic roots of hom(v) are the same as those of v, with the same
multiplicities, except for the characteristic root 1, which always occurs in hom(v), and whose
multiplicity is m+ 1, where m is the multiplicity of 1 in v.

Consider an LRS u with integer coefficients. Then, since the characteristic polynomial p
of an LRS u has integer coefficients, the characteristic roots of u comprise real-algebraic roots
{ρ1, . . . , ρd}, and conjugate pairs of complex-algebraic roots {γ1, γ1, . . . , γm, γm}. There are
now univariate polynomials A1, . . . , Ad ∈ with real-algebraic coefficients and C1, . . . , Cm with
complex-algebraic coefficients such that, for every n ≥ 0,

un =
d∑
i=1

Ai(n)ρni +
m∑
j=1

(Cj(n)γn + Cj(n)γn)

This expression is referred to as the exponential polynomial solution of u. The degree of
each of the polynomials is strictly smaller than the multiplicity of the corresponding root.
For a fixed order k, the coefficients appearing in the polynomials can be computed in time
polynomial in ‖u‖.

4 In general, we denote by ‖·‖ the binary-representation length of objects.

S. Almagor, B. Chapman, M. Hosseini, J. Ouaknine, and J. Worrell 42:5

We now turn to present two results regarding the asymptotic analysis of LRS.
The following result due to Braverman [5] enables us to reason about the complex part

of the exponential polynomial above.

I Lemma 6 (Complex Units Lemma). Let ζ1, ζ2, . . . , ζm ∈ S1\{1} be distinct complex numbers
(where S1 = {z ∈ C : |z| = 1}), and let α1, α2, . . . , αm ∈ C\{0}. Set zn :=

∑m
k=1 αkζ

n
k . Then

there exists c < 0 such that for infinitely many n, Re (zn) < c.

In particular, Lemma 6 immediately implies that an LRS without a real dominant character-
istic root, is neither positive, ultimately positive, nor divergent.

Finally, the following proposition from [14] allows us to bound the growth rate of the
low-order terms in the exponential polynomial of an LRS.

I Proposition 7. Consider an LRS u = 〈un〉∞n=1 of bounded order, with dominant modulus
ρ, and write

un
ρn

= A(n) +
m∑
i=1

(
Ci(n)λni + Ci(n)λni

)
+ r(n)

where A is a real polynomial, Ci are non-zero complex polynomials, ρλi and ρλi are conjugate
pairs of non-real dominant roots of u, and r is an exponentially decaying function.

We can compute in polynomial time ε ∈ (0, 1) and N ∈ N such that

1
ε

= 2‖u‖
O(1)

,

N = 2‖u‖
O(1)

,

for all n > N, |r(n)| < (1− ε)n .

2.2 Mathematical Tools
In this section we introduce several tools that will be used throughout the paper.

Algebraic Numbers. A complex number α is algebraic if it is a root of a polynomial p ∈ Z[x].
The defining polynomial of α is the unique monic polynomial of minimal degree that has α as
a root, and is denoted pα. The degree and the height of α are the degree and the height (i.e.,
maximum absolute value of the coefficients) of pα, respectively. An algebraic number α can
be represented by a polynomial that has α as a root, along with an approximation of α by a
complex number with rational real and imaginary parts. We denote by ‖α‖ the representation
length of α. Basic arithmetic operations as well as equality testing and comparisons for
algebraic numbers can be carried out in polynomial time (see [4, 7] for efficient algorithms).

The following lemma from [15] is a consequence of the celebrated lower bound for linear
forms in logarithms due to Baker and Wüstholz [2].

I Lemma 8. There exists D ∈ N such that, for all algebraic numbers λ, ζ ∈ C of modulus 1,
and for all n ≥ 2, if λn 6= ζ, then |λn − ζ| > 1

n(‖λ‖+‖ζ‖)D .

Multiplicative Relations. Multiplicative relations between characteristic roots of an LRS
play a key role in our analysis. The following result, due to Masser [11] enables us to
efficiently elicit these relationships.

CONCUR 2018

42:6 Effective Divergence Analysis for Linear Recurrence Sequences

I Theorem 9. Let m be fixed, and let λ1, . . . , λm be complex algebraic numbers of modulus 1.
Let L = {(v1, . . . , vm) ∈ Zm : λv1

1 · · ·λvmm = 1} be the group of multiplicative relations between
the λi. L has a basis {`1, . . . , `p} ⊆ Zm (with p ≤ m), where the entries of each of the `j
are all polynomially bounded in ‖λ1‖+ . . .+ ‖λm‖. Moreover, such a basis can be computed
in time polynomial in ‖λ1‖+ . . .+ ‖λm‖.

The First-Order Theory of the Reals. A sentence in the first-order theory of the reals is
of the form Q1x1 · · ·Qmxmϕ(x1, . . . , xm) where each Qi is a quantifier (∃ or ∀), each xi is
a real valued variable, and ϕ is a boolean combination of atomic predicates of the form
p(x1, . . . , xm) ∼ 0 for some p ∈ Z[x1, . . . , xm] and ∼∈ {>,=}. The first-order theory of the
reals admits quantifier elimination, a famous result due to Tarski [20], whose procedure
unfortunately has non-elementary complexity. In this paper we consider only the case where
the number of variables is uniformly bounded. Then, we can invoke the following result due
to Renegar [18].

I Theorem 10 (Renegar). Let M ∈ N be fixed. Let τ(y) be a formula of the first order
theory of the reals. Assume that the number of (free and bound) variables in τ(y) is bounded
by M . Denote the degree of τ(y) by d and the number of atomic predicates in τ(y) by n.

There is a polynomial time (polynomial in ‖τ(y)‖) procedure which computes an equivalent
quantifier-free formula

χ(y) =
I∨
i=1

Ji∧
j=1

hi,j(y) ∼i,j 0

where each ∼i,j is either > or =, with the following properties:
1. Each of I and Ji (for 1 ≤ i ≤ I) is bounded by (n+ d)O(1).
2. The degree of χ(y) is bounded by (n+ d)O(1).
3. The height of χ(y) is bounded by 2‖τ(y)‖(n+d)O(1) .

Asymptotic Analysis. We conclude this section with the following simple lemma from [15].

I Proposition 11. Let a ≥ 2 and ε ∈ (0, 1) be real numbers. Let B ∈ Z[x] have degree at most
aD1 and height at most 2aD2 , and assume that 1/ε ≤ 2aD3 for some D1, D2, D3 ∈ N. Then
there is D4 ∈ N depending only on D1, D2, D3 such that for all n ≥ 2aD4 , 1

B(n) > (1− ε)n.

3 Divergence

Recall from Theorem 1 that an LRS u with dominant modulus ρ necessarily diverges in
absolute value if ρ > 1. More precisely, if ρ > 1 then given ε > 0 there exists a threshold N
such that |un| > ρ(1−ε)n for all n > N . However this result is ineffective – it is not known
how to compute N given u and ε.

In this section we derive effective divergence bounds for sequences that diverge to ∞ (i.e.,
sequences that both diverge in absolute value and that are ultimately positive). The bounds
on divergence have the following form: for a divergent sequence u with dominant modulus
ρ = 1 we aim to show that for every n > N , un > and for effective constants a > 0, d ∈ N,
and N ∈ N. In case of a dominant modulus ρ > 1 we aim to show that for every n > N ,

S. Almagor, B. Chapman, M. Hosseini, J. Ouaknine, and J. Worrell 42:7

un >
aρn

nd
for effective constants a > 0, d ∈ N, and N ∈ N. Henceforth we refer to bounds of

these respective forms as divergence bounds.5

In Section 3.1, we show how to compute effective divergence bounds of LRS up to certain
orders. Then, in Section 3.2, we provide hardness results for the decidability of divergence.

3.1 Effective Divergence is Solvable

In this section we prove the following theorems:

I Theorem 12. There is a polynomial-time procedure that given a rational LRS of order at
most 5 decides whether it diverges and, in case of divergence, outputs divergence bounds.

I Theorem 13. There is a polynomial-time procedure that, given a simple rational LRS of
order at most 8, decides whether it diverges and, in case of divergence, outputs divergence
bounds.

The proofs of Theorems 12 and 13 build on techniques developed in [15, 14, 16], using a
fine-grained analysis in the results thereof, along with some new ideas. To avoid unnecessary
repetition, we sketch the main ideas of the proofs simultaneously.

Consider an LRS u of order k. For uniformity, if u is inhomogeneous, we homogenize it
as per Proposition 3. Thus, either k ≤ 6 or u is simple and k ≤ 9, where if k = 6 or if u is
simple and k = 9, then u has a special structure according to Property 5.

As mentioned in Section 1, we can assume without loss of generality that u is non-
degenerate. Let ρ be the dominant modulus of u, we also note that if ρ < 1, then |un| → 0
as n → ∞, and in particular the sequence does not diverge. Thus, we may assume ρ ≥ 1.
In addition, by Lemma 6, if u does not have a real positive dominant root, then un 6→ ∞.
Thus, we may assume a real positive dominant characteristic root ρ. Note that all other
dominant roots must be complex, and come in conjugate pairs, since if −ρ were a root, then
u would be degenerate.

Writing un as an exponential polynomial and dividing by ρn, we have

un
ρn

= A(n) +
m∑
i=1

(
Ci(n)λni + Ci(n)λni

)
+ r(n) (2)

where A is a real polynomial, Ci are non-zero complex polynomials, ρλi and ρλi are con-
jugate pairs of non-real dominant characteristic roots of u (so |λi| = 1), and r(n) is an
exponentially decaying function (possibly identically zero). More precisely, the degree of
each of A(n), C1(n), . . . , Cm(n) is strictly smaller than the multiplicity of the corresponding
characteristic root. We can assume that either A(n) 6≡ 0 or m 6= 0. Indeed, otherwise we can
consider the LRS 〈ρnr(n)〉∞n=1, which is of lower order than u.

In the following, if A(n) (resp. Ci(n) for some 1 ≤ i ≤ m) is a constant, we denote it by
A (resp. Ci).

We proceed to decide divergence by a case analysis of Equation (2).

5 Note that not only do we seek effective divergence bounds, but also that these bounds are asymptotically
tighter than the bounds from Theorem 1 since for any fixed d > 0, it is clear that aρn/nd eventually
dominates ρ(1−ε)n for any ε > 0.

CONCUR 2018

42:8 Effective Divergence Analysis for Linear Recurrence Sequences

Case 1: ρ = 1 and A(n) = A is a constant

Note that in this case, unρn = un. Since A is a constant, then it does not affect the divergence of

u. We claim that un 6→ ∞. Indeed, by Lemma 6, the expression
∑m
i=1

(
Ci(n)λni + Ci(n)λni

)
becomes negative infinitely often (regardless of whether Ci(n) are constants or polynomials),
whereas the effect of r(n) is exponentially decreasing. Thus, u does not diverge.

Case 2: ρ = 1, A(n) is not a constant, and every Ci is a constant

In this case we can rewrite Equation (2) as

un = A(n) +
m∑
i=1

(
Ciλ

n
i + Ciλ

n

i

)
+ r(n) (3)

Since |λi| = 1 for all i, and since r(n) is exponentially decreasing, then clearly un →∞ iff
the leading coefficient of A(n) is positive.

Recall that since ρ = 1, then if u diverges, there exist N, d ∈ N and a > 0 such that
un ≥ and for all n > N . We now show how to effectively compute N , d, and a.

From Proposition 7, we can compute in polynomial time ε ∈ (0, 1) and N1 ∈ N such that
r(n) < (1− ε)n < 1 for all n > N1. We thus have that un ≥ A(n)− 2

∑m
i=1 |Ci| − 1, and we

can easily compute N2 ∈ N and a ∈ Q (depending on the coefficients of A(n)) such that for
all n > N2 we have A(n) − 2

∑m
i=1 |Ci| − 1 ≥ and, where d is the degree of A(n). Taking

N = max {N1, N2}, we conclude this case.

Case 3: ρ = 1, A(n) is not a constant, and there exists a non-constant Ci(n)

We notice that if there exists a non-constant Ci(n), it follows by Property 5 that u is not
obtained by homogenizing a simple LRS. That is, we are in the case where k ≤ 6. In the
notations of Equation (2), we then have that m = 1, A(n) is linear, C1(n) is linear, and
r(n) ≡ 0. Indeed, this corresponds to the case where the characteristic roots of un are 1, λ, λ,
each with multiplicity 2. Let A(n) = a1n+ b1 and C1(n) = a2n+ b2, then we can write

un = a1n+ b1 + (a2n+ b2)λn + (a2n+ b2)λn = n(a1 + a2λ
n + a2λn) + (b1 + b2λ

n + b2λn)

Since |(b1 + b2λ
n + b2λn)| is bounded, then un diverges iff n(a1 + a2λ

n + a2λn) diverges. Let
θ = arg λ and ϕ = arg a2. We have n(a1 + a2λ

n + a2λn) = n(a1 + 2|a2| cos(nθ + ϕ)).
Observe that since u is non-degenerate, then θ is not a rational multiple of π. It follows

that {[nθ + ϕ]2π : n ∈ N} (where [x]2π = x − 2πj where j is the unique integer such that
0 ≤ x− 2πj < 2π) is dense in [0, 2π), so {cos(nθ + ϕ) : n ∈ N} is dense in [−1, 1]. Again, we
split into cases.

If a1 > 2|a2|, we have that un diverges. Then, we can compute in polynomial time a
rational ε > 0 and N ∈ N such that a1 − 2|a2| > ε and n(a1 + 2|a2|)− (b1 − 2|b2|) > εn

for all n > N . We then have that un > εn for all n > N , thus concluding effective
decidability of divergence in this case.
If a1 < 2|a2|, then un does not diverge, as it becomes negative infinitely often, by the
density argument above.
The remaining case is when a1 = 2|a2|, and the expression above becomes na1(1+cos(nθ+
ϕ)). We show that in this case, un does not diverge.

S. Almagor, B. Chapman, M. Hosseini, J. Ouaknine, and J. Worrell 42:9

By Taylor approximation, for every x ∈ (−π, π] it holds that 1− cos(x) ≤ x2

2 . For n ∈ N,
write Λ(n) = nθ+ϕ− (2j+ 1)π, where j ∈ Z is the unique integer such that −π < Λ(n) ≤ π.
We now have that

na1(1 + cos(nθ + ϕ)) = na1(1− cos(nθ + ϕ+ π)) = na1(1− cos(Λ(n))) < na1
Λ(n)2

2 .

By Dirichlet’s Approximation Theorem, we have that |Λ(n)| < t
n for infinitely many values

of n, where t is a constant depending on ϕ. Thus, we have na1
Λ(n)2

2 < a1t
2

2n for infinitely
many values of n. It follows that un is infinitely often bounded by a constant, so it does not
diverge.

Case 4: ρ > 1 and there exists a non-constant Ci(n)

As in Case 3, it holds that k ≤ 6. Moreover, since ρ > 1, then whether or not u was obtained
by homogenization, the characteristic root 1 (if it exists) is captured in r(n). Therefore, we
have that m = 1, C1 is linear, and A(n) = A is constant. Let C1 have leading coefficient
b 6= 0. By Lemma 6, there exists ε > 0 such that bλn + bλ

n
< −ε infinitely often. Then

C1(n)λn1 + C1(n)λn1 (and hence un) is unbounded below, so un does not diverge.

Case 5: ρ > 1, A(n) is not a constant, and every Ci is a constant

Since A(n) is not a constant and ρ > 1, this case may only arise for k ≤ 6 and m ≤ 1. We
write

un
ρn

= A(n) + C1λ
n
1 + C1λ

n

1 + r(n).

where if m = 0 then take C1 = 0.
If A(n) has a negative leading coefficient, then un is unbounded from below, and in

particular un does not diverge.
If A(n) has a positive leading coefficient, we can compute in polynomial time N0 ∈ N

and a rational ε0 > 0 such that A(n) − 2|C1| > 2ε0 for all n > N0. By Proposition 7, we
can also compute in polynomial time N1 ∈ N and ε1 ∈ (0, 1) such that |r(n)| < (1− ε1)n for
all n > N1. Taking N2 ≥ log1−ε1 ε0, we have that for all n > max {N0, N1, N2}, |r(n)| < ε0,
and thus

un
ρn
≥ A(n)− 2|C1|+ r(n) ≥ A(n)− 2|C1| − ε0 > 2ε0 − ε0 = ε0 .

Thus we have un ≥ ε0ρ
n for all n > max {N0, N1, N2}, which immediately yields effective

divergence bounds in this case.

Case 6: ρ > 1, A(n) = A is a constant, and every Ci is a constant

This case is the most involved, and utilizes deep mathematical results. Our proof works
along the lines of [16]. For completeness, the full proof can be found in the full version.

We rewrite Equation (2) as

un
ρn

= A+
m∑
i=1

(
Ciλ

n
i + Ciλ

n

i

)
+ r(n) (4)

Observe that m ≤ 3. Indeed, if k ≤ 8 this is trivial, and if k = 9 then by Property 5, 1
must be a non-dominant characteristic root of u, so r(n) 6≡ 0 and thus m ≤ 3.

CONCUR 2018

42:10 Effective Divergence Analysis for Linear Recurrence Sequences

In the following, we handle the case m = 3. The cases where m < 3 are similar and
slightly simpler.

Let L =
{

(v1, . . . , v3) ∈ Z3 : λv1 · · ·λv3 = 1
}
, and let {`1, . . . , `p} be a basis for L of

cardinality p. Write `q = (`q,1, . . . , `q,3) for 1 ≤ q ≤ p. From Theorem 9, such a basis can be
computed in polynomial time, and moreover – each `q,j may be assumed to have magnitude
polynomial in ‖u‖.

Consider the set T = {(z1, z2, z3) ∈ C3 : |z1| = |z2| = |z3| = 1 and for each 1 ≤ q ≤ p,

z
`q,1
1 z

`q,2
2 z

`q,3
3 = 1}.

Define h : T→ R by setting h(z1, z2, z3) =
∑3
i=1(Cizi + Cizi), so that for every n ∈ N,

un
ρn = A + h(λn1 , λn2 , λn3) + r(n). By Kronecker’s theorem on inhomogeneous Diophantine
approximation [6], the set {λn1 , λn2 , λn3 : n ∈ N} is a dense subset of T. Since h is continuous,
it follows that inf {h(λn1 , λn2 , λn3) : n ∈ N} = min h|T = µ for some µ ∈ R.

In the full proof, we show that µ is algebraic, computable in polynomial time, with
‖µ‖ = ‖u‖O(1).

We now split to cases according to the sign of A+ µ.
If A+ µ < 0, then u is infinitely often negative, and does not diverge.
If A+ µ > 0, then u diverges, and we obtain an effective bound similarly to Case 5.
It remains to analyze the case where A+µ = 0. To this end, let λj = eiθj and Cj = |Cj |eiϕj
for 1 ≤ j ≤ 3. From Equation (4) we have

un
ρn

= A+
3∑
j=1

2|Cj | cos(nθj + ϕj) + r(n).

We further assume that all the Cj are non-zero. Indeed, if this does not hold, we can recast
our analysis in lower dimension.

In the full proof, we use zero-dimensionality results to show that h achieves its minimum
µ over T only at a finite set of points Z = {(ζ1, ζ2, ζ3) ∈ T : h(ζ1, ζ2, ζ3) = µ}.

We concentrate on the set Z1 of first coordinates of Z. Write

τ1(x) = ∃z1(Re(z1) = x ∧ z1 ∈ Z1)
τ2(y) = ∃z1(Im(z1) = y ∧ z1 ∈ Z1)

By rewriting these formulas in the first order theory of the reals, we are able to show, using
Theorem 10, that any ζ1 = x̂+ iŷ ∈ Z1 is algebraic, and moreover satisfies ‖ζ1‖ = ‖u‖O(1).
In addition, we show that the cardinality of Z1 is at most polynomial in ‖u‖.

Since λ1 is not a root of unity, for each ζ1 ∈ Z1 there is at most one value of n such that
λn1 = ζ1. Theorem 9 then entails that this value (if it exists) is at most M = ‖u‖O(1), which
we can take to be uniform across all ζ1 ∈ Z1. We can now invoke Corollary 8 to conclude
that, for n > M , and for all ζ1 ∈ Z1, we have

|λn1 − ζ1| >
1

n‖u‖
D (5)

where D ∈ N is some absolute constant.
Let b > 0 be minimal such that the set{
z1 ∈ C : |z1| = 1 and, for all ζ1 ∈ Z1, |z1 − ζ1| ≥

1
b

}
is non empty. Thanks to our bounds on the cardinality of Z1, we can use the first-order theory
of the reals, together with Theorem 10, to conclude that b is algebraic and ‖b‖ = ‖u‖O(1).

S. Almagor, B. Chapman, M. Hosseini, J. Ouaknine, and J. Worrell 42:11

Define the function g : [b,∞)→ R as follows:

g(x) = min
{
h(z1, z2, z3)− µ : (z1, z2, z3) ∈ T and for all ζ1 ∈ Z1, |z1 − ζ1| ≥

1
x

}
.

In the full proof we show that we can compute in polynomial time a polynomial P ∈ Z[x]
such that, for all x ∈ [b,∞),

g(x) ≥ 1
P (x) (6)

with ‖P‖ = ‖u‖O(1)

By Proposition 7 we can find ε ∈ (0, 1) and N = 2‖u‖O(1) such that for all n > N , we
have |r(n)| < (1− ε)n, and moreover 1/ε = 2‖u‖O(1) . In addition, by Proposition 11, there is
N ′ = 2‖u‖O(1) such that for every n ≥ N ′

1
2P (n‖u‖D)

> (1− ε)n. (7)

Combining Equations (4)–(7), we get

un
ρn

= A+ h(λn1 , λn2 , λn3) + r(n) ≥ −µ+ h(λn1 , λn2 , λn3)− (1− ε)n ≥ g(n‖u‖
D

)− (1− ε)n

≥ 1
P (n‖u‖D)

− (1− ε)n = 1
2P (n‖u‖D)

+ 1
2P (n‖u‖D)

− (1− ε)n ≥ 1
2P (n‖u‖D)

provided n > max {M,N,N ′}. We thus have that un
ρn is eventually lower bounded by an

inverse polynomial and hence we have effective divergence bounds in this case.
Finally, Cases 1–6 allow us to conclude both Theorem 12 and Theorem 13.

3.2 Hardness of Divergence

We now turn to show lower bounds for the divergence problem. Surprisingly, our lower
bounds hold already for homogeneous LRS, and for the divergence decision problem, even
without requiring effectively computable bounds.

In [14], it is shown that the Ultimate Positivity problem for homogeneous LRS of order at
least 6 is hard, in the sense that if Ultimate Positivity is decidable for such LRS, then certain
hard open problems in Diophantine approximation become solvable. We show hardness of
divergence for homogeneous LRS of order at least 6 by reducing from Ultimate Positivity.

I Theorem 14. Ultimate Positivity is reducible to Divergence.

Proof. We show a reduction from the Ultimate Positivity problem for non-degenerate LRS
of order 6, shown to be hard in [14]. The key ingredient in the reduction is Theorem 1.

Consider a non-degenerate homogeneous LRS 〈un〉 of order 6 with dominant modulus ρ,
and let µ = max

{
2, 2

ρ

}
, then the sequence vn = µnun is a non-degenerate homogeneous LRS

of order 6 with dominant modulus µρ ≥ 2. By Theorem 1, taking ε = 1
2 , it follows that there

exists N ∈ N such |vn| ≥ 2n/2 for every n > N . It immediately follows that vn is ultimately
positive iff vn → ∞. Clearly, however, vn and un have the same sign, and therefore un is
ultimately positive iff vn diverges, and we are done. J

CONCUR 2018

42:12 Effective Divergence Analysis for Linear Recurrence Sequences

4 Positivity and Ultimate Positivity

In this section we study the Positivity and Ultimate Positivity problems for inhomogeneous
LRS. These problems were studied in [14, 15, 16] for homogeneous LRS. Using Proposition 3
and some careful analysis, we extend the decidability results to the inhomogeneous case.

We start by citing some results from [14, 15, 16], split to upper and lower bounds.

I Theorem 15 (Upper Bounds from [14, 15, 16]).
1. Positivity and Ultimate Positivity are decidable for homogeneous LRS of order 5 or less

with complexities in coNPPosSLPand PTIME, respectively.
2. Positivity is decidable for simple homogeneous LRS or order 9 or less with complexity in

coNPPosSLP.
3. Ultimate Positivity is decidable for simple homogeneous LRS of any order with complexity

in PTIME.
4. Effective Ultimate Positivity is solvable for simple homogeneous LRS of order 9 or less

with complexity in PTIME.

The following notion of hardness will be made precise in Section 4.2.

I Theorem 16 (Lower Bounds from [14, 15, 16]). Positivity and Ultimate Positivity for
LRS of order at least 6 are hard with respect to certain hard open problems in Diophantine
approximation.

4.1 Upper Bounds
We proceed to prove analogous results to Theorem 15 for inhomogeneous LRS.

Theorem 15(1.) along with Proposition 3 readily give us the following:

I Theorem 17. Positivity and Ultimate Positivity are decidable for inhomogeneous LRS of
order 4 or less, with complexity in coNPPosSLP.

For simple LRS, things become more involved, as Proposition 3 does not preserve simplicity.
However, Property 5 shows that simplicity is almost preserved, up to the multiplicity of
the characteristic root 1. As we now show, this is sufficient to obtain upper bounds for
inhomogeneous simple LRS.

We start by addressing effective Ultimate Positivity, which we then use for addressing
Positivity.

I Theorem 18. Effective Ultimate Positivity is solvable in polynomial time for simple
inhomogeneous LRS of order 8 or less.

Proof. Let v be a simple, non-degenerate, inhomogeneous LRS or order 8 or less, and
consider the homogeneous LRS u = hom(v). By Proposition 3, u is of order at most 9. If
u is a simple LRS, then by [15] we can effectively decide its Ultimate Positivity. We hence
assume that u is not simple.

By Property 5, it follows that the characteristic roots of u all have multiplicity 1, apart
from the characteristic root 1 which has multiplicity 2. Consider the dominant modulus ρ of
u. If ρ > 1, then by writing the exponential polynomial of u, we have

un
ρn

= a+
m∑
i=1

(ciλni + ciλni) + r(n) (8)

S. Almagor, B. Chapman, M. Hosseini, J. Ouaknine, and J. Worrell 42:13

with a ∈ R, ci ∈ C \ R and |λi| = 1 for every 1 ≤ i ≤ m, and |r(n)| exponentially decaying.
Crucially, since 1 is not a dominant characteristic root, its effect is enveloped in r(n).
Specifically, we observe that the analysis of effective Ultimate Positivity in [15] only relies
on Proposition 7. Since this holds in the case at hand, we can effectively decide Ultimate
Positivity when 1 is not a dominant characteristic root.

Finally, if 1 is a dominant characteristic root, the exponential polynomial of u can be
written as

un = A(n) +
m∑
i=1

(ciλni + ciλni) + r(n). (9)

We observe that in this case, un is ultimately positive iff it diverges (indeed, clearly |un| → ∞).
Thus, we can reduce the problem to divergence, and proceed with the analysis as in Section 3
Case 2.

This concludes the proof that Ultimate Positivity is effectively decidable for simple
inhomogeneous LRS of order at most 8. J

Similarly to Theorem 18, we are able to conclude the following result, whose proof can
be found in the full version.

I Theorem 19. Ultimate Positivity is decidable in polynomial time for simple inhomogeneous
LRS of any order.

Finally, using Theorem 18, we can solve the Positivity problem (see the full version for
the proof).

I Theorem 20. Positivity is decidable for simple inhomogeneous LRS of order 8 or less,
with complexity in coNPPosSLP.

4.2 Lower Bounds
We now turn to study lower bounds, proving analogous results to Theorem 16 for inhomogen-
eous LRS. Similarly to [15], the hardness results we present are with respect to long standing
open problems in Diophantine approximation. Before stating our results, we require some
definitions from Diophantine approximation. We refer the reader to [13, 15] for comprehensive
references.

For any x ∈ R, we define the Lagrange constant of x as

L∞(x) = inf{c ∈ R : |x− n

m
| ≤ c

m2 for infinitely many m,n ∈ Z}

and the approximation type of x as

L(x) = inf{c ∈ R : |x− n

m
| ≤ c

m2 for some m,n ∈ Z}

For the vast majority of transcendental numbers, the Lagrange constant and the approx-
imation type are unknown, despite significant work [8, 15], and the problem of computing
them is a major open problem. In the following, we show that the decidability of Ultimate
Positivity (resp. Positivity) for inhomogeneous LRS of order 5 or more would imply a major
breakthrough in computing the Lagrange constant (resp. approximation type) for a large
class of transcendental numbers.

I Theorem 21. If Ultimate Positivity is decidable for inhomogeneous rational LRS of order
at least 5 then there is an algorithm that computes the Lagrange constant of any number
θ/2π such that eiθ has rational real and imaginary parts.

CONCUR 2018

42:14 Effective Divergence Analysis for Linear Recurrence Sequences

Proof. In [15], it is shown that deciding Ultimate Positivity of the homogeneous LRS of
order 6 given by

un = r sinnθ − n(1− cosnθ) and vn = −r sinnθ − n(1− cosnθ)

for every r ∈ Q such that r > 0 and θ ∈ (0, 2π) such that eiθ has rational real and imaginary
parts would allow one to compute L∞(θ/2π).

We observe that both sequences un and vn fall under the premise of Proposition 4. Thus,
by applying Proposition 4, we obtain an equivalent inhomogeneous LRS of order 5, concluding
the proof. J

A similar proof, using the results of [15], gives us also the following theorem.

I Theorem 22. If Positivity is decidable for inhomogeneous rational LRS of order at least 5
then there is an algorithm that computes the approximation type of any number θ/2π such
that eiθ has rational real and imaginary parts.

References
1 S. Akshay, Timos Antonopoulos, Joël Ouaknine, and James Worrell. Reachability problems

for Markov chains. Inf. Process. Lett., 115(2):155–158, 2015.
2 Alan Baker and Gisbert Wüstholz. Logarithmic forms and group varieties. J. reine angew.

Math, 442(19-62):3, 1993.
3 W. J. Baumol. Economic Dynamics. An Introduction. Macmillan, 1970.
4 Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Real algebraic geometry, volume 36.

Springer Science & Business Media, 2013.
5 Mark Braverman. Termination of integer linear programs. In Computer Aided Verifica-

tion, 18th International Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006,
Proceedings, pages 372–385, 2006.

6 John W.S. Cassels. An Introduction to Diophantine Approximation. Cambridge University
Press, 1965.

7 Henri Cohen. A course in computational algebraic number theory, volume 138. Springer
Science & Business Media, 2013.

8 Thomas W Cusick and Mary E Flahive. The Markoff and Lagrange spectra. Number 30 in
Mathematical Surveys and Monographs. American Mathematical Soc., 1989.

9 Graham Everest, Alfred J. van der Poorten, Igor E. Shparlinski, and Thomas Ward. Re-
currence Sequences, volume 104 of Mathematical surveys and monographs. American Math-
ematical Society, 2003.

10 J.-H. Evertse. On sums of S-units and linear recurrences. Compositio Math., 53(2):225–244,
1984.

11 David W Masser. Linear relations on algebraic groups. New Advances in Transcendence
Theory, pages 248–262, 1988.

12 M. Mignotte. A note on linear recursive sequences. J. Austral. Math. Soc., 20(2):242–244,
1975.

13 Ivan Morton Niven. Diophantine approximations. Courier Corporation, 2008.
14 Joël Ouaknine and James Worrell. On the positivity problem for simple linear recurrence

sequences,. In Automata, Languages, and Programming - 41st International Colloquium,
ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II, pages 318–329,
2014.

15 Joël Ouaknine and James Worrell. Positivity problems for low-order linear recurrence
sequences. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 366–379, 2014.

S. Almagor, B. Chapman, M. Hosseini, J. Ouaknine, and J. Worrell 42:15

16 Joël Ouaknine and James Worrell. Ultimate positivity is decidable for simple linear re-
currence sequences. In Automata, Languages, and Programming - 41st International Col-
loquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II, pages
330–341, 2014.

17 Joël Ouaknine and James Worrell. On linear recurrence sequences and loop termination.
SIGLOG News, 2(2):4–13, 2015.

18 James Renegar. On the computational complexity and geometry of the first-order theory
of the reals. part i: Introduction. preliminaries. the geometry of semi-algebraic sets. the
decision problem for the existential theory of the reals. Journal of symbolic computation,
13(3):255–299, 1992.

19 T. N. Shorey and C. L. Stewart. On the Diophantine equation ax2t + bxty + cy2 = d and
pure powers in recurrence sequences. Math. Scand., 52(1):24–36, 1983.

20 Alfred Tarski. A decision method for elementary algebra and geometry. Bulletin of the
American Mathematical Society, 59, 1951.

21 A. J. van der Poorten and H. P. Schlickewei. Additive relations in fields. J. Austral. Math.
Soc. Ser. A, 51(1):154–170, 1991.

CONCUR 2018

	p000-frontmatter
	Preface

	p001-Vardi
	p002-Deng
	Introduction
	Probabilistic Bisimulation
	Probabilistic Labelled Transition Systems
	Lifting Relations
	Probabilistic Bisimulation
	Distribution-Based Bisimulation

	Quantum Bisimulation
	Quantum Bisimulation for qCCS
	A Useful Proof Technique
	Distribution-Based Quantum Bisimulation
	Symbolic Bisimulations

	Concluding Remarks

	p003-vanGlabbeek
	p004-Polyakov
	Introduction
	Preliminaries
	Domain Specific Language – CryptoLine
	Syntax
	Semantics

	Verifying CryptoLine Programs
	Range Properties
	Algebraic Properties
	Modular Polynomial Equations
	Modular Polynomial Equation Entailment
	Solving Modular Polynomial Equation Entailment Problem
	Completeness
	Optimization

	Evaluation
	Montgomery Multiplication
	Arithmetic in Cryptographic Libraries

	Conclusion

	p005-Hasuo
	p006-Abdulla
	Introduction
	Timed Petri Nets
	Lower Bound
	Upper Bound
	Region Abstraction
	Acceleration
	Main Result

	Conclusion and Future Work

	p007-Bollig
	Introduction
	Preliminaries
	Message Sequence Charts
	MSO Logic and Its Fragments
	Communicating Finite-State Machines

	Star-Free Propositional Dynamic Logic
	Syntax and Semantics
	Main Results
	From FO to {PDL_{sf}}

	From {PDL_{sf}[Loop]} to CFMs
	Discussion

	p008-Kretinsky
	Introduction
	Preliminaries
	Markov chains
	Markov decision processes
	Automata as proto-MDPs

	Learning for MP: the Unconstrained Case
	Finite memory
	Infinite memory

	Learning for MP under a Sure Parity Constraint
	The case of a single good EC
	The case of a single EC
	General surely-good automata

	Learning for MP under an Almost-Sure Parity Constraint
	The case of a good end component
	The case of a single end component
	General almost-surely-good automata

	Conclusion

	p009-Tang
	Introduction
	Order and Distances
	Probabilistic Automata
	An Alternative Characterization
	Deciding Distance One
	Correctness Proof
	Conclusion

	p010-Michaliszyn
	Introduction
	Preliminaries
	Probabilistic semantics
	Computational questions

	Basic properties
	Example of computing expected value by hand
	Irrationality of the distribution and the expected value

	The exact value problems
	Extrema automata

	The approximation problems
	Approximating LimAvg-automata in exponential time
	Recurrent automata
	Nearly-deterministic approximations
	Random variables
	Approximation algorithms

	Determinising and approximating LimAvg-automata

	p011-Chatterjee
	Introduction
	Crypto-Currencies
	Concurrent and Ergodic Games
	Modeling Framework
	Mean-payoff games modeling
	Crypto-currency Protocols as Mean-payoff Games
	Modeling with Ergodic Games

	Formal Modeling of Real Attacks
	Block Withholding Pool Attack
	Details of Modeling

	Zero-confirmation Double-spending
	Proof of Stake Pool Attack

	Implementation and Experimental Results
	Related Work
	Conclusion and Future Work

	p012-Meyer
	Introduction
	Valence Systems over Graph Monoids
	Bounded Context Switching
	Block Decomposition
	Decision Procedure
	Complexity for Fixed Graphs
	Conclusion

	p013-Fournier
	Introduction
	Alternating nonzero automata
	An example: the language of PUCE trees
	Deciding emptiness of automata with limited choice for Adam
	Automata with limited choice for Adam
	Positional determinacy of the acceptance game
	On winning positional strategies of Eve
	Surely and almost-surely winning conditions
	Checking the positively winning condition

	Deciding emptiness

	Satisfiability of CTL^*[exists,forall,P_{>0},P_{=1}

	p014-Blondin
	Introduction
	Preliminaries
	From affine Z-VASS with the finite-monoid property to Z-VASS
	A characterization of reachability
	Reachability from the origin
	Reachability from an arbitrary configuration

	Semilinearity of affine Z-VASS
	Complexity of reachability
	Hardness results for reachability
	Conclusion

	p015-Atig
	Introduction
	Preliminaries
	Constrained Pushdown Systems
	Visibly Pushdown Systems
	A Quantitative Extension of CaReT
	Reachability/Emptiness for CPDAs
	Undecidability of Reachability
	 Technical Preliminaries
	Constraint height Bounded CPDAs

	Visible CPDS with procedural constraints
	Decidability of QCaReT
	Conclusion

	p016-Tredup
	Introduction
	Preliminaries
	Unions, Transition System Containers
	The Hardness of the ESSP and Feasibility for 2-grade 2-fold Transition Systems
	The Hardness of SSP for 2-grade 2-fold Transition Systems
	The Tractability of SSP for Linear 2-fold Transition Systems
	Conclusion

	p017-Bonchi
	Introduction
	Motivating example: distances between regular languages
	Preliminaries
	Moving towards a quantitative setting
	Lifting functors to V-Pred and V-Rel
	V-predicate liftings
	From predicates to relations via Wasserstein

	Quantitative up-to techniques
	Example: distance between regular languages
	Related and future work

	p018-Doumane
	Introduction
	Expressions, graph languages and Petri automata
	Expressions and their relational semantics
	Terms, graphs, and homomorphisms
	Graph language of an expression
	Petri automata

	Axiomatisation and structure of completeness proof
	Completeness for strict language inclusion
	Kleene theorem for Petri automata
	Template automata
	Computing the iteration of a template

	Synchronised Kleene theorem for PA
	Refinement relation
	Synchronised product automaton (initialisation)
	Maintaining refinement during reductions

	Future work

	p019-Kukovec
	Introduction
	System model
	Unrestricted threshold automata
	Semantics of UTA: counter systems
	Fragments of unrestricted threshold automata

	Negative results: unbounded diameters and undecidability
	Unbounded diameters of non-canonical threshold automata
	Undecidability for reversible and bounded-difference automata

	Positive results: bounding the diameter
	A sufficient condition for diameter boundedness
	Two fragments with bounded-steady guards

	Relation to flattable counter automata
	Flattability for non-canonical threshold automata
	Conclusions

	p020-Grigore
	Introduction
	Preliminaries
	Qualitative Analysis of Observation Policies
	Analyzing the Cost of Decision
	The Non-Hidden Case
	Empirical Evaluation of the Expected Optimal Cost
	Future Work

	p021-Kragl
	Introduction
	Overview
	Asynchronous Increments and Decrements
	Lock Service
	Layered Refinement Proofs

	An Asynchronous Programming Language
	Synchronizing Asynchrony
	Verifying Synchronization
	Eliminating Pending Asynchrony
	Evaluation
	Lock Service
	Two-phase Commit
	Task Distribution Service

	Related Work
	Conclusion

	p022-Goncharov
	Introduction
	Related Work, Contributions, Roadmap, and Notation

	A Simple Hybrid Programming Language
	Guarded Monads and Elgot Iteration
	A Fistful of Hybrid Monads
	Progressive Iteration and Hybrid Iteration
	Bringing While-loops Into The Scene
	Conclusions and Further Work

	p023-Sorensen
	Introduction
	Semi-fair schedulers: HSA and occupancy-bound execution
	Contributions and outline

	Background
	GPU programming
	Formal program reasoning

	Formalising semi-fairness
	Inter-workgroup synchronisation in the wild
	Unified GPU semi-fairness.
	LOBE discovery protocol

	Conclusion
	Barrier example cont.

	p024-Hofman
	Introduction
	Vector addition systems and linear equations
	Vector addition systems and linear equations, with ordered data

	Lower bound for the Permutation Sum Problem
	Histograms
	Upper bound for the Permutation Sum Problem
	PTime decision procedures
	X = Q_+
	X in {Z, Q}

	Concluding remarks

	p025-Brengos
	Introduction
	Basic notions
	Non-deterministic (Büchi) automata, coalgebraically
	Monads for (in)finite behaviour
	Preliminaries
	Lifting monads to algebras

	Abstract (Büchi) automata and their behaviour
	Behaviours v. languages

	Summary, future and related work

	p026-Roohi
	Introduction
	Preliminaries
	Functions and Sets
	Extended Metric Space and Distance Functions
	Predicates and Perturbations
	Transition Systems and Hybrid Automata
	Encoding States, CPost, and DPost as Predicates

	Arbitrary Over-Approximation of a Predicate
	Arbitrary Over-Approximation of Hybrid Automata
	Applications to Safety Model Checking
	Co-completeness of delta-Complete Decision Procedures
	Completeness of dReach

	Conclusion
	Proofs

	p027-Cabrera
	Introduction
	Knowledge Update in Condition/Event Nets
	Modular Bayesian Networks and Sub-Stochastic Matrices
	Updating Bayesian Networks
	Implementation
	Conclusion

	p028-Gastin
	Introduction
	Preliminaries
	A new simulation relation in the presence of diagonal constraints
	Algorithm for Z not ^d _{LU} Z'
	Checking Z not ^d _{LU} Z' is NP-hard
	Conclusion

	p029-Bruyere
	Introduction
	Monotonically ordered omega-regular games
	Fixed parameter complexity of ordered omega-regular games
	Ordered games with a compact embedding
	Values and optimal strategies for lexicographic games

	p030-Balzer
	Introduction
	Manifest Sharing with Session Types
	Recovering the Untyped Asynchronous pi-calculus in SILL_{S}
	Encoding the Untyped Asynchronous pi-calculus in SILL_{S}
	Operational Correspondence
	Observational Correspondence

	Simulating Shared Session Types in the pi-calculus
	Related Work
	Concluding Remarks

	p031-Esparza
	Introduction
	Immediate Observation Population Protocols
	Preliminaries
	Protocol Schemes
	Immediate Observation Protocol Schemes

	Population Protocols

	Counting Constraints and Counting Sets
	Reachability Sets of IO Population Protocols
	A Normal Form for Immediate Observation Protocols
	The Functions pre* and post* Preserve Counting Sets
	Bounding the Size of post*(Gamma)

	An Algorithm for Deciding Well Specification
	Consequences

	p032-Kretinsky
	Introduction
	Further related work

	Preliminaries
	Markov chains
	Probabilistic Computational Tree Logic

	Results
	Finite satisfiability for G_q(F_q,G_q,V
	Satisfiability for G_1(F_q,G_1)
	Satisfiability for G_1(F_q,G_1,V)
	Satisfiability for F_q,G_1
	Satisfiability for F_{q/1},G_1,V
	Finite Models for F_q, G_1, V

	Discussion, Conclusion, and Future Work

	p033-Blondin
	Introduction
	Population protocols
	Executing population protocols
	A simple modal logic for population protocols
	Computable predicates, interaction complexity
	Running examples

	Stages of population protocols
	An example of a stage graph

	Computing a stage graph
	Computing the valuation pi_nu
	Computing the set T_nu and the formula Phi_nu
	The transformation graph
	Computing T_nu and Phi_nu: Case Exp_nu neq emptyset
	Computing T_nu and Phi_nu: Case Exp_nu = emptyset

	Computing the interaction complexity
	Experimental results
	Conclusion

	p034-Aceto
	Introduction
	Preliminaries
	An Operational Model for Enforcement
	Enforceability
	Synthesising Suppression Enforcers
	Alternative Transparency Enforcement
	Conclusion

	p035-Czerwinski
	Introduction
	Well structured transition systems
	Expressibility
	Regular Separability
	Separator Size: The Case of Petri Nets
	Conclusion

	p036-Gorlin
	Introduction
	GPL and Branching Systems
	Probabilistic Branching Systems
	GPL Syntax
	GPL Semantics

	Encoding Other Model Checking Problems
	PTTL and Branching Processes
	Encoding of RMDP Termination
	Translating RMDPs to PBSs
	GPL Formula for RMDP Termination

	Decidable Model Checking
	Graph Construction
	Separability of Fuzzy Formulae
	Solving the Polynomial System
	Model Checking Example

	Discussion and Future Work

	p037-Konig
	Introduction
	Logics and Games for the Classical Case
	Foundations for the Classical Case
	Modal Logics for the Classical Case
	Games for the Classical Case
	Spoiler Strategy for the Classical Case

	Logics and Games for the Metric Case
	Foundations for the Metric Case
	Modal Logics for the Metric Case
	Games for the Metric Case
	Spoiler Strategy for the Metric Case

	Conclusion

	p038-Condurache
	Introduction
	Preliminaries
	Concurrent Game Structures
	Payoff and Solution Concepts
	Rational synthesis

	Solution for Problem 6
	Construction of a two-player game
	Transition function
	Winning condition
	Transformations

	Main Theorem
	Correctness
	Completeness

	Computational Complexity
	Conclusions

	p039-ShankaraNarayanan
	Introduction
	Preliminaries
	Temporal Logics
	MSO with guarded metric quantifiers QkMSO
	1-clock Alternating Timed Automata (1-ATA)

	A Normal Form for 1-ATA
	1-ATA-rfl and Logics
	Useful Lemmas
	1-ATA-rfl meets RatMTL
	RatMTL meets QkMSO

	C{oplus}D-1-ATA-rfl and Logics
	C{oplus}D-1-ATA-rfl meets FRatMTL
	FRatMTL meets Q2MSO

	Discussion

	p040-Bartoletti
	Introduction
	Communicating Timed Automata
	Compositional asynchronous timed refinement
	Verification of properties of refinements
	Preservation under an urgent semantics
	Implementing protocols via refinement
	Conclusions

	p041-Nagar
	Introduction
	Overview
	Preliminaries
	Input Language and Database Model
	Abstract Executions
	Operational Semantics

	FOL Encoding
	Vocabulary
	Relating Dependences with Abstract Executions
	Relating dependences with transactional programs

	Applications
	Bounded Anomaly Detection
	Verifying Serializability: The Shortest Path Approach
	Verifying Serializability: An Inductive Approach

	Case Studies
	Related Work and Conclusions

	p042-Almagor
	Introduction
	Preliminaries
	Linear Recurrence Sequences
	Mathematical Tools

	Divergence
	Effective Divergence is Solvable
	Hardness of Divergence

	Positivity and Ultimate Positivity
	Upper Bounds
	Lower Bounds

